project_name
stringclasses
3 values
file_path
stringlengths
26
44
code_data
stringlengths
1
2.47k
./src
./src/dataprep.egg-info/PKG-INFO
Metadata-Version: 2.1 Name: dataprep Version: 0.1.0 Summary: A small Dataset preparation toolkit Requires-Python: >=3.10 Description-Content-Type: text/markdown Requires-Dist: fastapi Requires-Dist: uvicorn Provides-Extra: dev Requires-Dist: pytest; extra == "dev" Requires-Dist: pytest-cov; extra == "dev" Requires-Dist: ruff; extra == "dev" Requires-Dist: watchdog; extra == "dev" Requires-Dist: httpx; extra == "dev" # Data Prep A small Dataset preparation toolkit ## Development Note: We use [uv](https://github.com/astral-sh/uv?tab=readme-ov-file#getting-started) for installing things, make sure you have it. 1. Make sure you are running in a virtual environment (e.g., `python3 -m venv .env`) 2. Activate it (e.g. `source .env/bin/activate`) ```shell (.env) $ make install-dev ``` 3. Run the tests ```shell (.env) $ make test ``` 4. Run the API ```shell (.env) $ make api ``` 5. For more help: ```shell (.env) $ make help ```
./src
./src/dataprep.egg-info/SOURCES.txt
README.md pyproject.toml src/dataprep/__init__.py src/dataprep.egg-info/PKG-INFO src/dataprep.egg-info/SOURCES.txt src/dataprep.egg-info/dependency_links.txt src/dataprep.egg-info/entry_points.txt src/dataprep.egg-info/requires.txt src/dataprep.egg-info/top_level.txt src/dataprep/api/__init__.py src/dataprep/api/main.py src/dataprep/cli/__init__.py src/dataprep/cli/data_prep.py src/dataprep/cli/main.py src/dataprep/common/__init__.py src/dataprep/common/file_parser.py src/dataprep/common/main.py src/dataprep/common/repository_scanner.py tests/test_api.py tests/test_dataprep.py
./src
./src/dataprep.egg-info/entry_points.txt
[console_scripts] eprep = dataprep.cli.main:main
./src
./src/dataprep.egg-info/requires.txt
fastapi uvicorn [dev] pytest pytest-cov ruff watchdog httpx
./src
./src/dataprep.egg-info/top_level.txt
dataprep
./src
./src/dataprep.egg-info/dependency_links.txt
./src/dataprep
./src/dataprep/cli/__init__.py
from dataprep.cli.main import main if __name__ == "__main__": main()
./src/dataprep
./src/dataprep/cli/data_prep.py
import argparse from datasets import Dataset from dataprep.common.hub.repo import upload_to_hub from dataprep.common.repository_scanner import RepositoryScanner class DataPrepCLI: def __init__(self): self.parser = argparse.ArgumentParser( description="CLI tool for preparing datasets from a local Git repository" ) self._register_arguments() def _register_arguments(self): self.parser.add_argument( "-r", "--repo", required=True, help="Path to the local Git repository", ) self.parser.add_argument( "-o", "--output", default="dataset.csv", help="Output file name for the prepared dataset (default: dataset.csv)", ) self.parser.add_argument( "-d", "--dataset", default="dataset.csv", help="The Hub repo you want to publish to", ) self.parser.add_argument( "-v", "--verbose", action="store_true", help="Enable verbose output", ) self.parser.add_argument( "--version", action="version", version="DataPrep CLI 1.0" ) def execute(self): args = self.parser.parse_args() self.prepare_dataset(args.repo, args.output, args.dataset, args.verbose) def prepare_dataset(self, repo_path: str, output_file: str, dataset: str, verbose=False): # prepare the dataset if verbose: print("Verbose mode enabled") print(f"Preparing dataset from repository at {repo_path}...") rs = RepositoryScanner( directory=repo_path, output_format="ftr" ) df = rs.scan_repository() # print(df.head()) upload_to_hub(file_format="ftr", repo_id=dataset) ds = Dataset.from_pandas(df) ds.push_to_hub(repo_id=dataset) print(print("ftr files uploaded to the Hub.")) if verbose: print(f"Dataset saved to {output_file}") else: print("Dataset preparation complete.")
./src/dataprep
./src/dataprep/cli/main.py
from dataprep.cli.data_prep import DataPrepCLI def main(): cli = DataPrepCLI() cli.execute()
./src/dataprep
./src/dataprep/common/repository_scanner.py
import os import pandas as pd from tqdm import tqdm from dataprep.common.constant import EXCLUDE_DIR, EXCLUDE_FORMATS from dataprep.common.file_parser import FileParser # ? Do we want to scan remote, or only local class RepositoryScanner: def __init__( self, directory: str, excluded_formats: tuple =EXCLUDE_FORMATS, excluded_paths: tuple =EXCLUDE_DIR, chunk_size: int=1000, output_format: str="ftr", ): self.directory = directory self.excluded_formats = excluded_formats self.excluded_paths = excluded_paths self.chunk_size = chunk_size self.output_format = output_format self.file_paths = [] def get_all_file_paths(self): for root, _, files in os.walk(self.directory): for file in files: file_path = os.path.join(root, file) if not file_path.endswith(self.excluded_formats) and all( exclusion not in file_path for exclusion in self.excluded_paths ): self.file_paths.append((os.path.dirname(root), file_path)) print(f"Total file paths: {len(self.file_paths)}.") def serialize_dataframe(self, df, chunk_flag): df_path = f"df_chunk_{chunk_flag}_{len(df)}.{self.output_format}" print(f"Serializing dataframe to {df_path}...") df.reset_index(drop=True).to_feather(df_path) def scan_repository(self) -> pd.DataFrame: self.get_all_file_paths() print("Reading file contents...") df = pd.DataFrame(columns=["project_name", "file_path", "code_data"]) chunk_flag = 0 for directory_name, file_path in tqdm(self.file_paths): file_content = FileParser.process_file_content( directory_name, file_path ) if file_content: temp_df = pd.DataFrame.from_dict([file_content]) df = pd.concat([df, temp_df], ignore_index=True) if self.chunk_size and len(df) >= self.chunk_size: self.serialize_dataframe(df, chunk_flag) df = pd.DataFrame( columns=["project_name", "file_path", "code_data"] ) chunk_flag += 1 # Serialize any remaining data in the final chunk if not df.empty: self.serialize_dataframe(df, chunk_flag) return df
./src/dataprep
./src/dataprep/common/file_parser.py
from typing import Dict class FileParser: @staticmethod def filter_code_cell(cell) -> bool: only_shell = cell["source"].startswith("!") only_magic = "%%capture" in cell["source"] return not (only_shell or only_magic) @staticmethod def process_file(directory_name: str, file_path: str) -> Dict[str, str]: try: with open(file_path, "r", encoding="utf-8") as file: content = file.read() except Exception: content = "" return { "project_name": directory_name, "file_path": file_path, "code_data": content, } @staticmethod def process_file_content(directory_name: str, file_path: str): try: content = FileParser.process_file( directory_name, file_path ) # Assuming `process_file` is defined elsewhere if content["code_data"]: return content except Exception as e: print(f"Error processing file {file_path}: {e}") return None
./src/dataprep
./src/dataprep/common/constant.py
IMAGE = ["png", "jpg", "jpeg", "gif"] VIDEO = ["mp4", "jfif"] DOC = [ "key", "PDF", "pdf", "docx", "xlsx", "pptx", ] AUDIO = ["flac", "ogg", "mid", "webm", "wav", "mp3"] ARCHIVE = ["jar", "aar", "gz", "zip", "bz2"] MODEL = ["onnx", "pickle", "model", "neuron"] OTHERS = [ "npy", "index", "inv", "index", "DS_Store", "rdb", "pack", "idx", "glb", "gltf", "len", "otf", "unitypackage", "ttf", "xz", "pcm", "opus", "env" ] EXCLUDE_FORMATS = tuple(IMAGE + VIDEO + DOC + AUDIO + ARCHIVE + OTHERS) EXCLUDE_DIR = ( ".git", "__pycache__", "xcodeproj", "node_modules", "dist", ".firebase", ".nx", ".angular", ".idea", ".husky", "build", ".yarn", )
./src/dataprep
./src/dataprep/common/main.py
def hello_world(): return "We are here"
./src/dataprep/common
./src/dataprep/common/hub/repo.py
import glob import os import subprocess import tempfile from huggingface_hub import create_repo, upload_folder, Repository def upload_to_hub(file_format: str, repo_id: str): try: repo = Repository(local_dir=f"./{repo_id}", clone_from=repo_id, repo_type="dataset") except Exception as e: create_repo( repo_id=repo_id, exist_ok=True, repo_type="dataset", private=True, ) repo = Repository(local_dir=f"./{repo_id}", clone_from=repo_id) with tempfile.TemporaryDirectory() as tmpdirname: files_to_move = glob.glob(f"*.{file_format}") if files_to_move: command = f"mv *.{file_format} {tmpdirname}" subprocess.run(command.split(), shell=True) else: print(f"No files to move: {files_to_move}") print(f"Uploading contents of {tmpdirname} to {repo_id}") upload_folder( repo_id=repo_id, folder_path=tmpdirname, repo_type="dataset" )
./src/dataprep
./src/dataprep/api/main.py
from importlib.metadata import version from fastapi import FastAPI from fastapi.responses import RedirectResponse from dataprep.common.main import hello_world app = FastAPI( title="dataprep API", version=version("dataprep"), ) @app.get("/") async def root(): return RedirectResponse("/docs") @app.post( "/hello", ) async def hello(): return hello_world()