gt
stringclasses
1 value
context
stringlengths
2.49k
119k
# This file is dual licensed under the terms of the Apache License, Version # 2.0, and the BSD License. See the LICENSE file in the root of this repository # for complete details. from __future__ import absolute_import, division, print_function import abc import six from cryptography import utils @six.add_metaclass(abc.ABCMeta) class Mode(object): @abc.abstractproperty def name(self): """ A string naming this mode (e.g. "ECB", "CBC"). """ @abc.abstractmethod def validate_for_algorithm(self, algorithm): """ Checks that all the necessary invariants of this (mode, algorithm) combination are met. """ @six.add_metaclass(abc.ABCMeta) class ModeWithInitializationVector(object): @abc.abstractproperty def initialization_vector(self): """ The value of the initialization vector for this mode as bytes. """ @six.add_metaclass(abc.ABCMeta) class ModeWithTweak(object): @abc.abstractproperty def tweak(self): """ The value of the tweak for this mode as bytes. """ @six.add_metaclass(abc.ABCMeta) class ModeWithNonce(object): @abc.abstractproperty def nonce(self): """ The value of the nonce for this mode as bytes. """ @six.add_metaclass(abc.ABCMeta) class ModeWithAuthenticationTag(object): @abc.abstractproperty def tag(self): """ The value of the tag supplied to the constructor of this mode. """ def _check_aes_key_length(self, algorithm): if algorithm.key_size > 256 and algorithm.name == "AES": raise ValueError( "Only 128, 192, and 256 bit keys are allowed for this AES mode" ) def _check_iv_length(self, algorithm): if len(self.initialization_vector) * 8 != algorithm.block_size: raise ValueError("Invalid IV size ({0}) for {1}.".format( len(self.initialization_vector), self.name )) def _check_iv_and_key_length(self, algorithm): _check_aes_key_length(self, algorithm) _check_iv_length(self, algorithm) @utils.register_interface(Mode) @utils.register_interface(ModeWithInitializationVector) class CBC(object): name = "CBC" def __init__(self, initialization_vector): if not isinstance(initialization_vector, bytes): raise TypeError("initialization_vector must be bytes") self._initialization_vector = initialization_vector initialization_vector = utils.read_only_property("_initialization_vector") validate_for_algorithm = _check_iv_and_key_length @utils.register_interface(Mode) @utils.register_interface(ModeWithTweak) class XTS(object): name = "XTS" def __init__(self, tweak): if not isinstance(tweak, bytes): raise TypeError("tweak must be bytes") if len(tweak) != 16: raise ValueError("tweak must be 128-bits (16 bytes)") self._tweak = tweak tweak = utils.read_only_property("_tweak") def validate_for_algorithm(self, algorithm): if algorithm.key_size not in (256, 512): raise ValueError( "The XTS specification requires a 256-bit key for AES-128-XTS" " and 512-bit key for AES-256-XTS" ) @utils.register_interface(Mode) class ECB(object): name = "ECB" validate_for_algorithm = _check_aes_key_length @utils.register_interface(Mode) @utils.register_interface(ModeWithInitializationVector) class OFB(object): name = "OFB" def __init__(self, initialization_vector): if not isinstance(initialization_vector, bytes): raise TypeError("initialization_vector must be bytes") self._initialization_vector = initialization_vector initialization_vector = utils.read_only_property("_initialization_vector") validate_for_algorithm = _check_iv_and_key_length @utils.register_interface(Mode) @utils.register_interface(ModeWithInitializationVector) class CFB(object): name = "CFB" def __init__(self, initialization_vector): if not isinstance(initialization_vector, bytes): raise TypeError("initialization_vector must be bytes") self._initialization_vector = initialization_vector initialization_vector = utils.read_only_property("_initialization_vector") validate_for_algorithm = _check_iv_and_key_length @utils.register_interface(Mode) @utils.register_interface(ModeWithInitializationVector) class CFB8(object): name = "CFB8" def __init__(self, initialization_vector): if not isinstance(initialization_vector, bytes): raise TypeError("initialization_vector must be bytes") self._initialization_vector = initialization_vector initialization_vector = utils.read_only_property("_initialization_vector") validate_for_algorithm = _check_iv_and_key_length @utils.register_interface(Mode) @utils.register_interface(ModeWithNonce) class CTR(object): name = "CTR" def __init__(self, nonce): if not isinstance(nonce, bytes): raise TypeError("nonce must be bytes") self._nonce = nonce nonce = utils.read_only_property("_nonce") def validate_for_algorithm(self, algorithm): _check_aes_key_length(self, algorithm) if len(self.nonce) * 8 != algorithm.block_size: raise ValueError("Invalid nonce size ({0}) for {1}.".format( len(self.nonce), self.name )) @utils.register_interface(Mode) @utils.register_interface(ModeWithInitializationVector) @utils.register_interface(ModeWithAuthenticationTag) class GCM(object): name = "GCM" _MAX_ENCRYPTED_BYTES = (2 ** 39 - 256) // 8 _MAX_AAD_BYTES = (2 ** 64) // 8 def __init__(self, initialization_vector, tag=None, min_tag_length=16): # len(initialization_vector) must in [1, 2 ** 64), but it's impossible # to actually construct a bytes object that large, so we don't check # for it if not isinstance(initialization_vector, bytes): raise TypeError("initialization_vector must be bytes") self._initialization_vector = initialization_vector if tag is not None: if not isinstance(tag, bytes): raise TypeError("tag must be bytes or None") if min_tag_length < 4: raise ValueError("min_tag_length must be >= 4") if len(tag) < min_tag_length: raise ValueError( "Authentication tag must be {0} bytes or longer.".format( min_tag_length) ) self._tag = tag tag = utils.read_only_property("_tag") initialization_vector = utils.read_only_property("_initialization_vector") def validate_for_algorithm(self, algorithm): _check_aes_key_length(self, algorithm)
"""String generation""" import re from string import Formatter dflt_formatter = Formatter() ########### Partial and incremental formatting ######################################################################### # TODO: Make .vformat (therefore .format) work with args and kwargs # TODO: Make it not blow up and conserve spec (e.g. the 1.2f of {foo:1.2f}) when not specified class PartialFormatter(Formatter): """A string formatter that won't complain if the fields are only partially formatted. But note that you will lose the spec part of your template (e.g. in {foo:1.2f}, you'll loose the 1.2f if not foo is given -- but {foo} will remain). >>> partial_formatter = PartialFormatter() >>> str_template = 'foo:{foo} bar={bar} a={a} b={b:0.02f} c={c}' >>> partial_formatter.format(str_template, bar="BAR", b=34) 'foo:{foo} bar=BAR a={a} b=34.00 c={c}' Note: If you only need a formatting function (not the transformed formatting string), a simpler solution may be: ``` import functools format_str = functools.partial(str_template.format, bar="BAR", b=34) ``` See https://stackoverflow.com/questions/11283961/partial-string-formatting for more options and discussions. """ def get_value(self, key, args, kwargs): try: return super().get_value(key, args, kwargs) except KeyError: return '{' + key + '}' def format_fields_set(self, s): return {x[1] for x in self.parse(s) if x[1]} partial_formatter = PartialFormatter() # TODO: For those who love algorithmic optimization, there's some wasted to cut out here below. def _unformatted(d): for k, v in d.items(): if isinstance(v, str) and len(partial_formatter.format_fields_set(v)) > 0: yield k def _fields_to_format(d): for k, v in d.items(): if isinstance(v, str): yield from partial_formatter.format_fields_set(v) def format_str_vals_of_dict(d, *, max_formatting_loops=10, **kwargs): """ :param d: :param max_formatting_loops: :param kwargs: :return: >>> d = { ... 'filepath': '{root}/{file}.{ext}', ... 'ext': 'txt' ... } >>> format_str_vals_of_dict(d, root='ROOT', file='FILE') {'filepath': 'ROOT/FILE.txt', 'ext': 'txt'} Note that if the input mapping `d` and the kwargs have a conflict, the mapping version is used! >>> format_str_vals_of_dict(d, root='ROOT', file='FILE', ext='will_not_be_used') {'filepath': 'ROOT/FILE.txt', 'ext': 'txt'} But if you want to override an input mapping, you can -- the usual way: >>> format_str_vals_of_dict(dict(d, ext='will_be_used'), root='ROOT', file='FILE') {'filepath': 'ROOT/FILE.will_be_used', 'ext': 'will_be_used'} If you don't provide enough fields to satisfy all the format fields in the values of `d`, you'll be told to bugger off. >>> format_str_vals_of_dict(d, root='ROOT') Traceback (most recent call last): ... ValueError: I won't be able to complete that. You'll need to provide the values for: file And it's recursive... >>> d = { ... 'filepath': '{root}/{filename}', ... 'filename': '{file}.{ext}' ... } >>> my_configs = {'root': 'ROOT', 'file': 'FILE', 'ext': 'EXT'} >>> format_str_vals_of_dict(d, **my_configs) {'filepath': 'ROOT/FILE.EXT', 'filename': 'FILE.EXT'} # TODO: Could make the above work if filename is give, but not file nor ext! At least as an option. """ d = dict(**d) # make a shallow copy # The defaults (kwargs) cannot overlap with any keys of d, so: kwargs = {k: kwargs[k] for k in set(kwargs) - set(d)} provided_fields = set(d) | set(kwargs) missing_fields = set(_fields_to_format(d)) - provided_fields if missing_fields: raise ValueError("I won't be able to complete that. You'll need to provide the values for:\n" + f" {', '.join(missing_fields)}") for i in range(max_formatting_loops): unformatted = set(_unformatted(d)) if unformatted: for k in unformatted: d[k] = partial_formatter.format(d[k], **kwargs, **d) else: break else: raise ValueError(f"There are still some unformatted fields, " f"but I reached my max {max_formatting_loops} allowed loops. " + f"Those fields are: {set(_fields_to_format(d)) - (set(d) | set(kwargs))}") return d ####################################################################################################################### def compile_str_from_parsed(parsed): """The (quasi-)inverse of string.Formatter.parse. Args: parsed: iterator of (literal_text, field_name, format_spec, conversion) tuples, as yield by string.Formatter.parse Returns: A format string that would produce such a parsed input. >>> from string import Formatter >>> s = "ROOT/{}/{0!r}/{1!i:format}/hello{:0.02f}TAIL" >>> assert compile_str_from_parsed(Formatter().parse(s)) == s >>> >>> # Or, if you want to see more details... >>> parsed = list(Formatter().parse(s)) >>> for p in parsed: ... print(p) ('ROOT/', '', '', None) ('/', '0', '', 'r') ('/', '1', 'format', 'i') ('/hello', '', '0.02f', None) ('TAIL', None, None, None) >>> compile_str_from_parsed(parsed) 'ROOT/{}/{0!r}/{1!i:format}/hello{:0.02f}TAIL' """ result = '' for literal_text, field_name, format_spec, conversion in parsed: # output the literal text if literal_text: result += literal_text # if there's a field, output it if field_name is not None: result += '{' if field_name != '': result += field_name if conversion: result += '!' + conversion if format_spec: result += ':' + format_spec result += '}' return result def transform_format_str(format_str, parsed_tuple_trans_func): return compile_str_from_parsed( map(lambda args: parsed_tuple_trans_func(*args), dflt_formatter.parse(format_str))) def _empty_field_name(literal_text, field_name, format_spec, conversion): if field_name is not None: return literal_text, '', format_spec, conversion else: return literal_text, field_name, format_spec, conversion def auto_field_format_str(format_str): """Get an auto field version of the format_str Args: format_str: A format string Returns: A transformed format_str >>> auto_field_format_str('R/{0}/{one}/{}/{two}/T') 'R/{}/{}/{}/{}/T' """ return transform_format_str(format_str, _empty_field_name) def _mk_naming_trans_func(names=None): if names is None: names = map(str, range(99999)) _names = iter(names) def trans_func(literal_text, field_name, format_spec, conversion): if field_name is not None: return literal_text, next(_names), format_spec, conversion else: return literal_text, field_name, format_spec, conversion return trans_func def name_fields_in_format_str(format_str, field_names=None): """Get a manual field version of the format_str Args: format_str: A format string names: An iterable that produces enough strings to fill all of format_str fields Returns: A transformed format_str >>> name_fields_in_format_str('R/{0}/{one}/{}/{two}/T') 'R/{0}/{1}/{2}/{3}/T' >>> # Note here that we use the field name to inject a field format as well >>> name_fields_in_format_str('R/{foo}/{0}/{}/T', ['42', 'hi:03.0f', 'world']) 'R/{42}/{hi:03.0f}/{world}/T' """ return transform_format_str(format_str, _mk_naming_trans_func(field_names)) def match_format_string(format_str, s): """Match s against the given format string, return dict of matches. We assume all of the arguments in format string are named keyword arguments (i.e. no {} or {:0.2f}). We also assume that all chars are allowed in each keyword argument, so separators need to be present which aren't present in the keyword arguments (i.e. '{one}{two}' won't work reliably as a format string but '{one}-{two}' will if the hyphen isn't used in {one} or {two}). We raise if the format string does not match s. Author: https://stackoverflow.com/users/2593383/nonagon Found here: https://stackoverflow.com/questions/10663093/use-python-format-string-in-reverse-for-parsing Example: >>> fs = '{test}-{flight}-{go}' >>> s = fs.format(test='first', flight='second', go='third') >>> match_format_string(fs, s) {'test': 'first', 'flight': 'second', 'go': 'third'} """ # First split on any keyword arguments, note that the names of keyword arguments will be in the # 1st, 3rd, ... positions in this list tokens = re.split(r'\{(.*?)\}', format_str) keywords = tokens[1::2] # Now replace keyword arguments with named groups matching them. We also escape between keyword # arguments so we support meta-characters there. Re-join tokens to form our regexp pattern tokens[1::2] = map(u'(?P<{}>.*)'.format, keywords) tokens[0::2] = map(re.escape, tokens[0::2]) pattern = ''.join(tokens) # Use our pattern to match the given string, raise if it doesn't match matches = re.match(pattern, s) if not matches: raise Exception("Format string did not match") # Return a dict with all of our keywords and their values return {x: matches.group(x) for x in keywords} def _is_not_none(x): return x is not None def format_params_in_str_format(format_string): """ Get the "parameter" indices/names of the format_string Args: format_string: A format string (i.e. a string with {...} to mark parameter placement and formatting Returns: A list of parameter indices used in the format string, in the order they appear, with repetition. Parameter indices could be integers, strings, or None (to denote "automatic field numbering". >>> format_string = '{0} (no 1) {2}, and {0} is a duplicate, {} is unnamed and {name} is string-named' >>> list(format_params_in_str_format(format_string)) [0, 2, 0, None, 'name'] """ return map(lambda x: int(x) if str.isnumeric(x) else x if x != '' else None, filter(_is_not_none, (x[1] for x in dflt_formatter.parse(format_string)))) def n_format_params_in_str_format(format_string): """ The number of parameters""" return len(set(format_params_in_str_format(format_string))) def arg_and_kwargs_indices(format_string): """ Args: format_string: A format string (i.e. a string with {...} to mark parameter placement and formatting Returns: >>> format_string = '{0} (no 1) {2}, {see} this, {0} is a duplicate (appeared before) and {name} is string-named' >>> assert arg_and_kwargs_indices(format_string) == ({0, 2}, {'name', 'see'}) >>> format_string = 'This is a format string with only automatic field specification: {}, {}, {} etc.' >>> arg_and_kwargs_indices(format_string) (None, None) """ d = {True: set(), False: set()} for x in format_params_in_str_format(format_string): d[isinstance(x, int)].add(x) args_keys, kwargs_keys = _validate_str_format_arg_and_kwargs_keys(d[True], d[False]) return args_keys, kwargs_keys def _validate_str_format_arg_and_kwargs_keys(args_keys, kwargs_keys): """check that str_format is entirely manual or entirely automatic field specification""" if any(not x for x in kwargs_keys): # {} (automatic field numbering) show up as '' in args_keys # so need to check that args_keys is empty and kwargs has only None (no "manual" names) if (len(args_keys) != 0) or (len(kwargs_keys) != 1): raise ValueError( f"cannot switch from manual field specification (i.e. {{number}} or {{name}}) " "to automatic (i.e. {}) field numbering. But you did:\n{str_format}") return None, None else: return args_keys, kwargs_keys pipe_split_p = re.compile("\s*\|\s*") func_and_arg_p = re.compile('(?P<func>\w+)\((?P<args>.*)\)', flags=re.DOTALL) comma_sep_p = re.compile('\s*,\s*') def get_func_and_arg_dict(s): """ Parses the input string recursively, returning: * if the string has the format f(*args): a nested func_and_arg_dict * else returns the string itself, unchanged. A func_and_arg_dict is a dict of the format: {"func": FUNC_STRING, "args": ARG_STRING_LIST}, where ARG_STRING_LIST elements are themselves strings or func_and_arg_dicts. The intended use is to parse string.Formatter() spec strings and carry out the instructions therein. :param s: a string :return: the same string, or a {func:, args:} dict if the string has the f(*args) pattern >>> get_func_and_arg_dict("foo") 'foo' >>> get_func_and_arg_dict("foo()") {'args': [], 'func': 'foo'} >>> get_func_and_arg_dict("foo(bar)") {'args': ['bar'], 'func': 'foo'} >>> get_func_and_arg_dict("f(g(x), y)") {'args': [{'args': ['x'], 'func': 'g'}, 'y'], 'func': 'f'} >>> get_func_and_arg_dict('f(g(x), "two words", h(z))') {'args': [{'args': ['x'], 'func': 'g'}, '"two words"', {'args': ['z'], 'func': 'h'}], 'func': 'f'} """ match = func_and_arg_p.match(s) if match: func_and_arg_dict = match.groupdict() if 'args' in func_and_arg_dict: args_list = comma_sep_p.split(func_and_arg_dict['args']) if args_list == ['']: args_list = [] for i, arg in enumerate(args_list): arg_expanded = get_func_and_arg_dict(arg) args_list[i] = arg_expanded func_and_arg_dict['args'] = args_list return func_and_arg_dict else: return s class PipelineTemplate(Formatter): def __init__(self, **key_to_action): """ A string.Formatter that accepts a |-separated specification of a pipeline through which the input value should go through before being output (cast automatically to a str). This formatter is created by specifying what functions correspond to the names that will be used in the spec of the string. Standard format specifications (such as 04.04f, d, etc) can be used as well, anywhere in the pipeline. :param key_to_action: key=action specifications. Action must be a callable which will be applied to input value >>> p = PipelineTemplate(plus_ten=lambda x: x + 10, ... times_ten=lambda x: x * 10 ... ) >>> p.format('{x:plus_ten}', x=1) # plus_ten points to the function that does that job '11' >>> p.format('{x:plus_ten|times_ten}', x=1) # you can pipeline the functions you've specified '110' >>> p.format('{x} + 10 = {x:plus_ten}, ({x} + 10) * 10 = {x:plus_ten|times_ten}', x=1) '1 + 10 = 11, (1 + 10) * 10 = 110' >>> p.format('x + 10 = {0:plus_ten}, (x + 10) * 10 = {0:plus_ten|times_ten}', 1) # no name use 'x + 10 = 11, (x + 10) * 10 = 110' >>> p.format('{x: times_ten | plus_ten }', x=1) # can have spaces between pipes '20' >>> p.format('{x:04.02f}', x=2) # you can also use standard formatting specs '2.00' >>> p.format('{x:times_ten | plus_ten | 04.0f}', x=2) # even in a pipeline '0030' >>> p = { ... 'f_wrap': lambda x: map('f({})'.format, x), ... 'csv': lambda x: ', '.join(x), ... } >>> >>> p = PipelineTemplate(**p) >>> >>> p.format('this --> {alist:f_wrap|csv}', alist=['A']) 'this --> f(A)' >>> p.format('that --> {alist:f_wrap|csv}', alist=['A', 'B', 'C']) 'that --> f(A), f(B), f(C)' >>> # and if you didn't define what you needed in the constructor arguments, you can always write python code >>> s = '''This {x: ... lambda x: x + 2 ... | lambda x: x * 10 ... | 3.02f} was obtained through python functions.''' >>> PipelineTemplate().format(s, x=1) 'This 30.00 was obtained through python functions.' >>> # and you can even use functions that need to be imported! >>> p = { ... 'add_10': lambda x: x + 10 ... } >>> s = '''{x: ... lambda x: list(map(lambda xx: xx + 2, x)) ... | lambda x: __import__('numpy').array(x) * 10 ... | __import__('numpy').sum ... | add_10}''' >>> PipelineTemplate(**p).format(s, x=[1, 2]) '80' """ self.key_to_action = key_to_action def format_field(self, value, spec): spec = spec.strip() spec_list = pipe_split_p.split(spec) for spec in spec_list: try: if spec in self.key_to_action: value = self.key_to_action[spec](value) else: try: f = eval(spec) value = eval("f(value)") # TODO: evals are not secure. Put safety checks in place. except Exception: value = super(PipelineTemplate, self).format_field(value, spec) except ValueError as e: raise ValueError("{}: {}".format(spec, e.args[0])) return str(value) def wrapper(prefix='', suffix=''): return "{prefix}{{}}{suffix}".format(prefix=prefix, suffix=suffix).format def mapper(func): return lambda x: list(map(func, x)) def templater(template): template = template.replace("{{}}", "{}") return template.format
# coding=utf-8 # Copyright 2019 The Interval Bound Propagation Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for sentence representation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile from absl import logging import sonnet as snt import tensorflow as tf from tensorflow.contrib import lookup as contrib_lookup def get_padded_embeddings(embeddings, vocabulary_table, tokens, batch_size, token_indexes=None): """Reshapes and pads 'raw' word embeddings. Say we have batch of B tokenized sentences, of variable length, with a total of W tokens. For example, B = 2 and W = 3 + 4 = 7: [['The', 'cat', 'eats'], [ 'A', 'black', 'cat', 'jumps']] Since rows have variable length, this cannot be represented as a tf.Tensor. It is represented as a tf.SparseTensor, with 7 values & indexes: indices: [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [1,3]] values: ['The', 'cat', 'eats', 'A', 'black', 'cat', 'jumps'] We have also built a vocabulary table: vocabulary table: ['cat', 'The', 'A', 'black', 'eats', 'jumps'] We also have the embeddings, a WxD matrix of floats representing each word in the vocabulary table as a normal tf.Tensor. For example, with D=3, embeddings could be: [[0.4, 0.5, -0.6], # This is the embedding for word 0 = 'cat' [0.1, -0.3, 0.6], # This is the embedding for word 1 = 'The'' [0.7, 0.8, -0.9], # This is the embedding for word 2 = 'A' [-0.1, 0.9, 0.7], # This is the embedding for word 3 = 'black' [-0.2, 0.4, 0.7], # This is the embedding for word 4 = 'eats [0.3, -0.5, 0.2]] # This is the embedding for word 5 = 'jumps' This function builds a normal tf.Tensor containing the embeddings for the tokens provided, in the correct order, with appropriate 0 padding. In our example, the returned tensor would be: [[[0.1, -0.3, 0.6], [0.4, 0.5, -0.6], [-0.2, 0.4, 0.7], [0.0, 0.0, 0.0]], [[0.7, 0.8, -0.9], [-0.1, 0.9, 0.7], [0.4, 0.5, -0.6], [0.3, -0.5, 0.2]]] Note that since the first sentence has only 3 words, the 4th embedding gets replaced by a D-dimensional vector of 0. Args: embeddings: [W, D] Tensor of floats, containing the embeddings, initialized with the same vocabulary file as vocabulary_table. vocabulary_table: a tf.contrib.lookup.LookupInterface, containing the vocabulary, initialized with the same vocabulary file as embeddings. tokens: [B, ?] SparseTensor of strings, the tokens. batch_size: Python integer. token_indexes: A Boolean, indicating whether the input tokens are token ids or string. Returns: [B, L, D] Tensor of floats: the embeddings in the correct order, appropriately padded with 0.0, where L = max(num_tokens) and B = batch_size """ embedding_dim = embeddings.get_shape()[1].value # D in docstring above. num_tokens_in_batch = tf.shape(tokens.indices)[0] # W in the docstring above. max_length = tokens.dense_shape[1] # This is L in the docstring above. # Get indices of tokens in vocabulary_table. if token_indexes is not None: indexes = token_indexes else: indexes = vocabulary_table.lookup(tokens.values) # Get word embeddings. tokens_embeddings = tf.gather(embeddings, indexes) # Shape of the return tensor. new_shape = tf.cast( tf.stack([batch_size, max_length, embedding_dim], axis=0), tf.int32) # Build the vector of indices for the return Tensor. # In the example above, indices_final would be: # [[[0,0,0], [0,0,1], [0,0,2]], # [[0,1,0], [0,1,1], [0,1,2]], # [[0,2,0], [0,2,1], [0,2,2]], # [[1,0,0], [1,0,1], [1,0,2]], # [[1,1,0], [1,1,1], [1,1,2]], # [[1,2,0], [1,2,1], [1,2,2]], # [[1,3,0], [1,3,1], [1,3,2]]] tiled = tf.tile(tokens.indices, [1, embedding_dim]) indices_tiled = tf.cast( tf.reshape(tiled, [num_tokens_in_batch * embedding_dim, 2]), tf.int32) indices_linear = tf.expand_dims( tf.tile(tf.range(0, embedding_dim), [num_tokens_in_batch]), axis=1) indices_final = tf.concat([indices_tiled, indices_linear], axis=1) # Build the dense Tensor. embeddings_padded = tf.sparse_to_dense( sparse_indices=indices_final, output_shape=new_shape, sparse_values=tf.reshape(tokens_embeddings, [num_tokens_in_batch * embedding_dim])) embeddings_padded.set_shape((batch_size, None, embedding_dim)) return embeddings_padded def get_padded_indexes(vocabulary_table, tokens, batch_size, token_indexes=None): """Get the indices of tokens from vocabulary table. Args: vocabulary_table: a tf.contrib.lookup.LookupInterface, containing the vocabulary, initialized with the same vocabulary file as embeddings. tokens: [B, ?] SparseTensor of strings, the tokens. batch_size: Python integer. token_indexes: A Boolean, indicating whether the input tokens are token ids or string. Returns: [B, L] Tensor of integers: indices of tokens in the correct order, appropriately padded with 0, where L = max(num_tokens) and B = batch_size """ num_tokens_in_batch = tf.shape(tokens.indices)[0] max_length = tokens.dense_shape[1] # Get indices of tokens in vocabulary_table. if token_indexes is not None: indexes = token_indexes else: indexes = vocabulary_table.lookup(tokens.values) # Build the dense Tensor. indexes_padded = tf.sparse_to_dense( sparse_indices=tokens.indices, output_shape=[batch_size, max_length], sparse_values=tf.reshape(indexes, [num_tokens_in_batch])) indexes_padded.set_shape((batch_size, None)) return indexes_padded class EmbedAndPad(snt.AbstractModule): """Embed and pad tokenized words. This class primary functionality is similar to get_padded_embeddings. It stores references to the embeddings and vocabulary table for convenience, so that the user does not have to keep and pass them around. """ def __init__(self, batch_size, vocabularies, embedding_dim, num_oov_buckets=1000, fine_tune_embeddings=False, padded_token=None, name='embed_and_pad'): super(EmbedAndPad, self).__init__(name=name) self._batch_size = batch_size vocab_file, vocab_size = get_merged_vocabulary_file(vocabularies, padded_token) self._vocab_size = vocab_size self._num_oov_buckets = num_oov_buckets # Load vocabulary table for index lookup. self._vocabulary_table = contrib_lookup.index_table_from_file( vocabulary_file=vocab_file, num_oov_buckets=num_oov_buckets, vocab_size=self._vocab_size) def create_initializer(initializer_range=0.02): """Creates a `truncated_normal_initializer` with the given range.""" # The default value is chosen from language/bert/modeling.py. return tf.truncated_normal_initializer(stddev=initializer_range) self._embeddings = tf.get_variable('embeddings_matrix', [self._vocab_size + num_oov_buckets, embedding_dim], trainable=fine_tune_embeddings, initializer=create_initializer()) def _build(self, tokens): padded_embeddings = get_padded_embeddings( self._embeddings, self._vocabulary_table, tokens, self._batch_size) return padded_embeddings @property def vocab_table(self): return self._vocabulary_table @property def vocab_size(self): return self._vocab_size + self._num_oov_buckets def get_accuracy(logits, labels): """Top 1 accuracy from logits and labels.""" return tf.reduce_mean(tf.cast(tf.nn.in_top_k(logits, labels, 1), tf.float32)) def get_num_correct_predictions(logits, labels): """Get the number of correct predictions over a batch.""" predictions = tf.cast(tf.argmax(logits, axis=1), tf.int64) evals = tf.equal(predictions, labels) num_correct = tf.reduce_sum(tf.cast(evals, tf.float64)) return num_correct def get_merged_vocabulary_file(vocabularies, padded_token=None): """Merges several vocabulary files into one temporary file. The TF object that loads the embedding expects a vocabulary file, to know which embeddings it should load. See tf.contrib.embedding.load_embedding_initializer. When we want to train/test on several datasets simultaneously we need to merge their vocabulary files into a single file. Args: vocabularies: Iterable of vocabularies. Each vocabulary should be a list of tokens. padded_token: If not None, add the padded_token to the first index. Returns: outfilename: Name of the merged file. Contains the union of all tokens in filenames, without duplicates, one token per line. vocabulary_size: Count of tokens in the merged file. """ uniques = [set(vocabulary) for vocabulary in vocabularies] unique_merged = frozenset().union(*uniques) unique_merged_sorted = sorted(unique_merged) if padded_token is not None: # Add padded token as 0 index. unique_merged_sorted = [padded_token] + unique_merged_sorted vocabulary_size = len(unique_merged_sorted) outfile = tempfile.NamedTemporaryFile(delete=False) outfile.write(b'\n'.join(unique_merged_sorted)) outfilename = outfile.name logging.info('Merged vocabulary file with %d tokens: %s', vocabulary_size, outfilename) outfile.close() return outfilename, vocabulary_size
# -*- coding: utf-8 -*- """ Project Tracking & Management """ module = request.controller resourcename = request.function if not settings.has_module(module): raise HTTP(404, body="Module disabled: %s" % module) mode_task = settings.get_project_mode_task() # ============================================================================= def index(): """ Module's Home Page """ if mode_task: redirect(URL(f="project", vars={"tasks":1})) elif settings.get_project_mode_drr(): # Bypass home page & go direct to searching for Projects redirect(URL(f="project", args="search")) else: # Bypass home page & go direct to list of Projects # - no good search options available redirect(URL(f="project")) #module_name = settings.modules[module].name_nice #response.title = module_name #return dict(module_name=module_name) # ============================================================================= def create(): """ Redirect to project/create """ redirect(URL(f="project", args="create")) # ----------------------------------------------------------------------------- def project(): """ RESTful CRUD controller """ if "tasks" in request.get_vars: # Return simplified controller to pick a Project for which to list the Open Tasks table = s3db.project_project s3.crud_strings["project_project"].title_list = T("Open Tasks for Project") #s3.crud_strings["project_project"].sub_title_list = T("Select Project") s3mgr.LABEL.READ = "Select" s3mgr.LABEL.UPDATE = "Select" s3db.configure("project_project", deletable=False, listadd=False) # Post-process def postp(r, output): if r.interactive: if not r.component: read_url = URL(f="task", args="search", vars={"project":"[id]"}) update_url = URL(f="task", args="search", vars={"project":"[id]"}) s3mgr.crud.action_buttons(r, deletable=False, read_url=read_url, update_url=update_url) return output s3.postp = postp return s3_rest_controller() table = s3db.hrm_human_resource table.person_id.comment = DIV(_class="tooltip", _title="%s|%s" % (T("Person"), T("Select the person assigned to this role for this project."))) doc_table = s3db.table("doc_document", None) if doc_table is not None: doc_table.organisation_id.readable = doc_table.organisation_id.writable = False doc_table.person_id.readable = doc_table.person_id.writable = False doc_table.location_id.readable = doc_table.location_id.writable = False # Pre-process def prep(r): # Location Filter s3db.gis_location_filter(r) if r.interactive: if not r.component: if r.id: r.table.human_resource_id.represent = lambda id: \ s3db.hrm_human_resource_represent(id, show_link=True) elif r.function == "index": r.method = "search" # If just a few Projects, then a List is sufficient #r.method = "list" else: if r.component_name == "organisation": if r.method != "update": host_role = 1 otable = s3db.project_organisation query = (otable.deleted != True) & \ (otable.role == host_role) & \ (otable.project_id == r.id) row = db(query).select(otable.id, limitby=(0, 1)).first() if row: project_organisation_roles = \ dict(s3.project_organisation_roles) del project_organisation_roles[host_role] otable.role.requires = \ IS_NULL_OR(IS_IN_SET(project_organisation_roles)) elif r.component_name in ("activity", "location"): # Default the Location Selector list of countries to those found in the project countries = r.record.countries_id if countries: ttable = s3db.gis_location_tag query = (ttable.location_id.belongs(countries)) & \ (ttable.tag == "ISO2") countries = db(query).select(ttable.value) settings.gis.countries = [c.value for c in countries] elif r.component_name == "task": r.component.table.milestone_id.requires = IS_NULL_OR(IS_ONE_OF(db, "project_milestone.id", "%(name)s", filterby="project_id", filter_opts=(r.id,), )) if "open" in request.get_vars: # Show only the Open Tasks for this Project statuses = s3.project_task_active_statuses filter = (r.component.table.status.belongs(statuses)) r.resource.add_component_filter("task", filter) elif r.component_name == "beneficiary": db.project_beneficiary.project_location_id.requires = IS_NULL_OR( IS_ONE_OF(db, "project_location.id", s3db.project_location_represent, sort=True, filterby="project_id", filter_opts=[r.id]) ) elif r.component_name == "human_resource": # We can pass the human resource type filter in the URL group = r.vars.get("group", None) table = db.project_human_resource s3db.hrm_human_resource.person_id.represent = lambda id: \ s3db.pr_person_represent(id, show_link=True) # These values are defined in hrm_type_opts if group: crud_strings = s3.crud_strings if group == "staff": group = 1 table.human_resource_id.label = T("Staff") crud_strings["project_human_resource"] = crud_strings["hrm_staff"] crud_strings["project_human_resource"].update( subtitle_create = T("Add Staff Member to Project") ) elif group == "volunteer": group = 2 table.human_resource_id.label = T("Volunteer") crud_strings["project_human_resource"] = crud_strings["hrm_volunteer"] crud_strings["project_human_resource"].update( subtitle_create = T("Add Volunteer to Project") ) # Use the group to filter the component list filter_by_type = (db.hrm_human_resource.type == group) r.resource.add_component_filter("human_resource", filter_by_type) # Use the group to filter the form widget for adding a new record table.human_resource_id.requires = IS_ONE_OF( db, "hrm_human_resource.id", s3db.hrm_human_resource_represent, filterby="type", filter_opts=(group,), orderby="hrm_human_resource.person_id", sort=True ) return True s3.prep = prep # Post-process def postp(r, output): if r.interactive: if not r.component: # Set the minimum end_date to the same as the start_date s3.jquery_ready.append( '''S3.start_end_date('project_project_start_date','project_project_end_date')''') if mode_task: read_url = URL(args=["[id]", "task"]) update_url = URL(args=["[id]", "task"]) s3mgr.crud.action_buttons(r, read_url=read_url, update_url=update_url) elif r.component_name == "beneficiary": # Set the minimum end_date to the same as the start_date s3.jquery_ready.append( '''S3.start_end_date('project_beneficiary_start_date','project_beneficiary_end_date')''') return output s3.postp = postp rheader = s3db.project_rheader return s3_rest_controller(module, "project", # Need to specify as sometimes we come via index() rheader=rheader, csv_template="project") # ============================================================================= def status(): """ RESTful CRUD controller """ return s3_rest_controller() # ----------------------------------------------------------------------------- def theme(): """ RESTful CRUD controller """ return s3_rest_controller() # ----------------------------------------------------------------------------- def hazard(): """ RESTful CRUD controller """ return s3_rest_controller() # ----------------------------------------------------------------------------- def framework(): """ RESTful CRUD controller """ return s3_rest_controller(rheader=s3db.project_rheader) # ============================================================================= def organisation(): """ RESTful CRUD controller """ if settings.get_project_multiple_organisations(): s3db.configure("project_organisation", insertable=False, editable=False, deletable=False) list_btn = A(T("Funding Report"), _href=URL(c="project", f="organisation", args="report", vars=request.get_vars), _class="action-btn") return s3_rest_controller(list_btn=list_btn, csv_template="organisation") else: tabs = [ (T("Basic Details"), None), (T("Projects"), "project"), (T("Contacts"), "human_resource"), ] rheader = lambda r: s3db.org_rheader(r, tabs) return s3_rest_controller("org", resourcename, rheader=rheader) # ============================================================================= def beneficiary_type(): """ RESTful CRUD controller """ return s3_rest_controller() # ----------------------------------------------------------------------------- def beneficiary(): """ RESTful CRUD controller """ tablename = "project_beneficiary" s3db.configure("project_beneficiary", insertable=False, editable=False, deletable=False) list_btn = A(T("Beneficiary Report"), _href=URL(c="project", f="beneficiary", args="report", vars=request.get_vars), _class="action-btn") return s3_rest_controller() # ============================================================================= def activity_type(): """ RESTful CRUD controller """ return s3_rest_controller() # ----------------------------------------------------------------------------- def activity(): """ RESTful CRUD controller """ tablename = "%s_%s" % (module, resourcename) table = s3db[tablename] # Pre-process def prep(r): if r.interactive: if r.component is not None: if r.component_name == "document": doc_table = s3db.doc_document doc_table.organisation_id.readable = False doc_table.person_id.readable = False doc_table.location_id.readable = False doc_table.organisation_id.writable = False doc_table.person_id.writable = False doc_table.location_id.writable = False return True s3.prep = prep # Pre-process def postp(r, output): if r.representation == "plain": def represent(record, field): if field.represent: return field.represent(record[field]) else: return record[field] # Add VirtualFields to Map Popup # Can't inject into SQLFORM, so need to simply replace item = TABLE() table.id.readable = False table.location_id.readable = False fields = [table[f] for f in table.fields if table[f].readable] record = r.record for field in fields: item.append(TR(TD(field.label), TD(represent(record, field)))) hierarchy = gis.get_location_hierarchy() item.append(TR(TD(hierarchy["L4"]), TD(record["name"]))) for field in ["L3", "L2", "L1"]: item.append(TR(TD(hierarchy[field]), TD(record[field]))) output["item"] = item return output s3.postp = postp return s3_rest_controller(rheader=s3db.project_rheader, csv_template="activity") # ----------------------------------------------------------------------------- def location(): """ RESTful CRUD controller to display project location information """ tablename = "%s_%s" % (module, resourcename) table = s3db[tablename] # Pre-process def prep(r): if r.interactive: if r.component is not None: if r.component_name == "document": doc_table = s3db.doc_document doc_table.organisation_id.readable = False doc_table.person_id.readable = False doc_table.location_id.readable = False doc_table.organisation_id.writable = False doc_table.person_id.writable = False doc_table.location_id.writable = False return True s3.prep = prep # Pre-process def postp(r, output): if r.representation == "plain": # Replace the Map Popup contents with custom content item = TABLE() def represent(record, field): if field.represent: return field.represent(record[field]) else: return record[field] if settings.get_project_community(): # The Community is the primary resource record = r.record table.id.readable = False table.location_id.readable = False fields = [table[f] for f in table.fields if table[f].readable] for field in fields: data = record[field] if data: represent = field.represent if represent: item.append(TR(TD(field.label), TD(represent(data)))) else: item.append(TR(TD(field.label), TD(data))) hierarchy = gis.get_location_hierarchy() for field in ["L4", "L3", "L2", "L1"]: if field in hierarchy and record[field]: item.append(TR(TD(hierarchy[field]), TD(record[field]))) output["item"] = item else: # The Project is the primary resource project_id = r.record.project_id ptable = s3db.project_project query = (ptable.id == project_id) project = db(query).select(limitby=(0, 1)).first() ptable.id.readable = False fields = [ptable[f] for f in ptable.fields if ptable[f].readable] for field in fields: data = project[field] if data: represent = field.represent if represent: item.append(TR(TD(field.label), TD(represent(data)))) else: item.append(TR(TD(field.label), TD(data))) title = s3.crud_strings["project_project"].title_display # Assume authorised to see details popup_url = URL(f="project", args=[project_id]) details_btn = A(T("Show Details"), _href=popup_url, _id="details-btn", _target="_blank") output = dict( item = item, title = title, details_btn = details_btn, ) return output s3.postp = postp return s3_rest_controller(interactive_report=True, rheader=s3db.project_rheader, csv_template="location") # ----------------------------------------------------------------------------- def community_contact(): """ Show a list of all community contacts """ return s3_rest_controller() # ----------------------------------------------------------------------------- def report(): """ RESTful CRUD controller @ToDo: Why is this needed? To have no rheader? """ return s3_rest_controller(module, "activity") # ============================================================================= def task(): """ RESTful CRUD controller """ return s3db.project_task_controller() # ============================================================================= def task_project(): """ RESTful CRUD controller """ if auth.permission.format != "s3json": return "" # Pre-process def prep(r): if r.method != "options": return False return True s3.prep = prep return s3_rest_controller() # ============================================================================= def task_activity(): """ RESTful CRUD controller """ if auth.permission.format != "s3json": return "" # Pre-process def prep(r): if r.method != "options": return False return True s3.prep = prep return s3_rest_controller() # ============================================================================= def milestone(): """ RESTful CRUD controller """ return s3_rest_controller() # ============================================================================= def time(): """ RESTful CRUD controller """ tablename = "project_time" table = s3db[tablename] if "mine" in request.get_vars: # Show the Logged Time for this User s3.crud_strings["project_time"].title_list = T("My Logged Hours") s3db.configure("project_time", listadd=False) person_id = auth.s3_logged_in_person() if person_id: now = request.utcnow s3.filter = (table.person_id == person_id) & \ (table.date > (now - datetime.timedelta(days=2))) try: list_fields = s3db.get_config(tablename, "list_fields") list_fields.remove("person_id") s3db.configure(tablename, list_fields=list_fields) except: pass elif "week" in request.get_vars: now = request.utcnow week = datetime.timedelta(days=7) s3.filter = (table.date > (now - week)) return s3_rest_controller() # ============================================================================= # Comments # ============================================================================= def comment_parse(comment, comments, task_id=None): """ Parse a Comment @param: comment - a gluon.sql.Row: the current comment @param: comments - a gluon.sql.Rows: full list of comments @param: task_id - a reference ID: optional task commented on """ author = B(T("Anonymous")) if comment.created_by: utable = s3db.auth_user ptable = s3db.pr_person ltable = s3db.pr_person_user query = (utable.id == comment.created_by) left = [ltable.on(ltable.user_id == utable.id), ptable.on(ptable.pe_id == ltable.pe_id)] row = db(query).select(utable.email, ptable.first_name, ptable.middle_name, ptable.last_name, left=left, limitby=(0, 1)).first() if row: person = row.pr_person user = row[utable._tablename] username = s3_fullname(person) email = user.email.strip().lower() import hashlib hash = hashlib.md5(email).hexdigest() url = "http://www.gravatar.com/%s" % hash author = B(A(username, _href=url, _target="top")) if not task_id and comment.task_id: table = s3db.project_task task = "re: %s" % table[comment.task_id].name header = DIV(author, " ", task) task_id = comment.task_id else: header = author thread = LI(DIV(s3base.s3_avatar_represent(comment.created_by), DIV(DIV(header, _class="comment-header"), DIV(XML(comment.body)), _class="comment-text"), DIV(DIV(comment.created_on, _class="comment-date"), DIV(A(T("Reply"), _class="action-btn"), _onclick="comment_reply(%i);" % comment.id, _class="comment-reply"), _class="fright"), _id="comment-%i" % comment.id, _task_id=task_id, _class="comment-box")) # Add the children of this thread children = UL(_class="children") id = comment.id count = 0 for comment in comments: if comment.parent == id: count = 1 child = comment_parse(comment, comments, task_id=task_id) children.append(child) if count == 1: thread.append(children) return thread # ----------------------------------------------------------------------------- def comments(): """ Function accessed by AJAX from rfooter to handle Comments """ try: task_id = request.args[0] except: raise HTTP(400) table = s3db.project_comment field = table.task_id field.default = task_id field.writable = field.readable = False # Form to add a new Comment form = crud.create(table, formname="project_comment/%s" % task_id) # List of existing Comments comments = db(field == task_id).select(table.id, table.parent, table.body, table.created_by, table.created_on) output = UL(_id="comments") for comment in comments: if not comment.parent: # Show top-level threads at top-level thread = comment_parse(comment, comments, task_id=task_id) output.append(thread) script = "".join(( '''$('#comments').collapsible({xoffset:'-5',yoffset:'50',imagehide:img_path+'arrow-down.png',imageshow:img_path+'arrow-right.png',defaulthide:false}) $('#project_comment_parent__row1').hide() $('#project_comment_parent__row').hide() $('#project_comment_body').ckeditor(ck_config) $('#submit_record__row input').click(function(){ $('#comment-form').hide() $('#project_comment_body').ckeditorGet().destroy() return true })''')) # No layout in this output! #s3.jquery_ready.append(script) output = DIV(output, DIV(H4(T("New Post"), _id="comment-title"), form, _id="comment-form", _class="clear"), SCRIPT(script)) return XML(output) # ----------------------------------------------------------------------------- def partners(): # ToDo: This could need to be a deployment setting current.request.get_vars["organisation.organisation_type_id$name"] = "Bilateral,Government,Intergovernmental,NGO,UN agency" return s3db.org_organisation_controller() # END =========================================================================
import mock import django.test from django.contrib.auth.middleware import AuthenticationMiddleware from django.contrib.auth.models import User from django.contrib.sessions.middleware import SessionMiddleware from django.core.cache import cache from django.template import context from ..models import Token from ..middlewares import CsrfMiddleware from ..utils import prep_key from .. import conf from .base import ClientHandler, make_expired class TestCsrfToken(django.test.TestCase): def setUp(self): self.client.handler = ClientHandler() User.objects.create_user('jbalogh', 'j@moz.com', 'password') self.save_ANON_ALWAYS = conf.ANON_ALWAYS conf.ANON_ALWAYS = False def tearDown(self): conf.ANON_ALWAYS = self.save_ANON_ALWAYS def login(self): assert self.client.login(username='jbalogh', password='password') def test_csrftoken_unauthenticated(self): # request.csrf_token is '' for anonymous users. response = self.client.get('/', follow=True) self.assertEqual(response._request.csrf_token, '') def test_csrftoken_authenticated(self): # request.csrf_token is a random non-empty string for authed users. self.login() response = self.client.get('/', follow=True) # The CSRF token is a 32-character MD5 string. self.assertEqual(len(response._request.csrf_token), 32) def test_csrftoken_new_session(self): # The csrf_token is added to request.session the first time. self.login() response = self.client.get('/', follow=True) # The CSRF token is a 32-character MD5 string. token = response._request.session['csrf_token'] self.assertEqual(len(token), 32) self.assertEqual(token, response._request.csrf_token) def test_csrftoken_existing_session(self): # The csrf_token in request.session is reused on subsequent requests. self.login() r1 = self.client.get('/', follow=True) token = r1._request.session['csrf_token'] r2 = self.client.get('/', follow=True) self.assertEqual(r1._request.csrf_token, r2._request.csrf_token) self.assertEqual(token, r2._request.csrf_token) class TestCsrfMiddleware(django.test.TestCase): def setUp(self): self.token = 'a' * 32 self.rf = django.test.RequestFactory() self.mw = CsrfMiddleware() self._user = User.objects.create() def process_view(self, request, view=None): request.session = {} return self.mw.process_view(request, view, None, None) def test_anon_token_from_cookie(self): rf = django.test.RequestFactory() rf.cookies[conf.ANON_COOKIE] = self.token cache.set(prep_key(self.token), 'woo') request = rf.get('/') SessionMiddleware().process_request(request) AuthenticationMiddleware().process_request(request) self.mw.process_request(request) self.assertEqual(request.csrf_token, 'woo') def test_set_csrftoken_once(self): # Make sure process_request only sets request.csrf_token once. request = self.rf.get('/') request.csrf_token = 'woo' self.mw.process_request(request) self.assertEqual(request.csrf_token, 'woo') def test_reject_view(self): # Check that the reject view returns a 403. response = self.process_view(self.rf.post('/')) self.assertEqual(response.status_code, 403) def test_csrf_exempt(self): # Make sure @csrf_exempt still works. view = type("", (), {'csrf_exempt': True})() self.assertEqual(self.process_view(self.rf.post('/'), view), None) def test_safe_whitelist(self): # CSRF should not get checked on these methods. self.assertEqual(self.process_view(self.rf.get('/')), None) self.assertEqual(self.process_view(self.rf.head('/')), None) self.assertEqual(self.process_view(self.rf.options('/')), None) def test_unsafe_methods(self): self.assertEqual(self.process_view(self.rf.post('/')).status_code, 403) self.assertEqual(self.process_view(self.rf.put('/')).status_code, 403) self.assertEqual(self.process_view(self.rf.delete('/')).status_code, 403) def test_csrfmiddlewaretoken(self): # The user token should be found in POST['csrfmiddlewaretoken']. request = self.rf.post('/', {'csrfmiddlewaretoken': self.token}) self.assertEqual(self.process_view(request).status_code, 403) request.csrf_token = self.token self.assertEqual(self.process_view(request), None) def test_x_csrftoken(self): # The user token can be found in the X-CSRFTOKEN header. request = self.rf.post('/', HTTP_X_CSRFTOKEN=self.token) self.assertEqual(self.process_view(request).status_code, 403) request.csrf_token = self.token self.assertEqual(self.process_view(request), None) def test_require_request_token_or_user_token(self): # Blank request and user tokens raise an error on POST. request = self.rf.post('/', HTTP_X_CSRFTOKEN='') request.csrf_token = '' self.assertEqual(self.process_view(request).status_code, 403) def test_token_no_match(self): # A 403 is returned when the tokens don't match. request = self.rf.post('/', HTTP_X_CSRFTOKEN='woo') request.csrf_token = '' self.assertEqual(self.process_view(request).status_code, 403) def test_csrf_token_context_processor(self): # Our CSRF token should be available in the template context. request = mock.Mock() request.csrf_token = self.token request.groups = [] ctx = {} for processor in context.get_standard_processors(): ctx.update(processor(request)) self.assertEqual(ctx['csrf_token'], self.token) def _authenticated_request(self, token=None, **kwargs): """Create mocked request object for authenticated user""" self._user.is_authenticated = lambda: True if token is None: token = Token.objects.create(owner=self._user).value return mock.MagicMock( csrf_token=token, user=self._user, POST={}, META={'HTTP_X_CSRFTOKEN': token}, csrf_processing_done=False, _dont_enforce_csrf_checks=False, **kwargs) def test_reject_for_wrong_token_if_authenticated(self): """Test reject for wrong token if authenticated""" request = self._authenticated_request('wrong') self.assertIsNotNone(self.process_view(request)) def test_reject_when_token_expired(self): """Test reject when csrf token expired""" token = make_expired(Token.objects.create(owner=self._user)) request = self._authenticated_request(token.value) self.assertIsNotNone(self.process_view(request)) def test_accept_when_token_is_ok(self): """Test accept when token is ok""" request = self._authenticated_request() self.assertIsNone(self.process_view(request)) def test_renew_csrf_token_on_request_if_expired(self): """Test renew csrf token on request if expired""" token = make_expired(Token.objects.create(owner=self._user)) request = self._authenticated_request(token.value, session={ 'csrf_token': token.value, }) del request.csrf_token self.mw.process_request(request) self.assertNotEqual(token.value, request.csrf_token) def test_not_change_csrf_token_on_request_if_valid(self): """Test not change csrf token on request if valid""" request = self._authenticated_request() token = request.csrf_token request.session = { 'csrf_token': token, } del request.csrf_token self.mw.process_request(request) self.assertEqual(token, request.csrf_token) def test_add_csrf_token_on_request(self): """Test add csrf token on request""" request = self._authenticated_request() del request.csrf_token self.mw.process_request(request) self.assertIsNotNone(request.csrf_token) class TestPerViewCsrf(django.test.TestCase): """Per view csrf test case""" def setUp(self): self.user = User.objects.create_user('test', 'test@test.test', 'test') self.client.handler = ClientHandler() self.client.login(username='test', password='test') def _get_token(self): return Token.objects.create( owner=self.user, for_view="session_csrf.tests.base.per_view", ) def test_ok_with_correct_per_view_csrf(self): """Test response is ok with correct per-view csrf""" response = self.client.post('/per-view', { 'csrfmiddlewaretoken': self._get_token().value, }) self.assertEqual(response.status_code, 200) def test_not_ok_with_expired_csrf_token(self): """Test not ok with expired csrf token""" token = make_expired(self._get_token()) response = self.client.post('/per-view', { 'csrfmiddlewaretoken': token.value, }) self.assertEqual(response.status_code, 403) def test_not_ok_without_token(self): """Test not ok without token""" response = self.client.post('/per-view') self.assertEqual(response.status_code, 403)
#!/usr/bin/env/python import wx from collections import deque class SnakeGame(wx.Frame): def __init__(self, parent, title): wx.Frame.__init__(self, parent, title=title, size=(300,350), style = wx.DEFAULT_FRAME_STYLE & ~(wx.RESIZE_BORDER | wx.RESIZE_BOX | wx.MAXIMIZE_BOX)) # Initialize status bar self.statusBar = self.CreateStatusBar() self.statusBar.SetStatusText('Score: ' + '0') self.board = Board(self) box = wx.BoxSizer(wx.HORIZONTAL) box.Add(self.board, 1, wx.EXPAND | wx.ALL | wx.ALIGN_CENTER, 0) self.SetSizer(box) self.board.SetFocus() self.board.Start() self.Center() self.Show(True) def OnAbout(self,e): dlg = wx.MessageDialog( self, 'Created by Simon So, 2010', 'About Snake', wx.OK) dlg.ShowModal() dlg.Destroy() def OnExit(self,e): self.Close(True) class SnakeBody(object): def __init__(self): self.Width = 5 self.Length = 50 self.HeadDir = SnakeDir.RIGHT self.TailDir = SnakeDir.RIGHT self.Body = [[wx.Point(50,100),wx.Point(0, 100)]] self.NumSegments = 1 def SaveTurnPos(self): self.Body[0].insert(1,wx.Point(self.Body[0][0].x,self.Body[0][0].y)) def Move(self): self.CalcTailDir() headDir = self.HeadDir tailDir = self.TailDir if headDir == SnakeDir.RIGHT: self.MoveHeadRight() elif headDir == SnakeDir.LEFT: self.MoveHeadLeft() elif headDir == SnakeDir.UP: self.MoveHeadUp() else: # headDir == SnakeDir.DOWN: self.MoveHeadDown() if tailDir == SnakeDir.RIGHT: self.MoveTailRight() elif tailDir == SnakeDir.LEFT: self.MoveTailLeft() elif tailDir == SnakeDir.UP: self.MoveTailUp() else: # headDir == SnakeDir.DOWN: self.MoveTailDown() def MoveHeadUp(self): if self.Body[0][0].y == 0: self.Body.insert(0,[wx.Point(self.Body[0][0].x,Board.Height),wx.Point(self.Body[0][0].x,Board.Height)]) self.NumSegments += 1 else: self.Body[0][0].y -= 1 def MoveHeadDown(self): if self.Body[0][0].y == Board.Height: self.Body.insert(0,[wx.Point(self.Body[0][0].x,0),wx.Point(self.Body[0][0].x,0)]) self.NumSegments += 1 else: self.Body[0][0].y += 1 def MoveHeadLeft(self): if self.Body[0][0].x == 0: self.Body.insert(0,[wx.Point(Board.Width,self.Body[0][0].y),wx.Point(Board.Width,self.Body[0][0].y)]) self.NumSegments += 1 else: self.Body[0][0].x -= 1 def MoveHeadRight(self): if self.Body[0][0].x == Board.Width: self.Body.insert(0,[wx.Point(0,self.Body[0][0].y),wx.Point(0,self.Body[0][0].y)]) self.NumSegments += 1 else: self.Body[0][0].x += 1 def MoveTailUp(self): if self.Body[-1][0] == self.Body[-1][-1]: del self.Body[-1] self.NumSegments -= 1 else: self.Body[-1][-1].y -= 1 def MoveTailDown(self): if self.Body[-1][0] == self.Body[-1][-1]: del self.Body[-1] self.NumSegments -= 1 else: self.Body[-1][-1].y += 1 def MoveTailLeft(self): if self.Body[-1][0] == self.Body[-1][-1]: del self.Body[-1] self.NumSegments -= 1 else: self.Body[-1][-1].x -= 1 def MoveTailRight(self): if self.Body[-1][0] == self.Body[-1][-1]: del self.Body[-1] self.NumSegments -= 1 else: self.Body[-1][-1].x += 1 def CalcTailDir(self): diff = self.Body[-1][-2] - self.Body[-1][-1] if diff.x > 0: self.TailDir = SnakeDir.RIGHT elif diff.x < 0: self.TailDir = SnakeDir.LEFT elif diff.y > 0: self.TailDir = SnakeDir.DOWN elif diff.y < 0: self.TailDir = SnakeDir.UP elif diff.x == 0 and diff.y == 0: if len(self.Body[-1]) > 2: nextDiff = self.Body[-1][-3] - self.Body[-1][-1] if nextDiff.x > 0: self.TailDir = SnakeDir.RIGHT elif nextDiff.x < 0: self.TailDir = SnakeDir.LEFT elif nextDiff.y > 0: self.TailDir = SnakeDir.DOWN elif nextDiff.y < 0: self.TailDir = SnakeDir.UP del self.Body[-1][-2] else: del self.Body[-1] def SetPos(self, point): self.Body[0][0] = point def SetWidth(self, width): self.Width = width def SetLength(self, length): self.Length = length def SetHeadDir(self, dir): self.HeadDir = dir def GetBody(self): return self.Body def GetPos(self): return self.Body[0][0] def GetWidth(self): return self.Width def GetLength(self): return self.Length def GetHeadDir(self): return self.HeadDir class SnakeDir(object): UP = 0 DOWN = 1 LEFT = 2 RIGHT = 3 class Board(wx.Panel): Width = 300 Height = 300 Speed = 10 ID_TIMER = 1 def __init__(self, parent): wx.Panel.__init__(self, parent) self.isPaused = False self.Score = 0 self.Snake = SnakeBody() self.timer = wx.Timer(self, Board.ID_TIMER) self.Bind(wx.EVT_TIMER, self.OnTimer, id=Board.ID_TIMER) self.Bind(wx.EVT_PAINT, self.OnPaint) self.Bind(wx.EVT_KEY_DOWN, self.OnKeyDown) self.Bind(wx.EVT_ERASE_BACKGROUND, self.OnEraseBkgd) def Start(self): self.timer.Start(Board.Speed, wx.TIMER_CONTINUOUS) def Pause(self): self.isPaused = not self.isPaused if self.isPaused: self.timer.Stop() self.GetParent().statusBar.SetStatusText('Score: ' + str(self.Score) + ' - PAUSED') else: self.timer.Start(Board.Speed) self.GetParent().statusBar.SetStatusText('Score: ' + str(self.Score)) self.Refresh() def SetSnakeDir(self, newDir): if newDir == self.Snake.HeadDir: return elif newDir == SnakeDir.UP and self.Snake.HeadDir == SnakeDir.DOWN: return elif newDir == SnakeDir.DOWN and self.Snake.HeadDir == SnakeDir.UP: return elif newDir == SnakeDir.LEFT and self.Snake.HeadDir == SnakeDir.RIGHT: return elif newDir == SnakeDir.RIGHT and self.Snake.HeadDir == SnakeDir.LEFT: return else: self.Snake.SetHeadDir(newDir) self.Snake.SaveTurnPos() # Does nothing, catches erase background event to prevent flickering def OnEraseBkgd(self, e): return def OnKeyDown(self, e): keycode = e.GetKeyCode() if keycode == ord('P') or keycode == ord('p'): self.Pause() return if keycode == ord('X') or keycode == ord('x'): self.GetParent().Close(True) return if self.isPaused: return # elif keycode == wx.WXK_LEFT: # self.SetSnakeDir(SnakeDir.LEFT) # print LEFT # elif keycode == wx.WXK_RIGHT: # self.SetSnakeDir(SnakeDir.RIGHT) # print RIGHT # elif keycode == wx.WXK_DOWN: # self.SetSnakeDir(SnakeDir.DOWN) # print DOWN # elif keycode == wx.WXK_UP: # self.SetSnakeDir(SnakeDir.UP) # print UP if keycode == ord('A') or keycode == ord('a'): self.SetSnakeDir(SnakeDir.LEFT) elif keycode == ord('D') or keycode == ord('d'): self.SetSnakeDir(SnakeDir.RIGHT) elif keycode == ord('S') or keycode == ord('s'): self.SetSnakeDir(SnakeDir.DOWN) elif keycode == ord('W') or keycode == ord('w'): self.SetSnakeDir(SnakeDir.UP) else: e.Skip() def OnPaint(self, e): dc = wx.BufferedPaintDC(self) dc.Clear() self.DrawSnake(dc) def DrawSnake(self, dc): snakeLen = self.Snake.GetLength() snakeWidth = self.Snake.GetWidth() headPos = self.Snake.GetPos() dc.SetPen(wx.Pen(wx.BLACK,snakeWidth)) for segments in self.Snake.Body: dc.DrawLines(segments) def OnTimer(self, e): if e.GetId() == Board.ID_TIMER: self.Snake.Move() self.Refresh() else: e.Skip() app = wx.App(False) frame = SnakeGame(None, 'Snake') app.MainLoop()
""" @package mi.dataset.parser.test @file mi-dataset/mi/dataset/parser/test/test_phsen_abcdef_imodem.py @author Joe Padula @brief Test code for the phsen_abcdef_imodem parser """ __author__ = 'Joe Padula' import os from nose.plugins.attrib import attr from mi.core.exceptions import UnexpectedDataException from mi.logging import log from mi.dataset.test.test_parser import ParserUnitTestCase from mi.dataset.dataset_parser import DataSetDriverConfigKeys from mi.dataset.driver.phsen_abcdef.imodem.resource import RESOURCE_PATH from mi.dataset.parser.phsen_abcdef_imodem import \ PhsenAbcdefImodemParticleClassKey, \ PhsenAbcdefImodemParser from mi.dataset.parser.phsen_abcdef_imodem_particles import \ PhsenAbcdefImodemMetadataRecoveredDataParticle, \ PhsenAbcdefImodemControlRecoveredDataParticle, \ PhsenAbcdefImodemInstrumentRecoveredDataParticle, \ PhsenAbcdefImodemMetadataTelemeteredDataParticle, \ PhsenAbcdefImodemControlTelemeteredDataParticle, \ PhsenAbcdefImodemInstrumentTelemeteredDataParticle O_MODE = 'rU' # Universal Open mode @attr('UNIT', group='mi') class PhsenAbcdefImodemParserUnitTestCase(ParserUnitTestCase): """ phsen_abcdef_imodem Parser unit test suite """ def setUp(self): ParserUnitTestCase.setUp(self) self._recovered_parser_config = { DataSetDriverConfigKeys.PARTICLE_MODULE: 'mi.dataset.parser.phsen_abcdef_imodem_particles', DataSetDriverConfigKeys.PARTICLE_CLASS: None, DataSetDriverConfigKeys.PARTICLE_CLASSES_DICT: { PhsenAbcdefImodemParticleClassKey.METADATA_PARTICLE_CLASS: PhsenAbcdefImodemMetadataRecoveredDataParticle, PhsenAbcdefImodemParticleClassKey.CONTROL_PARTICLE_CLASS: PhsenAbcdefImodemControlRecoveredDataParticle, PhsenAbcdefImodemParticleClassKey.INSTRUMENT_PARTICLE_CLASS: PhsenAbcdefImodemInstrumentRecoveredDataParticle, } } self._telemetered_parser_config = { DataSetDriverConfigKeys.PARTICLE_MODULE: 'mi.dataset.parser.phsen_abcdef_imodem_particles', DataSetDriverConfigKeys.PARTICLE_CLASS: None, DataSetDriverConfigKeys.PARTICLE_CLASSES_DICT: { PhsenAbcdefImodemParticleClassKey.METADATA_PARTICLE_CLASS: PhsenAbcdefImodemMetadataTelemeteredDataParticle, PhsenAbcdefImodemParticleClassKey.CONTROL_PARTICLE_CLASS: PhsenAbcdefImodemControlTelemeteredDataParticle, PhsenAbcdefImodemParticleClassKey.INSTRUMENT_PARTICLE_CLASS: PhsenAbcdefImodemInstrumentTelemeteredDataParticle, } } def build_telem_parser(self): """ Build a telemetered parser, storing it in self.parser """ if self.stream_handle is None: self.fail("Must set stream handle before building telemetered parser") self.parser = PhsenAbcdefImodemParser(self._telemetered_parser_config, self.stream_handle, self.exception_callback) def build_recov_parser(self): """ Build a telemetered parser, storing it in self.parser This requires stream handle to be set before calling it """ if self.stream_handle is None: self.fail("Must set stream handle before building recovered parser") self.parser = PhsenAbcdefImodemParser(self._recovered_parser_config, self.stream_handle, self.exception_callback) def test_happy_path_simple(self): """ Read a file and verify that a pH and control records and header/footer can be read. Verify that the contents of the instrument, control and metadata particles are correct. The last record is a control record with battery data. There should be no exceptions generated. """ log.debug('===== START TEST HAPPY PATH SINGLE =====') # Recovered with open(os.path.join(RESOURCE_PATH, 'example1.DAT'), O_MODE) as file_handle: parser = PhsenAbcdefImodemParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(5) log.debug("Num particles: %d", len(particles)) self.assert_particles(particles, "example1_rec.yml", RESOURCE_PATH) self.assertEquals(self.exception_callback_value, []) # Telemetered with open(os.path.join(RESOURCE_PATH, 'example1.DAT'), O_MODE) as file_handle: parser = PhsenAbcdefImodemParser(self._telemetered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(5) log.debug("Num particles: %d", len(particles)) self.assert_particles(particles, "example1_tel.yml", RESOURCE_PATH) self.assertEquals(self.exception_callback_value, []) log.debug('===== END TEST HAPPY PATH SINGLE =====') def test_invalid_header_timestamp(self): """ The file used in this test has error in the File Date Time for the header record. This results in 4 particles being created instead of 5 (metadata particle is not created), and also result in the exception callback being called. """ log.debug('===== START TEST INVALID METADATA TIMESTAMP =====') with open(os.path.join(RESOURCE_PATH, 'invalid_header_timestamp.DAT'), O_MODE) as file_handle: num_particles_to_request = 5 num_expected_particles = 4 parser = PhsenAbcdefImodemParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) self.assertEquals(len(particles), num_expected_particles) self.assert_particles(particles, "invalid_header_timestamp_rec.yml", RESOURCE_PATH) log.debug('Exceptions : %s', self.exception_callback_value) self.assert_(isinstance(self.exception_callback_value[0], UnexpectedDataException)) log.debug('===== END TEST INVALID METADATA TIMESTAMP =====') def test_invalid_record_type(self): """ The file used in this test has a record type in the second record that does not match any of the expected record types. This results in 5 particles being retrieved instead of 6, and also result in the exception callback being called. """ log.debug('===== START TEST INVALID RECORD TYPE =====') with open(os.path.join(RESOURCE_PATH, 'invalid_record_type.DAT'), O_MODE) as file_handle: num_particles_to_request = 6 num_expected_particles = 5 parser = PhsenAbcdefImodemParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) self.assertEquals(len(particles), num_expected_particles) self.assert_particles(particles, "invalid_record_type_rec.yml", RESOURCE_PATH) log.debug('Exceptions : %s', self.exception_callback_value) self.assert_(isinstance(self.exception_callback_value[0], UnexpectedDataException)) log.debug('===== END TEST INVALID RECORD TYPE =====') def test_ph_record_missing_timestamp(self): """ The file used in this test has a pH record (the second record - Record[331]) with a missing timestamp. This results in 5 particles being retrieved instead of 6, and also result in the exception callback being called. """ log.debug('===== START TEST PH RECORD MISSING TIMESTAMP =====') with open(os.path.join(RESOURCE_PATH, 'ph_record_missing_timestamp.DAT'), O_MODE) as file_handle: num_particles_to_request = 6 num_expected_particles = 5 parser = PhsenAbcdefImodemParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) self.assertEquals(len(particles), num_expected_particles) self.assert_particles(particles, "ph_record_missing_timestamp_rec.yml", RESOURCE_PATH) log.debug('Exceptions : %s', self.exception_callback_value) self.assert_(isinstance(self.exception_callback_value[0], UnexpectedDataException)) log.debug('===== END TEST PH RECORD MISSING TIMESTAMP =====') def test_no_science_particles(self): """ The file used in this test only contains header and footer records. Verify that no science (pH or Control) particles are produced if the input file has no pH data records or control data, i.e., they just contain header and footer records. In this case only the metadata particle will get created. """ log.debug('===== START TEST NO SCIENCE PARTICLES =====') with open(os.path.join(RESOURCE_PATH, 'header_and_footer_only.DAT'), O_MODE) as file_handle: num_particles_to_request = 2 num_expected_particles = 1 parser = PhsenAbcdefImodemParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) self.assertEquals(len(particles), num_expected_particles) self.assert_particles(particles, "header_and_footer_only_rec.yml", RESOURCE_PATH) self.assertEquals(self.exception_callback_value, []) log.debug('===== END TEST NO SCIENCE PARTICLES =====') def test_incorrect_length(self): """ The last records in the file used in this test has a length that does not match the Length field in the record. This tests for this requirement: If the beginning of another instrument data record (* character), is encountered before "Length" bytes have been found, where "Length" is the record length specified in a record, then we can not reliably parse the record. This results in 5 particles being retrieved instead of 6, and also result in the exception callback being called. """ log.debug('===== START TEST INCORRECT LENGTH =====') with open(os.path.join(RESOURCE_PATH, 'incorrect_data_length.DAT'), O_MODE) as file_handle: num_particles_to_request = 6 num_expected_particles = 5 parser = PhsenAbcdefImodemParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) self.assertEquals(len(particles), num_expected_particles) self.assert_particles(particles, "incorrect_data_length_rec.yml", RESOURCE_PATH) log.debug('Exceptions : %s', self.exception_callback_value) self.assert_(isinstance(self.exception_callback_value[0], UnexpectedDataException)) log.debug('===== END TEST INCORRECT LENGTH =====') def test_invalid_checksum(self): """ The first record in the file used in this test has in invalid checksum. An instrument particle will still get created, but the passed_checksum parameter will be 0 (no warning or error msg generated). """ log.debug('===== START TEST INVALID CHECKSUM =====') with open(os.path.join(RESOURCE_PATH, 'invalid_checksum.DAT'), O_MODE) as file_handle: num_particles_to_request = 5 num_expected_particles = 5 parser = PhsenAbcdefImodemParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) self.assertEquals(len(particles), num_expected_particles) self.assert_particles(particles, "invalid_checksum_rec.yml", RESOURCE_PATH) # No exception should be thrown self.assertEquals(self.exception_callback_value, []) log.debug('===== END TEST INVALID CHECKSUM =====') def test_invalid_header_fields(self): """ The header in the file used in this test has in invalid Voltage and Number of Samples Written. A metadata particle will still get created, but there will be None in some of the parameters (an exception will be generated). """ log.debug('===== START TEST INVALID HEADER FIELDS =====') with open(os.path.join(RESOURCE_PATH, 'invalid_header_fields.DAT'), O_MODE) as file_handle: num_particles_to_request = 5 num_expected_particles = 5 parser = PhsenAbcdefImodemParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) self.assertEquals(len(particles), num_expected_particles) self.assert_particles(particles, "invalid_header_fields_rec.yml", RESOURCE_PATH) self.assert_(isinstance(self.exception_callback_value[0], UnexpectedDataException)) log.debug('===== END TEST INVALID HEADER FIELDS =====') def test_real_file(self): """ The file used in this test, is a real file from the acquisition server. It contains 20 pH records: Verify that 20 instrument particles and one metadata particle are generated from the real file. """ log.debug('===== START TEST REAL FILE =====') num_particles_to_request = 25 num_expected_particles = 21 with open(os.path.join(RESOURCE_PATH, 'phsen1_20140730_190554.DAT'), O_MODE) as file_handle: parser = PhsenAbcdefImodemParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) log.info(len(particles)) self.assertEquals(len(particles), num_expected_particles) self.assert_particles(particles, "phsen1_20140730_190554_rec.yml", RESOURCE_PATH) self.assertEquals(self.exception_callback_value, []) with open(os.path.join(RESOURCE_PATH, 'phsen1_20140730_190554.DAT'), O_MODE) as file_handle: parser = PhsenAbcdefImodemParser(self._telemetered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) log.info(len(particles)) self.assertEquals(len(particles), num_expected_particles) self.assert_particles(particles, "phsen1_20140730_190554_tel.yml", RESOURCE_PATH) self.assertEquals(self.exception_callback_value, []) log.debug('===== END TEST REAL FILE =====') def test_real_file_2(self): """ The file used in this test, is a real file from the acquisition server. It contains 9 pH records: Verify that 9 instrument particles and one metadata particle are generated from the real file. """ log.debug('===== START TEST REAL 2 FILE =====') num_particles_to_request = 10 num_expected_particles = 10 with open(os.path.join(RESOURCE_PATH, 'phsen1_20140725_192532.DAT'), O_MODE) as file_handle: parser = PhsenAbcdefImodemParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) log.info(len(particles)) self.assertEquals(len(particles), num_expected_particles) self.assert_particles(particles, "phsen1_20140725_192532_rec.yml", RESOURCE_PATH) self.assertEquals(self.exception_callback_value, []) with open(os.path.join(RESOURCE_PATH, 'phsen1_20140725_192532.DAT'), O_MODE) as file_handle: parser = PhsenAbcdefImodemParser(self._telemetered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) log.info(len(particles)) self.assertEquals(len(particles), num_expected_particles) self.assert_particles(particles, "phsen1_20140725_192532_tel.yml", RESOURCE_PATH) self.assertEquals(self.exception_callback_value, []) log.debug('===== END TEST REAL 2 FILE =====') def particle_to_yml(self, particles, filename, mode='w'): """ This is added as a testing helper, not actually as part of the parser tests. Since the same particles will be used for the driver test it is helpful to write them to .yml in the same form they need in the results.yml fids here. """ # open write append, if you want to start from scratch manually delete this fid fid = open(os.path.join(RESOURCE_PATH, filename), mode) fid.write('header:\n') fid.write(" particle_object: 'MULTIPLE'\n") fid.write(" particle_type: 'MULTIPLE'\n") fid.write('data:\n') for i in range(0, len(particles)): particle_dict = particles[i].generate_dict() fid.write(' - _index: %d\n' % (i+1)) fid.write(' particle_object: %s\n' % particles[i].__class__.__name__) fid.write(' particle_type: %s\n' % particle_dict.get('stream_name')) fid.write(' internal_timestamp: %f\n' % particle_dict.get('internal_timestamp')) for val in particle_dict.get('values'): if isinstance(val.get('value'), float): fid.write(' %s: %16.16f\n' % (val.get('value_id'), val.get('value'))) elif isinstance(val.get('value'), str): fid.write(' %s: \'%s\'\n' % (val.get('value_id'), val.get('value'))) else: fid.write(' %s: %s\n' % (val.get('value_id'), val.get('value'))) fid.close() def create_yml(self): """ This utility creates a yml file """ self.stream_handle = open(os.path.join(RESOURCE_PATH, 'phsen1_20140725_192532.DAT'), O_MODE) self.build_telem_parser() particles = self.parser.get_records(21) self.particle_to_yml(particles, 'phsen1_20140725_192532_tel.yml') self.stream_handle.close()
#!/usr/bin/env python import os import sys import logging import click import textwrap import shutil from mkdocs import __version__ from mkdocs import utils from mkdocs import config if sys.platform.startswith("win"): try: import colorama except ImportError: pass else: colorama.init() log = logging.getLogger(__name__) class ColorFormatter(logging.Formatter): colors = { 'CRITICAL': 'red', 'ERROR': 'red', 'WARNING': 'yellow', 'DEBUG': 'blue' } text_wrapper = textwrap.TextWrapper( width=shutil.get_terminal_size(fallback=(0, 0)).columns, replace_whitespace=False, break_long_words=False, break_on_hyphens=False, initial_indent=' '*12, subsequent_indent=' '*12 ) def format(self, record): message = super().format(record) prefix = f'{record.levelname:<8} - ' if record.levelname in self.colors: prefix = click.style(prefix, fg=self.colors[record.levelname]) if self.text_wrapper.width: # Only wrap text if a terminal width was detected msg = '\n'.join( self.text_wrapper.fill(line) for line in message.splitlines() ) # Prepend prefix after wrapping so that color codes don't affect length return prefix + msg[12:] return prefix + message class State: ''' Maintain logging level.''' def __init__(self, log_name='mkdocs', level=logging.INFO): self.logger = logging.getLogger(log_name) # Don't restrict level on logger; use handler self.logger.setLevel(1) self.logger.propagate = False self.stream = logging.StreamHandler() self.stream.setFormatter(ColorFormatter()) self.stream.setLevel(level) self.stream.name = 'MkDocsStreamHandler' self.logger.addHandler(self.stream) pass_state = click.make_pass_decorator(State, ensure=True) clean_help = "Remove old files from the site_dir before building (the default)." config_help = "Provide a specific MkDocs config" dev_addr_help = ("IP address and port to serve documentation locally (default: " "localhost:8000)") strict_help = ("Enable strict mode. This will cause MkDocs to abort the build " "on any warnings.") theme_help = "The theme to use when building your documentation." theme_choices = utils.get_theme_names() site_dir_help = "The directory to output the result of the documentation build." use_directory_urls_help = "Use directory URLs when building pages (the default)." reload_help = "Enable the live reloading in the development server (this is the default)" no_reload_help = "Disable the live reloading in the development server." dirty_reload_help = "Enable the live reloading in the development server, but only re-build files that have changed" commit_message_help = ("A commit message to use when committing to the " "Github Pages remote branch. Commit {sha} and MkDocs {version} are available as expansions") remote_branch_help = ("The remote branch to commit to for Github Pages. This " "overrides the value specified in config") remote_name_help = ("The remote name to commit to for Github Pages. This " "overrides the value specified in config") force_help = "Force the push to the repository." ignore_version_help = "Ignore check that build is not being deployed with an older version of MkDocs." watch_theme_help = ("Include the theme in list of files to watch for live reloading. " "Ignored when live reload is not used.") shell_help = "Use the shell when invoking Git." watch_help = ("A directory or file to watch for live reloading. " "Can be supplied multiple times.") def add_options(opts): def inner(f): for i in reversed(opts): f = i(f) return f return inner def verbose_option(f): def callback(ctx, param, value): state = ctx.ensure_object(State) if value: state.stream.setLevel(logging.DEBUG) return click.option('-v', '--verbose', is_flag=True, expose_value=False, help='Enable verbose output', callback=callback)(f) def quiet_option(f): def callback(ctx, param, value): state = ctx.ensure_object(State) if value: state.stream.setLevel(logging.ERROR) return click.option('-q', '--quiet', is_flag=True, expose_value=False, help='Silence warnings', callback=callback)(f) common_options = add_options([quiet_option, verbose_option]) common_config_options = add_options([ click.option('-f', '--config-file', type=click.File('rb'), help=config_help), # Don't override config value if user did not specify --strict flag # Conveniently, load_config drops None values click.option('-s', '--strict', is_flag=True, default=None, help=strict_help), click.option('-t', '--theme', type=click.Choice(theme_choices), help=theme_help), # As with --strict, set the default to None so that this doesn't incorrectly # override the config file click.option('--use-directory-urls/--no-directory-urls', is_flag=True, default=None, help=use_directory_urls_help) ]) PYTHON_VERSION = f"{sys.version_info.major}.{sys.version_info.minor}" PKG_DIR = os.path.dirname(os.path.abspath(__file__)) @click.group(context_settings={'help_option_names': ['-h', '--help']}) @click.version_option( __version__, '-V', '--version', message=f'%(prog)s, version %(version)s from { PKG_DIR } (Python { PYTHON_VERSION })' ) @common_options def cli(): """ MkDocs - Project documentation with Markdown. """ @cli.command(name="serve") @click.option('-a', '--dev-addr', help=dev_addr_help, metavar='<IP:PORT>') @click.option('--livereload', 'livereload', flag_value='livereload', help=reload_help, default=True) @click.option('--no-livereload', 'livereload', flag_value='no-livereload', help=no_reload_help) @click.option('--dirtyreload', 'livereload', flag_value='dirty', help=dirty_reload_help) @click.option('--watch-theme', help=watch_theme_help, is_flag=True) @click.option('-w', '--watch', help=watch_help, type=click.Path(exists=True), multiple=True, default=[]) @common_config_options @common_options def serve_command(dev_addr, livereload, watch, **kwargs): """Run the builtin development server""" from mkdocs.commands import serve serve.serve(dev_addr=dev_addr, livereload=livereload, watch=watch, **kwargs) @cli.command(name="build") @click.option('-c', '--clean/--dirty', is_flag=True, default=True, help=clean_help) @common_config_options @click.option('-d', '--site-dir', type=click.Path(), help=site_dir_help) @common_options def build_command(clean, **kwargs): """Build the MkDocs documentation""" from mkdocs.commands import build build.build(config.load_config(**kwargs), dirty=not clean) @cli.command(name="gh-deploy") @click.option('-c', '--clean/--dirty', is_flag=True, default=True, help=clean_help) @click.option('-m', '--message', help=commit_message_help) @click.option('-b', '--remote-branch', help=remote_branch_help) @click.option('-r', '--remote-name', help=remote_name_help) @click.option('--force', is_flag=True, help=force_help) @click.option('--ignore-version', is_flag=True, help=ignore_version_help) @click.option('--shell', is_flag=True, help=shell_help) @common_config_options @click.option('-d', '--site-dir', type=click.Path(), help=site_dir_help) @common_options def gh_deploy_command(clean, message, remote_branch, remote_name, force, ignore_version, shell, **kwargs): """Deploy your documentation to GitHub Pages""" cfg = config.load_config( remote_branch=remote_branch, remote_name=remote_name, **kwargs ) from mkdocs.commands import build, gh_deploy build.build(cfg, dirty=not clean) gh_deploy.gh_deploy(cfg, message=message, force=force, ignore_version=ignore_version, shell=shell) @cli.command(name="new") @click.argument("project_directory") @common_options def new_command(project_directory): """Create a new MkDocs project""" from mkdocs.commands import new new.new(project_directory) if __name__ == '__main__': # pragma: no cover cli()
import logging import warnings from twisted.internet import defer from twisted.trial import unittest from pytest import raises import scrapy from scrapy.crawler import Crawler, CrawlerRunner, CrawlerProcess from scrapy.settings import Settings, default_settings from scrapy.spiderloader import SpiderLoader from scrapy.utils.log import configure_logging, get_scrapy_root_handler from scrapy.utils.spider import DefaultSpider from scrapy.utils.misc import load_object from scrapy.extensions.throttle import AutoThrottle from scrapy.extensions import telnet class BaseCrawlerTest(unittest.TestCase): def assertOptionIsDefault(self, settings, key): self.assertIsInstance(settings, Settings) self.assertEqual(settings[key], getattr(default_settings, key)) class CrawlerTestCase(BaseCrawlerTest): def setUp(self): self.crawler = Crawler(DefaultSpider, Settings()) def test_deprecated_attribute_spiders(self): with warnings.catch_warnings(record=True) as w: spiders = self.crawler.spiders self.assertEqual(len(w), 1) self.assertIn("Crawler.spiders", str(w[0].message)) sl_cls = load_object(self.crawler.settings['SPIDER_LOADER_CLASS']) self.assertIsInstance(spiders, sl_cls) self.crawler.spiders is_one_warning = len(w) == 1 if not is_one_warning: for warning in w: print(warning) self.assertTrue(is_one_warning, "Warn deprecated access only once") def test_populate_spidercls_settings(self): spider_settings = {'TEST1': 'spider', 'TEST2': 'spider'} project_settings = {'TEST1': 'project', 'TEST3': 'project'} class CustomSettingsSpider(DefaultSpider): custom_settings = spider_settings settings = Settings() settings.setdict(project_settings, priority='project') crawler = Crawler(CustomSettingsSpider, settings) self.assertEqual(crawler.settings.get('TEST1'), 'spider') self.assertEqual(crawler.settings.get('TEST2'), 'spider') self.assertEqual(crawler.settings.get('TEST3'), 'project') self.assertFalse(settings.frozen) self.assertTrue(crawler.settings.frozen) def test_crawler_accepts_dict(self): crawler = Crawler(DefaultSpider, {'foo': 'bar'}) self.assertEqual(crawler.settings['foo'], 'bar') self.assertOptionIsDefault(crawler.settings, 'RETRY_ENABLED') def test_crawler_accepts_None(self): crawler = Crawler(DefaultSpider) self.assertOptionIsDefault(crawler.settings, 'RETRY_ENABLED') def test_crawler_rejects_spider_objects(self): with raises(ValueError): Crawler(DefaultSpider()) class SpiderSettingsTestCase(unittest.TestCase): def test_spider_custom_settings(self): class MySpider(scrapy.Spider): name = 'spider' custom_settings = { 'AUTOTHROTTLE_ENABLED': True } crawler = Crawler(MySpider, {}) enabled_exts = [e.__class__ for e in crawler.extensions.middlewares] self.assertIn(AutoThrottle, enabled_exts) class CrawlerLoggingTestCase(unittest.TestCase): def test_no_root_handler_installed(self): handler = get_scrapy_root_handler() if handler is not None: logging.root.removeHandler(handler) class MySpider(scrapy.Spider): name = 'spider' crawler = Crawler(MySpider, {}) assert get_scrapy_root_handler() is None def test_spider_custom_settings_log_level(self): log_file = self.mktemp() class MySpider(scrapy.Spider): name = 'spider' custom_settings = { 'LOG_LEVEL': 'INFO', 'LOG_FILE': log_file, # disable telnet if not available to avoid an extra warning 'TELNETCONSOLE_ENABLED': telnet.TWISTED_CONCH_AVAILABLE, } configure_logging() self.assertEqual(get_scrapy_root_handler().level, logging.DEBUG) crawler = Crawler(MySpider, {}) self.assertEqual(get_scrapy_root_handler().level, logging.INFO) info_count = crawler.stats.get_value('log_count/INFO') logging.debug('debug message') logging.info('info message') logging.warning('warning message') logging.error('error message') with open(log_file, 'rb') as fo: logged = fo.read().decode('utf8') self.assertNotIn('debug message', logged) self.assertIn('info message', logged) self.assertIn('warning message', logged) self.assertIn('error message', logged) self.assertEqual(crawler.stats.get_value('log_count/ERROR'), 1) self.assertEqual(crawler.stats.get_value('log_count/WARNING'), 1) self.assertEqual( crawler.stats.get_value('log_count/INFO') - info_count, 1) self.assertEqual(crawler.stats.get_value('log_count/DEBUG', 0), 0) class SpiderLoaderWithWrongInterface(object): def unneeded_method(self): pass class CustomSpiderLoader(SpiderLoader): pass class CrawlerRunnerTestCase(BaseCrawlerTest): def test_spider_manager_verify_interface(self): settings = Settings({ 'SPIDER_LOADER_CLASS': 'tests.test_crawler.SpiderLoaderWithWrongInterface' }) with warnings.catch_warnings(record=True) as w: self.assertRaises(AttributeError, CrawlerRunner, settings) self.assertEqual(len(w), 1) self.assertIn("SPIDER_LOADER_CLASS", str(w[0].message)) self.assertIn("scrapy.interfaces.ISpiderLoader", str(w[0].message)) def test_crawler_runner_accepts_dict(self): runner = CrawlerRunner({'foo': 'bar'}) self.assertEqual(runner.settings['foo'], 'bar') self.assertOptionIsDefault(runner.settings, 'RETRY_ENABLED') def test_crawler_runner_accepts_None(self): runner = CrawlerRunner() self.assertOptionIsDefault(runner.settings, 'RETRY_ENABLED') def test_deprecated_attribute_spiders(self): with warnings.catch_warnings(record=True) as w: runner = CrawlerRunner(Settings()) spiders = runner.spiders self.assertEqual(len(w), 1) self.assertIn("CrawlerRunner.spiders", str(w[0].message)) self.assertIn("CrawlerRunner.spider_loader", str(w[0].message)) sl_cls = load_object(runner.settings['SPIDER_LOADER_CLASS']) self.assertIsInstance(spiders, sl_cls) def test_spidermanager_deprecation(self): with warnings.catch_warnings(record=True) as w: runner = CrawlerRunner({ 'SPIDER_MANAGER_CLASS': 'tests.test_crawler.CustomSpiderLoader' }) self.assertIsInstance(runner.spider_loader, CustomSpiderLoader) is_one_warning = len(w) == 1 if not is_one_warning: for warning in w: print(warning) self.assertIn('Please use SPIDER_LOADER_CLASS', str(w[0].message)) self.assertTrue(is_one_warning) def test_crawl_rejects_spider_objects(self): with raises(ValueError): CrawlerRunner().crawl(DefaultSpider()) def test_create_crawler_rejects_spider_objects(self): with raises(ValueError): CrawlerRunner().create_crawler(DefaultSpider()) class CrawlerProcessTest(BaseCrawlerTest): def test_crawler_process_accepts_dict(self): runner = CrawlerProcess({'foo': 'bar'}) self.assertEqual(runner.settings['foo'], 'bar') self.assertOptionIsDefault(runner.settings, 'RETRY_ENABLED') def test_crawler_process_accepts_None(self): runner = CrawlerProcess() self.assertOptionIsDefault(runner.settings, 'RETRY_ENABLED') class ExceptionSpider(scrapy.Spider): name = 'exception' @classmethod def from_crawler(cls, crawler, *args, **kwargs): raise ValueError('Exception in from_crawler method') class NoRequestsSpider(scrapy.Spider): name = 'no_request' def start_requests(self): return [] class CrawlerRunnerHasSpider(unittest.TestCase): @defer.inlineCallbacks def test_crawler_runner_bootstrap_successful(self): runner = CrawlerRunner() yield runner.crawl(NoRequestsSpider) self.assertEqual(runner.bootstrap_failed, False) @defer.inlineCallbacks def test_crawler_runner_bootstrap_successful_for_several(self): runner = CrawlerRunner() yield runner.crawl(NoRequestsSpider) yield runner.crawl(NoRequestsSpider) self.assertEqual(runner.bootstrap_failed, False) @defer.inlineCallbacks def test_crawler_runner_bootstrap_failed(self): runner = CrawlerRunner() try: yield runner.crawl(ExceptionSpider) except ValueError: pass else: self.fail('Exception should be raised from spider') self.assertEqual(runner.bootstrap_failed, True) @defer.inlineCallbacks def test_crawler_runner_bootstrap_failed_for_several(self): runner = CrawlerRunner() try: yield runner.crawl(ExceptionSpider) except ValueError: pass else: self.fail('Exception should be raised from spider') yield runner.crawl(NoRequestsSpider) self.assertEqual(runner.bootstrap_failed, True)
#!/usr/bin/env python # -*- coding: UTF-8 -*- import os import re import logging import threading import parsers import apirdflib #from apirdflib import rdfGetTargets, rdfGetSources logging.basicConfig(level=logging.INFO) # dev_appserver.py --log_level debug . log = logging.getLogger(__name__) schemasInitialized = False extensionsLoaded = False extensionLoadErrors = "" #INTESTHARNESS used to flag we are in a test harness - not called by webApp so somethings will work different! #setInTestHarness(True) should be called from test suites. INTESTHARNESS = False def setInTestHarness(val): global INTESTHARNESS INTESTHARNESS = val def getInTestHarness(): global INTESTHARNESS return INTESTHARNESS AllLayersList = [] def setAllLayersList(val): global AllLayersList AllLayersList = val #Copy it into apirdflib apirdflib.allLayersList = val def getAllLayersList(): global AllLayersList return AllLayersList EVERYLAYER = "!EVERYLAYER!" sitename = "schema.org" sitemode = "mainsite" # whitespaced list for CSS tags, # e.g. "mainsite testsite", "extensionsite" when off expected domains DYNALOAD = True # permits read_schemas to be re-invoked live. #JINJA_ENVIRONMENT = jinja2.Environment( # loader=jinja2.FileSystemLoader(os.path.join(os.path.dirname(__file__), 'templates')), # extensions=['jinja2.ext.autoescape'], autoescape=True) debugging = False # Core API: we have a single schema graph built from triples and units. NodeIDMap = {} ext_re = re.compile(r'([^\w,])+') all_layers = {} all_terms = {} # Utility declaration of W3C Initial Context # From http://www.w3.org/2011/rdfa-context/rdfa-1.1 # and http://www.w3.org/2013/json-ld-context/rdfa11 # Enables all these prefixes without explicit declaration when # using schema.org's JSON-LD context file. # namespaces = """ "schema": "http://schema.org/", "cat": "http://www.w3.org/ns/dcat#", "cc": "http://creativecommons.org/ns#", "cnt": "http://www.w3.org/2008/content#", "ctag": "http://commontag.org/ns#", "dc": "http://purl.org/dc/terms/", "dcat": "http://www.w3.org/ns/dcat#", "dcterms": "http://purl.org/dc/terms/", "describedby": "http://www.w3.org/2007/05/powder-s#describedby", "earl": "http://www.w3.org/ns/earl#", "foaf": "http://xmlns.com/foaf/0.1/", "gldp": "http://www.w3.org/ns/people#", "gr": "http://purl.org/goodrelations/v1#", "grddl": "http://www.w3.org/2003/g/data-view#", "ht": "http://www.w3.org/2006/http#", "ical": "http://www.w3.org/2002/12/cal/icaltzd#", "license": "http://www.w3.org/1999/xhtml/vocab#license", "ma": "http://www.w3.org/ns/ma-ont#", "og": "http://ogp.me/ns#", "org": "http://www.w3.org/ns/org#", "org": "http://www.w3.org/ns/org#", "owl": "http://www.w3.org/2002/07/owl#", "prov": "http://www.w3.org/ns/prov#", "ptr": "http://www.w3.org/2009/pointers#", "qb": "http://purl.org/linked-data/cube#", "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#", "rdfa": "http://www.w3.org/ns/rdfa#", "rdfs": "http://www.w3.org/2000/01/rdf-schema#", "rev": "http://purl.org/stuff/rev#", "rif": "http://www.w3.org/2007/rif#", "role": "http://www.w3.org/1999/xhtml/vocab#role", "rr": "http://www.w3.org/ns/r2rml#", "sd": "http://www.w3.org/ns/sparql-service-description#", "sioc": "http://rdfs.org/sioc/ns#", "skos": "http://www.w3.org/2004/02/skos/core#", "skosxl": "http://www.w3.org/2008/05/skos-xl#", "v": "http://rdf.data-vocabulary.org/#", "vcard": "http://www.w3.org/2006/vcard/ns#", "void": "http://rdfs.org/ns/void#", "wdr": "http://www.w3.org/2007/05/powder#", "wdrs": "http://www.w3.org/2007/05/powder-s#", "xhv": "http://www.w3.org/1999/xhtml/vocab#", "xml": "http://www.w3.org/XML/1998/namespace", "xsd": "http://www.w3.org/2001/XMLSchema#", """ class DataCacheTool(): def __init__ (self): self._DataCache = {} self.tlocal = threading.local() self.tlocal.CurrentDataCache = "core" self._DataCache[self.tlocal.CurrentDataCache] = {} def getCache(self,cache=None): if cache == None: cache = self.getCurrent() if cache in self._DataCache.keys(): return self._DataCache[cache] else: self._DataCache[cache] = {} return self._DataCache[cache] def get(self,key,cache=None): return self.getCache(cache).get(key) def put(self,key,val,cache=None): self.getCache(cache)[key] = val def setCurrent(self,current): self.tlocal.CurrentDataCache = current if(self._DataCache.get(current) == None): self._DataCache[current] = {} log.info("Setting _CurrentDataCache: %s",current) def getCurrent(self): return self.tlocal.CurrentDataCache def keys(self): return self._DataCache.keys() DataCache = DataCacheTool() class Unit (): """ Unit represents a node in our schema graph. IDs are local, e.g. "Person" or use simple prefixes, e.g. rdfs:Class. """ def __init__ (self, id): self.id = id NodeIDMap[id] = self self.arcsIn = [] self.arcsOut = [] self.examples = None self.home = None self.subtypes = None self.sourced = False self.category = " " self.typeFlags = {} def __str__(self): return self.id def GetImmediateSubtypes(self, layers='core'): return GetImmediateSubtypes(self, layers=layers) @staticmethod def GetUnit (id, createp=False): """Return a Unit representing a node in the schema graph. Argument: createp -- should we create node if we don't find it? (default: False) """ ret = None if (id in NodeIDMap): return NodeIDMap[id] ret = apirdflib.rdfGetTriples(id) if (ret == None and createp != False): return Unit(id) return ret @staticmethod def GetUnitNoLoad(id, createp=False): if (id in NodeIDMap): return NodeIDMap[id] if (createp != False): return Unit(id) return None def typeOf(self, type, layers='core'): """Boolean, true if the unit has an rdf:type matching this type.""" types = GetTargets( Unit.GetUnit("rdf:type"), self, layers ) return (type in types) # Function needs rewriting to use GetTargets(arc,src,layers) and recurse def subClassOf(self, type, layers='core'): """Boolean, true if the unit has an rdfs:subClassOf matching this type, direct or implied (in specified layer(s)).""" if (self.id == type.id): return True parents = GetTargets( Unit.GetUnit("rdfs:subClassOf"), self, layers ) if type in parents: return True else: for p in parents: if p.subClassOf(type, layers): return True return False def directInstanceOf(self, type, layers='core'): """Boolean, true if the unit has a direct typeOf (aka rdf:type) property matching this type, direct or implied (in specified layer(s)).""" mytypes = GetTargets( Unit.GetUnit("rdf:type"), self, layers ) if type in mytypes: return True return False # TODO: consider an API for implied types too? def isClass(self, layers='core'): """Does this unit represent a class/type?""" if self.typeFlags.has_key('c'): return self.typeFlags['c'] isClass = self.typeOf(Unit.GetUnit("rdfs:Class"), layers=EVERYLAYER) self.typeFlags['c'] = isClass return isClass def isAttribute(self, layers='core'): """Does this unit represent an attribute/property?""" if self.typeFlags.has_key('p'): return self.typeFlags['p'] isProp = self.typeOf(Unit.GetUnit("rdf:Property"), layers=EVERYLAYER) self.typeFlags['p'] = isProp return isProp def isEnumeration(self, layers='core'): """Does this unit represent an enumerated type?""" if self.typeFlags.has_key('e'): return self.typeFlags['e'] isE = self.subClassOf(Unit.GetUnit("Enumeration"), layers=EVERYLAYER) self.typeFlags['e'] = isE return isE def isEnumerationValue(self, layers='core'): """Does this unit represent a member of an enumerated type?""" if self.typeFlags.has_key('ev'): return self.typeFlags['ev'] types = GetTargets(Unit.GetUnit("rdf:type"), self , layers=EVERYLAYER) log.debug("isEnumerationValue() called on %s, found %s types. layers: %s" % (self.id, str( len( types ) ), layers ) ) found_enum = False for t in types: if t.subClassOf(Unit.GetUnit("Enumeration"), layers=EVERYLAYER): found_enum = True break self.typeFlags['ev'] = found_enum return found_enum def isDataType(self, layers='core'): """ Does this unit represent a DataType type or sub-type? DataType and its children do not descend from Thing, so we need to treat it specially. """ if self.typeFlags.has_key('d'): return self.typeFlags['d'] ret = False if (self.directInstanceOf(Unit.GetUnit("DataType"), layers=layers)): ret = True else: subs = GetTargets(Unit.GetUnit("rdf:type"), self, layers=layers) subs += GetTargets(Unit.GetUnit("rdfs:subClassOf"), self, layers=layers) for p in subs: if p.isDataType(layers=layers): ret = True break self.typeFlags['d'] = ret return ret @staticmethod def storePrefix(prefix): """Stores the prefix declaration for a given class or property""" # Currently defined just to let the tests pass pass # e.g. <http://schema.org/actors> <http://schema.org/supersededBy> <http://schema.org/actor> . def superseded(self, layers='core'): """Has this property been superseded? (i.e. deprecated/archaic), in any of these layers.""" supersededBy_values = GetTargets( Unit.GetUnit("supersededBy"), self, layers ) return ( len(supersededBy_values) > 0) def supersedes(self, layers='core'): """Returns a property (assume max 1) that is supersededBy this one, or nothing.""" olderterms = GetSources( Unit.GetUnit("supersededBy"), self, layers ) if len(olderterms) > 0: return olderterms[0] else: return None def supersedes_all(self, layers='core'): """Returns terms that is supersededBy by this later one, or nothing. (in this layer)""" return(GetSources( Unit.GetUnit("supersededBy"), self, layers )) # so we want sources of arcs pointing here with 'supersededBy' # e.g. vendor supersededBy seller ; returns newer 'seller' for earlier 'vendor'. def supersededBy(self, layers='core'): """Returns a property (assume max 1) that supersededs this one, or nothing.""" newerterms = GetTargets( Unit.GetUnit("supersededBy"), self, layers ) if len(newerterms)>0: return newerterms.pop() else: return None return ret def category(self): return self.category def getHomeLayer(self,defaultToCore=False): ret = self.home if ret == None: if defaultToCore: ret = 'core' else: log.info("WARNING %s has no home extension defined!!" % self.id) ret = "" return ret def superproperties(self, layers='core'): """Returns super-properties of this one.""" if not self.isAttribute(layers=layers): logging.debug("Non-property %s won't have subproperties." % self.id) return None superprops = GetTargets(Unit.GetUnit("rdfs:subPropertyOf"),self, layers=layers ) return superprops def subproperties(self, layers='core'): """Returns direct subproperties of this property.""" if not self.isAttribute(layers=layers): logging.debug("Non-property %s won't have subproperties." % self.id) return None subprops = GetSources(Unit.GetUnit("rdfs:subPropertyOf"),self, layers=layers ) return subprops def inverseproperty(self, layers="core"): """A property that is an inverseOf this one, e.g. alumni vs alumniOf.""" a = GetTargets(Unit.GetUnit("inverseOf"), self, layers=layers) b = GetSources(Unit.GetUnit("inverseOf"), self, layers=layers) if len(a)>0: return a.pop() else: if len(b) > 0: return b.pop() else: return None for triple in self.arcsOut: if (triple.target != None and triple.arc.id == "inverseOf"): return triple.target for triple in self.arcsIn: if (triple.source != None and triple.arc.id == "inverseOf"): return triple.source return None def UsageStr (self) : str = GetUsage(self.id) if (str == '1') : return "Between 10 and 100 domains" elif (str == '2'): return "Between 100 and 1000 domains" elif (str == '3'): return "Between 1000 and 10,000 domains" elif (str == '4'): return "Between 10,000 and 50,000 domains" elif (str == '5'): return "Between 50,000 and 100,000 domains" elif (str == '7'): return "Between 100,000 and 250,000 domains" elif (str == '8'): return "Between 250,000 and 500,000 domains" elif (str == '9'): return "Between 500,000 and 1,000,000 domains" elif (str == '10'): return "Over 1,000,000 domains" else: return "Fewer than 10 domains" # NOTE: each Triple is in exactly one layer, by default 'core'. When we # read_schemas() from data/ext/{x}/*.rdfa each schema triple is given a # layer named "x". Access to triples can default to layer="core" or take # a custom layer or layers, e.g. layers="bib", or layers=["bib", "foo"]. # This is verbose but at least explicit. If we move towards making better # use of external templates for site generation we could reorganize. # For now e.g. 'grep GetSources api.py| grep -v layer' and # 'grep GetTargets api.py| grep -v layer' etc. can check for non-layered usage. # # Units, on the other hand, are layer-independent. For now we have only a # crude inLayer(layerlist, unit) API to check which layers mention a term. class Triple (): """Triple represents an edge in the graph: source, arc and target/text.""" def __init__ (self, source, arc, target, text, layer='core'): """Triple constructor keeps state via source node's arcsOut.""" self.source = source source.arcsOut.append(self) self.arc = arc self.layer = layer self.id = self if (target != None): self.target = target self.text = None target.arcsIn.append(self) elif (text != None): self.text = text self.target = None def __str__ (self): ret = "" if self.source != None: ret += "%s " % self.source if self.target != None: ret += "%s " % self.target if self.arc != None: ret += "%s " % self.arc return ret @staticmethod def AddTriple(source, arc, target, layer='core'): """AddTriple stores a thing-valued new Triple within source Unit.""" if (source == None or arc == None or target == None): log.info("Bailing") return else: # for any term mentioned as subject or object, we register the layer # TODO: make this into a function x = all_terms.get(source.id) # subjects if x is None: x = [] if layer not in x: x.append(layer) all_terms[source.id]= x x = all_terms.get(target.id) # objects if x is None: x = [] if layer not in x: x.append(layer) all_terms[target.id]= x return Triple(source, arc, target, None, layer) @staticmethod def AddTripleText(source, arc, text, layer='core'): """AddTriple stores a string-valued new Triple within source Unit.""" if (source == None or arc == None or text == None): return else: return Triple(source, arc, None, text, layer) def GetTargets(arc, source, layers='core'): """All values for a specified arc on specified graph node (within any of the specified layers).""" # log.debug("GetTargets checking in layer: %s for unit: %s arc: %s" % (layers, source.id, arc.id)) targets = {} fred = False try: for triple in source.arcsOut: if (triple.arc == arc): if (triple.target != None and (layers == EVERYLAYER or triple.layer in layers)): targets[triple.target] = 1 elif (triple.text != None and (layers == EVERYLAYER or triple.layer in layers)): targets[triple.text] = 1 return targets.keys() except Exception as e: log.debug("GetTargets caught exception %s" % e) return [] def GetSources(arc, target, layers='core'): """All source nodes for a specified arc pointing to a specified node (within any of the specified layers).""" #log.debug("GetSources checking in layer: %s for unit: %s arc: %s" % (layers, target.id, arc.id)) if(target.sourced == False): apirdflib.rdfGetSourceTriples(target) sources = {} for triple in target.arcsIn: if (triple.arc == arc and (layers == EVERYLAYER or triple.layer in layers)): sources[triple.source] = 1 return sources.keys() def GetArcsIn(target, layers='core'): """All incoming arc types for this specified node (within any of the specified layers).""" arcs = {} for triple in target.arcsIn: if (layers == EVERYLAYER or triple.layer in layers): arcs[triple.arc] = 1 return arcs.keys() def GetArcsOut(source, layers='core'): """All outgoing arc types for this specified node.""" arcs = {} for triple in source.arcsOut: if (layers == EVERYLAYER or triple.layer in layers): arcs[triple.arc] = 1 return arcs.keys() # Utility API def GetComment(node, layers='core') : """Get the first rdfs:comment we find on this node (or "No comment"), within any of the specified layers.""" tx = GetComments(node, layers) if len(tx) > 0: return MD.parse(tx[0]) else: return "No comment" def GetComments(node, layers='core') : """Get the rdfs:comment(s) we find on this node within any of the specified layers.""" return GetTargets(Unit.GetUnit("rdfs:comment", True), node, layers=layers ) def GetsoftwareVersions(node, layers='core') : """Get the schema:softwareVersion(s) we find on this node (or [] ), within any of the specified layers.""" return GetTargets(Unit.GetUnit("softwareVersion", True), node, layers=layers ) def GetImmediateSubtypes(n, layers='core'): """Get this type's immediate subtypes, i.e. that are subClassOf this.""" if n==None: return None subs = GetSources( Unit.GetUnit("rdfs:subClassOf", True), n, layers=layers) if (n.isDataType() or n.id == "DataType"): subs += GetSources( Unit.GetUnit("rdf:type", True), n, layers=layers) subs.sort(key=lambda x: x.id) return subs def GetImmediateSupertypes(n, layers='core'): """Get this type's immediate supertypes, i.e. that we are subClassOf.""" if n==None: return None sups = GetTargets( Unit.GetUnit("rdfs:subClassOf", True), n, layers=layers) if (n.isDataType() or n.id == "DataType"): sups += GetTargets( Unit.GetUnit("rdf:type", True), n, layers=layers) sups.sort(key=lambda x: x.id) return sups Utc = "util_cache" def GetAllTypes(layers='core'): global Utc """Return all types in the graph.""" KEY = "AllTypes:%s" % layers if DataCache.get(KEY+'x',Utc): logging.debug("DataCache HIT: %s" % KEY) return DataCache.get(KEY,Utc) else: logging.debug("DataCache MISS: %s" % KEY) mynode = Unit.GetUnit("Thing", True) subbed = {} todo = [mynode] while todo: current = todo.pop() subs = GetImmediateSubtypes(current, EVERYLAYER) if inLayer(layers,current): subbed[current] = 1 for sc in subs: if subbed.get(sc.id) == None: todo.append(sc) DataCache.put(KEY,subbed.keys(),Utc) return subbed.keys() def GetAllDataTypes(layers='core'): global Utc """Return all types in the graph.""" KEY = "AllDataTypes:%s" % layers if DataCache.get(KEY+'x',Utc): logging.debug("DataCache HIT: %s" % KEY) return DataCache.get(KEY,Utc) else: logging.debug("DataCache MISS: %s" % KEY) mynode = Unit.GetUnit("DataType", True) subbed = {} todo = [mynode] while todo: current = todo.pop() subs = GetImmediateSubtypes(current, EVERYLAYER) if inLayer(layers,current): subbed[current] = 1 for sc in subs: if subbed.get(sc.id) == None: todo.append(sc) DataCache.put(KEY,subbed.keys(),Utc) return subbed.keys() def GetAllEnumerationValues(layers='core'): global Utc KEY = "AllEnums:%s" % layers if DataCache.get(KEY,Utc): logging.debug("DataCache HIT: %s" % KEY) return DataCache.get(KEY,Utc) else: logging.debug("DataCache MISS: %s" % KEY) mynode = Unit.GetUnit("Enumeration", True) enums = {} subbed = {} todo = [mynode] while todo: current = todo.pop() subs = GetImmediateSubtypes(current, EVERYLAYER) subbed[current] = 1 for sc in subs: vals = GetSources( Unit.GetUnit("rdf:type", True), sc, layers=EVERYLAYER) for val in vals: if inLayer(layers,val): enums[val] = 1 if subbed.get(sc.id) == None: todo.append(sc) DataCache.put(KEY,enums.keys(),Utc) return enums.keys() def GetAllProperties(layers='core'): """Return all properties in the graph.""" global Utc KEY = "AllProperties:%s" % layers if DataCache.get(KEY,Utc): logging.debug("DataCache HIT: %s" % KEY) return DataCache.get(KEY,Utc) else: logging.debug("DataCache MISS: %s" % KEY) mynode = Unit.GetUnit("Thing") props = GetSources(Unit.GetUnit("rdf:type", True), Unit.GetUnit("rdf:Property", True), layers=EVERYLAYER) res = [] for prop in props: if inLayer(layers,prop): res.append(prop) sorted_all_properties = sorted(res, key=lambda u: u.id) DataCache.put(KEY,sorted_all_properties,Utc) return sorted_all_properties def GetAllTerms(layers='core',includeDataTypes=False): ret = GetAllTypes(layers) ret.extend(GetAllEnumerationValues(layers)) ret.extend(GetAllProperties(layers)) if includeDataTypes: ret.extend(GetAllDataTypes(layers)) return sorted(ret,key=lambda u: u.id) def GetParentList(start_unit, end_unit=None, path=[], layers='core'): """ Returns one or more lists, each giving a path from a start unit to a supertype parent unit. example: for path in GetParentList( Unit.GetUnit("Restaurant") ): pprint.pprint(', '.join([str(x.id) for x in path ])) 'Restaurant, FoodEstablishment, LocalBusiness, Organization, Thing' 'Restaurant, FoodEstablishment, LocalBusiness, Place, Thing' """ if not end_unit: end_unit = Unit.GetUnit("Thing") arc=Unit.GetUnit("rdfs:subClassOf") logging.debug("from %s to %s - path length %d" % (start_unit.id, end_unit.id, len(path) ) ) path = path + [start_unit] if start_unit == end_unit: return [path] if not Unit.GetUnit(start_unit.id): return [] paths = [] for node in GetTargets(arc, start_unit, layers=layers): if node not in path: newpaths = GetParentList(node, end_unit, path, layers=layers) for newpath in newpaths: paths.append(newpath) return paths def HasMultipleBaseTypes(typenode, layers='core'): """True if this unit represents a type with more than one immediate supertype.""" return len( GetTargets( Unit.GetUnit("rdfs:subClassOf", True), typenode, layers ) ) > 1 EXAMPLES = {} ExamplesCount = 0 class Example (): @staticmethod def AddExample(terms, original_html, microdata, rdfa, jsonld, egmeta, layer='core'): """ Add an Example (via constructor registering it with the terms that it mentions, i.e. stored in term.examples). """ # todo: fix partial examples: if (len(terms) > 0 and len(original_html) > 0 and (len(microdata) > 0 or len(rdfa) > 0 or len(jsonld) > 0)): typeinfo = "".join( [" %s " % t for t in terms] ) if "FakeEntryNeeded" in typeinfo or terms==[]: return if (len(terms) > 0 and len(original_html) > 0 and len(microdata) > 0 and len(rdfa) > 0 and len(jsonld) > 0): return Example(terms, original_html, microdata, rdfa, jsonld, egmeta, layer='core') else: log.info("API AddExample skipped a case due to missing value(s) in example. Target terms: %s ORIG: %s MICRODATA: %s RDFA: %s JSON: %s EGMETA: %s " % ( typeinfo, original_html, microdata, rdfa, jsonld, egmeta ) ) def get(self, name, layers='core') : """Exposes original_content, microdata, rdfa and jsonld versions (in the layer(s) specified).""" if name == 'original_html': return self.original_html if name == 'microdata': return self.microdata if name == 'rdfa': return self.rdfa if name == 'jsonld': return self.jsonld def __init__ (self, terms, original_html, microdata, rdfa, jsonld, egmeta, layer='core'): """Example constructor, registers itself with the relevant Unit(s).""" global EXAMPLES,ExamplesCount ExamplesCount += 1 self.orderId = ExamplesCount #Used to maintain consistancy of display order self.terms = terms self.original_html = original_html self.microdata = microdata self.rdfa = rdfa self.jsonld = jsonld self.egmeta = egmeta self.layer = layer for term in terms: if "id" in egmeta: logging.debug("Created Example with ID %s and type %s" % ( egmeta["id"], term )) if(EXAMPLES.get(term, None) == None): EXAMPLES[term] = [] EXAMPLES.get(term).append(self) def LoadExamples(node, layers='core'): """Returns the examples (if any) for some Unit node.""" #log.info("Getting examples for: %s" % node.id) if(node.examples == None): node.examples = EXAMPLES.get(node.id) if(node.examples == None): node.examples = [] return node.examples USAGECOUNTS = {} def StoreUsage(id,count): USAGECOUNTS[id] = count def GetUsage(id): return USAGECOUNTS.get(id,0) def GetExtMappingsRDFa(node, layers='core'): """Self-contained chunk of RDFa HTML markup with mappings for this term.""" if (node.isClass()): equivs = GetTargets(Unit.GetUnit("owl:equivalentClass"), node, layers=layers) if len(equivs) > 0: markup = '' for c in equivs: if (c.id.startswith('http')): markup = markup + "<link property=\"owl:equivalentClass\" href=\"%s\"/>\n" % c.id else: markup = markup + "<link property=\"owl:equivalentClass\" resource=\"%s\"/>\n" % c.id return markup if (node.isAttribute()): equivs = GetTargets(Unit.GetUnit("owl:equivalentProperty"), node, layers) if len(equivs) > 0: markup = '' for c in equivs: markup = markup + "<link property=\"owl:equivalentProperty\" href=\"%s\"/>\n" % c.id return markup return "<!-- no external mappings noted for this term. -->" def GetJsonLdContext(layers='core'): """Generates a basic JSON-LD context file for schema.org.""" # Caching assumes the context is neutral w.r.t. our hostname. if DataCache.get('JSONLDCONTEXT'): log.debug("DataCache: recycled JSONLDCONTEXT") return DataCache.get('JSONLDCONTEXT') else: global namespaces jsonldcontext = "{\n \"@context\": {\n" jsonldcontext += " \"type\": \"@type\",\n" jsonldcontext += " \"id\": \"@id\",\n" jsonldcontext += " \"@vocab\": \"http://schema.org/\",\n" jsonldcontext += namespaces url = Unit.GetUnit("URL") date = Unit.GetUnit("Date") datetime = Unit.GetUnit("DateTime") # properties = sorted(GetSources(Unit.GetUnit("rdf:type",True), Unit.GetUnit("rdf:Property",True), layers=getAllLayersList()), key=lambda u: u.id) # for p in properties: for t in GetAllTerms(EVERYLAYER,includeDataTypes=True): if t.isClass(EVERYLAYER) or t.isEnumeration(EVERYLAYER) or t.isEnumerationValue(EVERYLAYER) or t.isDataType(EVERYLAYER): jsonldcontext += " \"" + t.id + "\": {\"@id\": \"schema:" + t.id + "\"}," elif t.isAttribute(EVERYLAYER): range = GetTargets(Unit.GetUnit("rangeIncludes"), t, layers=EVERYLAYER) type = None if url in range: type = "@id" elif date in range: type = "Date" elif datetime in range: type = "DateTime" typins = "" if type: typins = ", \"@type\": \"" + type + "\"" jsonldcontext += " \"" + t.id + "\": { \"@id\": \"schema:" + t.id + "\"" + typins + "}," jsonldcontext += "}}\n" jsonldcontext = jsonldcontext.replace("},}}","}\n }\n}") jsonldcontext = jsonldcontext.replace("},","},\n") DataCache.put('JSONLDCONTEXT',jsonldcontext) log.debug("DataCache: added JSONLDCONTEXT") return jsonldcontext #### UTILITIES def inLayer(layerlist, node): """Does a unit get its type mentioned in a layer?""" if (node is None): return False if len(GetTargets(Unit.GetUnit("rdf:type"), node, layers=layerlist) ) > 0: log.debug("Found typeOf for node %s in layers: %s" % (node.id, layerlist )) return True if len(GetTargets(Unit.GetUnit("rdfs:subClassOf"), node, layers=layerlist) ) > 0: # TODO: should we really test for any mention of a term, not just typing? return True return False def read_file (filename): """Read a file from disk, return it as a single string.""" strs = [] file_path = full_path(filename) import codecs log.debug("READING FILE: filename=%s file_path=%s " % (filename, file_path ) ) for line in codecs.open(file_path, 'r', encoding="utf8").readlines(): strs.append(line) return "".join(strs) def full_path(filename): """convert local file name to full path.""" import os.path folder = os.path.dirname(os.path.realpath(__file__)) return os.path.join(folder, filename) def setHomeValues(items,layer='core',defaultToCore=False): global extensionLoadErrors for node in items: if(node == None): continue home = GetTargets( Unit.GetUnit("isPartOf"), node, layer ) if(len(home) > 0): if(node.home != None): msg = "ERROR: %s trying to overwite home from %s to %s" % (node.id,node.home,home[0].id) log.info(msg) extensionLoadErrors += msg + '\n' else: h = home[0].id.strip() if h.startswith("http://"): h = h[7:] node.home = re.match( r'([\w\-_]+)[\.:]?', h).group(1) if(node.home == 'schema'): node.home = 'core' elif node.home == None: if defaultToCore: node.home = "core" else: msg = "ERROR: %s has no home defined" % (node.id) log.info(msg) extensionLoadErrors += msg + '\n' def read_schemas(loadExtensions=False): """Read/parse/ingest schemas from data/*.rdfa. Also data/*examples.txt""" import os.path import glob import re global schemasInitialized schemasInitialized = True if (not schemasInitialized or DYNALOAD): log.info("(re)loading core and annotations.") files = glob.glob("data/*.rdfa") jfiles = glob.glob("data/*.jsonld") for jf in jfiles: rdfequiv = jf[:-7]+".rdfa" if not rdfequiv in files: #Only add .jsonld files if no equivalent .rdfa files.append(jf) file_paths = [] for f in files: file_paths.append(full_path(f)) apirdflib.load_graph('core',file_paths) files = glob.glob("data/*examples.txt") read_examples(files,'core') files = glob.glob("data/2015-04-vocab_counts.txt") for file in files: usage_data = read_file(file) parser = parsers.UsageFileParser(None) parser.parse(usage_data) schemasInitialized = True def read_extensions(extensions): import os.path import glob import re global extensionsLoaded extfiles = [] expfiles = [] if not extensionsLoaded: #2nd load will throw up errors and duplicate terms log.info("(re)scanning for extensions %s " % extensions) for i in extensions: all_layers[i] = "1" extfiles = glob.glob("data/ext/%s/*.rdfa" % i) jextfiles = glob.glob("data/ext/%s/*.jsonld" % i) for jf in jextfiles: rdfequiv = jf[:-7]+".rdfa" if not rdfequiv in extfiles: #Only add .jsonld files if no equivalent .rdfa extfiles.append(jf) # log.info("FILES: %s" % extfiles) file_paths = [] for f in extfiles: file_paths.append(full_path(f)) apirdflib.load_graph(i,file_paths) expfiles = glob.glob("data/ext/%s/*examples.txt" % i) read_examples(expfiles,i) log.info("Extensions found: %s ." % " , ".join(extfiles) ) # fnstrip_re = re.compile("\/.*") # for ext in extfiles: # ext_file_path = full_path(ext) # extid = ext.replace('data/ext/', '') # extid = re.sub(fnstrip_re,'',extid) # log.info("Preparing to parse extension data: %s as '%s'" % (ext_file_path, "%s" % extid)) extensionsLoaded = True def read_examples(files, layer): example_contents = [] for f in files: example_content = read_file(f) example_contents.append(example_content) log.debug("examples loaded from: %s" % f) parser = parsers.ParseExampleFile(None,layer=layer) parser.parse(example_contents) def StripHtmlTags(source): if source and len(source) > 0: return re.sub('<[^<]+?>', '', source) return "" def ShortenOnSentence(source,lengthHint=250): if source and len(source) > lengthHint: source = source.strip() sentEnd = re.compile('[.!?]') sentList = sentEnd.split(source) com="" count = 0 while count < len(sentList): if(count > 0 ): if len(com) < len(source): com += source[len(com)] com += sentList[count] count += 1 if count == len(sentList): if len(com) < len(source): com += source[len(source) - 1] if len(com) > lengthHint: if len(com) < len(source): com += source[len(com)] break if len(source) > len(com) + 1: com += ".." source = com return source class MarkdownTool(): def __init__ (self): import markdown from markdown.extensions.wikilinks import WikiLinkExtension self._md = markdown.Markdown(extensions=[WikiLinkExtension(base_url='/', end_url='', html_class='localLink')]) def parse(self,source,preservePara=False): if not source or len(source) == 0: return "" source = source.strip() source = source.replace("\\n","\n") ret = self._md.reset().convert(source) if not preservePara: #Remove wrapping <p> </p> that Markdown adds by default if len(ret) > 7 and ret.startswith("<p>") and ret.endswith("</p>"): ret = ret[3:len(ret)-4] return ret MD = MarkdownTool()
#!/usr/bin/env python # 12.01.2007, c """ Probe finite element solutions in points defined by various geometrical probes. Generation mode --------------- python probe.py [generation options] <input file> <results file> Probe the data in the results file corresponding to the problem defined in the input file. The input file options must contain 'gen_probes' and 'probe_hook' keys, pointing to proper functions accessible from the input file scope. For each probe returned by `gen_probes()` a data plot figure and a text file with the data plotted are saved, see the options below. Generation options ------------------ -o, --auto-dir, --same-dir, -f, --only-names, -s Postprocessing mode ------------------- python probe.py [postprocessing options] <probe file> <figure file> Read a previously probed data from the probe text file, re-plot them, and integrate them along the probe. Postprocessing options ---------------------- --postprocess, --radial, --only-names Notes ----- For extremely thin hexahedral elements the Newton's iteration for finding the reference element coordinates might converge to a spurious solution outside of the element. To obtain some values even in this case, try increasing the --close-limit option value. """ from __future__ import absolute_import import os from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import sfepy from sfepy.base.base import output, assert_ from sfepy.base.ioutils import edit_filename from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.discrete import Problem from sfepy.discrete.fem import MeshIO from sfepy.discrete.probes import write_results, read_results import six helps = { 'debug': 'automatically start debugger when an exception is raised', 'filename' : 'basename of output file(s) [default: <basename of input file>]', 'output_format' : 'output figure file format (supported by the matplotlib backend used) '\ '[default: %(default)s]', 'auto_dir' : 'the directory of the results file is determined automatically using the '\ '"output_dir" option in input file options', 'same_dir' : 'store the probe figures/data in the directory of the results file', 'only_names' : 'probe only named data', 'step' : 'probe the given time step', 'close_limit' : 'maximum limit distance of a point from the closest element allowed' ' for extrapolation. [default: %(default)s]', 'postprocess' : 'postprocessing mode', 'radial' : 'assume radial integration', } def generate_probes(filename_input, filename_results, options, conf=None, problem=None, probes=None, labels=None, probe_hooks=None): """ Generate probe figures and data files. """ if conf is None: required, other = get_standard_keywords() conf = ProblemConf.from_file(filename_input, required, other) opts = conf.options if options.auto_dir: output_dir = opts.get_('output_dir', '.') filename_results = os.path.join(output_dir, filename_results) output('results in: %s' % filename_results) io = MeshIO.any_from_filename(filename_results) step = options.step if options.step >= 0 else io.read_last_step() all_data = io.read_data(step) output('loaded:', list(all_data.keys())) output('from step:', step) if options.only_names is None: data = all_data else: data = {} for key, val in six.iteritems(all_data): if key in options.only_names: data[key] = val if problem is None: problem = Problem.from_conf(conf, init_equations=False, init_solvers=False) if probes is None: gen_probes = conf.get_function(conf.options.gen_probes) probes, labels = gen_probes(problem) if probe_hooks is None: probe_hooks = {None : conf.get_function(conf.options.probe_hook)} if options.output_filename_trunk is None: options.output_filename_trunk = problem.ofn_trunk filename_template = options.output_filename_trunk \ + ('_%%d.%s' % options.output_format) if options.same_dir: filename_template = os.path.join(os.path.dirname(filename_results), filename_template) output_dir = os.path.dirname(filename_results) for ip, probe in enumerate(probes): output(ip, probe.name) probe.set_options(close_limit=options.close_limit) for key, probe_hook in six.iteritems(probe_hooks): out = probe_hook(data, probe, labels[ip], problem) if out is None: continue if isinstance(out, tuple): fig, results = out else: fig = out if key is not None: filename = filename_template % (key, ip) else: filename = filename_template % ip if fig is not None: if isinstance(fig, dict): for fig_name, fig_fig in six.iteritems(fig): fig_filename = edit_filename(filename, suffix='_' + fig_name) fig_fig.savefig(fig_filename) output('figure ->', os.path.normpath(fig_filename)) else: fig.savefig(filename) output('figure ->', os.path.normpath(filename)) if results is not None: txt_filename = edit_filename(filename, new_ext='.txt') write_results(txt_filename, probe, results) output('data ->', os.path.normpath(txt_filename)) def integrate_along_line(x, y, is_radial=False): """ Integrate numerically (trapezoidal rule) a function :math:`y=y(x)`. If is_radial is True, multiply each :math:`y` by :math:`4 \pi x^2`. """ dx = nm.diff(x) ay = 0.5 * (y[:-1] + y[1:]) if is_radial: ax = 0.5 * (x[:-1] + x[1:]) val = 4.0 * nm.pi * nm.sum(ay * dx * (ax**2)) else: val = nm.sum(ay * dx) return val def postprocess(filename_input, filename_results, options): """ Postprocess probe data files - replot, integrate data. """ from matplotlib import pyplot as plt header, results = read_results(filename_input, only_names=options.only_names) output(header) fig = plt.figure() for name, result in six.iteritems(results): pars, vals = result[:, 0], result[:, 1] ii = nm.where(nm.isfinite(vals))[0] # Nans only at the edges. assert_(nm.diff(ii).sum() == (len(ii)-1)) val = integrate_along_line(pars[ii], vals[ii], options.radial) label = r'%s: $\int\ %s' % (name, name) if options.radial: label += ' (r)' label += '$ = %.5e'% val plt.plot(pars, vals, label=label, lw=0.2, marker='+', ms=1) plt.ylabel('probed data') plt.xlabel('probe coordinate') output(label) plt.legend() fig.savefig(filename_results) def main(): parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s ' + sfepy.__version__) parser.add_argument('--debug', action='store_true', dest='debug', default=False, help=helps['debug']) parser.add_argument('-o', metavar='filename', action='store', dest='output_filename_trunk', default=None, help=helps['filename']) parser.add_argument('--auto-dir', action='store_true', dest='auto_dir', default=False, help=helps['auto_dir']) parser.add_argument('--same-dir', action='store_true', dest='same_dir', default=False, help=helps['same_dir']) parser.add_argument('-f', '--format', metavar='format', action='store', dest='output_format', default='png', help=helps['output_format']) parser.add_argument('--only-names', metavar='list of names', action='store', dest='only_names', default=None, help=helps['only_names']) parser.add_argument('-s', '--step', type=int, metavar='step', action='store', dest='step', default=0, help=helps['step']) parser.add_argument('-c', '--close-limit', type=float, metavar='distance', action='store', dest='close_limit', default=0.1, help=helps['close_limit']) parser.add_argument('-p', '--postprocess', action='store_true', dest='postprocess', default=False, help=helps['postprocess']) parser.add_argument('--radial', action='store_true', dest='radial', default=False, help=helps['radial']) parser.add_argument('filename_in') parser.add_argument('filename_out') options = parser.parse_args() if options.debug: from sfepy.base.base import debug_on_error; debug_on_error() filename_input = options.filename_in filename_results = options.filename_out if options.only_names is not None: options.only_names = options.only_names.split(',') output.prefix = 'probe:' if options.postprocess: postprocess(filename_input, filename_results, options) else: generate_probes(filename_input, filename_results, options) if __name__ == '__main__': main()
import time import os.path import bencode from django.db import models from django.utils import timezone from django.utils.functional import cached_property from pyquery.pyquery import PyQuery from bibliotik.settings import BIBLIOTIK_GET_TORRENT_URL from home.models import TransTorrentBase from what_transcode.utils import get_info_hash_from_data EBOOK_FORMATS = ['EPUB', 'PDF', 'MOBI', 'AZW3', 'DJVU', 'CBR', 'CHM', 'TXT'] LANGUAGES = ['English', 'Irish', 'German', 'French', 'Spanish', 'Italian', 'Latin', 'Japanese', 'Danish', 'Swedish', 'Norwegian', 'Dutch', 'Russian', 'Polish', 'Portuguese', 'Greek', 'Turkish', 'Hungarian', 'Korean', 'Chinese', 'Thai', 'Indonesian', 'Arabic'] def load_bibliotik_data(bibliotik_client, torrent_id): exception = None for i in xrange(3): try: response = bibliotik_client.session.get( BIBLIOTIK_GET_TORRENT_URL.format(torrent_id), allow_redirects=False) if response.status_code != 200: raise Exception('Getting bibliotik data returned HTTP {0}' .format(response.status_code)) return response.text except Exception as ex: print u'Error while retrieving bibliotik data. Will retry: {0}'.format(ex) time.sleep(2) exception = ex raise exception class BibliotikTorrent(models.Model): info_hash = models.CharField(max_length=40, db_index=True) retrieved = models.DateTimeField() category = models.CharField(max_length=32) format = models.CharField(max_length=16) retail = models.BooleanField(default=False) pages = models.IntegerField() language = models.CharField(max_length=32) isbn = models.CharField(max_length=16) cover_url = models.TextField() tags = models.TextField() publisher = models.TextField() year = models.IntegerField() author = models.TextField() title = models.TextField() html_page = models.TextField() torrent_filename = models.TextField(null=True) torrent_file = models.BinaryField(null=True) @cached_property def publisher_list(self): return self.publisher.split(';') def __unicode__(self): return u'BibliotikTorrent id={0} hash={1}'.format(self.id, self.info_hash) def import_bibliotik_data(self, bibliotik_client): self.html_page = load_bibliotik_data(bibliotik_client, self.id) self.parse_html_page() def parse_html_page(self): pq = PyQuery(self.html_page) authors = [] for author in pq('p#creatorlist a').items(): authors.append(author.text()) self.author = ', '.join(authors) self.title = pq('h1#title').text() if not self.title: raise Exception(u'Title should not be empty.') self.category = pq('h1#title > img:first-child').attr('title') details = pq('p#details_content_info').text().split(', ') self.format = details[0] details = details[1:] if self.category == u'Ebooks': assert self.format in EBOOK_FORMATS, u'Unknown eBook format {0}'.format(self.format) elif self.category == u'Applications': pass elif self.category == u'Articles': pass elif self.category == u'Audiobooks': pass elif self.category == u'Comics': pass elif self.category == u'Journals': pass elif self.category == u'Magazines': pass else: raise Exception(u'Unknown category {0}'.format(self.category)) if details[0] == u'Retail': self.retail = True details = details[1:] else: self.retail = False if details[0].endswith(u'pages'): self.pages = int(details[0][:-len(u'pages') - 1]) details = details[1:] else: self.pages = 0 if details[0].split(' ')[0] in LANGUAGES: parts = details[0].split(' ') details = details[1:] self.language = parts[0] parts = parts[1:] if len(parts): assert parts[0][0] == '(' and parts[0][-1] == ')', u'Unknown string after language' self.isbn = parts[0][1:-1] parts = parts[1:] else: self.isbn = '' else: self.language = '' assert len(details) == 0, u'All details must be parsed: {0}'.format(', '.join(details)) self.cover_url = pq('div#sidebar > a[rel="lightbox"] > img').attr('src') or '' self.tags = ', '.join(i.text() for i in pq('span.taglist > a').items()) publisher_year = pq('p#published').text() if publisher_year: assert publisher_year.startswith('Published '), \ "Publisher doesn't start with Published" publisher_year = publisher_year[len('Published '):] if publisher_year.startswith('by '): publisher_year = publisher_year[len('by '):] self.publisher = ';'.join(i.text() for i in pq('p#published > a').items()) assert self.publisher, 'Publisher can not be empty' publisher_mod = ' , '.join(i.text() for i in pq('p#published > a').items()) assert publisher_year.startswith(publisher_mod), \ 'publisher_year does not start with self.publisher' publisher_year = publisher_year[len(publisher_mod) + 1:] else: self.publisher = '' if publisher_year: assert publisher_year.startswith('in '), 'Invalid publisher_year' publisher_year = publisher_year[len('in '):] self.year = int(publisher_year) else: self.year = 0 @staticmethod def get_or_create(bibliotik_client, torrent_id): try: return BibliotikTorrent.objects.get(id=torrent_id) except BibliotikTorrent.DoesNotExist: if not bibliotik_client: raise Exception('We do not have the BibliotikTorrent, but no client was provided.') torrent = BibliotikTorrent( id=torrent_id, retrieved=timezone.now(), ) torrent.import_bibliotik_data(bibliotik_client) torrent.download_torrent_file(bibliotik_client) torrent.info_hash = get_info_hash_from_data(torrent.torrent_file) torrent.save() return torrent def download_torrent_file(self, bibliotik_client): for i in xrange(3): try: self._download_torrent_file(bibliotik_client) return except Exception as ex: exception = ex time.sleep(2) raise exception def _download_torrent_file(self, bibliotik_client): if self.torrent_file is not None: return filename, torrent_file = bibliotik_client.download_torrent(self.id) bencode.bdecode(torrent_file) self.torrent_filename = filename self.torrent_file = torrent_file class BibliotikTransTorrent(TransTorrentBase): bibliotik_torrent = models.ForeignKey(BibliotikTorrent) @property def path(self): return os.path.join(self.location.path, unicode(self.bibliotik_torrent.id)) def __unicode__(self): return u'BibliotikTransTorrent(torrent_id={0}, bibliotik_id={1}, name={2})'.format( self.torrent_id, self.bibliotik_torrent_id, self.torrent_name) class BibliotikFulltext(models.Model): info = models.TextField() more_info = models.TextField() def update(self, bibliotik_torrent): info = u'{0} - {1}'.format(bibliotik_torrent.author, bibliotik_torrent.title) more_info = ' '.join([ ', '.join(bibliotik_torrent.publisher_list), bibliotik_torrent.isbn, str(bibliotik_torrent.year), bibliotik_torrent.format, bibliotik_torrent.tags ]) if self.info != info or self.more_info != more_info: self.info = info self.more_info = more_info self.save()
import numpy as np from math import ceil import tensorflow as tf # import backprojecting_layer.backprojecting_op as backproject_op # import backprojecting_layer.backprojecting_op_grad # import projecting_layer.projecting_op as project_op # import projecting_layer.projecting_op_grad # import computing_label_layer.computing_label_op as compute_label_op # import computing_flow_layer.computing_flow_op as compute_flow_op # import computing_flow_layer.computing_flow_op_grad # import triplet_loss.triplet_loss_op as triplet_loss_op import triplet_flow_loss.triplet_flow_loss_op as triplet_flow_loss_op from triplet_flow_loss import triplet_flow_loss_op_grad # from gru2d import GRU2DCell # from gru2d_original import GRUCell # from gru3d import GRU3DCell # from vanilla2d import Vanilla2DCell # from add2d import Add2DCell # import custom_gradient_checker as gradient_checker # from tensorflow.python.framework import constant_op DEFAULT_PADDING = 'SAME' def layer(op): def layer_decorated(self, *args, **kwargs): # Automatically set a name if not provided. name = kwargs.setdefault('name', self.get_unique_name(op.__name__)) # Figure out the layer inputs. if len(self.inputs)==0: raise RuntimeError('No input variables found for layer %s.'%name) elif len(self.inputs)==1: layer_input = self.inputs[0] else: layer_input = list(self.inputs) # Perform the operation and get the output. layer_output = op(self, layer_input, *args, **kwargs) # Add to layer LUT. self.layers[name] = layer_output # This output is now the input for the next layer. self.feed(layer_output) # Return self for chained calls. return self return layer_decorated class Network(object): def __init__(self, inputs, trainable=True): self.inputs = [] self.layers = dict(inputs) self.trainable = trainable self.setup() def setup(self): raise NotImplementedError('Must be subclassed.') def load(self, data_path, session, ignore_missing=False): '''Load network weights. data_path: The path to the numpy-serialized network weights session: The current TensorFlow session ignore_missing: If true, serialized weights for missing layers are ignored. ''' data_dict = np.load(data_path).item() for op_name in data_dict: print op_name with tf.variable_scope(op_name, reuse=True): for param_name, data in data_dict[op_name].iteritems(): try: var = tf.get_variable(param_name) session.run(var.assign(data)) except ValueError: if not ignore_missing: raise # try to assign dual weights with tf.variable_scope(op_name+'_p', reuse=True): for param_name, data in data_dict[op_name].iteritems(): try: var = tf.get_variable(param_name) session.run(var.assign(data)) except ValueError: if not ignore_missing: raise with tf.variable_scope(op_name+'_d', reuse=True): for param_name, data in data_dict[op_name].iteritems(): try: var = tf.get_variable(param_name) session.run(var.assign(data)) except ValueError: if not ignore_missing: raise def feed(self, *args): assert len(args)!=0 self.inputs = [] for layer in args: if isinstance(layer, basestring): try: layer = self.layers[layer] print layer except KeyError: print self.layers.keys() raise KeyError('Unknown layer name fed: %s'%layer) self.inputs.append(layer) return self def feed_additional(self, *args): assert len(args)!=0 for layer in args: if isinstance(layer, basestring): try: layer = self.layers[layer] print layer except KeyError: print self.layers.keys() raise KeyError('Unknown layer name fed: %s'%layer) self.inputs.append(layer) return self def get_output(self, layer): try: layer = self.layers[layer] except KeyError: print self.layers.keys() raise KeyError('Unknown layer name fed: %s'%layer) return layer def get_unique_name(self, prefix): id = sum(t.startswith(prefix) for t,_ in self.layers.items())+1 return '%s_%d'%(prefix, id) def make_var(self, name, shape, initializer=None, trainable=True): return tf.get_variable(name, shape, initializer=initializer, trainable=trainable) def validate_padding(self, padding): assert padding in ('SAME', 'VALID') def make_deconv_filter(self, name, f_shape, trainable=True): width = f_shape[0] heigh = f_shape[0] f = ceil(width/2.0) c = (2 * f - 1 - f % 2) / (2.0 * f) bilinear = np.zeros([f_shape[0], f_shape[1]]) for x in range(width): for y in range(heigh): value = (1 - abs(x / f - c)) * (1 - abs(y / f - c)) bilinear[x, y] = value weights = np.zeros(f_shape) for i in range(f_shape[2]): weights[:, :, i, i] = bilinear init = tf.constant_initializer(value=weights, dtype=tf.float32) var = tf.get_variable(name, shape=weights.shape, initializer=init, trainable=trainable) return var @layer def conv(self, input, k_h, k_w, c_o, s_h, s_w, name, reuse=None, relu=True, padding=DEFAULT_PADDING, group=1, trainable=True, biased=True, c_i=-1, elu=False): self.validate_padding(padding) if isinstance(input, tuple): input = input[0] if c_i == -1: c_i = input.get_shape()[-1] assert c_i%group==0 assert c_o%group==0 convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding) with tf.variable_scope(name, reuse=reuse) as scope: init_weights = tf.truncated_normal_initializer(0.0, stddev=0.001) kernel = self.make_var('weights', [k_h, k_w, c_i/group, c_o], init_weights, trainable) if group==1: output = convolve(input, kernel) else: input_groups = tf.split(3, group, input) # tf.split is called with incorrect arguments, this will crash kernel_groups = tf.split(3, group, kernel) # tf.split is called with incorrect arguments output_groups = [convolve(i, k) for i,k in zip(input_groups, kernel_groups)] output = tf.concat(3, output_groups) # Add the biases if biased: init_biases = tf.constant_initializer(0.0) biases = self.make_var('biases', [c_o], init_biases, trainable) output = tf.nn.bias_add(output, biases) if relu: if elu: output = tf.nn.elu(output, name=scope.name) else: output = tf.nn.relu(output, name=scope.name) return output @layer def conv3d(self, input, k_d, k_h, k_w, c_i, c_o, s_d, s_h, s_w, name, reuse=None, relu=True, padding=DEFAULT_PADDING, trainable=True): self.validate_padding(padding) if isinstance(input, tuple): input = input[0] with tf.variable_scope(name, reuse=reuse) as scope: init_weights = tf.truncated_normal_initializer(0.0, stddev=0.001) init_biases = tf.constant_initializer(0.0) kernel = self.make_var('weights', [k_d, k_h, k_w, c_i, c_o], init_weights, trainable) biases = self.make_var('biases', [c_o], init_biases, trainable) conv = tf.nn.conv3d(input, kernel, [1, s_d, s_h, s_w, 1], padding=padding) if relu: bias = tf.nn.bias_add(conv, biases) return tf.nn.relu(bias, name=scope.name) return tf.nn.bias_add(conv, biases, name=scope.name) @layer def deconv(self, input, k_h, k_w, c_o, s_h, s_w, name, reuse=None, padding=DEFAULT_PADDING, trainable=True, c_i=None): # type: (any, int, int, int, int, int, str, bool, str, bool) -> any """ :param input: input tensor :param k_h: height :param k_w: width :param c_o: output depth :param s_h: vertical stride :param s_w: horizontal stride :param name: layer name :param reuse: should weights be reused from another layer with the same name? :param padding: :param trainable: :return: """ self.validate_padding(padding) if c_i is None: c_i = input.get_shape()[-1] with tf.variable_scope(name, reuse=reuse) as scope: # Compute shape out of input in_shape = tf.shape(input) h = in_shape[1] * s_h w = in_shape[2] * s_w new_shape = [in_shape[0], h, w, c_o] output_shape = tf.stack(new_shape) # filter f_shape = [k_h, k_w, c_o, c_i] weights = self.make_deconv_filter('weights', f_shape, trainable) return tf.nn.conv2d_transpose(input, weights, output_shape, [1, s_h, s_w, 1], padding=padding, name=scope.name) # @layer # def backproject(self, input, grid_size, kernel_size, threshold, name): # return backproject_op.backproject(input[0], input[1], input[2], input[3], input[4], grid_size, kernel_size, threshold, name=name) # @layer # def compute_flow(self, input, kernel_size, threshold, max_weight, name): # return compute_flow_op.compute_flow(input[0], input[1], input[2], input[3], input[4], kernel_size, threshold, max_weight, name=name) # @layer # def triplet_loss(self, input, margin, name): # return triplet_loss_op.triplet_loss(input[0], input[1], tf.cast(input[2], tf.int32), margin, name=name) @layer def triplet_flow_loss(self, input, margin, negative_radius, name, positive_radius=1): output = triplet_flow_loss_op.triplet_flow_loss(self.get_output(input[0]), self.get_output(input[1]), self.get_output(input[2]), self.get_output(input[3]), self.get_output(input[4]), self.get_output(input[5]), margin, positive_radius, negative_radius, name=name) return output # @layer # def project(self, input, kernel_size, threshold, name): # return project_op.project(input[0], input[1], input[2], kernel_size, threshold, name=name) # @layer # def compute_label(self, input, name): # return compute_label_op.compute_label(input[0], input[1], input[2], name=name) # @layer # def rnn_gru2d(self, input, num_units, channels, name, reuse=None): # with tf.variable_scope(name, reuse=reuse) as scope: # gru2d = GRU2DCell(num_units, channels) # return gru2d(input[0], input[1][0], input[1][1], scope) # # @layer # def rnn_gru2d_original(self, input, num_units, channels, name, reuse=None): # with tf.variable_scope(name, reuse=reuse) as scope: # gru2d = GRUCell(num_units, channels) # return gru2d(input[0], input[1][0], input[1][1], scope) # # @layer # def rnn_gru3d(self, input, num_units, channels, name, reuse=None): # with tf.variable_scope(name, reuse=reuse) as scope: # gru3d = GRU3DCell(num_units, channels) # return gru3d(input[0][0], input[0][2], input[1], scope) # # @layer # def rnn_vanilla2d(self, input, num_units, channels, name, reuse=None): # with tf.variable_scope(name, reuse=reuse) as scope: # vanilla2d = Vanilla2DCell(num_units, channels) # return vanilla2d(input[0], input[1], scope) # # @layer # def rnn_add2d(self, input, num_units, channels, step, name, reuse=None): # with tf.variable_scope(name, reuse=reuse) as scope: # add2d = Add2DCell(num_units, channels) # return add2d(input[0], input[1], step, scope) @layer def sigmoid(self, input, name): return tf.nn.sigmoid(input, name=name) @layer def relu(self, input, name): return tf.nn.relu(input, name=name) @layer def lrelu(self, input, name, leak=0.2): return tf.maximum(input, leak * input) @layer def max_pool(self, input, k_h, k_w, s_h, s_w, name, padding=DEFAULT_PADDING): self.validate_padding(padding) return tf.nn.max_pool(input, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding, name=name) @layer def max_pool_int(self, input, k_h, k_w, s_h, s_w, name, padding=DEFAULT_PADDING): self.validate_padding(padding) return tf.cast(tf.nn.max_pool(input, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding), dtype=tf.int32, name=name) @layer def avg_pool(self, input, k_h, k_w, s_h, s_w, name, padding=DEFAULT_PADDING): self.validate_padding(padding) return tf.nn.avg_pool(input, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding, name=name) @layer def cast(self, input, target_dtype, name): return tf.cast(input, target_dtype, name=name) @layer def round(self, input, name): return tf.round(input, name=name) @layer def lrn(self, input, radius, alpha, beta, name, bias=1.0): return tf.nn.local_response_normalization(input, depth_radius=radius, alpha=alpha, beta=beta, bias=bias, name=name) @layer def concat(self, inputs, axis, name): return tf.concat(axis=axis, values=inputs, name=name) @layer def add(self, inputs, name): return tf.add_n(inputs, name=name) @layer def add_immediate(self, input, value, name): return tf.add(input, value, name=name) @layer def mult_immediate(self, input, value, name): return tf.multiply(input, value, name=name) @layer def div_immediate(self, input, value, name): return tf.divide(input, value, name=name) @layer def subtract(self, inputs, name): assert len(inputs) == 2, "subtract must receive two input layers" return tf.subtract(inputs[0], inputs[1], name=name) @layer def multiply_sum(self, inputs, num_classes, name): prob = tf.reshape(inputs[0], [-1, num_classes]) image = tf.matmul(prob, inputs[1]) input_shape = tf.shape(inputs[0]) return tf.reshape(image, [input_shape[0], input_shape[1], input_shape[2], 3]) @layer def l2_normalize(self, input, dim, name): return tf.nn.l2_normalize(input, dim, name=name) @layer def fc(self, input, num_out, name, num_in=-1, height=-1, width=-1, channel=-1, reuse=None, relu=True, trainable=True): with tf.variable_scope(name, reuse=reuse) as scope: # only use the first input if isinstance(input, tuple): input = input[0] if height > 0 and width > 0 and channel > 0: input_shape = tf.shape(input) input = tf.reshape(input, [input_shape[0], height, width, channel]) input_shape = input.get_shape() if input_shape.ndims == 4: dim = 1 for d in input_shape[1:].as_list(): dim *= d feed_in = tf.reshape(input, [-1, dim]) else: if num_in == -1: feed_in, dim = (input, int(input_shape[-1])) else: feed_in, dim = (input, int(num_in)) init_weights = tf.truncated_normal_initializer(0.0, stddev=0.001) init_biases = tf.constant_initializer(0.0) weights = self.make_var('weights', [dim, num_out], init_weights, trainable) biases = self.make_var('biases', [num_out], init_biases, trainable) op = tf.nn.relu_layer if relu else tf.nn.xw_plus_b fc = op(feed_in, weights, biases, name=scope.name) return fc @layer def reshape(self, input, shape, name): return tf.reshape(input, shape, name) @layer def argmax_3d(self, input, name): return tf.argmax(input, 4, name) @layer def argmax_2d(self, input, name): return tf.argmax(input, 3, name) @layer def tanh(self, input, name): # only use the first input if isinstance(input, tuple): input = input[0] return tf.nn.tanh(input, name) @layer def softmax(self, input, name): # only use the first input if isinstance(input, tuple): input = input[0] return tf.nn.softmax(input, name) @layer def log_softmax(self, input, name): # only use the first input if isinstance(input, tuple): input = input[0] return tf.nn.log_softmax(input, name=name) @layer def softmax_high_dimension(self, input, num_classes, name): # only use the first input if isinstance(input, tuple): input = input[0] input_shape = input.get_shape() ndims = input_shape.ndims array = np.ones(ndims) array[-1] = num_classes m = tf.reduce_max(input, reduction_indices=[ndims-1], keep_dims=True) multiples = tf.convert_to_tensor(array, dtype=tf.int32) e = tf.exp(tf.subtract(input, tf.tile(m, multiples))) s = tf.reduce_sum(e, reduction_indices=[ndims-1], keep_dims=True) return tf.div(e, tf.tile(s, multiples)) @layer def log_softmax_high_dimension(self, input, num_classes, name): # only use the first input if isinstance(input, tuple): input = input[0] input_shape = input.get_shape() ndims = input_shape.ndims array = np.ones(ndims) array[-1] = num_classes m = tf.reduce_max(input, reduction_indices=[ndims-1], keep_dims=True) multiples = tf.convert_to_tensor(array, dtype=tf.int32) d = tf.subtract(input, tf.tile(m, multiples)) e = tf.exp(d) s = tf.reduce_sum(e, reduction_indices=[ndims-1], keep_dims=True) return tf.subtract(d, tf.log(tf.tile(s, multiples))) @layer def batch_normalization(self, input, name, scale_offset=False, relu=False, reuse=None, trainable=True): # NOTE: Currently, only inference is supported with tf.variable_scope(name, reuse=reuse) as scope: shape = [input.get_shape()[-1]] if scale_offset: scale = self.make_var('scale', shape=shape, trainable=trainable) offset = self.make_var('offset', shape=shape, trainable=trainable) else: scale, offset = (None, None) output = tf.nn.batch_normalization( input, mean=self.make_var('mean', shape=shape, initializer=tf.constant_initializer(0.0), trainable=trainable), variance=self.make_var('variance', shape=shape, initializer=tf.constant_initializer(1.0), trainable=trainable), offset=offset, scale=scale, # TODO: This is the default Caffe batch norm eps # Get the actual eps from parameters variance_epsilon=1e-5, name=name) if relu: output = tf.nn.relu(output) return output @layer def batch_norm(self, input, name, c_i=-1, momentum=0.9, epsilon=1e-5, is_training=True, relu=False, reuse=None): if c_i != -1: input_shape = tf.shape(input) input = tf.reshape(input, [input_shape[0], input_shape[1], input_shape[2], c_i]) with tf.variable_scope(name, reuse=reuse) as scope: output = tf.contrib.layers.batch_norm(input, decay=momentum, updates_collections=None, epsilon=epsilon, scale=True, is_training=is_training, scope=scope) if relu: output = tf.nn.relu(output) return output @layer def dropout(self, input, keep_prob, name): if isinstance(input, tuple): input = input[0] return tf.nn.dropout(input, keep_prob, name=name) def make_3d_spatial_filter(self, name, size, channel, theta): depth = size height = size width = size kernel = np.zeros([size, size, size]) c = size / 2 for d in range(depth): for h in range(height): for w in range(width): kernel[d, h, w] = np.exp( -1 * ((d - c) * (d - c) + (h - c) * (h - c) + (w - c) * (w - c)) / (2.0 * theta * theta) ) kernel[c, c, c] = 0 weights = np.zeros([size, size, size, channel, channel]) for i in range(channel): weights[:, :, :, i, i] = kernel init = tf.constant_initializer(value=weights, dtype=tf.float32) var = tf.get_variable(name, shape=weights.shape, initializer=init, trainable=False) return var @layer def meanfield_3d(self, input, num_classes, name, reuse=None, trainable=True): # only use the first input if isinstance(input, tuple): input = input[0] with tf.variable_scope(name, reuse=reuse) as scope: # softmax ''' input_shape = input.get_shape() ndims = input_shape.ndims array = np.ones(ndims) array[-1] = num_classes m = tf.reduce_max(input, reduction_indices=[ndims-1], keep_dims=True) multiples = tf.convert_to_tensor(array, dtype=tf.int32) e = tf.exp(tf.sub(input, tf.tile(m, multiples))) s = tf.reduce_sum(e, reduction_indices=[ndims-1], keep_dims=True) Q = tf.div(e, tf.tile(s, multiples)) ''' # message passing weights_message = self.make_3d_spatial_filter('weights_message', 3, num_classes, 0.8) message = tf.nn.conv3d(input, weights_message, [1, 1, 1, 1, 1], padding=DEFAULT_PADDING) # compatibility transform kernel = np.zeros([1, 1, 1, num_classes, num_classes]) for i in range(num_classes): kernel[0, 0, 0, i, i] = 1 init_weights = tf.constant_initializer(value=kernel, dtype=tf.float32) weights_comp = self.make_var('weights_comp', [1, 1, 1, num_classes, num_classes], init_weights, trainable) compatibility = tf.nn.conv3d(message, weights_comp, [1, 1, 1, 1, 1], padding=DEFAULT_PADDING) # add unary potential return input + compatibility def make_2d_spatial_filter(self, name, size, channel, theta): height = size width = size kernel = np.zeros([size, size]) c = size / 2 for h in range(height): for w in range(width): kernel[h, w] = np.exp( -1 * ((h - c) * (h - c) + (w - c) * (w - c)) / (2.0 * theta * theta) ) kernel[c, c] = 0 weights = np.zeros([size, size, channel, channel]) for i in range(channel): weights[:, :, i, i] = kernel init = tf.constant_initializer(value=weights, dtype=tf.float32) var = tf.get_variable(name, shape=weights.shape, initializer=init, trainable=False) return var @layer def meanfield_2d(self, input, num_steps, num_classes, name, reuse=None, trainable=True): # only use the first input if isinstance(input, tuple): input = input[0] input_shape = input.get_shape() ndims = input_shape.ndims array = np.ones(ndims) array[-1] = num_classes multiples = tf.convert_to_tensor(array, dtype=tf.int32) unary = input for i in range(num_steps): if i > 0: reuse = True with tf.variable_scope(name, reuse=reuse) as scope: # softmax m = tf.reduce_max(unary, reduction_indices=[ndims-1], keep_dims=True) e = tf.exp(tf.sub(unary, tf.tile(m, multiples))) s = tf.reduce_sum(e, reduction_indices=[ndims-1], keep_dims=True) Q = tf.div(e, tf.tile(s, multiples)) # message passing weights_message = self.make_2d_spatial_filter('weights_message', 3, num_classes, 0.8) message = tf.nn.conv2d(Q, weights_message, [1, 1, 1, 1], padding=DEFAULT_PADDING) # compatibility transform kernel = np.zeros([1, 1, num_classes, num_classes]) for i in range(num_classes): kernel[0, 0, i, i] = 1 init_weights = tf.constant_initializer(value=kernel, dtype=tf.float32) weights_comp = self.make_var('weights_comp', [1, 1, num_classes, num_classes], init_weights, trainable) compatibility = tf.nn.conv2d(message, weights_comp, [1, 1, 1, 1], padding=DEFAULT_PADDING) # add unary potential unary = unary + compatibility return unary
# Copyright 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime from oslo.serialization import jsonutils from nova.api.openstack import compute from nova.compute import api as compute_api from nova.compute import flavors from nova import db from nova import objects from nova import test from nova.tests.unit.api.openstack import fakes from nova.tests.unit import fake_instance import nova.tests.unit.image.fake MANUAL_INSTANCE_UUID = fakes.FAKE_UUID AUTO_INSTANCE_UUID = fakes.FAKE_UUID.replace('a', 'b') stub_instance = fakes.stub_instance API_DISK_CONFIG = 'OS-DCF:diskConfig' def instance_addresses(context, instance_id): return None class DiskConfigTestCaseV21(test.TestCase): def setUp(self): super(DiskConfigTestCaseV21, self).setUp() self._set_up_app() self._setup_fake_image_service() fakes.stub_out_nw_api(self.stubs) FAKE_INSTANCES = [ fakes.stub_instance(1, uuid=MANUAL_INSTANCE_UUID, auto_disk_config=False), fakes.stub_instance(2, uuid=AUTO_INSTANCE_UUID, auto_disk_config=True) ] def fake_instance_get(context, id_): for instance in FAKE_INSTANCES: if id_ == instance['id']: return instance self.stubs.Set(db, 'instance_get', fake_instance_get) def fake_instance_get_by_uuid(context, uuid, columns_to_join=None, use_slave=False): for instance in FAKE_INSTANCES: if uuid == instance['uuid']: return instance self.stubs.Set(db, 'instance_get_by_uuid', fake_instance_get_by_uuid) def fake_instance_get_all(context, *args, **kwargs): return FAKE_INSTANCES self.stubs.Set(db, 'instance_get_all', fake_instance_get_all) self.stubs.Set(db, 'instance_get_all_by_filters', fake_instance_get_all) self.stubs.Set(objects.Instance, 'save', lambda *args, **kwargs: None) def fake_rebuild(*args, **kwargs): pass self.stubs.Set(compute_api.API, 'rebuild', fake_rebuild) def fake_instance_create(context, inst_, session=None): inst = fake_instance.fake_db_instance(**{ 'id': 1, 'uuid': AUTO_INSTANCE_UUID, 'created_at': datetime.datetime(2010, 10, 10, 12, 0, 0), 'updated_at': datetime.datetime(2010, 10, 10, 12, 0, 0), 'progress': 0, 'name': 'instance-1', # this is a property 'task_state': '', 'vm_state': '', 'auto_disk_config': inst_['auto_disk_config'], 'security_groups': inst_['security_groups'], 'instance_type': flavors.get_default_flavor(), }) def fake_instance_get_for_create(context, id_, *args, **kwargs): return (inst, inst) self.stubs.Set(db, 'instance_update_and_get_original', fake_instance_get_for_create) def fake_instance_get_all_for_create(context, *args, **kwargs): return [inst] self.stubs.Set(db, 'instance_get_all', fake_instance_get_all_for_create) self.stubs.Set(db, 'instance_get_all_by_filters', fake_instance_get_all_for_create) def fake_instance_add_security_group(context, instance_id, security_group_id): pass self.stubs.Set(db, 'instance_add_security_group', fake_instance_add_security_group) return inst self.stubs.Set(db, 'instance_create', fake_instance_create) def _set_up_app(self): self.app = compute.APIRouterV21(init_only=('servers', 'images', 'os-disk-config')) def _get_expected_msg_for_invalid_disk_config(self): return ('{{"badRequest": {{"message": "Invalid input for' ' field/attribute {0}. Value: {1}. u\'{1}\' is' ' not one of [\'AUTO\', \'MANUAL\']", "code": 400}}}}') def _setup_fake_image_service(self): self.image_service = nova.tests.unit.image.fake.stub_out_image_service( self.stubs) timestamp = datetime.datetime(2011, 1, 1, 1, 2, 3) image = {'id': '88580842-f50a-11e2-8d3a-f23c91aec05e', 'name': 'fakeimage7', 'created_at': timestamp, 'updated_at': timestamp, 'deleted_at': None, 'deleted': False, 'status': 'active', 'is_public': False, 'container_format': 'ova', 'disk_format': 'vhd', 'size': '74185822', 'properties': {'auto_disk_config': 'Disabled'}} self.image_service.create(None, image) def tearDown(self): super(DiskConfigTestCaseV21, self).tearDown() nova.tests.unit.image.fake.FakeImageService_reset() def assertDiskConfig(self, dict_, value): self.assertIn(API_DISK_CONFIG, dict_) self.assertEqual(dict_[API_DISK_CONFIG], value) def test_show_server(self): req = fakes.HTTPRequest.blank( '/fake/servers/%s' % MANUAL_INSTANCE_UUID) res = req.get_response(self.app) server_dict = jsonutils.loads(res.body)['server'] self.assertDiskConfig(server_dict, 'MANUAL') req = fakes.HTTPRequest.blank( '/fake/servers/%s' % AUTO_INSTANCE_UUID) res = req.get_response(self.app) server_dict = jsonutils.loads(res.body)['server'] self.assertDiskConfig(server_dict, 'AUTO') def test_detail_servers(self): req = fakes.HTTPRequest.blank('/fake/servers/detail') res = req.get_response(self.app) server_dicts = jsonutils.loads(res.body)['servers'] expectations = ['MANUAL', 'AUTO'] for server_dict, expected in zip(server_dicts, expectations): self.assertDiskConfig(server_dict, expected) def test_show_image(self): req = fakes.HTTPRequest.blank( '/fake/images/a440c04b-79fa-479c-bed1-0b816eaec379') res = req.get_response(self.app) image_dict = jsonutils.loads(res.body)['image'] self.assertDiskConfig(image_dict, 'MANUAL') req = fakes.HTTPRequest.blank( '/fake/images/70a599e0-31e7-49b7-b260-868f441e862b') res = req.get_response(self.app) image_dict = jsonutils.loads(res.body)['image'] self.assertDiskConfig(image_dict, 'AUTO') def test_detail_image(self): req = fakes.HTTPRequest.blank('/fake/images/detail') res = req.get_response(self.app) image_dicts = jsonutils.loads(res.body)['images'] expectations = ['MANUAL', 'AUTO'] for image_dict, expected in zip(image_dicts, expectations): # NOTE(sirp): image fixtures 6 and 7 are setup for # auto_disk_config testing if image_dict['id'] in (6, 7): self.assertDiskConfig(image_dict, expected) def test_create_server_override_auto(self): req = fakes.HTTPRequest.blank('/fake/servers') req.method = 'POST' req.content_type = 'application/json' body = {'server': { 'name': 'server_test', 'imageRef': 'cedef40a-ed67-4d10-800e-17455edce175', 'flavorRef': '1', API_DISK_CONFIG: 'AUTO' }} req.body = jsonutils.dumps(body) res = req.get_response(self.app) server_dict = jsonutils.loads(res.body)['server'] self.assertDiskConfig(server_dict, 'AUTO') def test_create_server_override_manual(self): req = fakes.HTTPRequest.blank('/fake/servers') req.method = 'POST' req.content_type = 'application/json' body = {'server': { 'name': 'server_test', 'imageRef': 'cedef40a-ed67-4d10-800e-17455edce175', 'flavorRef': '1', API_DISK_CONFIG: 'MANUAL' }} req.body = jsonutils.dumps(body) res = req.get_response(self.app) server_dict = jsonutils.loads(res.body)['server'] self.assertDiskConfig(server_dict, 'MANUAL') def test_create_server_detect_from_image(self): """If user doesn't pass in diskConfig for server, use image metadata to specify AUTO or MANUAL. """ req = fakes.HTTPRequest.blank('/fake/servers') req.method = 'POST' req.content_type = 'application/json' body = {'server': { 'name': 'server_test', 'imageRef': 'a440c04b-79fa-479c-bed1-0b816eaec379', 'flavorRef': '1', }} req.body = jsonutils.dumps(body) res = req.get_response(self.app) server_dict = jsonutils.loads(res.body)['server'] self.assertDiskConfig(server_dict, 'MANUAL') req = fakes.HTTPRequest.blank('/fake/servers') req.method = 'POST' req.content_type = 'application/json' body = {'server': { 'name': 'server_test', 'imageRef': '70a599e0-31e7-49b7-b260-868f441e862b', 'flavorRef': '1', }} req.body = jsonutils.dumps(body) res = req.get_response(self.app) server_dict = jsonutils.loads(res.body)['server'] self.assertDiskConfig(server_dict, 'AUTO') def test_create_server_detect_from_image_disabled_goes_to_manual(self): req = fakes.HTTPRequest.blank('/fake/servers') req.method = 'POST' req.content_type = 'application/json' body = {'server': { 'name': 'server_test', 'imageRef': '88580842-f50a-11e2-8d3a-f23c91aec05e', 'flavorRef': '1', }} req.body = jsonutils.dumps(body) res = req.get_response(self.app) server_dict = jsonutils.loads(res.body)['server'] self.assertDiskConfig(server_dict, 'MANUAL') def test_create_server_errors_when_disabled_and_auto(self): req = fakes.HTTPRequest.blank('/fake/servers') req.method = 'POST' req.content_type = 'application/json' body = {'server': { 'name': 'server_test', 'imageRef': '88580842-f50a-11e2-8d3a-f23c91aec05e', 'flavorRef': '1', API_DISK_CONFIG: 'AUTO' }} req.body = jsonutils.dumps(body) res = req.get_response(self.app) self.assertEqual(res.status_int, 400) def test_create_server_when_disabled_and_manual(self): req = fakes.HTTPRequest.blank('/fake/servers') req.method = 'POST' req.content_type = 'application/json' body = {'server': { 'name': 'server_test', 'imageRef': '88580842-f50a-11e2-8d3a-f23c91aec05e', 'flavorRef': '1', API_DISK_CONFIG: 'MANUAL' }} req.body = jsonutils.dumps(body) res = req.get_response(self.app) server_dict = jsonutils.loads(res.body)['server'] self.assertDiskConfig(server_dict, 'MANUAL') def _test_update_server_disk_config(self, uuid, disk_config): req = fakes.HTTPRequest.blank( '/fake/servers/%s' % uuid) req.method = 'PUT' req.content_type = 'application/json' body = {'server': {API_DISK_CONFIG: disk_config}} req.body = jsonutils.dumps(body) res = req.get_response(self.app) server_dict = jsonutils.loads(res.body)['server'] self.assertDiskConfig(server_dict, disk_config) def test_update_server_override_auto(self): self._test_update_server_disk_config(AUTO_INSTANCE_UUID, 'AUTO') def test_update_server_override_manual(self): self._test_update_server_disk_config(MANUAL_INSTANCE_UUID, 'MANUAL') def test_update_server_invalid_disk_config(self): # Return BadRequest if user passes an invalid diskConfig value. req = fakes.HTTPRequest.blank( '/fake/servers/%s' % MANUAL_INSTANCE_UUID) req.method = 'PUT' req.content_type = 'application/json' body = {'server': {API_DISK_CONFIG: 'server_test'}} req.body = jsonutils.dumps(body) res = req.get_response(self.app) self.assertEqual(res.status_int, 400) expected_msg = self._get_expected_msg_for_invalid_disk_config() self.assertEqual(expected_msg.format(API_DISK_CONFIG, 'server_test'), res.body) def _test_rebuild_server_disk_config(self, uuid, disk_config): req = fakes.HTTPRequest.blank( '/fake/servers/%s/action' % uuid) req.method = 'POST' req.content_type = 'application/json' body = {"rebuild": { 'imageRef': 'cedef40a-ed67-4d10-800e-17455edce175', API_DISK_CONFIG: disk_config }} req.body = jsonutils.dumps(body) res = req.get_response(self.app) server_dict = jsonutils.loads(res.body)['server'] self.assertDiskConfig(server_dict, disk_config) def test_rebuild_server_override_auto(self): self._test_rebuild_server_disk_config(AUTO_INSTANCE_UUID, 'AUTO') def test_rebuild_server_override_manual(self): self._test_rebuild_server_disk_config(MANUAL_INSTANCE_UUID, 'MANUAL') def test_create_server_with_auto_disk_config(self): req = fakes.HTTPRequest.blank('/fake/servers') req.method = 'POST' req.content_type = 'application/json' body = {'server': { 'name': 'server_test', 'imageRef': 'cedef40a-ed67-4d10-800e-17455edce175', 'flavorRef': '1', API_DISK_CONFIG: 'AUTO' }} old_create = compute_api.API.create def create(*args, **kwargs): self.assertIn('auto_disk_config', kwargs) self.assertEqual(True, kwargs['auto_disk_config']) return old_create(*args, **kwargs) self.stubs.Set(compute_api.API, 'create', create) req.body = jsonutils.dumps(body) res = req.get_response(self.app) server_dict = jsonutils.loads(res.body)['server'] self.assertDiskConfig(server_dict, 'AUTO') def test_rebuild_server_with_auto_disk_config(self): req = fakes.HTTPRequest.blank( '/fake/servers/%s/action' % AUTO_INSTANCE_UUID) req.method = 'POST' req.content_type = 'application/json' body = {"rebuild": { 'imageRef': 'cedef40a-ed67-4d10-800e-17455edce175', API_DISK_CONFIG: 'AUTO' }} def rebuild(*args, **kwargs): self.assertIn('auto_disk_config', kwargs) self.assertEqual(True, kwargs['auto_disk_config']) self.stubs.Set(compute_api.API, 'rebuild', rebuild) req.body = jsonutils.dumps(body) res = req.get_response(self.app) server_dict = jsonutils.loads(res.body)['server'] self.assertDiskConfig(server_dict, 'AUTO') def test_resize_server_with_auto_disk_config(self): req = fakes.HTTPRequest.blank( '/fake/servers/%s/action' % AUTO_INSTANCE_UUID) req.method = 'POST' req.content_type = 'application/json' body = {"resize": { "flavorRef": "3", API_DISK_CONFIG: 'AUTO' }} def resize(*args, **kwargs): self.assertIn('auto_disk_config', kwargs) self.assertEqual(True, kwargs['auto_disk_config']) self.stubs.Set(compute_api.API, 'resize', resize) req.body = jsonutils.dumps(body) req.get_response(self.app) class DiskConfigTestCaseV2(DiskConfigTestCaseV21): def _set_up_app(self): self.flags(verbose=True, osapi_compute_extension=[ 'nova.api.openstack.compute.contrib.select_extensions'], osapi_compute_ext_list=['Disk_config']) self.app = compute.APIRouter(init_only=('servers', 'images')) def _get_expected_msg_for_invalid_disk_config(self): return ('{{"badRequest": {{"message": "{0} must be either' ' \'MANUAL\' or \'AUTO\'.", "code": 400}}}}')
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: skip-file import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from collections import defaultdict from torch.nn.parameter import Parameter from bigg.common.pytorch_util import glorot_uniform, MLP, BinaryTreeLSTMCell from tqdm import tqdm from bigg.model.util import AdjNode, ColAutomata, AdjRow from bigg.model.tree_clib.tree_lib import TreeLib from bigg.torch_ops import multi_index_select, PosEncoding def hc_multi_select(ids_from, ids_to, h_froms, c_froms): h_vecs = multi_index_select(ids_from, ids_to, *h_froms) c_vecs = multi_index_select(ids_from, ids_to, *c_froms) return h_vecs, c_vecs def tree_state_select(h_bot, c_bot, h_buf, c_buf, fn_all_ids): bot_froms, bot_tos, prev_froms, prev_tos = fn_all_ids() if h_buf is None or prev_tos is None: h_vecs = multi_index_select([bot_froms], [bot_tos], h_bot) c_vecs = multi_index_select([bot_froms], [bot_tos], c_bot) elif h_bot is None or bot_tos is None: h_vecs = multi_index_select([prev_froms], [prev_tos], h_buf) c_vecs = multi_index_select([prev_froms], [prev_tos], c_buf) else: h_vecs, c_vecs = hc_multi_select([bot_froms, prev_froms], [bot_tos, prev_tos], [h_bot, h_buf], [c_bot, c_buf]) return h_vecs, c_vecs def batch_tree_lstm2(h_bot, c_bot, h_buf, c_buf, fn_all_ids, cell): h_list = [] c_list = [] for i in range(2): h_vecs, c_vecs = tree_state_select(h_bot, c_bot, h_buf, c_buf, lambda : fn_all_ids(i)) h_list.append(h_vecs) c_list.append(c_vecs) return cell((h_list[0], c_list[0]), (h_list[1], c_list[1])) def batch_tree_lstm3(h_bot, c_bot, h_buf, c_buf, h_past, c_past, fn_all_ids, cell): if h_past is None: return batch_tree_lstm2(h_bot, c_bot, h_buf, c_buf, lambda i: fn_all_ids(i)[:-2], cell) elif h_bot is None: return batch_tree_lstm2(h_buf, c_buf, h_past, c_past, lambda i: fn_all_ids(i)[2:], cell) elif h_buf is None: return batch_tree_lstm2(h_bot, c_bot, h_past, c_past, lambda i: fn_all_ids(i)[0, 1, 4, 5], cell) else: h_list = [] c_list = [] for i in range(2): bot_froms, bot_tos, prev_froms, prev_tos, past_froms, past_tos = fn_all_ids(i) h_vecs, c_vecs = hc_multi_select([bot_froms, prev_froms, past_froms], [bot_tos, prev_tos, past_tos], [h_bot, h_buf, h_past], [c_bot, c_buf, c_past]) h_list.append(h_vecs) c_list.append(c_vecs) return cell((h_list[0], c_list[0]), (h_list[1], c_list[1])) class FenwickTree(nn.Module): def __init__(self, args): super(FenwickTree, self).__init__() self.init_h0 = Parameter(torch.Tensor(1, args.embed_dim)) self.init_c0 = Parameter(torch.Tensor(1, args.embed_dim)) glorot_uniform(self) self.merge_cell = BinaryTreeLSTMCell(args.embed_dim) self.summary_cell = BinaryTreeLSTMCell(args.embed_dim) if args.pos_enc: self.pos_enc = PosEncoding(args.embed_dim, args.device, args.pos_base) else: self.pos_enc = lambda x: 0 def reset(self, list_states=[]): self.list_states = [] for l in list_states: t = [] for e in l: t.append(e) self.list_states.append(t) def append_state(self, state, level): if level >= len(self.list_states): num_aug = level - len(self.list_states) + 1 for i in range(num_aug): self.list_states.append([]) self.list_states[level].append(state) def forward(self, new_state=None): if new_state is None: if len(self.list_states) == 0: return (self.init_h0, self.init_c0) else: self.append_state(new_state, 0) pos = 0 while pos < len(self.list_states): if len(self.list_states[pos]) >= 2: lch_state, rch_state = self.list_states[pos] # assert the length is 2 new_state = self.merge_cell(lch_state, rch_state) self.list_states[pos] = [] self.append_state(new_state, pos + 1) pos += 1 state = None for pos in range(len(self.list_states)): if len(self.list_states[pos]) == 0: continue cur_state = self.list_states[pos][0] if state is None: state = cur_state else: state = self.summary_cell(state, cur_state) return state def forward_train(self, h_bot, c_bot, h_buf0, c_buf0, prev_rowsum_h, prrev_rowsum_c): # embed row tree tree_agg_ids = TreeLib.PrepareRowEmbed() row_embeds = [(self.init_h0, self.init_c0)] if h_bot is not None: row_embeds.append((h_bot, c_bot)) if prev_rowsum_h is not None: row_embeds.append((prev_rowsum_h, prrev_rowsum_c)) if h_buf0 is not None: row_embeds.append((h_buf0, c_buf0)) th_bot = h_bot tc_bot = c_bot for i, all_ids in enumerate(tree_agg_ids): fn_ids = lambda x: all_ids[x] if i: th_bot = tc_bot = None new_states = batch_tree_lstm3(th_bot, tc_bot, row_embeds[-1][0], row_embeds[-1][1], prev_rowsum_h, prrev_rowsum_c, fn_ids, self.merge_cell) row_embeds.append(new_states) h_list, c_list = zip(*row_embeds) joint_h = torch.cat(h_list, dim=0) joint_c = torch.cat(c_list, dim=0) # get history representation init_select, all_ids, last_tos, next_ids, pos_info = TreeLib.PrepareRowSummary() cur_state = (joint_h[init_select], joint_c[init_select]) ret_state = (joint_h[next_ids], joint_c[next_ids]) hist_rnn_states = [] hist_froms = [] hist_tos = [] for i, (done_from, done_to, proceed_from, proceed_input) in enumerate(all_ids): hist_froms.append(done_from) hist_tos.append(done_to) hist_rnn_states.append(cur_state) next_input = joint_h[proceed_input], joint_c[proceed_input] sub_state = cur_state[0][proceed_from], cur_state[1][proceed_from] cur_state = self.summary_cell(sub_state, next_input) hist_rnn_states.append(cur_state) hist_froms.append(None) hist_tos.append(last_tos) hist_h_list, hist_c_list = zip(*hist_rnn_states) pos_embed = self.pos_enc(pos_info) row_h = multi_index_select(hist_froms, hist_tos, *hist_h_list) + pos_embed row_c = multi_index_select(hist_froms, hist_tos, *hist_c_list) + pos_embed return (row_h, row_c), ret_state class BitsRepNet(nn.Module): def __init__(self, args): super(BitsRepNet, self).__init__() self.bits_compress = args.bits_compress self.out_dim = args.embed_dim assert self.out_dim >= self.bits_compress self.device = args.device def forward(self, on_bits, n_cols): h = torch.zeros(1, self.out_dim).to(self.device) h[0, :n_cols] = -1.0 h[0, on_bits] = 1.0 return h, h class RecurTreeGen(nn.Module): def __init__(self, args): super(RecurTreeGen, self).__init__() self.directed = args.directed self.self_loop = args.self_loop self.bits_compress = args.bits_compress self.greedy_frac = args.greedy_frac self.share_param = args.share_param if not self.bits_compress: self.leaf_h0 = Parameter(torch.Tensor(1, args.embed_dim)) self.leaf_c0 = Parameter(torch.Tensor(1, args.embed_dim)) self.empty_h0 = Parameter(torch.Tensor(1, args.embed_dim)) self.empty_c0 = Parameter(torch.Tensor(1, args.embed_dim)) self.topdown_left_embed = Parameter(torch.Tensor(2, args.embed_dim)) self.topdown_right_embed = Parameter(torch.Tensor(2, args.embed_dim)) glorot_uniform(self) if self.bits_compress > 0: self.bit_rep_net = BitsRepNet(args) if self.share_param: self.m_l2r_cell = BinaryTreeLSTMCell(args.embed_dim) self.lr2p_cell = BinaryTreeLSTMCell(args.embed_dim) self.pred_has_ch = MLP(args.embed_dim, [2 * args.embed_dim, 1]) self.m_pred_has_left = MLP(args.embed_dim, [2 * args.embed_dim, 1]) self.m_pred_has_right = MLP(args.embed_dim, [2 * args.embed_dim, 1]) self.m_cell_topdown = nn.LSTMCell(args.embed_dim, args.embed_dim) self.m_cell_topright = nn.LSTMCell(args.embed_dim, args.embed_dim) else: fn_pred = lambda: MLP(args.embed_dim, [2 * args.embed_dim, 1]) fn_tree_cell = lambda: BinaryTreeLSTMCell(args.embed_dim) fn_lstm_cell = lambda: nn.LSTMCell(args.embed_dim, args.embed_dim) num_params = int(np.ceil(np.log2(args.max_num_nodes))) + 1 self.pred_has_ch = fn_pred() pred_modules = [[] for _ in range(2)] tree_cell_modules = [] lstm_cell_modules = [[] for _ in range(2)] for _ in range(num_params): for i in range(2): pred_modules[i].append(fn_pred()) lstm_cell_modules[i].append(fn_lstm_cell()) tree_cell_modules.append(fn_tree_cell()) self.has_left_modules, self.has_right_modules = [nn.ModuleList(l) for l in pred_modules] self.l2r_modules= nn.ModuleList(tree_cell_modules) self.cell_topdown_modules, self.cell_topright_modules = [nn.ModuleList(l) for l in lstm_cell_modules] self.lr2p_cell = fn_tree_cell() self.row_tree = FenwickTree(args) if args.tree_pos_enc: self.tree_pos_enc = PosEncoding(args.embed_dim, args.device, args.pos_base, bias=np.pi / 4) else: self.tree_pos_enc = lambda x: 0 def cell_topdown(self, x, y, lv): cell = self.m_cell_topdown if self.share_param else self.cell_topdown_modules[lv] return cell(x, y) def cell_topright(self, x, y, lv): cell = self.m_cell_topright if self.share_param else self.cell_topright_modules[lv] return cell(x, y) def l2r_cell(self, x, y, lv): cell = self.m_l2r_cell if self.share_param else self.l2r_modules[lv] return cell(x, y) def pred_has_left(self, x, lv): mlp = self.m_pred_has_left if self.share_param else self.has_left_modules[lv] return mlp(x) def pred_has_right(self, x, lv): mlp = self.m_pred_has_right if self.share_param else self.has_right_modules[lv] return mlp(x) def get_empty_state(self): if self.bits_compress: return self.bit_rep_net([], 1) else: return (self.empty_h0, self.empty_c0) def get_prob_fix(self, prob): p = prob * (1 - self.greedy_frac) if prob >= 0.5: p += self.greedy_frac return p def gen_row(self, ll, state, tree_node, col_sm, lb, ub): assert lb <= ub if tree_node.is_root: prob_has_edge = torch.sigmoid(self.pred_has_ch(state[0])) if col_sm.supervised: has_edge = len(col_sm.indices) > 0 else: has_edge = np.random.rand() < self.get_prob_fix(prob_has_edge.item()) if ub == 0: has_edge = False if tree_node.n_cols <= 0: has_edge = False if lb: has_edge = True if has_edge: ll = ll + torch.log(prob_has_edge) else: ll = ll + torch.log(1 - prob_has_edge) tree_node.has_edge = has_edge else: assert ub > 0 tree_node.has_edge = True if not tree_node.has_edge: # an empty tree return ll, self.get_empty_state(), 0 if tree_node.is_leaf: tree_node.bits_rep = [0] col_sm.add_edge(tree_node.col_range[0]) if self.bits_compress: return ll, self.bit_rep_net(tree_node.bits_rep, tree_node.n_cols), 1 else: return ll, (self.leaf_h0, self.leaf_c0), 1 else: tree_node.split() mid = (tree_node.col_range[0] + tree_node.col_range[1]) // 2 left_prob = torch.sigmoid(self.pred_has_left(state[0], tree_node.depth)) if col_sm.supervised: has_left = col_sm.next_edge < mid else: has_left = np.random.rand() < self.get_prob_fix(left_prob.item()) if ub == 0: has_left = False if lb > tree_node.rch.n_cols: has_left = True ll = ll + (torch.log(left_prob) if has_left else torch.log(1 - left_prob)) left_pos = self.tree_pos_enc([tree_node.lch.n_cols]) state = self.cell_topdown(self.topdown_left_embed[[int(has_left)]] + left_pos, state, tree_node.depth) if has_left: lub = min(tree_node.lch.n_cols, ub) llb = max(0, lb - tree_node.rch.n_cols) ll, left_state, num_left = self.gen_row(ll, state, tree_node.lch, col_sm, llb, lub) else: left_state = self.get_empty_state() num_left = 0 right_pos = self.tree_pos_enc([tree_node.rch.n_cols]) topdown_state = self.l2r_cell(state, (left_state[0] + right_pos, left_state[1] + right_pos), tree_node.depth) rlb = max(0, lb - num_left) rub = min(tree_node.rch.n_cols, ub - num_left) if not has_left: has_right = True else: right_prob = torch.sigmoid(self.pred_has_right(topdown_state[0], tree_node.depth)) if col_sm.supervised: has_right = col_sm.has_edge(mid, tree_node.col_range[1]) else: has_right = np.random.rand() < self.get_prob_fix(right_prob.item()) if rub == 0: has_right = False if rlb: has_right = True ll = ll + (torch.log(right_prob) if has_right else torch.log(1 - right_prob)) topdown_state = self.cell_topright(self.topdown_right_embed[[int(has_right)]], topdown_state, tree_node.depth) if has_right: # has edge in right child ll, right_state, num_right = self.gen_row(ll, topdown_state, tree_node.rch, col_sm, rlb, rub) else: right_state = self.get_empty_state() num_right = 0 if tree_node.col_range[1] - tree_node.col_range[0] <= self.bits_compress: summary_state = self.bit_rep_net(tree_node.bits_rep, tree_node.n_cols) else: summary_state = self.lr2p_cell(left_state, right_state) return ll, summary_state, num_left + num_right def forward(self, node_end, edge_list=None, node_start=0, list_states=[], lb_list=None, ub_list=None, col_range=None, num_nodes=None, display=False): pos = 0 total_ll = 0.0 edges = [] self.row_tree.reset(list_states) controller_state = self.row_tree() if num_nodes is None: num_nodes = node_end pbar = range(node_start, node_end) if display: pbar = tqdm(pbar) for i in pbar: if edge_list is None: col_sm = ColAutomata(supervised=False) else: indices = [] while pos < len(edge_list) and i == edge_list[pos][0]: indices.append(edge_list[pos][1]) pos += 1 indices.sort() col_sm = ColAutomata(supervised=True, indices=indices) cur_row = AdjRow(i, self.directed, self.self_loop, col_range=col_range) lb = 0 if lb_list is None else lb_list[i] ub = cur_row.root.n_cols if ub_list is None else ub_list[i] cur_pos_embed = self.row_tree.pos_enc([num_nodes - i]) controller_state = [x + cur_pos_embed for x in controller_state] ll, cur_state, _ = self.gen_row(0, controller_state, cur_row.root, col_sm, lb, ub) assert lb <= len(col_sm.indices) <= ub controller_state = self.row_tree(cur_state) edges += [(i, x) for x in col_sm.indices] total_ll = total_ll + ll return total_ll, edges, self.row_tree.list_states def binary_ll(self, pred_logits, np_label, need_label=False, reduction='sum'): pred_logits = pred_logits.view(-1, 1) label = torch.tensor(np_label, dtype=torch.float32).to(pred_logits.device).view(-1, 1) loss = F.binary_cross_entropy_with_logits(pred_logits, label, reduction=reduction) if need_label: return -loss, label return -loss def forward_row_trees(self, graph_ids, list_node_starts=None, num_nodes=-1, list_col_ranges=None): TreeLib.PrepareMiniBatch(graph_ids, list_node_starts, num_nodes, list_col_ranges) # embed trees all_ids = TreeLib.PrepareTreeEmbed() if not self.bits_compress: h_bot = torch.cat([self.empty_h0, self.leaf_h0], dim=0) c_bot = torch.cat([self.empty_c0, self.leaf_c0], dim=0) fn_hc_bot = lambda d: (h_bot, c_bot) else: binary_embeds, base_feat = TreeLib.PrepareBinary() fn_hc_bot = lambda d: (binary_embeds[d], binary_embeds[d]) if d < len(binary_embeds) else base_feat max_level = len(all_ids) - 1 h_buf_list = [None] * (len(all_ids) + 1) c_buf_list = [None] * (len(all_ids) + 1) for d in range(len(all_ids) - 1, -1, -1): fn_ids = lambda i: all_ids[d][i] if d == max_level: h_buf = c_buf = None else: h_buf = h_buf_list[d + 1] c_buf = c_buf_list[d + 1] h_bot, c_bot = fn_hc_bot(d + 1) new_h, new_c = batch_tree_lstm2(h_bot, c_bot, h_buf, c_buf, fn_ids, self.lr2p_cell) h_buf_list[d] = new_h c_buf_list[d] = new_c return fn_hc_bot, h_buf_list, c_buf_list def forward_row_summaries(self, graph_ids, list_node_starts=None, num_nodes=-1, prev_rowsum_states=[None, None], list_col_ranges=None): fn_hc_bot, h_buf_list, c_buf_list = self.forward_row_trees(graph_ids, list_node_starts, num_nodes, list_col_ranges) row_states, next_states = self.row_tree.forward_train(*(fn_hc_bot(0)), h_buf_list[0], c_buf_list[0], *prev_rowsum_states) return row_states, next_states def forward_train(self, graph_ids, list_node_starts=None, num_nodes=-1, prev_rowsum_states=[None, None], list_col_ranges=None): fn_hc_bot, h_buf_list, c_buf_list = self.forward_row_trees(graph_ids, list_node_starts, num_nodes, list_col_ranges) row_states, next_states = self.row_tree.forward_train(*(fn_hc_bot(0)), h_buf_list[0], c_buf_list[0], *prev_rowsum_states) # make prediction logit_has_edge = self.pred_has_ch(row_states[0]) has_ch, _ = TreeLib.GetChLabel(0, dtype=np.bool) ll = self.binary_ll(logit_has_edge, has_ch) # has_ch_idx cur_states = (row_states[0][has_ch], row_states[1][has_ch]) lv = 0 while True: is_nonleaf = TreeLib.QueryNonLeaf(lv) if is_nonleaf is None or np.sum(is_nonleaf) == 0: break cur_states = (cur_states[0][is_nonleaf], cur_states[1][is_nonleaf]) left_logits = self.pred_has_left(cur_states[0], lv) has_left, num_left = TreeLib.GetChLabel(-1, lv) left_update = self.topdown_left_embed[has_left] + self.tree_pos_enc(num_left) left_ll, float_has_left = self.binary_ll(left_logits, has_left, need_label=True, reduction='sum') ll = ll + left_ll cur_states = self.cell_topdown(left_update, cur_states, lv) left_ids = TreeLib.GetLeftRootStates(lv) h_bot, c_bot = fn_hc_bot(lv + 1) if lv + 1 < len(h_buf_list): h_next_buf, c_next_buf = h_buf_list[lv + 1], c_buf_list[lv + 1] else: h_next_buf = c_next_buf = None left_subtree_states = tree_state_select(h_bot, c_bot, h_next_buf, c_next_buf, lambda: left_ids) has_right, num_right = TreeLib.GetChLabel(1, lv) right_pos = self.tree_pos_enc(num_right) left_subtree_states = [x + right_pos for x in left_subtree_states] topdown_state = self.l2r_cell(cur_states, left_subtree_states, lv) right_logits = self.pred_has_right(topdown_state[0], lv) right_update = self.topdown_right_embed[has_right] topdown_state = self.cell_topright(right_update, topdown_state, lv) right_ll = self.binary_ll(right_logits, has_right, reduction='none') * float_has_left ll = ll + torch.sum(right_ll) lr_ids = TreeLib.GetLeftRightSelect(lv, np.sum(has_left), np.sum(has_right)) new_states = [] for i in range(2): new_s = multi_index_select([lr_ids[0], lr_ids[2]], [lr_ids[1], lr_ids[3]], cur_states[i], topdown_state[i]) new_states.append(new_s) cur_states = tuple(new_states) lv += 1 return ll, next_states
#!/usr/bin/python # coding=utf-8 ########################################################################## from test import CollectorTestCase from test import get_collector_config from test import unittest from mock import Mock from mock import patch from diamond.collector import Collector from elasticsearch import ElasticSearchCollector ########################################################################## class TestElasticSearchCollector(CollectorTestCase): def setUp(self): config = get_collector_config('ElasticSearchCollector', {}) self.collector = ElasticSearchCollector(config, None) def test_import(self): self.assertTrue(ElasticSearchCollector) def test_new__instances_default(self): config = get_collector_config('ElasticSearchCollector', {}) self.collector = ElasticSearchCollector(config, None) self.assertEqual(self.collector.instances, {'': ('127.0.0.1', 9200)}) def test_new__instances_single(self): config = get_collector_config('ElasticSearchCollector', { 'instances': 'bla'}) self.collector = ElasticSearchCollector(config, None) self.assertEqual(self.collector.instances, {'default': ('bla', 9200)}) def test_new__instances_multi(self): config = get_collector_config('ElasticSearchCollector', { 'instances': [ 'something', 'foo@1234', 'bar@bla:1234', ]}) self.collector = ElasticSearchCollector(config, None) self.assertEqual(self.collector.instances, { 'default': ('something', 9200), 'foo': ('1234', 9200), 'bar': ('bla', 1234), }) @patch.object(Collector, 'publish') def test_should_work_with_real_data(self, publish_mock): returns = [ self.getFixture('stats'), self.getFixture('cluster_stats'), self.getFixture('indices_stats'), ] urlopen_mock = patch('urllib2.urlopen', Mock( side_effect=lambda *args: returns.pop(0))) self.collector.config['cluster'] = True urlopen_mock.start() self.collector.collect() urlopen_mock.stop() # check how many fixtures were consumed self.assertEqual(urlopen_mock.new.call_count, 3) metrics = { 'http.current': 1, 'indices.docs.count': 11968062, 'indices.docs.deleted': 2692068, 'indices.datastore.size': 22724243633, 'indices._all.docs.count': 4, 'indices._all.docs.deleted': 0, 'indices._all.datastore.size': 2674, 'indices.test.docs.count': 4, 'indices.test.docs.deleted': 0, 'indices.test.datastore.size': 2674, 'process.cpu.percent': 58, 'process.mem.resident': 5192126464, 'process.mem.share': 11075584, 'process.mem.virtual': 7109668864, 'disk.reads.count': 55996, 'disk.reads.size': 1235387392, 'disk.writes.count': 5808198, 'disk.writes.size': 23287275520, 'thread_pool.generic.threads': 1, 'network.tcp.active_opens': 2299, 'jvm.mem.pools.CMS_Old_Gen.used': 530915016, 'cluster_health.nodes.total': 3, 'cluster_health.nodes.data': 3, 'cluster_health.shards.active_primary': 5, 'cluster_health.shards.active': 10, 'cluster_health.shards.relocating': 0, 'cluster_health.shards.unassigned': 0, 'cluster_health.shards.initializing': 0, 'cluster_health.status': 2, } self.setDocExample(collector=self.collector.__class__.__name__, metrics=metrics, defaultpath=self.collector.config['path']) self.assertPublishedMany(publish_mock, metrics) @patch.object(Collector, 'publish') def test_should_work_with_real_data_and_basic_auth(self, publish_mock): self.collector.config["user"] = "user" self.collector.config["password"] = "password" self.test_should_work_with_real_data() @patch.object(Collector, 'publish') def test_should_work_with_real_data_logstash_mode(self, publish_mock): returns = [ self.getFixture('stats'), self.getFixture('logstash_indices_stats'), ] urlopen_mock = patch('urllib2.urlopen', Mock( side_effect=lambda *args: returns.pop(0))) self.collector.config['logstash_mode'] = True urlopen_mock.start() self.collector.collect() urlopen_mock.stop() # check how many fixtures were consumed self.assertEqual(urlopen_mock.new.call_count, 2) # Omit all non-indices metrics, since those were already # checked in previous test. metrics = { 'indices.docs.count': 11968062, 'indices.docs.deleted': 2692068, 'indices.datastore.size': 22724243633, 'indices._all.docs.count': 35856619, 'indices._all.docs.deleted': 0, 'indices._all.datastore.size': 21903813340, 'indices._all.get.exists_time_in_millis': 0, 'indices._all.get.exists_total': 0, 'indices._all.get.missing_time_in_millis': 0, 'indices._all.get.missing_total': 0, 'indices._all.get.time_in_millis': 0, 'indices._all.get.total': 0, 'indices._all.indexing.delete_time_in_millis': 0, 'indices._all.indexing.delete_total': 0, 'indices._all.indexing.index_time_in_millis': 29251475, 'indices._all.indexing.index_total': 35189321, 'indices._all.search.fetch_time_in_millis': 6962, 'indices._all.search.fetch_total': 4084, 'indices._all.search.query_time_in_millis': 41211, 'indices._all.search.query_total': 4266, 'indices._all.store.throttle_time_in_millis': 0, 'indices.logstash-adm-syslog.indexes_in_group': 3, 'indices.logstash-adm-syslog.datastore.size': 21903813340, 'indices.logstash-adm-syslog.docs.count': 35856619, 'indices.logstash-adm-syslog.docs.deleted': 0, 'indices.logstash-adm-syslog.get.exists_time_in_millis': 0, 'indices.logstash-adm-syslog.get.exists_total': 0, 'indices.logstash-adm-syslog.get.missing_time_in_millis': 0, 'indices.logstash-adm-syslog.get.missing_total': 0, 'indices.logstash-adm-syslog.get.time_in_millis': 0, 'indices.logstash-adm-syslog.get.total': 0, 'indices.logstash-adm-syslog.indexing.delete_time_in_millis': 0, 'indices.logstash-adm-syslog.indexing.delete_total': 0, 'indices.logstash-adm-syslog.indexing.index_time_in_millis': 29251475, # NOQA 'indices.logstash-adm-syslog.indexing.index_total': 35189321, 'indices.logstash-adm-syslog.search.fetch_time_in_millis': 6962, 'indices.logstash-adm-syslog.search.fetch_total': 4084, 'indices.logstash-adm-syslog.search.query_time_in_millis': 41211, 'indices.logstash-adm-syslog.search.query_total': 4266, 'indices.logstash-adm-syslog.store.throttle_time_in_millis': 0, } self.setDocExample(collector=self.collector.__class__.__name__, metrics=metrics, defaultpath=self.collector.config['path']) self.assertPublishedMany(publish_mock, metrics) @patch.object(Collector, 'publish') def test_should_work_with_real_0_90_data(self, publish_mock): returns = [ self.getFixture('stats0.90'), self.getFixture('indices_stats'), ] urlopen_mock = patch('urllib2.urlopen', Mock( side_effect=lambda *args: returns.pop(0))) urlopen_mock.start() self.collector.collect() urlopen_mock.stop() # check how many fixtures were consumed self.assertEqual(urlopen_mock.new.call_count, 2) # test some 0.90 specific stats metrics = { 'cache.filter.size': 1700, 'cache.filter.evictions': 9, 'cache.id.size': 98, 'fielddata.size': 1448, 'fielddata.evictions': 12, } self.setDocExample(collector=self.collector.__class__.__name__, metrics=metrics, defaultpath=self.collector.config['path']) self.assertPublishedMany(publish_mock, metrics) @patch.object(Collector, 'publish') def test_should_fail_gracefully(self, publish_mock): urlopen_mock = patch('urllib2.urlopen', Mock( return_value=self.getFixture('stats_blank'))) urlopen_mock.start() self.collector.collect() urlopen_mock.stop() self.assertPublishedMany(publish_mock, {}) @patch.object(Collector, 'publish') def test_multi_instances_with_real_data(self, publish_mock): config = get_collector_config('ElasticSearchCollector', { 'instances': [ 'esprodata01@10.10.10.201:9200', 'esprodata02@10.10.10.202:9200', ]}) self.collector = ElasticSearchCollector(config, None) self.assertEqual(len(self.collector.instances), 2) returns = [ self.getFixture('stats'), self.getFixture('indices_stats'), self.getFixture('stats2'), self.getFixture('indices_stats2'), ] urlopen_mock = patch('urllib2.urlopen', Mock( side_effect=lambda *args: returns.pop(0))) urlopen_mock.start() self.collector.collect() urlopen_mock.stop() # check how many fixtures were consumed self.assertEqual(urlopen_mock.new.call_count, 4) metrics = { 'esprodata01.http.current': 1, 'esprodata02.http.current': 2, 'esprodata01.indices.docs.count': 11968062, 'esprodata02.indices.docs.count': 11968000, 'esprodata01.thread_pool.generic.threads': 1, 'esprodata02.thread_pool.generic.threads': 2, 'esprodata01.jvm.mem.pools.Par_Survivor_Space.max': 8716288, 'esprodata02.jvm.mem.pools.Par_Survivor_Space.max': 8710000, 'esprodata01.indices._all.docs.count': 4, 'esprodata02.indices._all.docs.count': 8, } self.assertPublishedMany(publish_mock, metrics) @patch.object(Collector, 'publish') def test_should_work_with_real_1_7_data(self, publish_mock): returns = [ self.getFixture('stats1.7'), self.getFixture('indices_stats'), ] urlopen_mock = patch('urllib2.urlopen', Mock( side_effect=lambda *args: returns.pop(0))) urlopen_mock.start() self.collector.collect() urlopen_mock.stop() # check how many fixtures were consumed self.assertEqual(urlopen_mock.new.call_count, 2) # test some 1.7 specific stats metrics = { 'segments.count': 7, 'segments.mem.size': 75726, 'segments.index_writer.mem.size': 0, 'segments.index_writer.mem.max_size': 469762048, 'segments.version_map.mem.size': 0, 'segments.fixed_bit_set.mem.size': 0 } self.setDocExample(collector=self.collector.__class__.__name__, metrics=metrics, defaultpath=self.collector.config['path']) self.assertPublishedMany(publish_mock, metrics) ########################################################################## if __name__ == "__main__": unittest.main()
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class PrivateEndpointConnectionsOperations: """PrivateEndpointConnectionsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.servicebus.v2021_01_01_preview.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name: str, namespace_name: str, **kwargs: Any ) -> AsyncIterable["_models.PrivateEndpointConnectionListResult"]: """Gets the available PrivateEndpointConnections within a namespace. :param resource_group_name: Name of the Resource group within the Azure subscription. :type resource_group_name: str :param namespace_name: The namespace name. :type namespace_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PrivateEndpointConnectionListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.servicebus.v2021_01_01_preview.models.PrivateEndpointConnectionListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnectionListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01-preview" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), 'namespaceName': self._serialize.url("namespace_name", namespace_name, 'str', max_length=50, min_length=6), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('PrivateEndpointConnectionListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ServiceBus/namespaces/{namespaceName}/privateEndpointConnections'} # type: ignore async def create_or_update( self, resource_group_name: str, namespace_name: str, private_endpoint_connection_name: str, parameters: "_models.PrivateEndpointConnection", **kwargs: Any ) -> "_models.PrivateEndpointConnection": """Creates or updates PrivateEndpointConnections of service namespace. :param resource_group_name: Name of the Resource group within the Azure subscription. :type resource_group_name: str :param namespace_name: The namespace name. :type namespace_name: str :param private_endpoint_connection_name: The PrivateEndpointConnection name. :type private_endpoint_connection_name: str :param parameters: Parameters supplied to update Status of PrivateEndPoint Connection to namespace resource. :type parameters: ~azure.mgmt.servicebus.v2021_01_01_preview.models.PrivateEndpointConnection :keyword callable cls: A custom type or function that will be passed the direct response :return: PrivateEndpointConnection, or the result of cls(response) :rtype: ~azure.mgmt.servicebus.v2021_01_01_preview.models.PrivateEndpointConnection :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_or_update.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), 'namespaceName': self._serialize.url("namespace_name", namespace_name, 'str', max_length=50, min_length=6), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'PrivateEndpointConnection') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ServiceBus/namespaces/{namespaceName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, namespace_name: str, private_endpoint_connection_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01-preview" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), 'namespaceName': self._serialize.url("namespace_name", namespace_name, 'str', max_length=50, min_length=6), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ServiceBus/namespaces/{namespaceName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore async def begin_delete( self, resource_group_name: str, namespace_name: str, private_endpoint_connection_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Deletes an existing Private Endpoint Connection. :param resource_group_name: Name of the Resource group within the Azure subscription. :type resource_group_name: str :param namespace_name: The namespace name. :type namespace_name: str :param private_endpoint_connection_name: The PrivateEndpointConnection name. :type private_endpoint_connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, namespace_name=namespace_name, private_endpoint_connection_name=private_endpoint_connection_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), 'namespaceName': self._serialize.url("namespace_name", namespace_name, 'str', max_length=50, min_length=6), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ServiceBus/namespaces/{namespaceName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore async def get( self, resource_group_name: str, namespace_name: str, private_endpoint_connection_name: str, **kwargs: Any ) -> "_models.PrivateEndpointConnection": """Gets a description for the specified Private Endpoint Connection. :param resource_group_name: Name of the Resource group within the Azure subscription. :type resource_group_name: str :param namespace_name: The namespace name. :type namespace_name: str :param private_endpoint_connection_name: The PrivateEndpointConnection name. :type private_endpoint_connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: PrivateEndpointConnection, or the result of cls(response) :rtype: ~azure.mgmt.servicebus.v2021_01_01_preview.models.PrivateEndpointConnection :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PrivateEndpointConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-01-01-preview" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1), 'namespaceName': self._serialize.url("namespace_name", namespace_name, 'str', max_length=50, min_length=6), 'privateEndpointConnectionName': self._serialize.url("private_endpoint_connection_name", private_endpoint_connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('PrivateEndpointConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ServiceBus/namespaces/{namespaceName}/privateEndpointConnections/{privateEndpointConnectionName}'} # type: ignore
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest from libcloud.utils.py3 import httplib from libcloud.dns.types import RecordType, ZoneDoesNotExistError from libcloud.dns.types import RecordDoesNotExistError from libcloud.dns.drivers.route53 import Route53DNSDriver from libcloud.test import MockHttp from libcloud.test.file_fixtures import DNSFileFixtures from libcloud.test.secrets import DNS_PARAMS_ROUTE53 class Route53Tests(unittest.TestCase): def setUp(self): Route53DNSDriver.connectionCls.conn_class = Route53MockHttp Route53MockHttp.type = None self.driver = Route53DNSDriver(*DNS_PARAMS_ROUTE53) def test_list_record_types(self): record_types = self.driver.list_record_types() self.assertEqual(len(record_types), 10) self.assertTrue(RecordType.A in record_types) def test_list_zones(self): zones = self.driver.list_zones() self.assertEqual(len(zones), 5) zone = zones[0] self.assertEqual(zone.id, '47234') self.assertEqual(zone.type, 'master') self.assertEqual(zone.domain, 't.com') def test_list_records(self): zone = self.driver.list_zones()[0] records = self.driver.list_records(zone=zone) self.assertEqual(len(records), 10) record = records[1] self.assertEqual(record.name, 'www') self.assertEqual(record.id, 'A:www') self.assertEqual(record.type, RecordType.A) self.assertEqual(record.data, '208.111.35.173') self.assertEqual(record.extra['ttl'], 86400) record = records[3] self.assertEqual(record.type, RecordType.MX) self.assertEqual(record.data, 'ASPMX.L.GOOGLE.COM.') self.assertEqual(record.extra['priority'], 1) record = records[4] self.assertEqual(record.type, RecordType.MX) self.assertEqual(record.data, 'ALT1.ASPMX.L.GOOGLE.COM.') self.assertEqual(record.extra['priority'], 5) record = records[8] self.assertEqual(record.type, RecordType.SRV) self.assertEqual(record.data, 'xmpp-server.example.com.') self.assertEqual(record.extra['priority'], 1) self.assertEqual(record.extra['weight'], 10) self.assertEqual(record.extra['port'], 5269) def test_get_zone(self): zone = self.driver.get_zone(zone_id='47234') self.assertEqual(zone.id, '47234') self.assertEqual(zone.type, 'master') self.assertEqual(zone.domain, 't.com') def test_get_record(self): record = self.driver.get_record(zone_id='47234', record_id='CNAME:wibble') self.assertEqual(record.name, 'wibble') self.assertEqual(record.type, RecordType.CNAME) self.assertEqual(record.data, 't.com') def test_list_records_zone_does_not_exist(self): zone = self.driver.list_zones()[0] Route53MockHttp.type = 'ZONE_DOES_NOT_EXIST' try: self.driver.list_records(zone=zone) except ZoneDoesNotExistError: e = sys.exc_info()[1] self.assertEqual(e.zone_id, zone.id) else: self.fail('Exception was not thrown') def test_get_zone_does_not_exist(self): Route53MockHttp.type = 'ZONE_DOES_NOT_EXIST' try: self.driver.get_zone(zone_id='47234') except ZoneDoesNotExistError: e = sys.exc_info()[1] self.assertEqual(e.zone_id, '47234') else: self.fail('Exception was not thrown') def test_get_record_zone_does_not_exist(self): Route53MockHttp.type = 'ZONE_DOES_NOT_EXIST' try: self.driver.get_record(zone_id='4444', record_id='28536') except ZoneDoesNotExistError: pass else: self.fail('Exception was not thrown') def test_get_record_record_does_not_exist(self): Route53MockHttp.type = 'RECORD_DOES_NOT_EXIST' rid = 'CNAME:doesnotexist.t.com' try: self.driver.get_record(zone_id='47234', record_id=rid) except RecordDoesNotExistError: pass else: self.fail('Exception was not thrown') def test_create_zone(self): zone = self.driver.create_zone(domain='t.com', type='master', ttl=None, extra=None) self.assertEqual(zone.id, '47234') self.assertEqual(zone.domain, 't.com') def test_create_record(self): zone = self.driver.list_zones()[0] record = self.driver.create_record( name='www', zone=zone, type=RecordType.A, data='127.0.0.1', extra={'ttl': 0} ) self.assertEqual(record.id, 'A:www') self.assertEqual(record.name, 'www') self.assertEqual(record.zone, zone) self.assertEqual(record.type, RecordType.A) self.assertEqual(record.data, '127.0.0.1') def test_create_record_zone_name(self): zone = self.driver.list_zones()[0] record = self.driver.create_record( name='', zone=zone, type=RecordType.A, data='127.0.0.1', extra={'ttl': 0} ) self.assertEqual(record.id, 'A:') self.assertEqual(record.name, '') self.assertEqual(record.zone, zone) self.assertEqual(record.type, RecordType.A) self.assertEqual(record.data, '127.0.0.1') def test_create_multi_value_record(self): zone = self.driver.list_zones()[0] records = self.driver.ex_create_multi_value_record( name='balancer', zone=zone, type=RecordType.A, data='127.0.0.1\n127.0.0.2', extra={'ttl': 0} ) self.assertEqual(len(records), 2) self.assertEqual(records[0].id, 'A:balancer') self.assertEqual(records[1].id, 'A:balancer') self.assertEqual(records[0].name, 'balancer') self.assertEqual(records[1].name, 'balancer') self.assertEqual(records[0].zone, zone) self.assertEqual(records[1].zone, zone) self.assertEqual(records[0].type, RecordType.A) self.assertEqual(records[1].type, RecordType.A) self.assertEqual(records[0].data, '127.0.0.1') self.assertEqual(records[1].data, '127.0.0.2') def test_update_record(self): zone = self.driver.list_zones()[0] record = self.driver.list_records(zone=zone)[1] params = { 'record': record, 'name': 'www', 'type': RecordType.A, 'data': '::1', 'extra': {'ttle': 0}} updated_record = self.driver.update_record(**params) self.assertEqual(record.data, '208.111.35.173') self.assertEqual(updated_record.id, 'A:www') self.assertEqual(updated_record.name, 'www') self.assertEqual(updated_record.zone, record.zone) self.assertEqual(updated_record.type, RecordType.A) self.assertEqual(updated_record.data, '::1') def test_delete_zone(self): zone = self.driver.list_zones()[0] status = self.driver.delete_zone(zone=zone) self.assertTrue(status) def test_delete_zone_does_not_exist(self): zone = self.driver.list_zones()[0] Route53MockHttp.type = 'ZONE_DOES_NOT_EXIST' try: self.driver.delete_zone(zone=zone) except ZoneDoesNotExistError: e = sys.exc_info()[1] self.assertEqual(e.zone_id, zone.id) else: self.fail('Exception was not thrown') def test_delete_record(self): zone = self.driver.list_zones()[0] record = self.driver.list_records(zone=zone)[0] status = self.driver.delete_record(record=record) self.assertTrue(status) def test_delete_record_does_not_exist(self): zone = self.driver.list_zones()[0] record = self.driver.list_records(zone=zone)[0] Route53MockHttp.type = 'RECORD_DOES_NOT_EXIST' try: self.driver.delete_record(record=record) except RecordDoesNotExistError: e = sys.exc_info()[1] self.assertEqual(e.record_id, record.id) else: self.fail('Exception was not thrown') class Route53MockHttp(MockHttp): fixtures = DNSFileFixtures('route53') def _2012_02_29_hostedzone_47234(self, method, url, body, headers): body = self.fixtures.load('get_zone.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _2012_02_29_hostedzone(self, method, url, body, headers): # print method, url, body, headers if method == "POST": body = self.fixtures.load("create_zone.xml") return (httplib.CREATED, body, {}, httplib.responses[httplib.OK]) body = self.fixtures.load('list_zones.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _2012_02_29_hostedzone_47234_rrset(self, method, url, body, headers): body = self.fixtures.load('list_records.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _2012_02_29_hostedzone_47234_rrset_ZONE_DOES_NOT_EXIST(self, method, url, body, headers): body = self.fixtures.load('zone_does_not_exist.xml') return (httplib.NOT_FOUND, body, {}, httplib.responses[httplib.NOT_FOUND]) def _2012_02_29_hostedzone_4444_ZONE_DOES_NOT_EXIST(self, method, url, body, headers): body = self.fixtures.load('zone_does_not_exist.xml') return (httplib.NOT_FOUND, body, {}, httplib.responses[httplib.NOT_FOUND]) def _2012_02_29_hostedzone_47234_ZONE_DOES_NOT_EXIST(self, method, url, body, headers): body = self.fixtures.load('zone_does_not_exist.xml') return (httplib.NOT_FOUND, body, {}, httplib.responses[httplib.NOT_FOUND]) def _2012_02_29_hostedzone_47234_rrset_RECORD_DOES_NOT_EXIST(self, method, url, body, headers): if method == "POST": body = self.fixtures.load('invalid_change_batch.xml') return (httplib.BAD_REQUEST, body, {}, httplib.responses[httplib.BAD_REQUEST]) body = self.fixtures.load('record_does_not_exist.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _2012_02_29_hostedzone_47234_RECORD_DOES_NOT_EXIST(self, method, url, body, headers): body = self.fixtures.load('get_zone.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) if __name__ == '__main__': sys.exit(unittest.main())
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions and classes related to optimization (weight updates).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import tensorflow.compat.v1 as tf from mobilebert import lamb_optimizer def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu, optimizer="adamw", weight_decay_rate=0.01, end_lr_rate=0.0001, use_layer_wise_warmup=False, total_warmup_phases=0): """Creates an optimizer training op.""" global_step = tf.train.get_or_create_global_step() learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32) # Implements linear decay of the learning rate. learning_rate = tf.train.polynomial_decay( learning_rate, global_step, num_train_steps, end_learning_rate=learning_rate * end_lr_rate, power=1.0, cycle=False) # Implements linear warmup. I.e., if global_step < num_warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. if num_warmup_steps: global_steps_int = tf.cast(global_step, tf.int32) warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32) global_steps_float = tf.cast(global_steps_int, tf.float32) warmup_steps_float = tf.cast(warmup_steps_int, tf.float32) warmup_percent_done = global_steps_float / warmup_steps_float warmup_learning_rate = init_lr * warmup_percent_done is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32) learning_rate = ( (1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate) # It is recommended that you use this optimizer for fine tuning, since this # is how the model was trained (note that the Adam m/v variables are NOT # loaded from init_checkpoint.) if optimizer == "adamw": optimizer = AdamWeightDecayOptimizer( learning_rate=learning_rate, weight_decay_rate=weight_decay_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=[ "teacher", "LayerNorm", "layer_norm", "bias", "FakeLayerNorm"], use_layer_wise_warmup=use_layer_wise_warmup, total_warmup_phases=total_warmup_phases, num_train_steps=num_train_steps) elif optimizer == "lamb": optimizer = lamb_optimizer.LAMBOptimizer( learning_rate=learning_rate, weight_decay_rate=weight_decay_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=[ "teacher", "LayerNorm", "layer_norm", "bias", "FakeLayerNorm"], use_layer_wise_warmup=use_layer_wise_warmup, total_warmup_phases=total_warmup_phases, num_train_steps=num_train_steps) else: raise ValueError("Not supported optimizer: ", optimizer) if use_tpu: optimizer = tf.tpu.CrossShardOptimizer(optimizer) tvars = tf.trainable_variables() grads = tf.gradients(loss, tvars) tvars = [var for var in tf.trainable_variables() if not var.name.startswith("teacher")] grads = tf.gradients(loss, tvars, colocate_gradients_with_ops=True) # This is how the model was pre-trained. (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0) ntvars = [var for var in tf.trainable_variables() if var.name.startswith("teacher")] ngrads = [None for var in ntvars] train_op = optimizer.apply_gradients( zip(grads + ngrads, tvars + ntvars), global_step=global_step) # Normally the global step update is done inside of `apply_gradients`. # However, `AdamWeightDecayOptimizer` doesn't do this. But if you use # a different optimizer, you should probably take this line out. new_global_step = global_step + 1 train_op = tf.group(train_op, [global_step.assign(new_global_step)]) return train_op class AdamWeightDecayOptimizer(tf.train.Optimizer): """A basic Adam optimizer that includes "correct" L2 weight decay.""" def __init__(self, learning_rate, weight_decay_rate=0.0, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=None, name="AdamWeightDecayOptimizer", use_layer_wise_warmup=False, total_warmup_phases=0, num_train_steps=0): """Constructs a AdamWeightDecayOptimizer.""" super(AdamWeightDecayOptimizer, self).__init__(False, name) del use_layer_wise_warmup del total_warmup_phases del num_train_steps self.learning_rate = learning_rate self.weight_decay_rate = weight_decay_rate self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.exclude_from_weight_decay = exclude_from_weight_decay def apply_gradients(self, grads_and_vars, global_step=None, name=None): """See base class.""" assignments = [] for (grad, param) in grads_and_vars: if grad is None or param is None: continue param_name = self._get_variable_name(param.name) m = tf.get_variable( name=param_name + "/adam_m", shape=param.shape.as_list(), dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) v = tf.get_variable( name=param_name + "/adam_v", shape=param.shape.as_list(), dtype=tf.float32, trainable=False, initializer=tf.zeros_initializer()) # Standard Adam update. next_m = ( tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad)) next_v = ( tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2, tf.square(grad))) update = next_m / (tf.sqrt(next_v) + self.epsilon) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want ot decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if self._do_use_weight_decay(param_name): update += self.weight_decay_rate * param update_with_lr = self.learning_rate * update next_param = param - update_with_lr assignments.extend( [param.assign(next_param), m.assign(next_m), v.assign(next_v)]) return tf.group(*assignments, name=name) def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if not self.weight_decay_rate: return False if self.exclude_from_weight_decay: for r in self.exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True def _get_variable_name(self, param_name): """Get the variable name from the tensor name.""" m = re.match("^(.*):\\d+$", param_name) if m is not None: param_name = m.group(1) return param_name
#!/usr/bin/env python from __future__ import unicode_literals import datetime import json import unittest import webapp2 import main from models.score import ScoreModel from lib.constants import DATA_BLOB as d from lib.constants import HTTP_CODE as http_code from lib.constants import NFL as nfl from lib.constants import SCOREBOARD as sb from google.appengine.api import memcache from google.appengine.ext import testbed from test_lib.mock_service import UrlFetchMock class TestApiScores(unittest.TestCase): def setUp(self): self.testbed = testbed.Testbed() self.testbed.activate() self.testbed.init_datastore_v3_stub() self.testbed.init_memcache_stub() self.testbed.init_urlfetch_stub() # Create the mocked service & inject it into the testbed self.fetch_mock = UrlFetchMock() self.testbed._register_stub(testbed.URLFETCH_SERVICE_NAME, self.fetch_mock) self.app = main.get_app() # Define the endpoint for all our requests self.endpoint = "/scores" # Define the base request self.request = webapp2.Request.blank(self.endpoint) # Timestamp in seconds self.timestamp = int(datetime.datetime.now().strftime('%s')) # An arbitrary and unrealistic week number self.week = (self.timestamp % 1000) + 500 # Content for GET requests self.content_str = ( '{"ss":[["Sat","4:30","final overtime",0,"BAL",' '"38","DEN","35",0,0,"55829",0,"REG11","2012"' ']]}').encode("UTF-8") # Data for GET requests self.data = { "content": self.content_str, "final_url": (sb.URL_REG).encode("UTF-8"), "status_code": 200 } self.fetch_mock.set_return_values(**self.data) def tearDown(self): self.testbed.deactivate() def test_get_basic(self): """ Call GET without any arguments to test for default behavior """ response = self.request.get_response(self.app) self.assertEqual( response.status_int, http_code.OK, "Status code 200 OK") self.assertEqual( response.headers['Content-Type'], "application/json", "Content-Type is \"application/json\"") def test_get_detect_week_parameter(self): """ Call GET with the week parameter to specify the week to get. The Datastore will be prepopulated with data to validate against. """ self.request.query_string = "week=" + str(self.week) self.request = webapp2.Request.blank( self.endpoint + "?week=" + str(self.week) ) response = None result = [] self.assertTrue( ScoreModel( week = self.week, game_id = self.timestamp ).put(), "Saving to datastore") self.assertEqual( len(ScoreModel().all().fetch(2)), 1, "Datastore has exactly 1 entry") response = self.request.get_response(self.app) self.assertEqual( response.status_int, http_code.OK, "Status code 200 OK") self.assertNotEqual( len(response.body), 0, "Response came back non-empty") result = json.loads(response.body) self.assertIsNotNone( result, "JSON loaded properly") self.assertEqual( len(result), 1, "Response came back with exactly 1 entry") self.assertEqual( result[0]['week'], self.week, "Season week number is correct") self.assertEqual( result[0][d.NFL_GAME_ID], self.timestamp, "NFL game ID matches") @unittest.skip("Defaults are dynamic. Need to learn how to test dynamic elements") def test_get_catch_non_integer_for_week_param(self): """ Handle the case where the parameter for 'week' isn't an expected integer. We expect behavior to default the week number and continue as normal. """ default_week = 0 self.request = webapp2.Request.blank(self.endpoint + "?week=" + "MaunaLoa") response = None result = [] self.assertTrue( ScoreModel( week = default_week, game_id = self.timestamp ).put(), "Saving to datastore") self.assertEqual( len(ScoreModel().all().fetch(2)), 1, "Datastore has exactly 1 entry") response = self.request.get_response(self.app) self.assertEqual( response.status_int, http_code.OK, "Status code 200 OK") self.assertNotEqual( len(response.body), 0, "Response came back non-empty") result = json.loads(response.body) self.assertEqual( len(result), 1, "Response came back with exactly 1 entry") # This assert needs to be updated self.assertEqual( result[0]['week'], default_week, "Season week number is correct") self.assertEqual( result[0][d.NFL_GAME_ID], self.timestamp, "NFL game ID matches") def test_post_basic(self): """ Call POST with no parameters to test for default behavior """ self.request.method = "POST" response = self.request.get_response(self.app) self.assertEqual( response.status_int, http_code.CREATED, "Status code 201 Created") self.assertEqual( response.headers['Content-Type'], "application/json", "Content-Type is \"application/json\"") def test_post_single_game(self): """ Call POST with enough parameters for a single game to test for result. Need to validate the datastore & memcache layers """ self.request.method = "POST" self.request.POST[d.GAME_WEEK] = self.week self.request.POST[d.NFL_GAME_ID] = self.timestamp response = None query = None tag = "SCORES_S" + unicode(nfl.YEAR) + "W" + unicode(self.week) query = ScoreModel().all().fetch(2) self.assertEqual( len(query), 0, "Datastore is empty") response = self.request.get_response(self.app) self.assertEqual( response.status_int, http_code.CREATED, "Status code 201 Created") # Validate datastore query = ScoreModel().all().fetch(2) self.assertEqual( len(query), 1, "Datastore has exactly 1 entry") self.assertEqual( query[0].week, self.week, "Season week number is correct") self.assertEqual( query[0].game_id, self.timestamp, "NFL game ID matches") # Validate memcache query = memcache.get(tag) self.assertIsNotNone( query, "Memcache hit") query = json.loads(query) self.assertEqual( query['data'][0]['week'], self.week, "Season week number is correct") self.assertEqual( query['data'][0][d.NFL_GAME_ID], self.timestamp, "NFL game ID matches") def test_post_with_incorrect_parameter(self): """ Call POST with an incorrect parameter. """ self.request.method = "POST" self.request.POST[d.GAME_WEEK] = self.week self.request.POST[d.NFL_GAME_ID] = self.timestamp self.request.POST["gameid"] = self.timestamp + 1 response = None query = None tag = "SCORES_S" + unicode(nfl.YEAR) + "W" + unicode(self.week) query = ScoreModel().all().fetch(2) self.assertEqual( len(query), 0, "Datastore is empty") response = self.request.get_response(self.app) self.assertEqual( response.status_int, http_code.CREATED, "Status code 201 Created") # Validate datastore query = ScoreModel().all().fetch(2) self.assertEqual( len(query), 1, "Datastore has exactly 1 entry") self.assertEqual( query[0].week, self.week, "Season week number is correct") self.assertEqual( query[0].game_id, self.timestamp, "NFL game ID matches") # Validate memcache query = memcache.get(tag) self.assertIsNotNone( query, "Memcache hit") query = json.loads(query) self.assertEqual( query['data'][0]['week'], self.week, "Season week number is correct") self.assertFalse( "gameid" in query['data'][0], "Fake NFL game ID is missing") def test_all_data_propogates_from_source_to_mecache(self): """ Handle the case where the score source doesn't have data but the datastore does (i.e., spread data), and have it propogate to memcache. """ self.request = webapp2.Request.blank(self.endpoint) response = None result = [] # 55829 is from test content_str expected_game_id = 55829 # 11 is from test content_str, 200 is regular season prefix expected_week = 211 additional_data = { "week": expected_week, "game_id": expected_game_id, "spread_odds": -7.5, "spread_margin": 48.5 } self.assertTrue( ScoreModel(**additional_data).put(), "Saving to datastore") self.assertEqual( len(ScoreModel().all().fetch(2)), 1, "Datastore has exactly 1 entry") response = self.request.get_response(self.app) self.assertEqual( response.status_int, http_code.OK, "Status code 200 OK") self.assertNotEqual( len(response.body), 0, "Response came back non-empty") result = json.loads(response.body) self.assertEqual( len(result), 1, "Response came back with exactly 1 entry") for key in additional_data: target = result[0] self.assertTrue( key in target, 'Data has key for ' + key) self.assertEqual( additional_data[key], target[key], 'Data for key "' + key + '" is correct') def test_options_basic(self): origin = 'http://spread.hellaballer.com' request_method = 'POST' request_header = 'Content-Type' self.request.method = "OPTIONS" self.request.headers['Origin'] = origin self.request.headers['Access-Control-Request-Method'] = request_method self.request.headers['Access-Control-Request-Headers'] = request_header response = None response = self.request.get_response(self.app) self.assertEqual( origin, response.headers['Access-Control-Allow-Origin']) self.assertTrue( request_method in response.headers['Access-Control-Allow-Methods']) self.assertEqual( request_header, response.headers['Access-Control-Allow-Headers']) self.assertEqual( 'application/json; charset=utf-8', response.headers['Content-Type']) def test_week_id_slug(self): self.request = webapp2.Request.blank( self.endpoint + '/' + str(self.week) ) response = None result = [] self.assertTrue( ScoreModel( week = self.week, game_id = self.timestamp ).put(), "Saving to datastore") self.assertEqual( len(ScoreModel().all().fetch(2)), 1, "Datastore has exactly 1 entry") response = self.request.get_response(self.app) self.assertEqual( response.status_int, http_code.OK, "Status code 200 OK") self.assertNotEqual( len(response.body), 0, "Response came back non-empty") result = json.loads(response.body) self.assertIsNotNone( result, "JSON loaded properly") self.assertEqual( len(result), 1, "Response came back with exactly 1 entry") self.assertEqual( result[0]['week'], self.week, "Season week number is correct") self.assertEqual( result[0][d.NFL_GAME_ID], self.timestamp, "NFL game ID matches")
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mox from neutronclient.common import exceptions as qe from neutronclient.neutron import v2_0 as neutronV20 from neutronclient.v2_0 import client as neutronclient import six from heat.common import exception from heat.common import template_format from heat.engine.cfn import functions as cfn_funcs from heat.engine.clients.os import neutron from heat.engine.resources.openstack.neutron import subnet from heat.engine import rsrc_defn from heat.engine import scheduler from heat.tests import common from heat.tests import utils neutron_template = ''' heat_template_version: 2015-04-30 description: Template to test subnet Neutron resource resources: net: type: OS::Neutron::Net properties: name: the_net tenant_id: c1210485b2424d48804aad5d39c61b8f shared: true dhcp_agent_ids: - 28c25a04-3f73-45a7-a2b4-59e183943ddc sub_net: type: OS::Neutron::Subnet properties: network: { get_resource : net} tenant_id: c1210485b2424d48804aad5d39c61b8f ip_version: 4 cidr: 10.0.3.0/24 allocation_pools: - start: 10.0.3.20 end: 10.0.3.150 host_routes: - destination: 10.0.4.0/24 nexthop: 10.0.3.20 dns_nameservers: - 8.8.8.8 port: type: OS::Neutron::Port properties: device_id: d6b4d3a5-c700-476f-b609-1493dd9dadc0 name: port1 network: { get_resource : net} fixed_ips: - subnet: { get_resource : sub_net } ip_address: 10.0.3.21 port2: type: OS::Neutron::Port properties: name: port2 network: { get_resource : net} router: type: OS::Neutron::Router properties: l3_agent_id: 792ff887-6c85-4a56-b518-23f24fa65581 router_interface: type: OS::Neutron::RouterInterface properties: router_id: { get_resource : router } subnet: { get_resource : sub_net } gateway: type: OS::Neutron::RouterGateway properties: router_id: { get_resource : router } network: { get_resource : net} ''' neutron_template_deprecated = neutron_template.replace( 'neutron', 'neutron_id').replace('subnet', 'subnet_id') class NeutronSubnetTest(common.HeatTestCase): def setUp(self): super(NeutronSubnetTest, self).setUp() self.m.StubOutWithMock(neutronclient.Client, 'create_subnet') self.m.StubOutWithMock(neutronclient.Client, 'delete_subnet') self.m.StubOutWithMock(neutronclient.Client, 'show_subnet') self.m.StubOutWithMock(neutronclient.Client, 'update_subnet') self.m.StubOutWithMock(neutronV20, 'find_resourceid_by_name_or_id') self.patchobject(neutron.NeutronClientPlugin, 'has_extension', return_value=True) def create_subnet(self, t, stack, resource_name): resource_defns = stack.t.resource_definitions(stack) rsrc = subnet.Subnet('test_subnet', resource_defns[resource_name], stack) return rsrc def test_subnet(self): update_props = {'subnet': { 'dns_nameservers': ['8.8.8.8', '192.168.1.254'], 'name': 'mysubnet', 'enable_dhcp': True, 'host_routes': [{'destination': '192.168.1.0/24', 'nexthop': '194.168.1.2'}], "allocation_pools": [ {"start": "10.0.3.20", "end": "10.0.3.100"}, {"start": "10.0.3.110", "end": "10.0.3.200"}]}} t = self._test_subnet(u_props=update_props) neutronV20.find_resourceid_by_name_or_id( mox.IsA(neutronclient.Client), 'network', 'None', cmd_resource=None, ).AndReturn('None') neutronV20.find_resourceid_by_name_or_id( mox.IsA(neutronclient.Client), 'router', 'None', cmd_resource=None, ).AndReturn('None') stack = utils.parse_stack(t) rsrc = self.create_subnet(t, stack, 'sub_net') self.m.ReplayAll() scheduler.TaskRunner(rsrc.create)() self.assertEqual((rsrc.CREATE, rsrc.COMPLETE), rsrc.state) rsrc.validate() ref_id = rsrc.FnGetRefId() self.assertEqual('91e47a57-7508-46fe-afc9-fc454e8580e1', ref_id) self.assertIsNone(rsrc.FnGetAtt('network_id')) self.assertEqual('fc68ea2c-b60b-4b4f-bd82-94ec81110766', rsrc.FnGetAtt('network_id')) self.assertEqual('8.8.8.8', rsrc.FnGetAtt('dns_nameservers')[0]) # assert the dependency (implicit or explicit) between the ports # and the subnet self.assertIn(stack['port'], stack.dependencies[stack['sub_net']]) self.assertIn(stack['port2'], stack.dependencies[stack['sub_net']]) props = { "name": 'mysubnet', "network_id": cfn_funcs.ResourceRef(stack, "get_resource", "net"), "tenant_id": "c1210485b2424d48804aad5d39c61b8f", "ip_version": 4, "cidr": "10.0.3.0/24", "allocation_pools": [ {"start": "10.0.3.20", "end": "10.0.3.100"}, {"start": "10.0.3.110", "end": "10.0.3.200"}], "dns_nameservers": ["8.8.8.8", "192.168.1.254"], "host_routes": [ {"destination": "192.168.1.0/24", "nexthop": "194.168.1.2"} ] } update_snippet = rsrc_defn.ResourceDefinition(rsrc.name, rsrc.type(), props) # rsrc.handle_update(update_snippet, {}, {}) scheduler.TaskRunner(rsrc.update, update_snippet)() self.assertIsNone(scheduler.TaskRunner(rsrc.delete)()) rsrc.state_set(rsrc.CREATE, rsrc.COMPLETE, 'to delete again') self.assertIsNone(scheduler.TaskRunner(rsrc.delete)()) self.m.VerifyAll() def test_subnet_with_subnetpool(self): subnet_dict = { "subnet": { "allocation_pools": [ {"start": "10.0.3.20", "end": "10.0.3.150"}], "host_routes": [ {"destination": "10.0.4.0/24", "nexthop": "10.0.3.20"}], "subnetpool_id": "None", "prefixlen": 24, "dns_nameservers": ["8.8.8.8"], "enable_dhcp": True, "gateway_ip": "10.0.3.1", "id": "91e47a57-7508-46fe-afc9-fc454e8580e1", "ip_version": 4, "name": "name", "network_id": "None", "tenant_id": "c1210485b2424d48804aad5d39c61b8f" } } neutronV20.find_resourceid_by_name_or_id( mox.IsA(neutronclient.Client), 'subnetpool', 'None', cmd_resource=None, ).AndReturn('None') neutronV20.find_resourceid_by_name_or_id( mox.IsA(neutronclient.Client), 'network', 'None', cmd_resource=None, ).AndReturn('None') neutronV20.find_resourceid_by_name_or_id( mox.IsA(neutronclient.Client), 'subnetpool', 'None', cmd_resource=None, ).AndReturn('None') neutronclient.Client.create_subnet({ 'subnet': { 'network_id': u'None', 'name': 'mysubnet', 'subnetpool_id': 'None', 'prefixlen': 24, 'dns_nameservers': [u'8.8.8.8'], 'allocation_pools': [ {'start': u'10.0.3.20', 'end': u'10.0.3.150'}], 'host_routes': [ {'destination': u'10.0.4.0/24', 'nexthop': u'10.0.3.20'}], 'ip_version': 4, 'enable_dhcp': True, 'tenant_id': 'c1210485b2424d48804aad5d39c61b8f' } }).AndReturn(subnet_dict) neutronclient.Client.show_subnet( '91e47a57-7508-46fe-afc9-fc454e8580e1').AndReturn(subnet_dict) neutronclient.Client.delete_subnet( '91e47a57-7508-46fe-afc9-fc454e8580e1' ).AndReturn(None) neutronclient.Client.show_subnet( '91e47a57-7508-46fe-afc9-fc454e8580e1' ).AndRaise(qe.NeutronClientException(status_code=404)) self.m.ReplayAll() t = template_format.parse(neutron_template) del t['resources']['sub_net']['properties']['cidr'] t['resources']['sub_net']['properties'][ 'subnetpool'] = 'None' t['resources']['sub_net']['properties'][ 'prefixlen'] = 24 t['resources']['sub_net']['properties'][ 'name'] = 'mysubnet' stack = utils.parse_stack(t) rsrc = self.create_subnet(t, stack, 'sub_net') scheduler.TaskRunner(rsrc.create)() self.assertEqual((rsrc.CREATE, rsrc.COMPLETE), rsrc.state) ref_id = rsrc.FnGetRefId() self.assertEqual('91e47a57-7508-46fe-afc9-fc454e8580e1', ref_id) scheduler.TaskRunner(rsrc.delete)() self.m.VerifyAll() def test_subnet_deprecated(self): t = self._test_subnet(resolve_neutron=False) stack = utils.parse_stack(t) rsrc = self.create_subnet(t, stack, 'sub_net') neutronV20.find_resourceid_by_name_or_id( mox.IsA(neutronclient.Client), 'network', 'None', cmd_resource=None, ).AndReturn('None') neutronV20.find_resourceid_by_name_or_id( mox.IsA(neutronclient.Client), 'router', 'None', cmd_resource=None, ).AndReturn('None') self.m.ReplayAll() scheduler.TaskRunner(rsrc.create)() self.assertEqual((rsrc.CREATE, rsrc.COMPLETE), rsrc.state) rsrc.validate() ref_id = rsrc.FnGetRefId() self.assertEqual('91e47a57-7508-46fe-afc9-fc454e8580e1', ref_id) self.assertIsNone(rsrc.FnGetAtt('network_id')) self.assertEqual('fc68ea2c-b60b-4b4f-bd82-94ec81110766', rsrc.FnGetAtt('network_id')) self.assertEqual('8.8.8.8', rsrc.FnGetAtt('dns_nameservers')[0]) # assert the dependency (implicit or explicit) between the ports # and the subnet self.assertIn(stack['port'], stack.dependencies[stack['sub_net']]) self.assertIn(stack['port2'], stack.dependencies[stack['sub_net']]) self.assertIsNone(scheduler.TaskRunner(rsrc.delete)()) rsrc.state_set(rsrc.CREATE, rsrc.COMPLETE, 'to delete again') self.assertIsNone(scheduler.TaskRunner(rsrc.delete)()) self.m.VerifyAll() def _test_subnet(self, resolve_neutron=True, u_props=None): default_update_props = {'subnet': { 'dns_nameservers': ['8.8.8.8', '192.168.1.254'], 'name': 'mysubnet', 'enable_dhcp': True, 'host_routes': [{'destination': '192.168.1.0/24', 'nexthop': '194.168.1.2'}]}} update_props = u_props if u_props else default_update_props neutronclient.Client.create_subnet({ 'subnet': { 'name': utils.PhysName('test_stack', 'test_subnet'), 'network_id': u'None', 'dns_nameservers': [u'8.8.8.8'], 'allocation_pools': [ {'start': u'10.0.3.20', 'end': u'10.0.3.150'}], 'host_routes': [ {'destination': u'10.0.4.0/24', 'nexthop': u'10.0.3.20'}], 'ip_version': 4, 'cidr': u'10.0.3.0/24', 'tenant_id': 'c1210485b2424d48804aad5d39c61b8f', 'enable_dhcp': True } }).AndReturn({ "subnet": { "allocation_pools": [ {"start": "10.0.3.20", "end": "10.0.3.150"}], "cidr": "10.0.3.0/24", "dns_nameservers": ["8.8.8.8"], "enable_dhcp": True, "gateway_ip": "10.0.3.1", "host_routes": [ {"destination": "10.0.4.0/24", "nexthop": "10.0.3.20"}], "id": "91e47a57-7508-46fe-afc9-fc454e8580e1", "ip_version": 4, "name": "name", "network_id": "fc68ea2c-b60b-4b4f-bd82-94ec81110766", "tenant_id": "c1210485b2424d48804aad5d39c61b8f" } }) neutronclient.Client.show_subnet( '91e47a57-7508-46fe-afc9-fc454e8580e1').AndRaise( qe.NeutronClientException(status_code=404)) sn = { "subnet": { "name": "name", "network_id": "fc68ea2c-b60b-4b4f-bd82-94ec81110766", "tenant_id": "c1210485b2424d48804aad5d39c61b8f", "allocation_pools": [ {"start": "10.0.3.20", "end": "10.0.3.150"}], "gateway_ip": "10.0.3.1", 'host_routes': [ {'destination': u'10.0.4.0/24', 'nexthop': u'10.0.3.20'}], "ip_version": 4, "cidr": "10.0.3.0/24", "dns_nameservers": ["8.8.8.8"], "id": "91e47a57-7508-46fe-afc9-fc454e8580e1", "enable_dhcp": True, } } neutronclient.Client.show_subnet( '91e47a57-7508-46fe-afc9-fc454e8580e1').AndReturn(sn) neutronclient.Client.show_subnet( '91e47a57-7508-46fe-afc9-fc454e8580e1').AndReturn(sn) neutronclient.Client.show_subnet( '91e47a57-7508-46fe-afc9-fc454e8580e1').AndReturn(sn) # Delete script neutronclient.Client.delete_subnet( '91e47a57-7508-46fe-afc9-fc454e8580e1' ).AndReturn(None) neutronclient.Client.show_subnet( '91e47a57-7508-46fe-afc9-fc454e8580e1' ).AndRaise(qe.NeutronClientException(status_code=404)) neutronclient.Client.delete_subnet( '91e47a57-7508-46fe-afc9-fc454e8580e1' ).AndRaise(qe.NeutronClientException(status_code=404)) if resolve_neutron: t = template_format.parse(neutron_template) # Update script neutronclient.Client.update_subnet( '91e47a57-7508-46fe-afc9-fc454e8580e1', update_props) else: t = template_format.parse(neutron_template_deprecated) return t def test_subnet_disable_dhcp(self): neutronV20.find_resourceid_by_name_or_id( mox.IsA(neutronclient.Client), 'network', 'None', cmd_resource=None, ).AndReturn('None') neutronclient.Client.create_subnet({ 'subnet': { 'name': utils.PhysName('test_stack', 'test_subnet'), 'network_id': u'None', 'dns_nameservers': [u'8.8.8.8'], 'allocation_pools': [ {'start': u'10.0.3.20', 'end': u'10.0.3.150'}], 'host_routes': [ {'destination': u'10.0.4.0/24', 'nexthop': u'10.0.3.20'}], 'ip_version': 4, 'enable_dhcp': False, 'cidr': u'10.0.3.0/24', 'tenant_id': 'c1210485b2424d48804aad5d39c61b8f' } }).AndReturn({ "subnet": { "allocation_pools": [ {"start": "10.0.3.20", "end": "10.0.3.150"}], "host_routes": [ {"destination": "10.0.4.0/24", "nexthop": "10.0.3.20"}], "cidr": "10.0.3.0/24", "dns_nameservers": ["8.8.8.8"], "enable_dhcp": False, "gateway_ip": "10.0.3.1", "id": "91e47a57-7508-46fe-afc9-fc454e8580e1", "ip_version": 4, "name": "name", "network_id": "fc68ea2c-b60b-4b4f-bd82-94ec81110766", "tenant_id": "c1210485b2424d48804aad5d39c61b8f" } }) neutronclient.Client.show_subnet( '91e47a57-7508-46fe-afc9-fc454e8580e1').AndReturn({ "subnet": { "name": "name", "network_id": "fc68ea2c-b60b-4b4f-bd82-94ec81110766", "tenant_id": "c1210485b2424d48804aad5d39c61b8f", "allocation_pools": [ {"start": "10.0.3.20", "end": "10.0.3.150"}], "host_routes": [ {"destination": "10.0.4.0/24", "nexthop": "10.0.3.20"}], "gateway_ip": "10.0.3.1", "ip_version": 4, "cidr": "10.0.3.0/24", "dns_nameservers": ["8.8.8.8"], "id": "91e47a57-7508-46fe-afc9-fc454e8580e1", "enable_dhcp": False, } }) neutronclient.Client.delete_subnet( '91e47a57-7508-46fe-afc9-fc454e8580e1' ).AndReturn(None) neutronclient.Client.show_subnet( '91e47a57-7508-46fe-afc9-fc454e8580e1' ).AndRaise(qe.NeutronClientException(status_code=404)) self.m.ReplayAll() t = template_format.parse(neutron_template) t['resources']['sub_net']['properties']['enable_dhcp'] = 'False' stack = utils.parse_stack(t) rsrc = self.create_subnet(t, stack, 'sub_net') self.m.ReplayAll() scheduler.TaskRunner(rsrc.create)() self.assertEqual((rsrc.CREATE, rsrc.COMPLETE), rsrc.state) rsrc.validate() ref_id = rsrc.FnGetRefId() self.assertEqual('91e47a57-7508-46fe-afc9-fc454e8580e1', ref_id) self.assertIs(False, rsrc.FnGetAtt('enable_dhcp')) scheduler.TaskRunner(rsrc.delete)() self.m.VerifyAll() def test_null_gateway_ip(self): p = {} subnet.Subnet._null_gateway_ip(p) self.assertEqual({}, p) p = {'foo': 'bar'} subnet.Subnet._null_gateway_ip(p) self.assertEqual({'foo': 'bar'}, p) p = { 'foo': 'bar', 'gateway_ip': '198.51.100.0' } subnet.Subnet._null_gateway_ip(p) self.assertEqual({ 'foo': 'bar', 'gateway_ip': '198.51.100.0' }, p) p = { 'foo': 'bar', 'gateway_ip': '' } subnet.Subnet._null_gateway_ip(p) self.assertEqual({ 'foo': 'bar', 'gateway_ip': None }, p) # This should not happen as prepare_properties # strips out None values, but testing anyway p = { 'foo': 'bar', 'gateway_ip': None } subnet.Subnet._null_gateway_ip(p) self.assertEqual({ 'foo': 'bar', 'gateway_ip': None }, p) def test_ipv6_subnet(self): neutronV20.find_resourceid_by_name_or_id( mox.IsA(neutronclient.Client), 'network', 'None', cmd_resource=None, ).AndReturn('None') neutronclient.Client.create_subnet({ 'subnet': { 'name': utils.PhysName('test_stack', 'test_subnet'), 'network_id': u'None', 'dns_nameservers': [u'2001:4860:4860::8844'], 'ip_version': 6, 'enable_dhcp': True, 'cidr': u'fdfa:6a50:d22b::/64', 'tenant_id': 'c1210485b2424d48804aad5d39c61b8f', 'ipv6_address_mode': 'slaac', 'ipv6_ra_mode': 'slaac' } }).AndReturn({ "subnet": { "allocation_pools": [ {"start": "fdfa:6a50:d22b::2", "end": "fdfa:6a50:d22b:0:ffff:ffff:ffff:fffe"}], "cidr": "fd00:1::/64", "enable_dhcp": True, "gateway_ip": "fdfa:6a50:d22b::1", "id": "91e47a57-7508-46fe-afc9-fc454e8580e1", "ip_version": 6, "name": "name", "network_id": "fc68ea2c-b60b-4b4f-bd82-94ec81110766", "tenant_id": "c1210485b2424d48804aad5d39c61b8f", 'ipv6_address_mode': 'slaac', 'ipv6_ra_mode': 'slaac' } }) self.m.ReplayAll() t = template_format.parse(neutron_template) props = t['resources']['sub_net']['properties'] props.pop('allocation_pools') props.pop('host_routes') props['ip_version'] = 6 props['ipv6_address_mode'] = 'slaac' props['ipv6_ra_mode'] = 'slaac' props['cidr'] = 'fdfa:6a50:d22b::/64' props['dns_nameservers'] = ['2001:4860:4860::8844'] stack = utils.parse_stack(t) rsrc = self.create_subnet(t, stack, 'sub_net') scheduler.TaskRunner(rsrc.create)() self.assertEqual((rsrc.CREATE, rsrc.COMPLETE), rsrc.state) rsrc.validate() self.m.VerifyAll() def test_host_routes_validate_destination(self): t = template_format.parse(neutron_template) props = t['resources']['sub_net']['properties'] props['host_routes'] = [{'destination': 'invalid_cidr', 'nexthop': '10.0.3.20'}] stack = utils.parse_stack(t) rsrc = stack['sub_net'] ex = self.assertRaises(exception.StackValidationFailed, rsrc.validate) msg = ("Property error: " "resources.sub_net.properties.host_routes[0].destination: " "Error validating value 'invalid_cidr': Invalid net cidr " "invalid IPNetwork invalid_cidr ") self.assertEqual(msg, six.text_type(ex)) def test_ipv6_validate_ra_mode(self): t = template_format.parse(neutron_template) props = t['resources']['sub_net']['properties'] props['ipv6_address_mode'] = 'dhcpv6-stateful' props['ipv6_ra_mode'] = 'slaac' props['ip_version'] = 6 stack = utils.parse_stack(t) rsrc = stack['sub_net'] ex = self.assertRaises(exception.StackValidationFailed, rsrc.validate) self.assertEqual("When both ipv6_ra_mode and ipv6_address_mode are " "set, they must be equal.", six.text_type(ex)) def test_ipv6_validate_ip_version(self): t = template_format.parse(neutron_template) props = t['resources']['sub_net']['properties'] props['ipv6_address_mode'] = 'slaac' props['ipv6_ra_mode'] = 'slaac' props['ip_version'] = 4 stack = utils.parse_stack(t) rsrc = stack['sub_net'] ex = self.assertRaises(exception.StackValidationFailed, rsrc.validate) self.assertEqual("ipv6_ra_mode and ipv6_address_mode are not " "supported for ipv4.", six.text_type(ex)) def test_validate_both_subnetpool_cidr(self): t = template_format.parse(neutron_template) props = t['resources']['sub_net']['properties'] props['subnetpool'] = 'new_pool' stack = utils.parse_stack(t) rsrc = stack['sub_net'] ex = self.assertRaises(exception.ResourcePropertyConflict, rsrc.validate) msg = ("Cannot define the following properties at the same time: " "subnetpool, cidr.") self.assertEqual(msg, six.text_type(ex)) def test_validate_none_subnetpool_cidr(self): t = template_format.parse(neutron_template) props = t['resources']['sub_net']['properties'] del props['cidr'] stack = utils.parse_stack(t) rsrc = stack['sub_net'] ex = self.assertRaises(exception.PropertyUnspecifiedError, rsrc.validate) msg = ("At least one of the following properties must be specified: " "subnetpool, cidr") self.assertEqual(msg, six.text_type(ex)) def test_validate_both_prefixlen_cidr(self): t = template_format.parse(neutron_template) props = t['resources']['sub_net']['properties'] props['prefixlen'] = '24' stack = utils.parse_stack(t) rsrc = stack['sub_net'] ex = self.assertRaises(exception.ResourcePropertyConflict, rsrc.validate) msg = ("Cannot define the following properties at the same time: " "prefixlen, cidr.") self.assertEqual(msg, six.text_type(ex)) def test_deprecated_network_id(self): template = """ heat_template_version: 2015-04-30 resources: net: type: OS::Neutron::Net properties: name: test subnet: type: OS::Neutron::Subnet properties: network_id: { get_resource: net } cidr: 10.0.0.0/24 """ t = template_format.parse(template) stack = utils.parse_stack(t) rsrc = stack['subnet'] stack.create() self.assertEqual(cfn_funcs.ResourceRef(stack, 'get_resource', 'net'), rsrc.properties.get('network')) self.assertIsNone(rsrc.properties.get('network_id'))
# Generated by Django 2.1.4 on 2018-12-27 08:50 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Dbnfsp', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('chr', models.TextField(blank=True, null=True)), ('pos_1_based', models.TextField(blank=True, null=True)), ('ref', models.TextField(blank=True, null=True)), ('alt', models.TextField(blank=True, null=True)), ('aaref', models.TextField(blank=True, null=True)), ('aaalt', models.TextField(blank=True, null=True)), ('rs_dbSNP150', models.TextField(blank=True, null=True)), ('hg19_chr', models.TextField(blank=True, null=True)), ('hg19_pos_1_based', models.TextField(blank=True, null=True)), ('hg18_chr', models.TextField(blank=True, null=True)), ('hg18_pos_1_based', models.TextField(blank=True, null=True)), ('genename', models.TextField(blank=True, null=True)), ('cds_strand', models.TextField(blank=True, null=True)), ('refcodon', models.TextField(blank=True, null=True)), ('codonpos', models.TextField(blank=True, null=True)), ('codon_degeneracy', models.TextField(blank=True, null=True)), ('Ancestral_allele', models.TextField(blank=True, null=True)), ('AltaiNeandertal', models.TextField(blank=True, null=True)), ('Denisova', models.TextField(blank=True, null=True)), ('Ensembl_geneid', models.TextField(blank=True, null=True)), ('Ensembl_transcriptid', models.TextField(blank=True, null=True)), ('Ensembl_proteinid', models.TextField(blank=True, null=True)), ('aapos', models.TextField(blank=True, null=True)), ('SIFT_score', models.TextField(blank=True, null=True)), ('SIFT_converted_rankscore', models.TextField(blank=True, null=True)), ('SIFT_pred', models.TextField(blank=True, null=True)), ('Uniprot_acc_Polyphen2', models.TextField(blank=True, null=True)), ('Uniprot_id_Polyphen2', models.TextField(blank=True, null=True)), ('Uniprot_aapos_Polyphen2', models.TextField(blank=True, null=True)), ('Polyphen2_HDIV_score', models.TextField(blank=True, null=True)), ('Polyphen2_HDIV_rankscore', models.TextField(blank=True, null=True)), ('Polyphen2_HDIV_pred', models.TextField(blank=True, null=True)), ('Polyphen2_HVAR_score', models.TextField(blank=True, null=True)), ('Polyphen2_HVAR_rankscore', models.TextField(blank=True, null=True)), ('Polyphen2_HVAR_pred', models.TextField(blank=True, null=True)), ('LRT_score', models.TextField(blank=True, null=True)), ('LRT_converted_rankscore', models.TextField(blank=True, null=True)), ('LRT_pred', models.TextField(blank=True, null=True)), ('LRT_Omega', models.TextField(blank=True, null=True)), ('MutationTaster_score', models.TextField(blank=True, null=True)), ('MutationTaster_converted_rankscore', models.TextField(blank=True, null=True)), ('MutationTaster_pred', models.TextField(blank=True, null=True)), ('MutationTaster_model', models.TextField(blank=True, null=True)), ('MutationTaster_AAE', models.TextField(blank=True, null=True)), ('MutationAssessor_UniprotID', models.TextField(blank=True, null=True)), ('MutationAssessor_variant', models.TextField(blank=True, null=True)), ('MutationAssessor_score', models.TextField(blank=True, null=True)), ('MutationAssessor_score_rankscore', models.TextField(blank=True, null=True)), ('MutationAssessor_pred', models.TextField(blank=True, null=True)), ('FATHMM_score', models.TextField(blank=True, null=True)), ('FATHMM_converted_rankscore', models.TextField(blank=True, null=True)), ('FATHMM_pred', models.TextField(blank=True, null=True)), ('PROVEAN_score', models.TextField(blank=True, null=True)), ('PROVEAN_converted_rankscore', models.TextField(blank=True, null=True)), ('PROVEAN_pred', models.TextField(blank=True, null=True)), ('Transcript_id_VEST3', models.TextField(blank=True, null=True)), ('Transcript_var_VEST3', models.TextField(blank=True, null=True)), ('VEST3_score', models.TextField(blank=True, null=True)), ('VEST3_rankscore', models.TextField(blank=True, null=True)), ('MetaSVM_score', models.TextField(blank=True, null=True)), ('MetaSVM_rankscore', models.TextField(blank=True, null=True)), ('MetaSVM_pred', models.TextField(blank=True, null=True)), ('MetaLR_score', models.TextField(blank=True, null=True)), ('MetaLR_rankscore', models.TextField(blank=True, null=True)), ('MetaLR_pred', models.TextField(blank=True, null=True)), ('Reliability_index', models.TextField(blank=True, null=True)), ('M_CAP_score', models.TextField(blank=True, null=True)), ('M_CAP_rankscore', models.TextField(blank=True, null=True)), ('M_CAP_pred', models.TextField(blank=True, null=True)), ('REVEL_score', models.TextField(blank=True, null=True)), ('REVEL_rankscore', models.TextField(blank=True, null=True)), ('MutPred_score', models.TextField(blank=True, null=True)), ('MutPred_rankscore', models.TextField(blank=True, null=True)), ('MutPred_protID', models.TextField(blank=True, null=True)), ('MutPred_AAchange', models.TextField(blank=True, null=True)), ('MutPred_Top5features', models.TextField(blank=True, null=True)), ('CADD_raw', models.TextField(blank=True, null=True)), ('CADD_raw_rankscore', models.TextField(blank=True, null=True)), ('CADD_phred', models.TextField(blank=True, null=True)), ('DANN_score', models.TextField(blank=True, null=True)), ('DANN_rankscore', models.TextField(blank=True, null=True)), ('fathmm_MKL_coding_score', models.TextField(blank=True, null=True)), ('fathmm_MKL_coding_rankscore', models.TextField(blank=True, null=True)), ('fathmm_MKL_coding_pred', models.TextField(blank=True, null=True)), ('fathmm_MKL_coding_group', models.TextField(blank=True, null=True)), ('Eigen_coding_or_noncoding', models.TextField(blank=True, null=True)), ('Eigen_raw', models.TextField(blank=True, null=True)), ('Eigen_phred', models.TextField(blank=True, null=True)), ('Eigen_PC_raw', models.TextField(blank=True, null=True)), ('Eigen_PC_phred', models.TextField(blank=True, null=True)), ('Eigen_PC_raw_rankscore', models.TextField(blank=True, null=True)), ('GenoCanyon_score', models.TextField(blank=True, null=True)), ('GenoCanyon_score_rankscore', models.TextField(blank=True, null=True)), ('integrated_fitCons_score', models.TextField(blank=True, null=True)), ('integrated_fitCons_score_rankscore', models.TextField(blank=True, null=True)), ('integrated_confidence_value', models.TextField(blank=True, null=True)), ('GM12878_fitCons_score', models.TextField(blank=True, null=True)), ('GM12878_fitCons_score_rankscore', models.TextField(blank=True, null=True)), ('GM12878_confidence_value', models.TextField(blank=True, null=True)), ('H1_hESC_fitCons_score', models.TextField(blank=True, null=True)), ('H1_hESC_fitCons_score_rankscore', models.TextField(blank=True, null=True)), ('H1_hESC_confidence_value', models.TextField(blank=True, null=True)), ('HUVEC_fitCons_score', models.TextField(blank=True, null=True)), ('HUVEC_fitCons_score_rankscore', models.TextField(blank=True, null=True)), ('HUVEC_confidence_value', models.TextField(blank=True, null=True)), ('GERP_NR', models.TextField(blank=True, null=True)), ('GERP_RS', models.TextField(blank=True, null=True)), ('GERP_RS_rankscore', models.TextField(blank=True, null=True)), ('phyloP100way_vertebrate', models.TextField(blank=True, null=True)), ('phyloP100way_vertebrate_rankscore', models.TextField(blank=True, null=True)), ('phyloP20way_mammalian', models.TextField(blank=True, null=True)), ('phyloP20way_mammalian_rankscore', models.TextField(blank=True, null=True)), ('phastCons100way_vertebrate', models.TextField(blank=True, null=True)), ('phastCons100way_vertebrate_rankscore', models.TextField(blank=True, null=True)), ('phastCons20way_mammalian', models.TextField(blank=True, null=True)), ('phastCons20way_mammalian_rankscore', models.TextField(blank=True, null=True)), ('SiPhy_29way_pi', models.TextField(blank=True, null=True)), ('SiPhy_29way_logOdds', models.TextField(blank=True, null=True)), ('SiPhy_29way_logOdds_rankscore', models.TextField(blank=True, null=True)), ('Gp3_AC_1k', models.TextField(blank=True, null=True)), ('Gp3_AF_1k', models.TextField(blank=True, null=True)), ('Gp3_AFR_AC_1k', models.TextField(blank=True, null=True)), ('Gp3_AFR_AF_1k', models.TextField(blank=True, null=True)), ('Gp3_EUR_AC_1k', models.TextField(blank=True, null=True)), ('Gp3_EUR_AF_1k', models.TextField(blank=True, null=True)), ('Gp3_AMR_AC_1k', models.TextField(blank=True, null=True)), ('Gp3_AMR_AF_1k', models.TextField(blank=True, null=True)), ('Gp3_EAS_AC_1k', models.TextField(blank=True, null=True)), ('Gp3_EAS_AF_1k', models.TextField(blank=True, null=True)), ('Gp3_SAS_AC_1k', models.TextField(blank=True, null=True)), ('Gp3_SAS_AF_1k', models.TextField(blank=True, null=True)), ('TWINSUK_AC', models.TextField(blank=True, null=True)), ('TWINSUK_AF', models.TextField(blank=True, null=True)), ('ALSPAC_AC', models.TextField(blank=True, null=True)), ('ALSPAC_AF', models.TextField(blank=True, null=True)), ('ESP6500_AA_AC', models.TextField(blank=True, null=True)), ('ESP6500_AA_AF', models.TextField(blank=True, null=True)), ('ESP6500_EA_AC', models.TextField(blank=True, null=True)), ('ESP6500_EA_AF', models.TextField(blank=True, null=True)), ('ExAC_AC', models.TextField(blank=True, null=True)), ('ExAC_AF', models.TextField(blank=True, null=True)), ('ExAC_Adj_AC', models.TextField(blank=True, null=True)), ('ExAC_Adj_AF', models.TextField(blank=True, null=True)), ('ExAC_AFR_AC', models.TextField(blank=True, null=True)), ('ExAC_AFR_AF', models.TextField(blank=True, null=True)), ('ExAC_AMR_AC', models.TextField(blank=True, null=True)), ('ExAC_AMR_AF', models.TextField(blank=True, null=True)), ('ExAC_EAS_AC', models.TextField(blank=True, null=True)), ('ExAC_EAS_AF', models.TextField(blank=True, null=True)), ('ExAC_FIN_AC', models.TextField(blank=True, null=True)), ('ExAC_FIN_AF', models.TextField(blank=True, null=True)), ('ExAC_NFE_AC', models.TextField(blank=True, null=True)), ('ExAC_NFE_AF', models.TextField(blank=True, null=True)), ('ExAC_SAS_AC', models.TextField(blank=True, null=True)), ('ExAC_SAS_AF', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_AC', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_AF', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_Adj_AC', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_Adj_AF', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_AFR_AC', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_AFR_AF', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_AMR_AC', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_AMR_AF', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_EAS_AC', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_EAS_AF', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_FIN_AC', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_FIN_AF', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_NFE_AC', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_NFE_AF', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_SAS_AC', models.TextField(blank=True, null=True)), ('ExAC_nonTCGA_SAS_AF', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_AC', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_AF', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_Adj_AC', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_Adj_AF', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_AFR_AC', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_AFR_AF', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_AMR_AC', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_AMR_AF', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_EAS_AC', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_EAS_AF', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_FIN_AC', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_FIN_AF', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_NFE_AC', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_NFE_AF', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_SAS_AC', models.TextField(blank=True, null=True)), ('ExAC_nonpsych_SAS_AF', models.TextField(blank=True, null=True)), ('gnomAD_exomes_AC', models.TextField(blank=True, null=True)), ('gnomAD_exomes_AN', models.TextField(blank=True, null=True)), ('gnomAD_exomes_AF', models.TextField(blank=True, null=True)), ('gnomAD_exomes_AFR_AC', models.TextField(blank=True, null=True)), ('gnomAD_exomes_AFR_AN', models.TextField(blank=True, null=True)), ('gnomAD_exomes_AFR_AF', models.TextField(blank=True, null=True)), ('gnomAD_exomes_AMR_AC', models.TextField(blank=True, null=True)), ('gnomAD_exomes_AMR_AN', models.TextField(blank=True, null=True)), ('gnomAD_exomes_AMR_AF', models.TextField(blank=True, null=True)), ('gnomAD_exomes_ASJ_AC', models.TextField(blank=True, null=True)), ('gnomAD_exomes_ASJ_AN', models.TextField(blank=True, null=True)), ('gnomAD_exomes_ASJ_AF', models.TextField(blank=True, null=True)), ('gnomAD_exomes_EAS_AC', models.TextField(blank=True, null=True)), ('gnomAD_exomes_EAS_AN', models.TextField(blank=True, null=True)), ('gnomAD_exomes_EAS_AF', models.TextField(blank=True, null=True)), ('gnomAD_exomes_FIN_AC', models.TextField(blank=True, null=True)), ('gnomAD_exomes_FIN_AN', models.TextField(blank=True, null=True)), ('gnomAD_exomes_FIN_AF', models.TextField(blank=True, null=True)), ('gnomAD_exomes_NFE_AC', models.TextField(blank=True, null=True)), ('gnomAD_exomes_NFE_AN', models.TextField(blank=True, null=True)), ('gnomAD_exomes_NFE_AF', models.TextField(blank=True, null=True)), ('gnomAD_exomes_SAS_AC', models.TextField(blank=True, null=True)), ('gnomAD_exomes_SAS_AN', models.TextField(blank=True, null=True)), ('gnomAD_exomes_SAS_AF', models.TextField(blank=True, null=True)), ('gnomAD_exomes_OTH_AC', models.TextField(blank=True, null=True)), ('gnomAD_exomes_OTH_AN', models.TextField(blank=True, null=True)), ('gnomAD_exomes_OTH_AF', models.TextField(blank=True, null=True)), ('gnomAD_genomes_AC', models.TextField(blank=True, null=True)), ('gnomAD_genomes_AN', models.TextField(blank=True, null=True)), ('gnomAD_genomes_AF', models.TextField(blank=True, null=True)), ('gnomAD_genomes_AFR_AC', models.TextField(blank=True, null=True)), ('gnomAD_genomes_AFR_AN', models.TextField(blank=True, null=True)), ('gnomAD_genomes_AFR_AF', models.TextField(blank=True, null=True)), ('gnomAD_genomes_AMR_AC', models.TextField(blank=True, null=True)), ('gnomAD_genomes_AMR_AN', models.TextField(blank=True, null=True)), ('gnomAD_genomes_AMR_AF', models.TextField(blank=True, null=True)), ('gnomAD_genomes_ASJ_AC', models.TextField(blank=True, null=True)), ('gnomAD_genomes_ASJ_AN', models.TextField(blank=True, null=True)), ('gnomAD_genomes_ASJ_AF', models.TextField(blank=True, null=True)), ('gnomAD_genomes_EAS_AC', models.TextField(blank=True, null=True)), ('gnomAD_genomes_EAS_AN', models.TextField(blank=True, null=True)), ('gnomAD_genomes_EAS_AF', models.TextField(blank=True, null=True)), ('gnomAD_genomes_FIN_AC', models.TextField(blank=True, null=True)), ('gnomAD_genomes_FIN_AN', models.TextField(blank=True, null=True)), ('gnomAD_genomes_FIN_AF', models.TextField(blank=True, null=True)), ('gnomAD_genomes_NFE_AC', models.TextField(blank=True, null=True)), ('gnomAD_genomes_NFE_AN', models.TextField(blank=True, null=True)), ('gnomAD_genomes_NFE_AF', models.TextField(blank=True, null=True)), ('gnomAD_genomes_OTH_AC', models.TextField(blank=True, null=True)), ('gnomAD_genomes_OTH_AN', models.TextField(blank=True, null=True)), ('gnomAD_genomes_OTH_AF', models.TextField(blank=True, null=True)), ('clinvar_rs', models.TextField(blank=True, null=True)), ('clinvar_clnsig', models.TextField(blank=True, null=True)), ('clinvar_trait', models.TextField(blank=True, null=True)), ('clinvar_golden_stars', models.TextField(blank=True, null=True)), ('Interpro_domain', models.TextField(blank=True, null=True)), ('GTEx_V6p_gene', models.TextField(blank=True, null=True)), ('GTEx_V6p_tissue', models.TextField(blank=True, null=True)), ], ), migrations.CreateModel( name='Genome1kGenotype', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('genotype', models.TextField(blank=True, null=True)), ], ), migrations.CreateModel( name='Genome1kSample', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.TextField(blank=True, null=True)), ], ), migrations.CreateModel( name='Genome1kSampleVariant', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('genotype', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='databases.Genome1kGenotype')), ('sample', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='databases.Genome1kSample')), ], ), migrations.CreateModel( name='Genome1kVariant', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('pos_index', models.TextField(db_index=True)), ('chrom', models.TextField(blank=True, db_index=True, null=True)), ('pos', models.TextField(blank=True, db_index=True, null=True)), ('rsid', models.TextField(blank=True, null=True)), ('ref', models.TextField(blank=True, db_index=True, null=True)), ('alt', models.TextField(blank=True, db_index=True, null=True)), ('qual', models.TextField(blank=True, null=True)), ('filter', models.TextField(blank=True, null=True)), ('info', models.TextField(blank=True, null=True)), ('format', models.TextField(blank=True, null=True)), ], ), migrations.CreateModel( name='Genome1kVariantIndex', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('index', models.TextField()), ('variant', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='databases.Genome1kVariant')), ], ), migrations.CreateModel( name='HGMD', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('index', models.TextField(db_index=True)), ('chrom', models.TextField(blank=True, db_index=True, null=True)), ('pos', models.TextField(blank=True, db_index=True, null=True)), ('rsid', models.TextField(blank=True, null=True)), ('ref', models.TextField(blank=True, db_index=True, null=True)), ('alt', models.TextField(blank=True, db_index=True, null=True)), ('qual', models.TextField(blank=True, null=True)), ('filter', models.TextField(blank=True, null=True)), ('mutclass', models.TextField(blank=True, null=True)), ('mut', models.TextField(blank=True, null=True)), ('gene', models.TextField(blank=True, null=True)), ('strand', models.TextField(blank=True, null=True)), ('dna', models.TextField(blank=True, null=True)), ('prot', models.TextField(blank=True, null=True)), ('db', models.TextField(blank=True, null=True)), ('phen', models.TextField(blank=True, null=True)), ], ), migrations.CreateModel( name='VariSNP', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('dbsnp_id', models.CharField(max_length=255)), ], ), migrations.AddField( model_name='genome1ksamplevariant', name='variant', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='databases.Genome1kVariant'), ), ]
# # Copyright (c) SAS Institute Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from rmake.build import buildjob from rmake.worker import chroot from rmake.worker import node from rmake.lib.apiutils import thaw, freeze def toBuildFlavors(frz): if '\\000' in frz or '\0' in frz: # Looks like the old marshal-based format, just ignore it return [] else: return [ thaw('flavor', x) for x in frz.splitlines() ] def fromBuildFlavors(flavorList): return '\n'.join([freeze('flavor', x) for x in flavorList]) class NodeStore(object): def __init__(self, db): self.db = db def addNode(self, name, host, slots, flavors): cu = self.db.cursor() cu.execute("""DELETE FROM Nodes where nodeName=?""", name) cu.execute("""INSERT INTO Nodes (nodeName, host, slots, buildFlavors, active) VALUES (?, ?, ?, ?, 1)""", name, host, slots, fromBuildFlavors(flavors)) def removeNode(self, name): cu = self.db.cursor() cu.execute("""UPDATE Nodes SET active=0 WHERE nodeName=?""", name) def deactivateAllNodes(self): cu = self.db.cursor() cu.execute("""UPDATE Nodes SET active=0""") cu.execute("""UPDATE Chroots SET active=0""") def setChrootsForNode(self, nodeName, chrootPaths): cu = self.db.cursor() cu.execute("SELECT chrootId, troveId, path" " FROM Chroots WHERE nodeName=?", nodeName) chrootList = cu.fetchall() currentPaths = set(chrootPaths) knownPaths = set(x[2] for x in chrootList) extraPaths = knownPaths - currentPaths newPaths = currentPaths - knownPaths extraIds = [ (x[0],x[1]) for x in chrootList if x[2] in extraPaths ] for chrootId, troveId in extraIds: cu.execute("""DELETE FROM Chroots WHERE chrootId=?""", chrootId) # use troveId too so we don't have to add an index on chrootId cu.execute("""UPDATE BuildTroves set chrootId=0 WHERE troveId=? AND chrootId=?""", troveId, chrootId) for path in newPaths: self._createChrootId(cu, nodeName, path, None) def getNodes(self, names): cu = self.db.cursor() nodes = [] for name in names: cu.execute('''SELECT nodeName, host, slots, buildFlavors, active FROM Nodes WHERE name=?''', name) results = self._fetchOne(cu, name) name, host, slots, buildFlavors, active = results buildFlavors = toBuildFlavors(buildFlavors) chroots = self.getChrootsForHost(name) nodes.append(node.Node(name, host, slots, buildFlavors, chroots, active)) return nodes def listNodes(self): nodes = [] cu = self.db.cursor() cu.execute('''SELECT nodeName, host, slots, buildFlavors, active FROM Nodes where active=1''') for name, host, slots, buildFlavors, active in cu.fetchall(): buildFlavors = toBuildFlavors(buildFlavors) chroots = self.getChrootsForHost(name) nodes.append(node.Node(name, host, slots, buildFlavors, active, chroots)) return nodes def getEmptySlots(self): """ Return the number of slots that are currently not in use. This should be the number of jobs that can be added at the moment w/o using up all of the available slots. """ totalSlots = self.getSlotCount() cu = self.db.cursor() cu.execute("SELECT COUNT(*) FROM Jobs WHERE state in (?, ?)", buildjob.JOB_STATE_BUILD, buildjob.JOB_STATE_STARTED) currentJobs = cu.fetchone()[0] if totalSlots < currentJobs: return 0 cu.execute("""SELECT jobId,COUNT(jobId) FROM Chroots JOIN Nodes USING(nodeName) LEFT JOIN BuildTroves ON (Chroots.troveId=BuildTroves.troveId) LEFT JOIN Jobs USING(jobId) WHERE Chroots.active=1 AND Nodes.active=1 AND jobId IS NOT NULL GROUP BY jobId""") jobsSeen = 0 slots = 0 for jobId, count in cu: jobsSeen += 1 slots += count totalUsed = slots + (currentJobs - jobsSeen) return max(totalSlots - totalUsed, 0) def getSlotCount(self): cu = self.db.cursor() totalSlots = cu.execute( """SELECT SUM(slots) FROM Nodes WHERE active=1""").fetchone()[0] return max(totalSlots, 1) def getOrCreateChrootId(self, trove): cu = self.db.cursor() chrootId = cu.execute("""SELECT chrootId from Chroots WHERE nodeName=? and path=?""", trove.chrootHost, trove.chrootPath).fetchall() if not chrootId: return self.createChrootId(trove) return chrootId[0][0] def createChrootId(self, trove): cu = self.db.cursor() host = trove.getChrootHost() path = trove.getChrootPath() troveId = self.db.jobStore._getTroveId(cu, trove.jobId, *trove.getNameVersionFlavor(True)) return self._createChrootId(cu, host, path, troveId) def _createChrootId(self, cu, nodeName, path, troveId): cu.execute("""INSERT INTO Chroots (nodeName, path, troveId, active) VALUES (?,?,?,0)""", nodeName, path, troveId) chrootId = cu.lastrowid return chrootId def moveChroot(self, nodeName, path, newPath): cu = self.db.cursor() cu.execute("""UPDATE Chroots SET path=? WHERE nodeName=? AND path=?""", newPath, nodeName, path) def removeChroot(self, nodeName, path): cu = self.db.cursor() cu.execute("""SELECT chrootId From Chroots WHERE nodeName=? AND path=?""", nodeName, path) chrootId = self.db._getOne(cu, (nodeName, path))[0] cu.execute("""DELETE FROM Chroots WHERE chrootId=?""", chrootId) cu.execute("""UPDATE BuildTroves set chrootId=0 WHERE chrootId=?""", chrootId) def chrootIsActive(self, nodeName, path): cu = self.db.cursor() cu.execute('SELECT active From Chroots WHERE nodeName=? AND path=?', nodeName, path) active = self.db._getOne(cu, (nodeName, path))[0] return bool(active) def setChrootActive(self, trove, active=True): cu = self.db.cursor() host = trove.getChrootHost() path = trove.getChrootPath() if not (host and path): return cu.execute("""UPDATE Chroots SET active=? WHERE nodeName=? and path=?""", int(active), host, path) return def getChrootsForHost(self, nodeName): cu = self.db.cursor() cu.execute("""SELECT Chroots.nodeName, path, jobId, troveName, version, flavor, Chroots.active FROM Chroots LEFT JOIN BuildTroves USING(troveId) LEFT JOIN Nodes ON(Chroots.nodeName = Nodes.nodeName) WHERE Nodes.active=1 and Nodes.nodeName=?""", nodeName) return self._getChroots(cu) def getAllChroots(self): cu = self.db.cursor() cu.execute("""SELECT Chroots.nodeName, path, jobId, troveName, version, flavor, Chroots.active FROM Chroots LEFT JOIN BuildTroves USING(troveId) LEFT JOIN Nodes ON(Chroots.nodeName = Nodes.nodeName) WHERE Nodes.active=1""") return self._getChroots(cu) def _getChroots(self, cu): chroots = [] for nodeName, path, jobId, name, version, flavor, active in cu: if jobId: version = thaw('version', version) flavor = thaw('flavor', flavor) troveTuple = (name, version, flavor) else: troveTuple = None c = chroot.Chroot(nodeName, path, jobId, troveTuple, active) chroots.append(c) return chroots
#!/usr/bin/python from gevent import monkey monkey.patch_all() import logging import gevent from gevent.coros import BoundedSemaphore from kafka import KafkaClient, KeyedProducer, SimpleConsumer, common from uveserver import UVEServer import os import json import copy import traceback import uuid import struct import socket import discoveryclient.client as client from sandesh_common.vns.constants import ALARM_PARTITION_SERVICE_NAME from pysandesh.util import UTCTimestampUsec import select import redis from collections import namedtuple PartInfo = namedtuple("PartInfo",["ip_address","instance_id","acq_time","port"]) def sse_pack(d): """Pack data in SSE format""" buffer = '' for k in ['event','data']: if k in d.keys(): buffer += '%s: %s\n' % (k, d[k]) return buffer + '\n' class UveStreamPart(gevent.Greenlet): def __init__(self, partno, logger, q, pi, rpass): gevent.Greenlet.__init__(self) self._logger = logger self._q = q self._pi = pi self._partno = partno self._rpass = rpass def syncpart(self, redish): inst = self._pi.instance_id part = self._partno keys = list(redish.smembers("AGPARTKEYS:%s:%d" % (inst, part))) ppe = redish.pipeline() for key in keys: ppe.hgetall("AGPARTVALUES:%s:%d:%s" % (inst, part, key)) pperes = ppe.execute() idx=0 for res in pperes: for tk,tv in res.iteritems(): msg = {'event': 'sync', 'data':\ json.dumps({'partition':self._partno, 'key':keys[idx], 'type':tk, 'value':tv})} self._q.put(sse_pack(msg)) idx += 1 def _run(self): lredis = None pb = None while True: try: lredis = redis.StrictRedis( host=self._pi.ip_address, port=self._pi.port, password=self._rpass, db=2) pb = lredis.pubsub() inst = self._pi.instance_id part = self._partno pb.subscribe('AGPARTPUB:%s:%d' % (inst, part)) self.syncpart(lredis) for message in pb.listen(): if message["type"] != "message": continue dataline = message["data"] try: elems = json.loads(dataline) except: self._logger.error("AggUVE Parsing failed: %s" % str(message)) continue else: self._logger.error("AggUVE loading: %s" % str(elems)) ppe = lredis.pipeline() for elem in elems: # This UVE was deleted if elem["type"] is None: ppe.exists("AGPARTVALUES:%s:%d:%s" % \ (inst, part, elem["key"])) else: ppe.hget("AGPARTVALUES:%s:%d:%s" % \ (inst, part, elem["key"]), elem["type"]) pperes = ppe.execute() idx = 0 for elem in elems: if elem["type"] is None: msg = {'event': 'update', 'data':\ json.dumps({'partition':part, 'key':elem["key"], 'type':None})} else: vjson = pperes[idx] if vjson is None: vdata = None else: vdata = json.loads(vjson) msg = {'event': 'update', 'data':\ json.dumps({'partition':part, 'key':elem["key"], 'type':elem["type"], 'value':vdata})} self._q.put(sse_pack(msg)) idx += 1 except gevent.GreenletExit: break except Exception as ex: template = "Exception {0} in uve stream proc. Arguments:\n{1!r}" messag = template.format(type(ex).__name__, ex.args) self._logger.error("%s : traceback %s" % \ (messag, traceback.format_exc())) lredis = None if pb is not None: pb.close() pb = None gevent.sleep(2) return None class UveStreamer(gevent.Greenlet): def __init__(self, logger, q, rfile, agp_cb, partitions, rpass): gevent.Greenlet.__init__(self) self._logger = logger self._q = q self._rfile = rfile self._agp_cb = agp_cb self._agp = {} self._parts = {} self._partitions = partitions self._rpass = rpass def _run(self): inputs = [ self._rfile ] outputs = [ ] msg = {'event': 'init', 'data':\ json.dumps({'partitions':self._partitions})} self._q.put(sse_pack(msg)) while True: readable, writable, exceptional = select.select(inputs, outputs, inputs, 1) if (readable or writable or exceptional): break newagp = self._agp_cb() set_new, set_old = set(newagp.keys()), set(self._agp.keys()) intersect = set_new.intersection(set_old) # deleted parts for elem in set_old - intersect: self.partition_stop(elem) # new parts for elem in set_new - intersect: self.partition_start(elem, newagp[elem]) # changed parts for elem in intersect: if self._agp[elem] != newagp[elem]: self.partition_stop(elem) self.partition_start(elem, newagp[elem]) self._agp = newagp for part, pi in self._agp.iteritems(): self.partition_stop(part) def partition_start(self, partno, pi): self._logger.error("Starting agguve part %d using %s" %( partno, pi)) msg = {'event': 'clear', 'data':\ json.dumps({'partition':partno, 'acq_time':pi.acq_time})} self._q.put(sse_pack(msg)) self._parts[partno] = UveStreamPart(partno, self._logger, self._q, pi, self._rpass) self._parts[partno].start() def partition_stop(self, partno): self._logger.error("Stopping agguve part %d" % partno) self._parts[partno].kill() self._parts[partno].get() del self._parts[partno] class PartitionHandler(gevent.Greenlet): def __init__(self, brokers, group, topic, logger, limit): gevent.Greenlet.__init__(self) self._brokers = brokers self._group = group self._topic = topic self._logger = logger self._limit = limit self._uvedb = {} self._partoffset = 0 self._kfk = None def msg_handler(self, mlist): self._logger.info("%s Reading %s" % (self._topic, str(mlist))) return True def _run(self): pcount = 0 while True: try: self._logger.error("New KafkaClient %s" % self._topic) self._kfk = KafkaClient(self._brokers , "kc-" + self._topic) try: consumer = SimpleConsumer(self._kfk, self._group, self._topic, buffer_size = 4096*4, max_buffer_size=4096*32) #except: except Exception as ex: template = "Consumer Failure {0} occured. Arguments:\n{1!r}" messag = template.format(type(ex).__name__, ex.args) self._logger.info("%s" % messag) raise RuntimeError(messag) self._logger.error("Starting %s" % self._topic) # Find the offset of the last message that has been queued consumer.seek(-1,2) try: mi = consumer.get_message(timeout=0.1) consumer.commit() except common.OffsetOutOfRangeError: mi = None #import pdb; pdb.set_trace() self._logger.info("Last Queued for %s is %s" % \ (self._topic,str(mi))) # start reading from last previously processed message if mi != None: consumer.seek(0,1) else: consumer.seek(0,0) if self._limit: raise gevent.GreenletExit while True: try: mlist = consumer.get_messages(10,timeout=0.5) if not self.msg_handler(mlist): raise gevent.GreenletExit consumer.commit() pcount += len(mlist) except TypeError as ex: self._logger.error("Type Error: %s trace %s" % \ (str(ex.args), traceback.format_exc())) gevent.sleep(0.1) except common.FailedPayloadsError as ex: self._logger.error("Payload Error: %s" % str(ex.args)) gevent.sleep(0.1) except gevent.GreenletExit: break except AssertionError as ex: self._partoffset = ex break except Exception as ex: template = "An exception of type {0} occured. Arguments:\n{1!r}" messag = template.format(type(ex).__name__, ex.args) self._logger.error("%s : traceback %s" % \ (messag, traceback.format_exc())) self.stop_partition() gevent.sleep(2) self._logger.error("Stopping %s pcount %d" % (self._topic, pcount)) partdb = self.stop_partition() return self._partoffset, partdb class UveStreamProc(PartitionHandler): # Arguments: # # brokers : broker list for kafka bootstrap # partition : partition number # uve_topic : Topic to consume # logger : logging object to use # callback : Callback function for reporting the set of the UVEs # that may have changed for a given notification # rsc : Callback function to check on collector status # and get sync contents for new collectors # aginst : instance_id of alarmgen # rport : redis server port # disc : discovery client to publish to def __init__(self, brokers, partition, uve_topic, logger, callback, host_ip, rsc, aginst, rport, disc = None): super(UveStreamProc, self).__init__(brokers, "workers", uve_topic, logger, False) self._uvedb = {} self._uvein = {} self._uveout = {} self._callback = callback self._partno = partition self._host_ip = host_ip self._ip_code, = struct.unpack('>I', socket.inet_pton( socket.AF_INET, host_ip)) self.disc_rset = set() self._resource_cb = rsc self._aginst = aginst self._disc = disc self._acq_time = UTCTimestampUsec() self._rport = rport def acq_time(self): return self._acq_time def resource_check(self, msgs): ''' This function compares the known collectors with the list from discovery, and syncs UVE keys accordingly ''' newset , coll_delete, chg_res = self._resource_cb(self._partno, self.disc_rset, msgs) for coll in coll_delete: self._logger.error("Part %d lost collector %s" % (self._partno, coll)) self.stop_partition(coll) if len(chg_res): self.start_partition(chg_res) self.disc_rset = newset if self._disc: data = { 'instance-id' : self._aginst, 'partition' : str(self._partno), 'ip-address': self._host_ip, 'acq-time': str(self._acq_time), 'port':str(self._rport)} self._disc.publish(ALARM_PARTITION_SERVICE_NAME, data) def stop_partition(self, kcoll=None): clist = [] if not kcoll: clist = self._uvedb.keys() # If all collectors are being cleared, clear resoures too self.disc_rset = set() if self._disc: # TODO: Unpublish instead of setting acq-time to 0 data = { 'instance-id' : self._aginst, 'partition' : str(self._partno), 'ip-address': self._host_ip, 'acq-time': "0", 'port':str(self._rport)} self._disc.publish(ALARM_PARTITION_SERVICE_NAME, data) else: clist = [kcoll] self._logger.error("Stopping part %d collectors %s" % \ (self._partno,clist)) partdb = {} chg = {} for coll in clist: partdb[coll] = {} for gen in self._uvedb[coll].keys(): partdb[coll][gen] = {} for tab in self._uvedb[coll][gen].keys(): for rkey in self._uvedb[coll][gen][tab].keys(): uk = tab + ":" + rkey chg[uk] = None partdb[coll][gen][uk] = \ set(self._uvedb[coll][gen][tab][rkey].keys()) del self._uvedb[coll] self._logger.error("Stopping part %d UVEs %s" % \ (self._partno,str(chg.keys()))) self._callback(self._partno, chg) return partdb def start_partition(self, cbdb): ''' This function loads the initial UVE database. for the partition ''' self._logger.error("Starting part %d collectors %s" % \ (self._partno, str(cbdb.keys()))) uves = {} for kcoll,coll in cbdb.iteritems(): self._uvedb[kcoll] = {} for kgen,gen in coll.iteritems(): self._uvedb[kcoll][kgen] = {} for kk in gen.keys(): tabl = kk.split(":",1) tab = tabl[0] rkey = tabl[1] if not tab in self._uvedb[kcoll][kgen]: self._uvedb[kcoll][kgen][tab] = {} self._uvedb[kcoll][kgen][tab][rkey] = {} uves[kk] = {} for typ, contents in gen[kk].iteritems(): self._uvedb[kcoll][kgen][tab][rkey][typ] = {} self._uvedb[kcoll][kgen][tab][rkey][typ]["c"] = 0 self._uvedb[kcoll][kgen][tab][rkey][typ]["u"] = \ uuid.uuid1(self._ip_code) uves[kk][typ] = contents self._logger.error("Starting part %d UVEs %s" % \ (self._partno, str(uves.keys()))) self._callback(self._partno, uves) def contents(self): return self._uvedb def stats(self): ''' Return the UVEKey-Count stats collected over the last time period for this partition, and the incoming UVE Notifs as well. Also, the stats should be cleared to prepare for the next period of collection. ''' ret_out = copy.deepcopy(self._uveout) ret_in = copy.deepcopy(self._uvein) self._uveout = {} self._uvein = {} return ret_in, ret_out def msg_handler(self, mlist): self.resource_check(mlist) for mm in mlist: if mm is None: continue self._logger.debug("%s Reading offset %d" % \ (self._topic, mm.offset)) if not self.msg_handler_single(mm): self._logger.info("%s could not handle %s" % \ (self._topic, str(mm))) return False return True def msg_handler_single(self, om): self._partoffset = om.offset chg = {} try: uv = json.loads(om.message.value) coll = uv["coll"] gen = uv["gen"] if not self._uvedb.has_key(coll): # This partition is not synced yet. # Ignore this message self._logger.debug("%s Ignoring UVE %s" % (self._topic, str(om))) return True if not self._uvedb[coll].has_key(gen): self._uvedb[coll][gen] = {} if (uv["message"] == "UVEUpdate"): tabl = uv["key"].split(":",1) tab = tabl[0] rkey = tabl[1] if tab not in self._uvedb[coll][gen]: self._uvedb[coll][gen][tab] = {} if not rkey in self._uvedb[coll][gen][tab]: self._uvedb[coll][gen][tab][rkey] = {} removed = False # uv["type"] and uv["value"] can be decoded as follows: # uv["type"] can be one of the following: # - None # All Types under this UVE are deleted # uv["value"] will not be present # (this option is only for agg UVE updates) # - "<Struct>" # uv["value"] refers to this struct # uv["value"] can be one of the following: # - None # This Type has been deleted. # - {} # The Type has a value, which is # not available in this message. # (this option is only for raw UVE updates) # - {<Value>} # The Value of the Type # (this option is only for agg UVE updates) if uv["type"] is None: # TODO: Handling of delete UVE case return False if uv["value"] is None: if uv["type"] in self._uvedb[coll][gen][tab][rkey]: del self._uvedb[coll][gen][tab][rkey][uv["type"]] if not len(self._uvedb[coll][gen][tab][rkey]): del self._uvedb[coll][gen][tab][rkey] removed = True if not removed: if uv["type"] in self._uvedb[coll][gen][tab][rkey]: self._uvedb[coll][gen][tab][rkey][uv["type"]]["c"] +=1 else: self._uvedb[coll][gen][tab][rkey][uv["type"]] = {} self._uvedb[coll][gen][tab][rkey][uv["type"]]["c"] = 1 self._uvedb[coll][gen][tab][rkey][uv["type"]]["u"] = \ uuid.uuid1(self._ip_code) chg[uv["key"]] = { uv["type"] : uv["value"] } # Record stats on UVE Keys being processed if not self._uveout.has_key(tab): self._uveout[tab] = {} if self._uveout[tab].has_key(uv["key"]): self._uveout[tab][uv["key"]] += 1 else: self._uveout[tab][uv["key"]] = 1 # Record stats on the input UVE Notifications if not self._uvein.has_key(tab): self._uvein[tab] = {} if not self._uvein[tab].has_key(coll): self._uvein[tab][coll] = {} if not self._uvein[tab][coll].has_key(gen): self._uvein[tab][coll][gen] = {} if not self._uvein[tab][coll][gen].has_key(uv["type"]): self._uvein[tab][coll][gen][uv["type"]] = 1 else: self._uvein[tab][coll][gen][uv["type"]] += 1 else: # Record stats on UVE Keys being processed for tab in self._uvedb[coll][gen].keys(): for rkey in self._uvedb[coll][gen][tab].keys(): uk = tab + ":" + rkey if not self._uveout.has_key(tab): self._uveout[tab] = {} if self._uveout[tab].has_key(uk): self._uveout[tab][uk] += 1 else: self._uveout[tab][uk] = 1 # when a generator is delelted, we need to # notify for *ALL* its UVEs chg[uk] = None del self._uvedb[coll][gen] except Exception as ex: template = "An exception of type {0} in uve proc . Arguments:\n{1!r}" messag = template.format(type(ex).__name__, ex.args) self._logger.info("%s" % messag) return False else: self._callback(self._partno, chg) return True if __name__ == '__main__': logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') workers = {} brokers = "localhost:9092,localhost:9093,localhost:9094" group = "workers" kafka = KafkaClient(brokers,str(os.getpid())) cons = SimpleConsumer(kafka, group, "ctrl") cons.provide_partition_info() print "Starting control" end_ready = False while end_ready == False: try: while True: part, mmm = cons.get_message(timeout=None) mm = mmm.message print "Consumed ctrl " + str(mm) if mm.value == "start": if workers.has_key(mm.key): print "Dup partition %s" % mm.key raise ValueError else: ph = UveStreamProc(brokers, int(mm.key), "uve-" + mm.key, "alarm-x" + mm.key, logging) ph.start() workers[int(mm.key)] = ph elif mm.value == "stop": #import pdb; pdb.set_trace() if workers.has_key(int(mm.key)): ph = workers[int(mm.key)] gevent.kill(ph) res,db = ph.get() print "Returned " + str(res) print "State :" for k,v in db.iteritems(): print "%s -> %s" % (k,str(v)) del workers[int(mm.key)] else: end_ready = True cons.commit() gevent.sleep(2) break except TypeError: gevent.sleep(0.1) except common.FailedPayloadsError as ex: print "Payload Error: " + str(ex.args) gevent.sleep(0.1) lw=[] for key, value in workers.iteritems(): gevent.kill(value) lw.append(value) gevent.joinall(lw) print "Ending Consumers"
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Utilities for dealing with HEALPix projections and mappings """ from __future__ import absolute_import, division, print_function import re import healpy as hp import numpy as np from astropy.io import fits from astropy.wcs import WCS from astropy.coordinates import SkyCoord from astropy.coordinates import Galactic, ICRS from fermipy.wcs_utils import WCSProj # This is an approximation of the size of HEALPix pixels (in degrees) # for a particular order. It is used to convert from HEALPix to WCS-based # projections HPX_ORDER_TO_PIXSIZE = [32.0, 16.0, 8.0, 4.0, 2.0, 1.0, 0.50, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005, 0.002] class HPX_Conv(object): """ Data structure to define how a HEALPix map is stored to FITS """ def __init__(self, convname, **kwargs): """ """ self.convname = convname self.colstring = kwargs.get('colstring', 'CHANNEL') self.idxstring = kwargs.get('idxstring', 'PIX') self.firstcol = kwargs.get('firstcol', 1) self.extname = kwargs.get('extname', 'SKYMAP') self.energy_hdu = kwargs.get('energy_hdu', 'EBOUNDS') self.quantity_type = kwargs.get('quantity_type', 'integral') self.coordsys = kwargs.get('coordsys', 'COORDSYS') def colname(self, indx): return "%s%i" % (self.colstring, indx) # Various conventions for storing HEALPix maps in FITS files HPX_FITS_CONVENTIONS = {'FGST_CCUBE': HPX_Conv('FGST_CCUBE'), 'FGST_LTCUBE': HPX_Conv('FGST_LTCUBE', colstring='COSBINS', extname='EXPOSURE', energy_hdu='CTHETABOUNDS'), 'FGST_BEXPCUBE': HPX_Conv('FGST_BEXPCUBE', colstring='ENERGY', extname='HPXEXPOSURES', energy_hdu='ENERGIES'), 'FGST_SRCMAP': HPX_Conv('FGST_SRCMAP', extname=None, quantity_type='differential'), 'FGST_TEMPLATE': HPX_Conv('FGST_TEMPLATE', colstring='ENERGY', energy_hdu='ENERGIES'), 'FGST_SRCMAP_SPARSE': HPX_Conv('FGST_SRCMAP_SPARSE', colstring=None, extname=None, quantity_type='differential'), 'GALPROP': HPX_Conv('GALPROP', colstring='Bin', idxstring='HPXINDEX', extname='SKYMAP2', energy_hdu='ENERGIES', quantity_type='differential', coordsys='COORDTYPE'), 'GALPROP2': HPX_Conv('GALPROP2', colstring='Bin', idxstring='HPXINDEX', extname='SKYMAP2', energy_hdu='ENERGIES', quantity_type='differential')} def coords_to_vec(lon, lat): """ Converts longitute and latitude coordinates to a unit 3-vector return array(3,n) with v_x[i],v_y[i],v_z[i] = directional cosines """ phi = np.radians(lon) theta = (np.pi / 2) - np.radians(lat) sin_t = np.sin(theta) cos_t = np.cos(theta) xVals = sin_t * np.cos(phi) yVals = sin_t * np.sin(phi) zVals = cos_t # Stack them into the output array out = np.vstack((xVals, yVals, zVals)).swapaxes(0, 1) return out def get_pixel_size_from_nside(nside): """ Returns an estimate of the pixel size from the HEALPix nside coordinate This just uses a lookup table to provide a nice round number for each HEALPix order. """ order = int(np.log2(nside)) if order < 0 or order > 13: raise ValueError('HEALPix order must be between 0 to 13 %i' % order) return HPX_ORDER_TO_PIXSIZE[order] def hpx_to_axes(h, npix): """ Generate a sequence of bin edge vectors corresponding to the axes of a HPX object.""" x = h.ebins z = np.arange(npix[-1] + 1) return x, z def hpx_to_coords(h, shape): """ Generate an N x D list of pixel center coordinates where N is the number of pixels and D is the dimensionality of the map.""" x, z = hpx_to_axes(h, shape) x = np.sqrt(x[0:-1] * x[1:]) z = z[:-1] + 0.5 x = np.ravel(np.ones(shape) * x[:, np.newaxis]) z = np.ravel(np.ones(shape) * z[np.newaxis, :]) return np.vstack((x, z)) def get_map_skydir(filename): hdulist = fits.open(filename) coordsys = hdulist[1].header['COORDSYS'] if coordsys == 'GAL': return SkyCoord(0., 0., unit='deg', frame='galactic').transform_to('icrs') else: return SkyCoord(0., 0., unit='deg', frame='icrs') def make_hpx_to_wcs_mapping_centers(hpx, wcs): """ Make the mapping data needed to from from HPX pixelization to a WCS-based array Parameters ---------- hpx : `~fermipy.hpx_utils.HPX` The healpix mapping (an HPX object) wcs : `~astropy.wcs.WCS` The wcs mapping (a pywcs.wcs object) Returns ------- ipixs : array(nx,ny) of HEALPix pixel indices for each wcs pixel -1 indicates the wcs pixel does not contain the center of a HEALpix pixel mult_val : array(nx,ny) of 1. npix : tuple(nx,ny) with the shape of the wcs grid """ npix = (int(wcs.wcs.crpix[0] * 2), int(wcs.wcs.crpix[1] * 2)) mult_val = np.ones(npix).T.flatten() sky_crds = hpx.get_sky_coords() pix_crds = wcs.wcs_world2pix(sky_crds, 0).astype(int) ipixs = -1 * np.ones(npix, int).T.flatten() pix_index = npix[1] * pix_crds[0:, 0] + pix_crds[0:, 1] if hpx._ipix is None: for ipix, pix_crd in enumerate(pix_index): ipixs[pix_crd] = ipix else: for pix_crd, ipix in zip(pix_index, hpx._ipix): ipixs[pix_crd] = ipix ipixs = ipixs.reshape(npix).T.flatten() return ipixs, mult_val, npix def make_hpx_to_wcs_mapping(hpx, wcs): """Make the mapping data needed to from from HPX pixelization to a WCS-based array Parameters ---------- hpx : `~fermipy.hpx_utils.HPX` The healpix mapping (an HPX object) wcs : `~astropy.wcs.WCS` The wcs mapping (a pywcs.wcs object) Returns ------- ipixs : array(nx,ny) of HEALPix pixel indices for each wcs pixel mult_val : array(nx,ny) of 1./number of wcs pixels pointing at each HEALPix pixel npix : tuple(nx,ny) with the shape of the wcs grid """ npix = (int(wcs.wcs.crpix[0] * 2), int(wcs.wcs.crpix[1] * 2)) pix_crds = np.dstack(np.meshgrid(np.arange(npix[0]), np.arange(npix[1]))).swapaxes(0, 1).reshape((npix[0] * npix[1], 2)) if wcs.wcs.naxis == 2: sky_crds = wcs.wcs_pix2world(pix_crds, 0) else: use_wcs = wcs.dropaxis(2) sky_crds = use_wcs.wcs_pix2world(pix_crds, 0) sky_crds *= np.radians(1.) sky_crds[0:, 1] = (np.pi / 2) - sky_crds[0:, 1] fullmask = np.isnan(sky_crds) mask = (fullmask[0:, 0] + fullmask[0:, 1]) == 0 ipixs = -1 * np.ones(npix, int).T.flatten() ipixs[mask] = hp.pixelfunc.ang2pix(hpx.nside, sky_crds[0:, 1][mask], sky_crds[0:, 0][mask], hpx.nest) # Here we are counting the number of HEALPix pixels each WCS pixel points to; # this could probably be vectorized by filling a histogram. d_count = {} for ipix in ipixs: if ipix in d_count: d_count[ipix] += 1 else: d_count[ipix] = 1 # Here we are getting a multiplicative factor that tells use how to split up # the counts in each HEALPix pixel (by dividing the corresponding WCS pixels # by the number of associated HEALPix pixels). # This could also likely be vectorized. mult_val = np.ones(ipixs.shape) for i, ipix in enumerate(ipixs): mult_val[i] /= d_count[ipix] ipixs = ipixs.reshape(npix).flatten() mult_val = mult_val.reshape(npix).flatten() return ipixs, mult_val, npix def match_hpx_pixel(nside, nest, nside_pix, ipix_ring): """ """ ipix_in = np.arange(12 * nside * nside) vecs = hp.pix2vec(nside, ipix_in, nest) pix_match = hp.vec2pix(nside_pix, vecs[0], vecs[1], vecs[2]) == ipix_ring return ipix_in[pix_match] def parse_hpxregion(region): """Parse the HPX_REG header keyword into a list of tokens.""" m = re.match(r'([A-Za-z\_]*?)\((.*?)\)', region) if m is None: raise Exception('Failed to parse hpx region string.') if not m.group(1): return re.split(',', m.group(2)) else: return [m.group(1)] + re.split(',', m.group(2)) def is_power2(n): """Check if an integer is a power of 2.""" return bool(n and not n & (n - 1)) def upix_to_pix(upix): """Get the nside from a unique pixel number.""" nside = np.power(2, np.floor(np.log2(upix / 4)) / 2).astype(int) pix = upix - 4 * np.power(nside, 2) return pix, nside def pix_to_upix(pix, nside): """Compute the unique pixel number from the pixel number and nside.""" return pix + 4 * np.power(nside, 2) class HPX(object): """ Encapsulation of basic healpix map parameters """ def __init__(self, nside, nest, coordsys, order=-1, ebins=None, **kwargs): """C'tor Parameters ---------- nside : `int` HEALPix nside parameter, the total number of pixels is 12*nside*nside. nest : `bool` True -> 'NESTED', False -> 'RING' indexing scheme coordsys : `str` Coordinate system, 'CEL' | 'GAL' order : `int` HEALPix order, nside = 2^order -1 -> non-standard map ebins : `np.array` or `None` Energy bins Keyword arguments: ------------------ region : `str` or None String define the healpix region. conv : `HPX_Conv` Object defining the convention for column names and the like pixels : `np.array` or `None` For use with 'EXPLICIT' region string """ conv = kwargs.get('conv', HPX_Conv('FGST_CCUBE')) if nside >= 0: if order >= 0: raise Exception('Specify either nside or oder, not both.') self._nside = nside if is_power2(nside): self._order = int(np.log2(self._nside)) else: self._order = -1 else: self._nside = 2**order self._order = order self._nest = nest self._coordsys = coordsys self._region = kwargs.get('region', None) self._ipix = kwargs.get('pixels', None) if self._region is not None: if self._ipix is None: self._ipix = self.get_index_list(self._nside, self._nest, self._region) self._maxpix = 12 * self._nside * self._nside if self._ipix is None: self._rmap = None self._npix = self._maxpix else: self._rmap = {} for i, ipixel in enumerate(self._ipix.flat): self._rmap[ipixel] = i self._npix = len(self._ipix) self._ebins = ebins self._conv = conv if self._ebins is not None: self._evals = np.sqrt(self._ebins[0:-1] * self._ebins[1:]) else: self._evals = None def __getitem__(self, sliced): """This implements the global-to-local lookup. For all-sky maps it just returns the input array. For partial-sky maps in returns the local indices corresponding to the indices in the input array, and -1 for those pixels that are outside the selected region. Parameters ---------- sliced: `~numpy.ndarray` An array of HEALPix pixel indices """ if self._rmap is not None: retval = np.empty((sliced.size), 'i') retval.fill(-1) m = np.in1d(sliced.flat, self._ipix) retval[m] = np.searchsorted(self._ipix, sliced.flat[m]) return retval.reshape(sliced.shape) return sliced @property def ordering(self): if self._nest: return "NESTED" return "RING" @property def nside(self): return self._nside @property def order(self): return self._order @property def nest(self): return self._nest @property def npix(self): return self._npix @property def ebins(self): return self._ebins @property def conv(self): return self._conv @property def coordsys(self): return self._coordsys @property def evals(self): return self._evals @property def region(self): return self._region def ud_graded_hpx(self, order): """ """ if self.order < 0: raise RuntimeError( "Upgrade and degrade only implemented for standard maps") # FIXME, this doesn't deal with pixels lists, only regions if self._region is None: pixels = None else: pixels = HPX.get_index_list(self.nside, self.nest, self.region) return HPX(-1, self.nest, self.coordsys, order, self.ebins, region=self.region, conv=self.conv, pixels=pixels) def make_swapped_hpx(self): """ """ # FIXME, this doesn't deal with pixels lists, only regions if self.region is None: pixels = None else: pixels = HPX.get_index_list(self.nside, not self.nest, self.region) return HPX(self.nside, not self.nest, self.coordsys, -1, self.ebins, region=self.region, conv=self.conv, pixels=pixels) def copy_and_drop_energy(self, pixels=None): """ """ return HPX(self.nside, self.nest, self.coordsys, -1, None, region=self.region, conv=self.conv, pixels=pixels) @classmethod def create_hpx(cls, nside, nest, coordsys='CEL', order=-1, ebins=None, region=None, conv=HPX_Conv('FGST_CCUBE'), pixels=None): """Create a HPX object. Parameters ---------- nside : int HEALPix nside paramter nest : bool True for HEALPix "NESTED" indexing scheme, False for "RING" scheme. coordsys : str "CEL" or "GAL" order : int nside = 2**order ebins : `~numpy.ndarray` Energy bin edges region : str Allows for partial-sky mappings conv : `HPX_Conv` Object defining the convention for column names and the like pixels : `np.array` or `None` For use with 'EXPLICIT' region string """ return cls(nside, nest, coordsys, order, ebins, region=region, conv=conv, pixels=pixels) @staticmethod def identify_HPX_convention(header): """ Identify the convention used to write this file """ # Hopefully the file contains the HPX_CONV keyword specifying # the convention used try: return header['HPX_CONV'] except KeyError: pass indxschm = header.get('INDXSCHM', None) # Try based on the EXTNAME keyword extname = header.get('EXTNAME', None) if extname == 'HPXEXPOSURES': return 'FGST_BEXPCUBE' elif extname == 'SKYMAP2': if 'COORDTYPE' in header.keys(): return 'GALPROP' else: return 'GALPROP2' # Check for the INDXSCHM keyword if indxschm == 'SPARSE': return 'FGST_SRCMAP_SPARSE' # Check the name of the first column colname = header['TTYPE1'] if colname == 'PIX': colname = header['TTYPE2'] if colname == 'KEY': return 'FGST_SRCMAP_SPARSE' elif colname == 'ENERGY1': return 'FGST_TEMPLATE' elif colname == 'COSBINS': return 'FGST_LTCUBE' elif colname == 'Bin0': return 'GALPROP' elif colname in ['CHANNEL1', 'Bin 0']: if extname == 'SKYMAP': return 'FGST_CCUBE' else: return 'FGST_SRCMAP' else: raise ValueError("Could not identify HEALPix convention") @classmethod def create_from_header(cls, header, ebins=None, pixels=None): """ Creates an HPX object from a FITS header. header : The FITS header ebins : Energy bin edges [optional] """ convname = HPX.identify_HPX_convention(header) conv = HPX_FITS_CONVENTIONS[convname] if conv.convname not in ['GALPROP', 'GALPROP2']: if header["PIXTYPE"] != "HEALPIX": raise Exception("PIXTYPE != HEALPIX") if header["PIXTYPE"] != "HEALPIX": raise Exception("PIXTYPE != HEALPIX") if header["ORDERING"] == "RING": nest = False elif header["ORDERING"] == "NESTED": nest = True else: raise Exception("ORDERING != RING | NESTED") try: order = header["ORDER"] except KeyError: order = -1 if order < 0: nside = header["NSIDE"] else: nside = -1 try: coordsys = header[conv.coordsys] except KeyError: coordsys = header['COORDSYS'] try: region = header["HPX_REG"] except KeyError: try: region = header["HPXREGION"] except KeyError: region = None try: if header['INDXSCHM'] in ['EXPLICIT', 'PARTIAL']: use_pixels = pixels else: use_pixels = None except KeyError: use_pixels = None return cls(nside, nest, coordsys, order, ebins, region=region, conv=conv, pixels=use_pixels) @classmethod def create_from_hdu(cls, hdu, ebins=None): """ Creates an HPX object from a FITS header. hdu : The FITS hdu ebins : Energy bin edges [optional] """ convname = HPX.identify_HPX_convention(hdu.header) conv = HPX_FITS_CONVENTIONS[convname] try: pixels = hdu.data[conv.idxstring] except KeyError: pixels = None return cls.create_from_header(hdu.header, ebins, pixels) def make_header(self): """ Builds and returns FITS header for this HEALPix map """ cards = [fits.Card("TELESCOP", "GLAST"), fits.Card("INSTRUME", "LAT"), fits.Card(self._conv.coordsys, self._coordsys), fits.Card("PIXTYPE", "HEALPIX"), fits.Card("ORDERING", self.ordering), fits.Card("ORDER", self._order), fits.Card("NSIDE", self._nside), fits.Card("FIRSTPIX", 0), fits.Card("LASTPIX", self._maxpix - 1), fits.Card("HPX_CONV", self._conv.convname)] if self._coordsys == "CEL": cards.append(fits.Card("EQUINOX", 2000.0, "Equinox of RA & DEC specifications")) if self._region is not None: cards.append(fits.Card("HPX_REG", self._region)) cards.append(fits.Card("INDXSCHM", "PARTIAL")) elif self._ipix is not None: cards.append(fits.Card("INDXSCHM", "EXPLICIT")) else: if self._conv.convname in ['FGST_SRCMAP_SPARSE']: cards.append(fits.Card("INDXSCHM", "SPARSE")) else: cards.append(fits.Card("INDXSCHM", "IMPLICIT")) header = fits.Header(cards) return header def make_hdu(self, data, **kwargs): """ Builds and returns a FITs HDU with input data data : The data begin stored Keyword arguments ------------------- extname : The HDU extension name colbase : The prefix for column names """ shape = data.shape extname = kwargs.get('extname', self.conv.extname) if shape[-1] != self._npix: raise Exception( "Size of data array does not match number of pixels") cols = [] if self._ipix is not None: cols.append(fits.Column(self.conv.idxstring, "J", array=self._ipix)) if self.conv.convname == 'FGST_SRCMAP_SPARSE': nonzero = data.nonzero() nfilled = len(nonzero[0]) if len(shape) == 1: cols.append(fits.Column("PIX", "J", array=nonzero[0].astype(int))) cols.append(fits.Column("VALUE", "E", array=data.flat[nonzero].astype(float).reshape(nfilled))) elif len(shape) == 2: keys = self._npix * nonzero[0] + nonzero[1] cols.append(fits.Column("PIX", "J", array=nonzero[1].reshape(nfilled))) cols.append(fits.Column("CHANNEL", "I", array=nonzero[0].reshape(nfilled))) cols.append(fits.Column("VALUE", "E", array=data.flat[keys].astype(float).reshape(nfilled))) else: raise Exception("HPX.write_fits only handles 1D and 2D maps") else: if len(shape) == 1: cols.append(fits.Column(self.conv.colname( indx=self.conv.firstcol), "E", array=data.astype(float))) elif len(shape) == 2: for i in range(shape[0]): cols.append(fits.Column(self.conv.colname( indx=i + self.conv.firstcol), "E", array=data[i].astype(float))) else: raise Exception("HPX.write_fits only handles 1D and 2D maps") header = self.make_header() hdu = fits.BinTableHDU.from_columns(cols, header=header, name=extname) return hdu def make_energy_bounds_hdu(self, extname="EBOUNDS"): """ Builds and returns a FITs HDU with the energy bin boundries extname : The HDU extension name """ if self._ebins is None: return None cols = [fits.Column("CHANNEL", "I", array=np.arange(1, len(self._ebins + 1))), fits.Column("E_MIN", "1E", unit='keV', array=1000 * self._ebins[0:-1]), fits.Column("E_MAX", "1E", unit='keV', array=1000 * self._ebins[1:])] hdu = fits.BinTableHDU.from_columns( cols, self.make_header(), name=extname) return hdu def make_energies_hdu(self, extname="ENERGIES"): """ Builds and returns a FITs HDU with the energy bin boundries extname : The HDU extension name """ if self._evals is None: return None cols = [fits.Column("ENERGY", "1E", unit='MeV', array=self._evals)] hdu = fits.BinTableHDU.from_columns( cols, self.make_header(), name=extname) return hdu def write_fits(self, data, outfile, extname="SKYMAP", clobber=True): """ Write input data to a FITS file data : The data begin stored outfile : The name of the output file extname : The HDU extension name clobber : True -> overwrite existing files """ hdu_prim = fits.PrimaryHDU() hdu_hpx = self.make_hdu(data, extname=extname) hl = [hdu_prim, hdu_hpx] if self.conv.energy_hdu == 'EBOUNDS': hdu_energy = self.make_energy_bounds_hdu() elif self.conv.energy_hdu == 'ENERGIES': hdu_energy = self.make_energies_hdu() if hdu_energy is not None: hl.append(hdu_energy) hdulist = fits.HDUList(hl) hdulist.writeto(outfile, overwrite=clobber) @staticmethod def get_index_list(nside, nest, region): """ Returns the list of pixels indices for all the pixels in a region nside : HEALPix nside parameter nest : True for 'NESTED', False = 'RING' region : HEALPix region string """ tokens = parse_hpxregion(region) if tokens[0] == 'DISK': vec = coords_to_vec(float(tokens[1]), float(tokens[2])) ilist = hp.query_disc(nside, vec[0], np.radians(float(tokens[3])), inclusive=False, nest=nest) elif tokens[0] == 'DISK_INC': vec = coords_to_vec(float(tokens[1]), float(tokens[2])) ilist = hp.query_disc(nside, vec[0], np.radians(float(tokens[3])), inclusive=True, fact=int(tokens[4]), nest=nest) elif tokens[0] == 'HPX_PIXEL': nside_pix = int(tokens[2]) if tokens[1] == 'NESTED': ipix_ring = hp.nest2ring(nside_pix, int(tokens[3])) elif tokens[1] == 'RING': ipix_ring = int(tokens[3]) else: raise Exception( "Did not recognize ordering scheme %s" % tokens[1]) ilist = match_hpx_pixel(nside, nest, nside_pix, ipix_ring) else: raise Exception( "HPX.get_index_list did not recognize region type %s" % tokens[0]) return ilist @staticmethod def get_ref_dir(region, coordsys): """ Finds and returns the reference direction for a given HEALPix region string. region : a string describing a HEALPix region coordsys : coordinate system, GAL | CEL """ if region is None: if coordsys == "GAL": c = SkyCoord(0., 0., frame=Galactic, unit="deg") elif coordsys == "CEL": c = SkyCoord(0., 0., frame=ICRS, unit="deg") return c tokens = parse_hpxregion(region) if tokens[0] in ['DISK', 'DISK_INC']: if coordsys == "GAL": c = SkyCoord(float(tokens[1]), float( tokens[2]), frame=Galactic, unit="deg") elif coordsys == "CEL": c = SkyCoord(float(tokens[1]), float( tokens[2]), frame=ICRS, unit="deg") return c elif tokens[0] == 'HPX_PIXEL': nside_pix = int(tokens[2]) ipix_pix = int(tokens[3]) if tokens[1] == 'NESTED': nest_pix = True elif tokens[1] == 'RING': nest_pix = False else: raise Exception( "Did not recognize ordering scheme %s" % tokens[1]) theta, phi = hp.pix2ang(nside_pix, ipix_pix, nest_pix) lat = np.degrees((np.pi / 2) - theta) lon = np.degrees(phi) if coordsys == "GAL": c = SkyCoord(lon, lat, frame=Galactic, unit="deg") elif coordsys == "CEL": c = SkyCoord(lon, lat, frame=ICRS, unit="deg") return c else: raise Exception( "HPX.get_ref_dir did not recognize region type %s" % tokens[0]) return None @staticmethod def get_region_size(region): """ Finds and returns the approximate size of region (in degrees) from a HEALPix region string. """ if region is None: return 180. tokens = parse_hpxregion(region) if tokens[0] in ['DISK', 'DISK_INC']: return float(tokens[3]) elif tokens[0] == 'HPX_PIXEL': pixel_size = get_pixel_size_from_nside(int(tokens[2])) return 2. * pixel_size else: raise Exception( "HPX.get_region_size did not recognize region type %s" % tokens[0]) return None def make_wcs(self, naxis=2, proj='CAR', energies=None, oversample=2): """ Make a WCS projection appropirate for this HPX pixelization """ w = WCS(naxis=naxis) skydir = self.get_ref_dir(self._region, self.coordsys) if self.coordsys == 'CEL': w.wcs.ctype[0] = 'RA---%s' % (proj) w.wcs.ctype[1] = 'DEC--%s' % (proj) w.wcs.crval[0] = skydir.ra.deg w.wcs.crval[1] = skydir.dec.deg elif self.coordsys == 'GAL': w.wcs.ctype[0] = 'GLON-%s' % (proj) w.wcs.ctype[1] = 'GLAT-%s' % (proj) w.wcs.crval[0] = skydir.galactic.l.deg w.wcs.crval[1] = skydir.galactic.b.deg else: raise Exception('Unrecognized coordinate system.') pixsize = get_pixel_size_from_nside(self.nside) roisize = self.get_region_size(self._region) allsky = False if roisize > 45: roisize = 90 allsky = True npixels = int(2. * roisize / pixsize) * oversample crpix = npixels / 2. if allsky: w.wcs.crpix[0] = 2 * crpix npix = (2 * npixels, npixels) else: w.wcs.crpix[0] = crpix npix = (npixels, npixels) w.wcs.crpix[1] = crpix w.wcs.cdelt[0] = -pixsize / oversample w.wcs.cdelt[1] = pixsize / oversample if naxis == 3: w.wcs.crpix[2] = 1 w.wcs.ctype[2] = 'Energy' if energies is not None: w.wcs.crval[2] = 10 ** energies[0] w.wcs.cdelt[2] = 10 ** energies[1] - 10 ** energies[0] w = WCS(w.to_header()) wcs_proj = WCSProj(w, npix) return wcs_proj def get_sky_coords(self): """ Get the sky coordinates of all the pixels in this pixelization """ if self._ipix is None: theta, phi = hp.pix2ang( self._nside, list(range(self._npix)), self._nest) else: theta, phi = hp.pix2ang(self._nside, self._ipix, self._nest) lat = np.degrees((np.pi / 2) - theta) lon = np.degrees(phi) return np.vstack([lon, lat]).T def get_sky_dirs(self): lonlat = self.get_sky_coords() if self.coordsys == 'CEL': return SkyCoord(ra=lonlat.T[0], dec=lonlat.T[1], unit='deg', frame='icrs') else: return SkyCoord(l=lonlat.T[0], b=lonlat.T[1], unit='deg', frame='galactic') def get_pixel_indices(self, lats, lons): """ "Return the indices in the flat array corresponding to a set of coordinates """ theta = np.radians(90. - lats) phi = np.radians(lons) return hp.ang2pix(self.nside, theta, phi, self.nest) def skydir_to_pixel(self, skydir): """Return the pixel index of a SkyCoord object.""" if self.coordsys in ['CEL', 'EQU']: skydir = skydir.transform_to('icrs') lon = skydir.ra.deg lat = skydir.dec.deg else: skydir = skydir.transform_to('galactic') lon = skydir.l.deg lat = skydir.b.deg return self.get_pixel_indices(lat, lon) class HpxToWcsMapping(object): """ Stores the indices need to conver from HEALPix to WCS """ def __init__(self, hpx, wcs, mapping_data=None): """ """ self._hpx = hpx self._wcs = wcs if mapping_data is None: self._ipixs, self._mult_val, self._npix = make_hpx_to_wcs_mapping( self.hpx, self.wcs.wcs) else: self._ipixs = mapping_data['ipixs'] self._mult_val = mapping_data['mult_val'] self._npix = mapping_data['npix'] self._lmap = self._hpx[self._ipixs] self._valid = self._lmap >= 0 @property def hpx(self): """ The HEALPix projection """ return self._hpx @property def wcs(self): """ The WCS projection """ return self._wcs @property def ipixs(self): """An array(nx,ny) of the global HEALPix pixel indices for each WCS pixel""" return self._ipixs @property def mult_val(self): """An array(nx,ny) of 1/number of WCS pixels pointing at each HEALPix pixel""" return self._mult_val @property def npix(self): """ A tuple(nx,ny) of the shape of the WCS grid """ return self._npix @property def lmap(self): """An array(nx,ny) giving the mapping of the local HEALPix pixel indices for each WCS pixel""" return self._lmap @property def valid(self): """An array(nx,ny) of bools giving if each WCS pixel in inside the HEALPix region""" return self._valid def write_to_fitsfile(self, fitsfile, clobber=True): """Write this mapping to a FITS file, to avoid having to recompute it """ from fermipy.skymap import Map hpx_header = self._hpx.make_header() index_map = Map(self.ipixs, self.wcs) mult_map = Map(self.mult_val, self.wcs) prim_hdu = index_map.create_primary_hdu() mult_hdu = index_map.create_image_hdu() for key in ['COORDSYS', 'ORDERING', 'PIXTYPE', 'ORDERING', 'ORDER', 'NSIDE', 'FIRSTPIX', 'LASTPIX']: prim_hdu.header[key] = hpx_header[key] mult_hdu.header[key] = hpx_header[key] hdulist = fits.HDUList([prim_hdu, mult_hdu]) hdulist.writeto(fitsfile, overwrite=clobber) @classmethod def create_from_fitsfile(cls, fitsfile): """ Read a fits file and use it to make a mapping """ from fermipy.skymap import Map index_map = Map.create_from_fits(fitsfile) mult_map = Map.create_from_fits(fitsfile, hdu=1) ff = fits.open(fitsfile) hpx = HPX.create_from_hdu(ff[0]) mapping_data = dict(ipixs=index_map.counts, mult_val=mult_map.counts, npix=mult_map.counts.shape) return cls(hpx, index_map.wcs, mapping_data) def fill_wcs_map_from_hpx_data(self, hpx_data, wcs_data, normalize=True): """Fills the wcs map from the hpx data using the pre-calculated mappings hpx_data : the input HEALPix data wcs_data : the data array being filled normalize : True -> perserve integral by splitting HEALPix values between bins """ # FIXME, there really ought to be a better way to do this hpx_naxis = len(hpx_data.shape) wcs_naxis = len(wcs_data.shape) if hpx_naxis + 1 != wcs_naxis: raise ValueError("HPX.fill_wcs_map_from_hpx_data: HPX naxis should be 1 less that WCS naxis: %i, %i"%(hpx_naxis, wcs_naxis)) if hpx_naxis == 2: if hpx_data.shape[1] != wcs_data.shape[2]: raise ValueError("HPX.fill_wcs_map_from_hpx_data: size of energy axes don't match: %i, %i"%(hpx_naxis[1], wcs_naxis[2])) lmap_valid = self._lmap[self._valid] wcs_layer_shape = wcs_data.shape[0]*wcs_data.shape[1] if hpx_naxis == 2: for i in range(hpx_data.shape[1]): wcs_data_layer = np.zeros(wcs_layer_shape) wcs_data_layer[self._valid] = hpx_data[:,i][lmap_valid] orig_value = wcs_data_layer.sum() if normalize: wcs_data_layer *= self._mult_val wcs_data[:,:,i].flat = wcs_data_layer else: wcs_data_flat = np.zeros(wcs_layer_shape) wcs_data_flat[self._valid] = hpx_data[lmap_valid] if normalize: wcs_data_flat *= self._mult_val wcs_data.flat = wcs_data_flat def make_wcs_data_from_hpx_data(self, hpx_data, wcs, normalize=True): """ Creates and fills a wcs map from the hpx data using the pre-calculated mappings hpx_data : the input HEALPix data wcs : the WCS object normalize : True -> perserve integral by splitting HEALPix values between bins """ wcs_data = np.zeros(wcs.npix) self.fill_wcs_map_from_hpx_data(hpx_data, wcs_data, normalize) return wcs_data
# Copyright (c) 2013 OpenStack Foundation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import copy import datetime import mock from oslo_config import cfg from oslo_db import exception as db_exc import oslo_messaging from oslo_utils import timeutils from webob import exc from neutron.api import extensions from neutron.api.rpc.agentnotifiers import dhcp_rpc_agent_api from neutron.api.rpc.handlers import dhcp_rpc from neutron.api.rpc.handlers import l3_rpc from neutron.api.v2 import attributes from neutron.common import constants from neutron import context from neutron.db import agents_db from neutron.db import agentschedulers_db from neutron.db import l3_agentschedulers_db from neutron.extensions import agent from neutron.extensions import dhcpagentscheduler from neutron.extensions import l3agentscheduler from neutron import manager from neutron.openstack.common import uuidutils from neutron.plugins.common import constants as service_constants from neutron.tests import fake_notifier from neutron.tests.unit.api import test_extensions from neutron.tests.unit.db import test_db_base_plugin_v2 as test_plugin from neutron.tests.unit.extensions import test_agent from neutron.tests.unit.extensions import test_l3 from neutron.tests.unit import testlib_api from neutron import wsgi L3_HOSTA = 'hosta' DHCP_HOSTA = 'hosta' L3_HOSTB = 'hostb' DHCP_HOSTC = 'hostc' class AgentSchedulerTestMixIn(object): def _request_list(self, path, admin_context=True, expected_code=exc.HTTPOk.code): req = self._path_req(path, admin_context=admin_context) res = req.get_response(self.ext_api) self.assertEqual(res.status_int, expected_code) return self.deserialize(self.fmt, res) def _path_req(self, path, method='GET', data=None, query_string=None, admin_context=True): content_type = 'application/%s' % self.fmt body = None if data is not None: # empty dict is valid body = wsgi.Serializer().serialize(data, content_type) if admin_context: return testlib_api.create_request( path, body, content_type, method, query_string=query_string) else: return testlib_api.create_request( path, body, content_type, method, query_string=query_string, context=context.Context('', 'tenant_id')) def _path_create_request(self, path, data, admin_context=True): return self._path_req(path, method='POST', data=data, admin_context=admin_context) def _path_show_request(self, path, admin_context=True): return self._path_req(path, admin_context=admin_context) def _path_delete_request(self, path, admin_context=True): return self._path_req(path, method='DELETE', admin_context=admin_context) def _path_update_request(self, path, data, admin_context=True): return self._path_req(path, method='PUT', data=data, admin_context=admin_context) def _list_routers_hosted_by_l3_agent(self, agent_id, expected_code=exc.HTTPOk.code, admin_context=True): path = "/agents/%s/%s.%s" % (agent_id, l3agentscheduler.L3_ROUTERS, self.fmt) return self._request_list(path, expected_code=expected_code, admin_context=admin_context) def _list_networks_hosted_by_dhcp_agent(self, agent_id, expected_code=exc.HTTPOk.code, admin_context=True): path = "/agents/%s/%s.%s" % (agent_id, dhcpagentscheduler.DHCP_NETS, self.fmt) return self._request_list(path, expected_code=expected_code, admin_context=admin_context) def _list_l3_agents_hosting_router(self, router_id, expected_code=exc.HTTPOk.code, admin_context=True): path = "/routers/%s/%s.%s" % (router_id, l3agentscheduler.L3_AGENTS, self.fmt) return self._request_list(path, expected_code=expected_code, admin_context=admin_context) def _list_dhcp_agents_hosting_network(self, network_id, expected_code=exc.HTTPOk.code, admin_context=True): path = "/networks/%s/%s.%s" % (network_id, dhcpagentscheduler.DHCP_AGENTS, self.fmt) return self._request_list(path, expected_code=expected_code, admin_context=admin_context) def _add_router_to_l3_agent(self, id, router_id, expected_code=exc.HTTPCreated.code, admin_context=True): path = "/agents/%s/%s.%s" % (id, l3agentscheduler.L3_ROUTERS, self.fmt) req = self._path_create_request(path, {'router_id': router_id}, admin_context=admin_context) res = req.get_response(self.ext_api) self.assertEqual(res.status_int, expected_code) def _add_network_to_dhcp_agent(self, id, network_id, expected_code=exc.HTTPCreated.code, admin_context=True): path = "/agents/%s/%s.%s" % (id, dhcpagentscheduler.DHCP_NETS, self.fmt) req = self._path_create_request(path, {'network_id': network_id}, admin_context=admin_context) res = req.get_response(self.ext_api) self.assertEqual(res.status_int, expected_code) def _remove_network_from_dhcp_agent(self, id, network_id, expected_code=exc.HTTPNoContent.code, admin_context=True): path = "/agents/%s/%s/%s.%s" % (id, dhcpagentscheduler.DHCP_NETS, network_id, self.fmt) req = self._path_delete_request(path, admin_context=admin_context) res = req.get_response(self.ext_api) self.assertEqual(res.status_int, expected_code) def _remove_router_from_l3_agent(self, id, router_id, expected_code=exc.HTTPNoContent.code, admin_context=True): path = "/agents/%s/%s/%s.%s" % (id, l3agentscheduler.L3_ROUTERS, router_id, self.fmt) req = self._path_delete_request(path, admin_context=admin_context) res = req.get_response(self.ext_api) self.assertEqual(res.status_int, expected_code) def _assert_notify(self, notifications, expected_event_type): event_types = [event['event_type'] for event in notifications] self.assertIn(expected_event_type, event_types) def _register_one_agent_state(self, agent_state): callback = agents_db.AgentExtRpcCallback() callback.report_state(self.adminContext, agent_state={'agent_state': agent_state}, time=timeutils.strtime()) def test_agent_registration_bad_timestamp(self): dhcp_hosta = { 'binary': 'neutron-dhcp-agent', 'host': DHCP_HOSTA, 'start_flag': True, 'topic': 'DHCP_AGENT', 'configurations': {'dhcp_driver': 'dhcp_driver', 'use_namespaces': True, }, 'agent_type': constants.AGENT_TYPE_DHCP} callback = agents_db.AgentExtRpcCallback() delta_time = datetime.datetime.now() - datetime.timedelta(days=1) str_time = delta_time.strftime('%Y-%m-%dT%H:%M:%S.%f') callback.report_state(self.adminContext, agent_state={'agent_state': dhcp_hosta}, time=str_time) def test_agent_registration_invalid_timestamp_allowed(self): dhcp_hosta = { 'binary': 'neutron-dhcp-agent', 'host': DHCP_HOSTA, 'start_flag': True, 'topic': 'DHCP_AGENT', 'configurations': {'dhcp_driver': 'dhcp_driver', 'use_namespaces': True, }, 'agent_type': constants.AGENT_TYPE_DHCP} callback = agents_db.AgentExtRpcCallback() utc_time = datetime.datetime.utcnow() delta_time = utc_time - datetime.timedelta(seconds=10) str_time = delta_time.strftime('%Y-%m-%dT%H:%M:%S.%f') callback.report_state(self.adminContext, agent_state={'agent_state': dhcp_hosta}, time=str_time) def _disable_agent(self, agent_id, admin_state_up=False): new_agent = {} new_agent['agent'] = {} new_agent['agent']['admin_state_up'] = admin_state_up self._update('agents', agent_id, new_agent) def _get_agent_id(self, agent_type, host): agents = self._list_agents() for agent_data in agents['agents']: if (agent_data['agent_type'] == agent_type and agent_data['host'] == host): return agent_data['id'] class OvsAgentSchedulerTestCaseBase(test_l3.L3NatTestCaseMixin, test_agent.AgentDBTestMixIn, AgentSchedulerTestMixIn, test_plugin.NeutronDbPluginV2TestCase): fmt = 'json' plugin_str = 'neutron.plugins.ml2.plugin.Ml2Plugin' l3_plugin = ('neutron.tests.unit.extensions.test_l3.' 'TestL3NatAgentSchedulingServicePlugin') def setUp(self): # Save the global RESOURCE_ATTRIBUTE_MAP before loading plugin self.saved_attr_map = {} for resource, attrs in attributes.RESOURCE_ATTRIBUTE_MAP.iteritems(): self.saved_attr_map[resource] = attrs.copy() if self.l3_plugin: service_plugins = {'l3_plugin_name': self.l3_plugin} else: service_plugins = None super(OvsAgentSchedulerTestCaseBase, self).setUp( self.plugin_str, service_plugins=service_plugins) ext_mgr = extensions.PluginAwareExtensionManager.get_instance() self.ext_api = test_extensions.setup_extensions_middleware(ext_mgr) self.adminContext = context.get_admin_context() # Add the resources to the global attribute map # This is done here as the setup process won't # initialize the main API router which extends # the global attribute map attributes.RESOURCE_ATTRIBUTE_MAP.update( agent.RESOURCE_ATTRIBUTE_MAP) self.addCleanup(self.restore_attribute_map) self.l3agentscheduler_dbMinxin = ( manager.NeutronManager.get_service_plugins().get( service_constants.L3_ROUTER_NAT)) self.l3_notify_p = mock.patch( 'neutron.extensions.l3agentscheduler.notify') self.patched_l3_notify = self.l3_notify_p.start() self.l3_periodic_p = mock.patch('neutron.db.l3_agentschedulers_db.' 'L3AgentSchedulerDbMixin.' 'start_periodic_l3_agent_status_check') self.patched_l3_periodic = self.l3_periodic_p.start() self.dhcp_notify_p = mock.patch( 'neutron.extensions.dhcpagentscheduler.notify') self.patched_dhcp_notify = self.dhcp_notify_p.start() def restore_attribute_map(self): # Restore the original RESOURCE_ATTRIBUTE_MAP attributes.RESOURCE_ATTRIBUTE_MAP = self.saved_attr_map class OvsAgentSchedulerTestCase(OvsAgentSchedulerTestCaseBase): def test_report_states(self): self._register_agent_states() agents = self._list_agents() self.assertEqual(4, len(agents['agents'])) def test_network_scheduling_on_network_creation(self): self._register_agent_states() with self.network() as net: dhcp_agents = self._list_dhcp_agents_hosting_network( net['network']['id']) self.assertEqual(0, len(dhcp_agents['agents'])) def test_network_auto_schedule_with_disabled(self): cfg.CONF.set_override('allow_overlapping_ips', True) with contextlib.nested(self.subnet(), self.subnet()): dhcp_rpc_cb = dhcp_rpc.DhcpRpcCallback() self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTA) hostc_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTC) self._disable_agent(hosta_id) dhcp_rpc_cb.get_active_networks(self.adminContext, host=DHCP_HOSTA) # second agent will host all the networks since first is disabled. dhcp_rpc_cb.get_active_networks(self.adminContext, host=DHCP_HOSTC) networks = self._list_networks_hosted_by_dhcp_agent(hostc_id) num_hostc_nets = len(networks['networks']) networks = self._list_networks_hosted_by_dhcp_agent(hosta_id) num_hosta_nets = len(networks['networks']) self.assertEqual(0, num_hosta_nets) self.assertEqual(2, num_hostc_nets) def test_network_auto_schedule_with_no_dhcp(self): cfg.CONF.set_override('allow_overlapping_ips', True) with contextlib.nested(self.subnet(enable_dhcp=False), self.subnet(enable_dhcp=False)): dhcp_rpc_cb = dhcp_rpc.DhcpRpcCallback() self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTA) hostc_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTC) self._disable_agent(hosta_id) dhcp_rpc_cb.get_active_networks(self.adminContext, host=DHCP_HOSTA) dhcp_rpc_cb.get_active_networks(self.adminContext, host=DHCP_HOSTC) networks = self._list_networks_hosted_by_dhcp_agent(hostc_id) num_hostc_nets = len(networks['networks']) networks = self._list_networks_hosted_by_dhcp_agent(hosta_id) num_hosta_nets = len(networks['networks']) self.assertEqual(0, num_hosta_nets) self.assertEqual(0, num_hostc_nets) def test_network_auto_schedule_with_multiple_agents(self): cfg.CONF.set_override('dhcp_agents_per_network', 2) cfg.CONF.set_override('allow_overlapping_ips', True) with contextlib.nested(self.subnet(), self.subnet()): dhcp_rpc_cb = dhcp_rpc.DhcpRpcCallback() self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTA) hostc_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTC) dhcp_rpc_cb.get_active_networks(self.adminContext, host=DHCP_HOSTA) dhcp_rpc_cb.get_active_networks(self.adminContext, host=DHCP_HOSTC) networks = self._list_networks_hosted_by_dhcp_agent(hostc_id) num_hostc_nets = len(networks['networks']) networks = self._list_networks_hosted_by_dhcp_agent(hosta_id) num_hosta_nets = len(networks['networks']) self.assertEqual(2, num_hosta_nets) self.assertEqual(2, num_hostc_nets) def test_network_auto_schedule_restart_dhcp_agent(self): cfg.CONF.set_override('dhcp_agents_per_network', 2) with self.subnet() as sub1: dhcp_rpc_cb = dhcp_rpc.DhcpRpcCallback() self._register_agent_states() dhcp_rpc_cb.get_active_networks(self.adminContext, host=DHCP_HOSTA) dhcp_rpc_cb.get_active_networks(self.adminContext, host=DHCP_HOSTA) dhcp_agents = self._list_dhcp_agents_hosting_network( sub1['subnet']['network_id']) self.assertEqual(1, len(dhcp_agents['agents'])) def test_network_auto_schedule_with_hosted(self): # one agent hosts all the networks, other hosts none cfg.CONF.set_override('allow_overlapping_ips', True) with contextlib.nested(self.subnet(), self.subnet()) as (sub1, sub2): dhcp_rpc_cb = dhcp_rpc.DhcpRpcCallback() self._register_agent_states() dhcp_rpc_cb.get_active_networks(self.adminContext, host=DHCP_HOSTA) # second agent will not host the network since first has got it. dhcp_rpc_cb.get_active_networks(self.adminContext, host=DHCP_HOSTC) dhcp_agents = self._list_dhcp_agents_hosting_network( sub1['subnet']['network_id']) hosta_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTA) hostc_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTC) hosta_nets = self._list_networks_hosted_by_dhcp_agent(hosta_id) num_hosta_nets = len(hosta_nets['networks']) hostc_nets = self._list_networks_hosted_by_dhcp_agent(hostc_id) num_hostc_nets = len(hostc_nets['networks']) self.assertEqual(2, num_hosta_nets) self.assertEqual(0, num_hostc_nets) self.assertEqual(1, len(dhcp_agents['agents'])) self.assertEqual(DHCP_HOSTA, dhcp_agents['agents'][0]['host']) def test_network_auto_schedule_with_hosted_2(self): # one agent hosts one network dhcp_rpc_cb = dhcp_rpc.DhcpRpcCallback() dhcp_hosta = { 'binary': 'neutron-dhcp-agent', 'host': DHCP_HOSTA, 'topic': 'DHCP_AGENT', 'configurations': {'dhcp_driver': 'dhcp_driver', 'use_namespaces': True, }, 'agent_type': constants.AGENT_TYPE_DHCP} dhcp_hostc = copy.deepcopy(dhcp_hosta) dhcp_hostc['host'] = DHCP_HOSTC cfg.CONF.set_override('allow_overlapping_ips', True) with self.subnet() as sub1: self._register_one_agent_state(dhcp_hosta) dhcp_rpc_cb.get_active_networks(self.adminContext, host=DHCP_HOSTA) hosta_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTA) self._disable_agent(hosta_id, admin_state_up=False) with self.subnet() as sub2: self._register_one_agent_state(dhcp_hostc) dhcp_rpc_cb.get_active_networks(self.adminContext, host=DHCP_HOSTC) dhcp_agents_1 = self._list_dhcp_agents_hosting_network( sub1['subnet']['network_id']) dhcp_agents_2 = self._list_dhcp_agents_hosting_network( sub2['subnet']['network_id']) hosta_nets = self._list_networks_hosted_by_dhcp_agent(hosta_id) num_hosta_nets = len(hosta_nets['networks']) hostc_id = self._get_agent_id( constants.AGENT_TYPE_DHCP, DHCP_HOSTC) hostc_nets = self._list_networks_hosted_by_dhcp_agent(hostc_id) num_hostc_nets = len(hostc_nets['networks']) self.assertEqual(1, num_hosta_nets) self.assertEqual(1, num_hostc_nets) self.assertEqual(1, len(dhcp_agents_1['agents'])) self.assertEqual(1, len(dhcp_agents_2['agents'])) self.assertEqual(DHCP_HOSTA, dhcp_agents_1['agents'][0]['host']) self.assertEqual(DHCP_HOSTC, dhcp_agents_2['agents'][0]['host']) def test_network_scheduling_on_port_creation(self): with self.subnet() as subnet: dhcp_agents = self._list_dhcp_agents_hosting_network( subnet['subnet']['network_id']) result0 = len(dhcp_agents['agents']) self._register_agent_states() with self.port(subnet=subnet, device_owner="compute:test:" + DHCP_HOSTA) as port: dhcp_agents = self._list_dhcp_agents_hosting_network( port['port']['network_id']) result1 = len(dhcp_agents['agents']) self.assertEqual(0, result0) self.assertEqual(1, result1) def test_network_ha_scheduling_on_port_creation(self): cfg.CONF.set_override('dhcp_agents_per_network', 2) with self.subnet() as subnet: dhcp_agents = self._list_dhcp_agents_hosting_network( subnet['subnet']['network_id']) result0 = len(dhcp_agents['agents']) self._register_agent_states() with self.port(subnet=subnet, device_owner="compute:test:" + DHCP_HOSTA) as port: dhcp_agents = self._list_dhcp_agents_hosting_network( port['port']['network_id']) result1 = len(dhcp_agents['agents']) self.assertEqual(0, result0) self.assertEqual(2, result1) def test_network_ha_scheduling_on_port_creation_with_new_agent(self): cfg.CONF.set_override('dhcp_agents_per_network', 3) with self.subnet() as subnet: dhcp_agents = self._list_dhcp_agents_hosting_network( subnet['subnet']['network_id']) result0 = len(dhcp_agents['agents']) self._register_agent_states() with self.port(subnet=subnet, device_owner="compute:test:" + DHCP_HOSTA) as port: dhcp_agents = self._list_dhcp_agents_hosting_network( port['port']['network_id']) result1 = len(dhcp_agents['agents']) self._register_one_dhcp_agent() with self.port(subnet=subnet, device_owner="compute:test:" + DHCP_HOSTA) as port: dhcp_agents = self._list_dhcp_agents_hosting_network( port['port']['network_id']) result2 = len(dhcp_agents['agents']) self.assertEqual(0, result0) self.assertEqual(2, result1) self.assertEqual(3, result2) def test_network_scheduler_with_disabled_agent(self): dhcp_hosta = { 'binary': 'neutron-dhcp-agent', 'host': DHCP_HOSTA, 'topic': 'DHCP_AGENT', 'configurations': {'dhcp_driver': 'dhcp_driver', 'use_namespaces': True, }, 'agent_type': constants.AGENT_TYPE_DHCP} self._register_one_agent_state(dhcp_hosta) with self.port() as port1: dhcp_agents = self._list_dhcp_agents_hosting_network( port1['port']['network_id']) self._delete('ports', port1['port']['id']) self._delete('networks', port1['port']['network_id']) self.assertEqual(1, len(dhcp_agents['agents'])) agents = self._list_agents() self._disable_agent(agents['agents'][0]['id']) with self.port() as port2: dhcp_agents = self._list_dhcp_agents_hosting_network( port2['port']['network_id']) self._delete('ports', port2['port']['id']) self.assertEqual(0, len(dhcp_agents['agents'])) def test_is_eligible_agent(self): agent_startup = ('neutron.db.agentschedulers_db.' 'DhcpAgentSchedulerDbMixin.agent_starting_up') is_eligible_agent = ('neutron.db.agentschedulers_db.' 'AgentSchedulerDbMixin.is_eligible_agent') dhcp_mixin = agentschedulers_db.DhcpAgentSchedulerDbMixin() with contextlib.nested( mock.patch(agent_startup), mock.patch(is_eligible_agent) ) as (startup, elig): tests = [(True, True), (True, False), (False, True), (False, False)] for rv1, rv2 in tests: startup.return_value = rv1 elig.return_value = rv2 self.assertEqual(rv1 or rv2, dhcp_mixin.is_eligible_agent(None, None, None)) def test_network_scheduler_with_down_agent(self): dhcp_hosta = { 'binary': 'neutron-dhcp-agent', 'host': DHCP_HOSTA, 'topic': 'DHCP_AGENT', 'configurations': {'dhcp_driver': 'dhcp_driver', 'use_namespaces': True, }, 'agent_type': constants.AGENT_TYPE_DHCP} self._register_one_agent_state(dhcp_hosta) eligible_agent_str = ('neutron.db.agentschedulers_db.' 'DhcpAgentSchedulerDbMixin.is_eligible_agent') with mock.patch(eligible_agent_str) as eligible_agent: eligible_agent.return_value = True with self.port() as port: dhcp_agents = self._list_dhcp_agents_hosting_network( port['port']['network_id']) self._delete('ports', port['port']['id']) self._delete('networks', port['port']['network_id']) self.assertEqual(1, len(dhcp_agents['agents'])) with mock.patch(eligible_agent_str) as eligible_agent: eligible_agent.return_value = False with self.port() as port: dhcp_agents = self._list_dhcp_agents_hosting_network( port['port']['network_id']) self._delete('ports', port['port']['id']) self.assertEqual(0, len(dhcp_agents['agents'])) def test_network_scheduler_with_hosted_network(self): plugin = manager.NeutronManager.get_plugin() dhcp_hosta = { 'binary': 'neutron-dhcp-agent', 'host': DHCP_HOSTA, 'topic': 'DHCP_AGENT', 'configurations': {'dhcp_driver': 'dhcp_driver', 'use_namespaces': True, }, 'agent_type': constants.AGENT_TYPE_DHCP} self._register_one_agent_state(dhcp_hosta) with self.port() as port1: dhcp_agents = self._list_dhcp_agents_hosting_network( port1['port']['network_id']) self.assertEqual(1, len(dhcp_agents['agents'])) with mock.patch.object(plugin, 'get_dhcp_agents_hosting_networks', autospec=True) as mock_hosting_agents: mock_hosting_agents.return_value = plugin.get_agents_db( self.adminContext) with self.network('test') as net1: pass with self.subnet(network=net1, cidr='10.0.1.0/24') as subnet1: pass with self.port(subnet=subnet1) as port2: pass dhcp_agents = self._list_dhcp_agents_hosting_network( port2['port']['network_id']) self.assertEqual(0, len(dhcp_agents['agents'])) def test_network_policy(self): with self.network() as net1: self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTA) self._list_networks_hosted_by_dhcp_agent( hosta_id, expected_code=exc.HTTPForbidden.code, admin_context=False) self._add_network_to_dhcp_agent( hosta_id, net1['network']['id'], expected_code=exc.HTTPForbidden.code, admin_context=False) self._add_network_to_dhcp_agent(hosta_id, net1['network']['id']) self._remove_network_from_dhcp_agent( hosta_id, net1['network']['id'], expected_code=exc.HTTPForbidden.code, admin_context=False) self._list_dhcp_agents_hosting_network( net1['network']['id'], expected_code=exc.HTTPForbidden.code, admin_context=False) def _test_network_add_to_dhcp_agent(self, admin_state_up=True): with self.network() as net1: self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTA) if not admin_state_up: self._set_agent_admin_state_up(DHCP_HOSTA, False) num_before_add = len( self._list_networks_hosted_by_dhcp_agent( hosta_id)['networks']) self._add_network_to_dhcp_agent(hosta_id, net1['network']['id']) num_after_add = len( self._list_networks_hosted_by_dhcp_agent( hosta_id)['networks']) self.assertEqual(0, num_before_add) self.assertEqual(1, num_after_add) def test_network_add_to_dhcp_agent(self): self._test_network_add_to_dhcp_agent() def test_network_add_to_dhcp_agent_with_admin_state_down(self): cfg.CONF.set_override( 'enable_services_on_agents_with_admin_state_down', True) self._test_network_add_to_dhcp_agent(admin_state_up=False) def test_network_remove_from_dhcp_agent(self): dhcp_hosta = { 'binary': 'neutron-dhcp-agent', 'host': DHCP_HOSTA, 'topic': 'DHCP_AGENT', 'configurations': {'dhcp_driver': 'dhcp_driver', 'use_namespaces': True, }, 'agent_type': constants.AGENT_TYPE_DHCP} self._register_one_agent_state(dhcp_hosta) hosta_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTA) with self.port() as port1: num_before_remove = len( self._list_networks_hosted_by_dhcp_agent( hosta_id)['networks']) self._remove_network_from_dhcp_agent(hosta_id, port1['port']['network_id']) num_after_remove = len( self._list_networks_hosted_by_dhcp_agent( hosta_id)['networks']) self.assertEqual(1, num_before_remove) self.assertEqual(0, num_after_remove) def test_list_active_networks_on_not_registered_yet_dhcp_agent(self): plugin = manager.NeutronManager.get_plugin() nets = plugin.list_active_networks_on_active_dhcp_agent( self.adminContext, host=DHCP_HOSTA) self.assertEqual([], nets) def test_reserved_port_after_network_remove_from_dhcp_agent(self): dhcp_hosta = { 'binary': 'neutron-dhcp-agent', 'host': DHCP_HOSTA, 'topic': 'DHCP_AGENT', 'configurations': {'dhcp_driver': 'dhcp_driver', 'use_namespaces': True, }, 'agent_type': constants.AGENT_TYPE_DHCP} self._register_one_agent_state(dhcp_hosta) hosta_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTA) with self.port(device_owner=constants.DEVICE_OWNER_DHCP, host=DHCP_HOSTA) as port1: self._remove_network_from_dhcp_agent(hosta_id, port1['port']['network_id']) port_res = self._list_ports( 'json', 200, network_id=port1['port']['network_id']) port_list = self.deserialize('json', port_res) self.assertEqual(port_list['ports'][0]['device_id'], constants.DEVICE_ID_RESERVED_DHCP_PORT) def _test_get_active_networks_from_admin_state_down_agent(self, keep_services): if keep_services: cfg.CONF.set_override( 'enable_services_on_agents_with_admin_state_down', True) dhcp_hosta = { 'binary': 'neutron-dhcp-agent', 'host': DHCP_HOSTA, 'topic': 'DHCP_AGENT', 'configurations': {'dhcp_driver': 'dhcp_driver', 'use_namespaces': True, }, 'agent_type': constants.AGENT_TYPE_DHCP} self._register_one_agent_state(dhcp_hosta) dhcp_rpc_cb = dhcp_rpc.DhcpRpcCallback() with self.port(): nets = dhcp_rpc_cb.get_active_networks(self.adminContext, host=DHCP_HOSTA) self.assertEqual(1, len(nets)) self._set_agent_admin_state_up(DHCP_HOSTA, False) nets = dhcp_rpc_cb.get_active_networks(self.adminContext, host=DHCP_HOSTA) if keep_services: self.assertEqual(1, len(nets)) else: self.assertEqual(0, len(nets)) def test_dhcp_agent_keep_services_off(self): self._test_get_active_networks_from_admin_state_down_agent(False) def test_dhcp_agent_keep_services_on(self): self._test_get_active_networks_from_admin_state_down_agent(True) def _take_down_agent_and_run_reschedule(self, host): # take down the agent on host A and ensure B is alive self.adminContext.session.begin(subtransactions=True) query = self.adminContext.session.query(agents_db.Agent) agt = query.filter_by(host=host).first() agt.heartbeat_timestamp = ( agt.heartbeat_timestamp - datetime.timedelta(hours=1)) self.adminContext.session.commit() plugin = manager.NeutronManager.get_service_plugins().get( service_constants.L3_ROUTER_NAT) plugin.reschedule_routers_from_down_agents() def _set_agent_admin_state_up(self, host, state): self.adminContext.session.begin(subtransactions=True) query = self.adminContext.session.query(agents_db.Agent) agt_db = query.filter_by(host=host).first() agt_db.admin_state_up = state self.adminContext.session.commit() def test_router_rescheduler_catches_rpc_db_and_reschedule_exceptions(self): with self.router(): l3_rpc_cb = l3_rpc.L3RpcCallback() self._register_agent_states() # schedule the router to host A l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) plugin = manager.NeutronManager.get_service_plugins().get( service_constants.L3_ROUTER_NAT) mock.patch.object( plugin, 'reschedule_router', side_effect=[ db_exc.DBError(), oslo_messaging.RemoteError(), l3agentscheduler.RouterReschedulingFailed(router_id='f', agent_id='f'), ValueError('this raises') ]).start() # these first three should not raise any errors self._take_down_agent_and_run_reschedule(L3_HOSTA) # DBError self._take_down_agent_and_run_reschedule(L3_HOSTA) # RemoteError self._take_down_agent_and_run_reschedule(L3_HOSTA) # schedule err # ValueError is not caught so it should raise self.assertRaises(ValueError, self._take_down_agent_and_run_reschedule, L3_HOSTA) def test_router_rescheduler_iterates_after_reschedule_failure(self): plugin = manager.NeutronManager.get_service_plugins().get( service_constants.L3_ROUTER_NAT) l3_rpc_cb = l3_rpc.L3RpcCallback() self._register_agent_states() with contextlib.nested(self.router(), self.router()) as (r1, r2): # schedule the routers to host A l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) rs_mock = mock.patch.object( plugin, 'reschedule_router', side_effect=l3agentscheduler.RouterReschedulingFailed( router_id='f', agent_id='f'), ).start() self._take_down_agent_and_run_reschedule(L3_HOSTA) # make sure both had a reschedule attempt even though first failed rs_mock.assert_has_calls([mock.call(mock.ANY, r1['router']['id']), mock.call(mock.ANY, r2['router']['id'])], any_order=True) def test_router_is_not_rescheduled_from_alive_agent(self): with self.router(): l3_rpc_cb = l3_rpc.L3RpcCallback() self._register_agent_states() # schedule the router to host A l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) with mock.patch('neutron.db.l3_agentschedulers_db.' 'L3AgentSchedulerDbMixin.reschedule_router') as rr: # take down some unrelated agent and run reschedule check self._take_down_agent_and_run_reschedule(DHCP_HOSTC) self.assertFalse(rr.called) def test_router_reschedule_from_dead_agent(self): with self.router(): l3_rpc_cb = l3_rpc.L3RpcCallback() self._register_agent_states() # schedule the router to host A ret_a = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) self._take_down_agent_and_run_reschedule(L3_HOSTA) # B should now pick up the router ret_b = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTB) self.assertEqual(ret_b, ret_a) def test_router_no_reschedule_from_dead_admin_down_agent(self): with self.router() as r: l3_rpc_cb = l3_rpc.L3RpcCallback() self._register_agent_states() # schedule the router to host A l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) self._set_agent_admin_state_up(L3_HOSTA, False) self._take_down_agent_and_run_reschedule(L3_HOSTA) # A should still have it even though it was inactive due to the # admin_state being down rab = l3_agentschedulers_db.RouterL3AgentBinding binding = (self.adminContext.session.query(rab). filter(rab.router_id == r['router']['id']).first()) self.assertEqual(binding.l3_agent.host, L3_HOSTA) # B should not pick up the router ret_b = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTB) self.assertFalse(ret_b) def test_router_auto_schedule_with_invalid_router(self): with self.router() as router: l3_rpc_cb = l3_rpc.L3RpcCallback() self._register_agent_states() self._delete('routers', router['router']['id']) # deleted router ret_a = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA, router_ids=[router['router']['id']]) self.assertFalse(ret_a) # non-existent router ret_a = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA, router_ids=[uuidutils.generate_uuid()]) self.assertFalse(ret_a) def test_router_auto_schedule_with_hosted(self): with self.router() as router: l3_rpc_cb = l3_rpc.L3RpcCallback() self._register_agent_states() ret_a = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) ret_b = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTB) l3_agents = self._list_l3_agents_hosting_router( router['router']['id']) self.assertEqual(1, len(ret_a)) self.assertIn(router['router']['id'], [r['id'] for r in ret_a]) self.assertFalse(len(ret_b)) self.assertEqual(1, len(l3_agents['agents'])) self.assertEqual(L3_HOSTA, l3_agents['agents'][0]['host']) def test_router_auto_schedule_restart_l3_agent(self): with self.router(): l3_rpc_cb = l3_rpc.L3RpcCallback() self._register_agent_states() l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) def test_router_auto_schedule_with_hosted_2(self): # one agent hosts one router l3_rpc_cb = l3_rpc.L3RpcCallback() l3_hosta = { 'binary': 'neutron-l3-agent', 'host': L3_HOSTA, 'topic': 'L3_AGENT', 'configurations': {'use_namespaces': True, 'router_id': None, 'handle_internal_only_routers': True, 'gateway_external_network_id': None, 'interface_driver': 'interface_driver', }, 'agent_type': constants.AGENT_TYPE_L3} l3_hostb = copy.deepcopy(l3_hosta) l3_hostb['host'] = L3_HOSTB with self.router() as router1: self._register_one_agent_state(l3_hosta) l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) hosta_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTA) self._disable_agent(hosta_id, admin_state_up=False) with self.router() as router2: self._register_one_agent_state(l3_hostb) l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTB) l3_agents_1 = self._list_l3_agents_hosting_router( router1['router']['id']) l3_agents_2 = self._list_l3_agents_hosting_router( router2['router']['id']) hosta_routers = self._list_routers_hosted_by_l3_agent(hosta_id) num_hosta_routers = len(hosta_routers['routers']) hostb_id = self._get_agent_id( constants.AGENT_TYPE_L3, L3_HOSTB) hostb_routers = self._list_routers_hosted_by_l3_agent(hostb_id) num_hostb_routers = len(hostb_routers['routers']) self.assertEqual(1, num_hosta_routers) self.assertEqual(1, num_hostb_routers) self.assertEqual(1, len(l3_agents_1['agents'])) self.assertEqual(1, len(l3_agents_2['agents'])) self.assertEqual(L3_HOSTA, l3_agents_1['agents'][0]['host']) self.assertEqual(L3_HOSTB, l3_agents_2['agents'][0]['host']) def test_router_auto_schedule_with_disabled(self): with contextlib.nested(self.router(), self.router()): l3_rpc_cb = l3_rpc.L3RpcCallback() self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTA) hostb_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTB) self._disable_agent(hosta_id) # first agent will not host router since it is disabled l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) # second agent will host all the routers since first is disabled. l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTB) hostb_routers = self._list_routers_hosted_by_l3_agent(hostb_id) num_hostb_routers = len(hostb_routers['routers']) hosta_routers = self._list_routers_hosted_by_l3_agent(hosta_id) num_hosta_routers = len(hosta_routers['routers']) self.assertEqual(2, num_hostb_routers) self.assertEqual(0, num_hosta_routers) def test_router_auto_schedule_with_candidates(self): l3_hosta = { 'binary': 'neutron-l3-agent', 'host': L3_HOSTA, 'topic': 'L3_AGENT', 'configurations': {'use_namespaces': False, 'router_id': None, 'handle_internal_only_routers': True, 'gateway_external_network_id': None, 'interface_driver': 'interface_driver', }, 'agent_type': constants.AGENT_TYPE_L3} with contextlib.nested(self.router(), self.router()) as (router1, router2): l3_rpc_cb = l3_rpc.L3RpcCallback() l3_hosta['configurations']['router_id'] = router1['router']['id'] self._register_one_agent_state(l3_hosta) hosta_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTA) l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) hosta_routers = self._list_routers_hosted_by_l3_agent(hosta_id) num_hosta_routers = len(hosta_routers['routers']) l3_agents_1 = self._list_l3_agents_hosting_router( router1['router']['id']) l3_agents_2 = self._list_l3_agents_hosting_router( router2['router']['id']) # L3 agent will host only the compatible router. self.assertEqual(1, num_hosta_routers) self.assertEqual(1, len(l3_agents_1['agents'])) self.assertEqual(0, len(l3_agents_2['agents'])) def test_rpc_sync_routers(self): l3_rpc_cb = l3_rpc.L3RpcCallback() self._register_agent_states() # No routers ret_a = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) self.assertEqual(0, len(ret_a)) with contextlib.nested(self.router(), self.router(), self.router()) as routers: router_ids = [r['router']['id'] for r in routers] # Get all routers ret_a = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) self.assertEqual(3, len(ret_a)) self.assertEqual(set(router_ids), set([r['id'] for r in ret_a])) # Get all routers (router_ids=None) ret_a = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA, router_ids=None) self.assertEqual(3, len(ret_a)) self.assertEqual(set(router_ids), set([r['id'] for r in ret_a])) # Get router2 only ret_a = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA, router_ids=[router_ids[1]]) self.assertEqual(1, len(ret_a)) self.assertIn(router_ids[1], [r['id'] for r in ret_a]) # Get router1 and router3 ret_a = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA, router_ids=[router_ids[0], router_ids[2]]) self.assertEqual(2, len(ret_a)) self.assertIn(router_ids[0], [r['id'] for r in ret_a]) self.assertIn(router_ids[2], [r['id'] for r in ret_a]) def test_router_auto_schedule_for_specified_routers(self): def _sync_router_with_ids(router_ids, exp_synced, exp_hosted, host_id): ret_a = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA, router_ids=router_ids) self.assertEqual(exp_synced, len(ret_a)) for r in router_ids: self.assertIn(r, [r['id'] for r in ret_a]) host_routers = self._list_routers_hosted_by_l3_agent(host_id) num_host_routers = len(host_routers['routers']) self.assertEqual(exp_hosted, num_host_routers) l3_rpc_cb = l3_rpc.L3RpcCallback() self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTA) with contextlib.nested(self.router(), self.router(), self.router(), self.router()) as routers: router_ids = [r['router']['id'] for r in routers] # Sync router1 (router1 is scheduled) _sync_router_with_ids([router_ids[0]], 1, 1, hosta_id) # Sync router1 only (no router is scheduled) _sync_router_with_ids([router_ids[0]], 1, 1, hosta_id) # Schedule router2 _sync_router_with_ids([router_ids[1]], 1, 2, hosta_id) # Sync router2 and router4 (router4 is scheduled) _sync_router_with_ids([router_ids[1], router_ids[3]], 2, 3, hosta_id) # Sync all routers (router3 is scheduled) _sync_router_with_ids(router_ids, 4, 4, hosta_id) def test_router_schedule_with_candidates(self): l3_hosta = { 'binary': 'neutron-l3-agent', 'host': L3_HOSTA, 'topic': 'L3_AGENT', 'configurations': {'use_namespaces': False, 'router_id': None, 'handle_internal_only_routers': True, 'gateway_external_network_id': None, 'interface_driver': 'interface_driver', }, 'agent_type': constants.AGENT_TYPE_L3} with contextlib.nested(self.router(), self.router(), self.subnet(), self.subnet(cidr='10.0.3.0/24')) as (router1, router2, subnet1, subnet2): l3_hosta['configurations']['router_id'] = router1['router']['id'] self._register_one_agent_state(l3_hosta) hosta_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTA) self._router_interface_action('add', router1['router']['id'], subnet1['subnet']['id'], None) self._router_interface_action('add', router2['router']['id'], subnet2['subnet']['id'], None) hosta_routers = self._list_routers_hosted_by_l3_agent(hosta_id) num_hosta_routers = len(hosta_routers['routers']) l3_agents_1 = self._list_l3_agents_hosting_router( router1['router']['id']) l3_agents_2 = self._list_l3_agents_hosting_router( router2['router']['id']) # safe cleanup self._router_interface_action('remove', router1['router']['id'], subnet1['subnet']['id'], None) self._router_interface_action('remove', router2['router']['id'], subnet2['subnet']['id'], None) # L3 agent will host only the compatible router. self.assertEqual(1, num_hosta_routers) self.assertEqual(1, len(l3_agents_1['agents'])) self.assertEqual(0, len(l3_agents_2['agents'])) def test_router_without_l3_agents(self): with self.subnet() as s: self._set_net_external(s['subnet']['network_id']) data = {'router': {'tenant_id': uuidutils.generate_uuid()}} data['router']['name'] = 'router1' data['router']['external_gateway_info'] = { 'network_id': s['subnet']['network_id']} router_req = self.new_create_request('routers', data, self.fmt) res = router_req.get_response(self.ext_api) router = self.deserialize(self.fmt, res) l3agents = ( self.l3agentscheduler_dbMinxin.get_l3_agents_hosting_routers( self.adminContext, [router['router']['id']])) self._delete('routers', router['router']['id']) self.assertEqual(0, len(l3agents)) def test_router_sync_data(self): with contextlib.nested( self.subnet(), self.subnet(cidr='10.0.2.0/24'), self.subnet(cidr='10.0.3.0/24') ) as (s1, s2, s3): self._register_agent_states() self._set_net_external(s1['subnet']['network_id']) data = {'router': {'tenant_id': uuidutils.generate_uuid()}} data['router']['name'] = 'router1' data['router']['external_gateway_info'] = { 'network_id': s1['subnet']['network_id']} router_req = self.new_create_request('routers', data, self.fmt) res = router_req.get_response(self.ext_api) router = self.deserialize(self.fmt, res) self._router_interface_action('add', router['router']['id'], s2['subnet']['id'], None) self._router_interface_action('add', router['router']['id'], s3['subnet']['id'], None) l3agents = self._list_l3_agents_hosting_router( router['router']['id']) self.assertEqual(1, len(l3agents['agents'])) agents = self._list_agents() another_l3_agent_id = None another_l3_agent_host = None default = l3agents['agents'][0]['id'] for com in agents['agents']: if (com['id'] != default and com['agent_type'] == constants.AGENT_TYPE_L3): another_l3_agent_id = com['id'] another_l3_agent_host = com['host'] break self.assertIsNotNone(another_l3_agent_id) self._add_router_to_l3_agent(another_l3_agent_id, router['router']['id'], expected_code=exc.HTTPConflict.code) self._remove_router_from_l3_agent(default, router['router']['id']) self._add_router_to_l3_agent(another_l3_agent_id, router['router']['id']) l3agents = self._list_l3_agents_hosting_router( router['router']['id']) self.assertEqual(another_l3_agent_host, l3agents['agents'][0]['host']) self._remove_router_from_l3_agent(another_l3_agent_id, router['router']['id']) self._router_interface_action('remove', router['router']['id'], s2['subnet']['id'], None) l3agents = self._list_l3_agents_hosting_router( router['router']['id']) self.assertEqual(1, len(l3agents['agents'])) self._router_interface_action('remove', router['router']['id'], s3['subnet']['id'], None) self._delete('routers', router['router']['id']) def _test_router_add_to_l3_agent(self, admin_state_up=True): with self.router() as router1: self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTA) if not admin_state_up: self._set_agent_admin_state_up(L3_HOSTA, False) num_before_add = len( self._list_routers_hosted_by_l3_agent( hosta_id)['routers']) self._add_router_to_l3_agent(hosta_id, router1['router']['id']) hostb_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTB) self._add_router_to_l3_agent(hostb_id, router1['router']['id'], expected_code=exc.HTTPConflict.code) num_after_add = len( self._list_routers_hosted_by_l3_agent( hosta_id)['routers']) self.assertEqual(0, num_before_add) self.assertEqual(1, num_after_add) def test_router_add_to_l3_agent(self): self._test_router_add_to_l3_agent() def test_router_add_to_l3_agent_with_admin_state_down(self): cfg.CONF.set_override( 'enable_services_on_agents_with_admin_state_down', True) self._test_router_add_to_l3_agent(admin_state_up=False) def test_router_add_to_l3_agent_two_times(self): with self.router() as router1: self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTA) self._add_router_to_l3_agent(hosta_id, router1['router']['id']) # scheduling twice on the same agent is fine self._add_router_to_l3_agent(hosta_id, router1['router']['id']) def test_router_add_to_two_l3_agents(self): with self.router() as router1: self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTA) hostb_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTB) self._add_router_to_l3_agent(hosta_id, router1['router']['id']) self._add_router_to_l3_agent(hostb_id, router1['router']['id'], expected_code=exc.HTTPConflict.code) def test_router_policy(self): with self.router() as router1: self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTA) self._list_routers_hosted_by_l3_agent( hosta_id, expected_code=exc.HTTPForbidden.code, admin_context=False) self._add_router_to_l3_agent( hosta_id, router1['router']['id'], expected_code=exc.HTTPForbidden.code, admin_context=False) self._add_router_to_l3_agent( hosta_id, router1['router']['id']) self._remove_router_from_l3_agent( hosta_id, router1['router']['id'], expected_code=exc.HTTPForbidden.code, admin_context=False) self._list_l3_agents_hosting_router( router1['router']['id'], expected_code=exc.HTTPForbidden.code, admin_context=False) def _test_sync_routers_from_admin_state_down_agent(self, keep_services): if keep_services: cfg.CONF.set_override( 'enable_services_on_agents_with_admin_state_down', True) l3_rpc_cb = l3_rpc.L3RpcCallback() self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTA) with self.router() as router: self._add_router_to_l3_agent(hosta_id, router['router']['id']) routers = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) self.assertEqual(1, len(routers)) self._set_agent_admin_state_up(L3_HOSTA, False) routers = l3_rpc_cb.sync_routers(self.adminContext, host=L3_HOSTA) if keep_services: self.assertEqual(1, len(routers)) else: self.assertEqual(0, len(routers)) def test_l3_agent_keep_services_off(self): self._test_sync_routers_from_admin_state_down_agent(False) def test_l3_agent_keep_services_on(self): self._test_sync_routers_from_admin_state_down_agent(True) def test_list_routers_hosted_by_l3_agent_with_invalid_agent(self): invalid_agentid = 'non_existing_agent' self._list_routers_hosted_by_l3_agent(invalid_agentid, exc.HTTPNotFound.code) def test_list_networks_hosted_by_dhcp_agent_with_invalid_agent(self): invalid_agentid = 'non_existing_agent' self._list_networks_hosted_by_dhcp_agent(invalid_agentid, exc.HTTPNotFound.code) class OvsDhcpAgentNotifierTestCase(test_l3.L3NatTestCaseMixin, test_agent.AgentDBTestMixIn, AgentSchedulerTestMixIn, test_plugin.NeutronDbPluginV2TestCase): plugin_str = 'neutron.plugins.ml2.plugin.Ml2Plugin' def setUp(self): # Save the global RESOURCE_ATTRIBUTE_MAP before loading plugin self.saved_attr_map = {} for resource, attrs in attributes.RESOURCE_ATTRIBUTE_MAP.iteritems(): self.saved_attr_map[resource] = attrs.copy() super(OvsDhcpAgentNotifierTestCase, self).setUp(self.plugin_str) self.dhcp_notifier = dhcp_rpc_agent_api.DhcpAgentNotifyAPI() self.dhcp_notifier_cast = mock.patch( 'neutron.api.rpc.agentnotifiers.dhcp_rpc_agent_api.' 'DhcpAgentNotifyAPI._cast_message').start() ext_mgr = extensions.PluginAwareExtensionManager.get_instance() self.ext_api = test_extensions.setup_extensions_middleware(ext_mgr) self.adminContext = context.get_admin_context() # Add the resources to the global attribute map # This is done here as the setup process won't # initialize the main API router which extends # the global attribute map attributes.RESOURCE_ATTRIBUTE_MAP.update( agent.RESOURCE_ATTRIBUTE_MAP) self.addCleanup(self.restore_attribute_map) fake_notifier.reset() def restore_attribute_map(self): # Restore the original RESOURCE_ATTRIBUTE_MAP attributes.RESOURCE_ATTRIBUTE_MAP = self.saved_attr_map def test_network_add_to_dhcp_agent_notification(self): with self.network() as net1: network_id = net1['network']['id'] self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTA) self._add_network_to_dhcp_agent(hosta_id, network_id) self.dhcp_notifier_cast.assert_called_with( mock.ANY, 'network_create_end', {'network': {'id': network_id}}, DHCP_HOSTA) notifications = fake_notifier.NOTIFICATIONS expected_event_type = 'dhcp_agent.network.add' self._assert_notify(notifications, expected_event_type) def test_network_remove_from_dhcp_agent_notification(self): with self.network() as net1: network_id = net1['network']['id'] self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTA) self._add_network_to_dhcp_agent(hosta_id, network_id) self._remove_network_from_dhcp_agent(hosta_id, network_id) self.dhcp_notifier_cast.assert_called_with( mock.ANY, 'network_delete_end', {'network_id': network_id}, DHCP_HOSTA) notifications = fake_notifier.NOTIFICATIONS expected_event_type = 'dhcp_agent.network.remove' self._assert_notify(notifications, expected_event_type) def test_agent_updated_dhcp_agent_notification(self): self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_DHCP, DHCP_HOSTA) self._disable_agent(hosta_id, admin_state_up=False) self.dhcp_notifier_cast.assert_called_with( mock.ANY, 'agent_updated', {'admin_state_up': False}, DHCP_HOSTA) def _network_port_create( self, hosts, gateway=attributes.ATTR_NOT_SPECIFIED, owner=None): for host in hosts: self._register_one_agent_state( {'binary': 'neutron-dhcp-agent', 'host': host, 'topic': 'dhcp_agent', 'configurations': {'dhcp_driver': 'dhcp_driver', 'use_namespaces': True, }, 'agent_type': constants.AGENT_TYPE_DHCP}) with self.network() as net1: with self.subnet(network=net1, gateway_ip=gateway) as subnet1: if owner: with self.port(subnet=subnet1, device_owner=owner) as port: return [net1, subnet1, port] else: with self.port(subnet=subnet1) as port: return [net1, subnet1, port] def _notification_mocks(self, hosts, net, subnet, port): host_calls = {} for host in hosts: expected_calls = [ mock.call( mock.ANY, 'network_create_end', {'network': {'id': net['network']['id']}}, host), mock.call( mock.ANY, 'subnet_create_end', subnet, host, 'dhcp_agent'), mock.call( mock.ANY, 'port_create_end', {'port': port['port']}, host, 'dhcp_agent')] host_calls[host] = expected_calls return host_calls def test_network_port_create_notification(self): hosts = [DHCP_HOSTA] net, subnet, port = self._network_port_create(hosts) expected_calls = self._notification_mocks(hosts, net, subnet, port) self.assertEqual( expected_calls[DHCP_HOSTA], self.dhcp_notifier_cast.call_args_list) def test_network_ha_port_create_notification(self): cfg.CONF.set_override('dhcp_agents_per_network', 2) hosts = [DHCP_HOSTA, DHCP_HOSTC] net, subnet, port = self._network_port_create(hosts) expected_calls = self._notification_mocks(hosts, net, subnet, port) for expected in expected_calls[DHCP_HOSTA]: self.assertIn(expected, self.dhcp_notifier_cast.call_args_list) for expected in expected_calls[DHCP_HOSTC]: self.assertIn(expected, self.dhcp_notifier_cast.call_args_list) def _is_schedule_network_called(self, device_id): plugin = manager.NeutronManager.get_plugin() notifier = plugin.agent_notifiers[constants.AGENT_TYPE_DHCP] with contextlib.nested( self.subnet(), mock.patch.object(plugin, 'get_dhcp_agents_hosting_networks', return_value=[]), mock.patch.object(notifier, '_schedule_network', return_value=[]) ) as (subnet, _, mock_sched): with self.port(subnet=subnet, device_id=device_id): return mock_sched.called def test_reserved_dhcp_port_creation(self): device_id = constants.DEVICE_ID_RESERVED_DHCP_PORT self.assertFalse(self._is_schedule_network_called(device_id)) def test_unreserved_dhcp_port_creation(self): device_id = 'not_reserved' self.assertTrue(self._is_schedule_network_called(device_id)) class OvsL3AgentNotifierTestCase(test_l3.L3NatTestCaseMixin, test_agent.AgentDBTestMixIn, AgentSchedulerTestMixIn, test_plugin.NeutronDbPluginV2TestCase): plugin_str = 'neutron.plugins.ml2.plugin.Ml2Plugin' l3_plugin = ('neutron.tests.unit.extensions.test_l3.' 'TestL3NatAgentSchedulingServicePlugin') def setUp(self): self.dhcp_notifier_cls_p = mock.patch( 'neutron.api.rpc.agentnotifiers.dhcp_rpc_agent_api.' 'DhcpAgentNotifyAPI') self.dhcp_notifier = mock.Mock(name='dhcp_notifier') self.dhcp_notifier_cls = self.dhcp_notifier_cls_p.start() self.dhcp_notifier_cls.return_value = self.dhcp_notifier # Save the global RESOURCE_ATTRIBUTE_MAP self.saved_attr_map = {} for resource, attrs in attributes.RESOURCE_ATTRIBUTE_MAP.iteritems(): self.saved_attr_map[resource] = attrs.copy() if self.l3_plugin: service_plugins = {'l3_plugin_name': self.l3_plugin} else: service_plugins = None super(OvsL3AgentNotifierTestCase, self).setUp( self.plugin_str, service_plugins=service_plugins) ext_mgr = extensions.PluginAwareExtensionManager.get_instance() self.ext_api = test_extensions.setup_extensions_middleware(ext_mgr) self.adminContext = context.get_admin_context() # Add the resources to the global attribute map # This is done here as the setup process won't # initialize the main API router which extends # the global attribute map attributes.RESOURCE_ATTRIBUTE_MAP.update( agent.RESOURCE_ATTRIBUTE_MAP) self.addCleanup(self.restore_attribute_map) fake_notifier.reset() def restore_attribute_map(self): # Restore the original RESOURCE_ATTRIBUTE_MAP attributes.RESOURCE_ATTRIBUTE_MAP = self.saved_attr_map def test_router_add_to_l3_agent_notification(self): l3_plugin = (manager.NeutronManager.get_service_plugins() [service_constants.L3_ROUTER_NAT]) l3_notifier = l3_plugin.agent_notifiers[constants.AGENT_TYPE_L3] with contextlib.nested( mock.patch.object(l3_notifier.client, 'prepare', return_value=l3_notifier.client), mock.patch.object(l3_notifier.client, 'cast'), self.router(), ) as ( mock_prepare, mock_cast, router1 ): self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTA) self._add_router_to_l3_agent(hosta_id, router1['router']['id']) routers = [router1['router']['id']] mock_prepare.assert_called_with(server='hosta') mock_cast.assert_called_with( mock.ANY, 'router_added_to_agent', payload=routers) notifications = fake_notifier.NOTIFICATIONS expected_event_type = 'l3_agent.router.add' self._assert_notify(notifications, expected_event_type) def test_router_remove_from_l3_agent_notification(self): l3_plugin = (manager.NeutronManager.get_service_plugins() [service_constants.L3_ROUTER_NAT]) l3_notifier = l3_plugin.agent_notifiers[constants.AGENT_TYPE_L3] with contextlib.nested( mock.patch.object(l3_notifier.client, 'prepare', return_value=l3_notifier.client), mock.patch.object(l3_notifier.client, 'cast'), self.router(), ) as ( mock_prepare, mock_cast, router1 ): self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTA) self._add_router_to_l3_agent(hosta_id, router1['router']['id']) self._remove_router_from_l3_agent(hosta_id, router1['router']['id']) mock_prepare.assert_called_with(server='hosta') mock_cast.assert_called_with( mock.ANY, 'router_removed_from_agent', payload={'router_id': router1['router']['id']}) notifications = fake_notifier.NOTIFICATIONS expected_event_type = 'l3_agent.router.remove' self._assert_notify(notifications, expected_event_type) def test_agent_updated_l3_agent_notification(self): l3_plugin = (manager.NeutronManager.get_service_plugins() [service_constants.L3_ROUTER_NAT]) l3_notifier = l3_plugin.agent_notifiers[constants.AGENT_TYPE_L3] with contextlib.nested( mock.patch.object(l3_notifier.client, 'prepare', return_value=l3_notifier.client), mock.patch.object(l3_notifier.client, 'cast'), ) as ( mock_prepare, mock_cast ): self._register_agent_states() hosta_id = self._get_agent_id(constants.AGENT_TYPE_L3, L3_HOSTA) self._disable_agent(hosta_id, admin_state_up=False) mock_prepare.assert_called_with(server='hosta') mock_cast.assert_called_with( mock.ANY, 'agent_updated', payload={'admin_state_up': False})
import os import logging import claripy from cle import MetaELF from cle.address_translator import AT from archinfo import ArchX86, ArchAMD64, ArchARM, ArchAArch64, ArchMIPS32, ArchMIPS64, ArchPPC32, ArchPPC64 from ..tablespecs import StringTableSpec from ..procedures import SIM_PROCEDURES as P, SIM_LIBRARIES as L from ..state_plugins import SimFilesystem, SimHostFilesystem from ..storage.file import SimFile, SimFileBase from ..errors import AngrSyscallError from .userland import SimUserland _l = logging.getLogger('angr.simos.linux') class SimLinux(SimUserland): """ OS-specific configuration for \\*nix-y OSes. """ def __init__(self, project, **kwargs): super(SimLinux, self).__init__(project, syscall_library=L['linux'], syscall_addr_alignment=project.arch.instruction_alignment, name="Linux", **kwargs) self._loader_addr = None self._loader_lock_addr = None self._loader_unlock_addr = None self._error_catch_tsd_addr = None self._vsyscall_addr = None def configure_project(self): # pylint: disable=arguments-differ self._loader_addr = self.project.loader.extern_object.allocate() self._loader_lock_addr = self.project.loader.extern_object.allocate() self._loader_unlock_addr = self.project.loader.extern_object.allocate() self._error_catch_tsd_addr = self.project.loader.extern_object.allocate() self._vsyscall_addr = self.project.loader.extern_object.allocate() self.project.hook(self._loader_addr, P['linux_loader']['LinuxLoader']()) self.project.hook(self._loader_lock_addr, P['linux_loader']['_dl_rtld_lock_recursive']()) self.project.hook(self._loader_unlock_addr, P['linux_loader']['_dl_rtld_unlock_recursive']()) self.project.hook(self._error_catch_tsd_addr, P['linux_loader']['_dl_initial_error_catch_tsd']( static_addr=self.project.loader.extern_object.allocate() ) ) self.project.hook(self._vsyscall_addr, P['linux_kernel']['_vsyscall']()) ld_obj = self.project.loader.linux_loader_object if ld_obj is not None: # there are some functions we MUST use the simprocedures for, regardless of what the user wants self._weak_hook_symbol('__tls_get_addr', L['ld.so'].get('__tls_get_addr', self.arch), ld_obj) self._weak_hook_symbol('___tls_get_addr', L['ld.so'].get('___tls_get_addr', self.arch), ld_obj) # set up some static data in the loader object... _rtld_global = ld_obj.get_symbol('_rtld_global') if _rtld_global is not None: if isinstance(self.project.arch, ArchAMD64): self.project.loader.memory.write_addr_at(_rtld_global.rebased_addr + 0xF08, self._loader_lock_addr) self.project.loader.memory.write_addr_at(_rtld_global.rebased_addr + 0xF10, self._loader_unlock_addr) self.project.loader.memory.write_addr_at(_rtld_global.rebased_addr + 0x990, self._error_catch_tsd_addr) # TODO: what the hell is this _rtld_global_ro = ld_obj.get_symbol('_rtld_global_ro') if _rtld_global_ro is not None: pass libc_obj = self.project.loader.find_object('libc.so.6') if libc_obj: self._weak_hook_symbol('_dl_vdso_vsym', L['libc.so.6'].get('_dl_vdso_vsym', self.arch), libc_obj) tls_obj = self.project.loader.tls_object if tls_obj is not None: if isinstance(self.project.arch, ArchAMD64): self.project.loader.memory.write_addr_at(tls_obj.thread_pointer + 0x28, 0x5f43414e4152595f) self.project.loader.memory.write_addr_at(tls_obj.thread_pointer + 0x30, 0x5054524755415244) elif isinstance(self.project.arch, ArchX86): self.project.loader.memory.write_addr_at(tls_obj.thread_pointer + 0x10, self._vsyscall_addr) elif isinstance(self.project.arch, ArchARM): self.project.hook(0xffff0fe0, P['linux_kernel']['_kernel_user_helper_get_tls']()) # Only set up ifunc resolution if we are using the ELF backend on AMD64 if isinstance(self.project.loader.main_object, MetaELF): if isinstance(self.project.arch, (ArchAMD64, ArchX86)): for binary in self.project.loader.all_objects: if not isinstance(binary, MetaELF): continue for reloc in binary.relocs: if reloc.symbol is None or reloc.resolvedby is None: continue try: if reloc.resolvedby.elftype != 'STT_GNU_IFUNC': continue except AttributeError: continue gotaddr = reloc.rebased_addr gotvalue = self.project.loader.memory.read_addr_at(gotaddr) if self.project.is_hooked(gotvalue): continue # Replace it with a ifunc-resolve simprocedure! kwargs = { 'funcaddr': gotvalue, 'gotaddr': gotaddr, 'funcname': reloc.symbol.name } # TODO: should this be replaced with hook_symbol? randaddr = self.project.loader.extern_object.allocate() self.project.hook(randaddr, P['linux_loader']['IFuncResolver'](**kwargs)) self.project.loader.memory.write_addr_at(gotaddr, randaddr) # maybe move this into archinfo? if self.arch.name == 'X86': syscall_abis = ['i386'] elif self.arch.name == 'AMD64': syscall_abis = ['i386', 'amd64'] elif self.arch.name.startswith('ARM'): syscall_abis = ['arm'] if self.arch.name == 'ARMHF': syscall_abis.append('armhf') elif self.arch.name == 'AARCH64': syscall_abis = ['aarch64'] # https://www.linux-mips.org/wiki/WhatsWrongWithO32N32N64 elif self.arch.name == 'MIPS32': syscall_abis = ['mips-o32'] elif self.arch.name == 'MIPS64': syscall_abis = ['mips-n32', 'mips-n64'] elif self.arch.name == 'PPC32': syscall_abis = ['ppc'] elif self.arch.name == 'PPC64': syscall_abis = ['ppc64'] else: syscall_abis = [] # ? super(SimLinux, self).configure_project(syscall_abis) def syscall_abi(self, state): if state.arch.name != 'AMD64': return None if state.history.jumpkind == 'Ijk_Sys_int128': return 'i386' elif state.history.jumpkind == 'Ijk_Sys_syscall': return 'amd64' else: raise AngrSyscallError("Unknown syscall jumpkind %s" % state.history.jumpkind) # pylint: disable=arguments-differ def state_blank(self, fs=None, concrete_fs=False, chroot=None, cwd='/home/user', pathsep='/', **kwargs): state = super(SimLinux, self).state_blank(**kwargs) if self.project.loader.tls_object is not None: if isinstance(state.arch, ArchAMD64): state.regs.fs = self.project.loader.tls_object.user_thread_pointer elif isinstance(state.arch, ArchX86): state.regs.gs = self.project.loader.tls_object.user_thread_pointer >> 16 elif isinstance(state.arch, (ArchMIPS32, ArchMIPS64)): state.regs.ulr = self.project.loader.tls_object.user_thread_pointer elif isinstance(state.arch, ArchPPC32): state.regs.r2 = self.project.loader.tls_object.user_thread_pointer elif isinstance(state.arch, ArchPPC64): state.regs.r13 = self.project.loader.tls_object.user_thread_pointer elif isinstance(state.arch, ArchAArch64): state.regs.tpidr_el0 = self.project.loader.tls_object.user_thread_pointer if fs is None: fs = {} for name in fs: if type(fs[name]) is unicode: fs[name] = fs[name].encode('utf-8') if type(fs[name]) is bytes: fs[name] = claripy.BVV(fs[name]) if isinstance(fs[name], claripy.Bits): fs[name] = SimFile(name, content=fs[name]) if not isinstance(fs[name], SimFileBase): raise TypeError("Provided fs initializer with unusable type %r" % type(fs[name])) mounts = {} if concrete_fs: mounts[pathsep] = SimHostFilesystem(chroot if chroot is not None else os.path.sep) state.register_plugin('fs', SimFilesystem(files=fs, pathsep=pathsep, cwd=cwd, mountpoints=mounts)) if self.project.loader.main_object.is_ppc64_abiv1: state.libc.ppc64_abiv = 'ppc64_1' return state def state_entry(self, args=None, env=None, argc=None, **kwargs): state = super(SimLinux, self).state_entry(**kwargs) # Handle default values if args is None: args = [] if env is None: env = {} # Prepare argc if argc is None: argc = claripy.BVV(len(args), state.arch.bits) elif type(argc) in (int, long): # pylint: disable=unidiomatic-typecheck argc = claripy.BVV(argc, state.arch.bits) # Make string table for args/env/auxv table = StringTableSpec() # Add args to string table table.append_args(args) # Add environment to string table table.append_env(env) # Prepare the auxiliary vector and add it to the end of the string table # TODO: Actually construct a real auxiliary vector # current vector is an AT_RANDOM entry where the "random" value is 0xaec0aec0aec0... aux = [(25, ("AEC0" * 8).decode('hex'))] for a, b in aux: table.add_pointer(a) if isinstance(b, str): table.add_string(b) else: table.add_pointer(b) table.add_null() table.add_null() # Dump the table onto the stack, calculate pointers to args, env, and auxv state.memory.store(state.regs.sp - 16, claripy.BVV(0, 8 * 16)) argv = table.dump(state, state.regs.sp - 16) envp = argv + ((len(args) + 1) * state.arch.bytes) auxv = argv + ((len(args) + len(env) + 2) * state.arch.bytes) # Put argc on stack and fix the stack pointer newsp = argv - state.arch.bytes state.memory.store(newsp, argc, endness=state.arch.memory_endness) state.regs.sp = newsp if state.arch.name in ('PPC32',): state.stack_push(claripy.BVV(0, 32)) state.stack_push(claripy.BVV(0, 32)) state.stack_push(claripy.BVV(0, 32)) state.stack_push(claripy.BVV(0, 32)) # store argc argv envp auxv in the posix plugin state.posix.argv = argv state.posix.argc = argc state.posix.environ = envp state.posix.auxv = auxv self.set_entry_register_values(state) return state def set_entry_register_values(self, state): for reg, val in state.arch.entry_register_values.iteritems(): if isinstance(val, (int, long)): state.registers.store(reg, val, size=state.arch.bytes) elif isinstance(val, (str,)): if val == 'argc': state.registers.store(reg, state.posix.argc, size=state.arch.bytes) elif val == 'argv': state.registers.store(reg, state.posix.argv) elif val == 'envp': state.registers.store(reg, state.posix.environ) elif val == 'auxv': state.registers.store(reg, state.posix.auxv) elif val == 'ld_destructor': # a pointer to the dynamic linker's destructor routine, to be called at exit # or NULL. We like NULL. It makes things easier. state.registers.store(reg, 0) elif val == 'toc': if self.project.loader.main_object.is_ppc64_abiv1: state.registers.store(reg, self.project.loader.main_object.ppc64_initial_rtoc) elif val == 'thread_pointer': state.registers.store(reg, self.project.loader.tls_object.user_thread_pointer) else: _l.warning('Unknown entry point register value indicator "%s"', val) else: _l.error('What the ass kind of default value is %s?', val) def state_full_init(self, **kwargs): kwargs['addr'] = self._loader_addr return super(SimLinux, self).state_full_init(**kwargs) def prepare_function_symbol(self, symbol_name, basic_addr=None): """ Prepare the address space with the data necessary to perform relocations pointing to the given symbol. Returns a 2-tuple. The first item is the address of the function code, the second is the address of the relocation target. """ if self.project.loader.main_object.is_ppc64_abiv1: if basic_addr is not None: pointer = self.project.loader.memory.read_addr_at(basic_addr) return pointer, basic_addr pseudo_hookaddr = self.project.loader.extern_object.get_pseudo_addr(symbol_name) pseudo_toc = self.project.loader.extern_object.allocate(size=0x18) self.project.loader.extern_object.memory.write_addr_at( AT.from_mva(pseudo_toc, self.project.loader.extern_object).to_rva(), pseudo_hookaddr) return pseudo_hookaddr, pseudo_toc else: if basic_addr is None: basic_addr = self.project.loader.extern_object.get_pseudo_addr(symbol_name) return basic_addr, basic_addr
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (C) 2012 Yahoo! Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from StringIO import StringIO import json import multiprocessing import textwrap from optparse import IndentedHelpFormatter from optparse import OptionGroup from optparse import OptionParser from optparse import OptionValueError from anvil import actions from anvil import env from anvil import settings from anvil import shell as sh from anvil import utils from anvil import version OVERVIEW = """Overview: Anvil is a forging tool to help build OpenStack components and their dependencies into a complete system. It git checkouts the components and builds them and their dependencies into packages.""" STEPS = """Steps: For smooth experience please make sure you go through the following steps when running.""" STEP_SECTIONS = { 'building': [ './smithy -a prepare', './smithy -a build', ], } def _format_list(in_list): sorted_list = sorted(in_list) return "[" + ", ".join(sorted_list) + "]" def _size_cb(option, opt_str, value, parser): try: parser.values.show_amount = utils.to_bytes(value) except (TypeError, ValueError) as e: raise OptionValueError("Invalid value for %s due to %s" % (opt_str, e)) class SmithyHelpFormatter(IndentedHelpFormatter): def _wrap_it(self, text): return textwrap.fill(text, width=self.width, initial_indent="", subsequent_indent=" ") def format_epilog(self, epilog): buf = StringIO() buf.write(IndentedHelpFormatter.format_epilog(self, epilog)) buf.write("\n") buf.write(self._wrap_it('For further information check out: ' 'http://anvil.readthedocs.org')) buf.write("\n") return buf.getvalue() def format_usage(self, usage): buf = StringIO() buf.write(IndentedHelpFormatter.format_usage(self, usage)) buf.write("\n") buf.write(self._wrap_it(OVERVIEW)) buf.write("\n\n") buf.write(self._wrap_it(STEPS)) buf.write("\n\n") for k in sorted(STEP_SECTIONS.keys()): buf.write("%s:\n" % (k.title())) for line in STEP_SECTIONS[k]: buf.write(" %s\n" % (line)) return buf.getvalue() def _get_default_dir(): root_dir = env.get_key('INSTALL_ROOT') if root_dir: return root_dir return sh.joinpths(sh.gethomedir(), 'openstack') def parse(previous_settings=None): version_str = "%s v%s" % ('anvil', version.version_string()) help_formatter = SmithyHelpFormatter(width=120) parser = OptionParser(version=version_str, formatter=help_formatter, prog='smithy') # Root options parser.add_option("-v", "--verbose", action="store_true", dest="verbose", default=False, help="make the output logging verbose") # Install/start/stop/uninstall specific options base_group = OptionGroup(parser, "Action specific options") base_group.add_option("-p", "--persona", action="store", type="string", dest="persona_fn", default=sh.joinpths(settings.PERSONA_DIR, 'in-a-box', 'basic.yaml'), metavar="FILE", help="persona yaml file to apply (default: %default)") base_group.add_option("-a", "--action", action="store", type="string", dest="action", metavar="ACTION", help="required action to perform: %s" % (_format_list(actions.names()))) base_group.add_option("-o", "--origins", action="store", type="string", dest="origins_fn", default=sh.joinpths(settings.ORIGINS_DIR, 'master.yaml'), metavar="FILE", help="yaml file describing where to get openstack sources " "from (default: %default)") base_group.add_option("--origins-patch", action="store", type="string", dest="origins_patch_fn", default=None, metavar="FILE", help="origins file patch, jsonpath format (rfc6902)") base_group.add_option("--distros-patch", action="store", type="string", dest="distros_patch_fn", default=None, metavar="FILE", help="distros file patch, jsonpath format (rfc6902)") base_group.add_option("-j", "--jobs", action="store", type="int", dest="jobs", default=multiprocessing.cpu_count() + 1, metavar="JOBS", help="number of building jobs to run simultaneously (default: %default)") base_group.add_option("-d", "--directory", action="store", type="string", dest="dir", metavar="DIR", default=_get_default_dir(), help=("empty root DIR or DIR with existing components (default: %default)")) base_group.add_option("--tee-file", action="store", type="string", dest="tee_file", metavar="FILE", default='/var/log/anvil.log', help=("location to store tee of output (default: %default)")) parser.add_option_group(base_group) build_group = OptionGroup(parser, "Build specific options") build_group.add_option('-u', "--usr-only", action="store_true", dest="usr_only", default=False, help=("when packaging only store /usr directory" " (default: %default)")) build_group.add_option("--venv-deploy-dir", action="store", type="string", dest="venv_deploy_dir", default=None, help=("for virtualenv builds, make the virtualenv " "relocatable to a directory different from " "build directory")) build_group.add_option('-c', "--overwrite-configs", action="store_true", dest="overwrite_configs", default=False, help=("When packaging do you want rpm to mark config " "files with %config or treat them as files and " "overwrite them each time on rpm install")) parser.add_option_group(build_group) # Extract only what we care about, these will be passed # to the constructor of actions as arguments # so don't adjust the naming wily nilly... if previous_settings: parser.set_defaults(**previous_settings) (options, _args) = parser.parse_args() values = {} values['dir'] = (options.dir or "") values['action'] = (options.action or "") values['jobs'] = options.jobs values['persona_fn'] = options.persona_fn values['origins_fn'] = options.origins_fn values['verbose'] = options.verbose values['usr_only'] = options.usr_only values['tee_file'] = options.tee_file values['overwrite_configs'] = options.overwrite_configs if options.origins_patch_fn: with open(options.origins_patch_fn) as fp: values['origins_patch'] = json.load(fp) if options.distros_patch_fn: with open(options.distros_patch_fn) as fp: values['distros_patch'] = json.load(fp) values['venv_deploy_dir'] = options.venv_deploy_dir return values
# # PGDB x86 32bit architecture module # # implementation notes: # - don't create class objects in this module that are not quickly # released by pgdb.py. the x86 modules get switched out dynamically # when qemu switches in and out of 64bit mode! # - syntax errors in this module can be found by running $ python pgdb_x86.py # - darn, with qemu 3.1.0 some awesome changes are in place to handle x86 # registers the right way. unfortunately when qemu starts (with -s -S) # the rdp protocol says were in 64bit mode when it should be 32bit mode :( # # contributors: # djv - Duane Voth # # history: # 2015/10/12 - v0.01 - djv - released # 2015/12/27 - v0.02 - djv - add cpu modes # 2019/05/12 - v0.03 - djv - update for qemu 3.1.x (proper feature support) version = "PGDB x86 v0.03 2019/05/12" name = 'i386' Log = None DSfns = None # PGDB can perform an alter ego switch mid-stream (thanks to module re-load). # If this architecture knows about an alter ego with a different register # dump length, return the name of that alter ego and PGDB will switch. # x86's multiple cpu modes can however run in different cores simultaneously # so this module supports all of them. def alter_ego(n): return None # The 'g' command for gdb's remote debug protocol (rdp) # returns a long string of hex digits, which are the cpu # registers all packed together - we have to parse this. # The following Gspec arrays determine register display # order, as well as parsing specific register data from # the gdb cmd response string. # 16 bit mode is a total guess ... it has never been seen and thus not debugged gspec16 = [ ['ax', 0, 4], ['bx', 12, 16], ['cx', 4, 8], ['dx', 8, 12], ['di', 28, 32], ['si', 24, 28], ['bp', 20, 24], ['flags', 36, 40], ['cs', 40, 44], ['eip', 32, 36], ['ss', 44, 48], ['esp', 16, 20] ] gspec32 = [ ['eax', 0, 8], ['ebx', 24, 32], ['ecx', 8, 16], ['edx', 16, 24], ['edi', 56, 64], ['esi', 48, 56], ['ebp', 40, 48], ['eflags', 72, 80], ['cs', 80, 88], ['eip', 64, 72], ['ss', 88, 96], ['esp', 32, 40], ['ds', 96, 104], ['es', 104, 112], ['fs', 112, 120], ['gs', 120, 128], ['st0', 128, 148], ['st1', 148, 168], ['st2', 168, 188], ['st3', 188, 208], ['st4', 208, 228], ['st5', 228, 248], ['st6', 248, 268], ['st7', 268, 288], ['fctrl', 288, 296], ['fstat', 296, 304], ['ftag', 304, 312], ['fiseg', 312, 320], ['fioff', 320, 328], ['foseg', 328, 336], ['fooff', 336, 344], ['fop', 344, 352], ['xmm0', 352, 384], ['xmm1', 384, 416], ['xmm2', 416, 448], ['xmm3', 448, 480], ['xmm4', 480, 512], ['xmm5', 512, 544], ['xmm6', 544, 576], ['xmm7', 576, 608], ['mxcsr', 608, 616] ] gspec64 = [ ['rax', 0, 16], ['rbx', 16, 32], ['rcx', 32, 48], ['rdx', 48, 64], ['rsi', 64, 80], ['rdi', 80, 96], ['rbp', 96, 112], ['rsp', 112, 128], ['r8', 128, 144], ['r9', 144, 160], ['r10', 160, 176], ['r11', 176, 192], ['r12', 192, 208], ['r13', 208, 224], ['r14', 224, 240], ['r15', 240, 256], ['rip', 256, 272], ['eflags',272, 280], ['cs', 280, 288], ['ss', 288, 296], ['ds', 296, 304], ['es', 304, 312], ['fs', 312, 320], ['gs', 320, 328], # ok I know I botched the floating point offsets ... and what is 328-392 ? ['st0', 392, 402], ['st1', 402, 412], ['st2', 412, 422], ['st3', 422, 432], ['st4', 432, 442], ['st5', 442, 452], ['st6', 452, 462], ['st7', 462, 472], ['st8', 472, 482], ['st9', 482, 492], ['st10', 492, 502], ['st11', 502, 512], ['st12', 512, 522], ['st13', 522, 532], ['st14', 532, 542], ['st15', 542, 552], ['xmm0', 552, 584], ['xmm1', 584, 616], ['xmm2', 616, 648], ['xmm3', 648, 680], ['xmm4', 680, 712], ['xmm5', 712, 744], ['xmm6', 744, 776], ['xmm7', 776, 808], ['xmm8', 808, 840], ['xmm9', 840, 872], ['xmm10', 872, 904], ['xmm11', 904, 936], ['xmm12', 936, 968], ['xmm13', 968,1000], ['xmm14',1000,1032], ['xmm15',1032,1064], ['mxcsr',1064,1072] ] gspec = [] gspec_idx = 0 spec = { 111: { 'mode':'16b', 'maxy':7, 'maxx':50, 'gspec':gspec16 }, 616: { 'mode':'32b', 'maxy':7, 'maxx':61, 'gspec':gspec32 }, 1072: { 'mode':'64b', 'maxy':11, 'maxx':63, 'gspec':gspec64 }, # a qemu 2.9 reg description xml ?? 552: { 'mode':'32b', 'maxy':11, 'maxx':63, 'gspec':gspec } } def generate_gspec(feat_name, xml_tree): # may be called multiple times (some reg sets are broken out by processor model) global gspec, gspec_idx Log.write('## i386: ' + feat_name + '\n') if feat_name == 'org.gnu.gdb.i386.64bit': for r in xml_tree: n = int(r['bitsize']) // 4 # 4 bits per nibble gspec.append((r['name'], gspec_idx, gspec_idx+n)) gspec_idx += n # erm... what's the difference between i386.64bit and i386.core ? #elif feat_name == 'org.gnu.gdb.i386.core.x': # for r in xml_tree: # Log.write('## implement core: ' + r['name'] + ' ' + r['bitsize'] + ' later\n') # n = int(r['bitsize']) // 4 # 4 bits per nibble # gspec.append((r['name'], gspec_idx, gspec_idx+n)) # gspec_idx += n #elif feat_name == 'org.gnu.gdb.i386.64bit.sse': # for r in xml_tree: # Log.write('## implement SSE: ' + r['name'] + ' ' + r['bitsize'] + ' later\n') else: Log.write('## deal with feature "' + feat_name + '" later ...\n') #def compute_address(seg, off): # # deal with protected mode vs. real mode: # # assume seg values below 0x80 are descriptors # if seg < 0x80: # return off # FIXME need to lookup descriptor # else: # return seg * 16 + off # Cpu methods def cpu_reg_update(self, newregs, mode): strs = [] def rdiff(y, x, fmt, rname, newr, oldr): new = newr[rname] old = oldr[rname] if rname in oldr else new attr = '' if new == old else '\a' strs.append((y, x, attr + fmt % new)) if self.mode == mode: strs.append((0, 10, ' %s ' % spec[mode]['mode'])) else: strs.append((0, 10, ' \a%s ' % spec[mode]['mode'])) self.mode = mode if mode == 616: # zero row is the title row rdiff(0, 20, ' %04x:', 'cs', newregs, self.regs) rdiff(0, 26, '%08x ', 'eip', newregs, self.regs) rdiff(1, 2, 'eax %08x', 'eax', newregs, self.regs) rdiff(1, 17, 'ebx %08x', 'ebx', newregs, self.regs) rdiff(1, 32, 'ecx %08x', 'ecx', newregs, self.regs) rdiff(1, 47, 'edx %08x', 'edx', newregs, self.regs) rdiff(2, 2, 'edi %08x', 'edi', newregs, self.regs) rdiff(2, 17, 'esi %08x', 'esi', newregs, self.regs) rdiff(2, 32, 'ebp %08x', 'ebp', newregs, self.regs) rdiff(2, 47, 'esp %08x', 'esp', newregs, self.regs) rdiff(3, 3, 'ds %04x', 'ds', newregs, self.regs) rdiff(3, 18, 'es %04x', 'es', newregs, self.regs) rdiff(3, 30, 'mxcsr %08x', 'mxcsr', newregs, self.regs) rdiff(3, 48, 'ss %04x', 'ss', newregs, self.regs) rdiff(4, 3, 'fs %04x', 'fs', newregs, self.regs) rdiff(4, 18, 'gs %04x', 'gs', newregs, self.regs) rdiff(4, 30, 'fctrl %08x', 'fctrl', newregs, self.regs) rdiff(4, 45, 'flags %08x', 'eflags', newregs, self.regs) elif mode == 1072: # I'm not completely happy with this layout ... # zero row is the title row rdiff(0, 20, ' %04x:', 'cs', newregs, self.regs) rdiff(0, 26, '%016x ', 'rip', newregs, self.regs) rdiff(1, 2, 'rax %016x', 'rax', newregs, self.regs) rdiff(1, 24, 'rbx %016x', 'rbx', newregs, self.regs) rdiff(2, 2, 'rcx %016x', 'rcx', newregs, self.regs) rdiff(2, 24, 'rdx %016x', 'rdx', newregs, self.regs) rdiff(2, 54, 'ds %04x', 'ds', newregs, self.regs) rdiff(3, 2, 'rdi %016x', 'rdi', newregs, self.regs) rdiff(3, 24, 'rsi %016x', 'rsi', newregs, self.regs) rdiff(3, 54, 'es %04x', 'es', newregs, self.regs) rdiff(4, 2, 'rbp %016x', 'rbp', newregs, self.regs) rdiff(4, 24, 'rsp %016x', 'rsp', newregs, self.regs) rdiff(4, 54, 'ss %04x', 'ss', newregs, self.regs) rdiff(5, 2, 'r08 %016x', 'r8', newregs, self.regs) rdiff(5, 24, 'r09 %016x', 'r9', newregs, self.regs) rdiff(5, 54, 'fs %04x', 'fs', newregs, self.regs) rdiff(6, 2, 'r10 %016x', 'r10', newregs, self.regs) rdiff(6, 24, 'r11 %016x', 'r11', newregs, self.regs) rdiff(6, 54, 'gs %04x', 'gs', newregs, self.regs) rdiff(7, 2, 'r12 %016x', 'r12', newregs, self.regs) rdiff(7, 24, 'r13 %016x', 'r13', newregs, self.regs) rdiff(7, 47, 'mxcsr %08x', 'mxcsr', newregs, self.regs) rdiff(8, 2, 'r14 %016x', 'r14', newregs, self.regs) rdiff(8, 24, 'r15 %016x', 'r15', newregs, self.regs) rdiff(8, 47, 'flags %08x', 'eflags', newregs, self.regs) elif mode == 552: # I'm not completely happy with this layout ... # zero row is the title row rdiff(0, 20, ' %04x:', 'cs', newregs, self.regs) rdiff(0, 26, '%016x ', 'rip', newregs, self.regs) rdiff(1, 2, 'rax %016x', 'rax', newregs, self.regs) rdiff(1, 24, 'rbx %016x', 'rbx', newregs, self.regs) rdiff(2, 2, 'rcx %016x', 'rcx', newregs, self.regs) rdiff(2, 24, 'rdx %016x', 'rdx', newregs, self.regs) rdiff(2, 54, 'ds %04x', 'ds', newregs, self.regs) rdiff(3, 2, 'rdi %016x', 'rdi', newregs, self.regs) rdiff(3, 24, 'rsi %016x', 'rsi', newregs, self.regs) rdiff(3, 54, 'es %04x', 'es', newregs, self.regs) rdiff(4, 2, 'rbp %016x', 'rbp', newregs, self.regs) rdiff(4, 24, 'rsp %016x', 'rsp', newregs, self.regs) rdiff(4, 54, 'ss %04x', 'ss', newregs, self.regs) rdiff(5, 2, 'r08 %016x', 'r8', newregs, self.regs) rdiff(5, 24, 'r09 %016x', 'r9', newregs, self.regs) rdiff(5, 54, 'fs %04x', 'fs', newregs, self.regs) rdiff(6, 2, 'r10 %016x', 'r10', newregs, self.regs) rdiff(6, 24, 'r11 %016x', 'r11', newregs, self.regs) rdiff(6, 54, 'gs %04x', 'gs', newregs, self.regs) rdiff(7, 2, 'r12 %016x', 'r12', newregs, self.regs) rdiff(7, 24, 'r13 %016x', 'r13', newregs, self.regs) rdiff(7, 47, 'mxcsr %08x', 'mxcsr', newregs, self.regs) rdiff(8, 2, 'r14 %016x', 'r14', newregs, self.regs) rdiff(8, 24, 'r15 %016x', 'r15', newregs, self.regs) rdiff(8, 47, 'flags %08x', 'eflags', newregs, self.regs) else: strs.append((1, 2, 'unknown register set (%d)' % mode)) # lol, messy, but cool x = newregs['eflags'] fla = '%02x' % (x&0xff) + '%02x' % ((x&0xff00)>>8) + '%02x00' % ((x&0xff0000)>>16) flstr = DSfns['ds_print_one'](fla, ds_eflags)[0] if mode == 616 or mode == 552: # so the max possible eflags string is like 53, # here I hope that not all flags will be on at the same time strs.append((5, 14, '%45s' % flstr)) elif mode == 1072: ## lol, messy, but cool #x = newregs['eflags'] #fla = '%02x' % (x&0xff) + '%02x' % ((x&0xff00)>>8) + '%02x00' % ((x&0xff0000)>>16) #flstr = DSfns['ds_print_one'](fla, ds_rflags)[0] strs.append((9, 16, '%45s' % flstr)) # TODO: at one point I used this for XMM and ST regs - only displayed the # non-zero regs - but it's all too much - need a slick way to deal # with tons of regs - scroll the cpu windows maybe ... for now, # no floating point or extended "multimedia" regs are displayed. # track line length in nibbles displayed # always print the first 16 regs, then only non-zero regs # if i < 16 or int(val, 16) != 0: # n += len(val) # if (n > 30): # eol = '\n' # n = 0 # else: # eol = '' # rdata += ' %5s' % spec[0] + ' %s' % val + eol # i += 1 return strs def get_seg_register(self): if 'cs' in self.regs: return self.regs['cs'] return None def get_ip_register(self): # with qemu 3.1.x we are getting a mode == None ? if self.mode == None: return None #Log.write('## get_ip reg data len ' + str(self.mode) + '\n') if self.mode == 616 or self.mode == 552: if 'eip' in self.regs: return self.regs['eip'] if self.mode == 1072: if 'rip' in self.regs: return self.regs['rip'] Log.write('undefined mode %s in get_ip_register() in %s\n' % ( self.mode, 'pgdb_i386.py'), CPerr) # 'pgdp_' + name + '.py' ?? return None def get_ip_bpfmt(self): # return the current cs:eip formatted for the gdb 'Z0' command # no, you are right, its not directly useful (because who wants to # set a breakpoint at the current eip? the emulator is just going # to stop in exactly the same place), but it does show the user how # to format the value correctly rval = '' # not sure if gdb protocol supports segments for breakpoints, might # need to convert seg:off to a physical or logical memory address #if self.regs['cs']: # rval += '%x' % self.regs['cs'] if self.mode == 616: rval += '%x' % self.regs['eip'] elif self.mode == 1072 or self.mode == 552: rval += '%x' % self.regs['rip'] return rval.lower() # --------------------------------------------------------------------------- # Format Arbitrary Data Structures # # sure, this could be an external module i.e. 'import fads', and someone # will (in some project of theirs) likely break it out, but I won't (see # my rant in pgdb.py about 'fads'). class DS(object): # defines a data structure def __init__(self, name, lname, dlen, height, width, hdr, elements): self.name = name self.lname = lname self.dlen = dlen # ds data length in bytes self.height = height # height of one ds self.width = width # strings will be truncated to this self.header = hdr # hdr %fmt or None self.elements = elements # list of DSFLD objects class DSFLD(object): # defines a data structure field # field objects must be sorted for the display, in row then column order def __init__(self, y, x, name, build, vals): self.y = y # display row number self.x = x # display minimum column number self.name = name self.build = build # list of DSBLD objects self.vals = vals # list of DSVAL objects class DSBLD(object): # defines how to build a data structure field from data # a list of DSBLD objects are ORed together to build a field def __init__(self, firstb, lastb, mask, lshift): self.firstb = firstb # index of first byte self.lastb = lastb # index of last byte self.mask = mask # int self.lshift = lshift # bits to left shift mask/bytes class DSVAL(object): # defines text that identifies a specific field value def __init__(self, mask, val, txt): self.mask = mask # field mask self.val = val # value, or -1 for != 0 test self.txt = txt # string to print if match # ------------------------------------------------ # define the data structures specific to i386 # gdt: intel swdev3a s3.4.5 pg 3-13 fig 3-8 # code and data: intel swdev3a s3.4.5.1 pg 3-17 # tss descriptor: intel swdev3a s7.2.2 pg 7-7 _gdt_els = ( DSFLD(0, 0,'',[DSBLD(2,3,0xffff,0),DSBLD(4,4,0xff,16),DSBLD(7,7,0xff,24)], []), DSFLD(0,10,'',[DSBLD(0,1,0xffff,0),DSBLD(6,6,0x0f,16)], []), DSFLD(0,17,'',[DSBLD(5,5,0xff,0)], [DSVAL(0x1f,0x00,' \rres\t'), DSVAL(0x1f,0x08,' \rres\t'), DSVAL(0x1f,0x0a,' \rres\t'), DSVAL(0x1f,0x0d,' \rres\t'), DSVAL(0x80,0x00,' \a!pres\t'), # system types DSVAL(0x1f,0x01,' tss16'), DSVAL(0x1f,0x02,' ldt'), DSVAL(0x1f,0x03,' tss16(b)'), DSVAL(0x1f,0x04,' call16'), DSVAL(0x1f,0x05,' taskg'), DSVAL(0x1f,0x06,' intr16'), DSVAL(0x1f,0x07,' trap16'), DSVAL(0x1f,0x09,' tss'), DSVAL(0x1f,0x0b,' tss(b)'), DSVAL(0x1f,0x0c,' call'), DSVAL(0x1f,0x0e,' intr'), DSVAL(0x1f,0x0f,' trap'), # non system types DSVAL(0x18,0x10,' data'), DSVAL(0x18,0x18,' code'), DSVAL(0x1a,0x10,' r/o'), DSVAL(0x1a,0x12,' r/w'), DSVAL(0x1a,0x18,' e/o'), DSVAL(0x1a,0x1a,' e/r'), DSVAL(0x11,0x11,' accessed')]), DSFLD(0,21,'',[DSBLD(6,6,0xff,0)], [DSVAL(0x60,0x00,' 16bit'),DSVAL(0x60,0x20,' 64bit'), DSVAL(0x60,0x60,' \rerr\r')]) ) # name, lname, dlen, height, width, hdr, elements ds_gdt = DS('gdt', '32 bit global descriptor table', 8, 1, 58, '%03x ', _gdt_els) # tss: intel swdev3a s7.2.1 pg 7-5 _tss_els = ( DSFLD( 0, 2, 'ss0 ',[DSBLD( 8, 9, 0xffff,0)],[]), DSFLD( 0, 0, '_res',[DSBLD( 10, 11, 0xffff,0)], [DSVAL(0xffff,-1,' \rss0 reserved!')]), DSFLD( 0,12, 'esp0 ',[DSBLD( 4, 7,0xffffffff,0)],[]), DSFLD( 1, 2, 'ss1 ',[DSBLD( 16, 17, 0xffff,0)],[]), DSFLD( 1, 0, '_res',[DSBLD( 18, 19, 0xffff,0)], [DSVAL(0xffff,-1,' \rss1 reserved!')]), DSFLD( 1,12, 'esp1 ',[DSBLD( 12, 15,0xffffffff,0)],[]), DSFLD( 2, 2, 'ss2 ',[DSBLD( 24, 25, 0xffff,0)],[]), DSFLD( 2, 0, '_res',[DSBLD( 26, 27, 0xffff,0)], [DSVAL(0xffff,-1,' \rss1 reserved!')]), DSFLD( 2,12, 'esp2 ',[DSBLD( 20, 23,0xffffffff,0)],[]), DSFLD( 3, 2, 'cr3 ',[DSBLD( 28, 31,0xffffffff,0)],[]), DSFLD( 3,16, 'flg ',[DSBLD( 36, 39,0xffffffff,0)],[]), DSFLD( 4, 2, 'eax ',[DSBLD( 40, 43,0xffffffff,0)],[]), DSFLD( 4,16, 'ecx ',[DSBLD( 44, 47,0xffffffff,0)],[]), DSFLD( 5, 2, 'edx ',[DSBLD( 48, 51,0xffffffff,0)],[]), DSFLD( 5,16, 'ebx ',[DSBLD( 52, 55,0xffffffff,0)],[]), DSFLD( 6, 3, 'cs ',[DSBLD( 76, 77, 0xffff,0)],[]), DSFLD( 6, 0, '_res',[DSBLD( 78, 79, 0xffff,0)], [DSVAL(0xffff,-1,' \rcs reserved!')]), DSFLD( 6,12, 'eip ',[DSBLD( 32, 35,0xffffffff,0)],[]), DSFLD( 7, 3, 'ss ',[DSBLD( 80, 81, 0xffff,0)],[]), DSFLD( 7, 0, '_res',[DSBLD( 82, 83, 0xffff,0)], [DSVAL(0xffff,-1,' \rss reserved!')]), DSFLD( 7,12, 'esp ',[DSBLD( 56, 59,0xffffffff,0)],[]), DSFLD( 8,12, 'ebp ',[DSBLD( 60, 63,0xffffffff,0)],[]), DSFLD( 9, 3, 'es ',[DSBLD( 72, 73, 0xffff,0)],[]), DSFLD( 9, 0, '_res',[DSBLD( 74, 75, 0xffff,0)], [DSVAL(0xffff,-1,' \res reserved!')]), DSFLD( 9,12, 'esi ',[DSBLD( 64, 67,0xffffffff,0)],[]), DSFLD(10, 3, 'ds ',[DSBLD( 84, 85, 0xffff,0)],[]), DSFLD(10, 0, '_res',[DSBLD( 86, 87, 0xffff,0)], [DSVAL(0xffff,-1,' \rds reserved!')]), DSFLD(10,12, 'edi ',[DSBLD( 68, 71,0xffffffff,0)],[]), DSFLD(11, 3, 'fs ',[DSBLD( 88, 89, 0xffff,0)],[]), DSFLD(11, 0, '_res',[DSBLD( 90, 91, 0xffff,0)], [DSVAL(0xffff,-1,' \rfs reserved!')]), DSFLD(11,20, 'ldt ',[DSBLD( 96, 97, 0xffff,0)],[]), DSFLD(11, 0, '_res',[DSBLD( 98, 99, 0xffff,0)], [DSVAL(0xffff,-1,' \rldt reserved!')]), DSFLD(12, 3, 'gs ',[DSBLD( 92, 93, 0xffff,0)],[]), DSFLD(12, 0, '_res',[DSBLD( 94, 95, 0xffff,0)], [DSVAL(0xffff,-1,' \rgs reserved!')]), DSFLD(12,19, 'link ',[DSBLD( 0, 1, 0xffff,0)],[]), DSFLD(12, 0, '_res',[DSBLD( 2, 3, 0xffff,0)], [DSVAL(0xffff,-1,' \rlink reserved!')]), DSFLD(13, 0, 'iomap ',[DSBLD(102,103, 0xffff,0)],[]), DSFLD(13, 0, '_',[DSBLD(100,100, 0x1,0)], [DSVAL(0x1,0x1,' \vdbg trap')]), DSFLD(13, 0, '_',[DSBLD(100,100, 0xfffe,0)], [DSVAL(0xfffe,-1,' \rt reserved!')]) ) ds_tss = DS('tss', 'task state', 104, 15, 30, '\b---- tss @ 0x%x', _tss_els) # eflags: intel swdev1 s3.4.3 pg 3-21 fig 3-8 _eflags_els = ( DSFLD(0, 0, '_',[DSBLD(0,2,0xffffff,0)], # print the flags left to right [DSVAL(0x200000,0x200000,'id'), DSVAL(0x100000,0x100000,' vp'), DSVAL(0x080000,0x080000,' vi'), DSVAL(0x040000,0x040000,' ac'), DSVAL(0x020000,0x020000,' v8'), DSVAL(0x010000,0x010000,' r'), DSVAL(0x004000,0x004000,' nt'), DSVAL(0x003000,0x001000,' io1'), DSVAL(0x003000,0x002000,' io2'), DSVAL(0x003000,0x003000,' io3'), DSVAL(0x000800,0x000800,' o'), DSVAL(0x000400,0x000400,' d'), DSVAL(0x000200,0x000200,' i'), DSVAL(0x000100,0x000100,' t'), DSVAL(0x000080,0x000080,' s'), DSVAL(0x000040,0x000040,' z'), DSVAL(0x000010,0x000010,' a'), DSVAL(0x000004,0x000004,' p'), DSVAL(0x000001,0x000001,' c')]), ) ds_eflags = DS('flags', '32 bit cpu flags', 4, 1, 53, None, _eflags_els) # ------------------------------------------------ # define the data structures specific to x86_64 # gdt: intel swdev3a s3.4.5 pg 3-13 fig 3-8 # code and data: intel swdev3a s3.4.5.1 pg 3-17 # tss descriptor: intel swdev3a s7.2.2 pg 7-7 _gdt64_els = ( DSFLD(0, 0,'',[DSBLD(2,3,0xffff,0),DSBLD(4,4,0xff,16), DSBLD(7,7,0xff,24), DSBLD(8,16,0xffffffff,32)], []), DSFLD(0,18,'',[DSBLD(0,1,0xffff,0),DSBLD(6,6,0x0f,16)], []), DSFLD(0,25,'',[DSBLD(5,5,0xff,0)], [DSVAL(0x1f,0x00,' \rres\t'), DSVAL(0x1f,0x08,' \rres\t'), DSVAL(0x1f,0x0a,' \rres\t'), DSVAL(0x1f,0x0d,' \rres\t'), DSVAL(0x80,0x00,' \a!pres\t'), # system types DSVAL(0x1d,0x01,' tss16'), DSVAL(0x1f,0x02,' ldt'), DSVAL(0x1f,0x04,' call16'), DSVAL(0x1f,0x05,' taskg'), DSVAL(0x1f,0x06,' intr16'), DSVAL(0x1f,0x07,' trap16'), DSVAL(0x1d,0x09,' tss'), DSVAL(0x1f,0x0c,' call'), DSVAL(0x1f,0x0e,' intr'), DSVAL(0x1f,0x0f,' trap'), # non system types DSVAL(0x18,0x10,' data'), DSVAL(0x18,0x18,' code'), DSVAL(0x1a,0x10,' r/o'), DSVAL(0x1a,0x12,' r/w'), DSVAL(0x1a,0x18,' e/o'), DSVAL(0x1a,0x1a,' e/r'), DSVAL(0x11,0x11,' accessed')]), DSFLD(0,29,'',[DSBLD(6,6,0xff,0)], [DSVAL(0x60,0x00,' 16bit'),DSVAL(0x60,0x20,' 64bit')]) ) ds_gdt64 = DS('gdt64', '64 bit global descriptor table', 16, 1, 62, '%03x ', _gdt64_els) # tss: intel swdev3a s7.2.1 pg 7-5 _tss_els = ( DSFLD( 0, 2, 'ss0 ',[DSBLD( 8, 9, 0xffff,0)],[]), DSFLD( 0, 0, '_res',[DSBLD( 10, 11, 0xffff,0)], [DSVAL(0xffff,-1,' \rss0 reserved!')]), DSFLD( 0,12, 'esp0 ',[DSBLD( 4, 7,0xffffffff,0)],[]), DSFLD( 1, 2, 'ss1 ',[DSBLD( 16, 17, 0xffff,0)],[]), DSFLD( 1, 0, '_res',[DSBLD( 18, 19, 0xffff,0)], [DSVAL(0xffff,-1,' \rss1 reserved!')]), DSFLD( 1,12, 'esp1 ',[DSBLD( 12, 15,0xffffffff,0)],[]), DSFLD( 2, 2, 'ss2 ',[DSBLD( 24, 25, 0xffff,0)],[]), DSFLD( 2, 0, '_res',[DSBLD( 26, 27, 0xffff,0)], [DSVAL(0xffff,-1,' \rss1 reserved!')]), DSFLD( 2,12, 'esp2 ',[DSBLD( 20, 23,0xffffffff,0)],[]), DSFLD( 3, 2, 'cr3 ',[DSBLD( 28, 31,0xffffffff,0)],[]), DSFLD( 3,16, 'flg ',[DSBLD( 36, 39,0xffffffff,0)],[]), DSFLD( 4, 2, 'eax ',[DSBLD( 40, 43,0xffffffff,0)],[]), DSFLD( 4,16, 'ecx ',[DSBLD( 44, 47,0xffffffff,0)],[]), DSFLD( 5, 2, 'edx ',[DSBLD( 48, 51,0xffffffff,0)],[]), DSFLD( 5,16, 'ebx ',[DSBLD( 52, 55,0xffffffff,0)],[]), DSFLD( 6, 3, 'cs ',[DSBLD( 76, 77, 0xffff,0)],[]), DSFLD( 6, 0, '_res',[DSBLD( 78, 79, 0xffff,0)], [DSVAL(0xffff,-1,' \rcs reserved!')]), DSFLD( 6,12, 'eip ',[DSBLD( 32, 35,0xffffffff,0)],[]), DSFLD( 7, 3, 'ss ',[DSBLD( 80, 81, 0xffff,0)],[]), DSFLD( 7, 0, '_res',[DSBLD( 82, 83, 0xffff,0)], [DSVAL(0xffff,-1,' \rss reserved!')]), DSFLD( 7,12, 'esp ',[DSBLD( 56, 59,0xffffffff,0)],[]), DSFLD( 8,12, 'ebp ',[DSBLD( 60, 63,0xffffffff,0)],[]), DSFLD( 9, 3, 'es ',[DSBLD( 72, 73, 0xffff,0)],[]), DSFLD( 9, 0, '_res',[DSBLD( 74, 75, 0xffff,0)], [DSVAL(0xffff,-1,' \res reserved!')]), DSFLD( 9,12, 'esi ',[DSBLD( 64, 67,0xffffffff,0)],[]), DSFLD(10, 3, 'ds ',[DSBLD( 84, 85, 0xffff,0)],[]), DSFLD(10, 0, '_res',[DSBLD( 86, 87, 0xffff,0)], [DSVAL(0xffff,-1,' \rds reserved!')]), DSFLD(10,12, 'edi ',[DSBLD( 68, 71,0xffffffff,0)],[]), DSFLD(11, 3, 'fs ',[DSBLD( 88, 89, 0xffff,0)],[]), DSFLD(11, 0, '_res',[DSBLD( 90, 91, 0xffff,0)], [DSVAL(0xffff,-1,' \rfs reserved!')]), DSFLD(11,20, 'ldt ',[DSBLD( 96, 97, 0xffff,0)],[]), DSFLD(11, 0, '_res',[DSBLD( 98, 99, 0xffff,0)], [DSVAL(0xffff,-1,' \rldt reserved!')]), DSFLD(12, 3, 'gs ',[DSBLD( 92, 93, 0xffff,0)],[]), DSFLD(12, 0, '_res',[DSBLD( 94, 95, 0xffff,0)], [DSVAL(0xffff,-1,' \rgs reserved!')]), DSFLD(12,19, 'link ',[DSBLD( 0, 1, 0xffff,0)],[]), DSFLD(12, 0, '_res',[DSBLD( 2, 3, 0xffff,0)], [DSVAL(0xffff,-1,' \rlink reserved!')]), DSFLD(13, 0, 'iomap ',[DSBLD(102,103, 0xffff,0)],[]), DSFLD(13, 0, '_',[DSBLD(100,100, 0x1,0)], [DSVAL(0x1,0x1,' \vdbg trap')]), DSFLD(13, 0, '_',[DSBLD(100,100, 0xfffe,0)], [DSVAL(0xfffe,-1,' \rt reserved!')]) ) ds_tss = DS('tss', '32 bit task state', 104, 15, 30, '\b---- tss @ 0x%x', _tss_els) # rflags: intel swdev1 s3.4.3 pg 3-21 fig 3-8 _rflags_els = ( DSFLD(0, 0, '_',[DSBLD(0,2,0xffffff,0)], # print the flags left to right [DSVAL(0x200000,0x200000,'id'), DSVAL(0x100000,0x100000,' vp'), DSVAL(0x080000,0x080000,' vi'), DSVAL(0x040000,0x040000,' ac'), DSVAL(0x020000,0x020000,' v8'), DSVAL(0x010000,0x010000,' r'), DSVAL(0x004000,0x004000,' nt'), DSVAL(0x003000,0x001000,' io1'), DSVAL(0x003000,0x002000,' io2'), DSVAL(0x003000,0x003000,' io3'), DSVAL(0x000800,0x000800,' o'), DSVAL(0x000400,0x000400,' d'), DSVAL(0x000200,0x000200,' i'), DSVAL(0x000100,0x000100,' t'), DSVAL(0x000080,0x000080,' s'), DSVAL(0x000040,0x000040,' z'), DSVAL(0x000010,0x000010,' a'), DSVAL(0x000004,0x000004,' p'), DSVAL(0x000001,0x000001,' c')]), ) ds_rflags = DS('flags64', '64 bit cpu flags', 4, 1, 45, None, _rflags_els) # sample_gdt = "0000000000000000ffff0000009acf00ffff00000093cf00ff1f0010009300009f0f00800b930000ffff0000009a0f00ffff000000920f006800808d00890000" # sample_tss = "00000000e01f0000100000000000000000000000000000000000000000300000d8004000000000000000000000000000000000000000000000204000000000000000000000000000170000000f000000170000011700000000000000000000004b00010000000000000000000000000000000000000000000000000000000000" # if __name__ == "__main__": # # example: multiple gdt entries # loop_offset = 0 # in bytes # while loop_offset*2 < len(sample_gdt): # # break data into descriptor size chunks # data = sample_gdt[loop_offset*2:(loop_offset+ds_gdt.dlen)*2] # for ln in ds_print_one(data, ds_gdt): # print(ln) # loop_offset += ds_gdt.dlen # # # example: one tss # for ln in ds_print_one(sample_tss, ds_tss): # print(ln) data_structs = [ds_gdt, ds_gdt64, ds_tss, ds_eflags, ds_rflags]
import collections.abc import contextlib import copy import itertools import random import string import threading from functools import total_ordering, wraps from typing import TYPE_CHECKING, Iterable, List, Optional, Union from loguru import logger from sqlalchemy import Column, Integer, String, Unicode from flexget import config_schema, db_schema from flexget.db_schema import VersionedBaseMeta from flexget.entry import Entry, EntryState, EntryUnicodeError from flexget.event import event, fire_event from flexget.manager import Session from flexget.plugin import ( DependencyError, PluginError, PluginWarning, get_plugins, phase_methods, plugin_schemas, ) from flexget.plugin import plugins as all_plugins from flexget.plugin import task_phases from flexget.terminal import capture_console from flexget.utils import requests from flexget.utils.database import with_session from flexget.utils.simple_persistence import SimpleTaskPersistence from flexget.utils.sqlalchemy_utils import ContextSession from flexget.utils.template import FlexGetTemplate, render_from_task from flexget.utils.tools import MergeException, get_config_hash, merge_dict_from_to logger = logger.bind(name='task') if TYPE_CHECKING: Base = VersionedBaseMeta else: Base = db_schema.versioned_base('feed', 0) class TaskConfigHash(Base): """Stores the config hash for tasks so that we can tell if the config has changed since last run.""" __tablename__ = 'feed_config_hash' id = Column(Integer, primary_key=True) task = Column('name', Unicode, index=True, nullable=False) hash = Column('hash', String) def __repr__(self) -> str: return f'<TaskConfigHash(task={self.task},hash={self.hash})>' @with_session def config_changed(task: str = None, session: ContextSession = None) -> None: """ Forces config_modified flag to come out true on next run of `task`. Used when the db changes, and all entries need to be reprocessed. .. WARNING: DO NOT (FURTHER) USE FROM PLUGINS :param task: Name of the task. If `None`, will be set for all tasks. :param session: sqlalchemy Session instance """ logger.debug('Marking config for {} as changed.', (task or 'all tasks')) task_hash = session.query(TaskConfigHash) if task: task_hash = task_hash.filter(TaskConfigHash.task == task) task_hash.delete() def use_task_logging(func): @wraps(func) def wrapper(self, *args, **kw): # Set the appropriate logger context while running task cms = [logger.contextualize(task=self.name, task_id=self.id, session_id=self.session_id)] # Capture console output if configured to do so if self.output: cms.append(capture_console(self.output)) with contextlib.ExitStack() as stack: for cm in cms: stack.enter_context(cm) return func(self, *args, **kw) return wrapper class EntryIterator: """An iterator over a subset of entries to emulate old task.accepted/rejected/failed/entries properties.""" def __init__(self, entries: List[Entry], states: Union[EntryState, Iterable[EntryState]]): self.all_entries = entries if isinstance(states, EntryState): states = [states] self.filter = lambda e: e._state in states def __iter__(self) -> Iterable[Entry]: return filter(self.filter, self.all_entries) def __bool__(self): return any(e for e in self) def __len__(self): return sum(1 for _e in self) def __add__(self, other): return itertools.chain(self, other) def __radd__(self, other): return itertools.chain(other, self) def __getitem__(self, item) -> Union[Entry, Iterable[Entry]]: if isinstance(item, slice): return list(itertools.islice(self, item.start, item.stop)) if not isinstance(item, int): raise ValueError('Index must be integer.') for index, entry in enumerate(self): if index == item: return entry else: raise IndexError(f'{item} is out of bounds') def reverse(self): self.all_entries.sort(reverse=True) def sort(self, *args, **kwargs): self.all_entries.sort(*args, **kwargs) class EntryContainer(list): """Container for a list of entries, also contains accepted, rejected failed iterators over them.""" def __init__(self, iterable: list = None): list.__init__(self, iterable or []) self._entries = EntryIterator(self, [EntryState.UNDECIDED, EntryState.ACCEPTED]) self._accepted = EntryIterator( self, EntryState.ACCEPTED ) # accepted entries, can still be rejected self._rejected = EntryIterator( self, EntryState.REJECTED ) # rejected entries, can not be accepted self._failed = EntryIterator(self, EntryState.FAILED) # failed entries self._undecided = EntryIterator(self, EntryState.UNDECIDED) # undecided entries (default) # Make these read-only properties entries: EntryIterator = property(lambda self: self._entries) accepted: EntryIterator = property(lambda self: self._accepted) rejected: EntryIterator = property(lambda self: self._rejected) failed: EntryIterator = property(lambda self: self._failed) undecided: EntryIterator = property(lambda self: self._undecided) def __repr__(self) -> str: return f'<EntryContainer({list.__repr__(self)})>' class TaskAbort(Exception): def __init__(self, reason: str, silent: bool = False) -> None: self.reason = reason self.silent = silent def __repr__(self): return f'TaskAbort(reason={self.reason}, silent={self.silent})' @total_ordering class Task: """ Represents one task in the configuration. **Fires events:** * task.execute.before_plugin Before a plugin is about to be executed. Note that since this will also include all builtin plugins the amount of calls can be quite high ``parameters: task, keyword`` * task.execute.after_plugin After a plugin has been executed. ``parameters: task, keyword`` * task.execute.started Before a task starts execution * task.execute.completed After task execution has been completed ``parameters: task`` """ # Used to determine task order, when priority is the same _counter = itertools.count() RERUN_DEFAULT = 5 RERUN_MAX = 100 def __init__( self, manager, name, config=None, options=None, output=None, session_id=None, priority=None, suppress_warnings=None, ): """ :param Manager manager: Manager instance. :param string name: Name of the task. :param dict config: Task configuration. :param options: dict or argparse namespace with options for this task :param output: A filelike that all console output will be sent to for this task. :param session_id: Session id that will be attached to all log messages for filtering :param priority: If multiple tasks are waiting to run, the task with the lowest priority will be run first. The default is 0, if the cron option is set though, the default is lowered to 10. :param suppress_warnings: Allows suppressing log warning about missing plugin in key phases """ self.name = str(name) self.id = ''.join(random.choice(string.digits) for _ in range(6)) self.manager = manager if config is None: config = manager.config['tasks'].get(name, {}) self.config = copy.deepcopy(config) self.prepared_config = None if options is None: options = copy.copy(self.manager.options.execute) elif isinstance(options, dict): options_namespace = copy.copy(self.manager.options.execute) options_namespace.__dict__.update(options) options = options_namespace # If execution hasn't specifically set the `allow_manual` flag, set it to False by default if not hasattr(options, 'allow_manual'): setattr(options, 'allow_manual', False) self.options = options self.output = output self.session_id = session_id self.suppress_warnings = suppress_warnings or [] if priority is None: self.priority = 10 if self.options.cron else 0 else: self.priority = priority self.priority = priority self._count = next(self._counter) self.finished_event = threading.Event() # simple persistence self.simple_persistence = SimpleTaskPersistence(self) # rerun related flags and values self._rerun_count = 0 self._max_reruns = Task.RERUN_DEFAULT self._reruns_locked = False self.config_modified = None self.enabled = not self.name.startswith('_') # These are just to query what happened in task. Call task.abort to set. self.aborted = False self.abort_reason = None self.silent_abort = False self.session = None self.requests = requests.Session() # List of all entries in the task self._all_entries = EntryContainer() self._rerun = False self.disabled_phases = [] self.disabled_plugins = [] # current state self.current_phase = None self.current_plugin = None self.traceback: Optional[str] = None @property def max_reruns(self): """How many times task can be rerunned before stopping""" return self._max_reruns @max_reruns.setter def max_reruns(self, value): """Set new maximum value for reruns unless property has been locked""" if not self._reruns_locked: self._max_reruns = value else: logger.debug('max_reruns is locked, {} tried to modify it', self.current_plugin) def lock_reruns(self): """Prevent modification of max_reruns property""" logger.debug('Enabling rerun lock') self._reruns_locked = True def unlock_reruns(self): """Allow modification of max_reruns property""" logger.debug('Releasing rerun lock') self._reruns_locked = False @property def reruns_locked(self): return self._reruns_locked @property def is_rerun(self): return bool(self._rerun_count) @property def rerun_count(self): return self._rerun_count @property def undecided(self): """ .. deprecated:: Use API v3 .. note:: We did not migrate to v3 If I remember correctly the idea was to make v3 signature on_task_xxx(task, config, entries) Param entries would be EntryContainer, which has convenience iterator methods: - entries.accepted - entries.failed - etc, which you see here """ return self.all_entries.undecided @property def failed(self): """ .. deprecated:: Use API v3 """ return self.all_entries.failed @property def rejected(self): """ .. deprecated:: Use API v3 """ return self.all_entries.rejected @property def accepted(self): """ .. deprecated:: Use API v3 """ return self.all_entries.accepted @property def entries(self): """ .. deprecated:: Use API v3 """ return self.all_entries.entries @property def all_entries(self): """ .. deprecated:: Use API v3 """ return self._all_entries def __lt__(self, other): return (self.priority, self._count) < (other.priority, other._count) def __eq__(self, other): return (self.priority, self._count) == (other.priority, other._count) def __str__(self): return '<Task(name=%s,aborted=%s)>' % (self.name, self.aborted) def disable_phase(self, phase): """Disable ``phase`` from execution. :param string phase: Name of ``phase`` :raises ValueError: *phase* could not be found. """ if phase not in task_phases: raise ValueError('%s is not a valid phase' % phase) if phase not in self.disabled_phases: logger.debug('Disabling {} phase', phase) self.disabled_phases.append(phase) def disable_plugin(self, plugin): """Disable ``plugin`` from execution. :param string plugin: Name of ``plugin`` :raises ValueError: *plugin* could not be found. """ if plugin not in all_plugins: raise ValueError(f'`{plugin}` is not a valid plugin.') self.disabled_plugins.append(plugin) def abort(self, reason='Unknown', silent=False, traceback: str = None): """Abort this task execution, no more plugins will be executed except the abort handling ones.""" self.aborted = True self.abort_reason = reason self.silent_abort = silent self.traceback = traceback if not self.silent_abort: logger.warning('Aborting task (plugin: {})', self.current_plugin) else: logger.debug('Aborting task (plugin: {})', self.current_plugin) raise TaskAbort(reason, silent=silent) def find_entry(self, category='entries', **values): """ Find and return :class:`~flexget.entry.Entry` with given attributes from task or None :param string category: entries, accepted, rejected or failed. Defaults to entries. :param values: Key values of entries to be searched :return: Entry or None """ cat = getattr(self, category) if not isinstance(cat, EntryIterator): raise TypeError('category must be a EntryIterator') for entry in cat: for k, v in values.items(): if not (k in entry and entry[k] == v): break else: return entry return None def plugins(self, phase=None): """Get currently enabled plugins. :param string phase: Optional, limits to plugins currently configured on given phase, sorted in phase order. :return: An iterator over configured :class:`flexget.plugin.PluginInfo` instances enabled on this task. """ if phase: plugins = sorted( get_plugins(phase=phase), key=lambda p: p.phase_handlers[phase], reverse=True ) else: plugins = iter(all_plugins.values()) return (p for p in plugins if p.name in self.config or p.builtin) def __run_task_phase(self, phase): """Executes task phase, ie. call all enabled plugins on the task. Fires events: * task.execute.before_plugin * task.execute.after_plugin :param string phase: Name of the phase """ if phase not in phase_methods: raise Exception('%s is not a valid task phase' % phase) # warn if no inputs, filters or outputs in the task if phase in ['input', 'filter', 'output']: if not self.manager.unit_test: # Check that there is at least one manually configured plugin for these phases for p in self.plugins(phase): if not p.builtin: break else: if phase not in self.suppress_warnings: if phase == 'filter': logger.warning( 'Task does not have any filter plugins to accept entries. ' 'You need at least one to accept the entries you want.' ) else: logger.warning( 'Task doesn\'t have any {} plugins, you should add (at least) one!', phase, ) for plugin in self.plugins(phase): # Abort this phase if one of the plugins disables it if phase in self.disabled_phases: return if plugin.name in self.disabled_plugins: continue # store execute info, except during entry events self.current_phase = phase self.current_plugin = plugin.name if plugin.api_ver == 1: # backwards compatibility # pass method only task (old behaviour) args = (self,) else: # pass method task, copy of config (so plugin cannot modify it) args = (self, copy.copy(self.config.get(plugin.name))) # Hack to make task.session only active for a single plugin with Session() as session: self.session = session try: fire_event('task.execute.before_plugin', self, plugin.name) response = self.__run_plugin(plugin, phase, args) if phase == 'input' and response: # add entries returned by input to self.all_entries for e in response: e.task = self self.all_entries.append(e) finally: fire_event('task.execute.after_plugin', self, plugin.name) self.session = None # check config hash for changes at the end of 'prepare' phase if phase == 'prepare': self.check_config_hash() def __run_plugin(self, plugin, phase, args=None, kwargs=None): """ Execute given plugins phase method, with supplied args and kwargs. If plugin throws unexpected exceptions :meth:`abort` will be called. :param PluginInfo plugin: Plugin to be executed :param string phase: Name of the phase to be executed :param args: Passed to the plugin :param kwargs: Passed to the plugin """ keyword = plugin.name method = plugin.phase_handlers[phase] if args is None: args = [] if kwargs is None: kwargs = {} # log.trace('Running %s method %s' % (keyword, method)) # call the plugin try: result = method(*args, **kwargs) # We exhaust any iterator inputs here to make sure we catch exceptions properly. if isinstance(result, collections.abc.Iterable): result = list(result) return result except TaskAbort: raise except PluginWarning as warn: # check if this warning should be logged only once (may keep repeating) if warn.kwargs.get('log_once', False): from flexget.utils.log import log_once log_once(warn.value, warn.logger) else: warn.logger.warning(warn) except EntryUnicodeError as eue: msg = 'Plugin %s tried to create non-unicode compatible entry (key: %s, value: %r)' % ( keyword, eue.key, eue.value, ) logger.critical(msg) self.abort(msg) except PluginError as err: err.logger.critical(err.value) self.abort(err.value) except DependencyError as e: msg = 'Plugin `%s` cannot be used because dependency `%s` is missing.' % ( keyword, e.missing, ) logger.critical(e.message) self.abort(msg) except Warning as e: # If warnings have been elevated to errors msg = 'Warning during plugin %s: %s' % (keyword, e) logger.exception(msg) self.abort(msg) except Exception as e: msg = 'BUG: Unhandled error in plugin %s: %s' % (keyword, e) logger.opt(exception=True).critical(msg) traceback = self.manager.crash_report() self.abort(msg, traceback=traceback) def rerun(self, plugin=None, reason=None): """ Immediately re-run the task after execute has completed, task can be re-run up to :attr:`.max_reruns` times. :param str plugin: Plugin name :param str reason: Why the rerun is done """ msg = ( 'Plugin {0} has requested task to be ran again after execution has completed.'.format( self.current_plugin if plugin is None else plugin ) ) if reason: msg += ' Reason: {0}'.format(reason) # Only print the first request for a rerun to the info log if self._rerun: logger.debug(msg) else: logger.info(msg) self._rerun = True def config_changed(self): """ Sets config_modified flag to True for the remainder of this run. Used when the db changes, and all entries need to be reprocessed. """ self.config_modified = True def merge_config(self, new_config): try: merge_dict_from_to(new_config, self.config) except MergeException as e: raise PluginError('Failed to merge configs for task %s: %s' % (self.name, e)) def check_config_hash(self): """ Checks the task's config hash and updates the hash if necessary. """ # Save current config hash and set config_modified flag config_hash = get_config_hash(self.config) if self.is_rerun: # Restore the config to state right after start phase if self.prepared_config: self.config = copy.deepcopy(self.prepared_config) else: logger.error('BUG: No prepared_config on rerun, please report.') with Session() as session: last_hash = ( session.query(TaskConfigHash).filter(TaskConfigHash.task == self.name).first() ) if not last_hash: session.add(TaskConfigHash(task=self.name, hash=config_hash)) self.config_changed() elif last_hash.hash != config_hash: last_hash.hash = config_hash self.config_changed() def _execute(self): """Executes the task without rerunning.""" if not self.enabled: logger.debug('Not running disabled task {}', self.name) return logger.debug('executing {}', self.name) # Handle keyword args if self.options.learn: logger.info('Disabling download and output phases because of --learn') self.disable_phase('download') self.disable_phase('output') if self.options.disable_phases: list(map(self.disable_phase, self.options.disable_phases)) if self.options.inject: # If entries are passed for this execution (eg. rerun), disable the input phase self.disable_phase('input') self.all_entries.extend(copy.deepcopy(self.options.inject)) # run phases try: for phase in task_phases: if phase in self.disabled_phases: # log keywords not executed if phase not in self.suppress_warnings: for plugin in self.plugins(phase): if plugin.name in self.config: logger.info( 'Plugin {} is not executed in {} phase because the phase is disabled ' '(e.g. --test, --inject)', plugin.name, phase, ) continue if phase in ('start', 'prepare') and self.is_rerun: logger.debug('skipping phase {} during rerun', phase) continue if phase == 'exit': # Make sure we run the entry complete hook before exit phase. These hooks may call for a rerun, # which would mean we should skip the exit phase during this run. for entry in self.all_entries: entry.complete() if self._rerun and self._rerun_count < self.max_reruns: logger.debug('not running task_exit yet because task will rerun') continue # run all plugins with this phase self.__run_task_phase(phase) if phase == 'start': # Store a copy of the config state after start phase to restore for reruns self.prepared_config = copy.deepcopy(self.config) except TaskAbort: try: self.__run_task_phase('abort') except TaskAbort as e: logger.exception('abort handlers aborted: {}', e) raise @use_task_logging def execute(self): """ Executes the the task. If :attr:`.enabled` is False task is not executed. Certain :attr:`.options` affect how execution is handled. - :attr:`.options.disable_phases` is a list of phases that are not enabled for this execution. - :attr:`.options.inject` is a list of :class:`Entry` instances used instead of running input phase. """ self.finished_event.clear() try: if self.options.cron: self.manager.db_cleanup() fire_event('task.execute.started', self) while True: self._execute() # rerun task if ( self._rerun and self._rerun_count < self.max_reruns and self._rerun_count < Task.RERUN_MAX ): logger.info('Rerunning the task in case better resolution can be achieved.') self._rerun_count += 1 self._all_entries = EntryContainer() self._rerun = False continue elif self._rerun: logger.info( 'Task has been re-run {} times already, stopping for now', self._rerun_count, ) break fire_event('task.execute.completed', self) finally: self.finished_event.set() @staticmethod def validate_config(config): schema = plugin_schemas(interface='task') # Don't validate commented out plugins schema['patternProperties'] = {'^_': {}} return config_schema.process_config(config, schema) def __copy__(self): new = type(self)(self.manager, self.name, self.config, self.options) # Update all the variables of new instance to match our own new.__dict__.update(self.__dict__) # Some mutable objects need to be copies new.options = copy.copy(self.options) new.config = copy.deepcopy(self.config) return new copy = __copy__ def render(self, template): """ Renders a template string based on fields in the entry. :param template: A template string or FlexGetTemplate that uses jinja2 or python string replacement format. :return: The result of the rendering. :rtype: string :raises RenderError: If there is a problem. """ if not isinstance(template, (str, FlexGetTemplate)): raise ValueError( 'Trying to render non string template or unrecognized template format, got %s' % repr(template) ) logger.trace('rendering: {}', template) return render_from_task(template, self) @event('config.register') def register_config_key(): task_config_schema = { 'type': 'object', 'additionalProperties': plugin_schemas(interface='task'), } config_schema.register_config_key('tasks', task_config_schema, required=True)
# Copyright (c) 2014, Fundacion Dr. Manuel Sadosky # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ This is the gadget classifier. It classify gadgets in 10 different types: No Operation, Jump, Move Register, Load Constant, Arithmetic, Load Memory, Store Memory, Arithmetic Load, Arithmetic Store or Undefined. This classification is based on the paper "Q: Exploit Hardening Made Easy." So, given a gadget (RawGadget object) it generate one o more TypedGadgets with its type. This algorithm is architecture agnostic since it operates on the IR representation of the underlying assembly code. """ import random from barf.analysis.gadget import GadgetType from barf.analysis.gadget import TypedGadget from barf.core.reil import ReilEmptyOperand from barf.core.reil import ReilImmediateOperand from barf.core.reil import ReilRegisterOperand class GadgetClassifier(object): """Gadget Classifier. """ def __init__(self, ir_emulator, architecture_info): # An instance of a REIL emulator self._ir_emulator = ir_emulator # Classifiers ordered by gadget type. self._classifiers = { GadgetType.NoOperation : self._classify_no_operation, GadgetType.Jump : self._classify_jump, GadgetType.MoveRegister : self._classify_move_register, GadgetType.LoadConstant : self._classify_load_constant, GadgetType.Arithmetic : self._classify_arithmetic, GadgetType.LoadMemory : self._classify_load_memory, GadgetType.StoreMemory : self._classify_store_memory, GadgetType.ArithmeticLoad : self._classify_arithmetic_load, GadgetType.ArithmeticStore : self._classify_arithmetic_store, } # Supported arithmetic and logical operations for arithmetic # gadgets. self._binary_ops = { # Arithmetic "+" : lambda x, y : x + y, "-" : lambda x, y : x - y, # "*" : lambda x, y : x * y, # "/" : lambda x, y : x / y, # "%" : lambda x, y : x % y, # Bitwise "&" : lambda x, y : x & y, "^" : lambda x, y : x ^ y, "|" : lambda x, y : x | y, # "<<" : lambda x, y : x << y, # ">>" : lambda x, y : x >> y, } # Architecture information. self._arch_info = architecture_info self._arch_regs = self._arch_info.registers_gp_all self._arch_regs_parent = self._arch_info.registers_gp_base self._arch_regs_size = self._arch_info.registers_size self._address_size = self._arch_info.address_size # Number of simulation iterations. self._emu_iters = 10 def classify(self, gadget): """Classify gadget. """ typed_gadgets = [] for g_type, g_classifier in self._classifiers.items(): try: typed_gadgets += self._classify(gadget, g_classifier, g_type, self._emu_iters) except: import traceback print("[-] Error classifying gadgets :") print(gadget) print("") print(traceback.format_exc()) return typed_gadgets # Classifiers # ======================================================================== # def _classify_no_operation(self, regs_init, regs_fini, mem_fini, written_regs, read_regs): """Classify no-operation gadgets. """ # TODO: Flags should be taken into account matchings = [] # Check that registers didn't change their value. regs_changed = any(regs_init[r] != regs_fini[r] for r in regs_init) # Check that flags didn't change their value. flags_changed = False # Check that memory didn't change. mem_changed = mem_fini.get_write_count() != 0 if not regs_changed and not flags_changed and not mem_changed: matchings.append({ "op" : "nop", }) return matchings def _classify_jump(self, regs_init, regs_fini, mem_fini, written_regs, read_regs): """Classify jump gadgets. """ # TODO: Implement. matchings = [] return matchings def _classify_move_register(self, regs_init, regs_fini, mem_fini, written_regs, read_regs): """Classify move-register gadgets. """ matchings = [] regs_init_inv = self._invert_dictionary(regs_init) # Check for "dst_reg <- src_reg" pattern. for dst_reg, dst_val in regs_fini.items(): # Make sure the *dst* register was written. if dst_reg not in written_regs: continue for src_reg in regs_init_inv.get(dst_val, []): # Make sure the *src* register was read. if src_reg not in read_regs: continue # Check restrictions... if self._arch_regs_size[src_reg] != self._arch_regs_size[dst_reg]: continue if src_reg == dst_reg: continue if regs_init[dst_reg] == regs_init[src_reg]: continue src_reg_ir = ReilRegisterOperand(src_reg, self._arch_regs_size[src_reg]) dst_reg_ir = ReilRegisterOperand(dst_reg, self._arch_regs_size[dst_reg]) matchings.append({ "src" : [src_reg_ir], "dst" : [dst_reg_ir] }) return matchings def _classify_load_constant(self, regs_init, regs_fini, mem_fini, written_regs, read_regs): """Classify load-constant gadgets. """ matchings = [] # Check for "dst_reg <- constant" pattern. for dst_reg, dst_val in regs_fini.items(): # Make sure the *dst* register was written. if dst_reg not in written_regs: continue # Check restrictions... if dst_val == regs_init[dst_reg]: continue dst_val_ir = ReilImmediateOperand(dst_val, self._arch_regs_size[dst_reg]) dst_reg_ir = ReilRegisterOperand(dst_reg, self._arch_regs_size[dst_reg]) matchings.append({ "src" : [dst_val_ir], "dst" : [dst_reg_ir] }) return matchings def _classify_arithmetic(self, regs_init, regs_fini, mem_fini, written_regs, read_regs): """Classify binary-operation gadgets. """ matchings = [] # TODO: Review these restrictions. op_restrictions = { "+" : lambda x, y : False, "-" : lambda x, y : x == y, "|" : lambda x, y : x == y, "&" : lambda x, y : x == y, "^" : lambda x, y : x == y, } # Check for "dst_reg <- src1_reg OP src2_reg" pattern. for op_name, op_fn in self._binary_ops.items(): for src_1_reg, src_1_val in regs_init.items(): # Make sure the *src* register was read. if src_1_reg not in read_regs: continue for src_2_reg, src_2_val in regs_init.items(): # Make sure the *src* register was read. if src_2_reg not in read_regs: continue for dst_reg, dst_val in regs_fini.items(): # Make sure the *dst* register was written. if dst_reg not in written_regs: continue # Check restrictions. if self._arch_regs_size[src_1_reg] != self._arch_regs_size[src_2_reg] or \ self._arch_regs_size[src_1_reg] != self._arch_regs_size[dst_reg]: continue # Avoid trivial operations. if op_restrictions[op_name](src_1_reg, src_2_reg): continue size = self._arch_regs_size[src_1_reg] if dst_val == op_fn(src_1_val, src_2_val) & (2**size - 1): src = sorted([src_1_reg, src_2_reg]) src_ir = [ ReilRegisterOperand(src[0], self._arch_regs_size[src[0]]), ReilRegisterOperand(src[1], self._arch_regs_size[src[1]]) ] dst_reg_ir = ReilRegisterOperand(dst_reg, self._arch_regs_size[dst_reg]) matchings.append({ "src" : src_ir, "dst" : [dst_reg_ir], "op" : op_name }) return matchings def _classify_load_memory(self, regs_init, regs_fini, mem_fini, written_regs, read_regs): """Classify load-memory gadgets. """ matchings = [] regs_init_inv = self._invert_dictionary(regs_init) # Check for "dst_reg <- mem[src_reg + offset]" pattern. for dst_reg, dst_val in regs_fini.items(): # Make sure the *dst* register was written. if dst_reg not in written_regs: continue dst_size = self._arch_regs_size[dst_reg] # Look for memory addresses that contain *dst_val*. for src_addr in mem_fini.read_inverse(dst_val, dst_size): # Look for registers whose values are used as memory # addresses. for src_reg, src_val in regs_init.items(): # Make sure the *src* register was read. if src_reg not in read_regs: continue # Check restrictions. if self._arch_regs_size[src_reg] != self._address_size: continue offset = (src_addr - src_val) & (2**self._address_size - 1) src_reg_ir = ReilRegisterOperand(src_reg, self._arch_regs_size[src_reg]) src_off_ir = ReilImmediateOperand(offset, self._arch_regs_size[src_reg]) dst_reg_ir = ReilRegisterOperand(dst_reg, self._arch_regs_size[dst_reg]) matchings.append({ "src" : [src_reg_ir, src_off_ir], "dst" : [dst_reg_ir] }) # Check for "dst_reg <- mem[offset]" pattern. for dst_reg, dst_val in regs_fini.items(): # Make sure the *dst* register was written. if dst_reg not in written_regs: continue dst_size = self._arch_regs_size[dst_reg] for src_addr in mem_fini.read_inverse(dst_val, dst_size): src_reg_ir = ReilEmptyOperand() src_off_ir = ReilImmediateOperand(src_addr, self._address_size) dst_reg_ir = ReilRegisterOperand(dst_reg, self._arch_regs_size[dst_reg]) matchings.append({ "src" : [src_reg_ir, src_off_ir], "dst" : [dst_reg_ir] }) return matchings def _classify_store_memory(self, regs_init, regs_fini, mem_fini, written_regs, read_regs): """Classify store-memory gadgets. """ matchings = [] regs_init_inv = self._invert_dictionary(regs_init) # Check for "mem[dst_reg + offset] <- src_reg" pattern. for src_reg, src_val in regs_init.items(): # Make sure the *src* register was read. if not src_reg in read_regs: continue src_size = self._arch_regs_size[src_reg] for addr in mem_fini.read_inverse(src_val, src_size): for dst_reg, dst_val in regs_init.items(): # Make sure the *dst* register was written. if not dst_reg in read_regs: continue # Check restrictions. if self._arch_regs_size[dst_reg] != self._address_size: continue offset = (addr - dst_val) & (2**self._address_size - 1) src_reg_ir = ReilRegisterOperand(src_reg, self._arch_regs_size[src_reg]) dst_reg_ir = ReilRegisterOperand(dst_reg, self._arch_regs_size[dst_reg]) dst_off_ir = ReilImmediateOperand(offset, self._arch_regs_size[dst_reg]) matchings.append({ "src" : [src_reg_ir], "dst" : [dst_reg_ir, dst_off_ir] }) # Check for "mem[offset] <- src_reg" pattern. for src_reg, src_val in regs_init.items(): # Make sure the *src* register was read. if not src_reg in read_regs: continue src_size = self._arch_regs_size[src_reg] for addr in mem_fini.read_inverse(src_val, src_size): offset = addr & (2**self._address_size - 1) src_reg_ir = ReilRegisterOperand(src_reg, self._arch_regs_size[src_reg]) dst_reg_ir = ReilEmptyOperand() dst_off_ir = ReilImmediateOperand(offset, self._address_size) matchings.append({ "src" : [src_reg_ir], "dst" : [dst_reg_ir, dst_off_ir] }) return matchings def _classify_arithmetic_load(self, regs_init, regs_fini, mem_fini, written_regs, read_regs): """Classify arithmetic-load gadgets. """ matchings = [] # Check for "dst_reg <- dst_reg OP mem[src_reg + offset]" pattern. for op_name, op_fn in self._binary_ops.items(): for dst_reg, dst_val in regs_fini.items(): # Make sure the *dst* register was read and written. if dst_reg not in written_regs or dst_reg not in read_regs: continue dst_size = self._arch_regs_size[dst_reg] for addr in mem_fini.get_addresses(): success, val = mem_fini.try_read(addr, dst_size) if success and dst_val == op_fn(regs_init[dst_reg], val) & (2**dst_size - 1): for src_reg, src_val in regs_init.items(): # Make sure the *src* register was read. if not src_reg in read_regs: continue # Check restrictions. if self._arch_regs_size[src_reg] != self._address_size: continue offset = (addr - src_val) & (2**self._address_size - 1) src_reg_ir = ReilRegisterOperand(src_reg, self._arch_regs_size[src_reg]) src_off_ir = ReilImmediateOperand(offset, self._address_size) dst_reg_ir = ReilRegisterOperand(dst_reg, self._arch_regs_size[dst_reg]) matchings.append({ "src" : [dst_reg_ir, src_reg_ir, src_off_ir], "dst" : [dst_reg_ir], "op" : op_name }) # Check for "dst_reg <- dst_reg OP mem[offset]" pattern. for op_name, op_fn in self._binary_ops.items(): for dst_reg, dst_val in regs_fini.items(): # Make sure the *dst* register was read and written. if dst_reg not in written_regs or dst_reg not in read_regs: continue dst_size = self._arch_regs_size[dst_reg] for addr in mem_fini.get_addresses(): success, val = mem_fini.try_read(addr, dst_size) if success and dst_val == op_fn(regs_init[dst_reg], val) & (2**dst_size - 1): src_reg_ir = ReilEmptyOperand() src_off_ir = ReilImmediateOperand(addr, self._address_size) dst_reg_ir = ReilRegisterOperand(dst_reg, self._arch_regs_size[dst_reg]) matchings.append({ "src" : [dst_reg_ir, src_reg_ir, src_off_ir], "dst" : [dst_reg_ir], "op" : op_name }) return matchings def _classify_arithmetic_store(self, regs_init, regs_fini, mem_fini, written_regs, read_regs): """Classify arithmetic-store gadgets. """ matchings = [] # Check for "m[dst_reg + offset] <- m[dst_reg + offset] OP src_reg" pattern. for op_name, op_fn in self._binary_ops.items(): for size in [8, 16, 32, 64]: for addr in mem_fini.get_addresses(): success_read_curr, val_curr = mem_fini.try_read(addr, size) success_read_prev, val_prev = mem_fini.try_read_prev(addr, size) if success_read_curr and success_read_prev: for src_reg, src_val in regs_init.items(): # Make sure the *src* register was read. if not src_reg in read_regs: continue # Check restrictions. if self._arch_regs_size[src_reg] != size: continue if val_curr == op_fn(src_val, val_prev) & (2**size - 1): # find dst + offset for dst_reg, dst_val in regs_init.items(): # Make sure the *dst* register was written. if not dst_reg in read_regs: continue # Check restrictions. if self._arch_regs_size[dst_reg] != self._address_size: continue offset = (addr - dst_val) & (2**self._address_size - 1) src_reg_ir = ReilRegisterOperand(src_reg, self._arch_regs_size[src_reg]) dst_reg_ir = ReilRegisterOperand(dst_reg, self._arch_regs_size[dst_reg]) dst_off_ir = ReilImmediateOperand(offset, self._address_size) matchings.append({ "src" : [dst_reg_ir, dst_off_ir, \ src_reg_ir], "dst" : [dst_reg_ir, dst_off_ir], "op" : op_name }) # Check for "m[offset] <- m[offset] OP src_reg" pattern. for op_name, op_fn in self._binary_ops.items(): for size in [8, 16, 32, 64]: for addr in mem_fini.get_addresses(): success_read_curr, val_curr = mem_fini.try_read(addr, size) success_read_prev, val_prev = mem_fini.try_read_prev(addr, size) if success_read_curr and success_read_prev: for src_reg, src_val in regs_init.items(): # Make sure the *src* register was read. if not src_reg in read_regs: continue # Check restrictions. if self._arch_regs_size[src_reg] != size: continue if val_curr == op_fn(src_val, val_prev) & (2**size - 1): src_reg_ir = ReilRegisterOperand(src_reg, self._arch_regs_size[src_reg]) dst_reg_ir = ReilEmptyOperand() dst_off_ir = ReilImmediateOperand(addr, self._address_size) matchings.append({ "src" : [dst_reg_ir, dst_off_ir, src_reg_ir], "dst" : [dst_reg_ir, dst_off_ir], "op" : op_name }) return matchings # Auxiliary functions # ======================================================================== # def _classify(self, gadget, classifier, gadget_type, iters): """Classify gadgets. """ # Collect REIL instructions of the gadget. instrs = [ir_instr for g_instrs in gadget.instrs for ir_instr in g_instrs.ir_instrs] # Repeat classification. results = [] for _ in xrange(iters): # Reset emulator. self._ir_emulator.reset() # Generate random values for registers. regs_initial = self._init_regs_random() # Emulate gadget. try: regs_final, mem_final = self._ir_emulator.execute_lite( instrs, regs_initial ) except: # Catch emulator exceptions like ZeroDivisionError, etc. results += [([], [])] continue # Compute values for all registers. For example, in x86, it # computes 'al' from 'eax'. regs_initial_full = self._compute_full_context(regs_initial) regs_final_full = self._compute_full_context(regs_final) # Get written and read registers. regs_written = self._ir_emulator.written_registers regs_read = self._ir_emulator.read_registers # Compute modifiead registers. mod_regs = self._compute_mod_regs( regs_initial_full, regs_final_full ) # Classified gadgets based on initial and final context. matchings = classifier( regs_initial_full, regs_final_full, mem_final, regs_written, regs_read ) # Save results. results += [(matchings, mod_regs)] # Analyze results and compute candidate gadgets. candidates, mod_regs = self._analize_execution_results(results) # Create classified gadgets. classified = self._create_typed_gadgets( gadget, candidates, mod_regs, gadget_type ) return classified def _analize_execution_results(self, results): matching_candidates, _ = results[0] classified_candidates = [] for matching_candidate in matching_candidates: valid_matching = True for matchings, _ in results[1:]: if matching_candidate not in matchings: valid_matching = False if valid_matching and \ matching_candidate not in classified_candidates: classified_candidates.append(matching_candidate) modified_regs = set() for _, mod_regs in results: modified_regs = modified_regs.union(set(mod_regs)) return classified_candidates, list(modified_regs) def _create_typed_gadgets(self, gadget, classified_gadgets, modified_regs, \ gadget_type): typed_gadgets = [] # Remove register aliases mod_regs = [] for r in modified_regs: alias, _ = self._arch_info.alias_mapper.get(r, (None, None)) if not alias: mod_regs += [r] elif alias not in modified_regs: mod_regs += [r] modified_regs_ir = [ReilRegisterOperand(r, self._arch_regs_size[r]) for r in mod_regs] for candidate in classified_gadgets: typed_gadget = TypedGadget(gadget, gadget_type) if gadget_type in [GadgetType.Arithmetic, \ GadgetType.ArithmeticLoad, GadgetType.ArithmeticStore]: typed_gadget.operation = candidate["op"] if candidate.get("op", "") != "nop": typed_gadget.sources = candidate["src"] typed_gadget.destination = candidate["dst"] if gadget_type == GadgetType.StoreMemory: typed_gadget.modified_registers = [r for r in modified_regs_ir] else: typed_gadget.modified_registers = [r for r in modified_regs_ir \ if r not in typed_gadget.destination] typed_gadgets += [typed_gadget] return typed_gadgets def _init_regs_random(self): """Initialize register with random values. """ # Generate random values and make sure they are all different. values = set() while len(values) != len(self._arch_regs_parent): values.add(random.randint(0, 2**self._arch_info.operand_size - 1)) values = list(values) # Assign random values to registers. regs = {} for idx, reg in enumerate(self._arch_regs_parent): regs[reg] = values[idx] & (2**self._arch_regs_size[reg] - 1) return regs def _compute_mod_regs(self, regs_init, regs_fini): """Compute modified registers. """ assert regs_init.keys() == regs_fini.keys() modified_regs = [] for reg in regs_init: if regs_init[reg] != regs_fini[reg]: modified_regs.append(reg) return modified_regs def _invert_dictionary(self, d): """Invert a dictinary. """ inv_dict = {} for k, v in d.items(): inv_dict[v] = inv_dict.get(v, []) inv_dict[v] += [k] return inv_dict def _print_memory(self, memory): """Print memory. """ for addr, value in memory.items(): print(" 0x%08x : 0x%08x (%d)" % (addr, value, value)) def _print_registers(self, registers): """Print registers. """ for reg, value in registers.items(): print(" %s : 0x%08x (%d)" % (reg, value, value)) def _compute_full_context(self, registers): regs_full = {} reg_mapper = self._arch_info.alias_mapper for reg in self._arch_regs: base_reg_name, offset = reg_mapper.get(reg, (None, None)) if base_reg_name: reg_value = registers[base_reg_name] reg_value = self._extract_value(reg_value, offset, self._arch_info.registers_size[reg]) else: reg_value = registers[reg] regs_full[reg] = reg_value return regs_full def _extract_value(self, main_value, offset, size): return (main_value >> offset) & 2**size-1 def _insert_value(self, main_value, value_to_insert, offset, size): main_value &= ~((2**size-1) << offset) main_value |= (value_to_insert & 2**size-1) << offset return main_value
# -*- coding: utf-8 -*- """Provides `nTorque <http://ntorque.com>`_ task queue clients.""" __all__ = [ 'DEFAULTS', 'HookDispatcher', 'WebTestDispatcher', 'WorkEngineClient', 'get_torque_api', 'includeme', ] import logging logger = logging.getLogger(__name__) import json import os import urlparse from collections import namedtuple from os.path import join as join_path from pyramid.settings import asbool from ntorque import client from ntorque import model as ntorque_model from ntorque.model import constants as nc from ntorque.tests.ftests import test_client from . import constants as c from . import render from . import util env = os.environ DEFAULTS = { 'engine.api_key': util.get_var(env, c.ENGINE_API_KEY_NAMES), 'engine.url': util.get_var(env, c.ENGINE_URL_NAMES, '/engine'), 'torque.api_key': env.get(c.TORQUE_API_KEY, None), 'torque.url': env.get(c.TORQUE_URL, '/ntorque'), 'webhooks.api_key': util.get_var(env, c.WEBHOOKS_API_KEY_NAMES), 'webhooks.url': util.get_var(env, c.WEBHOOKS_URL_NAMES, '/hooks'), } def client_factory(client_cls, dispatcher, settings): """Shared logic to instantiate a configured torque client utility.""" torque_url = settings.get('torque.url') torque_api_key = settings.get('torque.api_key') return client_cls(dispatcher, torque_url, torque_api_key) class WebTestDispatcher(client.DirectDispatcher): """A dispatcher that skips nTorque and just makes the request directly using a ``ntorque.tests.ftests.test_client.WestTestPoster``. """ def __init__(self, webtest_poster, **kwargs): self.webtest_poster = webtest_poster self.parse_qsl = kwargs.get('parse_qsl', urlparse.parse_qsl) self.header_prefix = kwargs.get('header_prefix', nc.PROXY_HEADER_PREFIX) self.default_method = kwargs.get('default_method', nc.DEFAULT_METHOD) def __call__(self, url, post_data, request_headers): """Extract the relevant parts of the request data and use it to make a request directly to the destination url. """ # Parse `url` and `method` out of the query params. params = dict(self.parse_qsl(url.split('?')[1])) url = params['url'] method = params.get('method', 'POST') # Get the relevant headers. headers = {'Content-Type': request_headers['Content-Type']} for key, value in request_headers.items(): if key.lower().startswith(self.header_prefix.lower()): k = key[len(self.header_prefix):] headers[k] = value # Make and handle the response. r = self.webtest_poster(url, post_data, headers, method=method) return self.handle(r) class HookDispatcher(object): """Instantiate and authenticate a generic torque client and use it to dispatch web hooks tasks. """ def __init__(self, request, **kwargs): """Compose and instantiate client.""" # Compose. self.request = request self.join_path = kwargs.get('join_path', join_path) client_cls = kwargs.get('client_cls', client.HybridTorqueClient) dispatcher = kwargs.get('dispatcher', client.AfterCommitDispatcher()) settings = request.registry.settings self.client = client_factory(client_cls, dispatcher, settings) def __call__(self, path, data=None, headers=None, timeout=None): """Use the request to instantiate a client and dispatch a request.""" # Unpack. request = self.request settings = request.registry.settings webhooks_url = settings.get('webhooks.url') webhooks_api_key = settings.get('webhooks.api_key') # Authenticate. if headers is None: headers = {} if webhooks_api_key: for item in c.WEBHOOKS_API_KEY_NAMES: key = 'NTORQUE-PASSTHROUGH-{0}'.format(item) headers[key] = webhooks_api_key # JSONify. if not headers.has_key('Content-Type'): headers['Content-Type'] = 'application/json; utf-8' if data is not None and not isinstance(data, basestring): data = render.json_dumps(request, data) # Dispatch. url = self.join_path(webhooks_url, path) status, response_data, response_headers = self.client(url, data=data, headers=headers, timeout=timeout) # Return. headers_dict = dict(response_headers.items()) if response_headers else {} return { 'data': data, 'path': path, 'response': response_data, 'response_headers': headers_dict, 'status': status, 'url': url, } class WorkEngineClient(object): """Instantiate and authenticate a generic torque client and use it to dispatch work engine updates. """ def __init__(self, request, **kwargs): """Compose and instantiate client.""" # Compose. self.request = request self.join_path = kwargs.get('join_path', join_path) self.unpack = kwargs.get('unpack', util.get_unpacked_object_id) client_cls = kwargs.get('client_cls', client.HybridTorqueClient) dispatcher = kwargs.get('dispatcher', client.AfterCommitDispatcher()) settings = request.registry.settings self.client = client_factory(client_cls, dispatcher, settings) def _get_traversal_path(self, route, context): """Get the traversal path to context, prefixed with the route. E.g.: the path to <Job id=1234> on the events route is `events/jobs/1234`. """ # Get the request path from the `context`, e.g.: a `Job` instance # with id `1234` will result in a path of ``jobs/1234``. If there # is no context the path will be empty. parts = self.unpack(context) if context else [] # Prepend the route part. parts = [route] + list(parts) # Lose any ``None``s. parts = (str(item) for item in parts if item is not None) # Return as a `/` joined string. return self.join_path(*parts) def dispatch(self, path, data=None, headers=None, timeout=None): """Use the request to instantiate a client and dispatch a request.""" # Unpack. request = self.request settings = request.registry.settings engine_url = settings.get('engine.url') engine_api_key = settings.get('engine.api_key') # Authenticate. if headers is None: headers = {} if engine_api_key: for item in c.ENGINE_API_KEY_NAMES: key = 'NTORQUE-PASSTHROUGH-{0}'.format(item) headers[key] = engine_api_key # JSONify. if not headers.has_key('Content-Type'): headers['Content-Type'] = 'application/json; utf-8' if data is not None and not isinstance(data, basestring): data = render.json_dumps(request, data) # Dispatch. url = self.join_path(engine_url, path) status, response_data, response_headers = self.client(url, data=data, headers=headers, timeout=timeout) # Return. headers_dict = dict(response_headers.items()) if response_headers else {} return { 'data': data, 'path': path, 'response': response_data, 'response_headers': headers_dict, 'status': status, 'url': url, } def changed(self, context, event, state=None): """Tell the work engine that a ``context`` changed state.""" # Get the path to the context on the events route. path = self._get_traversal_path('events', context) # Either use the state passed in or look it up on the context. if state is None: state = context.work_status.value # Build the post data. data = { 'state': state, } if event: data['event_id'] = event.id logger.info(( 'torque.engine.changed', 'context: ', context.class_slug, context.id, 'new state: ', state, )) # Dispatch to the engine. return self.dispatch(path, data=data) def happened(self, context, action, event=None, **kwargs): """Tell the work engine that an action happened to a ``context``.""" # Get the path to the context on the events route. path = self._get_traversal_path('events', context) # Build the post data. data = { 'action': action, } if event: data['event_id'] = event.id logger.info(( 'torque.engine.happened', 'context: ', context.class_slug, context.id, 'action: ', action, )) # Dispatch to the engine. return self.dispatch(path, data=data) def result(self, context, operation, result, event=None, event_id=None, **kwargs): """Tell the work engine that an ``operation`` had the specified ``result``.""" # Get the path to the context on the results route. path = self._get_traversal_path('results', context) # Build the post data. data = { 'operation': operation, 'result': result, } if event: data['event_id'] = event.id elif event_id: data['event_id'] = event_id else: raise Exception('You either need an event or an event_id.') logger.info(( 'torque.engine.result', 'context: ', context.class_slug, context.id, 'operation: ', operation, 'result', result, )) # Dispatch to the engine. return self.dispatch(path, data=data) def get_torque_api(request): """Provide a ``request.torque`` api, where the dispatchers used depend on whether we're ftesting or not. """ # Are we ftesting and do we explicitly want to enable dispatch anyway? is_testing = request.environ.get('paste.testing', False) if is_testing: settings = request.registry.settings key = 'torque.enable_ftesting_dispatch' should_enable = asbool(settings.get(key, False)) if should_enable: poster = test_client.WebTestPoster(settings['webtest_app']) default = WebTestDispatcher(poster) immediate = WebTestDispatcher(poster) else: default = client.NoopDispatcher() immediate = client.NoopDispatcher() client_cls=client.HTTPTorqueClient else: default = client.AfterCommitDispatcher() immediate = client.DirectDispatcher() client_cls=client.HybridTorqueClient # Provide the api. api = { 'dispatch': HookDispatcher(request, dispatcher=default, client_cls=client_cls), 'dispatch_now': HookDispatcher(request, dispatcher=immediate, client_cls=client_cls), 'engine': WorkEngineClient(request, dispatcher=default, client_cls=client_cls), } keys, values = zip(*api.items()) return namedtuple('Torque', keys)(*values) def includeme(config, **kwargs): """Apply default settings and register the torque application id.""" # Compose. lookup = kwargs.get('lookup', ntorque_model.LookupApplication()) # Apply the default settings. settings = config.get_settings() for key, value in DEFAULTS.items(): settings.setdefault(key, value) config.add_request_method(get_torque_api, 'torque', reify=True) # Register the api authenticated torque `application.id`. api_key = settings.get(c.TORQUE_API_KEY, None) if api_key: app = lookup(api_key) if app: settings.setdefault('torque.api_authenticated_app_id', app.id)
""" Handlers for predicates related to set membership: integer, rational, etc. """ from __future__ import print_function, division from sympy.assumptions import Q, ask from sympy.assumptions.handlers import CommonHandler, test_closed_group from sympy.core.numbers import pi from sympy.functions.elementary.exponential import exp, log from sympy import I class AskIntegerHandler(CommonHandler): """ Handler for Q.integer Test that an expression belongs to the field of integer numbers """ @staticmethod def Symbol(expr, assumptions): return expr.is_integer @staticmethod def _number(expr, assumptions): # helper method try: i = int(expr.round()) if not (expr - i).equals(0): raise TypeError return True except TypeError: return False @staticmethod def Add(expr, assumptions): """ Integer + Integer -> Integer Integer + !Integer -> !Integer !Integer + !Integer -> ? """ if expr.is_number: return AskIntegerHandler._number(expr, assumptions) return test_closed_group(expr, assumptions, Q.integer) @staticmethod def Mul(expr, assumptions): """ Integer*Integer -> Integer Integer*Irrational -> !Integer Odd/Even -> !Integer Integer*Rational -> ? """ if expr.is_number: return AskIntegerHandler._number(expr, assumptions) _output = True for arg in expr.args: if not ask(Q.integer(arg), assumptions): if arg.is_Rational: if arg.q == 2: return ask(Q.even(2*expr), assumptions) if ~(arg.q & 1): return None elif ask(Q.irrational(arg), assumptions): if _output: _output = False else: return else: return else: return _output Pow = Add int, Integer = [staticmethod(CommonHandler.AlwaysTrue)]*2 Pi, Exp1, GoldenRatio, Infinity, NegativeInfinity, ImaginaryUnit = \ [staticmethod(CommonHandler.AlwaysFalse)]*6 @staticmethod def Rational(expr, assumptions): # rationals with denominator one get # evaluated to Integers return False @staticmethod def Float(expr, assumptions): return int(expr) == expr @staticmethod def Abs(expr, assumptions): return ask(Q.integer(expr.args[0]), assumptions) @staticmethod def MatrixElement(expr, assumptions): return ask(Q.integer_elements(expr.args[0]), assumptions) Determinant = Trace = MatrixElement class AskRationalHandler(CommonHandler): """ Handler for Q.rational Test that an expression belongs to the field of rational numbers """ @staticmethod def Symbol(expr, assumptions): return expr.is_rational @staticmethod def Add(expr, assumptions): """ Rational + Rational -> Rational Rational + !Rational -> !Rational !Rational + !Rational -> ? """ if expr.is_number: if expr.as_real_imag()[1]: return False return test_closed_group(expr, assumptions, Q.rational) Mul = Add @staticmethod def Pow(expr, assumptions): """ Rational ** Integer -> Rational Irrational ** Rational -> Irrational Rational ** Irrational -> ? """ if ask(Q.integer(expr.exp), assumptions): return ask(Q.rational(expr.base), assumptions) elif ask(Q.rational(expr.exp), assumptions): if ask(Q.prime(expr.base), assumptions): return False Rational, Float = \ [staticmethod(CommonHandler.AlwaysTrue)]*2 # Float is finite-precision ImaginaryUnit, Infinity, NegativeInfinity, Pi, Exp1, GoldenRatio = \ [staticmethod(CommonHandler.AlwaysFalse)]*6 @staticmethod def exp(expr, assumptions): x = expr.args[0] if ask(Q.rational(x), assumptions): return ask(~Q.nonzero(x), assumptions) @staticmethod def cot(expr, assumptions): x = expr.args[0] if ask(Q.rational(x), assumptions): return False @staticmethod def log(expr, assumptions): x = expr.args[0] if ask(Q.rational(x), assumptions): return ask(~Q.nonzero(x - 1), assumptions) sin, cos, tan, asin, atan = [exp]*5 acos, acot = log, cot class AskIrrationalHandler(CommonHandler): @staticmethod def Symbol(expr, assumptions): return expr.is_irrational @staticmethod def Basic(expr, assumptions): _real = ask(Q.real(expr), assumptions) if _real: _rational = ask(Q.rational(expr), assumptions) if _rational is None: return None return not _rational else: return _real class AskRealHandler(CommonHandler): """ Handler for Q.real Test that an expression belongs to the field of real numbers """ @staticmethod def Symbol(expr, assumptions): return expr.is_real @staticmethod def _number(expr, assumptions): # let as_real_imag() work first since the expression may # be simpler to evaluate i = expr.as_real_imag()[1].evalf(2) if i._prec != 1: return not i # allow None to be returned if we couldn't show for sure # that i was 0 @staticmethod def Add(expr, assumptions): """ Real + Real -> Real Real + (Complex & !Real) -> !Real """ if expr.is_number: return AskRealHandler._number(expr, assumptions) return test_closed_group(expr, assumptions, Q.real) @staticmethod def Mul(expr, assumptions): """ Real*Real -> Real Real*Imaginary -> !Real Imaginary*Imaginary -> Real """ if expr.is_number: return AskRealHandler._number(expr, assumptions) result = True for arg in expr.args: if ask(Q.real(arg), assumptions): pass elif ask(Q.imaginary(arg), assumptions): result = result ^ True else: break else: return result @staticmethod def Pow(expr, assumptions): """ Real**Integer -> Real Positive**Real -> Real Real**(Integer/Even) -> Real if base is nonnegative Real**(Integer/Odd) -> Real Imaginary**(Integer/Even) -> Real Imaginary**(Integer/Odd) -> not Real Imaginary**Real -> ? since Real could be 0 (giving real) or 1 (giving imaginary) b**Imaginary -> Real if log(b) is imaginary and b != 0 and exponent != integer multiple of I*pi/log(b) Real**Real -> ? e.g. sqrt(-1) is imaginary and sqrt(2) is not """ if expr.is_number: return AskRealHandler._number(expr, assumptions) if expr.base.func == exp: if ask(Q.imaginary(expr.base.args[0]), assumptions): if ask(Q.imaginary(expr.exp), assumptions): return True # If the i = (exp's arg)/(I*pi) is an integer or half-integer # multiple of I*pi then 2*i will be an integer. In addition, # exp(i*I*pi) = (-1)**i so the overall realness of the expr # can be determined by replacing exp(i*I*pi) with (-1)**i. i = expr.base.args[0]/I/pi if ask(Q.integer(2*i), assumptions): return ask(Q.real(((-1)**i)**expr.exp), assumptions) return if ask(Q.imaginary(expr.base), assumptions): if ask(Q.integer(expr.exp), assumptions): odd = ask(Q.odd(expr.exp), assumptions) if odd is not None: return not odd return if ask(Q.imaginary(expr.exp), assumptions): imlog = ask(Q.imaginary(log(expr.base)), assumptions) if imlog is not None: # I**i -> real, log(I) is imag; # (2*I)**i -> complex, log(2*I) is not imag return imlog if ask(Q.real(expr.base), assumptions): if ask(Q.real(expr.exp), assumptions): if expr.exp.is_Rational and \ ask(Q.even(expr.exp.q), assumptions): return ask(Q.positive(expr.base), assumptions) elif ask(Q.integer(expr.exp), assumptions): return True elif ask(Q.positive(expr.base), assumptions): return True elif ask(Q.negative(expr.base), assumptions): return False Rational, Float, Pi, Exp1, GoldenRatio, Abs, re, im = \ [staticmethod(CommonHandler.AlwaysTrue)]*8 ImaginaryUnit, Infinity, NegativeInfinity = \ [staticmethod(CommonHandler.AlwaysFalse)]*3 @staticmethod def sin(expr, assumptions): if ask(Q.real(expr.args[0]), assumptions): return True cos = sin @staticmethod def exp(expr, assumptions): return ask(Q.integer(expr.args[0]/I/pi) | Q.real(expr.args[0]), assumptions) @staticmethod def log(expr, assumptions): return ask(Q.positive(expr.args[0]), assumptions) @staticmethod def MatrixElement(expr, assumptions): return ask(Q.real_elements(expr.args[0]), assumptions) Determinant = Trace = MatrixElement class AskExtendedRealHandler(AskRealHandler): """ Handler for Q.extended_real Test that an expression belongs to the field of extended real numbers, that is real numbers union {Infinity, -Infinity} """ @staticmethod def Add(expr, assumptions): return test_closed_group(expr, assumptions, Q.extended_real) Mul, Pow = [Add]*2 Infinity, NegativeInfinity = [staticmethod(CommonHandler.AlwaysTrue)]*2 class AskHermitianHandler(AskRealHandler): """ Handler for Q.hermitian Test that an expression belongs to the field of Hermitian operators """ @staticmethod def Add(expr, assumptions): """ Hermitian + Hermitian -> Hermitian Hermitian + !Hermitian -> !Hermitian """ if expr.is_number: return AskRealHandler._number(expr, assumptions) return test_closed_group(expr, assumptions, Q.hermitian) @staticmethod def Mul(expr, assumptions): """ As long as there is at most only one noncommutative term: Hermitian*Hermitian -> Hermitian Hermitian*Antihermitian -> !Hermitian Antihermitian*Antihermitian -> Hermitian """ if expr.is_number: return AskRealHandler._number(expr, assumptions) nccount = 0 result = True for arg in expr.args: if ask(Q.antihermitian(arg), assumptions): result = result ^ True elif not ask(Q.hermitian(arg), assumptions): break if ask(~Q.commutative(arg), assumptions): nccount += 1 if nccount > 1: break else: return result @staticmethod def Pow(expr, assumptions): """ Hermitian**Integer -> Hermitian """ if expr.is_number: return AskRealHandler._number(expr, assumptions) if ask(Q.hermitian(expr.base), assumptions): if ask(Q.integer(expr.exp), assumptions): return True @staticmethod def sin(expr, assumptions): if ask(Q.hermitian(expr.args[0]), assumptions): return True cos, exp = [sin]*2 class AskComplexHandler(CommonHandler): """ Handler for Q.complex Test that an expression belongs to the field of complex numbers """ @staticmethod def Symbol(expr, assumptions): return expr.is_complex @staticmethod def Add(expr, assumptions): return test_closed_group(expr, assumptions, Q.complex) Mul, Pow = [Add]*2 Number, sin, cos, log, exp, re, im, NumberSymbol, Abs, ImaginaryUnit = \ [staticmethod(CommonHandler.AlwaysTrue)]*10 # they are all complex functions or expressions Infinity, NegativeInfinity = [staticmethod(CommonHandler.AlwaysFalse)]*2 @staticmethod def MatrixElement(expr, assumptions): return ask(Q.complex_elements(expr.args[0]), assumptions) Determinant = Trace = MatrixElement class AskImaginaryHandler(CommonHandler): """ Handler for Q.imaginary Test that an expression belongs to the field of imaginary numbers, that is, numbers in the form x*I, where x is real """ @staticmethod def Symbol(expr, assumptions): return expr.is_imaginary @staticmethod def _number(expr, assumptions): # let as_real_imag() work first since the expression may # be simpler to evaluate r = expr.as_real_imag()[0].evalf(2) if r._prec != 1: return not r # allow None to be returned if we couldn't show for sure # that r was 0 @staticmethod def Add(expr, assumptions): """ Imaginary + Imaginary -> Imaginary Imaginary + Complex -> ? Imaginary + Real -> !Imaginary """ if expr.is_number: return AskImaginaryHandler._number(expr, assumptions) reals = 0 for arg in expr.args: if ask(Q.imaginary(arg), assumptions): pass elif ask(Q.real(arg), assumptions): reals += 1 else: break else: if reals == 0: return True if reals == 1 or (len(expr.args) == reals): # two reals could sum 0 thus giving an imaginary return False @staticmethod def Mul(expr, assumptions): """ Real*Imaginary -> Imaginary Imaginary*Imaginary -> Real """ if expr.is_number: return AskImaginaryHandler._number(expr, assumptions) result = False reals = 0 for arg in expr.args: if ask(Q.imaginary(arg), assumptions): result = result ^ True elif not ask(Q.real(arg), assumptions): break else: if reals == len(expr.args): return False return result @staticmethod def Pow(expr, assumptions): """ Imaginary**Odd -> Imaginary Imaginary**Even -> Real b**Imaginary -> !Imaginary if exponent is an integer multiple of I*pi/log(b) Imaginary**Real -> ? Positive**Real -> Real Negative**Integer -> Real Negative**(Integer/2) -> Imaginary Negative**Real -> not Imaginary if exponent is not Rational """ if expr.is_number: return AskImaginaryHandler._number(expr, assumptions) if expr.base.func == exp: if ask(Q.imaginary(expr.base.args[0]), assumptions): if ask(Q.imaginary(expr.exp), assumptions): return False i = expr.base.args[0]/I/pi if ask(Q.integer(2*i), assumptions): return ask(Q.imaginary(((-1)**i)**expr.exp), assumptions) if ask(Q.imaginary(expr.base), assumptions): if ask(Q.integer(expr.exp), assumptions): odd = ask(Q.odd(expr.exp), assumptions) if odd is not None: return odd return if ask(Q.imaginary(expr.exp), assumptions): imlog = ask(Q.imaginary(log(expr.base)), assumptions) if imlog is not None: return False # I**i -> real; (2*I)**i -> complex ==> not imaginary if ask(Q.real(expr.base) & Q.real(expr.exp), assumptions): if ask(Q.positive(expr.base), assumptions): return False else: rat = ask(Q.rational(expr.exp), assumptions) if not rat: return rat if ask(Q.integer(expr.exp), assumptions): return False else: half = ask(Q.integer(2*expr.exp), assumptions) if half: return ask(Q.negative(expr.base), assumptions) return half @staticmethod def log(expr, assumptions): if ask(Q.real(expr.args[0]), assumptions): if ask(Q.positive(expr.args[0]), assumptions): return False return # XXX it should be enough to do # return ask(Q.nonpositive(expr.args[0]), assumptions) # but ask(Q.nonpositive(exp(x)), Q.imaginary(x)) -> None; # it should return True since exp(x) will be either 0 or complex if expr.args[0].func == exp: if expr.args[0].args[0] in [I, -I]: return True im = ask(Q.imaginary(expr.args[0]), assumptions) if im is False: return False @staticmethod def exp(expr, assumptions): a = expr.args[0]/I/pi return ask(Q.integer(2*a) & ~Q.integer(a), assumptions) @staticmethod def Number(expr, assumptions): return not (expr.as_real_imag()[1] == 0) NumberSymbol = Number ImaginaryUnit = staticmethod(CommonHandler.AlwaysTrue) class AskAntiHermitianHandler(AskImaginaryHandler): """ Handler for Q.antihermitian Test that an expression belongs to the field of anti-Hermitian operators, that is, operators in the form x*I, where x is Hermitian """ @staticmethod def Add(expr, assumptions): """ Antihermitian + Antihermitian -> Antihermitian Antihermitian + !Antihermitian -> !Antihermitian """ if expr.is_number: return AskImaginaryHandler._number(expr, assumptions) return test_closed_group(expr, assumptions, Q.antihermitian) @staticmethod def Mul(expr, assumptions): """ As long as there is at most only one noncommutative term: Hermitian*Hermitian -> !Antihermitian Hermitian*Antihermitian -> Antihermitian Antihermitian*Antihermitian -> !Antihermitian """ if expr.is_number: return AskImaginaryHandler._number(expr, assumptions) nccount = 0 result = False for arg in expr.args: if ask(Q.antihermitian(arg), assumptions): result = result ^ True elif not ask(Q.hermitian(arg), assumptions): break if ask(~Q.commutative(arg), assumptions): nccount += 1 if nccount > 1: break else: return result @staticmethod def Pow(expr, assumptions): """ Hermitian**Integer -> !Antihermitian Antihermitian**Even -> !Antihermitian Antihermitian**Odd -> Antihermitian """ if expr.is_number: return AskImaginaryHandler._number(expr, assumptions) if ask(Q.hermitian(expr.base), assumptions): if ask(Q.integer(expr.exp), assumptions): return False elif ask(Q.antihermitian(expr.base), assumptions): if ask(Q.even(expr.exp), assumptions): return False elif ask(Q.odd(expr.exp), assumptions): return True class AskAlgebraicHandler(CommonHandler): """Handler for Q.algebraic key. """ @staticmethod def Add(expr, assumptions): return test_closed_group(expr, assumptions, Q.algebraic) @staticmethod def Mul(expr, assumptions): return test_closed_group(expr, assumptions, Q.algebraic) @staticmethod def Pow(expr, assumptions): return expr.exp.is_Rational and ask( Q.algebraic(expr.base), assumptions) @staticmethod def Rational(expr, assumptions): return expr.q != 0 Float, GoldenRatio, ImaginaryUnit, AlgebraicNumber = \ [staticmethod(CommonHandler.AlwaysTrue)]*4 Infinity, NegativeInfinity, ComplexInfinity, Pi, Exp1 = \ [staticmethod(CommonHandler.AlwaysFalse)]*5 @staticmethod def exp(expr, assumptions): x = expr.args[0] if ask(Q.algebraic(x), assumptions): return ask(~Q.nonzero(x), assumptions) @staticmethod def cot(expr, assumptions): x = expr.args[0] if ask(Q.algebraic(x), assumptions): return False @staticmethod def log(expr, assumptions): x = expr.args[0] if ask(Q.algebraic(x), assumptions): return ask(~Q.nonzero(x - 1), assumptions) sin, cos, tan, asin, atan = [exp]*5 acos, acot = log, cot
# Copyright (c) 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import mock import testtools import uuid import webob from neutron.common import constants from neutron.common import exceptions as exc from neutron.common import utils from neutron import context from neutron.db import db_base_plugin_v2 as base_plugin from neutron.extensions import external_net as external_net from neutron.extensions import l3agentscheduler from neutron.extensions import multiprovidernet as mpnet from neutron.extensions import portbindings from neutron.extensions import providernet as pnet from neutron import manager from neutron.plugins.common import constants as service_constants from neutron.plugins.ml2.common import exceptions as ml2_exc from neutron.plugins.ml2 import config from neutron.plugins.ml2 import db as ml2_db from neutron.plugins.ml2 import driver_api from neutron.plugins.ml2 import driver_context from neutron.plugins.ml2.drivers import type_vlan from neutron.plugins.ml2 import models from neutron.plugins.ml2 import plugin as ml2_plugin from neutron.tests import base from neutron.tests.unit import _test_extension_portbindings as test_bindings from neutron.tests.unit.ml2.drivers import mechanism_logger as mech_logger from neutron.tests.unit.ml2.drivers import mechanism_test as mech_test from neutron.tests.unit import test_db_plugin as test_plugin from neutron.tests.unit import test_extension_allowedaddresspairs as test_pair from neutron.tests.unit import test_extension_extradhcpopts as test_dhcpopts from neutron.tests.unit import test_security_groups_rpc as test_sg_rpc config.cfg.CONF.import_opt('network_vlan_ranges', 'neutron.plugins.ml2.drivers.type_vlan', group='ml2_type_vlan') PLUGIN_NAME = 'neutron.plugins.ml2.plugin.Ml2Plugin' class Ml2PluginV2TestCase(test_plugin.NeutronDbPluginV2TestCase): _plugin_name = PLUGIN_NAME _mechanism_drivers = ['logger', 'test'] def setUp(self): # We need a L3 service plugin l3_plugin = ('neutron.tests.unit.test_l3_plugin.' 'TestL3NatServicePlugin') service_plugins = {'l3_plugin_name': l3_plugin} # Enable the test mechanism driver to ensure that # we can successfully call through to all mechanism # driver apis. config.cfg.CONF.set_override('mechanism_drivers', self._mechanism_drivers, group='ml2') self.physnet = 'physnet1' self.vlan_range = '1:100' self.vlan_range2 = '200:300' self.physnet2 = 'physnet2' self.phys_vrange = ':'.join([self.physnet, self.vlan_range]) self.phys2_vrange = ':'.join([self.physnet2, self.vlan_range2]) config.cfg.CONF.set_override('network_vlan_ranges', [self.phys_vrange, self.phys2_vrange], group='ml2_type_vlan') super(Ml2PluginV2TestCase, self).setUp(PLUGIN_NAME, service_plugins=service_plugins) self.port_create_status = 'DOWN' self.driver = ml2_plugin.Ml2Plugin() self.context = context.get_admin_context() class TestMl2BulkToggleWithBulkless(Ml2PluginV2TestCase): _mechanism_drivers = ['logger', 'test', 'bulkless'] def test_bulk_disable_with_bulkless_driver(self): self.assertTrue(self._skip_native_bulk) class TestMl2BulkToggleWithoutBulkless(Ml2PluginV2TestCase): _mechanism_drivers = ['logger', 'test'] def test_bulk_enabled_with_bulk_drivers(self): self.assertFalse(self._skip_native_bulk) class TestMl2BasicGet(test_plugin.TestBasicGet, Ml2PluginV2TestCase): pass class TestMl2V2HTTPResponse(test_plugin.TestV2HTTPResponse, Ml2PluginV2TestCase): pass class TestMl2NetworksV2(test_plugin.TestNetworksV2, Ml2PluginV2TestCase): pass class TestMl2SubnetsV2(test_plugin.TestSubnetsV2, Ml2PluginV2TestCase): pass class TestMl2PortsV2(test_plugin.TestPortsV2, Ml2PluginV2TestCase): def test_update_port_status_build(self): with self.port() as port: self.assertEqual('DOWN', port['port']['status']) self.assertEqual('DOWN', self.port_create_status) def test_update_non_existent_port(self): ctx = context.get_admin_context() plugin = manager.NeutronManager.get_plugin() data = {'port': {'admin_state_up': False}} self.assertRaises(exc.PortNotFound, plugin.update_port, ctx, 'invalid-uuid', data) def test_delete_non_existent_port(self): ctx = context.get_admin_context() plugin = manager.NeutronManager.get_plugin() with mock.patch.object(ml2_plugin.LOG, 'debug') as log_debug: plugin.delete_port(ctx, 'invalid-uuid', l3_port_check=False) log_debug.assert_has_calls([ mock.call(_("Deleting port %s"), 'invalid-uuid'), mock.call(_("The port '%s' was deleted"), 'invalid-uuid') ]) def test_l3_cleanup_on_net_delete(self): l3plugin = manager.NeutronManager.get_service_plugins().get( service_constants.L3_ROUTER_NAT) kwargs = {'arg_list': (external_net.EXTERNAL,), external_net.EXTERNAL: True} with self.network(**kwargs) as n: with self.subnet(network=n, cidr='200.0.0.0/22'): l3plugin.create_floatingip( context.get_admin_context(), {'floatingip': {'floating_network_id': n['network']['id'], 'tenant_id': n['network']['tenant_id']}} ) self._delete('networks', n['network']['id']) flips = l3plugin.get_floatingips(context.get_admin_context()) self.assertFalse(flips) def test_delete_port_no_notify_in_disassociate_floatingips(self): ctx = context.get_admin_context() plugin = manager.NeutronManager.get_plugin() l3plugin = manager.NeutronManager.get_service_plugins().get( service_constants.L3_ROUTER_NAT) with contextlib.nested( self.port(do_delete=False), mock.patch.object(l3plugin, 'disassociate_floatingips'), mock.patch.object(l3plugin, 'notify_routers_updated') ) as (port, disassociate_floatingips, notify): port_id = port['port']['id'] plugin.delete_port(ctx, port_id) # check that no notification was requested while under # transaction disassociate_floatingips.assert_has_calls([ mock.call(ctx, port_id, do_notify=False) ]) # check that notifier was still triggered notify.assert_has_calls([ mock.call(ctx, disassociate_floatingips.return_value) ]) def test_check_if_compute_port_serviced_by_dvr(self): self.assertTrue(utils.is_dvr_serviced('compute:None')) def test_check_if_lbaas_vip_port_serviced_by_dvr(self): self.assertTrue(utils.is_dvr_serviced( constants.DEVICE_OWNER_LOADBALANCER)) def test_check_if_dhcp_port_serviced_by_dvr(self): self.assertTrue(utils.is_dvr_serviced(constants.DEVICE_OWNER_DHCP)) def test_check_if_port_not_serviced_by_dvr(self): self.assertFalse(utils.is_dvr_serviced( constants.DEVICE_OWNER_ROUTER_INTF)) def test_disassociate_floatingips_do_notify_returns_nothing(self): ctx = context.get_admin_context() l3plugin = manager.NeutronManager.get_service_plugins().get( service_constants.L3_ROUTER_NAT) with self.port() as port: port_id = port['port']['id'] # check that nothing is returned when notifications are handled # by the called method self.assertIsNone(l3plugin.disassociate_floatingips(ctx, port_id)) class TestMl2DvrPortsV2(TestMl2PortsV2): def setUp(self): super(TestMl2DvrPortsV2, self).setUp() extensions = ['router', constants.L3_AGENT_SCHEDULER_EXT_ALIAS, constants.L3_DISTRIBUTED_EXT_ALIAS] self.plugin = manager.NeutronManager.get_plugin() self.l3plugin = mock.Mock() type(self.l3plugin).supported_extension_aliases = ( mock.PropertyMock(return_value=extensions)) self.service_plugins = {'L3_ROUTER_NAT': self.l3plugin} def _test_delete_dvr_serviced_port(self, device_owner, floating_ip=False): ns_to_delete = {'host': 'myhost', 'agent_id': 'vm_l3_agent', 'router_id': 'my_router'} fip_set = set() if floating_ip: fip_set.add(ns_to_delete['router_id']) with contextlib.nested( mock.patch.object(manager.NeutronManager, 'get_service_plugins', return_value=self.service_plugins), self.port(do_delete=False, device_owner=device_owner), mock.patch.object(self.l3plugin, 'notify_routers_updated'), mock.patch.object(self.l3plugin, 'disassociate_floatingips', return_value=fip_set), mock.patch.object(self.l3plugin, 'dvr_deletens_if_no_port', return_value=[ns_to_delete]), mock.patch.object(self.l3plugin, 'remove_router_from_l3_agent') ) as (get_service_plugin, port, notify, disassociate_floatingips, dvr_delns_ifno_port, remove_router_from_l3_agent): port_id = port['port']['id'] self.plugin.delete_port(self.context, port_id) notify.assert_has_calls([mock.call(self.context, fip_set)]) dvr_delns_ifno_port.assert_called_once_with(self.context, port['port']['id']) remove_router_from_l3_agent.assert_has_calls([ mock.call(self.context, ns_to_delete['agent_id'], ns_to_delete['router_id']) ]) def test_delete_last_vm_port(self): self._test_delete_dvr_serviced_port(device_owner='compute:None') def test_delete_last_vm_port_with_floatingip(self): self._test_delete_dvr_serviced_port(device_owner='compute:None', floating_ip=True) def test_delete_vm_port_namespace_already_deleted(self): ns_to_delete = {'host': 'myhost', 'agent_id': 'vm_l3_agent', 'router_id': 'my_router'} with contextlib.nested( mock.patch.object(manager.NeutronManager, 'get_service_plugins', return_value=self.service_plugins), self.port(do_delete=False, device_owner='compute:None'), mock.patch.object(self.l3plugin, 'dvr_deletens_if_no_port', return_value=[ns_to_delete]), mock.patch.object(self.l3plugin, 'remove_router_from_l3_agent', side_effect=l3agentscheduler.RouterNotHostedByL3Agent( router_id=ns_to_delete['router_id'], agent_id=ns_to_delete['agent_id'])) ) as (get_service_plugin, port, dvr_delns_ifno_port, remove_router_from_l3_agent): self.plugin.delete_port(self.context, port['port']['id']) remove_router_from_l3_agent.assert_called_once_with(self.context, ns_to_delete['agent_id'], ns_to_delete['router_id']) def test_delete_lbaas_vip_port(self): self._test_delete_dvr_serviced_port( device_owner=constants.DEVICE_OWNER_LOADBALANCER) class TestMl2PortBinding(Ml2PluginV2TestCase, test_bindings.PortBindingsTestCase): # Test case does not set binding:host_id, so ml2 does not attempt # to bind port VIF_TYPE = portbindings.VIF_TYPE_UNBOUND HAS_PORT_FILTER = False ENABLE_SG = True FIREWALL_DRIVER = test_sg_rpc.FIREWALL_HYBRID_DRIVER def setUp(self, firewall_driver=None): test_sg_rpc.set_firewall_driver(self.FIREWALL_DRIVER) config.cfg.CONF.set_override( 'enable_security_group', self.ENABLE_SG, group='SECURITYGROUP') super(TestMl2PortBinding, self).setUp() def _check_port_binding_profile(self, port, profile=None): self.assertIn('id', port) self.assertIn(portbindings.PROFILE, port) value = port[portbindings.PROFILE] self.assertEqual(profile or {}, value) def test_create_port_binding_profile(self): self._test_create_port_binding_profile({'a': 1, 'b': 2}) def test_update_port_binding_profile(self): self._test_update_port_binding_profile({'c': 3}) def test_create_port_binding_profile_too_big(self): s = 'x' * 5000 profile_arg = {portbindings.PROFILE: {'d': s}} try: with self.port(expected_res_status=400, arg_list=(portbindings.PROFILE,), **profile_arg): pass except webob.exc.HTTPClientError: pass def test_remove_port_binding_profile(self): profile = {'e': 5} profile_arg = {portbindings.PROFILE: profile} with self.port(arg_list=(portbindings.PROFILE,), **profile_arg) as port: self._check_port_binding_profile(port['port'], profile) port_id = port['port']['id'] profile_arg = {portbindings.PROFILE: None} port = self._update('ports', port_id, {'port': profile_arg})['port'] self._check_port_binding_profile(port) port = self._show('ports', port_id)['port'] self._check_port_binding_profile(port) def test_return_on_concurrent_delete_and_binding(self): # create a port and delete it so we have an expired mechanism context with self.port() as port: plugin = manager.NeutronManager.get_plugin() binding = ml2_db.get_locked_port_and_binding(self.context.session, port['port']['id'])[1] binding['host'] = 'test' mech_context = driver_context.PortContext( plugin, self.context, port['port'], plugin.get_network(self.context, port['port']['network_id']), binding) with contextlib.nested( mock.patch('neutron.plugins.ml2.plugin.' 'db.get_locked_port_and_binding', return_value=(None, None)), mock.patch('neutron.plugins.ml2.plugin.Ml2Plugin._make_port_dict') ) as (glpab_mock, mpd_mock): plugin._bind_port_if_needed(mech_context) # called during deletion to get port self.assertTrue(glpab_mock.mock_calls) # should have returned before calling _make_port_dict self.assertFalse(mpd_mock.mock_calls) def test_port_binding_profile_not_changed(self): profile = {'e': 5} profile_arg = {portbindings.PROFILE: profile} with self.port(arg_list=(portbindings.PROFILE,), **profile_arg) as port: self._check_port_binding_profile(port['port'], profile) port_id = port['port']['id'] state_arg = {'admin_state_up': True} port = self._update('ports', port_id, {'port': state_arg})['port'] self._check_port_binding_profile(port, profile) port = self._show('ports', port_id)['port'] self._check_port_binding_profile(port, profile) def test_process_dvr_port_binding_update_router_id(self): host_id = 'host' binding = models.DVRPortBinding( port_id='port_id', host=host_id, router_id='old_router_id', vif_type=portbindings.VIF_TYPE_OVS, vnic_type=portbindings.VNIC_NORMAL, cap_port_filter=False, status=constants.PORT_STATUS_DOWN) plugin = manager.NeutronManager.get_plugin() mock_network = {'id': 'net_id'} context = mock.Mock() new_router_id = 'new_router' attrs = {'device_id': new_router_id, portbindings.HOST_ID: host_id} with mock.patch.object(plugin, '_update_port_dict_binding'): with mock.patch.object(ml2_db, 'get_network_segments', return_value=[]): mech_context = driver_context.DvrPortContext( self, context, 'port', mock_network, binding) plugin._process_dvr_port_binding(mech_context, context, attrs) self.assertEqual(new_router_id, mech_context._binding.router_id) self.assertEqual(host_id, mech_context._binding.host) def test_update_dvr_port_binding_on_non_existent_port(self): plugin = manager.NeutronManager.get_plugin() port = { 'id': 'foo_port_id', 'binding:host_id': 'foo_host', } with mock.patch.object(ml2_db, 'ensure_dvr_port_binding') as mock_dvr: plugin.update_dvr_port_binding( self.context, 'foo_port_id', {'port': port}) self.assertFalse(mock_dvr.called) class TestMl2PortBindingNoSG(TestMl2PortBinding): HAS_PORT_FILTER = False ENABLE_SG = False FIREWALL_DRIVER = test_sg_rpc.FIREWALL_NOOP_DRIVER class TestMl2PortBindingHost(Ml2PluginV2TestCase, test_bindings.PortBindingsHostTestCaseMixin): pass class TestMl2PortBindingVnicType(Ml2PluginV2TestCase, test_bindings.PortBindingsVnicTestCaseMixin): pass class TestMultiSegmentNetworks(Ml2PluginV2TestCase): def setUp(self, plugin=None): super(TestMultiSegmentNetworks, self).setUp() def test_allocate_dynamic_segment(self): data = {'network': {'name': 'net1', 'tenant_id': 'tenant_one'}} network_req = self.new_create_request('networks', data) network = self.deserialize(self.fmt, network_req.get_response(self.api)) segment = {driver_api.NETWORK_TYPE: 'vlan', driver_api.PHYSICAL_NETWORK: 'physnet1'} network_id = network['network']['id'] self.driver.type_manager.allocate_dynamic_segment( self.context.session, network_id, segment) dynamic_segment = ml2_db.get_dynamic_segment(self.context.session, network_id, 'physnet1') self.assertEqual('vlan', dynamic_segment[driver_api.NETWORK_TYPE]) self.assertEqual('physnet1', dynamic_segment[driver_api.PHYSICAL_NETWORK]) self.assertTrue(dynamic_segment[driver_api.SEGMENTATION_ID] > 0) segment2 = {driver_api.NETWORK_TYPE: 'vlan', driver_api.SEGMENTATION_ID: 1234, driver_api.PHYSICAL_NETWORK: 'physnet3'} self.driver.type_manager.allocate_dynamic_segment( self.context.session, network_id, segment2) dynamic_segment = ml2_db.get_dynamic_segment(self.context.session, network_id, segmentation_id='1234') self.assertEqual('vlan', dynamic_segment[driver_api.NETWORK_TYPE]) self.assertEqual('physnet3', dynamic_segment[driver_api.PHYSICAL_NETWORK]) self.assertEqual(dynamic_segment[driver_api.SEGMENTATION_ID], 1234) def test_allocate_dynamic_segment_multiple_physnets(self): data = {'network': {'name': 'net1', 'tenant_id': 'tenant_one'}} network_req = self.new_create_request('networks', data) network = self.deserialize(self.fmt, network_req.get_response(self.api)) segment = {driver_api.NETWORK_TYPE: 'vlan', driver_api.PHYSICAL_NETWORK: 'physnet1'} network_id = network['network']['id'] self.driver.type_manager.allocate_dynamic_segment( self.context.session, network_id, segment) dynamic_segment = ml2_db.get_dynamic_segment(self.context.session, network_id, 'physnet1') self.assertEqual('vlan', dynamic_segment[driver_api.NETWORK_TYPE]) self.assertEqual('physnet1', dynamic_segment[driver_api.PHYSICAL_NETWORK]) dynamic_segmentation_id = dynamic_segment[driver_api.SEGMENTATION_ID] self.assertTrue(dynamic_segmentation_id > 0) dynamic_segment1 = ml2_db.get_dynamic_segment(self.context.session, network_id, 'physnet1') dynamic_segment1_id = dynamic_segment1[driver_api.SEGMENTATION_ID] self.assertEqual(dynamic_segmentation_id, dynamic_segment1_id) segment2 = {driver_api.NETWORK_TYPE: 'vlan', driver_api.PHYSICAL_NETWORK: 'physnet2'} self.driver.type_manager.allocate_dynamic_segment( self.context.session, network_id, segment2) dynamic_segment2 = ml2_db.get_dynamic_segment(self.context.session, network_id, 'physnet2') dynamic_segmentation2_id = dynamic_segment2[driver_api.SEGMENTATION_ID] self.assertNotEqual(dynamic_segmentation_id, dynamic_segmentation2_id) def test_allocate_release_dynamic_segment(self): data = {'network': {'name': 'net1', 'tenant_id': 'tenant_one'}} network_req = self.new_create_request('networks', data) network = self.deserialize(self.fmt, network_req.get_response(self.api)) segment = {driver_api.NETWORK_TYPE: 'vlan', driver_api.PHYSICAL_NETWORK: 'physnet1'} network_id = network['network']['id'] self.driver.type_manager.allocate_dynamic_segment( self.context.session, network_id, segment) dynamic_segment = ml2_db.get_dynamic_segment(self.context.session, network_id, 'physnet1') self.assertEqual('vlan', dynamic_segment[driver_api.NETWORK_TYPE]) self.assertEqual('physnet1', dynamic_segment[driver_api.PHYSICAL_NETWORK]) dynamic_segmentation_id = dynamic_segment[driver_api.SEGMENTATION_ID] self.assertTrue(dynamic_segmentation_id > 0) self.driver.type_manager.release_dynamic_segment( self.context.session, dynamic_segment[driver_api.ID]) self.assertIsNone(ml2_db.get_dynamic_segment( self.context.session, network_id, 'physnet1')) def test_create_network_provider(self): data = {'network': {'name': 'net1', pnet.NETWORK_TYPE: 'vlan', pnet.PHYSICAL_NETWORK: 'physnet1', pnet.SEGMENTATION_ID: 1, 'tenant_id': 'tenant_one'}} network_req = self.new_create_request('networks', data) network = self.deserialize(self.fmt, network_req.get_response(self.api)) self.assertEqual('vlan', network['network'][pnet.NETWORK_TYPE]) self.assertEqual('physnet1', network['network'][pnet.PHYSICAL_NETWORK]) self.assertEqual(1, network['network'][pnet.SEGMENTATION_ID]) self.assertNotIn(mpnet.SEGMENTS, network['network']) def test_create_network_single_multiprovider(self): data = {'network': {'name': 'net1', mpnet.SEGMENTS: [{pnet.NETWORK_TYPE: 'vlan', pnet.PHYSICAL_NETWORK: 'physnet1', pnet.SEGMENTATION_ID: 1}], 'tenant_id': 'tenant_one'}} net_req = self.new_create_request('networks', data) network = self.deserialize(self.fmt, net_req.get_response(self.api)) self.assertEqual('vlan', network['network'][pnet.NETWORK_TYPE]) self.assertEqual('physnet1', network['network'][pnet.PHYSICAL_NETWORK]) self.assertEqual(1, network['network'][pnet.SEGMENTATION_ID]) self.assertNotIn(mpnet.SEGMENTS, network['network']) # Tests get_network() net_req = self.new_show_request('networks', network['network']['id']) network = self.deserialize(self.fmt, net_req.get_response(self.api)) self.assertEqual('vlan', network['network'][pnet.NETWORK_TYPE]) self.assertEqual('physnet1', network['network'][pnet.PHYSICAL_NETWORK]) self.assertEqual(1, network['network'][pnet.SEGMENTATION_ID]) self.assertNotIn(mpnet.SEGMENTS, network['network']) def test_create_network_multiprovider(self): data = {'network': {'name': 'net1', mpnet.SEGMENTS: [{pnet.NETWORK_TYPE: 'vlan', pnet.PHYSICAL_NETWORK: 'physnet1', pnet.SEGMENTATION_ID: 1}, {pnet.NETWORK_TYPE: 'vlan', pnet.PHYSICAL_NETWORK: 'physnet1', pnet.SEGMENTATION_ID: 2}], 'tenant_id': 'tenant_one'}} network_req = self.new_create_request('networks', data) network = self.deserialize(self.fmt, network_req.get_response(self.api)) tz = network['network'][mpnet.SEGMENTS] for tz in data['network'][mpnet.SEGMENTS]: for field in [pnet.NETWORK_TYPE, pnet.PHYSICAL_NETWORK, pnet.SEGMENTATION_ID]: self.assertEqual(tz.get(field), tz.get(field)) # Tests get_network() net_req = self.new_show_request('networks', network['network']['id']) network = self.deserialize(self.fmt, net_req.get_response(self.api)) tz = network['network'][mpnet.SEGMENTS] for tz in data['network'][mpnet.SEGMENTS]: for field in [pnet.NETWORK_TYPE, pnet.PHYSICAL_NETWORK, pnet.SEGMENTATION_ID]: self.assertEqual(tz.get(field), tz.get(field)) def test_create_network_with_provider_and_multiprovider_fail(self): data = {'network': {'name': 'net1', mpnet.SEGMENTS: [{pnet.NETWORK_TYPE: 'vlan', pnet.PHYSICAL_NETWORK: 'physnet1', pnet.SEGMENTATION_ID: 1}], pnet.NETWORK_TYPE: 'vlan', pnet.PHYSICAL_NETWORK: 'physnet1', pnet.SEGMENTATION_ID: 1, 'tenant_id': 'tenant_one'}} network_req = self.new_create_request('networks', data) res = network_req.get_response(self.api) self.assertEqual(400, res.status_int) def test_create_network_duplicate_full_segments(self): data = {'network': {'name': 'net1', mpnet.SEGMENTS: [{pnet.NETWORK_TYPE: 'vlan', pnet.PHYSICAL_NETWORK: 'physnet1', pnet.SEGMENTATION_ID: 1}, {pnet.NETWORK_TYPE: 'vlan', pnet.PHYSICAL_NETWORK: 'physnet1', pnet.SEGMENTATION_ID: 1}], 'tenant_id': 'tenant_one'}} network_req = self.new_create_request('networks', data) res = network_req.get_response(self.api) self.assertEqual(400, res.status_int) def test_create_network_duplicate_partial_segments(self): data = {'network': {'name': 'net1', mpnet.SEGMENTS: [{pnet.NETWORK_TYPE: 'vlan', pnet.PHYSICAL_NETWORK: 'physnet1'}, {pnet.NETWORK_TYPE: 'vlan', pnet.PHYSICAL_NETWORK: 'physnet1'}], 'tenant_id': 'tenant_one'}} network_req = self.new_create_request('networks', data) res = network_req.get_response(self.api) self.assertEqual(201, res.status_int) def test_release_network_segments(self): data = {'network': {'name': 'net1', 'admin_state_up': True, 'shared': False, pnet.NETWORK_TYPE: 'vlan', pnet.PHYSICAL_NETWORK: 'physnet1', pnet.SEGMENTATION_ID: 1, 'tenant_id': 'tenant_one'}} network_req = self.new_create_request('networks', data) res = network_req.get_response(self.api) network = self.deserialize(self.fmt, res) network_id = network['network']['id'] segment = {driver_api.NETWORK_TYPE: 'vlan', driver_api.PHYSICAL_NETWORK: 'physnet2'} self.driver.type_manager.allocate_dynamic_segment( self.context.session, network_id, segment) dynamic_segment = ml2_db.get_dynamic_segment(self.context.session, network_id, 'physnet2') self.assertEqual('vlan', dynamic_segment[driver_api.NETWORK_TYPE]) self.assertEqual('physnet2', dynamic_segment[driver_api.PHYSICAL_NETWORK]) self.assertTrue(dynamic_segment[driver_api.SEGMENTATION_ID] > 0) with mock.patch.object(type_vlan.VlanTypeDriver, 'release_segment') as rs: req = self.new_delete_request('networks', network_id) res = req.get_response(self.api) self.assertEqual(2, rs.call_count) self.assertEqual(ml2_db.get_network_segments( self.context.session, network_id), []) self.assertIsNone(ml2_db.get_dynamic_segment( self.context.session, network_id, 'physnet2')) def test_release_segment_no_type_driver(self): data = {'network': {'name': 'net1', 'admin_state_up': True, 'shared': False, pnet.NETWORK_TYPE: 'vlan', pnet.PHYSICAL_NETWORK: 'physnet1', pnet.SEGMENTATION_ID: 1, 'tenant_id': 'tenant_one'}} network_req = self.new_create_request('networks', data) res = network_req.get_response(self.api) network = self.deserialize(self.fmt, res) network_id = network['network']['id'] segment = {driver_api.NETWORK_TYPE: 'faketype', driver_api.PHYSICAL_NETWORK: 'physnet1', driver_api.ID: 1} with mock.patch('neutron.plugins.ml2.managers.LOG') as log: with mock.patch('neutron.plugins.ml2.managers.db') as db: db.get_network_segments.return_value = (segment,) self.driver.type_manager.release_network_segments( self.context.session, network_id) log.error.assert_called_once_with( "Failed to release segment '%s' because " "network type is not supported.", segment) def test_create_provider_fail(self): segment = {pnet.NETWORK_TYPE: None, pnet.PHYSICAL_NETWORK: 'phys_net', pnet.SEGMENTATION_ID: None} with testtools.ExpectedException(exc.InvalidInput): self.driver.type_manager._process_provider_create(segment) def test_create_network_plugin(self): data = {'network': {'name': 'net1', 'admin_state_up': True, 'shared': False, pnet.NETWORK_TYPE: 'vlan', pnet.PHYSICAL_NETWORK: 'physnet1', pnet.SEGMENTATION_ID: 1, 'tenant_id': 'tenant_one'}} def raise_mechanism_exc(*args, **kwargs): raise ml2_exc.MechanismDriverError( method='create_network_postcommit') with mock.patch('neutron.plugins.ml2.managers.MechanismManager.' 'create_network_precommit', new=raise_mechanism_exc): with testtools.ExpectedException(ml2_exc.MechanismDriverError): self.driver.create_network(self.context, data) def test_extend_dictionary_no_segments(self): network = dict(name='net_no_segment', id='5', tenant_id='tenant_one') self.driver.type_manager._extend_network_dict_provider(self.context, network) self.assertIsNone(network[pnet.NETWORK_TYPE]) self.assertIsNone(network[pnet.PHYSICAL_NETWORK]) self.assertIsNone(network[pnet.SEGMENTATION_ID]) class TestMl2AllowedAddressPairs(Ml2PluginV2TestCase, test_pair.TestAllowedAddressPairs): def setUp(self, plugin=None): super(test_pair.TestAllowedAddressPairs, self).setUp( plugin=PLUGIN_NAME) class DHCPOptsTestCase(test_dhcpopts.TestExtraDhcpOpt): def setUp(self, plugin=None): super(test_dhcpopts.ExtraDhcpOptDBTestCase, self).setUp( plugin=PLUGIN_NAME) class Ml2PluginV2FaultyDriverTestCase(test_plugin.NeutronDbPluginV2TestCase): def setUp(self): # Enable the test mechanism driver to ensure that # we can successfully call through to all mechanism # driver apis. config.cfg.CONF.set_override('mechanism_drivers', ['test', 'logger'], group='ml2') super(Ml2PluginV2FaultyDriverTestCase, self).setUp(PLUGIN_NAME) self.port_create_status = 'DOWN' class TestFaultyMechansimDriver(Ml2PluginV2FaultyDriverTestCase): def test_create_network_faulty(self): with mock.patch.object(mech_test.TestMechanismDriver, 'create_network_postcommit', side_effect=ml2_exc.MechanismDriverError): tenant_id = str(uuid.uuid4()) data = {'network': {'name': 'net1', 'tenant_id': tenant_id}} req = self.new_create_request('networks', data) res = req.get_response(self.api) self.assertEqual(500, res.status_int) error = self.deserialize(self.fmt, res) self.assertEqual('MechanismDriverError', error['NeutronError']['type']) query_params = "tenant_id=%s" % tenant_id nets = self._list('networks', query_params=query_params) self.assertFalse(nets['networks']) def test_delete_network_faulty(self): with mock.patch.object(mech_test.TestMechanismDriver, 'delete_network_postcommit', side_effect=ml2_exc.MechanismDriverError): with mock.patch.object(mech_logger.LoggerMechanismDriver, 'delete_network_postcommit') as dnp: data = {'network': {'name': 'net1', 'tenant_id': 'tenant_one'}} network_req = self.new_create_request('networks', data) network_res = network_req.get_response(self.api) self.assertEqual(201, network_res.status_int) network = self.deserialize(self.fmt, network_res) net_id = network['network']['id'] req = self.new_delete_request('networks', net_id) res = req.get_response(self.api) self.assertEqual(204, res.status_int) # Test if other mechanism driver was called self.assertTrue(dnp.called) self._show('networks', net_id, expected_code=webob.exc.HTTPNotFound.code) def test_update_network_faulty(self): with mock.patch.object(mech_test.TestMechanismDriver, 'update_network_postcommit', side_effect=ml2_exc.MechanismDriverError): with mock.patch.object(mech_logger.LoggerMechanismDriver, 'update_network_postcommit') as unp: data = {'network': {'name': 'net1', 'tenant_id': 'tenant_one'}} network_req = self.new_create_request('networks', data) network_res = network_req.get_response(self.api) self.assertEqual(201, network_res.status_int) network = self.deserialize(self.fmt, network_res) net_id = network['network']['id'] new_name = 'a_brand_new_name' data = {'network': {'name': new_name}} req = self.new_update_request('networks', data, net_id) res = req.get_response(self.api) self.assertEqual(500, res.status_int) error = self.deserialize(self.fmt, res) self.assertEqual('MechanismDriverError', error['NeutronError']['type']) # Test if other mechanism driver was called self.assertTrue(unp.called) net = self._show('networks', net_id) self.assertEqual(new_name, net['network']['name']) self._delete('networks', net_id) def test_create_subnet_faulty(self): with mock.patch.object(mech_test.TestMechanismDriver, 'create_subnet_postcommit', side_effect=ml2_exc.MechanismDriverError): with self.network() as network: net_id = network['network']['id'] data = {'subnet': {'network_id': net_id, 'cidr': '10.0.20.0/24', 'ip_version': '4', 'name': 'subnet1', 'tenant_id': network['network']['tenant_id'], 'gateway_ip': '10.0.20.1'}} req = self.new_create_request('subnets', data) res = req.get_response(self.api) self.assertEqual(500, res.status_int) error = self.deserialize(self.fmt, res) self.assertEqual('MechanismDriverError', error['NeutronError']['type']) query_params = "network_id=%s" % net_id subnets = self._list('subnets', query_params=query_params) self.assertFalse(subnets['subnets']) def test_delete_subnet_faulty(self): with mock.patch.object(mech_test.TestMechanismDriver, 'delete_subnet_postcommit', side_effect=ml2_exc.MechanismDriverError): with mock.patch.object(mech_logger.LoggerMechanismDriver, 'delete_subnet_postcommit') as dsp: with self.network() as network: data = {'subnet': {'network_id': network['network']['id'], 'cidr': '10.0.20.0/24', 'ip_version': '4', 'name': 'subnet1', 'tenant_id': network['network']['tenant_id'], 'gateway_ip': '10.0.20.1'}} subnet_req = self.new_create_request('subnets', data) subnet_res = subnet_req.get_response(self.api) self.assertEqual(201, subnet_res.status_int) subnet = self.deserialize(self.fmt, subnet_res) subnet_id = subnet['subnet']['id'] req = self.new_delete_request('subnets', subnet_id) res = req.get_response(self.api) self.assertEqual(204, res.status_int) # Test if other mechanism driver was called self.assertTrue(dsp.called) self._show('subnets', subnet_id, expected_code=webob.exc.HTTPNotFound.code) def test_update_subnet_faulty(self): with mock.patch.object(mech_test.TestMechanismDriver, 'update_subnet_postcommit', side_effect=ml2_exc.MechanismDriverError): with mock.patch.object(mech_logger.LoggerMechanismDriver, 'update_subnet_postcommit') as usp: with self.network() as network: data = {'subnet': {'network_id': network['network']['id'], 'cidr': '10.0.20.0/24', 'ip_version': '4', 'name': 'subnet1', 'tenant_id': network['network']['tenant_id'], 'gateway_ip': '10.0.20.1'}} subnet_req = self.new_create_request('subnets', data) subnet_res = subnet_req.get_response(self.api) self.assertEqual(201, subnet_res.status_int) subnet = self.deserialize(self.fmt, subnet_res) subnet_id = subnet['subnet']['id'] new_name = 'a_brand_new_name' data = {'subnet': {'name': new_name}} req = self.new_update_request('subnets', data, subnet_id) res = req.get_response(self.api) self.assertEqual(500, res.status_int) error = self.deserialize(self.fmt, res) self.assertEqual('MechanismDriverError', error['NeutronError']['type']) # Test if other mechanism driver was called self.assertTrue(usp.called) subnet = self._show('subnets', subnet_id) self.assertEqual(new_name, subnet['subnet']['name']) self._delete('subnets', subnet['subnet']['id']) def test_create_port_faulty(self): with mock.patch.object(mech_test.TestMechanismDriver, 'create_port_postcommit', side_effect=ml2_exc.MechanismDriverError): with self.network() as network: net_id = network['network']['id'] data = {'port': {'network_id': net_id, 'tenant_id': network['network']['tenant_id'], 'name': 'port1', 'admin_state_up': 1, 'fixed_ips': []}} req = self.new_create_request('ports', data) res = req.get_response(self.api) self.assertEqual(500, res.status_int) error = self.deserialize(self.fmt, res) self.assertEqual('MechanismDriverError', error['NeutronError']['type']) query_params = "network_id=%s" % net_id ports = self._list('ports', query_params=query_params) self.assertFalse(ports['ports']) def test_update_port_faulty(self): with mock.patch.object(mech_test.TestMechanismDriver, 'update_port_postcommit', side_effect=ml2_exc.MechanismDriverError): with mock.patch.object(mech_logger.LoggerMechanismDriver, 'update_port_postcommit') as upp: with self.network() as network: data = {'port': {'network_id': network['network']['id'], 'tenant_id': network['network']['tenant_id'], 'name': 'port1', 'admin_state_up': 1, 'fixed_ips': []}} port_req = self.new_create_request('ports', data) port_res = port_req.get_response(self.api) self.assertEqual(201, port_res.status_int) port = self.deserialize(self.fmt, port_res) port_id = port['port']['id'] new_name = 'a_brand_new_name' data = {'port': {'name': new_name}} req = self.new_update_request('ports', data, port_id) res = req.get_response(self.api) self.assertEqual(500, res.status_int) error = self.deserialize(self.fmt, res) self.assertEqual('MechanismDriverError', error['NeutronError']['type']) # Test if other mechanism driver was called self.assertTrue(upp.called) port = self._show('ports', port_id) self.assertEqual(new_name, port['port']['name']) self._delete('ports', port['port']['id']) class TestMl2PluginCreateUpdatePort(base.BaseTestCase): def setUp(self): super(TestMl2PluginCreateUpdatePort, self).setUp() self.context = mock.MagicMock() def _ensure_transaction_is_closed(self): transaction = self.context.session.begin(subtransactions=True) enter = transaction.__enter__.call_count exit = transaction.__exit__.call_count self.assertEqual(enter, exit) def _create_plugin_for_create_update_port(self, new_host_port): plugin = ml2_plugin.Ml2Plugin() plugin.extension_manager = mock.Mock() plugin.type_manager = mock.Mock() plugin.mechanism_manager = mock.Mock() plugin.notifier = mock.Mock() plugin._get_host_port_if_changed = mock.Mock( return_value=new_host_port) plugin._notify_l3_agent_new_port = mock.Mock() plugin._notify_l3_agent_new_port.side_effect = ( lambda c, p: self._ensure_transaction_is_closed()) return plugin def test_create_port_rpc_outside_transaction(self): with contextlib.nested( mock.patch.object(ml2_plugin.Ml2Plugin, '__init__'), mock.patch.object(base_plugin.NeutronDbPluginV2, 'create_port'), ) as (init, super_create_port): init.return_value = None new_host_port = mock.Mock() plugin = self._create_plugin_for_create_update_port(new_host_port) plugin.create_port(self.context, mock.MagicMock()) plugin._notify_l3_agent_new_port.assert_called_once_with( self.context, new_host_port) def test_update_port_rpc_outside_transaction(self): with contextlib.nested( mock.patch.object(ml2_plugin.Ml2Plugin, '__init__'), mock.patch.object(base_plugin.NeutronDbPluginV2, 'update_port'), ) as (init, super_update_port): init.return_value = None new_host_port = mock.Mock() plugin = self._create_plugin_for_create_update_port(new_host_port) plugin.update_port(self.context, 'fake_id', mock.MagicMock()) plugin._notify_l3_agent_new_port.assert_called_once_with( self.context, new_host_port)
import datetime from unittest import skipIf, skipUnless from django.db import connection from django.db.models import CASCADE, ForeignKey, Index, Q from django.test import ( TestCase, TransactionTestCase, skipIfDBFeature, skipUnlessDBFeature, ) from django.test.utils import override_settings from django.utils import timezone from .models import ( Article, ArticleTranslation, IndexedArticle2, IndexTogetherSingleList, ) class SchemaIndexesTests(TestCase): """ Test index handling by the db.backends.schema infrastructure. """ def test_index_name_hash(self): """ Index names should be deterministic. """ editor = connection.schema_editor() index_name = editor._create_index_name( table_name=Article._meta.db_table, column_names=("c1",), suffix="123", ) self.assertEqual(index_name, "indexes_article_c1_a52bd80b123") def test_index_name(self): """ Index names on the built-in database backends:: * Are truncated as needed. * Include all the column names. * Include a deterministic hash. """ long_name = 'l%sng' % ('o' * 100) editor = connection.schema_editor() index_name = editor._create_index_name( table_name=Article._meta.db_table, column_names=('c1', 'c2', long_name), suffix='ix', ) expected = { 'mysql': 'indexes_article_c1_c2_looooooooooooooooooo_255179b2ix', 'oracle': 'indexes_a_c1_c2_loo_255179b2ix', 'postgresql': 'indexes_article_c1_c2_loooooooooooooooooo_255179b2ix', 'sqlite': 'indexes_article_c1_c2_l%sng_255179b2ix' % ('o' * 100), } if connection.vendor not in expected: self.skipTest('This test is only supported on the built-in database backends.') self.assertEqual(index_name, expected[connection.vendor]) def test_index_together(self): editor = connection.schema_editor() index_sql = [str(statement) for statement in editor._model_indexes_sql(Article)] self.assertEqual(len(index_sql), 1) # Ensure the index name is properly quoted self.assertIn( connection.ops.quote_name( editor._create_index_name(Article._meta.db_table, ['headline', 'pub_date'], suffix='_idx') ), index_sql[0] ) def test_index_together_single_list(self): # Test for using index_together with a single list (#22172) index_sql = connection.schema_editor()._model_indexes_sql(IndexTogetherSingleList) self.assertEqual(len(index_sql), 1) def test_columns_list_sql(self): index = Index(fields=['headline'], name='whitespace_idx') editor = connection.schema_editor() self.assertIn( '(%s)' % editor.quote_name('headline'), str(index.create_sql(Article, editor)), ) def test_descending_columns_list_sql(self): index = Index(fields=['-headline'], name='whitespace_idx') editor = connection.schema_editor() self.assertIn( '(%s DESC)' % editor.quote_name('headline'), str(index.create_sql(Article, editor)), ) @skipIf(connection.vendor == 'postgresql', 'opclasses are PostgreSQL only') class SchemaIndexesNotPostgreSQLTests(TransactionTestCase): available_apps = ['indexes'] def test_create_index_ignores_opclasses(self): index = Index( name='test_ops_class', fields=['headline'], opclasses=['varchar_pattern_ops'], ) with connection.schema_editor() as editor: # This would error if opclasses weren't ignored. editor.add_index(IndexedArticle2, index) # The `condition` parameter is ignored by databases that don't support partial # indexes. @skipIfDBFeature('supports_partial_indexes') class PartialIndexConditionIgnoredTests(TransactionTestCase): available_apps = ['indexes'] def test_condition_ignored(self): index = Index( name='test_condition_ignored', fields=['published'], condition=Q(published=True), ) with connection.schema_editor() as editor: # This would error if condition weren't ignored. editor.add_index(Article, index) self.assertNotIn( 'WHERE %s' % editor.quote_name('published'), str(index.create_sql(Article, editor)) ) @skipUnless(connection.vendor == 'postgresql', 'PostgreSQL tests') class SchemaIndexesPostgreSQLTests(TransactionTestCase): available_apps = ['indexes'] get_opclass_query = ''' SELECT opcname, c.relname FROM pg_opclass AS oc JOIN pg_index as i on oc.oid = ANY(i.indclass) JOIN pg_class as c on c.oid = i.indexrelid WHERE c.relname = '%s' ''' def test_text_indexes(self): """Test creation of PostgreSQL-specific text indexes (#12234)""" from .models import IndexedArticle index_sql = [str(statement) for statement in connection.schema_editor()._model_indexes_sql(IndexedArticle)] self.assertEqual(len(index_sql), 5) self.assertIn('("headline" varchar_pattern_ops)', index_sql[1]) self.assertIn('("body" text_pattern_ops)', index_sql[3]) # unique=True and db_index=True should only create the varchar-specific # index (#19441). self.assertIn('("slug" varchar_pattern_ops)', index_sql[4]) def test_virtual_relation_indexes(self): """Test indexes are not created for related objects""" index_sql = connection.schema_editor()._model_indexes_sql(Article) self.assertEqual(len(index_sql), 1) def test_ops_class(self): index = Index( name='test_ops_class', fields=['headline'], opclasses=['varchar_pattern_ops'], ) with connection.schema_editor() as editor: editor.add_index(IndexedArticle2, index) with editor.connection.cursor() as cursor: cursor.execute(self.get_opclass_query % 'test_ops_class') self.assertEqual(cursor.fetchall(), [('varchar_pattern_ops', 'test_ops_class')]) def test_ops_class_multiple_columns(self): index = Index( name='test_ops_class_multiple', fields=['headline', 'body'], opclasses=['varchar_pattern_ops', 'text_pattern_ops'], ) with connection.schema_editor() as editor: editor.add_index(IndexedArticle2, index) with editor.connection.cursor() as cursor: cursor.execute(self.get_opclass_query % 'test_ops_class_multiple') expected_ops_classes = ( ('varchar_pattern_ops', 'test_ops_class_multiple'), ('text_pattern_ops', 'test_ops_class_multiple'), ) self.assertCountEqual(cursor.fetchall(), expected_ops_classes) def test_ops_class_partial(self): index = Index( name='test_ops_class_partial', fields=['body'], opclasses=['text_pattern_ops'], condition=Q(headline__contains='China'), ) with connection.schema_editor() as editor: editor.add_index(IndexedArticle2, index) with editor.connection.cursor() as cursor: cursor.execute(self.get_opclass_query % 'test_ops_class_partial') self.assertCountEqual(cursor.fetchall(), [('text_pattern_ops', 'test_ops_class_partial')]) def test_ops_class_partial_tablespace(self): indexname = 'test_ops_class_tblspace' index = Index( name=indexname, fields=['body'], opclasses=['text_pattern_ops'], condition=Q(headline__contains='China'), db_tablespace='pg_default', ) with connection.schema_editor() as editor: editor.add_index(IndexedArticle2, index) self.assertIn('TABLESPACE "pg_default" ', str(index.create_sql(IndexedArticle2, editor))) with editor.connection.cursor() as cursor: cursor.execute(self.get_opclass_query % indexname) self.assertCountEqual(cursor.fetchall(), [('text_pattern_ops', indexname)]) def test_ops_class_descending(self): indexname = 'test_ops_class_ordered' index = Index( name=indexname, fields=['-body'], opclasses=['text_pattern_ops'], ) with connection.schema_editor() as editor: editor.add_index(IndexedArticle2, index) with editor.connection.cursor() as cursor: cursor.execute(self.get_opclass_query % indexname) self.assertCountEqual(cursor.fetchall(), [('text_pattern_ops', indexname)]) def test_ops_class_descending_partial(self): indexname = 'test_ops_class_ordered_partial' index = Index( name=indexname, fields=['-body'], opclasses=['text_pattern_ops'], condition=Q(headline__contains='China'), ) with connection.schema_editor() as editor: editor.add_index(IndexedArticle2, index) with editor.connection.cursor() as cursor: cursor.execute(self.get_opclass_query % indexname) self.assertCountEqual(cursor.fetchall(), [('text_pattern_ops', indexname)]) def test_ops_class_columns_lists_sql(self): index = Index( fields=['headline'], name='whitespace_idx', opclasses=['text_pattern_ops'], ) with connection.schema_editor() as editor: self.assertIn( '(%s text_pattern_ops)' % editor.quote_name('headline'), str(index.create_sql(Article, editor)), ) def test_ops_class_descending_columns_list_sql(self): index = Index( fields=['-headline'], name='whitespace_idx', opclasses=['text_pattern_ops'], ) with connection.schema_editor() as editor: self.assertIn( '(%s text_pattern_ops DESC)' % editor.quote_name('headline'), str(index.create_sql(Article, editor)), ) @skipUnless(connection.vendor == 'mysql', 'MySQL tests') class SchemaIndexesMySQLTests(TransactionTestCase): available_apps = ['indexes'] def test_no_index_for_foreignkey(self): """ MySQL on InnoDB already creates indexes automatically for foreign keys. (#14180). An index should be created if db_constraint=False (#26171). """ with connection.cursor() as cursor: storage = connection.introspection.get_storage_engine( cursor, ArticleTranslation._meta.db_table, ) if storage != "InnoDB": self.skip("This test only applies to the InnoDB storage engine") index_sql = [str(statement) for statement in connection.schema_editor()._model_indexes_sql(ArticleTranslation)] self.assertEqual(index_sql, [ 'CREATE INDEX `indexes_articletranslation_article_no_constraint_id_d6c0806b` ' 'ON `indexes_articletranslation` (`article_no_constraint_id`)' ]) # The index also shouldn't be created if the ForeignKey is added after # the model was created. field_created = False try: with connection.schema_editor() as editor: new_field = ForeignKey(Article, CASCADE) new_field.set_attributes_from_name('new_foreign_key') editor.add_field(ArticleTranslation, new_field) field_created = True # No deferred SQL. The FK constraint is included in the # statement to add the field. self.assertFalse(editor.deferred_sql) finally: if field_created: with connection.schema_editor() as editor: editor.remove_field(ArticleTranslation, new_field) @skipUnlessDBFeature('supports_partial_indexes') # SQLite doesn't support timezone-aware datetimes when USE_TZ is False. @override_settings(USE_TZ=True) class PartialIndexTests(TransactionTestCase): # Schema editor is used to create the index to test that it works. available_apps = ['indexes'] def test_partial_index(self): with connection.schema_editor() as editor: index = Index( name='recent_article_idx', fields=['pub_date'], condition=Q( pub_date__gt=datetime.datetime( year=2015, month=1, day=1, # PostgreSQL would otherwise complain about the lookup # being converted to a mutable function (by removing # the timezone in the cast) which is forbidden. tzinfo=timezone.get_current_timezone(), ), ) ) self.assertIn( 'WHERE %s' % editor.quote_name('pub_date'), str(index.create_sql(Article, schema_editor=editor)) ) editor.add_index(index=index, model=Article) with connection.cursor() as cursor: self.assertIn(index.name, connection.introspection.get_constraints( cursor=cursor, table_name=Article._meta.db_table, )) editor.remove_index(index=index, model=Article) def test_integer_restriction_partial(self): with connection.schema_editor() as editor: index = Index( name='recent_article_idx', fields=['id'], condition=Q(pk__gt=1), ) self.assertIn( 'WHERE %s' % editor.quote_name('id'), str(index.create_sql(Article, schema_editor=editor)) ) editor.add_index(index=index, model=Article) with connection.cursor() as cursor: self.assertIn(index.name, connection.introspection.get_constraints( cursor=cursor, table_name=Article._meta.db_table, )) editor.remove_index(index=index, model=Article) def test_boolean_restriction_partial(self): with connection.schema_editor() as editor: index = Index( name='published_index', fields=['published'], condition=Q(published=True), ) self.assertIn( 'WHERE %s' % editor.quote_name('published'), str(index.create_sql(Article, schema_editor=editor)) ) editor.add_index(index=index, model=Article) with connection.cursor() as cursor: self.assertIn(index.name, connection.introspection.get_constraints( cursor=cursor, table_name=Article._meta.db_table, )) editor.remove_index(index=index, model=Article) @skipUnlessDBFeature('supports_functions_in_partial_indexes') def test_multiple_conditions(self): with connection.schema_editor() as editor: index = Index( name='recent_article_idx', fields=['pub_date', 'headline'], condition=( Q(pub_date__gt=datetime.datetime( year=2015, month=1, day=1, tzinfo=timezone.get_current_timezone(), )) & Q(headline__contains='China') ), ) sql = str(index.create_sql(Article, schema_editor=editor)) where = sql.find('WHERE') self.assertIn( 'WHERE (%s' % editor.quote_name('pub_date'), sql ) # Because each backend has different syntax for the operators, # check ONLY the occurrence of headline in the SQL. self.assertGreater(sql.rfind('headline'), where) editor.add_index(index=index, model=Article) with connection.cursor() as cursor: self.assertIn(index.name, connection.introspection.get_constraints( cursor=cursor, table_name=Article._meta.db_table, )) editor.remove_index(index=index, model=Article) def test_is_null_condition(self): with connection.schema_editor() as editor: index = Index( name='recent_article_idx', fields=['pub_date'], condition=Q(pub_date__isnull=False), ) self.assertIn( 'WHERE %s IS NOT NULL' % editor.quote_name('pub_date'), str(index.create_sql(Article, schema_editor=editor)) ) editor.add_index(index=index, model=Article) with connection.cursor() as cursor: self.assertIn(index.name, connection.introspection.get_constraints( cursor=cursor, table_name=Article._meta.db_table, )) editor.remove_index(index=index, model=Article)
#!/usr/bin/python # (C) Copyright 2018 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Authors: Slavisa Sarafijanovic (sla@zurich.ibm.com) Harald Seipp (seipp@de.ibm.com) """ """ This file implements SwiftHLM Connector for LTFS Data Management (LTFS DM) backend, i.e. the connector between SwiftHLM and the tape-enabled file storage backend LTFS DM. LTFS DM is a software that adds tape storage to a standard disk based Linux filesystem - it keeps the original namespace of the disk file system exposed to users and applications (via standard POSIX interface) but allows migrating file data to and from attached tape storage. LTFS DM is open sourced at https://github.com/ibm-research/LTFS-Data-Management. Toward SwiftHLM the connector implements SwiftHLM Generic Backend API as declared in dummy_connector.py of SwiftHLM. On the backend side the connector maps SwiftHLM requests to the backend's migrate, recall and query status operations. """ from swift.common.utils import readconf from swift.common.utils import json, get_logger from sys import stdin, stdout import os import errno import uuid import subprocess # SwiftHLM Backend Connector class SwiftHlmBackendConnector(object): def __init__(self): self.__request_in = {} self.__request_out = {} self.__request_out_request = '' self.__request_out_filelist = '' self.__response_in = {} self.__response_out = {} # Config configFile = r'/etc/swift/object-server.conf' self.conf = readconf(configFile) # Logging self.hlm_stor_node_config = self.conf.get('hlm', None) if self.hlm_stor_node_config: hlm_stor_node_log_level = self.hlm_stor_node_config.get( 'set log_level', None) if hlm_stor_node_log_level: self.conf['log_level'] = hlm_stor_node_log_level self.logger = get_logger(self.conf, name='hlm-connector', log_route='swifthlm', fmt="%(server)s: %(msecs)03d " "[%(filename)s:%(funcName)20s():%(lineno)s] %(message)s") self.logger.info('info: Initialized Connector') self.logger.debug('dbg: Initialized Connector') self.logger.info('conf: %s', self.conf['log_level']) #self.logger.info('conf: %s', self.conf) self.logger.debug('conf: %s', json.dumps(self.conf.get('hlm', None))) self.logger.debug('conf: %s', json.dumps( self.conf.get('ltfsdm', None))) # Connector settings self.ltfsdm_cfg = self.conf.get('ltfsdm', None) if not self.ltfsdm_cfg: self.logger.error('LTFS DM connector not configured in \ /etc/swift/object-server.conf') raise # Check connector settings, make temporary directory if it does not # exist self.ltfsdm_path = self.ltfsdm_cfg.get('ltfsdm_path', '/usr/local/bin/ltfsdm') # if not os.path.isfile(self.ltfsdm_path): if os.system('sudo -i ' + self.ltfsdm_path + ' help > /dev/null 2>&1') != 0: self.logger.error("ERROR: ltfsdm binary not present at" " configured (or default) path %s", self.ltfsdm_path) raise self.connector_tmp_dir = self.ltfsdm_cfg.get('connector_tmp_dir', None) if self.connector_tmp_dir: self.mkdir_minus_p(self.connector_tmp_dir) else: self.logger.error('Swifthlm temporary directory not configured') raise self.tape_storage_pool = self.ltfsdm_cfg.get('tape_storage_pool', None) if not self.tape_storage_pool: self.logger.error('Tape storage pool not configured.') raise # Next method is invoked by SwiftHLM Handler using SwiftHLM Generic Backend # Interface (GBI). It adapts SwiftHLM request for LTFS DM backend, invokes # the backend operations, reformats the backend response to GBI format, and # returns the response to SwitHLM Handler def submit_request_get_response(self, request): self.__receive_request(request) self.__reformat_swifthlm_request_to_specific_backend_api() self.__submit_request_to_backend_get_response() self.__reformat_backend_response_to_generic_backend_api() return self.__response_out # This method receives the request from SwiftHLM Handler def __receive_request(self, request): self.logger.debug('Receiving request from Handler') self.__request_in = request return # This method reformats request to backend API def __reformat_swifthlm_request_to_specific_backend_api(self): self.logger.debug('Reformatting request to the specific Backend API') self.logger.debug('request_in(first 1024 bytes): %s', str(self.__request_in)[0:1023]) # Backend specific part self.__request_out_request = self.__request_in['request'] if str.lower((self.__request_in['request']).encode('utf-8')) == 'status': # status: reuse input request as is self.__request_out = self.__request_in else: # migration or recall: prepare list for bulk migration/recall # in a temporary file tmp_filename = str(uuid.uuid1()) self.__request_out_list = self.connector_tmp_dir + '/' + \ tmp_filename f = open(self.__request_out_list, 'w') for obj_and_file in self.__request_in['objects']: f.write(str(obj_and_file['file']) + '\n') f.close() fr = open(self.__request_out_list, 'r') file_list_content = fr.read() self.logger.debug('file_list: %s', file_list_content) fr.close() return # This method submits request to Backend and gets Response from Backend def __submit_request_to_backend_get_response(self): self.logger.debug('Submitting request to backend') if self.__request_out_request == 'status': # query status self.query_status_receive_response() elif self.__request_out_request == 'migrate': #self.__response_in = 0 self.migrate_receive_response() elif self.__request_out_request == 'recall': self.recall_receive_response() else: # wrong request, TODO: move this check, do early as possible raise return def __reformat_backend_response_to_generic_backend_api(self): self.logger.debug('Reformatting response to Generic Backend API') self.logger.debug('response_in(first 1024 bytes): %s', str(self.__response_in)[0:1023]) # In this connector implementaiton, the mapping of the response from # the backend to the GBI is done in the functions # migrate_receive_response(), recall_receive_response() and # query_status_receive_response() when setting response_in varible, it # only remains to copy it to response_out. self.__response_out = self.__response_in return def mkdir_minus_p(self, dir_path): try: os.makedirs(dir_path) except OSError as err: # TODO: check python 3.x if err.errno == errno.EEXIST and os.path.isdir(dir_path): pass else: raise return def migrate_receive_response(self): self.logger.debug('In migrate_receive_response()') listfile = self.__request_out_list request = self.__request_out_request # Migrate object files - unfortunately ltfsdm migrate must be run as # root self.logger.debug('self.ltfsdm_path: %s', self.ltfsdm_path) cmd = ["sudo", "-i", self.ltfsdm_path, "migrate", "-f", listfile, '-P'] for pool in self.tape_storage_pool.split(): cmd.append(pool) self.logger.debug('cmd: %s', cmd) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) out, error = p.communicate() rc = p.returncode self.logger.debug('migrate.out(first 1024 bytes): %s', str(out)[0:1023]) self.logger.debug('rc: %s', rc) if rc == 6: rc = 0 self.__response_in = rc return def recall_receive_response(self): listfile = self.__request_out_list request = self.__request_out_request # Recall object files - unfortunately ltfsdm migrate must be run as # root cmd = ["sudo", "-i", self.ltfsdm_path, "recall", "-f", listfile] self.logger.debug('cmd: %s', cmd) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) out, error = p.communicate() rc = p.returncode self.logger.debug('recall.out(first 1024 bytes): %s', str(out)[0:1023]) self.logger.debug('rc: %s', rc) self.__response_in = rc return def query_status_receive_response(self): self.logger.debug('query_status_receive_response()') # prepare temporary lists unique file name prefix lists_prefix = str(uuid.uuid1()) input_list = self.connector_tmp_dir + '/' + lists_prefix + \ '.list.status.input' self.logger.debug('input_list: %s', input_list) f = open(input_list, 'w') for obj_and_file in self.__request_in['objects']: f.write(str(obj_and_file['file']) + '\n') f.close() # mmapplypolicy output is by default owned by root, 0600 file mode # so we create it as swift user to be able to process it later output_list = self.connector_tmp_dir + '/' + lists_prefix + \ '.list.status.output' self.logger.debug('output_list: %s', output_list) open(output_list, 'w').close() output_list_prefix = self.connector_tmp_dir + '/' + lists_prefix # Prepare status scan command cmd = ["sudo" + " -i " + self.ltfsdm_path + " info" + " files" + " -f " + input_list + " | awk 'NR > 1 { print }'" + " >" + output_list] self.logger.debug('cmd: %s', cmd) # Invoke the command p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = p.communicate() # Check result if p.returncode: self.logger.error('Status query errors: %s', err) return fr = open(output_list, 'r') file_list_content = fr.read() self.logger.debug('output_list(first 1024 bytes): %s', str(file_list_content)[0:1023]) fr.close() # get file-status pairs names_statuses = {} fr = open(output_list, 'r') for line in fr.readlines(): self.logger.debug('line: %s', str(line)) file_name = line.split()[-1] file_status = line.split()[0] if file_status == 'r': file_status = 'resident' elif file_status == 'p': file_status = 'premigrated' elif file_status == 'm': file_status = 'migrated' self.logger.debug('file_name: %s', file_name) self.logger.debug('file_status: %s', file_status) names_statuses[file_name] = file_status # create object to file to status mapping objects = [] for obj_and_file in self.__request_out['objects']: obj_file_status = {} obj_file_status['object'] = obj_and_file['object'] obj_file_status['file'] = obj_and_file['file'] filenamekey = obj_and_file['file'] self.logger.debug('filenamekey: %s', filenamekey) filenamekey = os.path.realpath(filenamekey) self.logger.debug('filenamekey: %s', filenamekey) obj_file_status['status'] = names_statuses[filenamekey] objects.append(obj_file_status) self.__response_in['objects'] = objects # TODO: uncomment or modify next 2 lines once major defects are fixed # os.remove(input_list) # os.remove(output_list) return def set_statuses_to_unknown(self): objects = [] for obj_and_file in self.__request_out['objects']: obj_file_status = obj_and_file obj_file_status['status'] = 'unknown' objects.append(obj_file_status) self.__response_in['objects'] = objects return if __name__ == '__main__': # SwiftHlmConnector class is not assumed to be used standalone, instead it # is imported for a configured backend by SwiftHLM Handler and invoked from # the Handler. raise
from django.shortcuts import render,resolve_url,redirect from django.template.response import TemplateResponse from django.core.urlresolvers import reverse,reverse_lazy from django.contrib.auth.views import deprecate_current_app from django.views.decorators.csrf import csrf_protect from django.views.decorators.cache import never_cache from django.contrib.auth.tokens import default_token_generator from django.utils.deprecation import RemovedInDjango20Warning from django.utils.http import urlsafe_base64_encode from django.contrib.auth import get_user_model from django.conf import settings from django.utils.encoding import force_text from django.http import HttpResponseRedirect from django.views.decorators.debug import sensitive_post_parameters from django.contrib import messages from django.contrib.auth.decorators import login_required from django.utils.http import urlsafe_base64_encode,urlsafe_base64_decode import random import warnings from email.mime.text import MIMEText from smtplib import SMTP from django.core.mail import send_mail from .forms import UsuarioForm from django.contrib.auth.models import Group from django.contrib.auth.forms import PasswordResetForm,SetPasswordForm from django.contrib.auth.models import User from cuentas_usuarioapp.models import UsuarioEmpleado from cuentas_usuarioapp.forms import CambiarPassword,ResetPasswordForm from empleadosapp.models import Empleado UserModel = get_user_model() """def crear_usuario(request): if request.method == "POST": form = CrearUsuario(request.POST) #messages.success(request,'Antes de is_valid') if form.is_valid(): #messages.success(request,'Entro a is_valid') x = form.save(commit=False) x.save() x.groups = request.POST.getlist('grupos') x.save() messages.success(request,'Usuario '+request.POST.get('usuario')+ ' Creado Satisfactoriamente') else: messages.success(request,'No entra a is_valid') else: #messages.success(request,'Error') form=CrearUsuario() return render(request,"cuentas_usuarioapp/crear.html",{'form':form})""" @login_required(login_url='logins') def empleado_usuario(request): formU = UsuarioForm() psw = generarpassword() if request.method == "POST": formU = UsuarioForm(request.POST) #codEmp = request.POST.get('empleado') #dataemp = Empleado.objects.get(pk=codEmp) #usr = generausername(dataemp) if formU.is_valid(): userAux = formU.cleaned_data aux = userAux.get('codigoEmpleado') dataemp = aux.nombrePrimero + ' '+ aux.apellidoPrimero usr = generausername(dataemp) passw = request.POST.get('password') user = User.objects.create_user(usr,userAux.get('email'),passw) user.last_name=aux.apellidoPrimero user.first_name=aux.nombrePrimero user.save() codigoU = User.objects.order_by('-id')[0] UsuarioEmpleado.objects.create(codigoEmpleado=aux,codigoUsuario=codigoU) user.groups = request.POST.getlist('grupos') user.save() messages.success(request,'Se han guardado los datos del Usuario Exitosamente') remitente = "Bienestar Universitario <bienestaruessv@gmail.com>" destinatario = dataemp.split(' ')[0] +' '+ dataemp.split(' ')[1] + "<"+user.email+">" asunto = "Credenciales BU" saludo = "Este es un e-mail enviando desde el Sistema Informatico de gestion de expedientes y citas de Bienestar Universitario, UES" mensaje = "Hola!\n"+saludo+"\nNombre de usuario: "+ usr +"\n" + "Password: "+ passw + \ "\n\n\nDebera cambiar en el primer ingreso su contrase&ntilde;a y luego si deseea podra cambiar su nombre de usuario." mime_message = MIMEText(mensaje) mime_message["From"] = remitente mime_message["To"] = destinatario mime_message["Subject"] = asunto smtp = SMTP(settings.EMAIL_HOST, settings.EMAIL_PORT) smtp.ehlo() smtp.starttls() smtp.ehlo() smtp.login(settings.EMAIL_HOST_USER, settings.EMAIL_HOST_PASSWORD) smtp.sendmail(remitente, destinatario, mime_message.as_string()) smtp.quit() return redirect('empleadosuario-new') else: messages.success(request,'No validos') formU = UsuarioForm() return render(request,"cuentas_usuarioapp/empleado_usuario.html",{'form':formU,'pass':psw}) def generausername(data): nombre = data.split(' ') #limiteNombre = len(nombre[0]) #limiteApellido = len(nombre[1]) usr = nombre[0] +'.'+ nombre[1] + str(random.randint(1,99)) return usr def generarpassword(): cadena = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890$/*-.@" longitudCadena = len(cadena) psw = "" longitudPsw=10 for i in range(0,longitudPsw): pos = random.randint(0,longitudCadena-1) psw = psw + cadena[pos] return psw #Sobreescritura de las vista de django para poder aceptar passwords mas sencillas @deprecate_current_app @csrf_protect def password_reset(request, template_name='registration/password_reset_form.html', email_template_name='registration/password_reset_email.html', subject_template_name='registration/password_reset_subject.txt', password_reset_form=ResetPasswordForm, token_generator=default_token_generator, post_reset_redirect=None, from_email=None, extra_context=None, html_email_template_name=None, extra_email_context=None): warnings.warn("The password_reset() view is superseded by the " "class-based PasswordResetView().", RemovedInDjango20Warning, stacklevel=2) if post_reset_redirect is None: post_reset_redirect = reverse('password_reset_done') else: post_reset_redirect = resolve_url(post_reset_redirect) if request.method == "POST": form = password_reset_form(request.POST) if form.is_valid(): opts = { 'use_https': request.is_secure(), 'token_generator': token_generator, 'from_email': from_email, 'email_template_name': email_template_name, 'subject_template_name': subject_template_name, 'request': request, 'html_email_template_name': html_email_template_name, 'extra_email_context': extra_email_context, } form.save(**opts) return HttpResponseRedirect(post_reset_redirect) else: form = password_reset_form() context = { 'form': form, 'title': 'Password reset', } if extra_context is not None: context.update(extra_context) return TemplateResponse(request, template_name, context) @deprecate_current_app def password_reset_done(request, template_name='registration/password_reset_done.html', extra_context=None): warnings.warn("The password_reset_done() view is superseded by the " "class-based PasswordResetDoneView().", RemovedInDjango20Warning, stacklevel=2) context = { 'title': 'Password reset sent', } if extra_context is not None: context.update(extra_context) return TemplateResponse(request, template_name, context) @sensitive_post_parameters() @never_cache @deprecate_current_app def password_reset_confirm(request, uidb64=None, token=None, template_name='registration/password_reset_confirm.html', token_generator=default_token_generator, set_password_form=CambiarPassword, post_reset_redirect=None, extra_context=None): """ View that checks the hash in a password reset link and presents a form for entering a new password. """ warnings.warn("The password_reset_confirm() view is superseded by the " "class-based PasswordResetConfirmView().", RemovedInDjango20Warning, stacklevel=2) assert uidb64 is not None and token is not None # checked by URLconf if post_reset_redirect is None: post_reset_redirect = reverse('password_reset_complete') else: post_reset_redirect = resolve_url(post_reset_redirect) try: # urlsafe_base64_decode() decodes to bytestring on Python 3 uid = force_text(urlsafe_base64_decode(uidb64)) user = UserModel._default_manager.get(pk=uid) except (TypeError, ValueError, OverflowError, UserModel.DoesNotExist): user = None if user is not None and token_generator.check_token(user, token): validlink = True title = 'Entre el nuevo Password' if request.method == 'POST': form = set_password_form(request.POST) #messages.success(request, "hola "+user) if form.is_valid(): x = form.cleaned_data usr = User.objects.get(username=user) usr.set_password(x.get('pass1')) usr.save() return HttpResponseRedirect(post_reset_redirect) else: form = set_password_form() else: validlink = False form = None title = 'Password no reestablecido' context = { 'form': form, 'title': title, 'validlink': validlink, } if extra_context is not None: context.update(extra_context) return TemplateResponse(request, template_name, context) @deprecate_current_app def password_reset_complete(request, template_name='registration/password_reset_complete.html', extra_context=None): warnings.warn("The password_reset_complete() view is superseded by the " "class-based PasswordResetCompleteView().", RemovedInDjango20Warning, stacklevel=2) context = { 'login_url': resolve_url(settings.LOGIN_URL), 'title': 'Password Reestablecido correctamente', } if extra_context is not None: context.update(extra_context) return TemplateResponse(request, template_name, context)
import os import struct import scipy.spatial, scipy.optimize import numpy as np from ibex.utilities import dataIO from ibex.utilities.constants import * def ReadSkeletonEndpoints(filename): endpoints = [] with open(filename, 'rb') as fd: zres, yres, xres, max_label, = struct.unpack('qqqq', fd.read(32)) # go through every label for label in range(max_label): nelements, = struct.unpack('q', fd.read(8)) endpoints.append([]) # go through all elements for _ in range(nelements): index, = struct.unpack('q', fd.read(8)) if index > 0: continue index = -1 * index # convert to cartesian coordinates iz = index / (yres * xres) iy = (index - iz * yres * xres) / xres ix = index % xres endpoints[label].append((ix, iy, iz)) return endpoints def ReadGroundTruth(prefix, max_label): examples_filename = 'benchmarks/skeleton/{}-skeleton-benchmark-examples.bin'.format(prefix) gt_examples = [[] for _ in range(max_label)] with open(examples_filename, "rb") as fd: cutoff, = struct.unpack('q', fd.read(8)) for iv in range(cutoff): label, = struct.unpack('q', fd.read(8)) # read all the examples example_filename = 'benchmarks/skeleton/{}/skeleton-endpoints-{:05d}.pts'.format(prefix, label) if not os.path.exists(example_filename): continue with open(example_filename, 'rb') as efd: npts, = struct.unpack('q', efd.read(8)) for _ in range(npts): zpt, ypt, xpt, = struct.unpack('qqq', efd.read(24)) gt_examples[label].append((xpt, ypt, zpt)) # read the list return gt_examples def FindEndpointMatches(prefix, algorithm, params, resolution, ground_truth): # read the endpoints for this set of parameters skeleton_filename = 'benchmarks/skeleton/{}-{}-{:03d}x{:03d}x{:03d}-upsample-{}-skeleton.pts'.format(prefix, algorithm, resolution[IB_X], resolution[IB_Y], resolution[IB_Z], params) if not os.path.exists(skeleton_filename): return 0, 0, 0 # read the endpoints proposed = ReadSkeletonEndpoints(skeleton_filename) assert (len(ground_truth) == len(proposed)) # don't allow points to be connected over this distance max_distance = 800 # go through every label max_label = len(ground_truth) output_filename = 'benchmarks/skeleton/matchings/{}-{}-{:03d}x{:03d}x{:03d}-{}-matching-pairs.pts'.format(prefix, algorithm, resolution[IB_X], resolution[IB_Y], resolution[IB_Z], params) true_positives = 0 false_positives = 0 false_negatives = 0 with open(output_filename, 'wb') as fd: # need resolution for max distance resolution = dataIO.Resolution(prefix) fd.write(struct.pack('q', max_label)) for label in range(max_label): # no ground truth for this label if not len(ground_truth[label]): fd.write(struct.pack('q', 0)) continue ngt_pts = len(ground_truth[label]) npr_pts = len(proposed[label]) gt_pts = np.zeros((ngt_pts, 3), dtype=np.int64) pr_pts = np.zeros((npr_pts, 3), dtype=np.int64) # can not use IB_NDIMS because coordinates are (x, y, z) here for pt in range(ngt_pts): gt_pts[pt,0] = resolution[IB_X] * ground_truth[label][pt][0] gt_pts[pt,1] = resolution[IB_Y] * ground_truth[label][pt][1] gt_pts[pt,2] = resolution[IB_Z] * ground_truth[label][pt][2] for pt in range(npr_pts): pr_pts[pt,0] = resolution[IB_X] * proposed[label][pt][0] pr_pts[pt,1] = resolution[IB_Y] * proposed[label][pt][1] pr_pts[pt,2] = resolution[IB_Z] * proposed[label][pt][2] cost_matrix = scipy.spatial.distance.cdist(gt_pts, pr_pts) matching = scipy.optimize.linear_sum_assignment(cost_matrix) valid_matches = set() for match in zip(matching[0], matching[1]): # valid pairs must be within max_distance (in nanometers) if cost_matrix[match[0], match[1]] > max_distance: continue valid_matches.add(match) true_positives += len(valid_matches) false_positives += npr_pts - len(valid_matches) false_negatives += ngt_pts - len(valid_matches) # write the ground truth and the corresponding segment endpoints fd.write(struct.pack('q', len(valid_matches))) for match in valid_matches: fd.write(struct.pack('qq', match[0], match[1])) precision = true_positives / float(true_positives + false_positives) recall = true_positives / float(true_positives + false_negatives) fscore = 2 * (precision * recall) / float(precision + recall) return fscore, precision, recall def EvaluateEndpoints(prefix): gold = dataIO.ReadGoldData(prefix) max_label = np.amax(gold) + 1 resolutions = [(iv, iv, iv) for iv in range(30, 210, 10)] # all downsampled resolutions # get the human labeled ground truth gt_endpoints = ReadGroundTruth(prefix, max_label) best_fscore_precision = 0.0 best_fscore_recall = 0.0 best_fscore = 0.0 algorithm = '' min_precision, min_recall = (0.80, 0.90) # go through all possible configurations for resolution in resolutions: # go through parameters for medial axis strategy for astar_expansion in [0, 11, 13, 15, 17, 19, 21, 23, 25]: fscore, precision, recall = FindEndpointMatches(prefix, 'thinning', '{:02d}'.format(astar_expansion), resolution, gt_endpoints) if (precision > min_precision and recall > min_recall): print 'Thinning {:03d}x{:03d}x{:03d} {:02d}'.format(resolution[IB_X], resolution[IB_Y], resolution[IB_Z], astar_expansion) print ' F1-Score: {}'.format(fscore) print ' Precision: {}'.format(precision) print ' Recall: {}'.format(recall) if (fscore > best_fscore): best_fscore = fscore best_fscore_precision = precision best_fscore_recall = recall algorithm = 'thinning-{:03d}x{:03d}x{:03d}-{:02d}'.format(resolution[IB_X], resolution[IB_Y], resolution[IB_Z], astar_expansion) fscore, precision, recall = FindEndpointMatches(prefix, 'medial-axis', '{:02d}'.format(astar_expansion), resolution, gt_endpoints) if (precision > min_precision and recall > min_recall): print 'Medial Axis {:03d}x{:03d}x{:03d} {:02d}'.format(resolution[IB_X], resolution[IB_Y], resolution[IB_Z], astar_expansion) print ' F1-Score: {}'.format(fscore) print ' Precision: {}'.format(precision) print ' Recall: {}'.format(recall) if (fscore > best_fscore): best_fscore = fscore best_fscore_precision = precision best_fscore_recall = recall algorithm = 'medial-axis-{:03d}x{:03d}x{:03d}-{:02d}'.format(resolution[IB_X], resolution[IB_Y], resolution[IB_Z], astar_expansion) for tscale in [7, 9, 11, 13, 15, 17]: for tbuffer in [1, 2, 3, 4, 5]: fscore, precision, recall = FindEndpointMatches(prefix, 'teaser', '{:02d}-{:02d}-00'.format(tscale, tbuffer), resolution, gt_endpoints) if (precision > min_precision and recall > min_recall): print 'TEASER {:03d}x{:03d}x{:03d} {:02d} {:02d}'.format(resolution[IB_X], resolution[IB_Y], resolution[IB_Z], tscale, tbuffer) print ' F1-Score: {}'.format(fscore) print ' Precision: {}'.format(precision) print ' Recall: {}'.format(recall) if (fscore > best_fscore): best_fscore = fscore best_fscore_precision = precision best_fscore_recall = recall algorithm = 'teaser-{:03d}x{:03d}x{:03d}-{:02d}-{:02d}-00'.format(resolution[IB_X], resolution[IB_Y], resolution[IB_Z], tscale, tbuffer) print 'Best method: {}'.format(algorithm) print 'F1-Score: {}'.format(best_fscore) print 'Precision: {}'.format(best_fscore_precision) print 'Recall: {}'.format(best_fscore_recall) # find skeleton benchmark information def GenerateExamples(prefix, cutoff=500): gold = dataIO.ReadGoldData(prefix) labels, counts = np.unique(gold, return_counts=True) filename = 'benchmarks/skeleton/{}-skeleton-benchmark-examples.bin'.format(prefix) with open(filename, 'wb') as fd: fd.write(struct.pack('q', cutoff)) if labels[0] == 0: cutoff += 1 for ie, (count, label) in enumerate(sorted(zip(counts, labels), reverse=True)): if not label: continue # don't include more than cutoff examples if ie == cutoff: break fd.write(struct.pack('q', label))
"""Database models for tracking project schema history.""" from __future__ import unicode_literals import json from django.core.exceptions import ValidationError from django.db import models from django.db.models.signals import post_init from django.utils.timezone import now from django_evolution.compat import six from django_evolution.compat.datastructures import OrderedDict from django_evolution.compat.py23 import pickle_dumps, pickle_loads from django_evolution.compat.six import python_2_unicode_compatible from django_evolution.compat.translation import gettext_lazy as _ from django_evolution.signature import ProjectSignature class VersionManager(models.Manager): """Manage Version models. This introduces a convenience function for finding the current Version model for the database. """ def current_version(self, using=None): """Return the Version model for the current schema. This will find the Version with both the latest timestamp and the latest ID. It's here as a replacement for the old call to :py:meth:`latest`, which only operated on the timestamp and would find the wrong entry if two had the same exact timestamp. Args: using (unicode): The database alias name to use for the query. Defaults to ``None``, the default database. Raises: Version.DoesNotExist: No such version exists. Returns: Version: The current Version object for the database. """ versions = self.using(using).order_by('-when', '-id') try: return versions[0] except IndexError: raise self.model.DoesNotExist class SignatureField(models.TextField): """A field for loading and storing project signatures. This will handle deserializing any project signatures stored in the database, converting them into a :py:class:`~django_evolution.signatures.ProjectSignature`, and then writing a serialized version back to the database. """ description = _('Signature') def contribute_to_class(self, cls, name): """Perform operations when added to a class. This will listen for when an instance is constructed in order to perform some initial work. Args: cls (type): The model class. name (str): The name of the field. """ super(SignatureField, self).contribute_to_class(cls, name) post_init.connect(self._post_init, sender=cls) def value_to_string(self, obj): """Return a serialized string value from the field. Args: obj (django.db.models.Model): The model instance. Returns: unicode: The serialized string contents. """ return self._dumps(self.value_from_object(obj)) def to_python(self, value): """Return a ProjectSignature value from the field contents. Args: value (object): The current value assigned to the field. This might be serialized string content or a :py:class:`~django_evolution.signatures.ProjectSignature` instance. Returns: django_evolution.signatures.ProjectSignature: The project signature stored in the field. Raises: django.core.exceptions.ValidationError: The field contents are of an unexpected type. """ if not value: return ProjectSignature() elif isinstance(value, six.string_types): if value.startswith('json!'): loaded_value = json.loads(value[len('json!'):], object_pairs_hook=OrderedDict) else: loaded_value = pickle_loads(value) return ProjectSignature.deserialize(loaded_value) elif isinstance(value, ProjectSignature): return value else: raise ValidationError( 'Unsupported serialized signature type %s' % type(value), code='invalid', params={ 'value': value, }) def get_prep_value(self, value): """Return a prepared Python value to work with. This simply wraps :py:meth:`to_python`. Args: value (object): The current value assigned to the field. This might be serialized string content or a :py:class:`~django_evolution.signatures.ProjectSignature` instance. Returns: django_evolution.signatures.ProjectSignature: The project signature stored in the field. Raises: django.core.exceptions.ValidationError: The field contents are of an unexpected type. """ return self.to_python(value) def get_db_prep_value(self, value, connection, prepared=False): """Return a prepared value for use in database operations. Args: value (object): The current value assigned to the field. This might be serialized string content or a :py:class:`~django_evolution.signatures.ProjectSignature` instance. connection (django.db.backends.base.BaseDatabaseWrapper): The database connection to operate on. prepared (bool, optional): Whether the value is already prepared for Python. Returns: unicode: The value prepared for database operations. """ if not prepared: value = self.get_prep_value(value) return self._dumps(value) def _post_init(self, instance, **kwargs): """Handle the construction of a model instance. This will ensure the value set on the field is a valid :py:class:`~django_evolution.signatures.ProjectSignature` object. Args: instance (django.db.models.Model): The model instance being constructed. **kwargs (dict, unused): Additional keyword arguments from the signal. """ setattr(instance, self.attname, self.to_python(self.value_from_object(instance))) def _dumps(self, data): """Serialize the project signature to a string. Args: data (object): The signature data to dump. This might be serialized string content or a :py:class:`~django_evolution.signatures.ProjectSignature` instance. Returns: unicode: The project signature stored in the field. Raises: TypeError: The data provided was not of a supported type. """ if isinstance(data, six.string_types): return data elif isinstance(data, ProjectSignature): serialized_data = data.serialize() sig_version = serialized_data['__version__'] if sig_version >= 2: return 'json!%s' % json.dumps(serialized_data) else: return pickle_dumps(serialized_data) else: raise TypeError('Unsupported signature type %s' % type(data)) @python_2_unicode_compatible class Version(models.Model): signature = SignatureField() when = models.DateTimeField(default=now) objects = VersionManager() def is_hinted(self): """Return whether this is a hinted version. Hinted versions store a signature without any accompanying evolutions. Returns: bool: ``True`` if this is a hinted evolution. ``False`` if it's based on explicit evolutions. """ return not self.evolutions.exists() def __str__(self): if self.is_hinted(): return 'Hinted version, updated on %s' % self.when return 'Stored version, updated on %s' % self.when class Meta: ordering = ('-when',) db_table = 'django_project_version' @python_2_unicode_compatible class Evolution(models.Model): version = models.ForeignKey(Version, related_name='evolutions', on_delete=models.CASCADE) app_label = models.CharField(max_length=200) label = models.CharField(max_length=100) def __str__(self): return 'Evolution %s, applied to %s' % (self.label, self.app_label) class Meta: db_table = 'django_evolution' ordering = ('id',)
# Copyright The Cloud Custodian Authors. # SPDX-License-Identifier: Apache-2.0 from .common import BaseTest import time import json from c7n.exceptions import PolicyValidationError from .common import event_data class TestGlueConnections(BaseTest): def test_connections_query(self): session_factory = self.replay_flight_data("test_glue_query_resources") p = self.load_policy( {"name": "list-glue-connections", "resource": "glue-connection"}, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) def test_connection_subnet_filter(self): session_factory = self.replay_flight_data("test_glue_subnet_filter") p = self.load_policy( { "name": "glue-connection", "resource": "glue-connection", "filters": [ {"type": "subnet", "key": "tag:Name", "value": "Default-48"} ], }, session_factory=session_factory, ) resources = p.run() self.assertEqual( resources[0]["PhysicalConnectionRequirements"]["SubnetId"], "subnet-3a334610", ) def test_connection_sg_filter(self): session_factory = self.replay_flight_data("test_glue_sg_filter") p = self.load_policy( { "name": "glue-connection", "resource": "glue-connection", "filters": [ {"type": "security-group", "key": "GroupName", "value": "default"} ], }, session_factory=session_factory, ) resources = p.run() self.assertEqual( resources[0]["PhysicalConnectionRequirements"]["SecurityGroupIdList"], ["sg-6c7fa917"], ) def test_connection_delete(self): session_factory = self.replay_flight_data("test_glue_delete_connection") p = self.load_policy( { "name": "glue-connection", "resource": "glue-connection", "filters": [{"ConnectionType": "JDBC"}], "actions": [{"type": "delete"}], }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) client = session_factory().client("glue") connections = client.get_connections()["ConnectionList"] self.assertFalse(connections) def test_connection_password_hidden(self): session_factory = self.replay_flight_data("test_connection_password_hidden") p = self.load_policy( { "name": "glue-connection", "resource": "glue-connection", }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) self.assertEqual('PASSWORD' in resources[0].get('ConnectionProperties'), False) class TestGlueDevEndpoints(BaseTest): def test_dev_endpoints_query(self): session_factory = self.replay_flight_data("test_glue_query_resources") p = self.load_policy( {"name": "list-glue-dev-endpoints", "resource": "glue-dev-endpoint"}, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) def test_dev_endpoints_delete(self): session_factory = self.replay_flight_data("test_glue_dev_endpoint_delete") p = self.load_policy( { "name": "glue-dev-endpoint-delete", "resource": "glue-dev-endpoint", "filters": [{"PublicAddress": "present"}], "actions": [{"type": "delete"}], }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) client = session_factory().client("glue") dev_endpoints = client.get_dev_endpoints()["DevEndpoints"] self.assertFalse(dev_endpoints) class TestGlueTag(BaseTest): def test_glue_tags(self): session_factory = self.replay_flight_data("test_glue_tags") client = session_factory().client("glue") tags = client.get_tags(ResourceArn='arn:aws:glue:us-east-1:644160558196:devEndpoint/test') self.assertEqual(tags.get('Tags'), {}) policy = { 'name': 'test', 'resource': 'glue-dev-endpoint', 'actions': [ { 'type': 'tag', 'key': 'abcd', 'value': 'xyz' }, ] } p = self.load_policy( policy, config={'account_id': '644160558196'}, session_factory=session_factory) resources = p.run() arn = p.resource_manager.generate_arn(resources[0]['EndpointName']) self.assertEqual(arn, 'arn:aws:glue:us-east-1:644160558196:devEndpoint/test') tags = client.get_tags(ResourceArn=arn) self.assertEqual(len(resources), 1) self.assertEqual(tags.get('Tags'), {'abcd': 'xyz'}) def test_glue_untag(self): session_factory = self.replay_flight_data("test_glue_untag") policy = { 'name': 'test', 'resource': 'glue-dev-endpoint', 'actions': [{'type': 'remove-tag', 'tags': ['abcd']}] } p = self.load_policy( policy, config={'account_id': '644160558196'}, session_factory=session_factory) resources = p.run() client = session_factory().client("glue") arn = p.resource_manager.generate_arn(resources[0]['EndpointName']) tags = client.get_tags(ResourceArn=arn) self.assertEqual(arn, 'arn:aws:glue:us-east-1:644160558196:devEndpoint/test') self.assertEqual(tags.get('Tags'), {}) self.assertEqual(len(resources), 1) def test_glue_job_tag(self): session_factory = self.replay_flight_data("test_glue_job_tags") client = session_factory().client("glue") policy = { 'name': 'test', 'resource': 'glue-job', 'filters': [{'tag:abcd': 'absent'}], 'actions': [ { 'type': 'tag', 'key': 'abcd', 'value': 'xyz' }, ] } p = self.load_policy( policy, config={'account_id': '644160558196'}, session_factory=session_factory) resources = p.run() arn = p.resource_manager.generate_arn(resources[0]['Name']) self.assertEqual(arn, 'arn:aws:glue:us-east-1:644160558196:job/test') tags = client.get_tags(ResourceArn=arn) self.assertEqual(len(resources), 1) self.assertEqual(tags.get('Tags'), {'abcd': 'xyz'}) def test_glue_job_untag(self): session_factory = self.replay_flight_data("test_glue_job_untag") policy = { 'name': 'test', 'resource': 'glue-job', 'filters': [{'tag:abcd': 'present'}], 'actions': [{'type': 'remove-tag', 'tags': ['abcd']}] } p = self.load_policy( policy, config={'account_id': '644160558196'}, session_factory=session_factory) resources = p.run() client = session_factory().client("glue") arn = p.resource_manager.generate_arn(resources[0]['Name']) tags = client.get_tags(ResourceArn=arn) self.assertEqual(arn, 'arn:aws:glue:us-east-1:644160558196:job/test') self.assertEqual(tags.get('Tags'), {}) self.assertEqual(len(resources), 1) def test_glue_crawler_tag(self): session_factory = self.replay_flight_data("test_crawler_tags") client = session_factory().client("glue") policy = { 'name': 'test', 'resource': 'glue-crawler', 'filters': [{'tag:abcd': 'absent'}], 'actions': [ { 'type': 'tag', 'key': 'abcd', 'value': 'xyz' }, ] } p = self.load_policy( policy, config={'account_id': '644160558196'}, session_factory=session_factory) resources = p.run() arn = p.resource_manager.generate_arn(resources[0]['Name']) self.assertEqual(arn, 'arn:aws:glue:us-east-1:644160558196:crawler/test') tags = client.get_tags(ResourceArn=arn) self.assertEqual(len(resources), 1) self.assertEqual(tags.get('Tags'), {'abcd': 'xyz'}) def test_glue_crawler_untag(self): session_factory = self.replay_flight_data("test_glue_crawler_untag") policy = { 'name': 'test', 'resource': 'glue-crawler', 'filters': [{'tag:abcd': 'present'}], 'actions': [{'type': 'remove-tag', 'tags': ['abcd']}] } p = self.load_policy( policy, config={'account_id': '644160558196'}, session_factory=session_factory) resources = p.run() client = session_factory().client("glue") arn = p.resource_manager.generate_arn(resources[0]['Name']) tags = client.get_tags(ResourceArn=arn) self.assertEqual(arn, 'arn:aws:glue:us-east-1:644160558196:crawler/test') self.assertEqual(tags.get('Tags'), {}) self.assertEqual(len(resources), 1) class TestGlueJobs(BaseTest): def test_jobs_delete(self): session_factory = self.replay_flight_data("test_glue_job_delete") p = self.load_policy( { "name": "glue-job-delete", "resource": "glue-job", "filters": [{"Name": "test"}], "actions": [{"type": "delete"}], }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) client = session_factory().client("glue") jobs = client.get_jobs()["Jobs"] self.assertFalse(jobs) class TestGlueCrawlers(BaseTest): def test_crawlers_delete(self): session_factory = self.replay_flight_data("test_glue_crawler_delete") p = self.load_policy( { "name": "glue-crawler-delete", "resource": "glue-crawler", "filters": [{"Name": "test"}], "actions": [{"type": "delete"}], }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) client = session_factory().client("glue") crawlers = client.get_crawlers()["Crawlers"] self.assertFalse("test" in [c.get("Name") for c in crawlers]) def test_security_config_missing_filter(self): p = self.load_policy( { "name": "glue-crawler-security-config", "resource": "glue-crawler", "filters": [{ "type": "security-config", "missing": True}] }, ) resources = p.resource_manager.filter_resources([{ 'Name': 'bad-crawler', 'S3Targets': [{'Path': 's3://wicked'}]}]) assert len(resources) == 1 assert resources[0]['Name'] == 'bad-crawler' def test_security_config_filter(self): session_factory = self.replay_flight_data("test_glue_sec_config_filter") p = self.load_policy( { "name": "glue-crawler-security-config", "resource": "glue-crawler", "filters": [ {"type": "security-config", "key": "EncryptionConfiguration.CloudWatchEncryption.CloudWatchEncryptionMode", "value": "SSE-KMS", "op": "eq"}, {"type": "security-config", "key": "EncryptionConfiguration.CloudWatchEncryption.KmsKeyArn", "value": "arn:aws:kms:us-east-1:123456789123:key/358f7699-4ea5-455a-9c78-1c868301e5a8", # noqa "op": "eq"} ], }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) self.assertEqual(resources[0]['Name'], 'test-filter-crawler') class TestGlueTables(BaseTest): def test_tables_delete(self): session_factory = self.replay_flight_data("test_glue_table_delete") p = self.load_policy( { "name": "glue-table-delete", "resource": "glue-table", "filters": [{"Name": "test"}], "actions": [{"type": "delete"}], }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) client = session_factory().client("glue") tables = client.get_tables(DatabaseName='test')["TableList"] self.assertFalse("test" in [t.get("Name") for t in tables]) class TestGlueDatabases(BaseTest): def test_databases_delete(self): session_factory = self.replay_flight_data("test_glue_database_delete") p = self.load_policy( { "name": "glue-database-delete", "resource": "glue-database", "filters": [{"Name": "test"}], "actions": [{"type": "delete"}], }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) client = session_factory().client("glue") databases = client.get_databases() self.assertFalse("test" in [t.get("Name") for t in databases.get("DatabaseList", [])]) class TestGlueClassifiers(BaseTest): def test_classifiers_delete(self): session_factory = self.replay_flight_data("test_glue_classifier_delete") p = self.load_policy( { "name": "glue-classifier-delete", "resource": "glue-classifier", "filters": [{"CsvClassifier.Name": "test"}], "actions": [{"type": "delete"}], }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) client = session_factory().client("glue") classifiers = client.get_classifiers() self.assertFalse("test" in [t.get('CsvClassifier').get("Name") for t in classifiers.get("Classifiers", [])]) class GlueMLTransform(BaseTest): def test_ml_transforms_delete(self): session_factory = self.replay_flight_data("test_glue_ml_transform_delete") p = self.load_policy( { "name": "glue-ml-transform-delete", "resource": "glue-ml-transform", "filters": [{"Name": 'test'}], "actions": [{"type": "delete"}], }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) client = session_factory().client("glue") ml_transforms = client.get_ml_transforms() self.assertFalse("test" in [t.get("Name") for t in ml_transforms.get("Transforms", [])]) class TestGlueSecurityConfiguration(BaseTest): def test_security_configurations_delete(self): session_factory = self.replay_flight_data("test_glue_security_configuration_delete") p = self.load_policy( { "name": "glue-security-configuration-delete", "resource": "glue-security-configuration", "filters": [{"Name": "test"}], "actions": [{"type": "delete"}], }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) client = session_factory().client("glue") security_configrations = client.get_security_configurations() self.assertFalse("test" in [t.get("Name") for t in security_configrations.get("SecurityConfigurations", [])]) def test_kms_alias(self): factory = self.replay_flight_data("test_glue_security_configuration_kms_key_filter") p = self.load_policy( { "name": "glue-security-configuration-s3-kms-alias", "resource": "glue-security-configuration", "filters": [ { "type": "kms-key", "key": "c7n:AliasName", "value": "^(alias/)", "op": "regex", "key-type": "cloudwatch" } ] }, session_factory=factory, ) resources = p.run() self.assertEqual(len(resources), 1) self.assertEqual( resources[0]['EncryptionConfiguration']['CloudWatchEncryption']['KmsKeyArn'], 'arn:aws:kms:us-east-1:0123456789012:key/358f7699-4ea5-455a-9c78-1c868301e5a8') class TestGlueTriggers(BaseTest): def test_triggers_delete(self): session_factory = self.replay_flight_data("test_glue_trigger_delete") p = self.load_policy( { "name": "glue-trigger-delete", "resource": "glue-trigger", "filters": [{"Name": "test"}], "actions": [{"type": "delete"}], }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) if self.recording: time.sleep(60) client = session_factory().client("glue") triggers = client.get_triggers() self.assertFalse("test" in [t.get("Name") for t in triggers.get("Triggers", [])]) class TestGlueWorkflows(BaseTest): def test_workflows_delete(self): session_factory = self.replay_flight_data("test_glue_workflow_delete") p = self.load_policy( { "name": "glue-workflow-delete", "resource": "glue-workflow", "filters": [{"Name": "test"}], "actions": [{"type": "delete"}], }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) client = session_factory().client("glue") workflows = client.list_workflows() self.assertFalse("test" in [t.get("Name") for t in workflows.get("Workflows", [])]) class TestGlueDataCatalog(BaseTest): def test_glue_datacat_put_encryption(self): session_factory = self.replay_flight_data("test_glue_datacat_put_encryption") client = session_factory().client("glue") cat_setting = client.get_data_catalog_encryption_settings() self.assertEqual(cat_setting.get('DataCatalogEncryptionSettings').get( 'EncryptionAtRest').get('SseAwsKmsKeyId'), 'alias/skunk/trails') p = self.load_policy( { "name": "glue-security-config", "resource": "glue-catalog", 'filters': [{ 'type': 'value', 'key': 'DataCatalogEncryptionSettings.EncryptionAtRest.SseAwsKmsKeyId', 'value': 'alias/skunk/trails', 'op': 'eq'}, ], "actions": [{ "type": "set-encryption", "attributes": { "EncryptionAtRest": { "CatalogEncryptionMode": "SSE-KMS", "SseAwsKmsKeyId": "alias/skunk/glue/encrypted"}, }, }] }, session_factory=session_factory,) resources = p.run() self.assertEqual(len(resources), 1) client = session_factory().client("glue") datacatlog = client.get_data_catalog_encryption_settings() self.assertEqual(datacatlog.get('DataCatalogEncryptionSettings').get( 'EncryptionAtRest'), {'CatalogEncryptionMode': 'SSE-KMS', 'SseAwsKmsKeyId': 'alias/skunk/glue/encrypted'}) def test_glue_catalog_cross_account(self): session_factory = self.replay_flight_data("test_glue_catalog_cross_account") p = self.load_policy( { "name": "glue-catalog-cross-account", "resource": "glue-catalog", "filters": [{"type": "cross-account"}], }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) def test_catalog_remove_matched(self): session_factory = self.replay_flight_data("test_catalog_remove_matched") client = session_factory().client("glue") client.put_resource_policy(PolicyInJson=json.dumps( { "Version": "2012-10-17", "Statement": [ { "Sid": "SpecificAllow", "Effect": "Allow", "Principal": {"AWS": "arn:aws:iam::644160558196:root"}, "Action": "glue:GetDatabase", "Resource": "arn:aws:glue:us-east-1:644160558196:catalog" }, { "Sid": "CrossAccount", "Effect": "Allow", "Principal": {"AWS": "arn:aws:iam::123456789123:root"}, "Action": "glue:GetDatabase", "Resource": "arn:aws:glue:us-east-1:644160558196:catalog" }, ] })) p = self.load_policy( { "name": "glue-catalog-rm-matched", "resource": "glue-catalog", "filters": [{"type": "cross-account"}], "actions": [{"type": "remove-statements", "statement_ids": "matched"}], }, session_factory=session_factory, ) resources = p.run() self.assertEqual(len(resources), 1) data = json.loads(client.get_resource_policy().get("PolicyInJson")) self.assertEqual(len(data.get('Statement')), 1) self.assertEqual([s['Sid'] for s in data.get('Statement')], ["SpecificAllow"]) def test_remove_statements_validation_error(self): self.assertRaises( PolicyValidationError, self.load_policy, { "name": "glue-catalog-remove-matched", "resource": "glue-catalog", "actions": [{"type": "remove-statements", "statement_ids": "matched"}], } ) def test_catalog_change_encryption_event(self): session_factory = self.replay_flight_data("test_catalog_change_encryption_event") session = session_factory() client = session.client("glue") before_cat_setting = client.get_data_catalog_encryption_settings() self.assertJmes( 'DataCatalogEncryptionSettings.EncryptionAtRest.CatalogEncryptionMode', before_cat_setting, 'DISABLED' ) self.assertJmes( 'DataCatalogEncryptionSettings.EncryptionAtRest.SseAwsKmsKeyId', before_cat_setting, None ) p = self.load_policy( { "name": "net-change-rbp-cross-account", "resource": "glue-catalog", "mode": { "type": "cloudtrail", "role": "arn:aws:iam::644160558196:role/CloudCustodianRole", "events": [ { "source": "glue.amazonaws.com", "event": "PutDataCatalogEncryptionSettings", "ids": "userIdentity.accountId" } ], }, 'filters': [{ 'type': 'value', 'key': 'DataCatalogEncryptionSettings.EncryptionAtRest.SseAwsKmsKeyId', 'value': 'alias/skunk/trails', 'op': 'ne'}, ], "actions": [ { "type": "set-encryption", "attributes": { "EncryptionAtRest": { "CatalogEncryptionMode": "SSE-KMS" } } } ], }, session_factory=session_factory, ) p.push(event_data("event-cloud-trail-catalog-set-encryption.json"), None) after_cat_setting = client.get_data_catalog_encryption_settings() self.assertJmes( 'DataCatalogEncryptionSettings.EncryptionAtRest.CatalogEncryptionMode', after_cat_setting, 'SSE-KMS' ) self.assertJmes( 'DataCatalogEncryptionSettings.EncryptionAtRest.SseAwsKmsKeyId', after_cat_setting, 'alias/aws/glue' ) def test_catalog_change_rbp_event(self): session_factory = self.replay_flight_data("test_catalog_change_rbp_event") session = session_factory() client = session.client("glue") before_cat_setting = client.get_resource_policy() assert('o-4amkskbcf3' in before_cat_setting.get('PolicyInJson')) p = self.load_policy( { "name": "net-change-rbp-cross-account", "resource": "glue-catalog", "mode": { "type": "cloudtrail", "role": "arn:aws:iam::644160558196:role/CloudCustodianRole", "events": [ { "source": "glue.amazonaws.com", "event": "PutResourcePolicy", "ids": "awsRegion" } ], }, "filters": [ { "type": "cross-account", "whitelist_orgids": [ "o-4amkskbcf1" ] } ], "actions": [{"type": "remove-statements", "statement_ids": "matched"}], }, session_factory=session_factory, ) p.push(event_data("event-cloud-trail-catalog-put-resource-policy.json"), None) after_cat_setting = client.get_resource_policy() assert('o-4amkskbcf3' not in after_cat_setting.get('PolicyInJson'))
# Thanks to Zhao Yu for converting the .ipynb notebook to # this simplified Python script that I edited a little. # Note that the dataset must be already downloaded for this script to work, do: # $ cd data/ # $ python download_dataset.py import tensorflow as tf import numpy as np import matplotlib import matplotlib.pyplot as plt from sklearn import metrics import os if __name__ == "__main__": # ----------------------------- # step1: load and prepare data # ----------------------------- # Those are separate normalised input features for the neural network INPUT_SIGNAL_TYPES = [ "body_acc_x_", "body_acc_y_", "body_acc_z_", "body_gyro_x_", "body_gyro_y_", "body_gyro_z_", "total_acc_x_", "total_acc_y_", "total_acc_z_" ] # Output classes to learn how to classify LABELS = [ "WALKING", "WALKING_UPSTAIRS", "WALKING_DOWNSTAIRS", "SITTING", "STANDING", "LAYING" ] DATA_PATH = "data/" DATASET_PATH = DATA_PATH + "UCI HAR Dataset/" print("\n" + "Dataset is now located at: " + DATASET_PATH) # Preparing data set: TRAIN = "train/" TEST = "test/" # Load "X" (the neural network's training and testing inputs) def load_X(X_signals_paths): X_signals = [] for signal_type_path in X_signals_paths: file = open(signal_type_path, 'rb') # Read dataset from disk, dealing with text files' syntax X_signals.append( [np.array(serie, dtype=np.float32) for serie in [ row.replace(' ', ' ').strip().split(' ') for row in file ]] ) file.close() """Examples -------- >> > x = np.arange(4).reshape((2, 2)) >> > x array([[0, 1], [2, 3]]) >> > np.transpose(x) array([[0, 2], [1, 3]]) >> > x = np.ones((1, 2, 3)) >> > np.transpose(x, (1, 0, 2)).shape (2, 1, 3) """ return np.transpose(np.array(X_signals), (1, 2, 0)) X_train_signals_paths = [ DATASET_PATH + TRAIN + "Inertial Signals/" + signal + "train.txt" for signal in INPUT_SIGNAL_TYPES ] X_test_signals_paths = [ DATASET_PATH + TEST + "Inertial Signals/" + signal + "test.txt" for signal in INPUT_SIGNAL_TYPES ] X_train = load_X(X_train_signals_paths) # [7352, 128, 9] X_test = load_X(X_test_signals_paths) # [7352, 128, 9] # print(X_train) print(len(X_train)) # 7352 print(len(X_train[0])) # 128 print(len(X_train[0][0])) # 9 print(type(X_train)) X_train = np.reshape(X_train, [-1, 32, 36]) X_test = np.reshape(X_test, [-1, 32, 36]) print("-----------------X_train---------------") # print(X_train) print(len(X_train)) # 7352 print(len(X_train[0])) # 32 print(len(X_train[0][0])) # 36 print(type(X_train)) # exit() y_train_path = DATASET_PATH + TRAIN + "y_train.txt" y_test_path = DATASET_PATH + TEST + "y_test.txt" def one_hot(label): """convert label from dense to one hot argument: label: ndarray dense label ,shape: [sample_num,1] return: one_hot_label: ndarray one hot, shape: [sample_num,n_class] """ label_num = len(label) new_label = label.reshape(label_num) # shape : [sample_num] # because max is 5, and we will create 6 columns n_values = np.max(new_label) + 1 return np.eye(n_values)[np.array(new_label, dtype=np.int32)] # Load "y" (the neural network's training and testing outputs) def load_y(y_path): file = open(y_path, 'rb') # Read dataset from disk, dealing with text file's syntax y_ = np.array( [elem for elem in [ row.replace(' ', ' ').strip().split(' ') for row in file ]], dtype=np.int32 ) file.close() # Subtract 1 to each output class for friendly 0-based indexing return y_ - 1 y_train = one_hot(load_y(y_train_path)) y_test = one_hot(load_y(y_test_path)) print("---------y_train----------") # print(y_train) print(len(y_train)) # 7352 print(len(y_train[0])) # 6 # exit() # ----------------------------------- # step2: define parameters for model # ----------------------------------- class Config(object): """ define a class to store parameters, the input should be feature mat of training and testing """ def __init__(self, X_train, X_test): # Input data self.train_count = len(X_train) # 7352 training series self.test_data_count = len(X_test) # 2947 testing series self.n_steps = len(X_train[0]) # 128 time_steps per series # Training self.learning_rate = 0.0025 # 1e-4 self.lambda_loss_amount = 0.0015 self.training_epochs = 300 self.batch_size = 640 # LSTM structure self.n_inputs = len(X_train[0][0]) # Features count is of 9: three 3D sensors features over time self.n_hidden = 16 # nb of neurons inside the neural network self.n_classes = 6 # Final output classes self.W = { 'hidden': tf.Variable(tf.random_normal([self.n_inputs, self.n_hidden])), # [9, 32] 'output': tf.Variable(tf.random_normal([self.n_hidden, self.n_classes])) # [32, 6] # 'output': tf.Variable(tf.random_normal([4, self.n_classes])) # [32, 6] } self.biases = { 'hidden': tf.Variable(tf.random_normal([self.n_hidden], mean=1.0)), # [32] # 'hidden': tf.Variable(tf.random_normal([16], mean=1.0)), # [32] 'output': tf.Variable(tf.random_normal([self.n_classes])) # [6] } config = Config(X_train, X_test) # print("Some useful info to get an insight on dataset's shape and normalisation:") # print("features shape, labels shape, each features mean, each features standard deviation") # print(X_test.shape, y_test.shape, # np.mean(X_test), np.std(X_test)) # print("the dataset is therefore properly normalised, as expected.") # # # ------------------------------------------------------ # step3: Let's get serious and build the neural network # ------------------------------------------------------ # [none, 128, 9] X = tf.placeholder(tf.float32, [None, config.n_steps, config.n_inputs]) # [none, 6] Y = tf.placeholder(tf.float32, [None, config.n_classes]) print("-------X Y----------") print(X) X = tf.reshape(X, shape=[-1, 32, 36]) print(X) print(Y) Y = tf.reshape(Y, shape=[-1, 6]) print(Y) # Weight Initialization def weight_variable(shape): # tra ve 1 gia tri random theo thuat toan truncated_ normal initial = tf.truncated_normal(shape, mean=0.0, stddev=0.1, dtype=tf.float32) return tf.Variable(initial) def bias_varibale(shape): initial = tf.constant(0.1, shape=shape, name='Bias') return tf.Variable(initial) # Convolution and Pooling def conv2d(x, W): # Must have `strides[0] = strides[3] = 1 `. # For the most common case of the same horizontal and vertices strides, `strides = [1, stride, stride, 1] `. return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME', name='conv_2d') def max_pool_2x2(x): return tf.nn.max_pool(value=x, ksize=[1, 2, 2, 1], strides=[1, 1, 1, 1], padding='SAME', name='max_pool') def LSTM_Network(feature_mat, config): """model a LSTM Network, it stacks 2 LSTM layers, each layer has n_hidden=32 cells and 1 output layer, it is a full connet layer argument: feature_mat: ndarray feature matrix, shape=[batch_size,time_steps,n_inputs] config: class containing config of network return: : matrix output shape [batch_size,n_classes] """ W_conv1 = weight_variable([5, 5, 1, 8]) b_conv1 = bias_varibale([8]) # x_image = tf.reshape(x, shape=[-1, 28, 28, 1]) feature_mat_image = tf.reshape(feature_mat, shape=[-1, 32, 36, 1]) print("----feature_mat_image-----") print(feature_mat_image.get_shape()) h_conv1 = tf.nn.relu(conv2d(feature_mat_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) # Second Convolutional Layer W_conv2 = weight_variable([5, 5, 8, 1]) b_conv2 = weight_variable([1]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) h_pool2 = tf.reshape(h_pool2, shape=[-1, 32, 36]) feature_mat = h_pool2 print("----feature_mat-----") print(feature_mat) # exit() # W_fc1 = weight_variable([8 * 9 * 1, 1024]) # b_fc1 = bias_varibale([1024]) # h_pool2_flat = tf.reshape(h_pool2, [-1, 8 * 9 * 1]) # h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # print("----h_fc1_drop-----") # print(h_fc1) # exit() # # # keep_prob = tf.placeholder(tf.float32) # keep_prob = tf.placeholder(1.0) # h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob=keep_prob) # print("----h_fc1_drop-----") # print(h_fc1_drop) # exit() # # W_fc2 = weight_variable([1024, 10]) # b_fc2 = bias_varibale([10]) # # y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 # print("----y_conv-----") # print(y_conv) # exit() # Exchange dim 1 and dim 0 # Ban dau: [0,1,2] = [batch_size, 128, 9] => [batch_size, 32, 36] feature_mat = tf.transpose(feature_mat, [1, 0, 2]) # New feature_mat's shape: [time_steps, batch_size, n_inputs] [128, batch_size, 9] print("----feature_mat-----") print(feature_mat) # exit() # Temporarily crush the feature_mat's dimensions feature_mat = tf.reshape(feature_mat, [-1, config.n_inputs]) # 9 # New feature_mat's shape: [time_steps*batch_size, n_inputs] # 128 * batch_size, 9 # Linear activation, reshaping inputs to the LSTM's number of hidden: hidden = tf.nn.relu(tf.matmul( feature_mat, config.W['hidden'] ) + config.biases['hidden']) # New feature_mat (hidden) shape: [time_steps*batch_size, n_hidden] [128*batch_size, 32] print("--n_steps--") print(config.n_steps) print("--n_steps--") print(hidden) # exit() # Split the series because the rnn cell needs time_steps features, each of shape: hidden = tf.split(0, config.n_steps, hidden) # (0, 128, [128*batch_size, 32]) # New hidden's shape: a list of length "time_step" containing tensors of shape [batch_size, n_hidden] # Define LSTM cell of first hidden layer: lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(config.n_hidden, forget_bias=1.0) # Stack two LSTM layers, both layers has the same shape lsmt_layers = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * 2) # Get LSTM outputs, the states are internal to the LSTM cells,they are not our attention here outputs, _ = tf.nn.rnn(lsmt_layers, hidden, dtype=tf.float32) # outputs' shape: a list of lenght "time_step" containing tensors of shape [batch_size, n_hidden] print("------------------list-------------------") print(outputs) # Get last time step's output feature for a "many to one" style classifier, # as in the image describing RNNs at the top of this page lstm_last_output = outputs[-1] # Chi lay phan tu cuoi cung voi shape: [?, 32] print("------------------last outputs-------------------") print (lstm_last_output) # Linear activation return tf.matmul(lstm_last_output, config.W['output']) + config.biases['output'] pred_Y = LSTM_Network(X, config) # shape[?,6] print("------------------pred_Y-------------------") print(pred_Y) # exit() # Loss,train_step,evaluation l2 = config.lambda_loss_amount * \ sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables()) # Softmax loss and L2 cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(pred_Y, Y)) + l2 train_step = tf.train.AdamOptimizer( learning_rate=config.learning_rate).minimize(cost) correct_prediction = tf.equal(tf.argmax(pred_Y, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, dtype=tf.float32)) # -------------------------------------------- # step4: Hooray, now train the neural network # -------------------------------------------- # Note that log_device_placement can be turned ON but will cause console spam. sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=False)) tf.initialize_all_variables().run() best_accuracy = 0.0 # Start training for each batch and loop epochs for i in range(config.training_epochs): for start, end in zip(range(0, config.train_count, config.batch_size), # (0, 7352, 1500) range(config.batch_size, config.train_count + 1, config.batch_size)): # (1500, 7353, 1500) print(start) print(end) sess.run(train_step, feed_dict={X: X_train[start:end], Y: y_train[start:end]}) # Test completely at every epoch: calculate accuracy pred_out, accuracy_out, loss_out = sess.run([pred_Y, accuracy, cost], feed_dict={ X: X_test, Y: y_test}) print("traing iter: {},".format(i) + \ " test accuracy : {},".format(accuracy_out) + \ " loss : {}".format(loss_out)) best_accuracy = max(best_accuracy, accuracy_out) print("") print("final test accuracy: {}".format(accuracy_out)) print("best epoch's test accuracy: {}".format(best_accuracy)) print("") # # #------------------------------------------------------------------ # # step5: Training is good, but having visual insight is even better # #------------------------------------------------------------------ # # The code is in the .ipynb # # #------------------------------------------------------------------ # # step6: And finally, the multi-class confusion matrix and metrics! # #------------------------------------------------------------------ # # The code is in the .ipynb
#!/usr/bin/env python from wsgiref.simple_server import make_server import sys import json import traceback import datetime from multiprocessing import Process from getopt import getopt, GetoptError from jsonrpcbase import JSONRPCService, InvalidParamsError, KeywordError,\ JSONRPCError, InvalidRequestError from jsonrpcbase import ServerError as JSONServerError from os import environ from ConfigParser import ConfigParser from biokbase import log import biokbase.nexus import requests as _requests import random as _random import os import requests.packages.urllib3 DEPLOY = 'KB_DEPLOYMENT_CONFIG' SERVICE = 'KB_SERVICE_NAME' # Note that the error fields do not match the 2.0 JSONRPC spec def get_config_file(): return environ.get(DEPLOY, None) def get_service_name(): return environ.get(SERVICE, None) def get_config(): if not get_config_file(): return None retconfig = {} config = ConfigParser() config.read(get_config_file()) for nameval in config.items(get_service_name() or 'gaprice_convert_assy_file_to_contigs'): retconfig[nameval[0]] = nameval[1] return retconfig config = get_config() from gaprice_convert_assy_file_to_contigs.gaprice_convert_assy_file_to_contigsImpl import gaprice_convert_assy_file_to_contigs impl_gaprice_convert_assy_file_to_contigs = gaprice_convert_assy_file_to_contigs(config) class JSONObjectEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, set): return list(obj) if isinstance(obj, frozenset): return list(obj) if hasattr(obj, 'toJSONable'): return obj.toJSONable() return json.JSONEncoder.default(self, obj) class JSONRPCServiceCustom(JSONRPCService): def call(self, ctx, jsondata): """ Calls jsonrpc service's method and returns its return value in a JSON string or None if there is none. Arguments: jsondata -- remote method call in jsonrpc format """ result = self.call_py(ctx, jsondata) if result is not None: return json.dumps(result, cls=JSONObjectEncoder) return None def _call_method(self, ctx, request): """Calls given method with given params and returns it value.""" method = self.method_data[request['method']]['method'] params = request['params'] result = None try: if isinstance(params, list): # Does it have enough arguments? if len(params) < self._man_args(method) - 1: raise InvalidParamsError('not enough arguments') # Does it have too many arguments? if(not self._vargs(method) and len(params) > self._max_args(method) - 1): raise InvalidParamsError('too many arguments') result = method(ctx, *params) elif isinstance(params, dict): # Do not accept keyword arguments if the jsonrpc version is # not >=1.1. if request['jsonrpc'] < 11: raise KeywordError result = method(ctx, **params) else: # No params result = method(ctx) except JSONRPCError: raise except Exception as e: # log.exception('method %s threw an exception' % request['method']) # Exception was raised inside the method. newerr = JSONServerError() newerr.trace = traceback.format_exc() newerr.data = e.message raise newerr return result def call_py(self, ctx, jsondata): """ Calls jsonrpc service's method and returns its return value in python object format or None if there is none. This method is same as call() except the return value is a python object instead of JSON string. This method is mainly only useful for debugging purposes. """ rdata = jsondata # we already deserialize the json string earlier in the server code, no # need to do it again # try: # rdata = json.loads(jsondata) # except ValueError: # raise ParseError # set some default values for error handling request = self._get_default_vals() if isinstance(rdata, dict) and rdata: # It's a single request. self._fill_request(request, rdata) respond = self._handle_request(ctx, request) # Don't respond to notifications if respond is None: return None return respond elif isinstance(rdata, list) and rdata: # It's a batch. requests = [] responds = [] for rdata_ in rdata: # set some default values for error handling request_ = self._get_default_vals() self._fill_request(request_, rdata_) requests.append(request_) for request_ in requests: respond = self._handle_request(ctx, request_) # Don't respond to notifications if respond is not None: responds.append(respond) if responds: return responds # Nothing to respond. return None else: # empty dict, list or wrong type raise InvalidRequestError def _handle_request(self, ctx, request): """Handles given request and returns its response.""" if self.method_data[request['method']].has_key('types'): # @IgnorePep8 self._validate_params_types(request['method'], request['params']) result = self._call_method(ctx, request) # Do not respond to notifications. if request['id'] is None: return None respond = {} self._fill_ver(request['jsonrpc'], respond) respond['result'] = result respond['id'] = request['id'] return respond class MethodContext(dict): def __init__(self, logger): self['client_ip'] = None self['user_id'] = None self['authenticated'] = None self['token'] = None self['module'] = None self['method'] = None self['call_id'] = None self['rpc_context'] = None self['provenance'] = None self._debug_levels = set([7, 8, 9, 'DEBUG', 'DEBUG2', 'DEBUG3']) self._logger = logger def log_err(self, message): self._log(log.ERR, message) def log_info(self, message): self._log(log.INFO, message) def log_debug(self, message, level=1): if level in self._debug_levels: pass else: level = int(level) if level < 1 or level > 3: raise ValueError("Illegal log level: " + str(level)) level = level + 6 self._log(level, message) def set_log_level(self, level): self._logger.set_log_level(level) def get_log_level(self): return self._logger.get_log_level() def clear_log_level(self): self._logger.clear_user_log_level() def _log(self, level, message): self._logger.log_message(level, message, self['client_ip'], self['user_id'], self['module'], self['method'], self['call_id']) def provenance(self): callbackURL = os.environ.get('SDK_CALLBACK_URL') if callbackURL: # OK, there's a callback server from which we can get provenance arg_hash = {'method': 'CallbackServer.get_provenance', 'params': [], 'version': '1.1', 'id': str(_random.random())[2:] } body = json.dumps(arg_hash) response = _requests.post(callbackURL, data=body, timeout=60) response.encoding = 'utf-8' if response.status_code == 500: if ('content-type' in response.headers and response.headers['content-type'] == 'application/json'): err = response.json() if 'error' in err: raise ServerError(**err['error']) else: raise ServerError('Unknown', 0, response.text) else: raise ServerError('Unknown', 0, response.text) if not response.ok: response.raise_for_status() resp = response.json() if 'result' not in resp: raise ServerError('Unknown', 0, 'An unknown server error occurred') return resp['result'][0] else: return self.get('provenance') class ServerError(Exception): ''' The call returned an error. Fields: name - the name of the error. code - the error code. message - a human readable error message. data - the server side stacktrace. ''' def __init__(self, name, code, message, data=None, error=None): super(Exception, self).__init__(message) self.name = name self.code = code self.message = message if message else '' self.data = data or error or '' # data = JSON RPC 2.0, error = 1.1 def __str__(self): return self.name + ': ' + str(self.code) + '. ' + self.message + \ '\n' + self.data def getIPAddress(environ): xFF = environ.get('HTTP_X_FORWARDED_FOR') realIP = environ.get('HTTP_X_REAL_IP') trustXHeaders = config is None or \ config.get('dont_trust_x_ip_headers') != 'true' if (trustXHeaders): if (xFF): return xFF.split(',')[0].strip() if (realIP): return realIP.strip() return environ.get('REMOTE_ADDR') class Application(object): # Wrap the wsgi handler in a class definition so that we can # do some initialization and avoid regenerating stuff over # and over def logcallback(self): self.serverlog.set_log_file(self.userlog.get_log_file()) def log(self, level, context, message): self.serverlog.log_message(level, message, context['client_ip'], context['user_id'], context['module'], context['method'], context['call_id']) def __init__(self): submod = get_service_name() or 'gaprice_convert_assy_file_to_contigs' self.userlog = log.log( submod, ip_address=True, authuser=True, module=True, method=True, call_id=True, changecallback=self.logcallback, config=get_config_file()) self.serverlog = log.log( submod, ip_address=True, authuser=True, module=True, method=True, call_id=True, logfile=self.userlog.get_log_file()) self.serverlog.set_log_level(6) self.rpc_service = JSONRPCServiceCustom() self.method_authentication = dict() self.rpc_service.add(impl_gaprice_convert_assy_file_to_contigs.convert, name='gaprice_convert_assy_file_to_contigs.convert', types=[dict]) self.method_authentication['gaprice_convert_assy_file_to_contigs.convert'] = 'required' self.rpc_service.add(impl_gaprice_convert_assy_file_to_contigs.status, name='gaprice_convert_assy_file_to_contigs.status', types=[dict]) self.auth_client = biokbase.nexus.Client( config={'server': 'nexus.api.globusonline.org', 'verify_ssl': True, 'client': None, 'client_secret': None}) def __call__(self, environ, start_response): # Context object, equivalent to the perl impl CallContext ctx = MethodContext(self.userlog) ctx['client_ip'] = getIPAddress(environ) status = '500 Internal Server Error' try: body_size = int(environ.get('CONTENT_LENGTH', 0)) except (ValueError): body_size = 0 if environ['REQUEST_METHOD'] == 'OPTIONS': # we basically do nothing and just return headers status = '200 OK' rpc_result = "" else: request_body = environ['wsgi.input'].read(body_size) try: req = json.loads(request_body) except ValueError as ve: err = {'error': {'code': -32700, 'name': "Parse error", 'message': str(ve), } } rpc_result = self.process_error(err, ctx, {'version': '1.1'}) else: ctx['module'], ctx['method'] = req['method'].split('.') ctx['call_id'] = req['id'] ctx['rpc_context'] = {'call_stack': [{'time':self.now_in_utc(), 'method': req['method']}]} prov_action = {'service': ctx['module'], 'method': ctx['method'], 'method_params': req['params']} ctx['provenance'] = [prov_action] try: token = environ.get('HTTP_AUTHORIZATION') # parse out the method being requested and check if it # has an authentication requirement method_name = req['method'] auth_req = self.method_authentication.get(method_name, "none") if auth_req != "none": if token is None and auth_req == 'required': err = JSONServerError() err.data = "Authentication required for " + \ "gaprice_convert_assy_file_to_contigs but no authentication header was passed" raise err elif token is None and auth_req == 'optional': pass else: try: user, _, _ = \ self.auth_client.validate_token(token) ctx['user_id'] = user ctx['authenticated'] = 1 ctx['token'] = token except Exception, e: if auth_req == 'required': err = JSONServerError() err.data = \ "Token validation failed: %s" % e raise err if (environ.get('HTTP_X_FORWARDED_FOR')): self.log(log.INFO, ctx, 'X-Forwarded-For: ' + environ.get('HTTP_X_FORWARDED_FOR')) self.log(log.INFO, ctx, 'start method') rpc_result = self.rpc_service.call(ctx, req) self.log(log.INFO, ctx, 'end method') status = '200 OK' except JSONRPCError as jre: err = {'error': {'code': jre.code, 'name': jre.message, 'message': jre.data } } trace = jre.trace if hasattr(jre, 'trace') else None rpc_result = self.process_error(err, ctx, req, trace) except Exception, e: err = {'error': {'code': 0, 'name': 'Unexpected Server Error', 'message': 'An unexpected server error ' + 'occurred', } } rpc_result = self.process_error(err, ctx, req, traceback.format_exc()) # print 'The request method was %s\n' % environ['REQUEST_METHOD'] # print 'The environment dictionary is:\n%s\n' % pprint.pformat(environ) @IgnorePep8 # print 'The request body was: %s' % request_body # print 'The result from the method call is:\n%s\n' % \ # pprint.pformat(rpc_result) if rpc_result: response_body = rpc_result else: response_body = '' response_headers = [ ('Access-Control-Allow-Origin', '*'), ('Access-Control-Allow-Headers', environ.get( 'HTTP_ACCESS_CONTROL_REQUEST_HEADERS', 'authorization')), ('content-type', 'application/json'), ('content-length', str(len(response_body)))] start_response(status, response_headers) return [response_body] def process_error(self, error, context, request, trace=None): if trace: self.log(log.ERR, context, trace.split('\n')[0:-1]) if 'id' in request: error['id'] = request['id'] if 'version' in request: error['version'] = request['version'] if 'error' not in error['error'] or error['error']['error'] is None: error['error']['error'] = trace elif 'jsonrpc' in request: error['jsonrpc'] = request['jsonrpc'] error['error']['data'] = trace else: error['version'] = '1.0' error['error']['error'] = trace return json.dumps(error) def now_in_utc(self): # Taken from http://stackoverflow.com/questions/3401428/how-to-get-an-isoformat-datetime-string-including-the-default-timezone dtnow = datetime.datetime.now() dtutcnow = datetime.datetime.utcnow() delta = dtnow - dtutcnow hh,mm = divmod((delta.days * 24*60*60 + delta.seconds + 30) // 60, 60) return "%s%+02d:%02d" % (dtnow.isoformat(), hh, mm) application = Application() # This is the uwsgi application dictionary. On startup uwsgi will look # for this dict and pull its configuration from here. # This simply lists where to "mount" the application in the URL path # # This uwsgi module "magically" appears when running the app within # uwsgi and is not available otherwise, so wrap an exception handler # around it # # To run this server in uwsgi with 4 workers listening on port 9999 use: # uwsgi -M -p 4 --http :9999 --wsgi-file _this_file_ # To run a using the single threaded python BaseHTTP service # listening on port 9999 by default execute this file # try: import uwsgi # Before we do anything with the application, see if the # configs specify patching all std routines to be asynch # *ONLY* use this if you are going to wrap the service in # a wsgi container that has enabled gevent, such as # uwsgi with the --gevent option if config is not None and config.get('gevent_monkeypatch_all', False): print "Monkeypatching std libraries for async" from gevent import monkey monkey.patch_all() uwsgi.applications = { '': application } except ImportError: # Not available outside of wsgi, ignore pass _proc = None def start_server(host='localhost', port=0, newprocess=False): ''' By default, will start the server on localhost on a system assigned port in the main thread. Excecution of the main thread will stay in the server main loop until interrupted. To run the server in a separate process, and thus allow the stop_server method to be called, set newprocess = True. This will also allow returning of the port number.''' global _proc if _proc: raise RuntimeError('server is already running') httpd = make_server(host, port, application) port = httpd.server_address[1] print "Listening on port %s" % port if newprocess: _proc = Process(target=httpd.serve_forever) _proc.daemon = True _proc.start() else: httpd.serve_forever() return port def stop_server(): global _proc _proc.terminate() _proc = None def process_async_cli(input_file_path, output_file_path, token): exit_code = 0 with open(input_file_path) as data_file: req = json.load(data_file) if 'version' not in req: req['version'] = '1.1' if 'id' not in req: req['id'] = str(_random.random())[2:] ctx = MethodContext(application.userlog) if token: user, _, _ = application.auth_client.validate_token(token) ctx['user_id'] = user ctx['authenticated'] = 1 ctx['token'] = token if 'context' in req: ctx['rpc_context'] = req['context'] ctx['CLI'] = 1 ctx['module'], ctx['method'] = req['method'].split('.') prov_action = {'service': ctx['module'], 'method': ctx['method'], 'method_params': req['params']} ctx['provenance'] = [prov_action] resp = None try: resp = application.rpc_service.call_py(ctx, req) except JSONRPCError as jre: trace = jre.trace if hasattr(jre, 'trace') else None resp = {'id': req['id'], 'version': req['version'], 'error': {'code': jre.code, 'name': jre.message, 'message': jre.data, 'error': trace} } except Exception, e: trace = traceback.format_exc() resp = {'id': req['id'], 'version': req['version'], 'error': {'code': 0, 'name': 'Unexpected Server Error', 'message': 'An unexpected server error occurred', 'error': trace} } if 'error' in resp: exit_code = 500 with open(output_file_path, "w") as f: f.write(json.dumps(resp, cls=JSONObjectEncoder)) return exit_code if __name__ == "__main__": requests.packages.urllib3.disable_warnings() if len(sys.argv) >= 3 and len(sys.argv) <= 4 and os.path.isfile(sys.argv[1]): token = None if len(sys.argv) == 4: if os.path.isfile(sys.argv[3]): with open(sys.argv[3]) as token_file: token = token_file.read() else: token = sys.argv[3] sys.exit(process_async_cli(sys.argv[1], sys.argv[2], token)) try: opts, args = getopt(sys.argv[1:], "", ["port=", "host="]) except GetoptError as err: # print help information and exit: print str(err) # will print something like "option -a not recognized" sys.exit(2) port = 9999 host = 'localhost' for o, a in opts: if o == '--port': port = int(a) elif o == '--host': host = a print "Host set to %s" % host else: assert False, "unhandled option" start_server(host=host, port=port) # print "Listening on port %s" % port # httpd = make_server( host, port, application) # # httpd.serve_forever()
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import redis, frappe, re from six.moves import cPickle as pickle from frappe.utils import cstr from six import iteritems class RedisWrapper(redis.Redis): """Redis client that will automatically prefix conf.db_name""" def make_key(self, key, user=None, shared=False): if shared: return key if user: if user == True: user = frappe.session.user key = "user:{0}:{1}".format(user, key) return "{0}|{1}".format(frappe.conf.db_name, key).encode('utf-8') def set_value(self, key, val, user=None, expires_in_sec=None): """Sets cache value. :param key: Cache key :param val: Value to be cached :param user: Prepends key with User :param expires_in_sec: Expire value of this key in X seconds """ key = self.make_key(key, user) if not expires_in_sec: frappe.local.cache[key] = val try: if expires_in_sec: self.setex(key, pickle.dumps(val), expires_in_sec) else: self.set(key, pickle.dumps(val)) except redis.exceptions.ConnectionError: return None def get_value(self, key, generator=None, user=None, expires=False): """Returns cache value. If not found and generator function is given, it will call the generator. :param key: Cache key. :param generator: Function to be called to generate a value if `None` is returned. :param expires: If the key is supposed to be with an expiry, don't store it in frappe.local """ original_key = key key = self.make_key(key, user) if key in frappe.local.cache: val = frappe.local.cache[key] else: val = None try: val = self.get(key) except redis.exceptions.ConnectionError: pass if val is not None: val = pickle.loads(val) if not expires: if val is None and generator: val = generator() self.set_value(original_key, val, user=user) else: frappe.local.cache[key] = val return val def get_all(self, key): ret = {} for k in self.get_keys(key): ret[key] = self.get_value(k) return ret def get_keys(self, key): """Return keys starting with `key`.""" try: key = self.make_key(key + "*") return self.keys(key) except redis.exceptions.ConnectionError: regex = re.compile(cstr(key).replace("|", "\|").replace("*", "[\w]*")) return [k for k in list(frappe.local.cache) if regex.match(k.decode())] def delete_keys(self, key): """Delete keys with wildcard `*`.""" try: self.delete_value(self.get_keys(key), make_keys=False) except redis.exceptions.ConnectionError: pass def delete_key(self, *args, **kwargs): self.delete_value(*args, **kwargs) def delete_value(self, keys, user=None, make_keys=True, shared=False): """Delete value, list of values.""" if not isinstance(keys, (list, tuple)): keys = (keys, ) for key in keys: if make_keys: key = self.make_key(key, shared=shared) if key in frappe.local.cache: del frappe.local.cache[key] try: self.delete(key) except redis.exceptions.ConnectionError: pass def lpush(self, key, *values): super(redis.Redis, self).lpush(self.make_key(key), *values) def rpush(self, key, *values): super(redis.Redis, self).rpush(self.make_key(key), *values) def lpop(self, key): return super(redis.Redis, self).lpop(self.make_key(key)) def llen(self, key): return super(redis.Redis, self).llen(self.make_key(key)) def hset(self, name, key, value, shared=False): _name = self.make_key(name, shared=shared) # set in local if not _name in frappe.local.cache: frappe.local.cache[_name] = {} frappe.local.cache[_name][key] = value # set in redis try: super(redis.Redis, self).hset(_name, key, pickle.dumps(value)) except redis.exceptions.ConnectionError: pass def hgetall(self, name): return {key: pickle.loads(value) for key, value in iteritems(super(redis.Redis, self).hgetall(self.make_key(name)))} def hget(self, name, key, generator=None, shared=False): _name = self.make_key(name, shared=shared) if not _name in frappe.local.cache: frappe.local.cache[_name] = {} if key in frappe.local.cache[_name]: return frappe.local.cache[_name][key] value = None try: value = super(redis.Redis, self).hget(_name, key) except redis.exceptions.ConnectionError: pass if value: value = pickle.loads(value) frappe.local.cache[_name][key] = value elif generator: value = generator() try: self.hset(name, key, value) except redis.exceptions.ConnectionError: pass return value def hdel(self, name, key, shared=False): _name = self.make_key(name, shared=shared) if _name in frappe.local.cache: if key in frappe.local.cache[_name]: del frappe.local.cache[_name][key] try: super(redis.Redis, self).hdel(_name, key) except redis.exceptions.ConnectionError: pass def hdel_keys(self, name_starts_with, key): """Delete hash names with wildcard `*` and key""" for name in frappe.cache().get_keys(name_starts_with): name = name.split("|", 1)[1] self.hdel(name, key) def hkeys(self, name): try: return super(redis.Redis, self).hkeys(self.make_key(name)) except redis.exceptions.ConnectionError: return [] def sadd(self, name, *values): """Add a member/members to a given set""" super(redis.Redis, self).sadd(self.make_key(name), *values) def srem(self, name, *values): """Remove a specific member/list of members from the set""" super(redis.Redis, self).srem(self.make_key(name), *values) def sismember(self, name, value): """Returns True or False based on if a given value is present in the set""" return super(redis.Redis, self).sismember(self.make_key(name), value) def spop(self, name): """Removes and returns a random member from the set""" return super(redis.Redis, self).spop(self.make_key(name)) def srandmember(self, name, count=None): """Returns a random member from the set""" return super(redis.Redis, self).srandmember(self.make_key(name)) def smembers(self, name): """Return all members of the set""" return super(redis.Redis, self).smembers(self.make_key(name))
# Copyright (c) 2008-2009 Aryeh Leib Taurog, http://www.aryehleib.com # All rights reserved. # # Modified from original contribution by Aryeh Leib Taurog, which was # released under the New BSD license. import unittest from django.contrib.gis.geos.mutable_list import ListMixin from django.utils import six class UserListA(ListMixin): _mytype = tuple def __init__(self, i_list, *args, **kwargs): self._list = self._mytype(i_list) super(UserListA, self).__init__(*args, **kwargs) def __len__(self): return len(self._list) def __str__(self): return str(self._list) def __repr__(self): return repr(self._list) def _set_list(self, length, items): # this would work: # self._list = self._mytype(items) # but then we wouldn't be testing length parameter itemList = ['x'] * length for i, v in enumerate(items): itemList[i] = v self._list = self._mytype(itemList) def _get_single_external(self, index): return self._list[index] class UserListB(UserListA): _mytype = list def _set_single(self, index, value): self._list[index] = value def nextRange(length): nextRange.start += 100 return range(nextRange.start, nextRange.start + length) nextRange.start = 0 class ListMixinTest(unittest.TestCase): """ Tests base class ListMixin by comparing a list clone which is a ListMixin subclass with a real Python list. """ limit = 3 listType = UserListA def lists_of_len(self, length=None): if length is None: length = self.limit pl = list(range(length)) return pl, self.listType(pl) def limits_plus(self, b): return range(-self.limit - b, self.limit + b) def step_range(self): return list(range(-1 - self.limit, 0)) + list(range(1, 1 + self.limit)) def test01_getslice(self): 'Slice retrieval' pl, ul = self.lists_of_len() for i in self.limits_plus(1): self.assertEqual(pl[i:], ul[i:], 'slice [%d:]' % (i)) self.assertEqual(pl[:i], ul[:i], 'slice [:%d]' % (i)) for j in self.limits_plus(1): self.assertEqual(pl[i:j], ul[i:j], 'slice [%d:%d]' % (i,j)) for k in self.step_range(): self.assertEqual(pl[i:j:k], ul[i:j:k], 'slice [%d:%d:%d]' % (i,j,k)) for k in self.step_range(): self.assertEqual(pl[i::k], ul[i::k], 'slice [%d::%d]' % (i,k)) self.assertEqual(pl[:i:k], ul[:i:k], 'slice [:%d:%d]' % (i,k)) for k in self.step_range(): self.assertEqual(pl[::k], ul[::k], 'slice [::%d]' % (k)) def test02_setslice(self): 'Slice assignment' def setfcn(x,i,j,k,L): x[i:j:k] = range(L) pl, ul = self.lists_of_len() for slen in range(self.limit + 1): ssl = nextRange(slen) ul[:] = ssl pl[:] = ssl self.assertEqual(pl, ul[:], 'set slice [:]') for i in self.limits_plus(1): ssl = nextRange(slen) ul[i:] = ssl pl[i:] = ssl self.assertEqual(pl, ul[:], 'set slice [%d:]' % (i)) ssl = nextRange(slen) ul[:i] = ssl pl[:i] = ssl self.assertEqual(pl, ul[:], 'set slice [:%d]' % (i)) for j in self.limits_plus(1): ssl = nextRange(slen) ul[i:j] = ssl pl[i:j] = ssl self.assertEqual(pl, ul[:], 'set slice [%d:%d]' % (i, j)) for k in self.step_range(): ssl = nextRange( len(ul[i:j:k]) ) ul[i:j:k] = ssl pl[i:j:k] = ssl self.assertEqual(pl, ul[:], 'set slice [%d:%d:%d]' % (i, j, k)) sliceLen = len(ul[i:j:k]) self.assertRaises(ValueError, setfcn, ul, i, j, k, sliceLen + 1) if sliceLen > 2: self.assertRaises(ValueError, setfcn, ul, i, j, k, sliceLen - 1) for k in self.step_range(): ssl = nextRange( len(ul[i::k]) ) ul[i::k] = ssl pl[i::k] = ssl self.assertEqual(pl, ul[:], 'set slice [%d::%d]' % (i, k)) ssl = nextRange( len(ul[:i:k]) ) ul[:i:k] = ssl pl[:i:k] = ssl self.assertEqual(pl, ul[:], 'set slice [:%d:%d]' % (i, k)) for k in self.step_range(): ssl = nextRange(len(ul[::k])) ul[::k] = ssl pl[::k] = ssl self.assertEqual(pl, ul[:], 'set slice [::%d]' % (k)) def test03_delslice(self): 'Delete slice' for Len in range(self.limit): pl, ul = self.lists_of_len(Len) del pl[:] del ul[:] self.assertEqual(pl[:], ul[:], 'del slice [:]') for i in range(-Len - 1, Len + 1): pl, ul = self.lists_of_len(Len) del pl[i:] del ul[i:] self.assertEqual(pl[:], ul[:], 'del slice [%d:]' % (i)) pl, ul = self.lists_of_len(Len) del pl[:i] del ul[:i] self.assertEqual(pl[:], ul[:], 'del slice [:%d]' % (i)) for j in range(-Len - 1, Len + 1): pl, ul = self.lists_of_len(Len) del pl[i:j] del ul[i:j] self.assertEqual(pl[:], ul[:], 'del slice [%d:%d]' % (i,j)) for k in list(range(-Len - 1, 0)) + list(range(1, Len)): pl, ul = self.lists_of_len(Len) del pl[i:j:k] del ul[i:j:k] self.assertEqual(pl[:], ul[:], 'del slice [%d:%d:%d]' % (i,j,k)) for k in list(range(-Len - 1, 0)) + list(range(1, Len)): pl, ul = self.lists_of_len(Len) del pl[:i:k] del ul[:i:k] self.assertEqual(pl[:], ul[:], 'del slice [:%d:%d]' % (i,k)) pl, ul = self.lists_of_len(Len) del pl[i::k] del ul[i::k] self.assertEqual(pl[:], ul[:], 'del slice [%d::%d]' % (i,k)) for k in list(range(-Len - 1, 0)) + list(range(1, Len)): pl, ul = self.lists_of_len(Len) del pl[::k] del ul[::k] self.assertEqual(pl[:], ul[:], 'del slice [::%d]' % (k)) def test04_get_set_del_single(self): 'Get/set/delete single item' pl, ul = self.lists_of_len() for i in self.limits_plus(0): self.assertEqual(pl[i], ul[i], 'get single item [%d]' % i) for i in self.limits_plus(0): pl, ul = self.lists_of_len() pl[i] = 100 ul[i] = 100 self.assertEqual(pl[:], ul[:], 'set single item [%d]' % i) for i in self.limits_plus(0): pl, ul = self.lists_of_len() del pl[i] del ul[i] self.assertEqual(pl[:], ul[:], 'del single item [%d]' % i) def test05_out_of_range_exceptions(self): 'Out of range exceptions' def setfcn(x, i): x[i] = 20 def getfcn(x, i): return x[i] def delfcn(x, i): del x[i] pl, ul = self.lists_of_len() for i in (-1 - self.limit, self.limit): self.assertRaises(IndexError, setfcn, ul, i) # 'set index %d' % i) self.assertRaises(IndexError, getfcn, ul, i) # 'get index %d' % i) self.assertRaises(IndexError, delfcn, ul, i) # 'del index %d' % i) def test06_list_methods(self): 'List methods' pl, ul = self.lists_of_len() pl.append(40) ul.append(40) self.assertEqual(pl[:], ul[:], 'append') pl.extend(range(50,55)) ul.extend(range(50,55)) self.assertEqual(pl[:], ul[:], 'extend') pl.reverse() ul.reverse() self.assertEqual(pl[:], ul[:], 'reverse') for i in self.limits_plus(1): pl, ul = self.lists_of_len() pl.insert(i,50) ul.insert(i,50) self.assertEqual(pl[:], ul[:], 'insert at %d' % i) for i in self.limits_plus(0): pl, ul = self.lists_of_len() self.assertEqual(pl.pop(i), ul.pop(i), 'popped value at %d' % i) self.assertEqual(pl[:], ul[:], 'after pop at %d' % i) pl, ul = self.lists_of_len() self.assertEqual(pl.pop(), ul.pop(i), 'popped value') self.assertEqual(pl[:], ul[:], 'after pop') pl, ul = self.lists_of_len() def popfcn(x, i): x.pop(i) self.assertRaises(IndexError, popfcn, ul, self.limit) self.assertRaises(IndexError, popfcn, ul, -1 - self.limit) pl, ul = self.lists_of_len() for val in range(self.limit): self.assertEqual(pl.index(val), ul.index(val), 'index of %d' % val) for val in self.limits_plus(2): self.assertEqual(pl.count(val), ul.count(val), 'count %d' % val) for val in range(self.limit): pl, ul = self.lists_of_len() pl.remove(val) ul.remove(val) self.assertEqual(pl[:], ul[:], 'after remove val %d' % val) def indexfcn(x, v): return x.index(v) def removefcn(x, v): return x.remove(v) self.assertRaises(ValueError, indexfcn, ul, 40) self.assertRaises(ValueError, removefcn, ul, 40) def test07_allowed_types(self): 'Type-restricted list' pl, ul = self.lists_of_len() ul._allowed = six.integer_types ul[1] = 50 ul[:2] = [60, 70, 80] def setfcn(x, i, v): x[i] = v self.assertRaises(TypeError, setfcn, ul, 2, 'hello') self.assertRaises(TypeError, setfcn, ul, slice(0,3,2), ('hello','goodbye')) def test08_min_length(self): 'Length limits' pl, ul = self.lists_of_len() ul._minlength = 1 def delfcn(x,i): del x[:i] def setfcn(x,i): x[:i] = [] for i in range(self.limit - ul._minlength + 1, self.limit + 1): self.assertRaises(ValueError, delfcn, ul, i) self.assertRaises(ValueError, setfcn, ul, i) del ul[:ul._minlength] ul._maxlength = 4 for i in range(0, ul._maxlength - len(ul)): ul.append(i) self.assertRaises(ValueError, ul.append, 10) def test09_iterable_check(self): 'Error on assigning non-iterable to slice' pl, ul = self.lists_of_len(self.limit + 1) def setfcn(x, i, v): x[i] = v self.assertRaises(TypeError, setfcn, ul, slice(0,3,2), 2) def test10_checkindex(self): 'Index check' pl, ul = self.lists_of_len() for i in self.limits_plus(0): if i < 0: self.assertEqual(ul._checkindex(i), i + self.limit, '_checkindex(neg index)') else: self.assertEqual(ul._checkindex(i), i, '_checkindex(pos index)') for i in (-self.limit - 1, self.limit): self.assertRaises(IndexError, ul._checkindex, i) ul._IndexError = TypeError self.assertRaises(TypeError, ul._checkindex, -self.limit - 1) def test_11_sorting(self): 'Sorting' pl, ul = self.lists_of_len() pl.insert(0, pl.pop()) ul.insert(0, ul.pop()) pl.sort() ul.sort() self.assertEqual(pl[:], ul[:], 'sort') mid = pl[len(pl) // 2] pl.sort(key=lambda x: (mid-x)**2) ul.sort(key=lambda x: (mid-x)**2) self.assertEqual(pl[:], ul[:], 'sort w/ key') pl.insert(0, pl.pop()) ul.insert(0, ul.pop()) pl.sort(reverse=True) ul.sort(reverse=True) self.assertEqual(pl[:], ul[:], 'sort w/ reverse') mid = pl[len(pl) // 2] pl.sort(key=lambda x: (mid-x)**2) ul.sort(key=lambda x: (mid-x)**2) self.assertEqual(pl[:], ul[:], 'sort w/ key') def test_12_arithmetic(self): 'Arithmetic' pl, ul = self.lists_of_len() al = list(range(10,14)) self.assertEqual(list(pl + al), list(ul + al), 'add') self.assertEqual(type(ul), type(ul + al), 'type of add result') self.assertEqual(list(al + pl), list(al + ul), 'radd') self.assertEqual(type(al), type(al + ul), 'type of radd result') objid = id(ul) pl += al ul += al self.assertEqual(pl[:], ul[:], 'in-place add') self.assertEqual(objid, id(ul), 'in-place add id') for n in (-1,0,1,3): pl, ul = self.lists_of_len() self.assertEqual(list(pl * n), list(ul * n), 'mul by %d' % n) self.assertEqual(type(ul), type(ul * n), 'type of mul by %d result' % n) self.assertEqual(list(n * pl), list(n * ul), 'rmul by %d' % n) self.assertEqual(type(ul), type(n * ul), 'type of rmul by %d result' % n) objid = id(ul) pl *= n ul *= n self.assertEqual(pl[:], ul[:], 'in-place mul by %d' % n) self.assertEqual(objid, id(ul), 'in-place mul by %d id' % n) pl, ul = self.lists_of_len() self.assertEqual(pl, ul, 'cmp for equal') self.assertFalse(ul == pl + [2], 'cmp for not equal') self.assertTrue(pl >= ul, 'cmp for gte self') self.assertTrue(pl <= ul, 'cmp for lte self') self.assertTrue(ul >= pl, 'cmp for self gte') self.assertTrue(ul <= pl, 'cmp for self lte') self.assertTrue(pl + [5] > ul, 'cmp') self.assertTrue(pl + [5] >= ul, 'cmp') self.assertTrue(pl < ul + [2], 'cmp') self.assertTrue(pl <= ul + [2], 'cmp') self.assertTrue(ul + [5] > pl, 'cmp') self.assertTrue(ul + [5] >= pl, 'cmp') self.assertTrue(ul < pl + [2], 'cmp') self.assertTrue(ul <= pl + [2], 'cmp') # Also works with a custom IndexError ul_longer = ul + [2] ul_longer._IndexError = TypeError ul._IndexError = TypeError self.assertFalse(ul_longer == pl) self.assertFalse(ul == ul_longer) self.assertTrue(ul_longer > ul) pl[1] = 20 self.assertTrue(pl > ul, 'cmp for gt self') self.assertTrue(ul < pl, 'cmp for self lt') pl[1] = -20 self.assertTrue(pl < ul, 'cmp for lt self') self.assertTrue(pl < ul, 'cmp for lt self') class ListMixinTestSingle(ListMixinTest): listType = UserListB
"""Command line interface tests.""" # pylint: disable=missing-function-docstring,protected-access,no-self-use # pylint: disable=redefined-outer-name,missing-class-docstring from datetime import datetime, timedelta from os.path import expanduser from typing import NamedTuple, Optional import json import pathlib import re from click.testing import CliRunner from pytest_mock.plugin import MockerFixture import pytest import requests_mock as req_mock from xirvik.typing import (FileDownloadStrategy, FilePriority, TorrentTrackedFile) from ..root import xirvik def test_fix_rtorrent(requests_mock: req_mock.Mocker, runner: CliRunner): requests_mock.get('https://somehost.com:443/userpanel/index.php/services/' 'restart/rtorrent') assert runner.invoke( xirvik, ('rtorrent', 'fix', '-H', 'somehost.com')).exit_code == 0 def test_fix_rtorrent_fail(requests_mock: req_mock.Mocker, runner: CliRunner): requests_mock.get( 'https://somehost.com:443/userpanel/index.php/services/' 'restart/rtorrent', status_code=500) assert runner.invoke( xirvik, ('rtorrent', 'fix', '-H', 'somehost.com')).exit_code == 1 def test_start_torrents_zero_files(runner: CliRunner, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) assert runner.invoke(xirvik, ('rtorrent', 'add', '-H', 'machine.com', expanduser('~'))).exit_code == 0 def test_start_torrents_zero_torrent_files(runner: CliRunner, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) non_torrent = tmp_path / 'a.not-a-torrent' non_torrent.write_bytes(b'\xFF') assert runner.invoke(xirvik, ('rtorrent', 'add', '-H', 'machine.com', expanduser('~'))).exit_code == 0 def test_start_torrents_normal( runner: CliRunner, requests_mock: req_mock.Mocker, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) torrent = tmp_path / 'a.torrent' torrent.write_bytes(b'\xFF') m = requests_mock.post( 'https://machine.com:443/rtorrent/php/addtorrent.php?') assert runner.invoke(xirvik, ('rtorrent', 'add', '-H', 'machine.com', expanduser('~'))).exit_code == 0 assert not torrent.is_file() assert m.called_once is True def test_start_torrents_error_uploading( runner: CliRunner, requests_mock: req_mock.Mocker, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) torrent = tmp_path / 'a.torrent' torrent.write_bytes(b'\xFF') m = requests_mock.post( 'https://machine.com:443/rtorrent/php/addtorrent.php?', status_code=500) assert runner.invoke(xirvik, ('rtorrent', 'add', '-H', 'machine.com', expanduser('~'))).exit_code == 0 assert torrent.is_file() assert m.called_once is True def test_start_torrents_start_stopped( runner: CliRunner, requests_mock: req_mock.Mocker, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) torrent = tmp_path / 'a.torrent' torrent.write_text('') m = requests_mock.post( 'https://machine.com:443/rtorrent/php/addtorrent.php?') assert runner.invoke(xirvik, ('rtorrent', 'add', '--start-stopped', '-d', '-H', 'machine.com', expanduser('~'))).exit_code == 0 assert m.called_once is True assert not torrent.is_file() assert (m.last_request and m.last_request.text and 'name="torrents_start_stopped"\r\n\r\non' in m.last_request.text) def test_add_ftp_user(runner: CliRunner, requests_mock: req_mock.Mocker, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) m = requests_mock.post( 'https://machine.com:443/userpanel/index.php/ftp_users/add_user') assert runner.invoke(xirvik, ('ftp', 'add-user', '-H', 'machine.com', 'newuser', 'newpass')).exit_code == 0 assert m.called_once is True def test_add_ftp_user_error(runner: CliRunner, requests_mock: req_mock.Mocker, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) m = requests_mock.post( 'https://machine.com:443/userpanel/index.php/ftp_users/add_user', status_code=500) assert runner.invoke(xirvik, ('ftp', 'add-user', '-H', 'machine.com', 'newuser', 'newpass')).exit_code != 0 assert m.called_once is True def test_delete_ftp_user(runner: CliRunner, requests_mock: req_mock.Mocker, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) m = requests_mock.get( ('https://machine.com:443/userpanel/index.php/ftp_users/delete/' 'bmV3dXNlcg==')) # cspell: disable-line assert runner.invoke( xirvik, ('ftp', 'delete-user', '-H', 'machine.com', 'newuser')).exit_code == 0 assert m.called_once is True def test_delete_ftp_user_error( runner: CliRunner, requests_mock: req_mock.Mocker, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) m = requests_mock.get( ('https://machine.com:443/userpanel/index.php/ftp_users/delete/' 'bmV3dXNlcg=='), # cspell: disable-line status_code=500) assert runner.invoke( xirvik, ('ftp', 'delete-user', '-H', 'machine.com', 'newuser')).exit_code != 0 assert m.called_once is True def test_list_ftp_users(runner: CliRunner, requests_mock: req_mock.Mocker, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) requests_mock.get('https://machine.com:443/userpanel/index.php/ftp_users', text='''<table> <tbody> <tr class="gradeX"> <td>someuser</td> <td>Yes</td> <td>/somedir</td> <td></td> </tr> </tbody> </table>''') run = runner.invoke(xirvik, ('ftp', 'list-users', '-H', 'machine.com')) assert run.exit_code == 0 assert 'someuser' in run.output assert '/somedir' in run.output def test_list_ftp_users_error( runner: CliRunner, requests_mock: req_mock.Mocker, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) requests_mock.get('https://machine.com:443/userpanel/index.php/ftp_users', status_code=500) assert runner.invoke( xirvik, ('ftp', 'list-users', '-H', 'machine.com')).exit_code != 0 def test_authorize_ip(runner: CliRunner, requests_mock: req_mock.Mocker, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) m = requests_mock.get( ('https://machine.com:443/userpanel/index.php/virtual_machine/' 'authorize_ip')) assert runner.invoke( xirvik, ('vm', 'authorize-ip', '-H', 'machine.com')).exit_code == 0 assert m.called_once is True def test_authorize_ip_error(runner: CliRunner, requests_mock: req_mock.Mocker, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) m = requests_mock.get( ('https://machine.com:443/userpanel/index.php/virtual_machine/' 'authorize_ip'), status_code=500) assert runner.invoke( xirvik, ('vm', 'authorize-ip', '-H', 'machine.com')).exit_code != 0 assert m.called_once is True class MinimalTorrentDict(NamedTuple): hash: str custom1: Optional[str] = None left_bytes: int = 0 name: str = '' ratio: float = 0 creation_date: Optional[datetime] = None state_changed: Optional[datetime] = None is_hash_checking: bool = False base_path: Optional[str] = None finished: Optional[datetime] = None def test_list_torrents(runner: CliRunner, mocker: MockerFixture, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) client_mock = mocker.patch('xirvik.commands.simple.ruTorrentClient') client_mock.return_value.list_torrents.return_value = [ MinimalTorrentDict( 'hash1', custom1='TEST me', name='The Name', is_hash_checking=False, base_path=f'/torrents/{client_mock.return_value.name}/_completed') ] lines = runner.invoke(xirvik, ('rtorrent', 'list-torrents')).output.splitlines() assert re.match(r'^Hash\s+Name\s+Label\s+Finished', lines[0]) assert re.match(r'^hash1\s+The Name\s+TEST me', lines[1]) def test_list_torrents_json(runner: CliRunner, mocker: MockerFixture, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) client_mock = mocker.patch('xirvik.commands.simple.ruTorrentClient') client_mock.return_value.list_torrents.return_value = [ MinimalTorrentDict( 'hash1', custom1='TEST me', name='The Name', is_hash_checking=False, base_path=f'/torrents/{client_mock.return_value.name}/_completed') ] data = json.loads( runner.invoke( xirvik, ('rtorrent', 'list-torrents', '-F', 'json')).output.strip()) assert isinstance(data, list) assert data[0]['name'] == 'The Name' def test_list_torrents_json_reversed(runner: CliRunner, mocker: MockerFixture, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) client_mock = mocker.patch('xirvik.commands.simple.ruTorrentClient') client_mock.return_value.list_torrents.return_value = [ MinimalTorrentDict( 'hash1', custom1='TEST me', name='The Name', is_hash_checking=False, base_path=f'/torrents/{client_mock.return_value.name}/_completed'), MinimalTorrentDict( 'hash2', custom1='TEST me', name='The Name2', is_hash_checking=False, base_path=f'/torrents/{client_mock.return_value.name}/_completed') ] data = json.loads( runner.invoke(xirvik, ('rtorrent', 'list-torrents', '--reverse-order', '--table-format', 'json')).output.strip()) assert isinstance(data, list) assert data[0]['hash'] == 'hash2' assert data[1]['hash'] == 'hash1' def test_list_torrents_json_sort_finished( runner: CliRunner, mocker: MockerFixture, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) client_mock = mocker.patch('xirvik.commands.simple.ruTorrentClient') client_mock.return_value.list_torrents.return_value = [ MinimalTorrentDict( 'hash1', custom1='TEST me', name='The Name', is_hash_checking=False, base_path=f'/torrents/{client_mock.return_value.name}/_completed', finished=datetime.now()), MinimalTorrentDict( 'hash2', custom1='TEST me', name='The Name2', is_hash_checking=False, base_path=f'/torrents/{client_mock.return_value.name}/_completed', finished=datetime.now() - timedelta(days=7)), ] data = json.loads( runner.invoke(xirvik, ('rtorrent', 'list-torrents', '--sort', 'finished', '--table-format', 'json')).output.strip()) assert isinstance(data, list) assert data[0]['hash'] == 'hash2' assert data[1]['hash'] == 'hash1' def test_list_torrents_json_sort_finished_missing( runner: CliRunner, mocker: MockerFixture, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) client_mock = mocker.patch('xirvik.commands.simple.ruTorrentClient') client_mock.return_value.list_torrents.return_value = [ MinimalTorrentDict( 'hash1', custom1='TEST me', name='The Name', is_hash_checking=False, base_path=f'/torrents/{client_mock.return_value.name}/_completed'), MinimalTorrentDict( 'hash2', custom1='TEST me', name='The Name2', is_hash_checking=False, base_path=f'/torrents/{client_mock.return_value.name}/_completed', finished=datetime.now() - timedelta(days=7)), ] data = json.loads( runner.invoke(xirvik, ('rtorrent', 'list-torrents', '--sort', 'finished', '--table-format', 'json')).output.strip()) assert isinstance(data, list) assert data[0]['hash'] == 'hash1' assert data[1]['hash'] == 'hash2' def test_list_torrents_json_sort_missing_attr( runner: CliRunner, mocker: MockerFixture, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) client_mock = mocker.patch('xirvik.commands.simple.ruTorrentClient') client_mock.return_value.list_torrents.return_value = [ MinimalTorrentDict( 'hash1', custom1='TEST me', name='The Name', is_hash_checking=False, base_path=f'/torrents/{client_mock.return_value.name}/_completed', finished=datetime.now() - timedelta(days=8)), MinimalTorrentDict( 'hash2', name='The Name2', is_hash_checking=False, base_path=f'/torrents/{client_mock.return_value.name}/_completed'), ] data = json.loads( runner.invoke(xirvik, ('rtorrent', 'list-torrents', '--sort', 'label', '--table-format', 'json')).output.strip()) assert isinstance(data, list) assert data[0]['hash'] == 'hash2' assert data[1]['hash'] == 'hash1' def test_list_torrents_json_sort_other_criteria( runner: CliRunner, mocker: MockerFixture, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) client_mock = mocker.patch('xirvik.commands.simple.ruTorrentClient') client_mock.return_value.list_torrents.return_value = [ MinimalTorrentDict( 'hash1', custom1='TEST me', name='The Name', is_hash_checking=False, base_path=f'/torrents/{client_mock.return_value.name}/_completed'), MinimalTorrentDict( 'hash2', name='AThe Name2', is_hash_checking=False, base_path=f'/torrents/{client_mock.return_value.name}/_completed'), ] data = json.loads( runner.invoke(xirvik, ('rtorrent', 'list-torrents', '--sort', 'name', '--table-format', 'json')).output.strip()) assert isinstance(data, list) assert data[0]['hash'] == 'hash2' assert data[1]['hash'] == 'hash1' def test_list_files(runner: CliRunner, mocker: MockerFixture, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) client_mock = mocker.patch('xirvik.commands.simple.ruTorrentClient') client_mock.return_value.list_files.return_value = [ TorrentTrackedFile('file1', 512, 512, 1000, FilePriority.NORMAL, FileDownloadStrategy.NORMAL), TorrentTrackedFile('file2', 512, 512, 1200, FilePriority.NORMAL, FileDownloadStrategy.NORMAL), ] data = json.loads( runner.invoke(xirvik, ('rtorrent', 'list-files', '--table-format', 'json', 'hash1')).output.strip()) assert isinstance(data, list) assert data[0]['name'] == 'file1' assert data[1]['name'] == 'file2' def test_list_files_reversed(runner: CliRunner, mocker: MockerFixture, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) client_mock = mocker.patch('xirvik.commands.simple.ruTorrentClient') client_mock.return_value.list_files.return_value = [ TorrentTrackedFile('file1', 512, 512, 1000, FilePriority.NORMAL, FileDownloadStrategy.NORMAL), TorrentTrackedFile('file2', 512, 512, 1200, FilePriority.NORMAL, FileDownloadStrategy.NORMAL), ] data = json.loads( runner.invoke(xirvik, ('rtorrent', 'list-files', '--reverse-order', '--table-format', 'json', 'hash1')).output.strip()) assert isinstance(data, list) assert data[0]['name'] == 'file2' assert data[1]['name'] == 'file1' def test_list_files_sort_size(runner: CliRunner, mocker: MockerFixture, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) client_mock = mocker.patch('xirvik.commands.simple.ruTorrentClient') client_mock.return_value.list_files.return_value = [ TorrentTrackedFile('file1', 512, 512, 1000, FilePriority.NORMAL, FileDownloadStrategy.NORMAL), TorrentTrackedFile('file2', 512, 512, 1200, FilePriority.NORMAL, FileDownloadStrategy.NORMAL), ] data = json.loads( runner.invoke( xirvik, ('rtorrent', 'list-files', '--table-format', 'json', '--sort', 'size_bytes', '--reverse-order', 'hash1')).output.strip()) assert isinstance(data, list) assert data[0]['name'] == 'file2' assert data[1]['name'] == 'file1' def test_list_files_normal(runner: CliRunner, mocker: MockerFixture, tmp_path: pathlib.Path, monkeypatch: pytest.MonkeyPatch): netrc = tmp_path / '.netrc' netrc.write_text('machine machine.com login somename password pass\n') monkeypatch.setenv('HOME', str(tmp_path)) client_mock = mocker.patch('xirvik.commands.simple.ruTorrentClient') client_mock.return_value.list_files.return_value = [ TorrentTrackedFile('file1', 512, 512, 1000, FilePriority.NORMAL, FileDownloadStrategy.NORMAL), ] lines = runner.invoke(xirvik, ('rtorrent', 'list-files', '--sort', 'size_bytes', '--reverse-order', 'hash1')).output.splitlines() assert re.match( r'^Name\s+Size\s+Downloaded Pieces\s+Number of Pieces\s+Priority ID', lines[0]) assert re.match(r'file1\s+1000\s+512\s+512', lines[1])
import os import io import re import pytest from contextlib import redirect_stdout import numpy as np from sklearn.neighbors import KDTree from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import normalize import pickle import joblib import scipy from pynndescent import NNDescent, PyNNDescentTransformer def test_nn_descent_neighbor_accuracy(nn_data, seed): knn_indices, _ = NNDescent( nn_data, "euclidean", {}, 10, random_state=np.random.RandomState(seed) )._neighbor_graph tree = KDTree(nn_data) true_indices = tree.query(nn_data, 10, return_distance=False) num_correct = 0.0 for i in range(nn_data.shape[0]): num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i])) percent_correct = num_correct / (nn_data.shape[0] * 10) assert percent_correct >= 0.98, ( "NN-descent did not get 99% " "accuracy on nearest neighbors" ) def test_angular_nn_descent_neighbor_accuracy(nn_data, seed): knn_indices, _ = NNDescent( nn_data, "cosine", {}, 10, random_state=np.random.RandomState(seed) )._neighbor_graph angular_data = normalize(nn_data, norm="l2") tree = KDTree(angular_data) true_indices = tree.query(angular_data, 10, return_distance=False) num_correct = 0.0 for i in range(nn_data.shape[0]): num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i])) percent_correct = num_correct / (nn_data.shape[0] * 10) assert percent_correct >= 0.98, ( "NN-descent did not get 99% " "accuracy on nearest neighbors" ) @pytest.mark.skipif( list(map(int, scipy.version.version.split("."))) < [1, 3, 0], reason="requires scipy >= 1.3.0", ) def test_sparse_nn_descent_neighbor_accuracy(sparse_nn_data, seed): knn_indices, _ = NNDescent( sparse_nn_data, "euclidean", n_neighbors=20, random_state=None )._neighbor_graph tree = KDTree(sparse_nn_data.toarray()) true_indices = tree.query(sparse_nn_data.toarray(), 10, return_distance=False) num_correct = 0.0 for i in range(sparse_nn_data.shape[0]): num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i])) percent_correct = num_correct / (sparse_nn_data.shape[0] * 10) assert percent_correct >= 0.85, ( "Sparse NN-descent did not get 95% " "accuracy on nearest neighbors" ) @pytest.mark.skipif( list(map(int, scipy.version.version.split("."))) < [1, 3, 0], reason="requires scipy >= 1.3.0", ) def test_sparse_angular_nn_descent_neighbor_accuracy(sparse_nn_data): knn_indices, _ = NNDescent( sparse_nn_data, "cosine", {}, 20, random_state=None )._neighbor_graph angular_data = normalize(sparse_nn_data, norm="l2").toarray() tree = KDTree(angular_data) true_indices = tree.query(angular_data, 10, return_distance=False) num_correct = 0.0 for i in range(sparse_nn_data.shape[0]): num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i])) percent_correct = num_correct / (sparse_nn_data.shape[0] * 10) assert percent_correct >= 0.85, ( "Sparse angular NN-descent did not get 98% " "accuracy on nearest neighbors" ) def test_nn_descent_query_accuracy(nn_data): nnd = NNDescent(nn_data[200:], "euclidean", n_neighbors=10, random_state=None) knn_indices, _ = nnd.query(nn_data[:200], k=10, epsilon=0.2) tree = KDTree(nn_data[200:]) true_indices = tree.query(nn_data[:200], 10, return_distance=False) num_correct = 0.0 for i in range(true_indices.shape[0]): num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i])) percent_correct = num_correct / (true_indices.shape[0] * 10) assert percent_correct >= 0.95, ( "NN-descent query did not get 95% " "accuracy on nearest neighbors" ) def test_nn_descent_query_accuracy_angular(nn_data): nnd = NNDescent(nn_data[200:], "cosine", n_neighbors=30, random_state=None) knn_indices, _ = nnd.query(nn_data[:200], k=10, epsilon=0.32) nn = NearestNeighbors(metric="cosine").fit(nn_data[200:]) true_indices = nn.kneighbors(nn_data[:200], n_neighbors=10, return_distance=False) num_correct = 0.0 for i in range(true_indices.shape[0]): num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i])) percent_correct = num_correct / (true_indices.shape[0] * 10) assert percent_correct >= 0.95, ( "NN-descent query did not get 95% " "accuracy on nearest neighbors" ) def test_sparse_nn_descent_query_accuracy(sparse_nn_data): nnd = NNDescent( sparse_nn_data[200:], "euclidean", n_neighbors=15, random_state=None ) knn_indices, _ = nnd.query(sparse_nn_data[:200], k=10, epsilon=0.24) tree = KDTree(sparse_nn_data[200:].toarray()) true_indices = tree.query(sparse_nn_data[:200].toarray(), 10, return_distance=False) num_correct = 0.0 for i in range(true_indices.shape[0]): num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i])) percent_correct = num_correct / (true_indices.shape[0] * 10) assert percent_correct >= 0.95, ( "Sparse NN-descent query did not get 95% " "accuracy on nearest neighbors" ) def test_sparse_nn_descent_query_accuracy_angular(sparse_nn_data): nnd = NNDescent(sparse_nn_data[200:], "cosine", n_neighbors=50, random_state=None) knn_indices, _ = nnd.query(sparse_nn_data[:200], k=10, epsilon=0.36) nn = NearestNeighbors(metric="cosine").fit(sparse_nn_data[200:].toarray()) true_indices = nn.kneighbors( sparse_nn_data[:200].toarray(), n_neighbors=10, return_distance=False ) num_correct = 0.0 for i in range(true_indices.shape[0]): num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i])) percent_correct = num_correct / (true_indices.shape[0] * 10) assert percent_correct >= 0.95, ( "Sparse NN-descent query did not get 95% " "accuracy on nearest neighbors" ) def test_transformer_equivalence(nn_data): N_NEIGHBORS = 15 EPSILON = 0.15 train = nn_data[:400] test = nn_data[:200] # Note we shift N_NEIGHBORS to conform to sklearn's KNeighborTransformer defn nnd = NNDescent( data=train, n_neighbors=N_NEIGHBORS + 1, random_state=42, compressed=False ) indices, dists = nnd.query(test, k=N_NEIGHBORS, epsilon=EPSILON) sort_idx = np.argsort(indices, axis=1) indices_sorted = np.vstack( [indices[i, sort_idx[i]] for i in range(sort_idx.shape[0])] ) dists_sorted = np.vstack([dists[i, sort_idx[i]] for i in range(sort_idx.shape[0])]) # Note we shift N_NEIGHBORS to conform to sklearn' KNeighborTransformer defn transformer = PyNNDescentTransformer( n_neighbors=N_NEIGHBORS, search_epsilon=EPSILON, random_state=42 ).fit(train, compress_index=False) Xt = transformer.transform(test).sorted_indices() assert np.all(Xt.indices == indices_sorted.flatten()) assert np.allclose(Xt.data, dists_sorted.flat) def test_random_state_none(nn_data, spatial_data): knn_indices, _ = NNDescent( nn_data, "euclidean", {}, 10, random_state=None )._neighbor_graph tree = KDTree(nn_data) true_indices = tree.query(nn_data, 10, return_distance=False) num_correct = 0.0 for i in range(nn_data.shape[0]): num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i])) percent_correct = num_correct / (spatial_data.shape[0] * 10) assert percent_correct >= 0.99, ( "NN-descent did not get 99% " "accuracy on nearest neighbors" ) def test_deterministic(): seed = np.random.RandomState(42) x1 = seed.normal(0, 100, (1000, 50)) x2 = seed.normal(0, 100, (1000, 50)) index1 = NNDescent(x1, random_state=np.random.RandomState(42)) neighbors1, distances1 = index1.query(x2) index2 = NNDescent(x1, random_state=np.random.RandomState(42)) neighbors2, distances2 = index2.query(x2) np.testing.assert_equal(neighbors1, neighbors2) np.testing.assert_equal(distances1, distances2) # This tests a recursion error on cosine metric reported at: # https://github.com/lmcinnes/umap/issues/99 # graph_data used is a cut-down version of that provided by @scharron # It contains lots of all-zero vectors and some other duplicates def test_rp_trees_should_not_stack_overflow_with_duplicate_data(seed, cosine_hang_data): n_neighbors = 10 knn_indices, _ = NNDescent( cosine_hang_data, "cosine", {}, n_neighbors, random_state=np.random.RandomState(seed), n_trees=20, )._neighbor_graph for i in range(cosine_hang_data.shape[0]): assert len(knn_indices[i]) == len( np.unique(knn_indices[i]) ), "Duplicate graph_indices in knn graph" def test_deduplicated_data_behaves_normally(seed, cosine_hang_data): data = np.unique(cosine_hang_data, axis=0) data = data[~np.all(data == 0, axis=1)] data = data[:1000] n_neighbors = 10 knn_indices, _ = NNDescent( data, "cosine", {}, n_neighbors, random_state=np.random.RandomState(seed), n_trees=20, )._neighbor_graph for i in range(data.shape[0]): assert len(knn_indices[i]) == len( np.unique(knn_indices[i]) ), "Duplicate graph_indices in knn graph" angular_data = normalize(data, norm="l2") tree = KDTree(angular_data) true_indices = tree.query(angular_data, n_neighbors, return_distance=False) num_correct = 0 for i in range(data.shape[0]): num_correct += np.sum(np.in1d(true_indices[i], knn_indices[i])) proportion_correct = num_correct / (data.shape[0] * n_neighbors) assert proportion_correct >= 0.95, ( "NN-descent did not get 95%" " accuracy on nearest neighbors" ) def test_output_when_verbose_is_true(spatial_data, seed): out = io.StringIO() with redirect_stdout(out): _ = NNDescent( data=spatial_data, metric="euclidean", metric_kwds={}, n_neighbors=4, random_state=np.random.RandomState(seed), n_trees=5, n_iters=2, verbose=True, ) output = out.getvalue() assert re.match("^.*5 trees", output, re.DOTALL) assert re.match("^.*2 iterations", output, re.DOTALL) def test_no_output_when_verbose_is_false(spatial_data, seed): out = io.StringIO() with redirect_stdout(out): _ = NNDescent( data=spatial_data, metric="euclidean", metric_kwds={}, n_neighbors=4, random_state=np.random.RandomState(seed), n_trees=5, n_iters=2, verbose=False, ) output = out.getvalue().strip() assert len(output) == 0 # same as the previous two test, but this time using the PyNNDescentTransformer # interface def test_transformer_output_when_verbose_is_true(spatial_data, seed): out = io.StringIO() with redirect_stdout(out): _ = PyNNDescentTransformer( n_neighbors=4, metric="euclidean", metric_kwds={}, random_state=np.random.RandomState(seed), n_trees=5, n_iters=2, verbose=True, ).fit_transform(spatial_data) output = out.getvalue() assert re.match("^.*5 trees", output, re.DOTALL) assert re.match("^.*2 iterations", output, re.DOTALL) def test_transformer_output_when_verbose_is_false(spatial_data, seed): out = io.StringIO() with redirect_stdout(out): _ = PyNNDescentTransformer( n_neighbors=4, metric="standardised_euclidean", metric_kwds={"sigma": np.ones(spatial_data.shape[1])}, random_state=np.random.RandomState(seed), n_trees=5, n_iters=2, verbose=False, ).fit_transform(spatial_data) output = out.getvalue().strip() assert len(output) == 0 def test_pickle_unpickle(): seed = np.random.RandomState(42) x1 = seed.normal(0, 100, (1000, 50)) x2 = seed.normal(0, 100, (1000, 50)) index1 = NNDescent(x1, "euclidean", {}, 10, random_state=None) neighbors1, distances1 = index1.query(x2) mem_temp = io.BytesIO() pickle.dump(index1, mem_temp) mem_temp.seek(0) index2 = pickle.load(mem_temp) neighbors2, distances2 = index2.query(x2) np.testing.assert_equal(neighbors1, neighbors2) np.testing.assert_equal(distances1, distances2) def test_compressed_pickle_unpickle(): seed = np.random.RandomState(42) x1 = seed.normal(0, 100, (1000, 50)) x2 = seed.normal(0, 100, (1000, 50)) index1 = NNDescent(x1, "euclidean", {}, 10, random_state=None, compressed=True) neighbors1, distances1 = index1.query(x2) mem_temp = io.BytesIO() pickle.dump(index1, mem_temp) mem_temp.seek(0) index2 = pickle.load(mem_temp) neighbors2, distances2 = index2.query(x2) np.testing.assert_equal(neighbors1, neighbors2) np.testing.assert_equal(distances1, distances2) def test_transformer_pickle_unpickle(): seed = np.random.RandomState(42) x1 = seed.normal(0, 100, (1000, 50)) x2 = seed.normal(0, 100, (1000, 50)) index1 = PyNNDescentTransformer(n_neighbors=10).fit(x1) result1 = index1.transform(x2) mem_temp = io.BytesIO() pickle.dump(index1, mem_temp) mem_temp.seek(0) index2 = pickle.load(mem_temp) result2 = index2.transform(x2) np.testing.assert_equal(result1.indices, result2.indices) np.testing.assert_equal(result1.data, result2.data) def test_joblib_dump(): seed = np.random.RandomState(42) x1 = seed.normal(0, 100, (1000, 50)) x2 = seed.normal(0, 100, (1000, 50)) index1 = NNDescent(x1, "euclidean", {}, 10, random_state=None) neighbors1, distances1 = index1.query(x2) mem_temp = io.BytesIO() joblib.dump(index1, mem_temp) mem_temp.seek(0) index2 = joblib.load(mem_temp) neighbors2, distances2 = index2.query(x2) np.testing.assert_equal(neighbors1, neighbors2) np.testing.assert_equal(distances1, distances2)
# coding=utf-8 # Copyright 2022 The init2winit Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Flax implementation of the MLPerf ResNet V1.5 model.""" import functools from typing import Any, Optional, Tuple from flax import linen as nn from init2winit import utils from init2winit.model_lib import base_model from init2winit.model_lib import model_utils from init2winit.model_lib import normalization import jax.numpy as jnp from ml_collections.config_dict import config_dict FAKE_MODEL_DEFAULT_HPARAMS = config_dict.ConfigDict(dict( num_filters=16, num_layers=18, # Must be one of [18, 34, 50, 101, 152, 200] layer_rescale_factors={}, lr_hparams={ 'batch_size': 128, 'base_lr': 10.0, 'decay_end': -1, 'end_lr': 1e-4, 'power': 2.0, 'schedule': 'mlperf_polynomial', 'start_lr': 0.0, 'steps_per_epoch': 10009.250000000002, 'warmup_steps': 18, }, optimizer='mlperf_lars_resnet', opt_hparams={ 'weight_decay': 2e-4, 'beta': 0.9 }, batch_size=128, l2_decay_factor=None, l2_decay_rank_threshold=2, label_smoothing=.1, use_shallue_label_smoothing=False, model_dtype='float32', virtual_batch_size=64, data_format='NHWC', )) # Used for the mlperf version of Resnet. MLPERF_DEFAULT_HPARAMS = config_dict.ConfigDict(dict( num_filters=16, # We set default to 18 for faster unit tests. num_layers=18, # Must be one of [18, 34, 50, 101, 152, 200] layer_rescale_factors={}, lr_hparams={ 'schedule': 'constant', 'base_lr': 0.2, }, optimizer='momentum', opt_hparams={ 'momentum': 0.9, }, batch_size=128, bn_output_scale=0.0, l2_decay_factor=None, l2_decay_rank_threshold=2, label_smoothing=None, rng_seed=-1, use_shallue_label_smoothing=False, batch_norm_momentum=0.9, batch_norm_epsilon=1e-5, model_dtype='float32', virtual_batch_size=64, total_accumulated_batch_size=None, data_format='NHWC', )) def _constant_init(factor): def init_fn(key, shape, dtype=jnp.float32): del key return jnp.ones(shape, dtype) * factor return init_fn class ResidualBlock(nn.Module): """Bottleneck ResNet block.""" filters: int strides: Tuple[int, int] = (1, 1) axis_name: Optional[str] = None axis_index_groups: Optional[Any] = None dtype: model_utils.Dtype = jnp.float32 batch_norm_momentum: float = 0.9 batch_norm_epsilon: float = 1e-5 bn_output_scale: float = 0.0 batch_size: Optional[int] = None virtual_batch_size: Optional[int] = None total_batch_size: Optional[int] = None data_format: Optional[str] = None @nn.compact def __call__(self, x, train): needs_projection = x.shape[-1] != self.filters * 4 or self.strides != (1, 1) batch_norm = functools.partial( normalization.VirtualBatchNorm, momentum=self.batch_norm_momentum, epsilon=self.batch_norm_epsilon, axis_name=self.axis_name, axis_index_groups=self.axis_index_groups, dtype=self.dtype, batch_size=self.batch_size, virtual_batch_size=self.virtual_batch_size, total_batch_size=self.total_batch_size, data_format=self.data_format) conv = functools.partial(nn.Conv, use_bias=False, dtype=self.dtype) residual = x if needs_projection: residual = conv( self.filters * 4, (1, 1), self.strides, name='proj_conv')(residual) residual = batch_norm(name='proj_bn')( residual, use_running_average=not train) y = conv(self.filters, (1, 1), name='conv1')(x) y = batch_norm(name='bn1')(y, use_running_average=not train) y = nn.relu(y) y = conv(self.filters, (3, 3), self.strides, name='conv2')(y) y = batch_norm(name='bn2')(y, use_running_average=not train) y = nn.relu(y) y = conv(self.filters * 4, (1, 1), name='conv3')(y) y = batch_norm( name='bn3', scale_init=_constant_init(self.bn_output_scale))( y, use_running_average=not train) y = nn.relu(residual + y) return y class ResNet(nn.Module): """ResNetV1.""" num_classes: int num_filters: int = 64 num_layers: int = 50 axis_name: Optional[str] = None axis_index_groups: Optional[Any] = None dtype: model_utils.Dtype = jnp.float32 batch_norm_momentum: float = 0.9 batch_norm_epsilon: float = 1e-5 bn_output_scale: float = 0.0 batch_size: Optional[int] = None virtual_batch_size: Optional[int] = None total_batch_size: Optional[int] = None data_format: Optional[str] = None @nn.compact def __call__(self, x, train): if self.num_layers not in _block_size_options: raise ValueError('Please provide a valid number of layers') block_sizes = _block_size_options[self.num_layers] conv = functools.partial(nn.Conv, padding=[(3, 3), (3, 3)]) x = conv(self.num_filters, kernel_size=(7, 7), strides=(2, 2), use_bias=False, dtype=self.dtype, name='conv0')(x) x = normalization.VirtualBatchNorm( momentum=self.batch_norm_momentum, epsilon=self.batch_norm_epsilon, name='init_bn', axis_name=self.axis_name, axis_index_groups=self.axis_index_groups, dtype=self.dtype, batch_size=self.batch_size, virtual_batch_size=self.virtual_batch_size, total_batch_size=self.total_batch_size, data_format=self.data_format)(x, use_running_average=not train) x = nn.relu(x) # MLPerf-required x = nn.max_pool(x, (3, 3), strides=(2, 2), padding='SAME') for i, block_size in enumerate(block_sizes): for j in range(block_size): strides = (2, 2) if i > 0 and j == 0 else (1, 1) x = ResidualBlock( self.num_filters * 2 ** i, strides=strides, axis_name=self.axis_name, axis_index_groups=self.axis_index_groups, dtype=self.dtype, batch_norm_momentum=self.batch_norm_momentum, batch_norm_epsilon=self.batch_norm_epsilon, bn_output_scale=self.bn_output_scale, batch_size=self.batch_size, virtual_batch_size=self.virtual_batch_size, total_batch_size=self.total_batch_size, data_format=self.data_format)(x, train=train) x = jnp.mean(x, axis=(1, 2)) x = nn.Dense(self.num_classes, kernel_init=nn.initializers.normal(), dtype=self.dtype)(x) return x # a dictionary mapping the number of layers in a resnet to the number of blocks # in each stage of the model. _block_size_options = { 18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], 200: [3, 24, 36, 3] } class FakeResNet(nn.Module): """Minimal NN (for debugging) with the same signature as a ResNet.""" num_classes: int axis_name: Optional[str] = None axis_index_groups: Optional[Any] = None dtype: model_utils.Dtype = jnp.float32 @nn.compact def __call__(self, x, train): x = nn.BatchNorm( use_running_average=not train, momentum=0.9, epsilon=1e-5, name='init_bn', axis_name=self.axis_name, axis_index_groups=self.axis_index_groups, dtype=self.dtype)(x) x = jnp.mean(x, axis=(1, 2)) x = nn.Dense(self.num_classes, kernel_init=nn.initializers.normal(), dtype=self.dtype)(x) return x class ResnetModelMLPerf(base_model.BaseModel): """MLPerf ResNet.""" def build_flax_module(self): return ResNet( num_classes=self.hps['output_shape'][-1], num_filters=self.hps.num_filters, num_layers=self.hps.num_layers, dtype=utils.dtype_from_str(self.hps.model_dtype), batch_norm_momentum=self.hps.batch_norm_momentum, batch_norm_epsilon=self.hps.batch_norm_epsilon, bn_output_scale=self.hps.bn_output_scale, batch_size=self.hps.batch_size, virtual_batch_size=self.hps.virtual_batch_size, total_batch_size=self.hps.total_accumulated_batch_size, data_format=self.hps.data_format) class FakeModel(base_model.BaseModel): """Fake Model for easy debugging.""" def build_flax_module(self): return FakeResNet(num_classes=self.hps['output_shape'][-1])
import mcpi.minecraft as minecraft mc = minecraft.Minecraft.create() NORTH = 2 SOUTH = 0 def fill(start_x, start_y, start_z, block=49, size=5, facing=NORTH): for x in range(0, size): for y in range(0, 5): mc.setBlock(start_x + (facing-1) * x, start_y + y, start_z, block) def a(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) def b(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x, y + height, z, fg_block) # horizontal lines for width in range(0, 4): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) # right side dots mc.setBlock(x + (facing-1) * 4, y + 1, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + 3, z, fg_block) def c(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) def d(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x, y + height, z, fg_block) if (height < 4) and (height > 0): mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) # horizontal lines for width in range(0, 4): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) def e(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) def f(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) if (width < 4): mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) def g(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x, y + height, z, fg_block) if height < 3: mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) if (width > 1): mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) if (width < 4): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) def h(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) def i(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x + (facing-1) * 2, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) def j(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x + (facing-1) * 3, y + height, z, fg_block) if height < 2: mc.setBlock(x + (facing-1) * 0, y + height, z, fg_block) # horizontal lines for width in range(0, 5): if width < 4: mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) if width > 1: mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) def k(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x, y + height, z, fg_block) if height == 2: mc.setBlock(x + (facing-1) * 1, y + height, z, fg_block) # Diagnal lines mc.setBlock(x + (facing-1) * 2, y + 1, z, fg_block) mc.setBlock(x + (facing-1) * 2, y + 3, z, fg_block) mc.setBlock(x + (facing-1) * 3, y + 0, z, fg_block) mc.setBlock(x + (facing-1) * 3, y + 4, z, fg_block) def l(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x + (facing-1) * 0, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) def m(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 4): mc.setBlock(x + (facing-1) * 0, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) if (height > 1) and (height < 5): mc.setBlock(x + (facing-1) * 2, y + height, z, fg_block) # top dots mc.setBlock(x + (facing-1) * 1, y + 4, z, fg_block) mc.setBlock(x + (facing-1) * 3, y + 4, z, fg_block) def n(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x + (facing-1) * 0, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) if (height > 2): mc.setBlock(x + (facing-1) * 1, y + height, z, fg_block) if (height > 1) and (height < 4): mc.setBlock(x + (facing-1) * 2, y + height, z, fg_block) if (height > 0) and (height < 3): mc.setBlock(x + (facing-1) * 3, y + height, z, fg_block) def o(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): if (height > 0) and (height < 4): mc.setBlock(x + (facing-1) * 0, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) # horizontal lines for width in range(0, 5): if (width > 0) and (width < 4): mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) def p(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x, y + height, z, fg_block) if (height == 3): mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) # horizontal lines for width in range(0, 4): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) def q(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): if (height > 0) and (height < 4): mc.setBlock(x + (facing-1) * 0, y + height, z, fg_block) if (height > 1): mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) # horizontal lines for width in range(0, 5): if (width > 0) and (width < 4): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) if (width < 3): mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) # diagnal line mc.setBlock(x + (facing-1) * 4, y, z, fg_block) mc.setBlock(x + (facing-1) * 3, y + 1, z, fg_block) def r(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x, y + height, z, fg_block) if height > 2: mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + 0, z, fg_block) mc.setBlock(x + (facing-1) * 3, y + 1, z, fg_block) def s(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): if (height < 3): mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) if (height > 2): mc.setBlock(x + (facing-1) * 0, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) def t(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x + (facing-1) * 2, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) def u(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(1, 5): mc.setBlock(x + (facing-1) * 0, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) # horizontal lines for width in range(1, 4): mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) def v(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): if (height > 2): mc.setBlock(x + (facing-1) * 0, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) if (height < 3) and (height > 0): mc.setBlock(x + (facing-1) * 1, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 3, y + height, z, fg_block) # bottom dot mc.setBlock(x + (facing-1) * 2, y + 0, z, fg_block) def w(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(1, 5): mc.setBlock(x + (facing-1) * 0, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) if (height > 0) and (height < 3): mc.setBlock(x + (facing-1) * 2, y + height, z, fg_block) # bottom dots mc.setBlock(x + (facing-1) * 1, y + 0, z, fg_block) mc.setBlock(x + (facing-1) * 3, y + 0, z, fg_block) def eks(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): if (height == 0) or (height == 4): mc.setBlock(x + (facing-1) * 0, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) if (height == 1) or (height == 3): mc.setBlock(x + (facing-1) * 1, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 3, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 2, y + 2, z, fg_block) def why(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): if height == 4: mc.setBlock(x + (facing-1) * 0, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) if height == 3: mc.setBlock(x + (facing-1) * 1, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 3, y + height, z, fg_block) if (height < 3): mc.setBlock(x + (facing-1) * 2, y + height, z, fg_block) def zee(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # horizontal lines for width in range(0, 5): if (width < 4): mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) if (width > 0): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) # center diagonal mc.setBlock(x + (facing-1) * 1, y + 3, z, fg_block) mc.setBlock(x + (facing-1) * 2, y + 2, z, fg_block) mc.setBlock(x + (facing-1) * 3, y + 1, z, fg_block) def one(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x + (facing-1) * 2, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) if (width > 0) and (width < 3): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) def two(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines mc.setBlock(x, y + 1, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + 3, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) def three(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(1, 4): mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) # horizontal lines for width in range(0, 5): if (width < 4): mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) if (width > 0): mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) def four(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) if (height > 1): mc.setBlock(x + (facing-1) * 0, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) def five(x, y, z, fg_block=57, bg_block=49, facing=NORTH): s(x, y, z, fg_block, bg_block) def six(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x + (facing-1) * 0, y + height, z, fg_block) if (height < 3): mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) def seven(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 2): mc.setBlock(x + (facing-1) * 2, y + height, z, fg_block) mc.setBlock(x + (facing-1) * 3, y + 2, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + 3, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) def eight(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical dots mc.setBlock(x + (facing-1) * 4, y + 1, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + 3, z, fg_block) mc.setBlock(x + (facing-1) * 0, y + 1, z, fg_block) mc.setBlock(x + (facing-1) * 0, y + 3, z, fg_block) # horizontal lines for width in range(1, 4): mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) def nine(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # horizontal lines for height in range(1, 4): mc.setBlock(x + (facing-1) * 4, y + height, z, fg_block) # vertical dots mc.setBlock(x + (facing-1) * 0, y + 0, z, fg_block) mc.setBlock(x + (facing-1) * 0, y + 3, z, fg_block) # horizontal lines for width in range(1, 4): mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 4, z, fg_block) def zero(x, y, z, fg_block=57, bg_block=49, facing=NORTH): o(x, y, z, fg_block, bg_block) def period(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, size=1) mc.setBlock(x + (facing-1) * 0, y + 0, z, fg_block) def comma(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, size=2) mc.setBlock(x + (facing-1) * 0, y + 0, z, fg_block) mc.setBlock(x + (facing-1) * 1, y + 1, z, fg_block) def colon(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, size=1) mc.setBlock(x + (facing-1) * 0, y + 1, z, fg_block) mc.setBlock(x + (facing-1) * 0, y + 3, z, fg_block) def semicolon(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, size=2) mc.setBlock(x + (facing-1) * 0, y + 0, z, fg_block) mc.setBlock(x + (facing-1) * 1, y + 1, z, fg_block) mc.setBlock(x + (facing-1) * 1, y + 3, z, fg_block) def plus(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines for height in range(0, 5): mc.setBlock(x + (facing-1) * 2, y + height, z, fg_block) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) def minus(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 2, z, fg_block) def equals(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 1, z, fg_block) mc.setBlock(x + (facing-1) * width, y + 3, z, fg_block) def times(x, y, z, fg_block=57, bg_block=49, facing=NORTH): eks(x, y, z, fg_block=57, bg_block=49) def divide(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # vertical lines mc.setBlock(x + (facing-1) * 0, y + 0, z, fg_block) mc.setBlock(x + (facing-1) * 1, y + 1, z, fg_block) mc.setBlock(x + (facing-1) * 2, y + 2, z, fg_block) mc.setBlock(x + (facing-1) * 3, y + 3, z, fg_block) mc.setBlock(x + (facing-1) * 4, y + 4, z, fg_block) def underscore(x, y, z, fg_block=57, bg_block=49, facing=NORTH): fill(x, y, z, bg_block, facing=facing) # horizontal lines for width in range(0, 5): mc.setBlock(x + (facing-1) * width, y + 0, z, fg_block) def letter_space(x, y, z, block=49): # vertical lines for height in range(0, 5): mc.setBlock(x, y + height, z, block) def draw_str(x, y, z, str, fg_block=57, bg_block=49, border=False, facing=NORTH): lines = str.split("\n") cur_y = ((len(lines) - 1) * 6) + y last_line = len(lines) - 1 for j, line in enumerate(lines): last = len(line) - 1 cur_x = x line_width = 0 for i, letter in enumerate(line): if letter == ' ': alphabet[letter](cur_x, cur_y, z, bg_block, facing=facing) letter_width = 5 elif (letter == ','): alphabet[letter](cur_x, cur_y, z, fg_block, bg_block, facing=facing) letter_width = 2 elif (letter == ':') or (letter == '.'): alphabet[letter](cur_x, cur_y, z, fg_block, bg_block, facing=facing) letter_width = 1 else: alphabet[letter](cur_x, cur_y, z, fg_block, bg_block, facing=facing) letter_width = 5 if i != last: letter_space(cur_x + (facing-1) * letter_width, cur_y, z, bg_block) cur_x += (facing-1) * (letter_width + 1) line_width += letter_width + 1 if border: # border on top for width in range(0, line_width - 1): mc.setBlock(x + (facing-1) * width, cur_y + 5, z, bg_block) # left border for height in range(-1, 6): mc.setBlock(x - (facing-1) * 1, cur_y + height, z, bg_block) # right border for height in range(-1, 6): mc.setBlock(x + (facing-1) * (line_width - 1), cur_y + height, z, bg_block) # fill empty line for width in range(0, line_width - 1): mc.setBlock(x + (facing-1) * width, cur_y - 1, z, bg_block) cur_y -= 6 alphabet = {'a': a, 'b': b, 'c': c, 'd': d, 'e': e, 'f': f, 'g': g, 'h': h, 'i': i, 'j': j, 'k': k, 'l': l, 'm': m, 'n': n, 'o': o, 'p': p, 'q': q, 'r': r, 's': s, 't': t, 'u': u, 'v': v, 'w': w, 'x': eks, 'y': why, 'z': zee, ' ': fill, '1': one, '2': two, '3': three, '4': four, '5': five, '6': six, '7': seven, '8': eight, '9': nine, '0': zero, '.': period, ',': comma, ':': colon, '+': plus, '-': minus, '=': equals, '*': times, '/': divide, '_': underscore} if __name__ == "__main__": pos = mc.player.getPos() draw_str(pos.x, pos.y + 1, pos.z - 1, "hello\nworld", fg_block=74, bg_block=49, border=True, facing=SOUTH)
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Train ml rnn model.""" import argparse import math import os import sys import time import numpy as np import tensorflow as tf from clusterfuzz._internal.bot.fuzzers.ml.rnn import constants from clusterfuzz._internal.bot.fuzzers.ml.rnn import utils # Training suggestions # # Training only: # Leave all the parameters as they are in constants.py. # Disable validation to run a bit faster (set validation=False). # You can follow progress in Tensorboard: tensorboard --logdir=log # # Training and experimenting (default): # Keep validation enabled. # You can now play with the parameters and follow the effects in # Tensorboard. # A good choice of parameters ensures that the testing and validation # curves stay close. To see the curves drift apart ("overfitting") try # to use an insufficient amount of training data. @tf.function def train_step(model, optimizer, input_data, expected_data, train=False): """Train the model for one step. Args: model: RNN model to train/predict. optimize: optimizer to use to train the model. input_data: input sequence to the model. expected_data: expected output of the model. Returns: Tuple containing the sequential loss between the expected output and the real output, the batch loss between the two, the accuracy metric value as well as the most likely predicted output. """ with tf.GradientTape() as tape: predicted_data = model(input_data) loss = tf.keras.losses.sparse_categorical_crossentropy( expected_data, predicted_data, from_logits=True) seq_loss = tf.reduce_mean(input_tensor=loss, axis=1) batch_loss = tf.reduce_mean(input_tensor=seq_loss) output_bytes = tf.cast( tf.argmax(predicted_data, axis=-1), expected_data.dtype) accuracy = tf.reduce_mean( tf.cast(tf.equal(expected_data, output_bytes), tf.float32)) if train: grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) return seq_loss, batch_loss, accuracy, output_bytes def main(args): """Main function to train the model. Args: args: Parsed arguments. Returns: Execution status defined by `constants.ExitCode`. """ # Validate paths. if not validate_paths(args): return constants.ExitCode.INVALID_PATH # Extract paths. input_dir = args.input_dir model_dir = args.model_dir log_dir = args.log_dir existing_model = args.existing_model # Extract model parameters. batch_size = args.batch_size dropout_pkeep = args.dropout_pkeep hidden_state_size = args.hidden_state_size hidden_layer_size = args.hidden_layer_size learning_rate = args.learning_rate # Extract additional flags. debug = args.debug validation = args.validation # Split corpus for training and validation. # validation_text will be empty if validation is False. code_text, validation_text, input_ranges = utils.read_data_files( input_dir, validation=validation) # Bail out if we don't have enough corpus for training. if len(code_text) < batch_size * constants.TRAINING_SEQLEN + 1: return constants.ExitCode.CORPUS_TOO_SMALL # Get corpus files info. Will be used in debug mode to generate sample text. files_info_list = [] if debug: files_info_list = utils.get_files_info(input_dir) assert files_info_list # Calculate validation batch size. It will be 0 if we choose not to validate. validation_batch_size = len(validation_text) // constants.VALIDATION_SEQLEN # Display some stats on the data. epoch_size = len(code_text) // (batch_size * constants.TRAINING_SEQLEN) utils.print_data_stats(len(code_text), len(validation_text), epoch_size) # Set global random seed, so any random sequence generated is repeatable. # It could also be removed. tf.random.set_seed(0) # Build the RNN model. model = utils.build_model(hidden_layer_size * hidden_state_size, dropout_pkeep, batch_size, debug) # Choose Adam optimizer to compute gradients. optimizer = tf.keras.optimizers.Adam(learning_rate) # Init Tensorboard stuff. # This will save Tensorboard information in folder specified in command line. # Two sets of data are saved so that you can compare training and # validation curves visually in Tensorboard. timestamp = str(math.trunc(time.time())) summary_writer = tf.summary.create_file_writer( os.path.join(log_dir, timestamp + '-training')) validation_writer = tf.summary.create_file_writer( os.path.join(log_dir, timestamp + '-validation')) # For display: init the progress bar. step_size = batch_size * constants.TRAINING_SEQLEN frequency = constants.DISPLAY_FREQ * step_size progress = utils.Progress( constants.DISPLAY_FREQ, size=constants.DISPLAY_LEN, msg='Training on next {} batches'.format(constants.DISPLAY_FREQ)) # We continue training on existing model, or start with a new model. if existing_model: print('Continue training on existing model: {}'.format(existing_model)) try: model.load_weights(existing_model) except: print( ('Failed to restore existing model since model ' 'parameters do not match.'), file=sys.stderr) return constants.ExitCode.TENSORFLOW_ERROR else: print('No existing model provided. Start training with a new model.') # Num of bytes we have trained so far. steps = 0 # Training loop. for input_batch, expected_batch, epoch in utils.rnn_minibatch_sequencer( code_text, batch_size, constants.TRAINING_SEQLEN, nb_epochs=constants.EPOCHS): # Train on one mini-batch. seq_loss, batch_loss, accuracy, output_bytes = train_step( model, optimizer, input_batch, expected_batch, train=True) # Log training data for Tensorboard display a mini-batch of sequences # every `frequency` batches. if debug and steps % frequency == 0: utils.print_learning_learned_comparison( input_batch, output_bytes, seq_loss, input_ranges, batch_loss, accuracy, epoch_size, steps, epoch) with summary_writer.as_default(): # pylint: disable=not-context-manager tf.summary.scalar('batch_loss', batch_loss, step=steps) tf.summary.scalar('batch_accuracy', accuracy, step=steps) summary_writer.flush() # Run a validation step every `frequency` batches. # The validation text should be a single sequence but that's too slow. # We cut it up and batch the pieces (slightly inaccurate). if validation and steps % frequency == 0 and validation_batch_size: utils.print_validation_header(len(code_text), input_ranges) validation_x, validation_y, _ = next( utils.rnn_minibatch_sequencer(validation_text, validation_batch_size, constants.VALIDATION_SEQLEN, 1)) validation_model = utils.build_model( hidden_layer_size * hidden_state_size, dropout_pkeep, validation_batch_size, False) last_weights = tf.train.latest_checkpoint(model_dir) if last_weights: validation_model.load_weights(tf.train.latest_checkpoint(model_dir)) validation_model.build(tf.TensorShape([validation_batch_size, None])) validation_model.reset_states() # Run one single inference step _, batch_loss, accuracy, _ = train_step( validation_model, optimizer, validation_x, validation_y, train=False) utils.print_validation_stats(batch_loss, accuracy) # Save validation data for Tensorboard. with validation_writer.as_default(): # pylint: disable=not-context-manager tf.summary.scalar('batch_loss', batch_loss, step=steps) tf.summary.scalar('batch_accuracy', accuracy, step=steps) validation_writer.flush() # Display a short text generated with the current weights and biases. # If enabled, there will be a large output. if debug and steps // 4 % frequency == 0: utils.print_text_generation_header() file_info = utils.random_element_from_list(files_info_list) first_byte, file_size = file_info['first_byte'], file_info['file_size'] ry = np.array([[first_byte]]) sample = [first_byte] generation_model = utils.build_model( hidden_layer_size * hidden_state_size, dropout_pkeep, 1, False) last_weights = tf.train.latest_checkpoint(model_dir) if last_weights: generation_model.load_weights(tf.train.latest_checkpoint(model_dir)) generation_model.build(tf.TensorShape([1, None])) generation_model.reset_states() for _ in range(file_size - 1): prediction = generation_model(ry) prediction = tf.squeeze(prediction, 0).numpy() rc = utils.sample_from_probabilities( prediction, topn=10 if epoch <= 1 else 2) sample.append(rc) ry = np.array([[rc]]) print(repr(utils.decode_to_text(sample))) utils.print_text_generation_footer() # Save a checkpoint every `10 * frequency` batches. Each checkpoint is # a version of model. if steps // 10 % frequency == 0: saved_model_name = constants.RNN_MODEL_NAME + '_' + timestamp saved_model_path = os.path.join(model_dir, saved_model_name) model.save_weights(saved_model_path) print('Saved model: {}'.format(saved_model_path)) # Display progress bar. if debug: progress.step(reset=steps % frequency == 0) # Update state. steps += step_size # Save the model after training is done. saved_model_name = constants.RNN_MODEL_NAME + '_' + timestamp saved_model_path = os.path.join(model_dir, saved_model_name) model.save_weights(saved_model_path) print('Saved model: {}'.format(saved_model_path)) return constants.ExitCode.SUCCESS def validate_paths(args): """Validate paths. Args: args: Parsed arguments. Returns: True if all paths are valid, False otherwise. """ if not os.path.exists(args.input_dir): print( 'Input directory {} does not exist'.format(args.input_dir), file=sys.stderr) return False if not os.path.exists(args.model_dir): os.mkdir(args.model_dir) if not os.path.exists(args.log_dir): os.mkdir(args.log_dir) if args.existing_model and not utils.validate_model_path(args.existing_model): print( 'Existing model {} does not exist'.format(args.existing_model), file=sys.stderr) return False return True def parse_args(): """Parse command line arguments. Returns: Parsed arguement object. """ parser = argparse.ArgumentParser('Training RNN model on existing testcases') parser.add_argument('--input-dir', help='Input folder path', required=True) parser.add_argument('--log-dir', help='Log folder path', required=True) parser.add_argument('--model-dir', help='Path to save models', required=True) # Optional arguments: model parameters and additional flags. parser.add_argument( '--batch-size', help='Batch size', type=int, default=constants.BATCH_SIZE) parser.add_argument( '--debug', help='Print training progress', action='store_true') parser.add_argument( '--dropout-pkeep', help='Dropout probability (keep rate)', type=float, default=constants.DROPOUT_PKEEP) parser.add_argument( '--existing-model', help='Continue training on existing model') parser.add_argument( '--hidden-state-size', help='Hidden state size of LSTM cell', type=int, default=constants.HIDDEN_STATE_SIZE) parser.add_argument( '--hidden-layer-size', help='Hidden layer size of LSTM model', type=int, default=constants.HIDDEN_LAYER_SIZE) parser.add_argument( '--learning-rate', help='Learning rate', type=float, default=constants.LEARNING_RATE) parser.add_argument( '--validation', help='Print validation stats during training', action='store_true') return parser.parse_args() if __name__ == '__main__': parsed_args = parse_args() sys.exit(main(parsed_args))
# coding=utf-8 # Copyright 2020 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 r"""Sample training with distributed collection using a variable container. See README for launch instructions. """ import os from typing import Callable, Text from absl import app from absl import flags from absl import logging import gin import tensorflow.compat.v2 as tf from tf_agents.agents import tf_agent from tf_agents.agents.ddpg import critic_network from tf_agents.agents.sac import sac_agent from tf_agents.agents.sac import tanh_normal_projection_network from tf_agents.environments import py_environment from tf_agents.environments import suite_mujoco from tf_agents.experimental.distributed import reverb_variable_container from tf_agents.networks import actor_distribution_network from tf_agents.replay_buffers import reverb_replay_buffer from tf_agents.system import system_multiprocessing as multiprocessing from tf_agents.train import learner from tf_agents.train import triggers from tf_agents.train.utils import spec_utils from tf_agents.train.utils import strategy_utils from tf_agents.train.utils import train_utils from tf_agents.trajectories import time_step as ts from tf_agents.typing import types flags.DEFINE_string('root_dir', os.getenv('TEST_UNDECLARED_OUTPUTS_DIR'), 'Root directory for writing logs/summaries/checkpoints.') flags.DEFINE_string('env_name', None, 'Name of the environment') flags.DEFINE_string('replay_buffer_server_address', None, 'Replay buffer server address.') flags.DEFINE_string('variable_container_server_address', None, 'Variable container server address.') flags.DEFINE_multi_string('gin_file', None, 'Paths to the gin-config files.') flags.DEFINE_multi_string('gin_bindings', None, 'Gin binding parameters.') FLAGS = flags.FLAGS def _create_agent(train_step: tf.Variable, observation_tensor_spec: types.NestedTensorSpec, action_tensor_spec: types.NestedTensorSpec, time_step_tensor_spec: ts.TimeStep, learning_rate: float) -> tf_agent.TFAgent: """Creates an agent.""" critic_net = critic_network.CriticNetwork( (observation_tensor_spec, action_tensor_spec), observation_fc_layer_params=None, action_fc_layer_params=None, joint_fc_layer_params=(256, 256), kernel_initializer='glorot_uniform', last_kernel_initializer='glorot_uniform') actor_net = actor_distribution_network.ActorDistributionNetwork( observation_tensor_spec, action_tensor_spec, fc_layer_params=(256, 256), continuous_projection_net=tanh_normal_projection_network .TanhNormalProjectionNetwork) return sac_agent.SacAgent( time_step_tensor_spec, action_tensor_spec, actor_network=actor_net, critic_network=critic_net, actor_optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), critic_optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), alpha_optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), target_update_tau=0.005, target_update_period=1, td_errors_loss_fn=tf.math.squared_difference, gamma=0.99, reward_scale_factor=0.1, gradient_clipping=None, train_step_counter=train_step) @gin.configurable def train( root_dir: Text, environment_name: Text, strategy: tf.distribute.Strategy, replay_buffer_server_address: Text, variable_container_server_address: Text, suite_load_fn: Callable[[Text], py_environment.PyEnvironment] = suite_mujoco.load, # Training params learning_rate: float = 3e-4, batch_size: int = 256, num_iterations: int = 2000000, learner_iterations_per_call: int = 1) -> None: """Trains a SAC agent.""" # Get the specs from the environment. logging.info('Training SAC with learning rate: %f', learning_rate) env = suite_load_fn(environment_name) observation_tensor_spec, action_tensor_spec, time_step_tensor_spec = ( spec_utils.get_tensor_specs(env)) # Create the agent. with strategy.scope(): train_step = train_utils.create_train_step() agent = _create_agent( train_step=train_step, observation_tensor_spec=observation_tensor_spec, action_tensor_spec=action_tensor_spec, time_step_tensor_spec=time_step_tensor_spec, learning_rate=learning_rate) # Create the policy saver which saves the initial model now, then it # periodically checkpoints the policy weigths. saved_model_dir = os.path.join(root_dir, learner.POLICY_SAVED_MODEL_DIR) save_model_trigger = triggers.PolicySavedModelTrigger( saved_model_dir, agent, train_step, interval=1000) # Create the variable container. variables = { reverb_variable_container.POLICY_KEY: agent.collect_policy.variables(), reverb_variable_container.TRAIN_STEP_KEY: train_step } variable_container = reverb_variable_container.ReverbVariableContainer( variable_container_server_address, table_names=[reverb_variable_container.DEFAULT_TABLE]) variable_container.push(variables) # Create the replay buffer. reverb_replay = reverb_replay_buffer.ReverbReplayBuffer( agent.collect_data_spec, sequence_length=2, table_name=reverb_replay_buffer.DEFAULT_TABLE, server_address=replay_buffer_server_address) # Initialize the dataset. def experience_dataset_fn(): with strategy.scope(): return reverb_replay.as_dataset( sample_batch_size=batch_size, num_steps=2).prefetch(3) # Create the learner. learning_triggers = [ save_model_trigger, triggers.StepPerSecondLogTrigger(train_step, interval=1000) ] sac_learner = learner.Learner( root_dir, train_step, agent, experience_dataset_fn, triggers=learning_triggers, strategy=strategy) # Run the training loop. while train_step.numpy() < num_iterations: sac_learner.run(iterations=learner_iterations_per_call) variable_container.push(variables) def main(_): logging.set_verbosity(logging.INFO) tf.enable_v2_behavior() gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_bindings) strategy = strategy_utils.get_strategy(FLAGS.tpu, FLAGS.use_gpu) train( root_dir=FLAGS.root_dir, environment_name=FLAGS.env_name, strategy=strategy, replay_buffer_server_address=FLAGS.replay_buffer_server_address, variable_container_server_address=FLAGS.variable_container_server_address) if __name__ == '__main__': flags.mark_flags_as_required([ 'root_dir', 'env_name', 'replay_buffer_server_address', 'variable_container_server_address' ]) multiprocessing.handle_main(lambda _: app.run(main))
import importlib import os import shlex import traceback from xml.dom import minidom from .util import make_dirs, remove_tree def get_rerun_targets(xml_file: str): test_targets = [] doc = minidom.parse(xml_file) if doc.documentElement.nodeName == "testsuites": root = doc.documentElement else: root = doc for test_suite_node in root.getElementsByTagName("testsuite"): for test_case_node in test_suite_node.getElementsByTagName("testcase"): if test_case_node.getElementsByTagName("failure") or test_case_node.getElementsByTagName("skipped"): test_target = "%s.%s" % (test_case_node.getAttribute("classname"), test_case_node.getAttribute("name")) test_targets.append(test_target) return test_targets def merge_xunit_xmls(xml_files: str, to_file: str): from .plogger import pconsole from .test_suite import default_test_suite pconsole.write_line("Start to merge xunit result xmls...") test_case_results = {} for xml_file in xml_files: doc = minidom.parse(xml_file) if doc.documentElement.nodeName == "testsuites": root = doc.documentElement else: root = doc for test_suite_node in root.getElementsByTagName("testsuite"): for test_case_node in test_suite_node.getElementsByTagName("testcase"): test_case_name = "%s.%s" % (test_case_node.getAttribute("classname"), test_case_node.getAttribute("name")) test_case_status = 0 # passed if test_case_node.getElementsByTagName("failure"): test_case_status = 1 # failed elif test_case_node.getElementsByTagName("skipped"): test_case_status = 2 # skipped if test_case_name not in test_case_results or test_case_status < test_case_results[test_case_name]["status"]: test_case_results[test_case_name] = {"status": test_case_status, "node": test_case_node} doc = minidom.Document() test_suite_ele = doc.createElement("testsuite") doc.appendChild(test_suite_ele) test_suite_ele.setAttribute("name", default_test_suite.name) test_suite_ele.setAttribute("tests", str(len(test_case_results))) test_suite_ele.setAttribute("failures", str(len([result for result in test_case_results.values() if result["status"] == 1]))) test_suite_ele.setAttribute("skips", str(len([result for result in test_case_results.values() if result["status"] == 2]))) test_suite_ele.setAttribute("errors", "0") for test_case_result in test_case_results.values(): test_suite_ele.appendChild(test_case_result["node"]) if os.path.exists(to_file): pconsole.write_line("Cleaning old merged xunit result xml...") os.remove(to_file) else: make_dirs(os.path.dirname(to_file)) f = open(to_file, mode="w", encoding="utf-8") try: doc.writexml(f, "\t", "\t", "\n", "utf-8") pconsole.write_line("Merged xunit xml is generated at %s" % to_file) except Exception: pconsole.write_line("Failed to generate merged xunit xml.\n%s" % traceback.format_exc()) finally: f.close() def main(args=None): import sys from . import config # load arguments if args is None: args = sys.argv[1:] elif not isinstance(args, (tuple, list)): if not isinstance(args, str): sys.stderr.write("ERROR: args <%s> is not a string or argument list." % args) return args = shlex.split(args) config.load(args) # merge xunit result xmls xunit_xmls = config.get_option("merge_xunit_xmls") if xunit_xmls is not None: merge_xunit_xmls(xunit_xmls, config.get_option("to")) return # run test from .test_filter import TestFilterGroup, TestIncludeTagsFilter, TestExcludeTagsFilter, TestIncludeGroupsFilter from . import test_executor, reporter, plistener from .test_finder import TestFinder from .test_suite import default_test_suite from .plogger import pconsole pconsole.write_line("Starting ptest...") # add workspace to python path workspace = config.get_option("workspace") sys.path.insert(0, workspace) pconsole.write_line("Workspace:") pconsole.write_line(" %s" % workspace) # add python_paths to python path python_paths = config.get_option("python_paths") if python_paths is not None: pconsole.write_line("Python paths:") for python_path in python_paths: sys.path.append(python_path) pconsole.write_line(" %s" % python_path) # test filter group test_filter_group = TestFilterGroup() include_tags = config.get_option("include_tags") if include_tags is not None: test_filter_group.append_filter(TestIncludeTagsFilter(include_tags)) exclude_tags = config.get_option("exclude_tags") if exclude_tags is not None: test_filter_group.append_filter(TestExcludeTagsFilter(exclude_tags)) include_groups = config.get_option("include_groups") if include_groups is not None: test_filter_group.append_filter(TestIncludeGroupsFilter(include_groups)) filter_path = config.get_option("test_filter") if filter_path is not None: splitted_filter_path = filter_path.split(".") filter_module = importlib.import_module(".".join(splitted_filter_path[:-1])) filter_class = getattr(filter_module, splitted_filter_path[-1]) test_filter_group.append_filter(filter_class()) if test_filter_group: pconsole.write_line("Test filters:") for test_filter in test_filter_group: pconsole.write_line(" %s" % test_filter) # get test targets test_targets = config.get_option("test_targets") if test_targets is not None: pconsole.write_line("Test targets:") for test_target in test_targets: test_finder = TestFinder(test_target, test_filter_group, default_test_suite) test_finder.find_tests() if test_finder.repeated_test_count: pconsole.write_line( " %s (%s tests found, %s repeated)" % (test_target, test_finder.found_test_count, test_finder.repeated_test_count)) else: pconsole.write_line(" %s (%s tests found)" % (test_target, test_finder.found_test_count)) else: # rerun failed/skipped test cases pconsole.write_line("Run failed/skipped tests in xunit xml:") xunit_xml = config.get_option("run_failed") test_targets = get_rerun_targets(xunit_xml) found_test_count = 0 for test_target in test_targets: test_finder = TestFinder(test_target, test_filter_group, default_test_suite) test_finder.find_tests() found_test_count += test_finder.found_test_count pconsole.write_line(" %s (%s tests found)" % (xunit_xml, found_test_count)) # add test listeners listener_paths = config.get_option("test_listeners") if listener_paths is not None: pconsole.write_line("Test listeners:") for listener_path in listener_paths: pconsole.write_line(" %s" % listener_path) splitted_listener_path = listener_path.split(".") listener_module = importlib.import_module(".".join(splitted_listener_path[:-1])) listener_class = getattr(listener_module, splitted_listener_path[-1]) plistener.test_listeners.append(listener_class()) # init test suite default_test_suite.init() test_cases = default_test_suite.test_cases # exit if no tests found if len(test_cases) == 0: pconsole.write_line("=" * 100) pconsole.write_line("No tests found. Please check your command line options.") return # add webdriver instance to test executor to support capturing screenshot for webdriver try: from selenium.webdriver.remote.webdriver import WebDriver except ImportError as ie: pass else: def add_web_driver(executor, web_driver): web_drivers = executor.get_property("web_drivers") if web_drivers is None: web_drivers = [] executor.update_properties({"web_drivers": web_drivers}) web_drivers.append(web_driver) def new_start_client(self): try: current_executor = test_executor.current_executor() add_web_driver(current_executor, self) add_web_driver(current_executor.parent_test_executor, self) add_web_driver(current_executor.parent_test_executor.parent_test_executor, self) except AttributeError as ae: pass def remove_web_driver(executor, web_driver): web_drivers = executor.get_property("web_drivers") if web_drivers: web_drivers.remove(web_driver) def new_stop_client(self): try: current_executor = test_executor.current_executor() remove_web_driver(current_executor, self) remove_web_driver(current_executor.parent_test_executor, self) remove_web_driver(current_executor.parent_test_executor.parent_test_executor, self) except AttributeError as ae: pass WebDriver.start_client = new_start_client WebDriver.stop_client = new_stop_client # print test names pconsole.write_line("=" * 100) pconsole.write_line("Start to run following %s tests:" % len(test_cases)) pconsole.write_line("-" * 30) for test_case in test_cases: pconsole.write_line(" %s" % test_case.full_name) pconsole.write_line("=" * 100) # clean and create temp dir temp_dir = config.get_option("temp") if os.path.exists(temp_dir): remove_tree(temp_dir, remove_root=False) else: make_dirs(temp_dir) # run test cases test_executor.TestSuiteExecutor(default_test_suite, int(config.get_option("test_executor_number"))).start_and_join() # log the test results status_count = default_test_suite.status_count pconsole.write_line("") pconsole.write_line("=" * 100) pconsole.write_line("Test finished in %.2fs." % default_test_suite.elapsed_time) pconsole.write_line("Total: %s, passed: %s, failed: %s, skipped: %s. Pass rate: %.1f%%." % ( status_count.total, status_count.passed, status_count.failed, status_count.skipped, default_test_suite.pass_rate)) # generate the test report pconsole.write_line("") pconsole.write_line("=" * 100) reporter.generate_xunit_xml(config.get_option("xunit_xml")) reporter.generate_html_report(config.get_option("report_dir")) # clean temp dir remove_tree(temp_dir)
from __future__ import absolute_import from __future__ import print_function import os import sublime from .const import AUTO_FORMAT_FILE_EXTENSIONS from .const import IS_ST3 from .const import PLUGIN_NAME from .const import PRETTIER_OPTIONS_KEY from .const import PROJECT_SETTINGS_KEY from .const import SETTINGS_FILENAME from .util import ensure_file_has_ext from .util import generate_dirs from .util import is_bool_str from .util import is_str_none_or_empty from .util import is_windows from .util import to_str from .util import which def st_status_message(msg): sublime.set_timeout(lambda: sublime.status_message('{0}: {1}'.format(PLUGIN_NAME, msg)), 0) def get_setting(view, key, default_value=None): settings = view.settings().get(PLUGIN_NAME) if settings is None or settings.get(key) is None: settings = sublime.load_settings(SETTINGS_FILENAME) value = settings.get(key, default_value) # check for project-level overrides: project_value = _get_project_setting(key) if project_value is None: return value return project_value def get_sub_setting(view, key=None): settings = view.settings().get(PLUGIN_NAME) if settings is None or settings.get(PRETTIER_OPTIONS_KEY).get(key) is None: settings = sublime.load_settings(SETTINGS_FILENAME) value = settings.get(PRETTIER_OPTIONS_KEY).get(key) # check for project-level overrides: project_value = _get_project_sub_setting(key) if project_value is None: return value return project_value def _get_project_setting(key): """Get a project setting. JsPrettier project settings are stored in the sublime project file as a dictionary, e.g.: "settings": { "js_prettier": { "key": "value", ... } } :param key: The project setting key. :return: The project setting value. :rtype: str """ project_settings = sublime.active_window().active_view().settings() if not project_settings: return None js_prettier_settings = project_settings.get(PROJECT_SETTINGS_KEY) if js_prettier_settings and key in js_prettier_settings: return js_prettier_settings[key] return None def _get_project_sub_setting(option): project_settings = sublime.active_window().active_view().settings() js_prettier_settings = project_settings.get(PROJECT_SETTINGS_KEY, None) if not js_prettier_settings: return None prettier_options = js_prettier_settings.get(PRETTIER_OPTIONS_KEY, None) if prettier_options and option in prettier_options: return prettier_options.get(option, None) return None def is_file_auto_formattable(view): filename = view.file_name() if not filename: return False file_ext = filename.rpartition('.')[-1] if file_ext == filename: return False if file_ext in AUTO_FORMAT_FILE_EXTENSIONS: return True if file_ext in set(get_setting(view, 'custom_file_extensions', [])): return True return False def get_st_project_path(): """Get the active Sublime Text project path. Original: https://gist.github.com/astronaughts/9678368 :rtype: object :return: The active Sublime Text project path. """ window = sublime.active_window() folders = window.folders() if len(folders) == 1: return folders[0] else: active_view = window.active_view() if active_view: active_file_name = active_view.file_name() else: active_file_name = None if not active_file_name: return folders[0] if len(folders) else os.path.expanduser('~') for folder in folders: if active_file_name.startswith(folder): return folder return os.path.dirname(active_file_name) def scroll_view_to(view, row_no, col_no): # error positions are offset by -1 # prettier -> sublime text row_no -= 1 col_no -= 1 textpoint = view.text_point(row_no, col_no) view.sel().clear() view.sel().add(sublime.Region(textpoint)) view.show_at_center(textpoint) def has_selection(view): for sel in view.sel(): if not sel.empty(): return True return False def resolve_prettier_cli_path(view, plugin_path, st_project_path): """The prettier cli path. When the `prettier_cli_path` setting is empty (""), the path is resolved by searching locations in the following order, returning the first match of the prettier cli path... 1. prettier installed relative to the view's active file: i.e. walk up the hierarchy from the current view's file and look for 'node_modules/.bin/prettier'. 2. Locally installed prettier, relative to a Sublime Text Project file's root directory, e.g.: `node_modules/.bin/prettier' and 'node_modules/prettier/bin-prettier.js'; 3. User's $HOME/node_modules directory. 4. Look in the JsPrettier Sublime Text plug-in directory for `node_modules/.bin/prettier`. 5. Finally, check if prettier is installed globally. :return: The prettier cli path. """ def make_local_prettier_path(somepath): return os.path.join(somepath, 'node_modules', '.bin', 'prettier') custom_prettier_cli_path = expand_var(view.window(), get_setting(view, 'prettier_cli_path', '')) if is_str_none_or_empty(custom_prettier_cli_path): # # 1. check for prettier installed relative to active view active_view_parents = generate_dirs(os.path.dirname(view.file_name()), limit=500) for parent in active_view_parents: closest_to_view_prettier = make_local_prettier_path(parent) if os.path.exists(closest_to_view_prettier): return closest_to_view_prettier # # 2. check locally installed prettier project_prettier_path = make_local_prettier_path(st_project_path) if os.path.exists(project_prettier_path): return project_prettier_path plugin_prettier_path = make_local_prettier_path(plugin_path) if os.path.exists(plugin_prettier_path): return plugin_prettier_path # # 3. check locally installed '--no-bin-links' prettier (see #146) project_prettier_path_nbl = os.path.join(st_project_path, 'node_modules', 'prettier', 'bin-prettier.js') plugin_prettier_path_nbl = os.path.join(plugin_path, 'node_modules', 'prettier', 'bin-prettier.js') if os.path.exists(project_prettier_path_nbl): return project_prettier_path_nbl if os.path.exists(plugin_prettier_path_nbl): return plugin_prettier_path_nbl # # 4. check globally install prettier prettier_cmd = 'prettier' if is_windows(): prettier_cmd = ensure_file_has_ext(prettier_cmd, ".cmd") return which(prettier_cmd) # handle cases when the user specifies a prettier cli path that is # relative to the working file or project: if not os.path.isabs(custom_prettier_cli_path): custom_prettier_cli_path = os.path.join(st_project_path, custom_prettier_cli_path) return os.path.normpath(custom_prettier_cli_path) # noinspection PyUnusedLocal def resolve_node_path(source_file): node_cmd = 'node' if is_windows(): node_cmd = ensure_file_has_ext(node_cmd, ".exe") return which(node_cmd) def expand_var(window, var_to_expand): if not is_str_none_or_empty(var_to_expand): expanded = os.path.expanduser(var_to_expand) expanded = os.path.expandvars(expanded) if IS_ST3 and window: window_variables = window.extract_variables() expanded = sublime.expand_variables(expanded, window_variables) return expanded return var_to_expand def parse_additional_cli_args(window, additional_cli_args_setting=None): listofargs = [] if additional_cli_args_setting is None: additional_cli_args_setting = {} if additional_cli_args_setting and len(additional_cli_args_setting) > 0 \ and isinstance(additional_cli_args_setting, dict): for arg_key, arg_value in additional_cli_args_setting.items(): arg_key = to_str(arg_key).strip() if len(arg_key) == 0: # arg key cannot be empty log_warn("Empty argument detected in 'additional_cli_args'. Did you forget to add something?", True) continue listofargs.append(arg_key) arg_value = to_str(arg_value).strip() if len(arg_value) == 0: # arg value can be empty... just don't append it continue if is_bool_str(arg_value): arg_value = arg_value.lower() else: arg_value = expand_var(window, arg_value) listofargs.append(arg_value) return listofargs def debug_enabled(view): return bool(get_setting(view, 'debug', False)) def _print_log(kind, msg, insert_leading_line_break=False): """Print a log message to the Sublime Text Console. :param kind: The kind of message to log. e.g.: 'DEBUG', 'INFO', 'WARN' or 'ERROR'. :param msg: The message to log. :param insert_leading_line_break: Whether or not to insert a leading line break before the log message. """ leading_line_break = '' if insert_leading_line_break: leading_line_break = '\n' print("{0}[{1} {2}]: {3}".format(leading_line_break, PLUGIN_NAME, kind, msg)) def log_debug(view, msg, insert_leading_line_break=False): if debug_enabled(view): _print_log('DEBUG', msg, insert_leading_line_break) def log_warn(msg, insert_leading_line_break=False): _print_log('WARN', msg, insert_leading_line_break) def log_error(msg, insert_leading_line_break=False): _print_log('ERROR', msg, insert_leading_line_break)
#!/usr/bin/env python ############################################################################### # # genomeCoverage.py version 1.0 # # Calculates windowed coverage across a genome and finds mate # matches and positions for each genome scaffold using a SAM file # # Calculates GC content across genome and gaps of unknown bases # for each genome scaffold using an optional FASTA file # # Copyright (C) 2014 Matthew Neave & Evan Denmark # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### """ NOTES ABOUT THIS PROGRAM The following files are produced when only a SAM file is provided: The coverage file produced gives the scaffold name, each subunit within each scaffold, and how many times a read maps to that subunit. If no reads are mapped to the subunit, it will be given a value of zero. In most cases (but not all) when there are consecutive subunits within a scaffold of coverage zero, there is a gap spanning these subunits. The ends file produced gives the original scaffold with the original mates start and end position on the original scaffold as well as its mate's scaffold start and position. For this version of the program, mates are 100 base pairs long because the program used to generate the mates (HiSeq) creates mates of this length. The karyotype file produced gives the scaffold name, its length, and the color in which the scaffold will appear when it is run through a visualization software. The following files are produced when the required SAM file and optional FASTA file are provided: The GC file produced gives the scaffold name, each subunit within each scaffold, and the GC content of each scaffold. In most cases when the GC content of consecutive subunits is zero, it is due to a gap spanning these scaffolds. In addition, if a windowSize is not specified in the command line, the default is 1000. Therefore, one would expect every subunit to have a GC content percentage to no more than one decimal place (ex. 541 GC out of 1000 base pairs results in a 54.1% GC content). However, in many cases, the GC content goes far beyond 1 decimal place because of gaps within the subunit. Some gaps may be only a single nucleotide. Because this program does not count gaps as nucleotides when calculating GC content, this results in a fraction with a denominator other than 1000, giving a percentage with many decimals. Of course, this only applies when the default 1000 is used as the windowSize. The gap file produced gives the scaffold in which the gap resides and the start and end position of the gap. This program defines a gap as unknown nucleotides, given as "N" in the FASTA file. In addition to the file produced the following will be displayed to the user: - The number of reads in the SAM file that do not match to any scaffolds - Warnings if any scaffolds did not have any reads matched to them - Warnings if the scaffolds provided in your SAM are different than those in the FASTA (possibly due to a recombination of your scaffolds with outside software) """ import argparse parser = argparse.ArgumentParser(description = 'Please provide a SAM file (required), a windowSize (optional, default 1000), an end_size (optional, default 500), and a FASTA file (optional). ') parser.add_argument('samfile',help= 'a sam file with your data') parser.add_argument('-windowSize',default = 1000, type=int, help= 'window size for coverage subunits') parser.add_argument('-end_size', default = 500, type=int, help = 'distance from end to calculate links') parser.add_argument('-fasta', default = None, help= 'a fasta file to calculate gc content and gaps within the scaffolds') samfile = parser.parse_args().samfile windowSize = parser.parse_args().windowSize end_size = parser.parse_args().end_size fasta= parser.parse_args().fasta # use argparse module to get input SAM file and size of windows def genomeCoverage(samfile, windowSize, end_size, fasta): """ The first object this function returns is a dictionary within a dictionary. The larger dictionary has the scaffold as a key and a dictionary as the value. The smaller dictionary has the subunit (within each scaffold) as the key and coverage value (an integer) as the value. The dictionary (scaffold_dict) is in the form {scaffold: {subunit:coverage}}. The second object this function returns is a dictionary with the scaffold as a key and a list containing (in this order) the map position of the original read and a list of the read's mate scaffold and the mate's position on the original scaffold. The dictionary (end_piece_dict) is in the form {scaffold:[original read position, [mate scaffold, mate position]]} The third object this function returns is a dictionary (len_dict) that simply shows the lengths for each scaffold. The dictionary (len_dict) is in the form {scaffold:length} The fourth object this function returns is a dictionary (gc_dict) that shows the GC content of each subunit of size windowSize of each scaffold. The dictionary is in the form {scaffold:{subunit:gc_content}} The fifth object this function returns is a dictionary (gap_dict) that shows the gaps of unknown base in each scaffold. The dictionary is in the form {scaffold: [[gap_start, gap_end], [gap_start, gap_end]]} """ # open SAM file # initialize our dictionaries that we will use the_file = open(samfile) # the coverage dictionary scaffold_dict = {} # scaffold length dictionary len_dict = {} # runs near the edge dictionary end_piece_dict = {} didNotMap = 0 largest_coverage = {} for each_line in the_file: """ The first few lines of the sam file do not include information about the reads, but rather information about the scaffold """ each_line = each_line.split() if each_line[0] == '@SQ': scaffold_name = each_line[1].split(':') name = str(scaffold_name[1]).lstrip('[').rstrip(']') name = name.strip() line_len = each_line[2].split(':') length = str(line_len[1]).lstrip('[').rstrip(']') length = length.strip() len_dict[name] = length if each_line[0][0] == '@': continue else: scaffold = each_line[2] mapPosition = int(each_line[3]) possible_equal = each_line[6] mate_map = int(each_line[7]) include = True """ if the original read is at the end of a scaffold and it has a mate on another scaffold, we want to remember its position and mate, so we create the end_piece dictionary which, for each scaffold as a key, creates a giant list of smaller list for each read. Within these smaller lists, the first object is the map position of the original read and the second object is a list of the name of the mate scaffold and position of mate End_piece_dict dictionary is in the form {scaffold: [[mapPosition,[mate scaffold, mate position]], [mapPosition,[mate scaffold, mate position]] etc...] """ if scaffold == '*': didNotMap += 1 continue else: if possible_equal != '=': # the following ensures that the reciprocal end link is not included if possible_equal in end_piece_dict: for each_mate in end_piece_dict[possible_equal]: if each_mate[0] == mate_map: include = False if include == True: if end_piece(mapPosition,int(len_dict[scaffold]), possible_equal, end_size) and is_mate_at_end(int(len_dict[possible_equal]),mate_map, end_size): if scaffold not in end_piece_dict: end_piece_dict[scaffold] = [] read_list = [mapPosition, [possible_equal, mate_map]] end_piece_dict[scaffold].append(read_list) # coveragePosition is the name we will give each window of size windowSize (ex. if there are 10,000 bp and we have windowSize 1000, there will be 10 coverage positions of names 0-9) coveragePosition = mapPosition / windowSize coveragePosition = int(coveragePosition) if scaffold not in largest_coverage or coveragePosition > largest_coverage[scaffold]: largest_coverage[scaffold] = coveragePosition if scaffold not in scaffold_dict: scaffold_dict[scaffold] = {} if coveragePosition in scaffold_dict[scaffold]: scaffold_dict[scaffold][coveragePosition] += 1 else: scaffold_dict[scaffold][coveragePosition] = 1 for each_scaffold in largest_coverage: for i in xrange(largest_coverage[each_scaffold]): if i not in scaffold_dict[each_scaffold]: scaffold_dict[each_scaffold][i] =0 print print 'For reference,', didNotMap, 'reads did not map to any scaffold.' print for each_scaffold in len_dict: if each_scaffold not in scaffold_dict: print print "WARNING! No reads mapped to", each_scaffold, "and therefore it will not be in your coverage file." print # A fasta file must be provided in order to make gc_content dictionary and gap dictionary if fasta != None: fasta= open(fasta) gc_dict = {} gap_dict = {} for each_line in fasta: if each_line[0] == '>': #name line each_line = each_line.lstrip('>') each_line = each_line.rstrip('\n') # HERE 'each_line' MUST BE THE NAME OF A SCAFFOLD # Some fasta files may differ in the way the original program gives the '>' line a name, so it may require alteration gc_dict[each_line] = {} name_line = each_line if each_line in scaffold_dict: if name_line not in gap_dict: gap_dict[name_line] = [] count = 0 num_gc = 0.0 num_actg = 0.0 current_gap = False gc_content = 0.0 else: #sequence line each_line = each_line.rstrip('\n') for each_base in each_line: count +=1 each_base = str(each_base) if current_gap == True: if each_base.upper() == 'N': gap_end+=1 else: the_gap = [gap_start, gap_end] gap_dict[name_line].append(the_gap) current_gap = False elif each_base.upper() == 'N': gap_start = count gap_end = gap_start current_gap = True else: if each_base.upper() == 'C' or each_base.upper() == 'G': num_gc +=1 num_actg +=1 gc_content = (float(num_gc)/float(num_actg))*100.0 if each_base.upper() == 'A' or each_base.upper() == 'T': num_actg+=1 gc_content = (float(num_gc)/float(num_actg))*100.0 if count%windowSize == 0: current_window=((int(count/windowSize))-1) gc_dict[name_line][current_window] = gc_content gc_content = 0.0 num_gc = 0.0 num_actg = 0.0 elif count == int(len_dict[name_line]): gc_dict[name_line][current_window+1] = gc_content gc_content = 0.0 num_gc = 0.0 num_actg = 0.0 for each_scaffold in scaffold_dict: if int((int(len_dict[each_scaffold]))/windowSize)+1 != len(gc_dict[each_scaffold]): print print "WARNING! The scaffolds in the SAM file have different lengths than the scaffolds in the FASTA file." print break return scaffold_dict, end_piece_dict, len_dict, gc_dict, gap_dict else: return scaffold_dict, end_piece_dict, len_dict def end_piece(start_pos, length, possible_equal, end_size): """ Determines if your read is at the end of a scaffold. """ if (((length - start_pos) < end_size) or (start_pos < end_size)) and possible_equal != '=': #it is at the end and mate is on another scaffold return True else: #either the read is not near the end or the mate is on the same scaffold or both return False def is_mate_at_end(length_mate_scaffold, position_of_mate, end_size): """ Determines if the mate of your original read is near the end of its scaffold """ if ((length_mate_scaffold - position_of_mate) < end_size) or (position_of_mate < end_size): #the mate is near the end of its scaffold return True else: return False def make_files(samfile, windowSize, end_size, fasta): """ Takes the organized data generated by genomeCoverage() and creates 3 files: a coverage file, a karyotype file, and an end file. """ genome = genomeCoverage(samfile, windowSize, end_size, fasta) if fasta != None: gap_dict = genome[4] gc_dict = genome[3] len_dict = genome[2] end_piece_dict = genome[1] scaffold_dict = genome[0] scaff_list = [] len_list = [] end_list = [] gc_list = [] gap_list = [] for scaffold in scaffold_dict: scaff_list.append(scaffold) scaff_list = sorted(scaff_list) for each_scaffold in len_dict: len_list.append(each_scaffold) len_list = sorted(len_list) for the_scaffold in end_piece_dict: end_list.append(the_scaffold) end_list = sorted(end_list) if fasta != None: for scaffolds in gc_dict: gc_list.append(scaffolds) gc_list= sorted(gc_list) for a_scaffold in in gap_dict: gap_list.append(a_scaffold) gap_list = sorted(gap_list) # MAKE THE COVERAGE FILE new_file = open('output.coverage.txt', 'w') end=0 for scaffold in scaff_list: length = int(len_dict[scaffold]) for subunit in scaffold_dict[scaffold]: start = subunit*windowSize end = start + windowSize if end >= length: end = length coverage = scaffold_dict[scaffold][subunit] string = str(str(scaffold)+'\t' + str(start)+ '\t' +str(end)+ '\t' +str(coverage)+'\n') new_file.write(string) new_file.close() # MAKE THE KARYOTYPE FILE new_file2 = open('output.karyotype.txt', 'w') n=0 for scaffold in len_list: if n == 7: n=0 length = int(len_dict[scaffold]) color = ['set1-7-qual-1','set1-7-qual-2','set1-7-qual-3','set1-7-qual-4','set1-7-qual-5','set1-7-qual-6','set1-7-qual-7'] line = ('chr -' + '\t' + str(scaffold)+ '\t' +str(scaffold) +'\t' + str(0) + '\t' + str(length) + '\t' +str(color[n]) + '\n') new_file2.write(line) n+=1 new_file2.close() # MAKE THE ENDS FILE new_file3 = open('output.ends.txt', 'w') for scaffold in end_list: for each_end in end_piece_dict[scaffold]: original = str(scaffold) original_start = str(each_end[0]) original_end = int(original_start) + 100 if original_end > int(len_dict[scaffold]): original_end = int(len_dict[scaffold]) original_end = str(original_end) mate = str(each_end[1][0]) mate_start = str(each_end[1][1]) mate_end = str(int(mate_start)+100) if int(mate_end) > int(len_dict[mate]): mate_end = str(len_dict[mate]) output = str(original + '\t' + original_start + '\t' + original_end + '\t' + mate + '\t' + mate_start + '\t' +mate_end + '\n') new_file3.write(output) new_file3.close() if fasta != None: # MAKE THE GC FILE new_file4 = open('output.gc.txt', 'w') for scaffold in gc_list: the_scaffold = str(scaffold) length = int(len_dict[scaffold]) for subunit in gc_dict[scaffold]: start = int(subunit)*windowSize end = start+windowSize if end > length: end = length end = str(end) start= str(start) gc_content = str(gc_dict[scaffold][subunit]) output= str(the_scaffold + '\t' + start+ '\t'+ end + '\t' + gc_content + '\n') new_file4.write(output) new_file4.close() # MAKE THE GAP FILE new_file5 = open('output.gaps.txt', 'w') for scaffold in gap_list: the_scaffold = str(scaffold) for gap in gap_dict[scaffold]: gap_start=str(gap[0]) gap_end=str(gap[1]) output= str(the_scaffold + '\t' + gap_start + '\t' + gap_end + '\n') new_file5.write(output) new_file5.close() make_files(samfile, windowSize, end_size, fasta)
from collections import Iterable from common.exceptions import LogicError from ledger.ledger import Ledger from plenum.common.constants import AUDIT_LEDGER_ID, TXN_VERSION, AUDIT_TXN_VIEW_NO, AUDIT_TXN_PP_SEQ_NO, \ AUDIT_TXN_LEDGERS_SIZE, AUDIT_TXN_LEDGER_ROOT, AUDIT_TXN_STATE_ROOT, AUDIT_TXN_PRIMARIES, AUDIT_TXN_DIGEST, \ AUDIT_TXN_NODE_REG, CURRENT_TXN_PAYLOAD_VERSIONS, AUDIT, CURRENT_TXN_VERSION from plenum.common.ledger_uncommitted_tracker import LedgerUncommittedTracker from plenum.common.transactions import PlenumTransactions from plenum.common.txn_util import init_empty_txn, set_payload_data, get_payload_data, get_seq_no from plenum.server.batch_handlers.batch_request_handler import BatchRequestHandler from plenum.server.batch_handlers.three_pc_batch import ThreePcBatch from plenum.server.database_manager import DatabaseManager from stp_core.common.log import getlogger logger = getlogger() class AuditBatchHandler(BatchRequestHandler): def __init__(self, database_manager: DatabaseManager, ): super().__init__(database_manager, AUDIT_LEDGER_ID) # TODO: move it to BatchRequestHandler self.tracker = LedgerUncommittedTracker(None, self.ledger.uncommitted_root_hash, self.ledger.size) def post_batch_applied(self, three_pc_batch: ThreePcBatch, prev_handler_result=None): txn = self._add_to_ledger(three_pc_batch) self.tracker.apply_batch(None, self.ledger.uncommitted_root_hash, self.ledger.uncommitted_size) logger.debug("applied audit txn {}; uncommitted root hash is {}; uncommitted size is {}". format(str(txn), self.ledger.uncommitted_root_hash, self.ledger.uncommitted_size)) def post_batch_rejected(self, ledger_id, prev_handler_result=None): _, _, txn_count = self.tracker.reject_batch() self.ledger.discardTxns(txn_count) logger.debug("rejected {} audit txns; uncommitted root hash is {}; uncommitted size is {}". format(txn_count, self.ledger.uncommitted_root_hash, self.ledger.uncommitted_size)) def commit_batch(self, three_pc_batch, prev_handler_result=None): _, _, txns_count = self.tracker.commit_batch() _, committedTxns = self.ledger.commitTxns(txns_count) logger.debug("committed {} audit txns; uncommitted root hash is {}; uncommitted size is {}". format(txns_count, self.ledger.uncommitted_root_hash, self.ledger.uncommitted_size)) return committedTxns def on_catchup_finished(self): self.tracker.set_last_committed(state_root=None, txn_root=self.ledger.uncommitted_root_hash, ledger_size=self.ledger.size) @staticmethod def transform_txn_for_ledger(txn): ''' Makes sure that we have integer as keys after possible deserialization from json :param txn: txn to be transformed :return: transformed txn ''' txn_data = get_payload_data(txn) txn_data[AUDIT_TXN_LEDGERS_SIZE] = {int(k): v for k, v in txn_data[AUDIT_TXN_LEDGERS_SIZE].items()} txn_data[AUDIT_TXN_LEDGER_ROOT] = {int(k): v for k, v in txn_data[AUDIT_TXN_LEDGER_ROOT].items()} txn_data[AUDIT_TXN_STATE_ROOT] = {int(k): v for k, v in txn_data[AUDIT_TXN_STATE_ROOT].items()} return txn def _add_to_ledger(self, three_pc_batch: ThreePcBatch): # if PRE-PREPARE doesn't have audit txn (probably old code) - do nothing # TODO: remove this check after all nodes support audit ledger if not three_pc_batch.has_audit_txn: logger.info("Has 3PC batch without audit ledger: {}".format(str(three_pc_batch))) return # 1. prepare AUDIT txn txn_data = self._create_audit_txn_data(three_pc_batch, self.ledger.get_last_txn()) txn = init_empty_txn(txn_type=PlenumTransactions.AUDIT.value) txn = set_payload_data(txn, txn_data) # 2. Append txn metadata self.ledger.append_txns_metadata([txn], three_pc_batch.pp_time) # 3. Add to the Ledger self.ledger.appendTxns([txn]) return txn def _create_audit_txn_data(self, three_pc_batch, last_audit_txn): # 1. general format and (view_no, pp_seq_no) view_no = three_pc_batch.original_view_no if three_pc_batch.original_view_no is not None else three_pc_batch.view_no txn = { TXN_VERSION: CURRENT_TXN_PAYLOAD_VERSIONS[AUDIT], AUDIT_TXN_VIEW_NO: view_no, AUDIT_TXN_PP_SEQ_NO: three_pc_batch.pp_seq_no, AUDIT_TXN_LEDGERS_SIZE: {}, AUDIT_TXN_LEDGER_ROOT: {}, AUDIT_TXN_STATE_ROOT: {}, AUDIT_TXN_PRIMARIES: None, AUDIT_TXN_DIGEST: three_pc_batch.pp_digest } for lid, ledger in self.database_manager.ledgers.items(): if lid == AUDIT_LEDGER_ID: continue # 2. ledger size txn[AUDIT_TXN_LEDGERS_SIZE][lid] = ledger.uncommitted_size # 3. ledger root (either root_hash or seq_no to last changed) # TODO: support setting for multiple ledgers self._fill_ledger_root_hash(txn, lid, ledger, last_audit_txn, three_pc_batch) # 5. set primaries field self._fill_primaries(txn, three_pc_batch, last_audit_txn) # 6. set nodeReg field self._fill_node_reg(txn, three_pc_batch, last_audit_txn) return txn def _fill_ledger_root_hash(self, txn, lid, ledger, last_audit_txn, three_pc_batch): last_audit_txn_data = get_payload_data(last_audit_txn) if last_audit_txn is not None else None if lid == three_pc_batch.ledger_id: txn[AUDIT_TXN_LEDGER_ROOT][lid] = Ledger.hashToStr(ledger.uncommitted_root_hash) txn[AUDIT_TXN_STATE_ROOT][lid] = Ledger.hashToStr(self.database_manager.get_state(lid).headHash) # 1. it is the first batch and we have something elif last_audit_txn_data is None and ledger.uncommitted_size: txn[AUDIT_TXN_LEDGER_ROOT][lid] = Ledger.hashToStr(ledger.uncommitted_root_hash) txn[AUDIT_TXN_STATE_ROOT][lid] = Ledger.hashToStr(self.database_manager.get_state(lid).headHash) # 1.1. Rare case -- we have previous audit txns but don't have this ledger i.e. new plugins elif last_audit_txn_data is not None and last_audit_txn_data[AUDIT_TXN_LEDGERS_SIZE].get(lid, None) is None and \ len(ledger.uncommittedTxns): txn[AUDIT_TXN_LEDGER_ROOT][lid] = Ledger.hashToStr(ledger.uncommitted_root_hash) txn[AUDIT_TXN_STATE_ROOT][lid] = Ledger.hashToStr(self.database_manager.get_state(lid).headHash) # 2. Usual case -- this ledger was updated since the last audit txn elif last_audit_txn_data is not None and last_audit_txn_data[AUDIT_TXN_LEDGERS_SIZE].get(lid, None) is not None and \ ledger.uncommitted_size > last_audit_txn_data[AUDIT_TXN_LEDGERS_SIZE][lid]: txn[AUDIT_TXN_LEDGER_ROOT][lid] = Ledger.hashToStr(ledger.uncommitted_root_hash) txn[AUDIT_TXN_STATE_ROOT][lid] = Ledger.hashToStr(self.database_manager.get_state(lid).headHash) # 3. This ledger is never audited, so do not add the key elif last_audit_txn_data is None or lid not in last_audit_txn_data[AUDIT_TXN_LEDGER_ROOT]: return # 4. ledger is not changed in last batch => delta = delta + 1 elif isinstance(last_audit_txn_data[AUDIT_TXN_LEDGER_ROOT][lid], int): txn[AUDIT_TXN_LEDGER_ROOT][lid] = last_audit_txn_data[AUDIT_TXN_LEDGER_ROOT][lid] + 1 # 5. ledger is changed in last batch but not changed now => delta = 1 elif last_audit_txn_data: txn[AUDIT_TXN_LEDGER_ROOT][lid] = 1 def _fill_primaries(self, txn, three_pc_batch, last_audit_txn): last_audit_txn_data = get_payload_data(last_audit_txn) if last_audit_txn is not None else None last_txn_value = last_audit_txn_data[AUDIT_TXN_PRIMARIES] if last_audit_txn_data else None current_primaries = three_pc_batch.primaries # 1. First audit txn if last_audit_txn_data is None: txn[AUDIT_TXN_PRIMARIES] = current_primaries # 2. Previous primaries field contains primary list # If primaries did not changed, we will store seq_no delta # between current txn and last persisted primaries, i.e. # we can find seq_no of last actual primaries, like: # last_audit_txn_seq_no - last_audit_txn[AUDIT_TXN_PRIMARIES] elif isinstance(last_txn_value, Iterable): if last_txn_value == current_primaries: txn[AUDIT_TXN_PRIMARIES] = 1 else: txn[AUDIT_TXN_PRIMARIES] = current_primaries # 3. Previous primaries field is delta elif isinstance(last_txn_value, int) and last_txn_value < self.ledger.uncommitted_size: last_primaries_seq_no = get_seq_no(last_audit_txn) - last_txn_value last_primaries = get_payload_data( self.ledger.get_by_seq_no_uncommitted(last_primaries_seq_no))[AUDIT_TXN_PRIMARIES] if isinstance(last_primaries, Iterable): if last_primaries == current_primaries: txn[AUDIT_TXN_PRIMARIES] = last_txn_value + 1 else: txn[AUDIT_TXN_PRIMARIES] = current_primaries else: raise LogicError('Value, mentioned in primaries field must be a ' 'seq_no of a txn with primaries') # 4. That cannot be else: raise LogicError('Incorrect primaries field in audit ledger (seq_no: {}. value: {})'.format( get_seq_no(last_audit_txn), last_txn_value)) def _fill_node_reg(self, txn, three_pc_batch, last_audit_txn): last_audit_txn_data = get_payload_data(last_audit_txn) if last_audit_txn is not None else None last_audit_node_reg = last_audit_txn_data.get(AUDIT_TXN_NODE_REG) if last_audit_txn_data else None current_node_reg = three_pc_batch.node_reg if current_node_reg is None: return # 1. First audit txn with node reg if last_audit_node_reg is None: txn[AUDIT_TXN_NODE_REG] = current_node_reg # 2. Previous nodeReg field contains nodeReg list # If nodeReg did not changed, we will store seq_no delta # between current txn and last persisted nodeReg, i.e. # we can find seq_no of last actual nodeReg, like: # last_audit_txn_seq_no - last_audit_txn[AUDIT_TXN_NODE_REG] elif isinstance(last_audit_node_reg, Iterable): if last_audit_node_reg == current_node_reg: txn[AUDIT_TXN_NODE_REG] = 1 else: txn[AUDIT_TXN_NODE_REG] = current_node_reg # 3. Previous nodeReg field is delta elif isinstance(last_audit_node_reg, int) and last_audit_node_reg < self.ledger.uncommitted_size: last_node_reg_seq_no = get_seq_no(last_audit_txn) - last_audit_node_reg last_node_reg = get_payload_data( self.ledger.get_by_seq_no_uncommitted(last_node_reg_seq_no))[AUDIT_TXN_NODE_REG] if isinstance(last_node_reg, Iterable): if last_node_reg == current_node_reg: txn[AUDIT_TXN_NODE_REG] = last_audit_node_reg + 1 else: txn[AUDIT_TXN_NODE_REG] = current_node_reg else: raise LogicError('Value, mentioned in nodeReg field must be a ' 'seq_no of a txn with nodeReg')
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """One-off jobs for explorations.""" import ast import logging from constants import constants from core import jobs from core.domain import exp_domain from core.domain import exp_services from core.domain import rights_manager from core.platform import models import feconf import utils (base_models, exp_models,) = models.Registry.import_models([ models.NAMES.base_model, models.NAMES.exploration]) _COMMIT_TYPE_REVERT = 'revert' class ExpSummariesCreationOneOffJob(jobs.BaseMapReduceOneOffJobManager): """Job that calculates summaries of explorations. For every ExplorationModel entity, create a ExpSummaryModel entity containing information described in ExpSummariesAggregator. The summaries store the following information: title, category, objective, language_code, tags, last_updated, created_on, status (private, public), community_owned, owner_ids, editor_ids, viewer_ids, version. Note: contributor_ids field populated by ExpSummariesContributorsOneOffJob. """ @classmethod def entity_classes_to_map_over(cls): return [exp_models.ExplorationModel] @staticmethod def map(exploration_model): if not exploration_model.deleted: exp_services.create_exploration_summary( exploration_model.id, None) @staticmethod def reduce(exp_id, list_of_exps): pass class ExpSummariesContributorsOneOffJob(jobs.BaseMapReduceOneOffJobManager): """One-off job that finds the user ids of the contributors (defined as any human who has made a 'positive' -- i.e. non-revert-- commit) for each exploration. """ @classmethod def entity_classes_to_map_over(cls): return [exp_models.ExplorationSnapshotMetadataModel] @staticmethod def map(item): if (item.commit_type != _COMMIT_TYPE_REVERT and item.committer_id not in feconf.SYSTEM_USER_IDS): exp_id = item.get_unversioned_instance_id() yield (exp_id, item.committer_id) @staticmethod def reduce(exp_id, committer_id_list): exp_summary_model = exp_models.ExpSummaryModel.get_by_id(exp_id) if exp_summary_model is None: return exp_summary_model.contributor_ids = list(set(committer_id_list)) exp_summary_model.put() class ExplorationContributorsSummaryOneOffJob( jobs.BaseMapReduceOneOffJobManager): """One-off job that computes the number of commits done by contributors for each Exploration """ @classmethod def entity_classes_to_map_over(cls): return [exp_models.ExplorationModel] @staticmethod def map(item): if item.deleted: return summary = exp_services.get_exploration_summary_by_id(item.id) summary.contributors_summary = ( exp_services.compute_exploration_contributors_summary(item.id)) exp_services.save_exploration_summary(summary) @staticmethod def reduce(key, values): pass class ExplorationFirstPublishedOneOffJob(jobs.BaseMapReduceOneOffJobManager): """One-off job that finds first published time in milliseconds for all explorations. """ @classmethod def entity_classes_to_map_over(cls): return [exp_models.ExplorationRightsSnapshotContentModel] @staticmethod def map(item): if item.content['status'] == rights_manager.ACTIVITY_STATUS_PUBLIC: yield ( item.get_unversioned_instance_id(), utils.get_time_in_millisecs(item.created_on)) @staticmethod def reduce(exp_id, stringified_commit_times_msecs): exploration_rights = rights_manager.get_exploration_rights( exp_id, strict=False) if exploration_rights is None: return commit_times_msecs = [ ast.literal_eval(commit_time_string) for commit_time_string in stringified_commit_times_msecs] first_published_msec = min(commit_times_msecs) rights_manager.update_activity_first_published_msec( constants.ACTIVITY_TYPE_EXPLORATION, exp_id, first_published_msec) class ExplorationValidityJobManager(jobs.BaseMapReduceOneOffJobManager): """Job that checks that all explorations have appropriate validation statuses. """ @classmethod def entity_classes_to_map_over(cls): return [exp_models.ExplorationModel] @staticmethod def map(item): if item.deleted: return exploration = exp_services.get_exploration_from_model(item) exp_rights = rights_manager.get_exploration_rights(item.id) try: if exp_rights.status == rights_manager.ACTIVITY_STATUS_PRIVATE: exploration.validate() else: exploration.validate(strict=True) except utils.ValidationError as e: yield (item.id, unicode(e).encode('utf-8')) @staticmethod def reduce(key, values): yield (key, values) class ExplorationMigrationJobManager(jobs.BaseMapReduceOneOffJobManager): """A reusable one-time job that may be used to migrate exploration schema versions. This job will load all existing explorations from the data store and immediately store them back into the data store. The loading process of an exploration in exp_services automatically performs schema updating. This job persists that conversion work, keeping explorations up-to-date and improving the load time of new explorations. """ @classmethod def entity_classes_to_map_over(cls): return [exp_models.ExplorationModel] @staticmethod def map(item): if item.deleted: return # Do not upgrade explorations that fail non-strict validation. old_exploration = exp_services.get_exploration_by_id(item.id) try: old_exploration.validate() except Exception as e: logging.error( 'Exploration %s failed non-strict validation: %s' % (item.id, e)) return # If the exploration model being stored in the datastore is not the # most up-to-date states schema version, then update it. if (item.states_schema_version != feconf.CURRENT_EXPLORATION_STATES_SCHEMA_VERSION): # Note: update_exploration does not need to apply a change list in # order to perform a migration. See the related comment in # exp_services.apply_change_list for more information. commit_cmds = [{ 'cmd': exp_domain.CMD_MIGRATE_STATES_SCHEMA_TO_LATEST_VERSION, 'from_version': str(item.states_schema_version), 'to_version': str( feconf.CURRENT_EXPLORATION_STATES_SCHEMA_VERSION) }] exp_services.update_exploration( feconf.MIGRATION_BOT_USERNAME, item.id, commit_cmds, 'Update exploration states from schema version %d to %d.' % ( item.states_schema_version, feconf.CURRENT_EXPLORATION_STATES_SCHEMA_VERSION)) @staticmethod def reduce(key, values): yield (key, values) class InteractionAuditOneOffJob(jobs.BaseMapReduceOneOffJobManager): """Job that produces a list of (exploration, state) pairs, grouped by the interaction they use. This job is for demonstration purposes. It is not enabled by default in the jobs registry. """ @classmethod def entity_classes_to_map_over(cls): return [exp_models.ExplorationModel] @staticmethod def map(item): if item.deleted: return exploration = exp_services.get_exploration_from_model(item) for state_name, state in exploration.states.iteritems(): exp_and_state_key = '%s %s' % (item.id, state_name) yield (state.interaction.id, exp_and_state_key) @staticmethod def reduce(key, values): yield (key, values) class ItemSelectionInteractionOneOffJob(jobs.BaseMapReduceOneOffJobManager): """Job that produces a list of (exploration, state) pairs that use the item selection interaction and that have rules that do not match the answer choices. These probably need to be fixed manually. """ @classmethod def entity_classes_to_map_over(cls): return [exp_models.ExplorationModel] @staticmethod def map(item): if item.deleted: return exploration = exp_services.get_exploration_from_model(item) for state_name, state in exploration.states.iteritems(): if state.interaction.id == 'ItemSelectionInput': choices = ( state.interaction.customization_args['choices']['value']) for group in state.interaction.answer_groups: for rule_spec in group.rule_specs: for rule_item in rule_spec.inputs['x']: if rule_item not in choices: yield ( item.id, '%s: %s' % ( state_name.encode('utf-8'), rule_item.encode('utf-8'))) @staticmethod def reduce(key, values): yield (key, values) class ViewableExplorationsAuditJob(jobs.BaseMapReduceOneOffJobManager): """Job that outputs a list of private explorations which are viewable.""" @classmethod def entity_classes_to_map_over(cls): return [exp_models.ExplorationModel] @staticmethod def map(item): if item.deleted: return exploration_rights = rights_manager.get_exploration_rights( item.id, strict=False) if exploration_rights is None: return if (exploration_rights.status == feconf.ACTIVITY_STATUS_PRIVATE and exploration_rights.viewable_if_private): yield (item.id, item.title.encode('utf-8')) @staticmethod def reduce(key, values): yield (key, values) class ExplorationConversionErrorIdentificationJob( jobs.BaseMapReduceOneOffJobManager): """Job that outputs the list of explorations that currently consist of redundant features and result in an ExplorationConversionError when retrieved. """ @classmethod def entity_classes_to_map_over(cls): return [exp_models.ExplorationModel] @staticmethod def map(item): try: exploration = exp_services.get_exploration_by_id(item.id) # Handle case where the exploration is deleted. except Exception as e: return latest_exp_version = exploration.version version_numbers = range(1, latest_exp_version + 1) try: exp_services.get_multiple_explorations_by_version( item.id, version_numbers) except Exception as e: yield (item.id, e) return @staticmethod def reduce(key, values): yield (key, values)
import unittest import re from django.conf import settings from django.contrib.auth.models import User from tango_comments import signals from tango_comments.models import Comment from . import CommentTestCase from tests.testapp.models import Article, Book post_redirect_re = re.compile(r'^/posted/\?c=(?P<pk>\d+$)') class CommentViewTests(CommentTestCase): def testPostCommentHTTPMethods(self): a = Article.objects.get(pk=1) data = self.getValidData(a) response = self.client.get("/post/", data) self.assertEqual(response.status_code, 405) self.assertEqual(response["Allow"], "POST") def testPostCommentMissingCtype(self): a = Article.objects.get(pk=1) data = self.getValidData(a) del data["content_type"] response = self.client.post("/post/", data) self.assertEqual(response.status_code, 400) def testPostCommentBadCtype(self): a = Article.objects.get(pk=1) data = self.getValidData(a) data["content_type"] = "Nobody expects the Spanish Inquisition!" response = self.client.post("/post/", data) self.assertEqual(response.status_code, 400) def testPostCommentMissingObjectPK(self): a = Article.objects.get(pk=1) data = self.getValidData(a) del data["object_pk"] response = self.client.post("/post/", data) self.assertEqual(response.status_code, 400) def testPostCommentBadObjectPK(self): a = Article.objects.get(pk=1) data = self.getValidData(a) data["object_pk"] = "14" response = self.client.post("/post/", data) self.assertEqual(response.status_code, 400) def testPostInvalidIntegerPK(self): a = Article.objects.get(pk=1) data = self.getValidData(a) data["comment"] = "This is another comment" data["object_pk"] = '\ufffd' response = self.client.post("/post/", data) self.assertEqual(response.status_code, 400) def testPostInvalidDecimalPK(self): b = Book.objects.get(pk='12.34') data = self.getValidData(b) data["comment"] = "This is another comment" data["object_pk"] = 'cookies' response = self.client.post("/post/", data) self.assertEqual(response.status_code, 400) def testHashTampering(self): a = Article.objects.get(pk=1) data = self.getValidData(a) data["security_hash"] = "Nobody expects the Spanish Inquisition!" response = self.client.post("/post/", data) self.assertEqual(response.status_code, 400) def testDebugCommentErrors(self): """The debug error template should be shown only if DEBUG is True""" olddebug = settings.DEBUG settings.DEBUG = True a = Article.objects.get(pk=1) data = self.getValidData(a) data["security_hash"] = "Nobody expects the Spanish Inquisition!" response = self.client.post("/post/", data) self.assertEqual(response.status_code, 400) self.assertTemplateUsed(response, "comments/400-debug.html") settings.DEBUG = False response = self.client.post("/post/", data) self.assertEqual(response.status_code, 400) self.assertTemplateNotUsed(response, "comments/400-debug.html") settings.DEBUG = olddebug @unittest.skip('post not working') def testPostAsAuthenticatedUser(self): a = Article.objects.get(pk=1) data = self.getValidData(a) data['name'] = data['email'] = '' self.client.login(username="normaluser", password="normaluser") self.response = self.client.post("/post/", data, REMOTE_ADDR="1.2.3.4") self.assertEqual(self.response.status_code, 302) self.assertEqual(Comment.objects.count(), 1) c = Comment.objects.all()[0] self.assertEqual(c.ip_address, "1.2.3.4") u = User.objects.get(username='normaluser') self.assertEqual(c.user, u) self.assertEqual(c.user_name, u.get_full_name()) self.assertEqual(c.user_email, u.email) @unittest.skip('post not working') def testPreventDuplicateComments(self): """Prevent posting the exact same comment twice""" a = Article.objects.get(pk=1) data = self.getValidData(a) self.client.post("/post/", data) self.client.post("/post/", data) self.assertEqual(Comment.objects.count(), 1) # This should not trigger the duplicate prevention self.client.post("/post/", dict(data, comment="My second comment.")) self.assertEqual(Comment.objects.count(), 2) def testWillBePostedSignal(self): """ Test that the comment_will_be_posted signal can prevent the comment from actually getting saved """ def receive(sender, **kwargs): return False signals.comment_will_be_posted.connect(receive, dispatch_uid="comment-test") a = Article.objects.get(pk=1) data = self.getValidData(a) response = self.client.post("/post/", data) self.assertEqual(response.status_code, 400) self.assertEqual(Comment.objects.count(), 0) signals.comment_will_be_posted.disconnect(dispatch_uid="comment-test") @unittest.skip("Location not in response") def testCommentNext(self): """Test the different "next" actions the comment view can take""" a = Article.objects.get(pk=1) data = self.getValidData(a) response = self.client.post("/post/", data) location = response["Location"] match = post_redirect_re.match(location) self.assertTrue(match != None, "Unexpected redirect location: %s" % location) data["next"] = "/somewhere/else/" data["comment"] = "This is another comment" response = self.client.post("/post/", data) location = response["Location"] match = re.search(r"^/somewhere/else/\?c=\d+$", location) self.assertTrue(match != None, "Unexpected redirect location: %s" % location) data["next"] = "http://badserver/somewhere/else/" data["comment"] = "This is another comment with an unsafe next url" response = self.client.post("/post/", data) location = response["Location"] match = post_redirect_re.match(location) self.assertTrue(match != None, "Unsafe redirection to: %s" % location) @unittest.skip("Key error for location. Maybe due to bad post") def testCommentDoneView(self): a = Article.objects.get(pk=1) data = self.getValidData(a) response = self.client.post("/post/", data) location = response["Location"] match = post_redirect_re.match(location) self.assertTrue(match != None, "Unexpected redirect location: %s" % location) pk = int(match.group('pk')) response = self.client.get(location) self.assertTemplateUsed(response, "comments/posted.html") self.assertEqual(response.context[0]["comment"], Comment.objects.get(pk=pk)) @unittest.skip("Key error for location. Maybe due to bad post") def testCommentNextWithQueryString(self): """ The `next` key needs to handle already having a query string (#10585) """ a = Article.objects.get(pk=1) data = self.getValidData(a) data["next"] = "/somewhere/else/?foo=bar" data["comment"] = "This is another comment" response = self.client.post("/post/", data) location = response["Location"] match = re.search(r"^/somewhere/else/\?foo=bar&c=\d+$", location) self.assertTrue(match != None, "Unexpected redirect location: %s" % location) @unittest.skip("Key error for location. Maybe due to bad post") def testCommentPostRedirectWithInvalidIntegerPK(self): """ Tests that attempting to retrieve the location specified in the post redirect, after adding some invalid data to the expected querystring it ends with, doesn't cause a server error. """ a = Article.objects.get(pk=1) data = self.getValidData(a) data["comment"] = "This is another comment" response = self.client.post("/post/", data) location = response["Location"] broken_location = location + "\ufffd" response = self.client.get(broken_location) self.assertEqual(response.status_code, 200) @unittest.skip("Key error for location. Maybe due to bad post") def testCommentNextWithQueryStringAndAnchor(self): """ The `next` key needs to handle already having an anchor. Refs #13411. """ # With a query string also. a = Article.objects.get(pk=1) data = self.getValidData(a) data["next"] = "/somewhere/else/?foo=bar#baz" data["comment"] = "This is another comment" response = self.client.post("/post/", data) location = response["Location"] match = re.search(r"^/somewhere/else/\?foo=bar&c=\d+#baz$", location) self.assertTrue(match != None, "Unexpected redirect location: %s" % location) # Without a query string a = Article.objects.get(pk=1) data = self.getValidData(a) data["next"] = "/somewhere/else/#baz" data["comment"] = "This is another comment" response = self.client.post("/post/", data) location = response["Location"] match = re.search(r"^/somewhere/else/\?c=\d+#baz$", location) self.assertTrue(match != None, "Unexpected redirect location: %s" % location)
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import unittest from unittest.mock import MagicMock, patch import pytest import requests import requests_mock from airflow.exceptions import AirflowException from airflow.providers.apache.druid.hooks.druid import DruidDbApiHook, DruidHook class TestDruidHook(unittest.TestCase): def setUp(self): super().setUp() session = requests.Session() adapter = requests_mock.Adapter() session.mount('mock', adapter) class TestDRuidhook(DruidHook): def get_conn_url(self): return 'http://druid-overlord:8081/druid/indexer/v1/task' self.db_hook = TestDRuidhook() @requests_mock.mock() def test_submit_gone_wrong(self, m): task_post = m.post( 'http://druid-overlord:8081/druid/indexer/v1/task', text='{"task":"9f8a7359-77d4-4612-b0cd-cc2f6a3c28de"}', ) status_check = m.get( 'http://druid-overlord:8081/druid/indexer/v1/task/9f8a7359-77d4-4612-b0cd-cc2f6a3c28de/status', text='{"status":{"status": "FAILED"}}', ) # The job failed for some reason with pytest.raises(AirflowException): self.db_hook.submit_indexing_job('Long json file') assert task_post.called_once assert status_check.called_once @requests_mock.mock() def test_submit_ok(self, m): task_post = m.post( 'http://druid-overlord:8081/druid/indexer/v1/task', text='{"task":"9f8a7359-77d4-4612-b0cd-cc2f6a3c28de"}', ) status_check = m.get( 'http://druid-overlord:8081/druid/indexer/v1/task/9f8a7359-77d4-4612-b0cd-cc2f6a3c28de/status', text='{"status":{"status": "SUCCESS"}}', ) # Exists just as it should self.db_hook.submit_indexing_job('Long json file') assert task_post.called_once assert status_check.called_once @requests_mock.mock() def test_submit_correct_json_body(self, m): task_post = m.post( 'http://druid-overlord:8081/druid/indexer/v1/task', text='{"task":"9f8a7359-77d4-4612-b0cd-cc2f6a3c28de"}', ) status_check = m.get( 'http://druid-overlord:8081/druid/indexer/v1/task/9f8a7359-77d4-4612-b0cd-cc2f6a3c28de/status', text='{"status":{"status": "SUCCESS"}}', ) json_ingestion_string = """ { "task":"9f8a7359-77d4-4612-b0cd-cc2f6a3c28de" } """ self.db_hook.submit_indexing_job(json_ingestion_string) assert task_post.called_once assert status_check.called_once if task_post.called_once: req_body = task_post.request_history[0].json() assert req_body['task'] == "9f8a7359-77d4-4612-b0cd-cc2f6a3c28de" @requests_mock.mock() def test_submit_unknown_response(self, m): task_post = m.post( 'http://druid-overlord:8081/druid/indexer/v1/task', text='{"task":"9f8a7359-77d4-4612-b0cd-cc2f6a3c28de"}', ) status_check = m.get( 'http://druid-overlord:8081/druid/indexer/v1/task/9f8a7359-77d4-4612-b0cd-cc2f6a3c28de/status', text='{"status":{"status": "UNKNOWN"}}', ) # An unknown error code with pytest.raises(AirflowException): self.db_hook.submit_indexing_job('Long json file') assert task_post.called_once assert status_check.called_once @requests_mock.mock() def test_submit_timeout(self, m): self.db_hook.timeout = 1 self.db_hook.max_ingestion_time = 5 task_post = m.post( 'http://druid-overlord:8081/druid/indexer/v1/task', text='{"task":"9f8a7359-77d4-4612-b0cd-cc2f6a3c28de"}', ) status_check = m.get( 'http://druid-overlord:8081/druid/indexer/v1/task/9f8a7359-77d4-4612-b0cd-cc2f6a3c28de/status', text='{"status":{"status": "RUNNING"}}', ) shutdown_post = m.post( 'http://druid-overlord:8081/druid/indexer/v1/task/' '9f8a7359-77d4-4612-b0cd-cc2f6a3c28de/shutdown', text='{"task":"9f8a7359-77d4-4612-b0cd-cc2f6a3c28de"}', ) # Because the jobs keeps running with pytest.raises(AirflowException): self.db_hook.submit_indexing_job('Long json file') assert task_post.called_once assert status_check.called assert shutdown_post.called_once @patch('airflow.providers.apache.druid.hooks.druid.DruidHook.get_connection') def test_get_conn_url(self, mock_get_connection): get_conn_value = MagicMock() get_conn_value.host = 'test_host' get_conn_value.conn_type = 'https' get_conn_value.port = '1' get_conn_value.extra_dejson = {'endpoint': 'ingest'} mock_get_connection.return_value = get_conn_value hook = DruidHook(timeout=1, max_ingestion_time=5) assert hook.get_conn_url() == 'https://test_host:1/ingest' @patch('airflow.providers.apache.druid.hooks.druid.DruidHook.get_connection') def test_get_auth(self, mock_get_connection): get_conn_value = MagicMock() get_conn_value.login = 'airflow' get_conn_value.password = 'password' mock_get_connection.return_value = get_conn_value expected = requests.auth.HTTPBasicAuth('airflow', 'password') assert self.db_hook.get_auth() == expected @patch('airflow.providers.apache.druid.hooks.druid.DruidHook.get_connection') def test_get_auth_with_no_user(self, mock_get_connection): get_conn_value = MagicMock() get_conn_value.login = None get_conn_value.password = 'password' mock_get_connection.return_value = get_conn_value assert self.db_hook.get_auth() is None @patch('airflow.providers.apache.druid.hooks.druid.DruidHook.get_connection') def test_get_auth_with_no_password(self, mock_get_connection): get_conn_value = MagicMock() get_conn_value.login = 'airflow' get_conn_value.password = None mock_get_connection.return_value = get_conn_value assert self.db_hook.get_auth() is None @patch('airflow.providers.apache.druid.hooks.druid.DruidHook.get_connection') def test_get_auth_with_no_user_and_password(self, mock_get_connection): get_conn_value = MagicMock() get_conn_value.login = None get_conn_value.password = None mock_get_connection.return_value = get_conn_value assert self.db_hook.get_auth() is None class TestDruidDbApiHook(unittest.TestCase): def setUp(self): super().setUp() self.cur = MagicMock(rowcount=0) self.conn = conn = MagicMock() self.conn.host = 'host' self.conn.port = '1000' self.conn.conn_type = 'druid' self.conn.extra_dejson = {'endpoint': 'druid/v2/sql'} self.conn.cursor.return_value = self.cur class TestDruidDBApiHook(DruidDbApiHook): def get_conn(self): return conn def get_connection(self, conn_id): return conn self.db_hook = TestDruidDBApiHook def test_get_uri(self): db_hook = self.db_hook() assert 'druid://host:1000/druid/v2/sql' == db_hook.get_uri() def test_get_first_record(self): statement = 'SQL' result_sets = [('row1',), ('row2',)] self.cur.fetchone.return_value = result_sets[0] assert result_sets[0] == self.db_hook().get_first(statement) assert self.conn.close.call_count == 1 assert self.cur.close.call_count == 1 self.cur.execute.assert_called_once_with(statement) def test_get_records(self): statement = 'SQL' result_sets = [('row1',), ('row2',)] self.cur.fetchall.return_value = result_sets assert result_sets == self.db_hook().get_records(statement) assert self.conn.close.call_count == 1 assert self.cur.close.call_count == 1 self.cur.execute.assert_called_once_with(statement) def test_get_pandas_df(self): statement = 'SQL' column = 'col' result_sets = [('row1',), ('row2',)] self.cur.description = [(column,)] self.cur.fetchall.return_value = result_sets df = self.db_hook().get_pandas_df(statement) assert column == df.columns[0] for i, item in enumerate(result_sets): assert item[0] == df.values.tolist()[i][0] assert self.conn.close.call_count == 1 assert self.cur.close.call_count == 1 self.cur.execute.assert_called_once_with(statement)
#!/usr/bin/env python """Standard actions that happen on the client.""" import cStringIO as StringIO import ctypes import gzip import hashlib import os import platform import socket import sys import time import zlib import psutil import logging from grr.client import actions from grr.client import client_utils_common from grr.client import vfs from grr.client.client_actions import tempfiles from grr.lib import config_lib from grr.lib import flags from grr.lib import rdfvalue from grr.lib import utils from grr.lib.rdfvalues import crypto # We do not send larger buffers than this: MAX_BUFFER_SIZE = 640*1024 class ReadBuffer(actions.ActionPlugin): """Reads a buffer from a file and returns it to a server callback.""" in_rdfvalue = rdfvalue.BufferReference out_rdfvalue = rdfvalue.BufferReference def Run(self, args): """Reads a buffer on the client and sends it to the server.""" # Make sure we limit the size of our output if args.length > MAX_BUFFER_SIZE: raise RuntimeError("Can not read buffers this large.") try: fd = vfs.VFSOpen(args.pathspec, progress_callback=self.Progress) fd.Seek(args.offset) offset = fd.Tell() data = fd.Read(args.length) except (IOError, OSError), e: self.SetStatus(rdfvalue.GrrStatus.ReturnedStatus.IOERROR, e) return # Now return the data to the server self.SendReply(offset=offset, data=data, length=len(data), pathspec=fd.pathspec) HASH_CACHE = utils.FastStore(100) class TransferBuffer(actions.ActionPlugin): """Reads a buffer from a file and returns it to the server efficiently.""" in_rdfvalue = rdfvalue.BufferReference out_rdfvalue = rdfvalue.BufferReference def Run(self, args): """Reads a buffer on the client and sends it to the server.""" # Make sure we limit the size of our output if args.length > MAX_BUFFER_SIZE: raise RuntimeError("Can not read buffers this large.") data = vfs.ReadVFS(args.pathspec, args.offset, args.length, progress_callback=self.Progress) result = rdfvalue.DataBlob( data=zlib.compress(data), compression=rdfvalue.DataBlob.CompressionType.ZCOMPRESSION) digest = hashlib.sha256(data).digest() # Ensure that the buffer is counted against this response. Check network # send limit. self.ChargeBytesToSession(len(data)) # Now return the data to the server into the special TransferStore well # known flow. self.grr_worker.SendReply( result, session_id=rdfvalue.SessionID("aff4:/flows/W:TransferStore")) # Now report the hash of this blob to our flow as well as the offset and # length. self.SendReply(offset=args.offset, length=len(data), data=digest) class HashBuffer(actions.ActionPlugin): """Hash a buffer from a file and returns it to the server efficiently.""" in_rdfvalue = rdfvalue.BufferReference out_rdfvalue = rdfvalue.BufferReference def Run(self, args): """Reads a buffer on the client and sends it to the server.""" # Make sure we limit the size of our output if args.length > MAX_BUFFER_SIZE: raise RuntimeError("Can not read buffers this large.") data = vfs.ReadVFS(args.pathspec, args.offset, args.length) digest = hashlib.sha256(data).digest() # Now report the hash of this blob to our flow as well as the offset and # length. self.SendReply(offset=args.offset, length=len(data), data=digest) class CopyPathToFile(actions.ActionPlugin): """Copy contents of a pathspec to a file on disk.""" in_rdfvalue = rdfvalue.CopyPathToFileRequest out_rdfvalue = rdfvalue.CopyPathToFileRequest BLOCK_SIZE = 10 * 1024 * 1024 def _Copy(self, dest_fd): """Copy from VFS to file until no more data or self.length is reached. Args: dest_fd: file object to write to Returns: self.written: bytes written """ while self.written < self.length: to_read = min(self.length - self.written, self.BLOCK_SIZE) data = self.src_fd.read(to_read) if not data: break dest_fd.write(data) self.written += len(data) # Send heartbeats for long files. self.Progress() return self.written def Run(self, args): """Read from a VFS file and write to a GRRTempFile on disk. If file writing doesn't complete files won't be cleaned up. Args: args: see CopyPathToFile in jobs.proto """ self.src_fd = vfs.VFSOpen(args.src_path, progress_callback=self.Progress) self.src_fd.Seek(args.offset) offset = self.src_fd.Tell() self.length = args.length or (1024 ** 4) # 1 TB self.written = 0 suffix = ".gz" if args.gzip_output else "" self.dest_fd = tempfiles.CreateGRRTempFile(directory=args.dest_dir, lifetime=args.lifetime, suffix=suffix) self.dest_file = self.dest_fd.name with self.dest_fd: if args.gzip_output: gzip_fd = gzip.GzipFile(self.dest_file, "wb", 9, self.dest_fd) # Gzip filehandle needs its own close method called with gzip_fd: self._Copy(gzip_fd) else: self._Copy(self.dest_fd) pathspec_out = rdfvalue.PathSpec( path=self.dest_file, pathtype=rdfvalue.PathSpec.PathType.OS) self.SendReply(offset=offset, length=self.written, src_path=args.src_path, dest_dir=args.dest_dir, dest_path=pathspec_out, gzip_output=args.gzip_output) class ListDirectory(ReadBuffer): """Lists all the files in a directory.""" in_rdfvalue = rdfvalue.ListDirRequest out_rdfvalue = rdfvalue.StatEntry def Run(self, args): """Lists a directory.""" try: directory = vfs.VFSOpen(args.pathspec, progress_callback=self.Progress) except (IOError, OSError), e: self.SetStatus(rdfvalue.GrrStatus.ReturnedStatus.IOERROR, e) return files = list(directory.ListFiles()) files.sort(key=lambda x: x.pathspec.path) for response in files: self.SendReply(response) class IteratedListDirectory(actions.IteratedAction): """Lists a directory as an iterator.""" in_rdfvalue = rdfvalue.ListDirRequest out_rdfvalue = rdfvalue.StatEntry def Iterate(self, request, client_state): """Restores its way through the directory using an Iterator.""" try: fd = vfs.VFSOpen(request.pathspec, progress_callback=self.Progress) except (IOError, OSError), e: self.SetStatus(rdfvalue.GrrStatus.ReturnedStatus.IOERROR, e) return files = list(fd.ListFiles()) files.sort(key=lambda x: x.pathspec.path) index = client_state.get("index", 0) length = request.iterator.number for response in files[index:index+length]: self.SendReply(response) # Update the state client_state["index"] = index + length class SuspendableListDirectory(actions.SuspendableAction): """Lists a directory as a suspendable client action.""" in_rdfvalue = rdfvalue.ListDirRequest out_rdfvalue = rdfvalue.StatEntry def Iterate(self): try: fd = vfs.VFSOpen(self.request.pathspec, progress_callback=self.Progress) except (IOError, OSError), e: self.SetStatus(rdfvalue.GrrStatus.ReturnedStatus.IOERROR, e) return length = self.request.iterator.number for group in utils.Grouper(fd.ListFiles(), length): for response in group: self.SendReply(response) self.Suspend() class StatFile(ListDirectory): """Sends a StatResponse for a single file.""" in_rdfvalue = rdfvalue.ListDirRequest out_rdfvalue = rdfvalue.StatEntry def Run(self, args): """Sends a StatResponse for a single file.""" try: fd = vfs.VFSOpen(args.pathspec, progress_callback=self.Progress) res = fd.Stat() self.SendReply(res) except (IOError, OSError), e: self.SetStatus(rdfvalue.GrrStatus.ReturnedStatus.IOERROR, e) return class ExecuteCommand(actions.ActionPlugin): """Executes one of the predefined commands.""" in_rdfvalue = rdfvalue.ExecuteRequest out_rdfvalue = rdfvalue.ExecuteResponse def Run(self, command): """Run.""" cmd = command.cmd args = command.args time_limit = command.time_limit res = client_utils_common.Execute(cmd, args, time_limit) (stdout, stderr, status, time_used) = res # Limit output to 10MB so our response doesn't get too big. stdout = stdout[:10 * 1024 * 1024] stderr = stderr[:10 * 1024 * 1024] result = rdfvalue.ExecuteResponse( request=command, stdout=stdout, stderr=stderr, exit_status=status, # We have to return microseconds. time_used=int(1e6 * time_used)) self.SendReply(result) class ExecuteBinaryCommand(actions.ActionPlugin): """Executes a command from a passed in binary. Obviously this is a dangerous function, it provides for arbitrary code exec by the server running as root/SYSTEM. This is protected by the CONFIG[PrivateKeys.executable_signing_private_key], which should be stored offline and well protected. This method can be utilized as part of an autoupdate mechanism if necessary. NOTE: If the binary is too large to fit inside a single request, the request will have the more_data flag enabled, indicating more data is coming. """ in_rdfvalue = rdfvalue.ExecuteBinaryRequest out_rdfvalue = rdfvalue.ExecuteBinaryResponse suffix = "" def WriteBlobToFile(self, request, suffix=""): """Writes the blob to a file and returns its path.""" lifetime = 0 # Only set the lifetime thread on the last chunk written. if not request.more_data: lifetime = request.time_limit # Keep the file for at least 5 seconds after execution. if lifetime > 0: lifetime += 5 # First chunk truncates the file, later chunks append. if request.offset == 0: mode = "w+b" else: mode = "r+b" temp_file = tempfiles.CreateGRRTempFile(filename=request.write_path, suffix=suffix, mode=mode) with temp_file: path = temp_file.name temp_file.seek(0, 2) if temp_file.tell() != request.offset: raise IOError("Chunks out of order Error.") # Write the new chunk. temp_file.write(request.executable.data) return path def CleanUp(self, path): """Removes the temp file.""" try: if os.path.exists(path): os.remove(path) except (OSError, IOError), e: logging.info("Failed to remove temporary file %s. Err: %s", path, e) def Run(self, args): """Run.""" # Verify the executable blob. args.executable.Verify(config_lib.CONFIG[ "Client.executable_signing_public_key"]) path = self.WriteBlobToFile(args, self.suffix) # Only actually run the file on the last chunk. if not args.more_data: self.ProcessFile(path, args) self.CleanUp(path) def ProcessFile(self, path, args): res = client_utils_common.Execute(path, args.args, args.time_limit, bypass_whitelist=True) (stdout, stderr, status, time_used) = res # Limit output to 10MB so our response doesn't get too big. stdout = stdout[:10 * 1024 * 1024] stderr = stderr[:10 * 1024 * 1024] result = rdfvalue.ExecuteBinaryResponse( stdout=stdout, stderr=stderr, exit_status=status, # We have to return microseconds. time_used=int(1e6 * time_used)) self.SendReply(result) class ExecutePython(actions.ActionPlugin): """Executes python code with exec. Obviously this is a dangerous function, it provides for arbitrary code exec by the server running as root/SYSTEM. This is protected by CONFIG[PrivateKeys.executable_signing_private_key], which should be stored offline and well protected. """ in_rdfvalue = rdfvalue.ExecutePythonRequest out_rdfvalue = rdfvalue.ExecutePythonResponse def Run(self, args): """Run.""" time_start = time.time() class StdOutHook(object): def __init__(self, buf): self.buf = buf def write(self, text): self.buf.write(text) args.python_code.Verify(config_lib.CONFIG[ "Client.executable_signing_public_key"]) # The execed code can assign to this variable if it wants to return data. logging.debug("exec for python code %s", args.python_code.data[0:100]) context = globals().copy() context["py_args"] = args.py_args.ToDict() context["magic_return_str"] = "" # Export the Progress function to allow python hacks to call it. context["Progress"] = self.Progress stdout = StringIO.StringIO() with utils.Stubber(sys, "stdout", StdOutHook(stdout)): exec(args.python_code.data, context) # pylint: disable=exec-used stdout_output = stdout.getvalue() magic_str_output = context.get("magic_return_str") if stdout_output and magic_str_output: output = "Stdout: %s\nMagic Str:%s\n" % (stdout_output, magic_str_output) else: output = stdout_output or magic_str_output time_used = time.time() - time_start # We have to return microseconds. result = rdfvalue.ExecutePythonResponse( time_used=int(1e6 * time_used), return_val=utils.SmartStr(output)) self.SendReply(result) class Segfault(actions.ActionPlugin): """This action is just for debugging. It induces a segfault.""" in_rdfvalue = None out_rdfvalue = None def Run(self, unused_args): """Does the segfaulting.""" if flags.FLAGS.debug: logging.warning("Segfault action requested :(") print ctypes.cast(1, ctypes.POINTER(ctypes.c_void_p)).contents else: logging.warning("Segfault requested but not running in debug mode.") class ListProcesses(actions.ActionPlugin): """This action lists all the processes running on a machine.""" in_rdfvalue = None out_rdfvalue = rdfvalue.Process def Run(self, unused_arg): # psutil will cause an active loop on Windows 2000 if platform.system() == "Windows" and platform.version().startswith("5.0"): raise RuntimeError("ListProcesses not supported on Windows 2000") for proc in psutil.process_iter(): response = rdfvalue.Process() process_fields = ["pid", "ppid", "name", "exe", "username", "terminal"] for field in process_fields: try: value = getattr(proc, field) if value is None: continue if callable(value): value = value() if not isinstance(value, (int, long)): value = utils.SmartUnicode(value) setattr(response, field, value) except (psutil.NoSuchProcess, psutil.AccessDenied, AttributeError): pass try: for arg in proc.cmdline(): response.cmdline.append(utils.SmartUnicode(arg)) except (psutil.NoSuchProcess, psutil.AccessDenied): pass try: response.nice = proc.nice() except (psutil.NoSuchProcess, psutil.AccessDenied): pass try: # Not available on Windows. if hasattr(proc, "uids"): (response.real_uid, response.effective_uid, response.saved_uid) = proc.uids() (response.real_gid, response.effective_gid, response.saved_gid) = proc.gids() except (psutil.NoSuchProcess, psutil.AccessDenied): pass try: response.ctime = long(proc.create_time() * 1e6) response.status = str(proc.status()) except (psutil.NoSuchProcess, psutil.AccessDenied): pass try: # Not available on OSX. if hasattr(proc, "cwd"): response.cwd = utils.SmartUnicode(proc.cwd()) except (psutil.NoSuchProcess, psutil.AccessDenied): pass try: response.num_threads = proc.num_threads() except (psutil.NoSuchProcess, psutil.AccessDenied, RuntimeError): pass try: (response.user_cpu_time, response.system_cpu_time) = proc.cpu_times() # This is very time consuming so we do not collect cpu_percent here. # response.cpu_percent = proc.get_cpu_percent() except (psutil.NoSuchProcess, psutil.AccessDenied): pass try: response.RSS_size, response.VMS_size = proc.memory_info() response.memory_percent = proc.memory_percent() except (psutil.NoSuchProcess, psutil.AccessDenied): pass # Due to a bug in psutil, this function is disabled for now # (https://github.com/giampaolo/psutil/issues/340) # try: # for f in proc.open_files(): # response.open_files.append(utils.SmartUnicode(f.path)) # except (psutil.NoSuchProcess, psutil.AccessDenied): # pass try: for c in proc.connections(): conn = response.connections.Append(family=c.family, type=c.type, pid=proc.pid) try: conn.state = c.status except ValueError: logging.info("Encountered unknown connection status (%s).", c.status) try: conn.local_address.ip, conn.local_address.port = c.laddr # Could be in state LISTEN. if c.raddr: conn.remote_address.ip, conn.remote_address.port = c.raddr except AttributeError: conn.local_address.ip, conn.local_address.port = c.local_address # Could be in state LISTEN. if c.remote_address: (conn.remote_address.ip, conn.remote_address.port) = c.remote_address except (psutil.NoSuchProcess, psutil.AccessDenied): pass self.SendReply(response) # Reading information here is slow so we heartbeat between processes. self.Progress() class SendFile(actions.ActionPlugin): """This action encrypts and sends a file to a remote listener.""" in_rdfvalue = rdfvalue.SendFileRequest out_rdfvalue = rdfvalue.StatEntry BLOCK_SIZE = 1024 * 1024 * 10 # 10 MB def Send(self, sock, msg): totalsent = 0 n = len(msg) while totalsent < n: sent = sock.send(msg[totalsent:]) if sent == 0: raise RuntimeError("socket connection broken") totalsent += sent def Run(self, args): """Run.""" # Open the file. fd = vfs.VFSOpen(args.pathspec, progress_callback=self.Progress) if args.address_family == rdfvalue.NetworkAddress.Family.INET: family = socket.AF_INET elif args.address_family == rdfvalue.NetworkAddress.Family.INET6: family = socket.AF_INET6 else: raise RuntimeError("Socket address family not supported.") s = socket.socket(family, socket.SOCK_STREAM) try: s.connect((args.host, args.port)) except socket.error as e: raise RuntimeError(str(e)) cipher = crypto.AES128CBCCipher(args.key, args.iv, crypto.Cipher.OP_ENCRYPT) while True: data = fd.read(self.BLOCK_SIZE) if not data: break self.Send(s, cipher.Update(data)) # Send heartbeats for long files. self.Progress() self.Send(s, cipher.Final()) s.close() self.SendReply(fd.Stat()) class StatFS(actions.ActionPlugin): """Call os.statvfs for a given list of paths. OS X and Linux only. Note that a statvfs call for a network filesystem (e.g. NFS) that is unavailable, e.g. due to no network, will result in the call blocking. """ in_rdfvalue = rdfvalue.StatFSRequest out_rdfvalue = rdfvalue.Volume def Run(self, args): if platform.system() == "Windows": raise RuntimeError("os.statvfs not available on Windows") for path in args.path_list: try: fd = vfs.VFSOpen(rdfvalue.PathSpec(path=path, pathtype=args.pathtype), progress_callback=self.Progress) st = fd.StatFS() mount_point = fd.GetMountPoint() except (IOError, OSError), e: self.SetStatus(rdfvalue.GrrStatus.ReturnedStatus.IOERROR, e) continue unix = rdfvalue.UnixVolume(mount_point=mount_point) # On linux pre 2.6 kernels don't have frsize, so we fall back to bsize. # The actual_available_allocation_units attribute is set to blocks # available to the unprivileged user, root may have some additional # reserved space. result = rdfvalue.Volume(bytes_per_sector=(st.f_frsize or st.f_bsize), sectors_per_allocation_unit=1, total_allocation_units=st.f_blocks, actual_available_allocation_units=st.f_bavail, unix=unix) self.SendReply(result)
"""Support for a Hue API to control Home Assistant.""" import logging from aiohttp import web from homeassistant import core from homeassistant.components import ( climate, cover, fan, light, media_player, scene, script) from homeassistant.components.climate.const import ( SERVICE_SET_TEMPERATURE, SUPPORT_TARGET_TEMPERATURE) from homeassistant.components.cover import ( ATTR_CURRENT_POSITION, ATTR_POSITION, SERVICE_SET_COVER_POSITION, SUPPORT_SET_POSITION) from homeassistant.components.fan import ( ATTR_SPEED, SPEED_HIGH, SPEED_LOW, SPEED_MEDIUM, SPEED_OFF, SUPPORT_SET_SPEED) from homeassistant.components.http import HomeAssistantView from homeassistant.components.http.const import KEY_REAL_IP from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_HS_COLOR, SUPPORT_BRIGHTNESS, SUPPORT_COLOR) from homeassistant.components.media_player.const import ( ATTR_MEDIA_VOLUME_LEVEL, SUPPORT_VOLUME_SET) from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_SUPPORTED_FEATURES, ATTR_TEMPERATURE, HTTP_BAD_REQUEST, HTTP_NOT_FOUND, SERVICE_CLOSE_COVER, SERVICE_OPEN_COVER, SERVICE_TURN_OFF, SERVICE_TURN_ON, SERVICE_VOLUME_SET, STATE_OFF, STATE_ON) from homeassistant.util.network import is_local _LOGGER = logging.getLogger(__name__) HUE_API_STATE_ON = 'on' HUE_API_STATE_BRI = 'bri' HUE_API_STATE_HUE = 'hue' HUE_API_STATE_SAT = 'sat' HUE_API_STATE_HUE_MAX = 65535.0 HUE_API_STATE_SAT_MAX = 254.0 HUE_API_STATE_BRI_MAX = 255.0 STATE_BRIGHTNESS = HUE_API_STATE_BRI STATE_HUE = HUE_API_STATE_HUE STATE_SATURATION = HUE_API_STATE_SAT class HueUsernameView(HomeAssistantView): """Handle requests to create a username for the emulated hue bridge.""" url = '/api' name = 'emulated_hue:api:create_username' extra_urls = ['/api/'] requires_auth = False async def post(self, request): """Handle a POST request.""" try: data = await request.json() except ValueError: return self.json_message('Invalid JSON', HTTP_BAD_REQUEST) if 'devicetype' not in data: return self.json_message('devicetype not specified', HTTP_BAD_REQUEST) if not is_local(request[KEY_REAL_IP]): return self.json_message('only local IPs allowed', HTTP_BAD_REQUEST) return self.json([{'success': {'username': '12345678901234567890'}}]) class HueAllGroupsStateView(HomeAssistantView): """Group handler.""" url = '/api/{username}/groups' name = 'emulated_hue:all_groups:state' requires_auth = False def __init__(self, config): """Initialize the instance of the view.""" self.config = config @core.callback def get(self, request, username): """Process a request to make the Brilliant Lightpad work.""" if not is_local(request[KEY_REAL_IP]): return self.json_message('only local IPs allowed', HTTP_BAD_REQUEST) return self.json({ }) class HueGroupView(HomeAssistantView): """Group handler to get Logitech Pop working.""" url = '/api/{username}/groups/0/action' name = 'emulated_hue:groups:state' requires_auth = False def __init__(self, config): """Initialize the instance of the view.""" self.config = config @core.callback def put(self, request, username): """Process a request to make the Logitech Pop working.""" if not is_local(request[KEY_REAL_IP]): return self.json_message('only local IPs allowed', HTTP_BAD_REQUEST) return self.json([{ 'error': { 'address': '/groups/0/action/scene', 'type': 7, 'description': 'invalid value, dummy for parameter, scene' } }]) class HueAllLightsStateView(HomeAssistantView): """Handle requests for getting and setting info about entities.""" url = '/api/{username}/lights' name = 'emulated_hue:lights:state' requires_auth = False def __init__(self, config): """Initialize the instance of the view.""" self.config = config @core.callback def get(self, request, username): """Process a request to get the list of available lights.""" if not is_local(request[KEY_REAL_IP]): return self.json_message('only local IPs allowed', HTTP_BAD_REQUEST) hass = request.app['hass'] json_response = {} for entity in hass.states.async_all(): if self.config.is_entity_exposed(entity): state = get_entity_state(self.config, entity) number = self.config.entity_id_to_number(entity.entity_id) json_response[number] = entity_to_json(self.config, entity, state) return self.json(json_response) class HueOneLightStateView(HomeAssistantView): """Handle requests for getting and setting info about entities.""" url = '/api/{username}/lights/{entity_id}' name = 'emulated_hue:light:state' requires_auth = False def __init__(self, config): """Initialize the instance of the view.""" self.config = config @core.callback def get(self, request, username, entity_id): """Process a request to get the state of an individual light.""" if not is_local(request[KEY_REAL_IP]): return self.json_message('only local IPs allowed', HTTP_BAD_REQUEST) hass = request.app['hass'] entity_id = self.config.number_to_entity_id(entity_id) entity = hass.states.get(entity_id) if entity is None: _LOGGER.error('Entity not found: %s', entity_id) return web.Response(text="Entity not found", status=404) if not self.config.is_entity_exposed(entity): _LOGGER.error('Entity not exposed: %s', entity_id) return web.Response(text="Entity not exposed", status=404) state = get_entity_state(self.config, entity) json_response = entity_to_json(self.config, entity, state) return self.json(json_response) class HueOneLightChangeView(HomeAssistantView): """Handle requests for getting and setting info about entities.""" url = '/api/{username}/lights/{entity_number}/state' name = 'emulated_hue:light:state' requires_auth = False def __init__(self, config): """Initialize the instance of the view.""" self.config = config async def put(self, request, username, entity_number): """Process a request to set the state of an individual light.""" if not is_local(request[KEY_REAL_IP]): return self.json_message('only local IPs allowed', HTTP_BAD_REQUEST) config = self.config hass = request.app['hass'] entity_id = config.number_to_entity_id(entity_number) if entity_id is None: _LOGGER.error('Unknown entity number: %s', entity_number) return self.json_message('Entity not found', HTTP_NOT_FOUND) entity = hass.states.get(entity_id) if entity is None: _LOGGER.error('Entity not found: %s', entity_id) return self.json_message('Entity not found', HTTP_NOT_FOUND) if not config.is_entity_exposed(entity): _LOGGER.error('Entity not exposed: %s', entity_id) return web.Response(text="Entity not exposed", status=404) try: request_json = await request.json() except ValueError: _LOGGER.error('Received invalid json') return self.json_message('Invalid JSON', HTTP_BAD_REQUEST) # Parse the request into requested "on" status and brightness parsed = parse_hue_api_put_light_body(request_json, entity) if parsed is None: _LOGGER.error('Unable to parse data: %s', request_json) return web.Response(text="Bad request", status=400) # Choose general HA domain domain = core.DOMAIN # Entity needs separate call to turn on turn_on_needed = False # Convert the resulting "on" status into the service we need to call service = SERVICE_TURN_ON if parsed[STATE_ON] else SERVICE_TURN_OFF # Construct what we need to send to the service data = {ATTR_ENTITY_ID: entity_id} # Make sure the entity actually supports brightness entity_features = entity.attributes.get(ATTR_SUPPORTED_FEATURES, 0) if entity.domain == light.DOMAIN: if parsed[STATE_ON]: if entity_features & SUPPORT_BRIGHTNESS: if parsed[STATE_BRIGHTNESS] is not None: data[ATTR_BRIGHTNESS] = parsed[STATE_BRIGHTNESS] if entity_features & SUPPORT_COLOR: if parsed[STATE_HUE] is not None: if parsed[STATE_SATURATION]: sat = parsed[STATE_SATURATION] else: sat = 0 hue = parsed[STATE_HUE] # Convert hs values to hass hs values sat = int((sat / HUE_API_STATE_SAT_MAX) * 100) hue = int((hue / HUE_API_STATE_HUE_MAX) * 360) data[ATTR_HS_COLOR] = (hue, sat) # If the requested entity is a script add some variables elif entity.domain == script.DOMAIN: data['variables'] = { 'requested_state': STATE_ON if parsed[STATE_ON] else STATE_OFF } if parsed[STATE_BRIGHTNESS] is not None: data['variables']['requested_level'] = parsed[STATE_BRIGHTNESS] # If the requested entity is a climate, set the temperature elif entity.domain == climate.DOMAIN: # We don't support turning climate devices on or off, # only setting the temperature service = None if entity_features & SUPPORT_TARGET_TEMPERATURE: if parsed[STATE_BRIGHTNESS] is not None: domain = entity.domain service = SERVICE_SET_TEMPERATURE data[ATTR_TEMPERATURE] = parsed[STATE_BRIGHTNESS] # If the requested entity is a media player, convert to volume elif entity.domain == media_player.DOMAIN: if entity_features & SUPPORT_VOLUME_SET: if parsed[STATE_BRIGHTNESS] is not None: turn_on_needed = True domain = entity.domain service = SERVICE_VOLUME_SET # Convert 0-100 to 0.0-1.0 data[ATTR_MEDIA_VOLUME_LEVEL] = \ parsed[STATE_BRIGHTNESS] / 100.0 # If the requested entity is a cover, convert to open_cover/close_cover elif entity.domain == cover.DOMAIN: domain = entity.domain if service == SERVICE_TURN_ON: service = SERVICE_OPEN_COVER else: service = SERVICE_CLOSE_COVER if entity_features & SUPPORT_SET_POSITION: if parsed[STATE_BRIGHTNESS] is not None: domain = entity.domain service = SERVICE_SET_COVER_POSITION data[ATTR_POSITION] = parsed[STATE_BRIGHTNESS] # If the requested entity is a fan, convert to speed elif entity.domain == fan.DOMAIN: if entity_features & SUPPORT_SET_SPEED: if parsed[STATE_BRIGHTNESS] is not None: domain = entity.domain # Convert 0-100 to a fan speed brightness = parsed[STATE_BRIGHTNESS] if brightness == 0: data[ATTR_SPEED] = SPEED_OFF elif 0 < brightness <= 33.3: data[ATTR_SPEED] = SPEED_LOW elif 33.3 < brightness <= 66.6: data[ATTR_SPEED] = SPEED_MEDIUM elif 66.6 < brightness <= 100: data[ATTR_SPEED] = SPEED_HIGH if entity.domain in config.off_maps_to_on_domains: # Map the off command to on service = SERVICE_TURN_ON # Caching is required because things like scripts and scenes won't # report as "off" to Alexa if an "off" command is received, because # they'll map to "on". Thus, instead of reporting its actual # status, we report what Alexa will want to see, which is the same # as the actual requested command. config.cached_states[entity_id] = parsed # Separate call to turn on needed if turn_on_needed: hass.async_create_task(hass.services.async_call( core.DOMAIN, SERVICE_TURN_ON, {ATTR_ENTITY_ID: entity_id}, blocking=True)) if service is not None: hass.async_create_task(hass.services.async_call( domain, service, data, blocking=True)) json_response = \ [create_hue_success_response( entity_id, HUE_API_STATE_ON, parsed[STATE_ON])] if parsed[STATE_BRIGHTNESS] is not None: json_response.append(create_hue_success_response( entity_id, HUE_API_STATE_BRI, parsed[STATE_BRIGHTNESS])) if parsed[STATE_HUE] is not None: json_response.append(create_hue_success_response( entity_id, HUE_API_STATE_HUE, parsed[STATE_HUE])) if parsed[STATE_SATURATION] is not None: json_response.append(create_hue_success_response( entity_id, HUE_API_STATE_SAT, parsed[STATE_SATURATION])) return self.json(json_response) def parse_hue_api_put_light_body(request_json, entity): """Parse the body of a request to change the state of a light.""" data = { STATE_BRIGHTNESS: None, STATE_HUE: None, STATE_ON: False, STATE_SATURATION: None, } # Make sure the entity actually supports brightness entity_features = entity.attributes.get(ATTR_SUPPORTED_FEATURES, 0) if HUE_API_STATE_ON in request_json: if not isinstance(request_json[HUE_API_STATE_ON], bool): return None if request_json[HUE_API_STATE_ON]: # Echo requested device be turned on data[STATE_BRIGHTNESS] = None data[STATE_ON] = True else: # Echo requested device be turned off data[STATE_BRIGHTNESS] = None data[STATE_ON] = False if HUE_API_STATE_HUE in request_json: try: # Clamp brightness from 0 to 65535 data[STATE_HUE] = \ max(0, min(int(request_json[HUE_API_STATE_HUE]), HUE_API_STATE_HUE_MAX)) except ValueError: return None if HUE_API_STATE_SAT in request_json: try: # Clamp saturation from 0 to 254 data[STATE_SATURATION] = \ max(0, min(int(request_json[HUE_API_STATE_SAT]), HUE_API_STATE_SAT_MAX)) except ValueError: return None if HUE_API_STATE_BRI in request_json: try: # Clamp brightness from 0 to 255 data[STATE_BRIGHTNESS] = \ max(0, min(int(request_json[HUE_API_STATE_BRI]), HUE_API_STATE_BRI_MAX)) except ValueError: return None if entity.domain == light.DOMAIN: data[STATE_ON] = (data[STATE_BRIGHTNESS] > 0) if not entity_features & SUPPORT_BRIGHTNESS: data[STATE_BRIGHTNESS] = None elif entity.domain == scene.DOMAIN: data[STATE_BRIGHTNESS] = None data[STATE_ON] = True elif entity.domain in [ script.DOMAIN, media_player.DOMAIN, fan.DOMAIN, cover.DOMAIN, climate.DOMAIN]: # Convert 0-255 to 0-100 level = (data[STATE_BRIGHTNESS] / HUE_API_STATE_BRI_MAX) * 100 data[STATE_BRIGHTNESS] = round(level) data[STATE_ON] = True return data def get_entity_state(config, entity): """Retrieve and convert state and brightness values for an entity.""" cached_state = config.cached_states.get(entity.entity_id, None) data = { STATE_BRIGHTNESS: None, STATE_HUE: None, STATE_ON: False, STATE_SATURATION: None } if cached_state is None: data[STATE_ON] = entity.state != STATE_OFF if data[STATE_ON]: data[STATE_BRIGHTNESS] = entity.attributes.get(ATTR_BRIGHTNESS) hue_sat = entity.attributes.get(ATTR_HS_COLOR, None) if hue_sat is not None: hue = hue_sat[0] sat = hue_sat[1] # convert hass hs values back to hue hs values data[STATE_HUE] = int((hue / 360.0) * HUE_API_STATE_HUE_MAX) data[STATE_SATURATION] = \ int((sat / 100.0) * HUE_API_STATE_SAT_MAX) else: data[STATE_BRIGHTNESS] = 0 data[STATE_HUE] = 0 data[STATE_SATURATION] = 0 # Make sure the entity actually supports brightness entity_features = entity.attributes.get(ATTR_SUPPORTED_FEATURES, 0) if entity.domain == light.DOMAIN: if entity_features & SUPPORT_BRIGHTNESS: pass elif entity.domain == climate.DOMAIN: temperature = entity.attributes.get(ATTR_TEMPERATURE, 0) # Convert 0-100 to 0-255 data[STATE_BRIGHTNESS] = round(temperature * 255 / 100) elif entity.domain == media_player.DOMAIN: level = entity.attributes.get( ATTR_MEDIA_VOLUME_LEVEL, 1.0 if data[STATE_ON] else 0.0) # Convert 0.0-1.0 to 0-255 data[STATE_BRIGHTNESS] = \ round(min(1.0, level) * HUE_API_STATE_BRI_MAX) elif entity.domain == fan.DOMAIN: speed = entity.attributes.get(ATTR_SPEED, 0) # Convert 0.0-1.0 to 0-255 data[STATE_BRIGHTNESS] = 0 if speed == SPEED_LOW: data[STATE_BRIGHTNESS] = 85 elif speed == SPEED_MEDIUM: data[STATE_BRIGHTNESS] = 170 elif speed == SPEED_HIGH: data[STATE_BRIGHTNESS] = 255 elif entity.domain == cover.DOMAIN: level = entity.attributes.get(ATTR_CURRENT_POSITION, 0) data[STATE_BRIGHTNESS] = round(level / 100 * HUE_API_STATE_BRI_MAX) else: data = cached_state # Make sure brightness is valid if data[STATE_BRIGHTNESS] is None: data[STATE_BRIGHTNESS] = 255 if data[STATE_ON] else 0 # Make sure hue/saturation are valid if (data[STATE_HUE] is None) or (data[STATE_SATURATION] is None): data[STATE_HUE] = 0 data[STATE_SATURATION] = 0 # If the light is off, set the color to off if data[STATE_BRIGHTNESS] == 0: data[STATE_HUE] = 0 data[STATE_SATURATION] = 0 return data def entity_to_json(config, entity, state): """Convert an entity to its Hue bridge JSON representation.""" return { 'state': { HUE_API_STATE_ON: state[STATE_ON], HUE_API_STATE_BRI: state[STATE_BRIGHTNESS], HUE_API_STATE_HUE: state[STATE_HUE], HUE_API_STATE_SAT: state[STATE_SATURATION], 'reachable': True }, 'type': 'Dimmable light', 'name': config.get_entity_name(entity), 'modelid': 'HASS123', 'uniqueid': entity.entity_id, 'swversion': '123' } def create_hue_success_response(entity_id, attr, value): """Create a success response for an attribute set on a light.""" success_key = '/lights/{}/state/{}'.format(entity_id, attr) return {'success': {success_key: value}}
# pylint:skip-file from collections import namedtuple import mxnet as mx from stt_layer_batchnorm import batchnorm LSTMState = namedtuple("LSTMState", ["c", "h"]) LSTMParam = namedtuple("LSTMParam", ["i2h_weight", "i2h_bias", "h2h_weight", "h2h_bias", "ph2h_weight", "c2i_bias", "c2f_bias", "c2o_bias"]) LSTMModel = namedtuple("LSTMModel", ["rnn_exec", "symbol", "init_states", "last_states", "seq_data", "seq_labels", "seq_outputs", "param_blocks"]) def vanilla_lstm(num_hidden, indata, prev_state, param, seqidx, layeridx, is_batchnorm=False, gamma=None, beta=None): """LSTM Cell symbol""" i2h = mx.sym.FullyConnected(data=indata, weight=param.i2h_weight, bias=param.i2h_bias, num_hidden=num_hidden * 4, name="t%d_l%d_i2h" % (seqidx, layeridx)) if is_batchnorm: i2h = batchnorm(net=i2h, gamma=gamma, beta=beta) h2h = mx.sym.FullyConnected(data=prev_state.h, weight=param.h2h_weight, bias=param.h2h_bias, num_hidden=num_hidden * 4, name="t%d_l%d_h2h" % (seqidx, layeridx)) gates = i2h + h2h slice_gates = mx.sym.SliceChannel(gates, num_outputs=4, name="t%d_l%d_slice" % (seqidx, layeridx)) in_gate = mx.sym.Activation(slice_gates[0], act_type="sigmoid") in_transform = mx.sym.Activation(slice_gates[1], act_type="tanh") forget_gate = mx.sym.Activation(slice_gates[2], act_type="sigmoid") out_gate = mx.sym.Activation(slice_gates[3], act_type="sigmoid") next_c = (forget_gate * prev_state.c) + (in_gate * in_transform) next_h = out_gate * mx.sym.Activation(next_c, act_type="tanh") return LSTMState(c=next_c, h=next_h) def lstm(num_hidden, indata, prev_state, param, seqidx, layeridx, dropout=0., num_hidden_proj=0, is_batchnorm=False, gamma=None, beta=None): """LSTM Cell symbol""" # dropout input if dropout > 0.: indata = mx.sym.Dropout(data=indata, p=dropout) i2h = mx.sym.FullyConnected(data=indata, weight=param.i2h_weight, bias=param.i2h_bias, num_hidden=num_hidden * 4, name="t%d_l%d_i2h" % (seqidx, layeridx)) if is_batchnorm: i2h = batchnorm(net=i2h, gamma=gamma, beta=beta) h2h = mx.sym.FullyConnected(data=prev_state.h, weight=param.h2h_weight, # bias=param.h2h_bias, no_bias=True, num_hidden=num_hidden * 4, name="t%d_l%d_h2h" % (seqidx, layeridx)) gates = i2h + h2h slice_gates = mx.sym.SliceChannel(gates, num_outputs=4, name="t%d_l%d_slice" % (seqidx, layeridx)) Wcidc = mx.sym.broadcast_mul(param.c2i_bias, prev_state.c) + slice_gates[0] in_gate = mx.sym.Activation(Wcidc, act_type="sigmoid") in_transform = mx.sym.Activation(slice_gates[1], act_type="tanh") Wcfdc = mx.sym.broadcast_mul(param.c2f_bias, prev_state.c) + slice_gates[2] forget_gate = mx.sym.Activation(Wcfdc, act_type="sigmoid") next_c = (forget_gate * prev_state.c) + (in_gate * in_transform) Wcoct = mx.sym.broadcast_mul(param.c2o_bias, next_c) + slice_gates[3] out_gate = mx.sym.Activation(Wcoct, act_type="sigmoid") next_h = out_gate * mx.sym.Activation(next_c, act_type="tanh") if num_hidden_proj > 0: proj_next_h = mx.sym.FullyConnected(data=next_h, weight=param.ph2h_weight, no_bias=True, num_hidden=num_hidden_proj, name="t%d_l%d_ph2h" % (seqidx, layeridx)) return LSTMState(c=next_c, h=proj_next_h) else: return LSTMState(c=next_c, h=next_h) def lstm_unroll(net, num_lstm_layer, seq_len, num_hidden_lstm_list, dropout=0., num_hidden_proj=0, lstm_type='fc_lstm', is_batchnorm=False, prefix="", direction="forward"): if num_lstm_layer > 0: param_cells = [] last_states = [] for i in range(num_lstm_layer): param_cells.append(LSTMParam(i2h_weight=mx.sym.Variable(prefix + "l%d_i2h_weight" % i), i2h_bias=mx.sym.Variable(prefix + "l%d_i2h_bias" % i), h2h_weight=mx.sym.Variable(prefix + "l%d_h2h_weight" % i), h2h_bias=mx.sym.Variable(prefix + "l%d_h2h_bias" % i), ph2h_weight=mx.sym.Variable(prefix + "l%d_ph2h_weight" % i), c2i_bias=mx.sym.Variable(prefix + "l%d_c2i_bias" % i, shape=(1, num_hidden_lstm_list[i])), c2f_bias=mx.sym.Variable(prefix + "l%d_c2f_bias" % i, shape=(1, num_hidden_lstm_list[i])), c2o_bias=mx.sym.Variable(prefix + "l%d_c2o_bias" % i, shape=(1, num_hidden_lstm_list[i])) )) state = LSTMState(c=mx.sym.Variable(prefix + "l%d_init_c" % i), h=mx.sym.Variable(prefix + "l%d_init_h" % i)) last_states.append(state) assert (len(last_states) == num_lstm_layer) # declare batchnorm param(gamma,beta) in timestep wise if is_batchnorm: batchnorm_gamma = [] batchnorm_beta = [] for seqidx in range(seq_len): batchnorm_gamma.append(mx.sym.Variable(prefix + "t%d_i2h_gamma" % seqidx)) batchnorm_beta.append(mx.sym.Variable(prefix + "t%d_i2h_beta" % seqidx)) hidden_all = [] for seqidx in range(seq_len): if direction == "forward": k = seqidx hidden = net[k] elif direction == "backward": k = seq_len - seqidx - 1 hidden = net[k] else: raise Exception("direction should be whether forward or backward") # stack LSTM for i in range(num_lstm_layer): if i == 0: dp = 0. else: dp = dropout if lstm_type == 'fc_lstm': if is_batchnorm: next_state = lstm(num_hidden_lstm_list[i], indata=hidden, prev_state=last_states[i], param=param_cells[i], seqidx=k, layeridx=i, dropout=dp, num_hidden_proj=num_hidden_proj, is_batchnorm=is_batchnorm, gamma=batchnorm_gamma[k], beta=batchnorm_beta[k] ) else: next_state = lstm(num_hidden_lstm_list[i], indata=hidden, prev_state=last_states[i], param=param_cells[i], seqidx=k, layeridx=i, dropout=dp, num_hidden_proj=num_hidden_proj, is_batchnorm=is_batchnorm ) elif lstm_type == 'vanilla_lstm': if is_batchnorm: next_state = vanilla_lstm(num_hidden_lstm_list[i], indata=hidden, prev_state=last_states[i], param=param_cells[i], seqidx=k, layeridx=i, is_batchnorm=is_batchnorm, gamma=batchnorm_gamma[k], beta=batchnorm_beta[k] ) else: next_state = vanilla_lstm(num_hidden_lstm_list[i], indata=hidden, prev_state=last_states[i], param=param_cells[i], seqidx=k, layeridx=i, is_batchnorm=is_batchnorm ) else: raise Exception("lstm type %s error" % lstm_type) hidden = next_state.h last_states[i] = next_state # decoder if dropout > 0.: hidden = mx.sym.Dropout(data=hidden, p=dropout) if direction == "forward": hidden_all.append(hidden) elif direction == "backward": hidden_all.insert(0, hidden) else: raise Exception("direction should be whether forward or backward") net = hidden_all return net def bi_lstm_unroll(net, num_lstm_layer, seq_len, num_hidden_lstm_list, dropout=0., num_hidden_proj=0, lstm_type='fc_lstm', is_batchnorm=False): if num_lstm_layer > 0: net_forward = lstm_unroll(net=net, num_lstm_layer=num_lstm_layer, seq_len=seq_len, num_hidden_lstm_list=num_hidden_lstm_list, dropout=dropout, num_hidden_proj=num_hidden_proj, lstm_type=lstm_type, is_batchnorm=is_batchnorm, prefix="forward_", direction="forward") net_backward = lstm_unroll(net=net, num_lstm_layer=num_lstm_layer, seq_len=seq_len, num_hidden_lstm_list=num_hidden_lstm_list, dropout=dropout, num_hidden_proj=num_hidden_proj, lstm_type=lstm_type, is_batchnorm=is_batchnorm, prefix="backward_", direction="backward") hidden_all = [] for i in range(seq_len): hidden_all.append(mx.sym.Concat(*[net_forward[i], net_backward[i]], dim=1)) net = hidden_all return net # bilistm_2to1 def bi_lstm_unroll_two_input_two_output(net1, net2, num_lstm_layer, seq_len, num_hidden_lstm_list, dropout=0., num_hidden_proj=0, lstm_type='fc_lstm', is_batchnorm=False): if num_lstm_layer > 0: net_forward = lstm_unroll(net=net1, num_lstm_layer=num_lstm_layer, seq_len=seq_len, num_hidden_lstm_list=num_hidden_lstm_list, dropout=dropout, num_hidden_proj=num_hidden_proj, lstm_type=lstm_type, is_batchnorm=is_batchnorm, prefix="forward_", direction="forward") net_backward = lstm_unroll(net=net2, num_lstm_layer=num_lstm_layer, seq_len=seq_len, num_hidden_lstm_list=num_hidden_lstm_list, dropout=dropout, num_hidden_proj=num_hidden_proj, lstm_type=lstm_type, is_batchnorm=is_batchnorm, prefix="backward_", direction="backward") return net_forward, net_backward else: return net1, net2
from __future__ import print_function from itertools import chain import pytest pd = pytest.importorskip('pandas') import numpy as np from sklearn.linear_model import LinearRegression from sklearn.ensemble import ExtraTreesRegressor from eli5 import ( format_as_dataframes, format_as_dataframe, explain_weights_df, explain_weights_dfs, explain_prediction_df, explain_prediction_dfs, format_as_text, explain_weights, explain_prediction, ) from eli5.base import ( Explanation, TargetExplanation, FeatureWeight, FeatureWeights, FeatureImportances, TransitionFeatureWeights, ) def test_explain_weights(boston_train): X, y, feature_names = boston_train reg = LinearRegression() reg.fit(X, y) expl = explain_weights(reg) df = format_as_dataframe(expl) check_targets_dataframe(df, expl) check_targets_dataframe(explain_weights_df(reg), expl) df_dict = explain_weights_dfs(reg) assert set(df_dict.keys()) == {'targets'} check_targets_dataframe(df_dict['targets'], expl) def check_targets_dataframe(df, expl): assert list(df.columns) == ['target', 'feature', 'weight'] df_indexed = df.groupby(['target', 'feature']).agg(lambda x: x) for target in expl.targets: feature_weights = target.feature_weights for fw in chain(feature_weights.pos, feature_weights.neg): weight = df_indexed.loc[target.target, fw.feature]['weight'] assert weight == fw.weight def test_explain_weights_fi(boston_train): X, y, feature_names = boston_train reg = ExtraTreesRegressor() reg.fit(X, y) expl = explain_weights(reg) df = format_as_dataframe(expl) assert list(df.columns) == ['feature', 'weight', 'std'] df_indexed = df.groupby('feature').agg(lambda x: x) for fw in expl.feature_importances.importances: df_fw = df_indexed.loc[fw.feature] assert np.isclose(df_fw['weight'], fw.weight) assert np.isclose(df_fw['std'], fw.std) def test_explain_prediction(boston_train): X, y, feature_names = boston_train reg = LinearRegression() reg.fit(X, y) expl = explain_prediction(reg, X[0]) df = format_as_dataframe(expl) check_prediction_df(df, expl) check_prediction_df(explain_prediction_df(reg, X[0]), expl) df_dict = explain_prediction_dfs(reg, X[0]) assert set(df_dict.keys()) == {'targets'} check_prediction_df(df_dict['targets'], expl) def check_prediction_df(df, expl): assert list(df.columns) == ['target', 'feature', 'weight', 'value'] target = expl.targets[0].target feature_weights = expl.targets[0].feature_weights df_indexed = df.groupby(['target', 'feature']).agg(lambda x: x) for fw in chain(feature_weights.pos, feature_weights.neg): df_fw = df_indexed.loc[target, fw.feature] assert df_fw['weight'] == fw.weight assert df_fw['value'] == fw.value @pytest.mark.parametrize( ['with_std', 'with_value'], [[False, False], [True, False], [False, True]]) def test_targets(with_std, with_value): expl = Explanation( estimator='some estimator', targets=[ TargetExplanation( 'y', feature_weights=FeatureWeights( pos=[FeatureWeight('a', 13, std=0.13 if with_std else None, value=2 if with_value else None), FeatureWeight('b', 5, std=0.5 if with_std else None, value=1 if with_value else None)], neg=[FeatureWeight('neg1', -10, std=0.2 if with_std else None, value=5 if with_value else None), FeatureWeight('neg2', -1, std=0.3 if with_std else None, value=4 if with_value else None)], )), TargetExplanation( 'y2', feature_weights=FeatureWeights( pos=[FeatureWeight('f', 1)], neg=[], )), ], ) df_dict = format_as_dataframes(expl) assert isinstance(df_dict, dict) assert list(df_dict) == ['targets'] df = df_dict['targets'] expected_df = pd.DataFrame( {'target': ['y', 'y', 'y', 'y', 'y2'], 'feature': ['a', 'b', 'neg2', 'neg1', 'f'], 'weight': [13, 5, -1, -10, 1]}, columns=['target', 'feature', 'weight']) if with_std: expected_df['std'] = [0.13, 0.5, 0.3, 0.2, None] if with_value: expected_df['value'] = [2, 1, 4, 5, None] print(df, expected_df, sep='\n') assert expected_df.equals(df) single_df = format_as_dataframe(expl) assert expected_df.equals(single_df) def test_bad_list(): with pytest.raises(ValueError): format_as_dataframe([1]) @pytest.mark.parametrize( ['with_std', 'with_value'], [[False, False], [True, False], [False, True]]) def test_feature_importances(with_std, with_value): expl = Explanation( estimator='some estimator', feature_importances=FeatureImportances( importances=[ FeatureWeight('a', 1, std=0.1 if with_std else None, value=1 if with_value else None), FeatureWeight('b', 2, std=0.2 if with_std else None, value=3 if with_value else None), ], remaining=10, ) ) df_dict = format_as_dataframes(expl) assert isinstance(df_dict, dict) assert list(df_dict) == ['feature_importances'] df = df_dict['feature_importances'] expected_df = pd.DataFrame( {'feature': ['a', 'b'], 'weight': [1, 2]}, columns=['feature', 'weight']) if with_std: expected_df['std'] = [0.1, 0.2] if with_value: expected_df['value'] = [1, 3] print(df, expected_df, sep='\n') assert expected_df.equals(df) single_df = format_as_dataframe(expl) assert expected_df.equals(single_df) def test_transition_features(): expl = Explanation( estimator='some estimator', targets=[ TargetExplanation( 'class1', feature_weights=FeatureWeights( pos=[FeatureWeight('pos', 13, value=1)], neg=[], )), TargetExplanation( 'class2', feature_weights=FeatureWeights( pos=[FeatureWeight('pos', 13, value=1)], neg=[], )), ], transition_features=TransitionFeatureWeights( class_names=['class2', 'class1'], # reverse on purpose coef=np.array([[1.5, 2.5], [3.5, 4.5]]), ) ) df_dict = format_as_dataframes(expl) assert isinstance(df_dict, dict) assert set(df_dict) == {'targets', 'transition_features'} assert df_dict['targets'].equals(format_as_dataframe(expl.targets)) df = df_dict['transition_features'] print(df) print(format_as_text(expl)) expected = pd.DataFrame([ {'from': 'class2', 'to': 'class2', 'coef': 1.5}, {'from': 'class2', 'to': 'class1', 'coef': 2.5}, {'from': 'class1', 'to': 'class2', 'coef': 3.5}, {'from': 'class1', 'to': 'class1', 'coef': 4.5}, ], columns=['from', 'to', 'coef']) assert df.equals(expected) with pytest.warns(UserWarning): single_df = format_as_dataframe(expl) assert single_df.equals(df)
#------------------------------------------------------------------------- # Copyright (c) Microsoft. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #-------------------------------------------------------------------------- from azure import ( DEFAULT_HTTP_TIMEOUT, MANAGEMENT_HOST, _str, _validate_not_none, ) from azure.servicemanagement import ( _ServiceBusManagementXmlSerializer, QueueDescription, TopicDescription, NotificationHubDescription, RelayDescription, MetricProperties, MetricValues, MetricRollups, _MinidomXmlToObject, ) from azure.servicemanagement.servicemanagementclient import ( _ServiceManagementClient, ) from functools import partial X_MS_VERSION = '2012-03-01' class ServiceBusManagementService(_ServiceManagementClient): def __init__(self, subscription_id=None, cert_file=None, host=MANAGEMENT_HOST, request_session=None, timeout=DEFAULT_HTTP_TIMEOUT): ''' Initializes the service bus management service. subscription_id: Subscription to manage. cert_file: Path to .pem certificate file (httplib), or location of the certificate in your Personal certificate store (winhttp) in the CURRENT_USER\my\CertificateName format. If a request_session is specified, then this is unused. host: Live ServiceClient URL. Defaults to Azure public cloud. request_session: Session object to use for http requests. If this is specified, it replaces the default use of httplib or winhttp. Also, the cert_file parameter is unused when a session is passed in. The session object handles authentication, and as such can support multiple types of authentication: .pem certificate, oauth. For example, you can pass in a Session instance from the requests library. To use .pem certificate authentication with requests library, set the path to the .pem file on the session.cert attribute. timeout: Optional. Timeout for the http request, in seconds. ''' super(ServiceBusManagementService, self).__init__( subscription_id, cert_file, host, request_session, timeout) self.x_ms_version = X_MS_VERSION # Operations for service bus ---------------------------------------- def get_regions(self): ''' Get list of available service bus regions. ''' response = self._perform_get( self._get_path('services/serviceBus/Regions/', None), None) return _MinidomXmlToObject.convert_response_to_feeds( response, _ServiceBusManagementXmlSerializer.xml_to_region) def list_namespaces(self): ''' List the service bus namespaces defined on the account. ''' response = self._perform_get( self._get_path('services/serviceBus/Namespaces/', None), None) return _MinidomXmlToObject.convert_response_to_feeds( response, _ServiceBusManagementXmlSerializer.xml_to_namespace) def get_namespace(self, name): ''' Get details about a specific namespace. name: Name of the service bus namespace. ''' response = self._perform_get( self._get_path('services/serviceBus/Namespaces', name), None) return _ServiceBusManagementXmlSerializer.xml_to_namespace( response.body) def create_namespace(self, name, region): ''' Create a new service bus namespace. name: Name of the service bus namespace to create. region: Region to create the namespace in. ''' _validate_not_none('name', name) return self._perform_put( self._get_path('services/serviceBus/Namespaces', name), _ServiceBusManagementXmlSerializer.namespace_to_xml(region)) def delete_namespace(self, name): ''' Delete a service bus namespace. name: Name of the service bus namespace to delete. ''' _validate_not_none('name', name) return self._perform_delete( self._get_path('services/serviceBus/Namespaces', name), None) def check_namespace_availability(self, name): ''' Checks to see if the specified service bus namespace is available, or if it has already been taken. name: Name of the service bus namespace to validate. ''' _validate_not_none('name', name) response = self._perform_get( self._get_path('services/serviceBus/CheckNamespaceAvailability', None) + '/?namespace=' + _str(name), None) return _ServiceBusManagementXmlSerializer.xml_to_namespace_availability( response.body) def list_queues(self, name): ''' Enumerates the queues in the service namespace. name: Name of the service bus namespace. ''' _validate_not_none('name', name) response = self._perform_get( self._get_list_queues_path(name), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _MinidomXmlToObject.convert_xml_to_azure_object, azure_type=QueueDescription ) ) def list_topics(self, name): ''' Retrieves the topics in the service namespace. name: Name of the service bus namespace. ''' response = self._perform_get( self._get_list_topics_path(name), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _MinidomXmlToObject.convert_xml_to_azure_object, azure_type=TopicDescription ) ) def list_notification_hubs(self, name): ''' Retrieves the notification hubs in the service namespace. name: Name of the service bus namespace. ''' response = self._perform_get( self._get_list_notification_hubs_path(name), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _MinidomXmlToObject.convert_xml_to_azure_object, azure_type=NotificationHubDescription ) ) def list_relays(self, name): ''' Retrieves the relays in the service namespace. name: Name of the service bus namespace. ''' response = self._perform_get( self._get_list_relays_path(name), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _MinidomXmlToObject.convert_xml_to_azure_object, azure_type=RelayDescription ) ) def get_supported_metrics_queue(self, name, queue_name): ''' Retrieves the list of supported metrics for this namespace and queue name: Name of the service bus namespace. queue_name: Name of the service bus queue in this namespace. ''' response = self._perform_get( self._get_get_supported_metrics_queue_path(name, queue_name), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _ServiceBusManagementXmlSerializer.xml_to_metrics, object_type=MetricProperties ) ) def get_supported_metrics_topic(self, name, topic_name): ''' Retrieves the list of supported metrics for this namespace and topic name: Name of the service bus namespace. topic_name: Name of the service bus queue in this namespace. ''' response = self._perform_get( self._get_get_supported_metrics_topic_path(name, topic_name), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _ServiceBusManagementXmlSerializer.xml_to_metrics, object_type=MetricProperties ) ) def get_supported_metrics_notification_hub(self, name, hub_name): ''' Retrieves the list of supported metrics for this namespace and topic name: Name of the service bus namespace. hub_name: Name of the service bus notification hub in this namespace. ''' response = self._perform_get( self._get_get_supported_metrics_hub_path(name, hub_name), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _ServiceBusManagementXmlSerializer.xml_to_metrics, object_type=MetricProperties ) ) def get_supported_metrics_relay(self, name, relay_name): ''' Retrieves the list of supported metrics for this namespace and relay name: Name of the service bus namespace. relay_name: Name of the service bus relay in this namespace. ''' response = self._perform_get( self._get_get_supported_metrics_relay_path(name, relay_name), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _ServiceBusManagementXmlSerializer.xml_to_metrics, object_type=MetricProperties ) ) def get_metrics_data_queue(self, name, queue_name, metric, rollup, filter_expresssion): ''' Retrieves the list of supported metrics for this namespace and queue name: Name of the service bus namespace. queue_name: Name of the service bus queue in this namespace. metric: name of a supported metric rollup: name of a supported rollup filter_expression: filter, for instance "$filter=Timestamp gt datetime'2014-10-01T00:00:00Z'" ''' response = self._perform_get( self._get_get_metrics_data_queue_path(name, queue_name, metric, rollup, filter_expresssion), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _ServiceBusManagementXmlSerializer.xml_to_metrics, object_type=MetricValues ) ) def get_metrics_data_topic(self, name, topic_name, metric, rollup, filter_expresssion): ''' Retrieves the list of supported metrics for this namespace and topic name: Name of the service bus namespace. topic_name: Name of the service bus queue in this namespace. metric: name of a supported metric rollup: name of a supported rollup filter_expression: filter, for instance "$filter=Timestamp gt datetime'2014-10-01T00:00:00Z'" ''' response = self._perform_get( self._get_get_metrics_data_topic_path(name, topic_name, metric, rollup, filter_expresssion), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _ServiceBusManagementXmlSerializer.xml_to_metrics, object_type=MetricValues ) ) def get_metrics_data_notification_hub(self, name, hub_name, metric, rollup, filter_expresssion): ''' Retrieves the list of supported metrics for this namespace and topic name: Name of the service bus namespace. hub_name: Name of the service bus notification hub in this namespace. metric: name of a supported metric rollup: name of a supported rollup filter_expression: filter, for instance "$filter=Timestamp gt datetime'2014-10-01T00:00:00Z'" ''' response = self._perform_get( self._get_get_metrics_data_hub_path(name, hub_name, metric, rollup, filter_expresssion), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _ServiceBusManagementXmlSerializer.xml_to_metrics, object_type=MetricValues ) ) def get_metrics_data_relay(self, name, relay_name, metric, rollup, filter_expresssion): ''' Retrieves the list of supported metrics for this namespace and relay name: Name of the service bus namespace. relay_name: Name of the service bus relay in this namespace. metric: name of a supported metric rollup: name of a supported rollup filter_expression: filter, for instance "$filter=Timestamp gt datetime'2014-10-01T00:00:00Z'" ''' response = self._perform_get( self._get_get_metrics_data_relay_path(name, relay_name, metric, rollup, filter_expresssion), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _ServiceBusManagementXmlSerializer.xml_to_metrics, object_type=MetricValues ) ) def get_metrics_rollups_queue(self, name, queue_name, metric): ''' This operation gets rollup data for Service Bus metrics queue. Rollup data includes the time granularity for the telemetry aggregation as well as the retention settings for each time granularity. name: Name of the service bus namespace. queue_name: Name of the service bus queue in this namespace. metric: name of a supported metric ''' response = self._perform_get( self._get_get_metrics_rollup_queue_path(name, queue_name, metric), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _ServiceBusManagementXmlSerializer.xml_to_metrics, object_type=MetricRollups ) ) def get_metrics_rollups_topic(self, name, topic_name, metric): ''' This operation gets rollup data for Service Bus metrics topic. Rollup data includes the time granularity for the telemetry aggregation as well as the retention settings for each time granularity. name: Name of the service bus namespace. topic_name: Name of the service bus queue in this namespace. metric: name of a supported metric ''' response = self._perform_get( self._get_get_metrics_rollup_topic_path(name, topic_name, metric), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _ServiceBusManagementXmlSerializer.xml_to_metrics, object_type=MetricRollups ) ) def get_metrics_rollups_notification_hub(self, name, hub_name, metric): ''' This operation gets rollup data for Service Bus metrics notification hub. Rollup data includes the time granularity for the telemetry aggregation as well as the retention settings for each time granularity. name: Name of the service bus namespace. hub_name: Name of the service bus notification hub in this namespace. metric: name of a supported metric ''' response = self._perform_get( self._get_get_metrics_rollup_hub_path(name, hub_name, metric), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _ServiceBusManagementXmlSerializer.xml_to_metrics, object_type=MetricRollups ) ) def get_metrics_rollups_relay(self, name, relay_name, metric): ''' This operation gets rollup data for Service Bus metrics relay. Rollup data includes the time granularity for the telemetry aggregation as well as the retention settings for each time granularity. name: Name of the service bus namespace. relay_name: Name of the service bus relay in this namespace. metric: name of a supported metric ''' response = self._perform_get( self._get_get_metrics_rollup_relay_path(name, relay_name, metric), None) return _MinidomXmlToObject.convert_response_to_feeds( response, partial( _ServiceBusManagementXmlSerializer.xml_to_metrics, object_type=MetricRollups ) ) # Helper functions -------------------------------------------------- def _get_list_queues_path(self, namespace_name): return self._get_path('services/serviceBus/Namespaces/', namespace_name) + '/Queues' def _get_list_topics_path(self, namespace_name): return self._get_path('services/serviceBus/Namespaces/', namespace_name) + '/Topics' def _get_list_notification_hubs_path(self, namespace_name): return self._get_path('services/serviceBus/Namespaces/', namespace_name) + '/NotificationHubs' def _get_list_relays_path(self, namespace_name): return self._get_path('services/serviceBus/Namespaces/', namespace_name) + '/Relays' def _get_get_supported_metrics_queue_path(self, namespace_name, queue_name): return self._get_path('services/serviceBus/Namespaces/', namespace_name) + '/Queues/' + _str(queue_name) + '/Metrics' def _get_get_supported_metrics_topic_path(self, namespace_name, topic_name): return self._get_path('services/serviceBus/Namespaces/', namespace_name) + '/Topics/' + _str(topic_name) + '/Metrics' def _get_get_supported_metrics_hub_path(self, namespace_name, hub_name): return self._get_path('services/serviceBus/Namespaces/', namespace_name) + '/NotificationHubs/' + _str(hub_name) + '/Metrics' def _get_get_supported_metrics_relay_path(self, namespace_name, queue_name): return self._get_path('services/serviceBus/Namespaces/', namespace_name) + '/Relays/' + _str(queue_name) + '/Metrics' def _get_get_metrics_data_queue_path(self, namespace_name, queue_name, metric, rollup, filter_expr): return "".join([ self._get_path('services/serviceBus/Namespaces/', namespace_name), '/Queues/', _str(queue_name), '/Metrics/', _str(metric), '/Rollups/', _str(rollup), '/Values?', filter_expr ]) def _get_get_metrics_data_topic_path(self, namespace_name, queue_name, metric, rollup, filter_expr): return "".join([ self._get_path('services/serviceBus/Namespaces/', namespace_name), '/Topics/', _str(queue_name), '/Metrics/', _str(metric), '/Rollups/', _str(rollup), '/Values?', filter_expr ]) def _get_get_metrics_data_hub_path(self, namespace_name, queue_name, metric, rollup, filter_expr): return "".join([ self._get_path('services/serviceBus/Namespaces/', namespace_name), '/NotificationHubs/', _str(queue_name), '/Metrics/', _str(metric), '/Rollups/', _str(rollup), '/Values?', filter_expr ]) def _get_get_metrics_data_relay_path(self, namespace_name, queue_name, metric, rollup, filter_expr): return "".join([ self._get_path('services/serviceBus/Namespaces/', namespace_name), '/Relays/', _str(queue_name), '/Metrics/', _str(metric), '/Rollups/', _str(rollup), '/Values?', filter_expr ]) def _get_get_metrics_rollup_queue_path(self, namespace_name, queue_name, metric): return "".join([ self._get_path('services/serviceBus/Namespaces/', namespace_name), '/Queues/', _str(queue_name), '/Metrics/', _str(metric), '/Rollups', ]) def _get_get_metrics_rollup_topic_path(self, namespace_name, queue_name, metric): return "".join([ self._get_path('services/serviceBus/Namespaces/', namespace_name), '/Topics/', _str(queue_name), '/Metrics/', _str(metric), '/Rollups', ]) def _get_get_metrics_rollup_hub_path(self, namespace_name, queue_name, metric): return "".join([ self._get_path('services/serviceBus/Namespaces/', namespace_name), '/NotificationHubs/', _str(queue_name), '/Metrics/', _str(metric), '/Rollups', ]) def _get_get_metrics_rollup_relay_path(self, namespace_name, queue_name, metric): return "".join([ self._get_path('services/serviceBus/Namespaces/', namespace_name), '/Relays/', _str(queue_name), '/Metrics/', _str(metric), '/Rollups', ])
# To make forward fast import os os.environ["CHAINER_TYPE_CHECK"] = "0" import six import itertools import numpy as np import multiprocessing import chainer from chainer import serializers from chainer import cuda import nutszebra_log2 import nutszebra_utility import nutszebra_sampling import nutszebra_download_cifar10 import nutszebra_data_augmentation_picture import nutszebra_data_augmentation import nutszebra_basic_print try: from cupy.cuda import nccl _available = True chainer.cuda.set_max_workspace_size(chainer.cuda.get_max_workspace_size() * 4) except ImportError: _available = False Da = nutszebra_data_augmentation_picture.DataAugmentationPicture() sampling = nutszebra_sampling.Sampling utility = nutszebra_utility.Utility() """ I refered the implementation of MultiprocessParallelUpdate for multiprocessing and nccl. https://github.com/chainer/chainer/blob/master/chainer/training/updaters/multiprocess_parallel_updater.py """ class _Worker(multiprocessing.Process): def __init__(self, process_id, pipe, model, gpus, da, batch, master, sampling=sampling()): super(_Worker, self).__init__() self.process_id = process_id self.pipe = pipe self.model = model self.da = da self.device = gpus[process_id] self.number_of_devices = len(gpus) self.batch = batch self.master = master self.train_x = master.train_x self.train_y = master.train_y self.train_batch_divide = master.train_batch_divide self.picture_number_at_each_categories = master.picture_number_at_each_categories self.parallel = master.parallel_train self.sampling = sampling def get(self, name): return self.__dict__[name] def setup(self): _, communication_id = self.pipe.recv() self.communication = nccl.NcclCommunicator(self.number_of_devices, communication_id, self.process_id) self.model.to_gpu(self.device) def run(self): dev = cuda.Device(self.device) dev.use() # build communication via nccl self.setup() gp = None da_args = [self.da() for _ in six.moves.range(self.batch)] p = multiprocessing.Pool(self.parallel) batch_of_batch = int(float(self.batch) / self.train_batch_divide) while True: job, data = self.pipe.recv() if job == 'finalize': dev.synchronize() break if job == 'update': # for reducing memory self.model.zerograds() indices = list(self.sampling.yield_random_batch_samples(1, self.batch, len(self.train_x), sort=False))[0] for ii in six.moves.range(0, len(indices), batch_of_batch): x = self.train_x[indices[ii:ii + batch_of_batch]] t = self.train_y[indices[ii:ii + batch_of_batch]] args = list(six.moves.zip(x, t, da_args)) processed = p.starmap(process_train, args) tmp_x, tmp_t = list(zip(*processed)) train = True x = self.model.prepare_input(tmp_x, dtype=np.float32, volatile=not train, gpu=self.device) t = self.model.prepare_input(tmp_t, dtype=np.int32, volatile=not train, gpu=self.device) y = self.model(x, train=train) loss = self.model.calc_loss(y, t) / self.number_of_devices / self.train_batch_divide loss.backward() del x del t del y del loss # send gradients of self.model gg = gather_grads(self.model) null_stream = cuda.Stream.null self.communication.reduce(gg.data.ptr, gg.data.ptr, gg.size, nccl.NCCL_FLOAT, nccl.NCCL_SUM, 0, null_stream.ptr) del gg self.model.zerograds() # send parameters of self.model gp = gather_params(self.model) self.communication.bcast(gp.data.ptr, gp.size, nccl.NCCL_FLOAT, 0, null_stream.ptr) scatter_params(self.model, gp) gp = None def size_num_grads(link): """Count total size of all gradient arrays of a given link Args: link (chainer.link.Link): Target link object. """ size = 0 num = 0 for param in link.params(): if param.size == 0: continue size += param.size num += 1 return size, num def _batch_memcpy(): return cuda.cupy.ElementwiseKernel( 'raw T ptrs, raw X info', 'raw float32 dst', ''' int id_min = id_pre; int id_max = num_src; while (id_max - id_min > 1) { int id = (id_max + id_min) / 2; if (i < info[id]) id_max = id; else id_min = id; } int id = id_min; float *src = (float *)(ptrs[id]); int i_dst = i; int i_src = i; if (id > 0) i_src -= info[id]; dst[i_dst] = 0; if (src != NULL) { dst[i_dst] = src[i_src]; } id_pre = id; ''', 'batch_memcpy', loop_prep=''' int num_src = info[0]; int id_pre = 0; ''') def gather_grads(link): """Put together all gradient arrays and make a single array Args: link (chainer.link.Link): Target link object. Return: cupy.ndarray """ size, num = size_num_grads(link) ptrs = np.empty(num, dtype=np.uint64) info = np.empty(num + 1, dtype=np.int32) info[0] = 0 i = 0 for param in link.params(): if param.size == 0: continue ptrs[i] = 0 # NULL pointer if param.grad is not None: ptrs[i] = param.grad.data.ptr info[i + 1] = info[i] + param.size i += 1 info[0] = num ptrs = cuda.to_gpu(ptrs, stream=cuda.Stream.null) info = cuda.to_gpu(info, stream=cuda.Stream.null) return _batch_memcpy()(ptrs, info, size=size) def gather_params(link): """Put together all gradient arrays and make a single array Args: link (chainer.link.Link): Target link object. Return: cupy.ndarray """ size, num = size_num_grads(link) ptrs = np.empty(num, dtype=np.uint64) info = np.empty(num + 1, dtype=np.int32) info[0] = 0 i = 0 for param in link.params(): if param.size == 0: continue ptrs[i] = 0 # NULL pointer if param.data is not None: ptrs[i] = param.data.data.ptr info[i + 1] = info[i] + param.size i += 1 info[0] = num ptrs = cuda.to_gpu(ptrs, stream=cuda.Stream.null) info = cuda.to_gpu(info, stream=cuda.Stream.null) return _batch_memcpy()(ptrs, info, size=size) def scatter_grads(link, array): """Put back contents of the specified array to the related gradient arrays Args: link (chainer.link.Link): Target link object. array (cupy.ndarray): gathered array created by gather_grads() """ offset = 0 for param in link.params(): next_offset = offset + param.size param.grad = array[offset:next_offset].reshape(param.data.shape) offset = next_offset def scatter_params(link, array): """Put back contents of the specified array to the related gradient arrays Args: link (chainer.link.Link): Target link object. array (cupy.ndarray): gathered array created by gather_params() """ offset = 0 for param in link.params(): next_offset = offset + param.size param.data = array[offset:next_offset].reshape(param.data.shape) offset = next_offset class TrainCifar10WithMultiGpus(object): def __init__(self, model=None, optimizer=None, load_model=None, load_optimizer=None, load_log=None, load_data=None, da=nutszebra_data_augmentation.DataAugmentationNormalizeBigger, save_path='./', epoch=200, batch=128, gpus=(0, 1, 2, 3), start_epoch=1, train_batch_divide=1, test_batch_divide=1, parallel_train=2, parallel_test=16): self.model = model self.optimizer = optimizer self.load_model = load_model self.load_optimizer = load_optimizer self.load_log = load_log self.load_data = load_data self.da = da self._da = da self.save_path = save_path self.epoch = epoch self.batch = batch self.gpus = gpus self.start_epoch = start_epoch self.train_batch_divide = train_batch_divide self.test_batch_divide = test_batch_divide self.parallel_train = parallel_train self.parallel_test = parallel_test # Generate dataset self.train_x, self.train_y, self.test_x, self.test_y, self.picture_number_at_each_categories, self.categories = self.data_init() # Log module self.log = self.log_init() # initializing self.model_init(model, load_model) # create directory self.save_path = save_path if save_path[-1] == '/' else save_path + '/' utility.make_dir('{}model'.format(self.save_path)) self.sampling = sampling() self._initialized = False self._pipes = [] self._workers = [] self.communication = None self.da_args = [self.da() for _ in six.moves.range(self.batch)] self.p_train = multiprocessing.Pool(self.parallel_train) self.p_test = multiprocessing.Pool(self.parallel_test) def data_init(self): dl = nutszebra_download_cifar10.Cifar10() data = dl.load_cifar10_data() train_x = data['train_x'] train_y = data['train_y'] test_x = data['test_x'] test_y = data['test_y'] meta = data['meta'] categories = list(set(train_y.tolist())) return (train_x, train_y, test_x, test_y, meta, categories) def log_init(self): load_log = self.load_log log = nutszebra_log2.Log2() if load_log is not None: log.load(load_log) else: log({'are': self.categories}, 'categories') log({'parameter': len(self.train_x)}, 'train_parameter') log({'parameter': len(self.test_x)}, 'test_parameter') for i in six.moves.range(len(self.categories)): log({'parameter': float((np.array(self.test_y) == i).sum())}, 'test_parameter_{}'.format(i)) log({'model': str(self.model)}, 'model') return log @staticmethod def model_init(model, load_model): if load_model is None: print('Weight initialization') model.weight_initialization() else: print('loading {}'.format(load_model)) serializers.load_npz(load_model, model) @staticmethod def available(): return _available def _send_message(self, message): for pipe in self._pipes: pipe.send(message) def setup_workers(self): # work only once if self._initialized: return self._initialized = True self.model.zerograds() for i in six.moves.range(1, len(self.gpus)): pipe, worker_end = multiprocessing.Pipe() worker = _Worker(i, worker_end, self.model, self.gpus, self.da, int(self.batch / len(self.gpus) / self.train_batch_divide), self) worker.start() self._workers.append(worker) self._pipes.append(pipe) with cuda.Device(self.gpus[0]): self.model.to_gpu(self.gpus[0]) if len(self.gpus) > 1: communication_id = nccl.get_unique_id() self._send_message(("set comm_id", communication_id)) self.communication = nccl.NcclCommunicator(len(self.gpus), communication_id, 0) def update_core(self, x, t): self._send_message(('update', None)) with cuda.Device(self.gpus[0]): self.model.zerograds() # tmp_x = [] # tmp_t = [] # for i in six.moves.range(len(x)): # img, info = self.da.train(x[i]) # if img is not None: # tmp_x.append(img) # tmp_t.append(t[i]) args = list(six.moves.zip(x, t, self.da_args)) processed = self.p_train.starmap(process_train, args) tmp_x, tmp_t = list(zip(*processed)) train = True data_length = len(tmp_x) x = self.model.prepare_input(tmp_x, dtype=np.float32, volatile=not train, gpu=self.gpus[0]) t = self.model.prepare_input(tmp_t, dtype=np.int32, volatile=not train, gpu=self.gpus[0]) y = self.model(x, train=train) loss = self.model.calc_loss(y, t) / len(self.gpus) loss.backward() loss.to_cpu() loss = float(loss.data) * data_length del x del t del y # NCCL: reduce grads null_stream = cuda.Stream.null if self.communication is not None: # send grads gg = gather_grads(self.model) self.communication.reduce(gg.data.ptr, gg.data.ptr, gg.size, nccl.NCCL_FLOAT, nccl.NCCL_SUM, 0, null_stream.ptr) # copy grads, gg, to self.model scatter_grads(self.model, gg) del gg self.optimizer.update() if self.communication is not None: gp = gather_params(self.model) self.communication.bcast(gp.data.ptr, gp.size, nccl.NCCL_FLOAT, 0, null_stream.ptr) return loss def finalize(self): self._send_message(('finalize', None)) for worker in self._workers: worker.join() def train_one_epoch(self): self.setup_workers() # initialization batch_of_batch = int(float(self.batch) / len(self.gpus) / self.train_batch_divide) sum_loss = 0 yielder = self.sampling.yield_random_batch_samples(int(len(self.train_x) / self.batch), int(float(self.batch) / len(self.gpus)), len(self.train_x), sort=False) progressbar = utility.create_progressbar(int(len(self.train_x) / self.batch), desc='train', stride=1) # train start for _, indices in six.moves.zip(progressbar, yielder): for ii in six.moves.range(0, len(indices), batch_of_batch): x = self.train_x[indices[ii:ii + batch_of_batch]] t = self.train_y[indices[ii:ii + batch_of_batch]] sum_loss += self.update_core(x, t) * len(self.gpus) self.log({'loss': float(sum_loss)}, 'train_loss') print(self.log.train_loss()) def test_one_epoch(self): self.setup_workers() batch_of_batch = int(self.batch / self.test_batch_divide) sum_loss = 0 sum_accuracy = {} sum_5_accuracy = {} false_accuracy = {} for ii in six.moves.range(len(self.categories)): sum_accuracy[ii] = 0 sum_5_accuracy[ii] = 0 elements = six.moves.range(len(self.categories)) for ii, iii in itertools.product(elements, elements): false_accuracy[(ii, iii)] = 0 da = [self._da() for _ in six.moves.range(self.batch)] progressbar = utility.create_progressbar(len(self.test_x), desc='test', stride=batch_of_batch) for i in progressbar: x = self.test_x[i:i + batch_of_batch] t = self.test_y[i:i + batch_of_batch] tmp_x = [] tmp_t = [] args = list(zip(x, t, da)) processed = self.p_test.starmap(process, args) tmp_x, tmp_t = list(zip(*processed)) data_length = len(tmp_x) train = False x = self.model.prepare_input(tmp_x, dtype=np.float32, volatile=not train, gpu=self.gpus[0]) t = self.model.prepare_input(tmp_t, dtype=np.int32, volatile=not train, gpu=self.gpus[0]) y = self.model(x, train=train) # accuracy tmp_accuracy, tmp_false_accuracy = self.model.accuracy(y, t) for key in tmp_accuracy: sum_accuracy[key] += tmp_accuracy[key] for key in tmp_false_accuracy: false_accuracy[key] += tmp_false_accuracy[key] # loss loss = self.model.calc_loss(y, t) loss.to_cpu() sum_loss += float(loss.data) * data_length # sum_loss self.log({'loss': float(sum_loss)}, 'test_loss') # sum_accuracy num = 0 for key in sum_accuracy: value = sum_accuracy[key] self.log({'accuracy': int(value)}, 'test_accuracy_{}'.format(key)) num += value self.log({'accuracy': int(num)}, 'test_accuracy') # false_accuracy for key in false_accuracy: if key[0] == key[1]: pass else: value = false_accuracy[key] self.log({'accuracy': int(value)}, 'test_accuracy_{}_{}'.format(key[0], key[1])) # show logs sen = [self.log.test_loss(), self.log.test_accuracy(max_flag=True)] print('\n'.join(sen)) def run(self): log = self.log model = self.model optimizer = self.optimizer epoch = self.epoch start_epoch = self.start_epoch save_path = self.save_path epoch_progressbar = utility.create_progressbar(epoch + 1, desc='epoch', stride=1, start=start_epoch) for i in epoch_progressbar: self.train_one_epoch() # save model model.save_model('{}model/{}_{}.model'.format(save_path, model.name, i)) optimizer(i) self.test_one_epoch() log.generate_loss_figure('{}loss.jpg'.format(save_path)) log.generate_accuracy_figure('{}accuracy.jpg'.format(save_path)) log.save(save_path + 'log.json') def process(x, t, da): x, info = da.test(x) return (x, t) def process_train(x, t, da): x, info = da.train(x) return (x, t)
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ragged_array_ops.boolean_mask.""" from absl.testing import parameterized from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops.ragged import ragged_array_ops from tensorflow.python.ops.ragged import ragged_factory_ops from tensorflow.python.platform import googletest @test_util.run_all_in_graph_and_eager_modes class RaggedBooleanMaskOpTest(test_util.TensorFlowTestCase, parameterized.TestCase): # Define short constants for true & false, so the data & mask can be lined # up in the examples below. This makes it easier to read the examples, to # see which values should be kept vs. masked. T = True F = False @parameterized.parameters([ #========================================================================= # Docstring examples #========================================================================= dict( descr='Docstring example 1', data=[[1, 2, 3], [4, 5, 6], [7, 8, 9]], mask=[[T, F, T], [F, F, F], [T, F, F]], expected=ragged_factory_ops.constant_value([[1, 3], [], [7]])), dict( descr='Docstring example 2', data=ragged_factory_ops.constant_value([[1, 2, 3], [4], [5, 6]]), mask=ragged_factory_ops.constant_value([[F, F, T], [F], [T, T]]), expected=ragged_factory_ops.constant_value([[3], [], [5, 6]])), dict( descr='Docstring example 3', data=ragged_factory_ops.constant_value([[1, 2, 3], [4], [5, 6]]), mask=[True, False, True], expected=ragged_factory_ops.constant_value([[1, 2, 3], [5, 6]])), #========================================================================= # Uniform data and uniform mask. #========================================================================= dict( descr='data.shape=[7]; mask.shape=[7]', data=[1, 2, 3, 4, 5, 6, 7], mask=[T, F, T, T, F, F, F], expected=[1, 3, 4]), dict( descr='data.shape=[5, 3]; mask.shape=[5]', data=[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15]], mask=[True, False, True, True, False], expected=[[1, 2, 3], [7, 8, 9], [10, 11, 12]]), dict( descr='data.shape=[5, 3]; mask.shape=[5, 3]', data=[[1, 2, 3], [4, 5, 6], [7, 8, 9], [0, 1, 2], [3, 4, 5]], mask=[[F, F, F], [T, F, T], [T, T, T], [F, F, F], [T, T, F]], expected=ragged_factory_ops.constant_value( [[], [4, 6], [7, 8, 9], [], [3, 4]])), dict( descr='data.shape=[3, 2, 2]; mask.shape=[3]', data=[[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[2, 4], [6, 8]]], mask=[F, F, T], expected=[[[2, 4], [6, 8]]]), dict( descr='data.shape=[3, 2, 2]; mask.shape=[3]', data=[[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[2, 4], [6, 8]]], mask=[F, F, T], expected=[[[2, 4], [6, 8]]]), dict( descr='data.shape=[3, 2, 2]; mask.shape=[3, 2]', data=[[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[2, 4], [6, 8]]], mask=[[T, F], [T, T], [F, F]], expected=ragged_factory_ops.constant_value( [[[1, 2]], [[5, 6], [7, 8]], []], ragged_rank=1)), dict( descr='data.shape=[3, 2, 2]; mask.shape=[3, 2, 2]', data=[[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[2, 4], [6, 8]]], mask=[[[T, T], [F, T]], [[F, F], [F, F]], [[T, F], [T, T]]], expected=ragged_factory_ops.constant_value( [[[1, 2], [4]], [[], []], [[2], [6, 8]]])), dict( descr='data.shape=mask.shape=[2, 2, 2, 2]', data=[[[[1, 2], [3, 4]], [[5, 6], [7, 8]]], [[[2, 4], [6, 8]], [[1, 3], [5, 7]]]], mask=[[[[T, T], [F, F]], [[T, F], [F, F]]], [[[F, F], [F, F]], [[T, T], [T, F]]]], expected=ragged_factory_ops.constant_value( [[[[1, 2], []], [[5], []]], [[[], []], [[1, 3], [5]]]])), #========================================================================= # Ragged data and ragged mask. #========================================================================= dict( descr='data.shape=[5, (D2)]; mask.shape=[5, (D2)]', data=ragged_factory_ops.constant_value( [[1, 2], [3, 4, 5, 6], [7, 8, 9], [], [1, 2, 3]]), mask=ragged_factory_ops.constant_value( [[F, F], [F, T, F, T], [F, F, F], [], [T, F, T]]), expected=ragged_factory_ops.constant_value( [[], [4, 6], [], [], [1, 3]])), dict( descr='data.shape=[3, (D2), (D3)]; mask.shape=[3, (D2)]', data=ragged_factory_ops.constant_value( [[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[2, 4], [6, 8]]]), mask=ragged_factory_ops.constant_value([[T, F], [T, T], [F, F]]), expected=ragged_factory_ops.constant_value( [[[1, 2]], [[5, 6], [7, 8]], []])), dict( descr='data.shape=[3, (D2), D3]; mask.shape=[3, (D2)]', data=ragged_factory_ops.constant_value( [[[1, 2], [3, 4]], [[5, 6], [7, 8], [2, 4]], [[6, 8]]], ragged_rank=1), mask=ragged_factory_ops.constant_value([[T, F], [T, T, F], [F]]), expected=ragged_factory_ops.constant_value( [[[1, 2]], [[5, 6], [7, 8]], []], ragged_rank=1)), dict( descr='data.shape=[3, (D2), (D3)]; mask.shape=[3, (D2), (D3)]', data=ragged_factory_ops.constant_value( [[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[2, 4]]]), mask=ragged_factory_ops.constant_value( [[[T, T], [F, T]], [[F, F], [F, F]], [[T, F]]]), expected=ragged_factory_ops.constant_value( [[[1, 2], [4]], [[], []], [[2]]])), dict( descr=('data.shape=[3, (D2), (D3), (D4)]; ' 'mask.shape=[3, (D2), (D3), (D4)]'), data=ragged_factory_ops.constant_value( [[[[1, 2], [3, 4]], [[5, 6]]], [[[2, 4], [6, 8]]]]), mask=ragged_factory_ops.constant_value( [[[[T, T], [F, F]], [[T, F]]], [[[F, F], [T, T]]]]), expected=ragged_factory_ops.constant_value( [[[[1, 2], []], [[5]]], [[[], [6, 8]]]])), #========================================================================= # Ragged mask and uniform data #========================================================================= dict( descr='data.shape=[2, 3]; mask.shape=[2, (3)]', data=[[1, 2, 3], [4, 5, 6]], mask=ragged_factory_ops.constant_value([[T, F, F], [F, T, T]]), expected=ragged_factory_ops.constant_value([[1], [5, 6]])), dict( descr='data.shape=[2, 3, 2]; mask.shape=[2, (3)]', data=[[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 0], [2, 4]]], mask=ragged_factory_ops.constant_value([[T, F, F], [F, T, T]]), expected=ragged_factory_ops.constant_value( [[[1, 2]], [[9, 0], [2, 4]]], ragged_rank=1)), dict( descr='data.shape=[2, 3, 2]; mask.shape=[2, (3), 2]', data=[[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 0], [2, 4]]], mask=ragged_factory_ops.constant_value( [[[T, F], [F, F], [T, T]], [[T, F], [F, T], [F, F]]], ragged_rank=1), expected=ragged_factory_ops.constant_value( [[[1], [], [5, 6]], [[7], [0], []]])), #========================================================================= # Ragged data and uniform mask. #========================================================================= dict( descr='data.shape=[4, (D2)]; mask.shape=[4]', data=ragged_factory_ops.constant_value([[1, 2, 3], [4], [], [5, 6]]), mask=[T, F, T, F], expected=ragged_factory_ops.constant_value([[1, 2, 3], []])), dict( descr='data.shape=[4, (D2), (D3)]; mask.shape=[4]', data=ragged_factory_ops.constant_value( [[[1, 2, 3]], [[4], []], [[5, 6]], []]), mask=[T, F, T, T], expected=ragged_factory_ops.constant_value( [[[1, 2, 3]], [[5, 6]], []])), dict( descr='data.shape=[4, (D2), 2]; mask.shape=[4]', data=ragged_factory_ops.constant_value( [[[1, 2], [3, 4]], [], [[5, 6]], [[7, 8], [9, 0], [1, 2]]], ragged_rank=1), mask=[T, F, F, T], expected=ragged_factory_ops.constant_value( [[[1, 2], [3, 4]], [[7, 8], [9, 0], [1, 2]]], ragged_rank=1)), dict( descr='data.shape=[4, (D2), 2]; mask.shape=[4]', data=ragged_factory_ops.constant_value( [[[1, 2], [3, 4]], [], [[5, 6]], [[7, 8], [9, 0], [1, 2]]], ragged_rank=1), mask=[T, F, F, T], expected=ragged_factory_ops.constant_value( [[[1, 2], [3, 4]], [[7, 8], [9, 0], [1, 2]]], ragged_rank=1)), dict( descr='data.shape=[1, (2)]; mask.shape=[1, 2]', data=ragged_factory_ops.constant_value([[1, 2]]), mask=[[T, F]], expected=ragged_factory_ops.constant_value([[1]])), dict( descr='data.shape=[2, (2), (D3)]; mask.shape=[2, 2]', data=ragged_factory_ops.constant_value( [[[1], [2, 3]], [[], [4, 5, 6]]]), mask=[[T, F], [T, T]], expected=ragged_factory_ops.constant_value([[[1]], [[], [4, 5, 6]]])), dict( descr='data.shape=[2, (2), 3]; mask.shape=[2, 2]', data=ragged_factory_ops.constant_value( [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [2, 4, 6]]], ragged_rank=1), mask=[[T, F], [T, T]], expected=ragged_factory_ops.constant_value( [[[1, 2, 3]], [[7, 8, 9], [2, 4, 6]]], ragged_rank=1)), dict( descr='data.shape=[2, (2), 3]; mask.shape=[2, 2, 3]', data=ragged_factory_ops.constant_value( [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [2, 4, 6]]], ragged_rank=1), mask=[[[T, F, F], [T, F, T]], [[T, F, T], [F, F, F]]], expected=ragged_factory_ops.constant_value( [[[1], [4, 6]], [[7, 9], []]])), ]) # pyformat: disable def testBooleanMask(self, descr, data, mask, expected): actual = ragged_array_ops.boolean_mask(data, mask) self.assertAllEqual(actual, expected) def testErrors(self): if not context.executing_eagerly(): self.assertRaisesRegex(ValueError, r'mask\.shape\.ndims must be known statically', ragged_array_ops.boolean_mask, [[1, 2]], array_ops.placeholder(dtypes.bool)) self.assertRaises(TypeError, ragged_array_ops.boolean_mask, [[1, 2]], [[0, 1]]) self.assertRaisesRegex( ValueError, 'Tensor conversion requested dtype bool for ' 'RaggedTensor with dtype int32', ragged_array_ops.boolean_mask, ragged_factory_ops.constant([[1, 2]]), ragged_factory_ops.constant([[0, 0]])) self.assertRaisesRegex(ValueError, r'Shapes \(1, 2\) and \(1, 3\) are incompatible', ragged_array_ops.boolean_mask, [[1, 2]], [[True, False, True]]) self.assertRaisesRegex(errors.InvalidArgumentError, r'Inputs must have identical ragged splits', ragged_array_ops.boolean_mask, ragged_factory_ops.constant([[1, 2]]), ragged_factory_ops.constant([[True, False, True]])) self.assertRaisesRegex(ValueError, 'mask cannot be scalar', ragged_array_ops.boolean_mask, [[1, 2]], True) self.assertRaisesRegex(ValueError, 'mask cannot be scalar', ragged_array_ops.boolean_mask, ragged_factory_ops.constant([[1, 2]]), True) if __name__ == '__main__': googletest.main()
import logging from typing import Optional from gi.repository import Gtk from sastool.io.credo_cct import Header, Exposure from ..core.functions import update_comboboxtext_choices from ..core.plotcurve import PlotCurveWindow from ..core.plotimage import PlotImageWindow from ..core.toolwindow import ToolWindow from ...core.commands.detector import Expose, ExposeMulti from ...core.commands.motor import SetSample from ...core.commands.xray_source import Shutter from ...core.services.interpreter import Interpreter logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class SingleExposure(ToolWindow): required_devices = ['detector', 'xray_source', 'Motor_Sample_X', 'Motor_Sample_Y'] widgets_to_make_insensitive = ['inputframe'] def __init__(self, *args, **kwargs): self._images_done = 0 self._images_requested = 0 self._sampleconnection = None self._killed = False self._nimages = 0 self._images_done = 0 self._expanalyzerconnection = None super().__init__(*args, **kwargs) def cleanup(self): if self._sampleconnection is not None: self.instrument.services['samplestore'].disconnect(self._sampleconnection) self._sampleconnection = None def on_mainwidget_map(self, window): if super().on_mainwidget_map(window): return True self._sampleconnection = self.instrument.services['samplestore'].connect( 'list-changed', self.on_samplelist_changed) self.on_samplelist_changed(self.instrument.services['samplestore']) update_comboboxtext_choices( self.builder.get_object('prefixselector'), sorted(self.instrument.services['filesequence'].get_prefixes()), self.instrument.config['path']['prefixes']['tst'] ) self.on_samplecheck_toggled(self.builder.get_object('samplename_check')) def on_samplecheck_toggled(self, togglebutton): self.builder.get_object('sampleselector').set_sensitive(togglebutton.get_active()) def on_command_return(self, interpreter: Interpreter, commandname: Optional[str], returnvalue: object): if commandname is not None: super().on_command_return(interpreter, commandname, returnvalue) if self._killed: commandname = 'shutter' returnvalue = False if commandname is None: # not a true command, we just enter here because self.start() called us. if self.builder.get_object('samplename_check').get_active(): self.execute_command( SetSample, (self.builder.get_object('sampleselector').get_active_text(),)) return False else: self.instrument.services['samplestore'].set_active(None) commandname = 'sample' returnvalue = None self.on_command_return(interpreter, 'sample', None) # pass through to the next if. if commandname == 'sample': logger.debug('Sample in place') if self.builder.get_object('shutter_check').get_active(): logger.debug('Opening shutter') self.execute_command( Shutter, (True,)) return False else: logger.debug('Not opening shutter, passing through to next command.') commandname = 'shutter' returnvalue = True # pass through to the next if. if commandname == 'shutter' and returnvalue is True: # start exposure logger.debug('Starting exposure') prefix = self.builder.get_object('prefixselector').get_active_text() exptime = self.builder.get_object('exptime_spin').get_value() self._nimages = self.builder.get_object('nimages_spin').get_value_as_int() expdelay = self.builder.get_object('expdelay_spin').get_value() self.builder.get_object('progressframe').show_all() self.builder.get_object('progressframe').set_visible(True) if self._nimages == 1: logger.debug('Executing Expose') self.execute_command( Expose, (exptime, prefix)) else: logger.debug('Executing ExposeMulti') self.execute_command( ExposeMulti, (exptime, self._nimages, prefix, expdelay)) return False if commandname in ['expose', 'exposemulti']: logger.debug('Exposure ended.') if self.builder.get_object('shutter_check').get_active(): logger.debug('Closing shutter') self.execute_command( Shutter, (False,)) return False else: logger.debug('Not closing shutter') commandname = 'shutter' returnvalue = False # pass through to the next if. if commandname == 'shutter' and returnvalue is False: # this is the end. logger.debug('Shutter is closed, ending singleexposure') self.builder.get_object('start_button').set_label('Start') self.builder.get_object('start_button').get_image().set_from_icon_name('system-run', Gtk.IconSize.BUTTON) self.builder.get_object('progressframe').set_visible(False) self.set_sensitive(True) self.widget.resize(1, 1) self._killed = False return False # we should not reach here. raise ValueError(commandname, returnvalue) def on_command_pulse(self, interpreter, commandname, message): self.builder.get_object('exposure_progress').set_text(message) self.builder.get_object('exposure_progress').pulse() def on_command_progress(self, interpreter, commandname, message, fraction): self.builder.get_object('exposure_progress').set_text(message) self.builder.get_object('exposure_progress').set_fraction(fraction) def on_start(self, button): if button.get_label() == 'Start': button.set_label('Stop') button.get_image().set_from_icon_name('gtk-stop', Gtk.IconSize.BUTTON) self._images_done = 0 self._expanalyzerconnection = self.instrument.services['exposureanalyzer'].connect('image', self.on_image) self.on_command_return(self.instrument.services['interpreter'], None, None) else: self._killed = True self.instrument.services['interpreter'].kill() def on_image(self, exposureanalyzer, prefix, fsn, matrix, params, mask): im = Exposure(matrix, header=Header(params), mask=mask) try: sample = im.header.title except KeyError: sample = 'unknown sample' legend = 'FSN #{:d}, {} at {:.2f} mm'.format( im.header.fsn, sample, float(im.header.distance)) if self.builder.get_object('plotimage_check').get_active(): if self.builder.get_object('reuseimage_check').get_active(): imgwin = PlotImageWindow.get_latest_window() else: imgwin = PlotImageWindow() imgwin.set_image(im.intensity) imgwin.set_mask(im.mask) imgwin.set_distance(im.header.distance) imgwin.set_beampos(im.header.beamcenterx, im.header.beamcentery) assert im.header.pixelsizex == im.header.pixelsizey imgwin.set_pixelsize(im.header.pixelsizex) imgwin.set_wavelength(im.header.wavelength) imgwin.set_title(legend) if self.builder.get_object('plotradial_check').get_active(): if self.builder.get_object('reuseradial_check').get_active(): curvewin = PlotCurveWindow.get_latest_window() else: curvewin = PlotCurveWindow() curve = im.radial_average() assert im.header.pixelsizex == im.header.pixelsizey curvewin.addcurve(curve.q, curve.Intensity, curve.qError, curve.Error, legend, 'q', im.header.pixelsizex, im.header.distance, im.header.wavelength) self._images_done += 1 if self._images_done >= self._nimages: self.instrument.services['exposureanalyzer'].disconnect(self._expanalyzerconnection) self._expanalyzerconnection = None def on_samplelist_changed(self, samplestore): update_comboboxtext_choices( self.builder.get_object('sampleselector'), sorted([x.title for x in samplestore])) def on_nimages_changed(self, spinbutton): self.builder.get_object('expdelay_spin').set_sensitive(spinbutton.get_value_as_int() > 1) def on_maskoverride_toggled(self, togglebutton): pass
from OpenGL.GL import * from PyQt4 import QtGui from PyQt4.QtCore import * from PyQt4.QtOpenGL import * import math GLUT_UP = 1 GLUT_DOWN = 0 GLUT_ACTIVE_CTRL = 2 GLUT_ACTIVE_SHIFT = 1 GLUT_ACTIVE_ALT = 4 keymap = {Qt.Key_F1:'f1', Qt.Key_F2:'f2', Qt.Key_F3:'f3', Qt.Key_F4:'f4', Qt.Key_F5:'f5', Qt.Key_F6:'f6', Qt.Key_F7:'f7', Qt.Key_F8:'f8', Qt.Key_F9:'f9', Qt.Key_F10:'f10', Qt.Key_F11:'f11', Qt.Key_F12:'f12', Qt.Key_Up:'up', Qt.Key_Left:'left', Qt.Key_Down:'down', Qt.Key_Right:'right', Qt.Key_Home:'home', Qt.Key_End:'end', Qt.Key_Delete:'delete', Qt.Key_Enter:'enter' } def toGlutButton(button): if button==Qt.LeftButton: return 0 elif button==Qt.RightButton: return 2 elif button==Qt.MidButton: return 1 return 0 def toModifierList(modifiers): res = [] if modifiers & Qt.AltModifier: res.append('alt') if modifiers & Qt.ShiftModifier: res.append('shift') if modifiers & Qt.ControlModifier: res.append('ctrl') return res class QtGLWindow(QGLWidget): """A basic OpenGL window using Qt. Should not be used directly, use the functions in QtBackend instead. Attributes: - name: title of the window (only has an effect before calling run()) - width, height: width/height of the window (only has an effect before calling run(), and these are updated when the user resizes the window. - clearColor: the RGBA floating point values of the background color. """ def __init__(self,name="OpenGL window",parent=None): format = QGLFormat() format.setRgba(True) format.setDoubleBuffer(True) format.setDepth(True) format.setSampleBuffers(True) format.setSamples(4) QGLWidget.__init__(self,format) self.name = name self.program = None self.width = 640 self.height = 480 self.sizePolicy = "resize" self.clearColor = [1.0,1.0,1.0,0.0] #keyboard state information self.modifierList = [] #mouse state information self.lastx,self.lasty = None,None self.initialized = False self.refreshed = False self.setFixedSize(self.width,self.height) self.setWindowTitle(self.name) self.idleTimer = QTimer() self.actions = [] self.actionMenu = None self.inpaint = False def setProgram(self,program): from glprogram import GLProgram assert isinstance(program,GLProgram) if hasattr(program,'name'): self.name = program.name if self.initialized: self.setWindowTitle(program.name) self.program = program program.window = self if self.initialized: program.initialize() program.reshapefunc(self.width,self.height) def f(): if self.program: self.program.idlefunc() self.idleTimer.timeout.connect(f) else: self.reshape(program.view.w,program.view.h) def setParent(self,parent=None): QGLWidget.setParent(self,parent) def initialize(self): """ Open a window and initialize """ assert self.program != None, "QGLWidget initialized without a GLProgram" glEnable(GL_MULTISAMPLE) self.setMouseTracking(True) self.setFocusPolicy(Qt.StrongFocus) def f(): if self.program: self.program.idlefunc() self.idleTimer.timeout.connect(f) self.idleTimer.start(0) #init function self.program.initialize() if self.actionMenu is not None: for a in self.actions: self.actionMenu.addAction(a) else: print "QtGLWidget.initialize: no action menu?" self.initialized = True def add_action(self,hook,short_text,key,description=None): a = QtGui.QAction(short_text, self) a.setShortcut(key) if description == None: description = short_text a.setStatusTip(description) a.triggered.connect(hook) self.actions.append(a) def sizeHint(self): return QSize(self.width,self.height) #QtGLWidget bindings def initializeGL(self): print "######### QGLWidget Initialize GL ###############" if self.initialized: print "QGLWidget.initializeGL: already initialized?" try: return self.initialize() except Exception,e: import traceback print "QGLWidget.initializeGL: hit an exception?" traceback.print_exc() exit(-1) def resizeGL(self,w,h): if self.program == None: print "QGLWidget.resizeGL: called after close?" return if not self.isVisible(): return (self.width,self.height) = (w,h) self.program.reshapefunc(w,h) return def paintGL(self): if self.program == None: print "QGLWidget.paintGL: called after close?" return if not self.isVisible(): print "QGLWidget.paintGL: called while invisible?" return if self.inpaint: return self.inpaint = True self.refreshed = False try: res = self.program.displayfunc() except Exception,e: import traceback print "QGLWidget.paintGL: hit an exception?" traceback.print_exc() exit(-1) self.inpaint = False return #QWidget bindings def mouseMoveEvent(self,e): if self.program == None: print "QGLWidget.mouseMoveEvent: called after close?" return x,y = e.pos().x(),e.pos().y() if self.lastx == None: dx,dy = 0,0 else: dx, dy = x - self.lastx, y - self.lasty try: res = self.program.motionfunc(x,y,dx,dy) except Exception,e: import traceback traceback.print_exc() exit(-1) self.lastx,self.lasty = x,y def mousePressEvent(self,e): x,y = e.pos().x(),e.pos().y() self.modifierList = toModifierList(e.modifiers()) self.lastx,self.lasty = x,y self.program.mousefunc(toGlutButton(e.button()),GLUT_DOWN,x,y) def mouseReleaseEvent(self,e): x,y = e.pos().x(),e.pos().y() self.modifierList = toModifierList(e.modifiers()) self.lastx,self.lasty = x,y self.program.mousefunc(toGlutButton(e.button()),GLUT_UP,x,y) def keyPressEvent(self,e): if e.isAutoRepeat(): return if e.key() in keymap: self.modifierList = toModifierList(e.modifiers()) self.program.keyboardfunc(keymap[e.key()],self.lastx,self.lasty) return else: c = str(e.text()) if len(c)==0: return #some empty press, like shift/control self.modifierList = toModifierList(e.modifiers()) self.program.keyboardfunc(c,self.lastx,self.lasty) def keyReleaseEvent(self,e): if e.isAutoRepeat(): return if e.key() in keymap: self.modifierList = toModifierList(e.modifiers()) self.program.keyboardupfunc(keymap[e.key()],self.lastx,self.lasty) return else: c = str(e.text()) if len(c)==0: return #some empty press, like shift/control self.modifierList = toModifierList(e.modifiers()) self.program.keyboardupfunc(c,self.lastx,self.lasty) def modifiers(self): """Call this to retrieve modifiers. Called by frontend.""" return self.modifierList def idlesleep(self,duration=float('inf')): """Sleeps the idle callback for t seconds. If t is not provided, the idle callback is slept forever""" if duration==0: self.idleTimer.start(0) else: self.idleTimer.stop() if duration!=float('inf'): QTimer.singleShot(duration*1000,lambda:self.idleTimer.start(0)); def close(self): """Call close() after this widget should be closed down, to stop any existing Qt callbacks.""" #print "######### QGLWidget close ###############" self.idleTimer.stop() if self.program: self.program.window = None self.program = None def refresh(self): if not self.refreshed: self.refreshed = True if not self.isVisible(): return #TODO: resolve whether it's better to call updateGL here or to schedule # a timer event #self.updateGL() QTimer.singleShot(0,lambda:self.updateGL()) def reshape(self,w,h): (self.width,self.height) = (w,h) def doreshape(): self.setFixedSize(self.width,self.height) self.window().resize(self.sizeHint()) self.window().adjustSize() if self.isVisible(): self.refresh() if not self.initialized: doreshape() else: QTimer.singleShot(0,doreshape) def draw_text(self,point,text,size=12,color=None): if color: if len(color)==3: glColor3f(*color) else: glColor4f(*color) font = QtGui.QFont() font.setPixelSize(size) if len(point) == 2: self.renderText(point[0],point[1],0,text,font) else: self.renderText(point[0],point[1],point[2],text,font) class QtBackend: """ To use as a standalone program: Set up your GLProgramInterface, then call run() to start the Qt main loop. For more control over windowing, you can use the createWindow function to construct new windows and setProgram to set the program used in that window. IMPORTANT NOTE: only one window may be created for a given world due to OpenGL display lists not being shared between OpenGL contexts. If you want to use multiple windows, then a new world should be loaded for each world. You can close down and start up a new window with the same world as long as you refresh all appearances in the world. """ def __init__(self): self.app = None self.window = None def initialize(self,program_name): if self.app == None: #this is needed for some X11 multithreading bug QCoreApplication.setAttribute(Qt.AA_X11InitThreads) self.app = QtGui.QApplication([program_name]) def createWindow(self,name,parent=None): self.initialize(name) return QtGLWindow(name,parent) def run(self): """Starts the main loop""" assert self.window != None, "No windows create()'ed" self.window.show() self.app.exec_()
#!/usr/bin/python # Download WHO geographic distribution of COVID-19 cases worldwide # Source : European Centre for Disease Prevention and Control # Plot cases and deaths for selected countries # The downloaded spreadsheet is stored locally in Covid-19.csv # To use cached local spreadsheet, use "-l" option # Intermediate data for cases/deaths and also for each country are stored in relevant .csv files # All plots can be aligned to : # First date of detection or death, in that country (default) # First date of detection in China, 2019-12-31 (-n) # Data can be plotted as daily values (default) cumulative values (-c) # Countries to plot and line colours are specified in the appropriate tables at the top of this file # Dependencies : pandas, matplotlib, numpy, google-auth-httplib2, beautifulsoup4, xlrd import argparse import matplotlib.pyplot as plt import numpy as np import pandas as pd import os import urllib.request from bs4 import BeautifulSoup topLevelPage = "https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide" localFileName = "Covid-19.csv" countries = ["China","Germany","Italy","United_Kingdom","United_States_of_America", "Australia", "Sweden", "Brazil"] colours = ["red", "black", "green","blue", "orange", "pink", "grey", "violet"] # countries = ["China","Germany","Italy","United_Kingdom","United_States_of_America", "Australia"] # colours = ["red", "black", "green","blue", "orange", "pink"] country_single = ["United_Kingdom"] # Default value, can be overwritten # Extract cases and deaths and align day 0 to first date of detection or death def extractCountries(covidData, country, dates, noAlignFlag): print("Country: " + country) countryData = pd.DataFrame(index = dates) # Create dataframe for country data # Extract the data for the required country # We need to copy it to the new countryData array so that dates are pre-pended back to 2019-12-31 countryData_tmp = covidData[covidData["countriesAndTerritories"].str.match(country)] countryData_tmp = countryData_tmp.iloc[::-1] # Invert table - top to bottom countryData[list(countryData_tmp.columns.values)] = countryData_tmp[list(countryData_tmp.columns.values)] countryData=countryData.fillna(0) # Replace NaN with 0 # countryFileName = country + '.csv' # # countryData.to_csv (countryFileName, index = False, header=True) # countryData.to_csv (countryFileName, index = True, header=True) # Fill columns : countriesAndTerritories geoId countryterritoryCode popData2019 countryData['countriesAndTerritories'] = countryData['countriesAndTerritories'].iloc[-1] countryData['geoId'] = countryData['geoId'].iloc[-1] countryData['countryterritoryCode'] = countryData['countryterritoryCode'].iloc[-1] countryData['popData2019'] = countryData['popData2019'].iloc[-1] countryData=countryData.fillna(0) # Replace NaN with 0 # Create cumulative cases column and cumulative deaths column - Rename column titles countryDataCS = countryData.cumsum(axis = 0) countryDataCS = countryDataCS.rename(columns={"cases": "casesCumulative", "deaths": "deathsCumulative"}) countryData['casesCumulative'] = countryDataCS['casesCumulative'] # Copy cumulative columns to countryData countryData['deathsCumulative'] = countryDataCS['deathsCumulative'] countryData['casesMA'] = countryData['cases'].rolling(7).mean() # Calculate moving averages countryData['deathsMA'] = countryData['deaths'].rolling(7).mean() countryData['casesCumulativeMA'] = countryData['casesCumulative'].rolling(7).mean() countryData['deathsCumulativeMA'] = countryData['deathsCumulative'].rolling(7).mean() # Calculate fatality rates and clip to 100% countryData['fatalityPercentage'] = countryData['deaths'] * 100./countryData['cases'] countryData['fatalityPercentage'] = countryData['fatalityPercentage'].where(countryData['fatalityPercentage'] <= 100., 100.) countryData.loc[countryData.cases == 0, "fatalityPercentage"] = 0 # When cases 0= 0 set percentage to 0 countryData['fatalityPercentageCumulative'] = countryData['deathsCumulative'] * 100./countryData['casesCumulative'] countryData['fatalityPercentageCumulative'] = countryData['fatalityPercentageCumulative'].where(countryData['fatalityPercentageCumulative'] <= 100., 100.) countryData.loc[countryData.casesCumulative == 0, "fatalityPercentageCumulative"] = 0 # When cases 0= 0 set percentage to 0 countryData['fatalityPercentageMA'] = countryData['fatalityPercentage'].rolling(7).mean() countryData['fatalityPercentageCumulativeMA'] = countryData['fatalityPercentageCumulative'].rolling(7).mean() outputFileName = country + ".csv" countryData.to_csv(outputFileName, index=True) latestCases=countryData['cases'].iloc[-1] # Print latest cases and deaths count latestDeaths=countryData['deaths'].iloc[-1] print('Latest cases : ' + str(latestCases)) print('Latest deaths : ' + str(latestDeaths)) print("Latest fatality rate : %.2f %%" % ((latestDeaths*100.)/latestCases)) dc = countryData.index[countryData['cases'] != 0].tolist() # Print first data of cases print("First Case : " + str(dc[0]).replace(' 00:00:00','')) dd = countryData.index[countryData['deaths'] != 0].tolist() # Print first data of deaths print("First Death : " + str(dd[0]).replace(' 00:00:00','')) totalCases=countryData['casesCumulative'].iloc[-1] totalDeaths=countryData['deathsCumulative'].iloc[-1] fatalityRate=totalDeaths*100./totalCases # population=int(countryData['popData2019'].iloc[0]) population=countryData['popData2019'].iloc[0] print("Total number of cases : " + str(totalCases)) print("Total number of deaths : " + str(totalDeaths)) print("Total number of cases (Per 1 million pop.) : %.2f" % (totalCases / (population/1000000.))) print("Total number of deaths (Per 1 million pop.): %.2f" % (totalDeaths / (population/1000000.))) print("Overall Fatality rate : %.2f %%" % (fatalityRate)) print("Population (2019) : %.2f (Million)" % (population / 1000000.)) print('') # If we are not aligning first case or death then just return the data if noAlignFlag == True: return country, population, countryData, countryData; # Align to first case or death by removing leading zeros and resetting index # Get names of indexes for which column casesCumulative has value 0 else: indexNames = countryData[ countryData['casesCumulative'] == 0 ].index # Remove leading zeros from cases extractedCases = countryData.drop(indexNames) extractedCases = extractedCases.reset_index() indexNames = countryData[ countryData['deathsCumulative'] == 0 ].index # Remove leading zeros from deaths extractedDeaths = countryData.drop(indexNames) extractedDeaths = extractedDeaths.reset_index() return country, population, extractedCases, extractedDeaths; # main def main(useCachedFileFlag, cumulativeResultsFlag, noAlignFlag, noPlotFlag, fileSavePlotFlag, popNormalizeFlag): global countries cachedFilePresentFlag = False try: f = open(localFileName) cachedFilePresentFlag = True f.close() except IOError: cachedFilePresentFlag = False # If cached file not present or we have requested to refresh then get the file if (cachedFilePresentFlag == False) or (useCachedFileFlag == False): cachedFilePresentFlag = False resp = urllib.request.urlopen(topLevelPage) soup = BeautifulSoup(resp, "html.parser", from_encoding=resp.info().get_param('charset')) for link in soup.find_all('a', href=True): # print(link['href']) if ("xlsx" in link['href']): # If data in .xlsx format then retrieve and store as local .csv format xlsxfileurl = link['href'] try: xlsx_tmp = pd.read_excel(xlsxfileurl, index_col=0) xlsx_tmp.to_csv(localFileName, index=True) cachedFilePresentFlag = True print("Cached spreadheet updated (xlsx)") except: cachedFilePresentFlag = False print("Spreadheet failed to download (xlsx)") break if (cachedFilePresentFlag == False): # If data NOT in .xlsx format then retrieve and store .csv format for link in soup.find_all(class_="btn btn-primary", href=True): if ("csv" in link['href']): csvfileurl = link['href'] try: urllib.request.urlretrieve(csvfileurl, localFileName) cachedFilePresentFlag = True print("Cached spreadheet updated (csv)") except: cachedFilePresentFlag = False print("Spreadheet failed to download (csv)") break if (cachedFilePresentFlag == False): print("No spreadsheet found at the URL, use \"-l\" to use local cached file") exit(0) numberOfCountries = len(countries) extractedCountry = {} # Create empty dictionaries to store result data frames for each country extractedPopulation = {} extractedCases = {} extractedDeaths = {} if (cachedFilePresentFlag == True): covidData = pd.read_csv(localFileName, index_col=0, encoding="utf-8-sig") # Spreadsheet columns : # dateRep day month year cases deaths countriesAndTerritories geoId countryterritoryCode popData2019 covidData=covidData.fillna(0) # Replace NaN with 0 clen = 0 # For longest sequency dlen = 0 # Extract Chinese dates to create index - this allows for countries that do not have full data supplied dates_tmp = covidData[covidData["countriesAndTerritories"].str.match("China")] dates_tmp = dates_tmp.iloc[::-1] # Invert table - top to bottom dates_tmp=dates_tmp.reset_index() dates=list(dates_tmp['dateRep']) countryIndex = 0 for country in countries: # Extract the data for each country # Data can be aligned on 2019-12-29 or first instance extractedCountry[countryIndex], extractedPopulation[countryIndex], extractedCases[countryIndex], extractedDeaths[countryIndex] = \ extractCountries(covidData, country, dates, noAlignFlag) # print(extractedCases) # print(extractedDeaths) if (popNormalizeFlag == True): extractedCases[countryIndex]['cases'] = extractedCases[countryIndex]['cases'] * (1000000.0 / extractedPopulation[countryIndex]) extractedCases[countryIndex]['deaths'] = extractedCases[countryIndex]['deaths'] * (1000000.0 / extractedPopulation[countryIndex]) extractedCases[countryIndex]['casesCumulative'] = extractedCases[countryIndex]['casesCumulative'] * (1000000.0 / extractedPopulation[countryIndex]) extractedCases[countryIndex]['deathsCumulative'] = extractedCases[countryIndex]['deathsCumulative'] * (1000000.0 / extractedPopulation[countryIndex]) extractedCases[countryIndex]['casesMA'] = extractedCases[countryIndex]['casesMA'] * (1000000.0 / extractedPopulation[countryIndex]) extractedCases[countryIndex]['deathsMA'] = extractedCases[countryIndex]['deathsMA'] * (1000000.0 / extractedPopulation[countryIndex]) extractedDeaths[countryIndex]['casesCumulativeMA'] = extractedDeaths[countryIndex]['casesCumulativeMA'] * (1000000.0 / extractedPopulation[countryIndex]) extractedDeaths[countryIndex]['deathsCumulativeMA'] = extractedDeaths[countryIndex]['deathsCumulativeMA'] * (1000000.0 / extractedPopulation[countryIndex]) clen = np.maximum(clen, extractedCases[countryIndex].shape[0]) dlen = np.maximum(dlen, extractedDeaths[countryIndex].shape[0]) countryIndex = countryIndex+1 lastDate = str(covidData.first_valid_index()) # Get last date in combinedCases lastDate = lastDate.replace(' 00:00:00','') if len(countries) == 1: # Single country - Cases And Deaths # Select daily or cumulative results if (cumulativeResultsFlag == True): casesType = 'casesCumulative' deathsType = 'deathsCumulative' casesMAType = 'casesCumulativeMA' deathsMAType = 'deathsCumulativeMA' percentageType = 'fatalityPercentageCumulative' percentageMAType = 'fatalityPercentageCumulativeMA' else: casesType = 'cases' deathsType = 'deaths' casesMAType = 'casesMA' deathsMAType = 'deathsMA' percentageType = 'fatalityPercentage' percentageMAType = 'fatalityPercentageMA' # Plot titles titleStr='Covid-19 ' if (cumulativeResultsFlag == True): titleStr=titleStr + ' Cumulative Cases And Deaths: ' else: titleStr=titleStr + ' Daily Cases And Deaths: ' ax = plt.gca() # Create plot - get current axis ax.autoscale(enable=True, tight=True) # Plot daily cases and deaths AND moving average extractedCases[0].plot(kind='line', y=casesType, label='Cases', color='dodgerblue',ax=ax) extractedCases[0].plot(kind='line', y=casesMAType, label='Cases - 7 Day Moving Average', color='blue',ax=ax) extractedDeaths[0].plot(kind='line',y=deathsType, label='Deaths',color='lime',ax=ax) extractedDeaths[0].plot(kind='line',y=deathsMAType, label='Deaths - 7 Day Moving Average',color='seagreen',ax=ax) # Plot daily mortality rate ax2 = plt.gca().twinx() extractedDeaths[0].plot(kind='line',y=percentageType,label='Mortality Rate (%)',color='orange',linewidth=.75,ax=ax2) extractedDeaths[0].plot(kind='line',y=percentageMAType,label='Mortality Rate Moving Average (%)',color='red',linewidth=.75,ax=ax2) ax2.set_ylabel('Mortality Rate (%)', color='red') ax2.tick_params(axis='y', labelcolor='red') ax2.set_ylim(0, 40) ax2.get_legend().remove() plt.title(extractedCountry[0] + '\n' + titleStr + str(lastDate) + "\nSource: European Centre for Disease Prevention and Control") ax.set_ylim(bottom=0.0) # Don't plot numbers < zero if (fileSavePlotFlag == True): titleStr = titleStr.split(':', 1)[0] plt.savefig(titleStr.replace(" ", "")+extractedCountry[0]+'.png') if noPlotFlag == False: # Plot the data plt.show() else: plt.close() else: # Multiple countries # Select daily or cumulative results if (cumulativeResultsFlag == True): casesType = 'casesCumulative' deathsType = 'deathsCumulative' percentageType = 'fatalityPercentageCumulative' else: casesType = 'casesMA' deathsType = 'deathsMA' percentageType = 'fatalityPercentage' # Plot titles titleStr='Covid-19 ' if (noAlignFlag == False): titleStr=titleStr + 'Aligned ' if (popNormalizeFlag == True): titleStr=titleStr + 'Pop Noramlized ' if (cumulativeResultsFlag == True): titleStr=titleStr + 'Cumulative Cases: ' else: titleStr=titleStr + 'Daily Cases (7 day moving average): ' ax = plt.gca() # Create plot - get current axis countryIndex = 0 for country in countries: extractedCases[countryIndex].plot(kind='line',y=casesType,title=titleStr + str(lastDate) + "\nSource: European Centre for Disease Prevention and Control",label=extractedCountry[countryIndex],color=colours[countryIndex],ax=ax) countryIndex = countryIndex+1 ax.set_ylim(bottom=0.0) # Don't plot numbers < zero if (fileSavePlotFlag == True): titleStr = titleStr.split(':', 1)[0] plt.savefig(titleStr.replace(" ", "")+'.png') if noPlotFlag == False: # Plot the data plt.show() else: plt.close() # Plot titles titleStr='Covid-19 ' if (noAlignFlag == False): titleStr=titleStr + 'Aligned ' if (popNormalizeFlag == True): titleStr=titleStr + 'Pop Noramlized ' if (cumulativeResultsFlag == True): titleStr=titleStr + 'Cumulative Deaths: ' else: titleStr=titleStr + 'Daily Deaths (7 day moving average): ' ax = plt.gca() # Create plot - get current axis countryIndex = 0 for country in countries: extractedDeaths[countryIndex].plot(kind='line',y=deathsType,title=titleStr + str(lastDate) + "\nSource: European Centre for Disease Prevention and Control",label=extractedCountry[countryIndex],color=colours[countryIndex],ax=ax) countryIndex = countryIndex+1 ax.set_ylim(bottom=0.0) # Don't plot numbers < zero if (fileSavePlotFlag == True): titleStr = titleStr.split(':', 1)[0] plt.savefig(titleStr.replace(" ", "")+'.png') if noPlotFlag == False: # Plot the data plt.show() else: plt.close() # Plot titles titleStr='Covid-19 ' if (noAlignFlag == False): titleStr=titleStr + 'Aligned ' if (popNormalizeFlag == True): titleStr=titleStr + 'Pop Noramlized ' if (cumulativeResultsFlag == True): titleStr=titleStr + 'Cumulative Fatality Percentage: ' else: titleStr=titleStr + 'Daily Fatality Percentage (7 day moving average): ' ax = plt.gca() # Create plot - get current axis countryIndex = 0 for country in countries: # extractedDeaths[countryIndex].plot(kind='line',y=percentageType,title=titleStr + str(lastDate) + "\nSource: European Centre for Disease Prevention and Control",label=extractedCountry[countryIndex],color=colours[countryIndex],ax=ax) extractedDeaths[countryIndex].plot(kind='line',y=percentageType,title=titleStr + str(lastDate) + "\nSource: European Centre for Disease Prevention and Control",label=extractedCountry[countryIndex],color=colours[countryIndex],ax=ax) countryIndex = countryIndex+1 ax.set_ylim(bottom=0.0) # Don't plot numbers < zero if (fileSavePlotFlag == True): titleStr = titleStr.split(':', 1)[0] plt.savefig(titleStr.replace(" ", "")+'.png') if noPlotFlag == False: # Plot the data plt.show() else: plt.close() else: print("Cached spreadsheet file not found on computer") exit() if __name__ == '__main__': useCachedFileFlag = False cumulativeResultsFlag = False noAlignFlag = False noPlotFlag = False fileSavePlotFlag = False popNormalizeFlag = False if ((len(countries) > 1) and (len(countries) != len(colours))): print("The number of colours must equal the number of countries") exit() parser = argparse.ArgumentParser(description='Covid-19 Visualizer') parser.add_argument("-c", "--cumulative", action="store_true", help="Display cumulative results") parser.add_argument("-l", "--local", action="store_true", help="Use local cached Covid-19.csv") parser.add_argument("-n", "--noalign", action="store_true", help="Do not align first instance dates - all graphs start 2019-12-31") parser.add_argument("-f", "--file", action="store_true", help="Save plot to file") parser.add_argument("-p", "--population", action="store_true", help="Use population to normalize data to cases per 1 Million") parser.add_argument("-q", "--quiet", action="store_true", help="Quiet - Do not plot graphs") parser.add_argument("-s", "--single", nargs='?', const=1, help="Process a single country - Specify the countriesAndTerritories string used in the spreadsheet") parser.add_argument("-m", "--ma", action="store_true", help="Plot Moving Average (only availeble for single courntry plot)") args = parser.parse_args() if (args.cumulative): cumulativeResultsFlag = True print("Cumulative Results = True") if (args.local): useCachedFileFlag = True print("Use cached file = True") if (args.noalign): noAlignFlag = True print("Do not align first instance date = True") if (args.file): fileSavePlotFlag = True print("Save plot graphs to file = True") if (args.population): popNormalizeFlag = True print("Normalize to population = True") if (args.quiet): noPlotFlag = True print("Do not plot graphs = True") if (args.single): # Process single country - if no country specified use default country at top of file if (args.single != 1): country_single[0] = args.single countries = country_single # Overwrite the countries array noAlignFlag = True print("Process single country: " + str(countries)) print("Do not align first instance date = True") main(useCachedFileFlag, cumulativeResultsFlag, noAlignFlag, noPlotFlag, fileSavePlotFlag, popNormalizeFlag)
#!/usr/bin/env python # # Copyright 2011 Google Inc. All Rights Reserved. """Testing mapreduce functionality end to end.""" import datetime import logging import random import string import unittest from google.appengine.ext import ndb from google.appengine.api import files from google.appengine.ext import db from mapreduce import context from mapreduce import control from mapreduce import handlers from mapreduce import model from mapreduce import output_writers from mapreduce import parameters from mapreduce import records from mapreduce import test_support from testlib import testutil from mapreduce.tools import gcs_file_seg_reader # pylint: disable=g-import-not-at-top try: import cloudstorage # In 25 runtime, the above code will be scrubbed to import the stub version # of cloudstorage. All occurences of the following if condition in MR # codebase is to tell it apart. # TODO(user): Remove after 25 runtime MR is abondoned. if hasattr(cloudstorage, "_STUB"): cloudstorage = None from cloudstorage import storage_api except ImportError: cloudstorage = None # CloudStorage library not available # pylint: disable=g-bad-name def random_string(length): """Generate a random string of given length.""" return "".join( random.choice(string.letters + string.digits) for _ in range(length)) class TestEntity(db.Model): """Test entity class.""" int_property = db.IntegerProperty() dt = db.DateTimeProperty(default=datetime.datetime(2000, 1, 1)) class NdbTestEntity(ndb.Model): """Test entity class for NDB.""" class TestHandler(object): """Test handler which stores all processed entities keys. Properties: processed_entites: all processed entities. """ processed_entites = [] def __call__(self, entity): """Main handler process function. Args: entity: entity to process. """ TestHandler.processed_entites.append(entity) @staticmethod def reset(): """Clear processed_entites & reset delay to 0.""" TestHandler.processed_entites = [] class SerializableHandler(object): """Handler that utilize serialization.""" _next_instance_id = 0 # The first few instances will keep raising errors. # This is to test that upon shard retry, shard creates a new handler. INSTANCES_THAT_RAISE_ERRORS = 3 # The first instance is created for validation and not used by any shard. FAILURES_INDUCED_BY_INSTANCE = INSTANCES_THAT_RAISE_ERRORS - 1 def __init__(self): self.count = 0 self.instance = self.__class__._next_instance_id self.__class__._next_instance_id += 1 def __call__(self, entity): if self.instance < self.INSTANCES_THAT_RAISE_ERRORS: raise files.FinalizationError("Injected error.") # Increment the int property by one on every call. entity.int_property = self.count entity.put() self.count += 1 @classmethod def reset(cls): cls._next_instance_id = 0 def test_handler_yield_key(entity): """Test handler which yields entity key.""" yield entity.key() def test_handler_yield_ndb_key(entity): """Test handler which yields entity key (NDB version).""" yield entity.key class TestOutputWriter(output_writers.OutputWriter): """Test output writer.""" file_contents = {} def __init__(self, filename): self.filename = filename @classmethod def reset(cls): cls.file_contents = {} @classmethod def validate(cls, mapper_spec): pass @classmethod def finalize_job(cls, mapreduce_state): pass @classmethod def create(cls, mr_spec, shard_number, shard_attempt, _writer_state=None): random_str = "".join( random.choice(string.ascii_uppercase + string.digits) for _ in range(64)) cls.file_contents[random_str] = [] return cls(random_str) def to_json(self): return {"filename": self.filename} @classmethod def from_json(cls, json_dict): return cls(json_dict["filename"]) def write(self, data): self.file_contents[self.filename].append(data) def finalize(self, ctx, shard_number): pass class EndToEndTest(testutil.HandlerTestBase): """Test mapreduce functionality end to end.""" def setUp(self): testutil.HandlerTestBase.setUp(self) TestHandler.reset() TestOutputWriter.reset() self.original_slice_duration = parameters.config._SLICE_DURATION_SEC SerializableHandler.reset() def tearDown(self): parameters.config._SLICE_DURATION_SEC = self.original_slice_duration def testHandlerSerialization(self): """Test serializable handler works with MR and shard retry.""" entity_count = 10 for _ in range(entity_count): TestEntity(int_property=-1).put() # Force handler to serialize on every call. parameters.config._SLICE_DURATION_SEC = 0 control.start_map( "test_map", __name__ + ".SerializableHandler", "mapreduce.input_readers.DatastoreInputReader", { "entity_kind": __name__ + "." + TestEntity.__name__, }, shard_count=1, base_path="/mapreduce_base_path") task_run_counts = test_support.execute_until_empty(self.taskqueue) self.assertEquals( task_run_counts[handlers.MapperWorkerCallbackHandler], # Shard retries + one per entity + one to exhaust input reader SerializableHandler.FAILURES_INDUCED_BY_INSTANCE + entity_count + 1) vals = [e.int_property for e in TestEntity.all()] vals.sort() # SerializableHandler updates int_property to be incremental from 0 to 9. self.assertEquals(range(10), vals) def testLotsOfEntities(self): entity_count = 1000 for i in range(entity_count): TestEntity().put() mapreduce_id = control.start_map( "test_map", __name__ + ".TestHandler", "mapreduce.input_readers.DatastoreInputReader", { "entity_kind": __name__ + "." + TestEntity.__name__, }, shard_count=4, base_path="/mapreduce_base_path") test_support.execute_until_empty(self.taskqueue) self.assertEquals(entity_count, len(TestHandler.processed_entites)) def testEntityQuery(self): entity_count = 1000 for i in range(entity_count): TestEntity(int_property=i % 5).put() control.start_map( "test_map", __name__ + ".TestHandler", "mapreduce.input_readers.DatastoreInputReader", { "entity_kind": __name__ + "." + TestEntity.__name__, "filters": [("int_property", "=", 3), # Test datetime can be json serialized. ("dt", "=", datetime.datetime(2000, 1, 1))], }, shard_count=4, base_path="/mapreduce_base_path") test_support.execute_until_empty(self.taskqueue) self.assertEquals(200, len(TestHandler.processed_entites)) def testLotsOfNdbEntities(self): entity_count = 1000 for i in range(entity_count): NdbTestEntity().put() mapreduce_id = control.start_map( "test_map", __name__ + ".TestHandler", "mapreduce.input_readers.DatastoreInputReader", { "entity_kind": __name__ + "." + NdbTestEntity.__name__, }, shard_count=4, base_path="/mapreduce_base_path") test_support.execute_until_empty(self.taskqueue) self.assertEquals(entity_count, len(TestHandler.processed_entites)) def testInputReaderDedicatedParameters(self): entity_count = 100 for i in range(entity_count): TestEntity().put() mapreduce_id = control.start_map( "test_map", __name__ + ".TestHandler", "mapreduce.input_readers.DatastoreInputReader", { "input_reader": { "entity_kind": __name__ + "." + TestEntity.__name__, }, }, shard_count=4, base_path="/mapreduce_base_path") test_support.execute_until_empty(self.taskqueue) self.assertEquals(entity_count, len(TestHandler.processed_entites)) def testOutputWriter(self): """End-to-end test with output writer.""" entity_count = 1000 for i in range(entity_count): TestEntity().put() mapreduce_id = control.start_map( "test_map", __name__ + ".test_handler_yield_key", "mapreduce.input_readers.DatastoreInputReader", { "entity_kind": __name__ + "." + TestEntity.__name__, }, shard_count=4, base_path="/mapreduce_base_path", output_writer_spec=__name__ + ".TestOutputWriter") test_support.execute_until_empty(self.taskqueue) self.assertEquals(entity_count, sum(map(len, TestOutputWriter.file_contents.values()))) def testRecordsReader(self): """End-to-end test for records reader.""" input_file = files.blobstore.create() input_data = [str(i) for i in range(100)] with files.open(input_file, "a") as f: with records.RecordsWriter(f) as w: for record in input_data: w.write(record) files.finalize(input_file) input_file = files.blobstore.get_file_name( files.blobstore.get_blob_key(input_file)) mapreduce_id = control.start_map( "test_map", __name__ + ".TestHandler", "mapreduce.input_readers.RecordsReader", { "file": input_file }, shard_count=4, base_path="/mapreduce_base_path") test_support.execute_until_empty(self.taskqueue) self.assertEquals(100, len(TestHandler.processed_entites)) def testHugeTaskPayloadTest(self): """Test map job with huge parameter values.""" input_file = files.blobstore.create() input_data = [str(i) for i in range(100)] with files.open(input_file, "a") as f: with records.RecordsWriter(f) as w: for record in input_data: w.write(record) files.finalize(input_file) input_file = files.blobstore.get_file_name( files.blobstore.get_blob_key(input_file)) mapreduce_id = control.start_map( "test_map", __name__ + ".TestHandler", "mapreduce.input_readers.RecordsReader", { "file": input_file, # the parameter will be compressed and should fit into # taskqueue payload "huge_parameter": "0" * 200000, # 200K }, shard_count=4, base_path="/mapreduce_base_path") test_support.execute_until_empty(self.taskqueue) self.assertEquals(100, len(TestHandler.processed_entites)) self.assertEquals([], model._HugeTaskPayload.all().fetch(100)) def testHugeTaskUseDatastore(self): """Test map job with huge parameter values.""" input_file = files.blobstore.create() input_data = [str(i) for i in range(100)] with files.open(input_file, "a") as f: with records.RecordsWriter(f) as w: for record in input_data: w.write(record) files.finalize(input_file) input_file = files.blobstore.get_file_name( files.blobstore.get_blob_key(input_file)) mapreduce_id = control.start_map( "test_map", __name__ + ".TestHandler", "mapreduce.input_readers.RecordsReader", { "file": input_file, # the parameter can't be compressed and wouldn't fit into # taskqueue payload "huge_parameter": random_string(900000) }, shard_count=4, base_path="/mapreduce_base_path") test_support.execute_until_empty(self.taskqueue) self.assertEquals(100, len(TestHandler.processed_entites)) self.assertEquals([], model._HugeTaskPayload.all().fetch(100)) class GCSOutputWriterTestBase(testutil.HandlerTestBase): """Base class for all GCS output writer tests.""" def setUp(self): super(GCSOutputWriterTestBase, self).setUp() self.original_slice_duration = parameters.config._SLICE_DURATION_SEC self.original_block_size = storage_api.StreamingBuffer._blocksize # Use this to adjust what is printed for debugging purpose. logging.getLogger().setLevel(logging.CRITICAL) self.writer_cls = output_writers._GoogleCloudStorageOutputWriter # Populate datastore with inputs. entity_count = 30 for i in range(entity_count): TestEntity(int_property=i).put() # Make slice short. parameters.config._SLICE_DURATION_SEC = 1 # 5 items per second. This effectively terminates a slice after # processing 5 items. self.processing_rate = 5 def tearDown(self): storage_api.StreamingBuffer._blocksize = self.original_block_size parameters.config._SLICE_DURATION_SEC = self.original_slice_duration super(GCSOutputWriterTestBase, self).tearDown() class GCSOutputWriterNoDupModeTest(GCSOutputWriterTestBase): """Test GCS output writer slice recovery.""" def testSliceRecoveryWithForcedFlushing(self): # Force a flush to GCS on every character wrote. storage_api.StreamingBuffer._blocksize = 1 mr_id = control.start_map( "test_map", __name__ + ".FaultyHandler", "mapreduce.input_readers.DatastoreInputReader", { "input_reader": { "entity_kind": __name__ + "." + TestEntity.__name__, }, "output_writer": { "bucket_name": "bucket", "no_duplicate": True, }, "processing_rate": self.processing_rate, }, output_writer_spec=("mapreduce.output_writers." "_GoogleCloudStorageOutputWriter"), shard_count=1) test_support.execute_until_empty(self.taskqueue) mr_state = model.MapreduceState.get_by_job_id(mr_id) # Verify MR is successful. self.assertEqual(model.MapreduceState.RESULT_SUCCESS, mr_state.result_status) # Read output info from shard states. shard_state = model.ShardState.find_all_by_mapreduce_state(mr_state).next() writer_state = shard_state.writer_state last_seg_index = writer_state[self.writer_cls._LAST_SEG_INDEX] seg_prefix = writer_state[self.writer_cls._SEG_PREFIX] # Verify we have 5 segs. self.assertEqual(4, last_seg_index) self._assertOutputEqual(seg_prefix, last_seg_index) # Check there are indeed duplicated data. f1 = set([line for line in cloudstorage.open(seg_prefix + "0")]) f2 = set([line for line in cloudstorage.open(seg_prefix + "1")]) common = f1.intersection(f2) self.assertEqual(set(["10\n", "11\n"]), common) def testSliceRecoveryWithFrequentFlushing(self): # Force a flush to GCS on every 8 chars. storage_api.StreamingBuffer._blocksize = 8 mr_id = control.start_map( "test_map", __name__ + ".FaultyHandler", "mapreduce.input_readers.DatastoreInputReader", { "input_reader": { "entity_kind": __name__ + "." + TestEntity.__name__, }, "output_writer": { "bucket_name": "bucket", "no_duplicate": True, }, "processing_rate": self.processing_rate, }, output_writer_spec=("mapreduce.output_writers." "_GoogleCloudStorageOutputWriter"), shard_count=1) test_support.execute_until_empty(self.taskqueue) mr_state = model.MapreduceState.get_by_job_id(mr_id) # Verify MR is successful. self.assertEqual(model.MapreduceState.RESULT_SUCCESS, mr_state.result_status) # Read output info from shard states. shard_state = model.ShardState.find_all_by_mapreduce_state(mr_state).next() writer_state = shard_state.writer_state last_seg_index = writer_state[self.writer_cls._LAST_SEG_INDEX] seg_prefix = writer_state[self.writer_cls._SEG_PREFIX] # Verify we have 5 segs. self.assertEqual(4, last_seg_index) self._assertOutputEqual(seg_prefix, last_seg_index) def testSliceRecoveryWithNoFlushing(self): # Flushing is done every 256K, which means never until slice recovery. mr_id = control.start_map( "test_map", __name__ + ".FaultyHandler", "mapreduce.input_readers.DatastoreInputReader", { "input_reader": { "entity_kind": __name__ + "." + TestEntity.__name__, }, "output_writer": { "bucket_name": "bucket", "no_duplicate": True, }, "processing_rate": self.processing_rate, }, output_writer_spec=("mapreduce.output_writers." "_GoogleCloudStorageOutputWriter"), shard_count=1) test_support.execute_until_empty(self.taskqueue) mr_state = model.MapreduceState.get_by_job_id(mr_id) # Verify MR is successful. self.assertEqual(model.MapreduceState.RESULT_SUCCESS, mr_state.result_status) # Read output info from shard states. shard_state = model.ShardState.find_all_by_mapreduce_state(mr_state).next() writer_state = shard_state.writer_state last_seg_index = writer_state[self.writer_cls._LAST_SEG_INDEX] seg_prefix = writer_state[self.writer_cls._SEG_PREFIX] # Verify we have 5 segs. self.assertEqual(4, last_seg_index) self._assertOutputEqual(seg_prefix, last_seg_index) def _assertOutputEqual(self, seg_prefix, last_seg_index): # Read back outputs. reader = gcs_file_seg_reader._GCSFileSegReader(seg_prefix, last_seg_index) result = "" while True: tmp = reader.read(n=100) if not tmp: break result += tmp # Verify output has no duplicates. expected = "" for i in range(30): expected += "%s\n" % i self.assertEqual(expected, result) class FaultyHandler(object): def __init__(self): self.slice_count = 0 def __setstate__(self, state): # Reset at beginning of each slice. self.slice_count = 0 def __call__(self, entity): self.slice_count += 1 yield "%s\n" % entity.int_property slice_id = context.get()._shard_state.slice_id # Raise exception when processing the 2 item in a slice every 3 slices. if (self.slice_count == 2 and (slice_id + 1) % 3 == 0): raise Exception("Intentionally raise an exception") if __name__ == "__main__": unittest.main()
import inspect import asplib.asp.codegen.python_ast as ast import asplib.asp.codegen.cpp_ast as cpp_ast import asplib.asp.codegen.ast_tools as ast_tools import codepy.cgen import asplib.asp.jit.asp_module as asp_module from collections import namedtuple class IfNotDefined(cpp_ast.Generable): """ A generable AST node for the 'if not defined' (#ifndef) directive. Accepts argument 'symbol', the token to check for defined status. """ def __init__(self, symbol): self.symbol = symbol def generate(self): yield "#ifndef %s" % self.symbol class EndIf(cpp_ast.Generable): """ A generable AST node for the 'end if' (#endif) directive. """ def generate(self): yield "#endif" class Namespace(cpp_ast.Generable): """ A generable AST node representing a namespace. Accepts arguments 'name', the namespace name, and 'body', a cpp_ast.Block containing the body of the namespace. """ def __init__(self, name, body): self.name = name self.body = body self._fields = ['name', 'body'] def generate(self, with_semicolon=False): yield 'namespace %s' % self.name assert isinstance(self.body, cpp_ast.Block) for line in self.body.generate(with_semicolon): yield line class ConstFunctionDeclaration(cpp_ast.FunctionDeclaration): """ Simply subclasses cpp_ast.FunctionDeclaration to add make it constant. Implementation of this might be better moved into FunctionDeclaration. """ def generate(self, with_semicolon=True): for item in super(ConstFunctionDeclaration, self).generate(with_semicolon): yield item yield ' const' class New(cpp_ast.Generable): """ Generable AST node for a statement allocating new memory. Accepts 'typename', name of associated type. """ def __init__(self, typename): self.typename = typename def generate(self, with_semicolon=False): gen_str = 'new ' + str(self.typename) if with_semicolon: gen_str += ';' yield gen_str class CMakeModule(object): """ This module is a (still somewhat hacky) mimic of the style of CodePy's Boost Python module in order to add support for including ASP-generated code in projects which use GNU make for a build system. Note that the compile() member method is specific to the pyCombBLAS project makefile that accepts a DYNFILE= command line argument, the filename of a dynamically generated file. Arguments: temp_dir - Directory to store dynamically generated cpp, header, and SWIG interface files. makefile_dir - Directory of the makefile. name - A name given to the generated files. namespace - A namespace to include all code generated in. include_files - A list of files to #include at the top of the header and cpp files. """ def __init__(self, temp_dir, makefile_dir, name="module", namespace=None, include_files=[]): self.name = name self.preamble = [] self.mod_body = [] self.header_body = [] self.namespace = namespace self.temp_dir = temp_dir self.makefile_dir = makefile_dir self.include_files = include_files def include_file(self, filepath): self.include_files.append(filepath) def add_to_preamble(self, pa): self.preamble.extend(pa) def add_to_module(self, body): self.mod_body.extend(body) def add_function(self, func): """*func* is a :class:`cgen.FunctionBody`.""" self.mod_body.append(func) # Want the prototype for the function added to the header. self.header_body.append(func.fdecl) def add_struct(self, struct): self.mod_body.append(struct) def generate(self): source = [] if self.namespace is not None: self.mod_body = [Namespace(self.namespace, cpp_ast.Block(self.mod_body))] self.preamble += [cpp_ast.Include(self.temp_dir+self.name+".h", system=False)] for include in self.include_files: self.preamble += [cpp_ast.Include(include, system=False)] source += self.preamble + [codepy.cgen.Line()] + self.mod_body return codepy.cgen.Module(source) def generate_header(self): header = [] if self.namespace is not None: self.header_body = [Namespace(self.namespace, cpp_ast.Block(self.header_body))] header_top = [IfNotDefined(self.name+"_H"), cpp_ast.Define(self.name+"_H", "")] for include in self.include_files: header_top += [cpp_ast.Include(include, system=False)] header += header_top + self.header_body + [EndIf()] return codepy.cgen.Module(header) def generate_swig_interface(self): interface_string = "%module " + self.name + "\n" interface_string += "%{\n" interface_string += str(cpp_ast.Include(self.temp_dir+self.name+".h", system=False)) interface_string += "\n" interface_string += "%}\n" interface_string += "".join([str(line) for line in self.header_body]) return interface_string def compile(self): from os import getcwd, chdir from subprocess import call original_dir = getcwd() chdir(self.temp_dir) header_file = open(self.name + ".h", 'w') print >>header_file, self.generate_header() header_file.close() cpp_file = open(self.name + ".cpp", 'w') print >>cpp_file, self.generate() cpp_file.close() i_file = open(self.name + ".i", 'w') print >>i_file, self.generate_swig_interface() i_file.close() chdir(self.makefile_dir) args = ["make", "DYNFILE="+self.temp_dir+self.name] call(args) chdir(original_dir) class Operator(object): """ Class to represent the data associated with an operator. Used a class because empty fields are nicer than with NamedTuple. """ def __init__(self, name, assoc=None, comm=None, src=None, ast=None): self.name = name self.src = src self.ast = ast self.assoc = assoc self.comm = comm class PcbOperator(object): def __init__(self, operators): # check for 'op' method self.operators = operators temp_path = "/home/harper/Documents/Work/SEJITS/temp/" makefile_path = "/home/harper/Documents/Work/SEJITS/pyCombBLAS/trunk/kdt/pyCombBLAS" include_files = ["/home/harper/Documents/Work/SEJITS/pyCombBLAS/trunk/kdt/pyCombBLAS/pyOperations.h"] mod = CMakeModule(temp_path, makefile_path, namespace="op", include_files=include_files) for operator in self.operators: try: dir(self).index(operator.name) except ValueError: raise Exception('No %s method defined.' % operator.name) operator.src = inspect.getsource(getattr(self, operator.name)) operator.ast = ast.parse(operator.src.lstrip()) phase2 = PcbOperator.ProcessAST(operator).visit(operator.ast) converted = PcbOperator.ConvertAST().visit(phase2) mod.add_struct(converted.contents[0]) mod.add_function(converted.contents[1]) mod.compile() class UnaryFunctionNode(ast.AST): def __init__(self, name, args, body): self.name = name self.args = args self.body = body self._fields = ['name', 'args', 'body'] super(PcbOperator.UnaryFunctionNode, self).__init__() class BinaryFunctionNode(ast.AST): def __init__(self, name, args, body, assoc, comm): self.name = name self.args = args self.body = body self.assoc = assoc self.comm = comm self._fields = ['name', 'args', 'body'] super(PcbOperator.BinaryFunctionNode, self).__init__() class ProcessAST(ast_tools.NodeTransformer): def __init__(self, operator): self.operator = operator super(PcbOperator.ProcessAST, self).__init__() def visit_Number(self, node): new_node = cpp_ast.FunctionCall("doubleint", [node]) return new_node def visit_FunctionDef(self, node): print node.args.args[0].id if len(node.args.args) == 1: new_node = PcbOperator.UnaryFunctionNode(node.name, node.args, node.body) elif len(node.args.args) == 2: new_node = PcbOperator.BinaryFunctionNode(node.name, node.args, node.body, self.operator.assoc, self.operator.comm) else: return node return new_node class ConvertAST(ast_tools.ConvertAST): def visit_Num(self, node): """If we find a number, want to convert it to a doubleint for PCB.""" print dir(node) return cpp_ast.FunctionCall("doubleint", [node.n]) def visit_UnaryFunctionNode(self, node): # Create the new function that does the same thing as 'op' new_function_decl = ConstFunctionDeclaration( cpp_ast.Value("T", "operator()"), [cpp_ast.Value("const T&", node.args.args[0].id)]) # Add all of the contends of the old function to the new new_function_contents = cpp_ast.Block([self.visit(subnode) for subnode in node.body]) new_function_body = cpp_ast.FunctionBody(new_function_decl, new_function_contents) operator_struct = cpp_ast.Template( "typename T", cpp_ast.Struct(node.name+"_s : public ConcreteUnaryFunction<T>", [new_function_body]) ) # Finally, generate a function for constructing one of these operators new_constructor_decl = cpp_ast.FunctionDeclaration( cpp_ast.Value("UnaryFunction", node.name), [] ) new_constructor_body = cpp_ast.ReturnStatement( cpp_ast.FunctionCall("UnaryFunction", [ New(node.name+"_s<doubleint>()")]) ) new_constructor_function = cpp_ast.FunctionBody(new_constructor_decl, cpp_ast.Block([new_constructor_body])) # Block for the module contents. main_block = cpp_ast.Block() main_block.append(operator_struct) main_block.append(new_constructor_function) return main_block def visit_BinaryFunctionNode(self, node): # Create the new function that does the same thing as 'op' new_function_decl = ConstFunctionDeclaration( cpp_ast.Value("T", "operator()"), [cpp_ast.Value("const T&", node.args.args[0].id), cpp_ast.Value("const T&", node.args.args[1].id)]) # Add all of the contends of the old function to the new new_function_contents = cpp_ast.Block([self.visit(subnode) for subnode in node.body]) new_function_body = cpp_ast.FunctionBody(new_function_decl, new_function_contents) operator_struct = cpp_ast.Template( "typename T", cpp_ast.Struct(node.name+"_s : public ConcreteBinaryFunction<T>", [new_function_body]) ) # Finally, generate a function for constructing one of these operators new_constructor_decl = cpp_ast.FunctionDeclaration( cpp_ast.Value("BinaryFunction", node.name), [] ) new_constructor_body = cpp_ast.ReturnStatement( cpp_ast.FunctionCall("BinaryFunction", [ New(node.name+"_s<doubleint>()"), str(node.assoc).lower(), str(node.comm).lower()]) ) new_constructor_function = cpp_ast.FunctionBody(new_constructor_decl, cpp_ast.Block([new_constructor_body])) # Block for the module contents. main_block = cpp_ast.Block() main_block.append(operator_struct) main_block.append(new_constructor_function) return main_block def explore_ast(self, node, depth): print ' '*depth, node for n in ast.iter_child_nodes(node): self.explore_ast(n, depth+1)
import os import unittest import uuid import floe import webtest import json import wsgiadapter import logging import socket import floe.restapi import floe.connector import time import pymysql wsgiadapter.logger.addHandler(logging.NullHandler()) mysql_user = os.getenv('MYSQL_USER', 'root') mysql_pass = os.getenv('MYSQL_PASSWORD', None) mysql_auth = "%s:%s" % (mysql_user, mysql_pass) \ if mysql_pass is not None else mysql_user table_prefix_variable = int(time.time()) os.environ['FLOE_URL_TEST_FILE'] = 'file://.test_floe' os.environ['FLOE_URL_TEST_REST_BOGUS'] = 'http://test-floe/bogus' os.environ['FLOE_URL_TEST_REST_FILE'] = 'http://test-floe/test_file' os.environ['FLOE_URL_TEST_REST_BROKEN'] = 'http://test-floe/broken' adapter = wsgiadapter.WSGIAdapter(floe.floe_server()) floe.restapi.RestClientFloe.session.mount('http://test-floe/', adapter) # noqa def drop_table(pool, table_name): statement = "DROP table {}".format(table_name) try: with pool.connection() as connection: with connection.cursor() as cursor: cursor.execute(statement) except pymysql.Error as e: raise e def is_local_mysql_running(): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) result = sock.connect_ex(('127.0.0.1', 3306)) return True if result == 0 else False codeship_build = os.getenv('CODESHIP_BUILD') mysql_test_enable = True if \ os.getenv('MYSQL_TEST_ENABLE', is_local_mysql_running()) \ else False MYSQL_TEST = unittest.skipIf(codeship_build or not mysql_test_enable, 'mysql test disabled on local and codeship') BLOB_MAX_CHAR_LEN = 65535 MEDIUM_BLOB_MAX_CHAR_LEN = 16777215 def xid(): return uuid.uuid4().hex class BrokenFloe(object): def get(self, key): raise floe.FloeReadException('failed to read') def get_multi(self, keys): raise floe.FloeReadException('failed to read') def set(self, key, bin_data): raise floe.FloeWriteException('failed to write') def set_multi(self, mapping): raise floe.FloeWriteException('failed to write') def delete(self, key): raise floe.FloeDeleteException('failed to delete') def delete_multi(self, keys): raise floe.FloeDeleteException('failed to delete') def flush(self): pass def ids(self): raise floe.FloeReadException('failed to read') floe.connector._CONNECTIONS['BROKEN'] = BrokenFloe() class FileFloeTest(unittest.TestCase): def init_floe(self): return floe.connect('test_file') def setUp(self): self.floe = self.init_floe() self.floe.flush() def tearDown(self): self.floe.flush() def test_main(self): store = self.floe foo = xid() bar = xid() bazz = xid() foo_test_data = os.urandom(4096) store.set(foo, foo_test_data) self.assertEqual(store.get(foo), foo_test_data) foo_test_data = os.urandom(500) bazz_test_data = os.urandom(200) store.set_multi({foo: foo_test_data, bazz: bazz_test_data}) self.assertEqual(store.get(foo), foo_test_data) self.assertEqual(store.get(bazz), bazz_test_data) self.assertEqual(store.get_multi([foo, bar, bazz]), {foo: foo_test_data, bazz: bazz_test_data}) ids = {i for i in store.ids()} self.assertEqual(ids, {bazz, foo}) store.delete(foo) self.assertEqual(store.get_multi([foo, bar, bazz]), {bazz: bazz_test_data}) store.delete_multi([foo, bar, bazz]) self.assertEqual(store.get_multi([foo, bar, bazz]), {}) self.assertRaises(floe.FloeInvalidKeyException, lambda: store.get('foo/bar')) self.assertRaises(floe.FloeInvalidKeyException, lambda: store.set('foo/bar', '1')) self.assertRaises(floe.FloeInvalidKeyException, lambda: store.delete('foo/bar')) self.assertRaises(floe.FloeInvalidKeyException, lambda: store.get('foo/bar')) self.assertRaises(floe.FloeInvalidKeyException, lambda: store.set('foo/bar', '1')) self.assertRaises(floe.FloeInvalidKeyException, lambda: store.delete('foo/bar')) class MysqlFloe(FileFloeTest): def setUp(self): self.mysql_tables = [ '%s_%s' % (table_name, table_prefix_variable) for table_name in ['test_floe', 'test_floe_2', 'test_floe_3'] ] for index, table in enumerate(self.mysql_tables): environ_key = 'FLOE_URL_%s' % table.upper() url = "mysql://%s@127.0.0.1:3306/test?table=%s" % ( mysql_auth, table) if index > 0: url += "&dynamic_char_len=True" if index > 1: url += "&bin_data_type=blob" os.environ[environ_key] = url super(MysqlFloe, self).setUp() def tearDown(self): for table in self.mysql_tables: store = floe.connect(table) drop_table(store.pool, table) def init_floe(self): return floe.connect(self.mysql_tables[0]) @MYSQL_TEST def test_main(self): super(MysqlFloe, self).test_main() @MYSQL_TEST def test_uppercase(self): store = self.floe foo = xid() foo_upper = foo.upper() foo_test_data = os.urandom(10) foo_upper_test_data = os.urandom(12) self.assertNotEqual(foo_test_data, foo_upper_test_data) store.set(foo, foo_test_data) store.set(foo_upper, foo_upper_test_data) self.assertEqual(store.get(foo), foo_test_data) self.assertEqual(store.get(foo_upper), foo_upper_test_data) @MYSQL_TEST def test_data_overflow_from_sql(self): store = floe.connect(self.mysql_tables[1]) foo = xid() foo_smaller = foo.upper() foo_data = os.urandom(MEDIUM_BLOB_MAX_CHAR_LEN + 1) self.assertRaises( floe.FloeDataOverflowException, lambda: store.set(foo, foo_data)) foo_smaller_data = foo_data[:-1] store.set(foo_smaller, foo_smaller_data) self.assertEqual(store.get(foo_smaller), foo_smaller_data) @MYSQL_TEST def test_data_overflow(self): store = self.floe foo = xid() foo_smaller = foo.upper() foo_data = os.urandom(BLOB_MAX_CHAR_LEN + 1) self.assertRaises( floe.FloeDataOverflowException, lambda: store.set(foo, foo_data)) foo_smaller_data = foo_data[:-1] store.set(foo_smaller, foo_smaller_data) self.assertEqual(store.get(foo_smaller), foo_smaller_data) @MYSQL_TEST def test_custom_bin_data_type(self): store = floe.connect(self.mysql_tables[2]) foo = xid() foo_smaller = foo.upper() foo_data = os.urandom(BLOB_MAX_CHAR_LEN + 1) self.assertRaises( floe.FloeDataOverflowException, lambda: store.set(foo, foo_data)) foo_smaller_data = foo_data[:-1] store.set(foo_smaller, foo_smaller_data) self.assertEqual(store.get(foo_smaller), foo_smaller_data) class RestServerAdditionalRoute(object): def on_get(self, req, resp): resp.content_type = 'text/plain' resp.body = 'additional' class RestServerTest(unittest.TestCase): def init_floe(self): return floe.connect('test_file') def setUp(self): self.floe = self.init_floe() self.floe.flush() self.app = webtest.TestApp(floe.floe_server( routes={'/testroute': RestServerAdditionalRoute()})) def tearDown(self): self.floe.flush() def test_crud(self): key = xid() res = self.app.get('/test_file/%s' % key, expect_errors=True) self.assertEqual(res.status_code, 200) self.assertEqual(res.content_length, 0) data = os.urandom(100) res = self.app.put('/test_file/%s' % key, params=data, headers={'content-type': 'binary/octet-stream'}) self.assertEqual(res.status_code, 200) res = self.app.get('/test_file/%s' % key) self.assertEqual(res.status_code, 200) self.assertEqual(res.body, data) res = self.app.delete('/test_file/%s' % key) self.assertEqual(res.status_code, 200) def test_keys(self): keys = {xid() for _ in range(0, 120)} for key in keys: res = self.app.put('/test_file/%s' % key, params=os.urandom(10)) res = self.app.get('/test_file') result_keys = set() for line in res.body.decode('utf-8').split('\n'): if line: result_keys.update(json.loads(line.strip())) self.assertEqual(keys, result_keys) def test_nested_dirs(self): res = self.app.get('/test_file/foo/bar', expect_errors=True) self.assertEqual(res.status_code, 404) def test_index(self): res = self.app.get('/') self.assertEqual(res.status_code, 200) self.assertEqual(res.body, b'Floe Microservice') def test_additional_route(self): res = self.app.get('/testroute') self.assertEqual(res.status_code, 200) self.assertEqual(res.body, b'additional') class RestClientFileTest(FileFloeTest): def init_floe(self): return floe.connect('test_rest_file') class RestClientMysqlTest(FileFloeTest): def setUp(self): table = '%s_%s' % ('rest_mysql', table_prefix_variable) os.environ['FLOE_URL_TEST_REST_MYSQL'] = 'http://test-floe/%s' % table environ_key = 'FLOE_URL_%s' % table.upper() url = "mysql://%s@127.0.0.1:3306/test?table=%s" % ( mysql_auth, table) self.table = table os.environ[environ_key] = url super(RestClientMysqlTest, self).setUp() def tearDown(self): store = self.floe drop_table(store.pool, self.table) def init_floe(self): return floe.connect(self.table) @MYSQL_TEST def test_main(self): super(RestClientMysqlTest, self).test_main() class RestClientMisconfigurationTest(unittest.TestCase): def init_floe(self): return floe.connect('test_rest_bogus') def setUp(self): self.floe = self.init_floe() def test_main(self): store = self.floe foo = xid() self.assertRaises(floe.FloeConfigurationException, lambda: store.get(foo)) self.assertRaises(floe.FloeConfigurationException, lambda: store.set(foo, '1')) self.assertRaises(floe.FloeConfigurationException, lambda: store.delete(foo)) self.assertRaises(floe.FloeConfigurationException, lambda: [k for k in store.ids()]) class RestClientBrokenTest(unittest.TestCase): def init_floe(self): return floe.connect('test_rest_broken') def setUp(self): self.floe = self.init_floe() def test_main(self): store = self.floe foo = xid() self.assertRaises(floe.FloeReadException, lambda: store.get(foo)) self.assertRaises(floe.FloeWriteException, lambda: store.set(foo, '1')) self.assertRaises(floe.FloeDeleteException, lambda: store.delete(foo)) self.assertRaises(floe.FloeReadException, lambda: [k for k in store.ids()]) if __name__ == "__main__": unittest.main(verbosity=2)
import collections import datetime import json from django.urls import reverse from django.utils import timezone from wagtail.api.v2.tests.test_pages import TestPageDetail, TestPageListing from wagtail.core.models import Page from wagtail.tests.demosite import models from wagtail.tests.testapp.models import SimplePage, StreamPage from .utils import AdminAPITestCase def get_total_page_count(): # Need to take away 1 as the root page is invisible over the API by default return Page.objects.count() - 1 class TestAdminPageListing(AdminAPITestCase, TestPageListing): fixtures = ['demosite.json'] def get_response(self, **params): return self.client.get(reverse('wagtailadmin_api_v1:pages:listing'), params) def get_page_id_list(self, content): return [page['id'] for page in content['items']] # BASIC TESTS def test_basic(self): response = self.get_response() self.assertEqual(response.status_code, 200) self.assertEqual(response['Content-type'], 'application/json') # Will crash if the JSON is invalid content = json.loads(response.content.decode('UTF-8')) # Check that the meta section is there self.assertIn('meta', content) self.assertIsInstance(content['meta'], dict) # Check that the total count is there and correct self.assertIn('total_count', content['meta']) self.assertIsInstance(content['meta']['total_count'], int) self.assertEqual(content['meta']['total_count'], get_total_page_count()) # Check that the items section is there self.assertIn('items', content) self.assertIsInstance(content['items'], list) # Check that each page has a meta section with type, detail_url, html_url, status and children attributes for page in content['items']: self.assertIn('meta', page) self.assertIsInstance(page['meta'], dict) self.assertEqual(set(page['meta'].keys()), {'type', 'detail_url', 'html_url', 'status', 'children', 'slug', 'first_published_at', 'latest_revision_created_at'}) # Check the type info self.assertIsInstance(content['__types'], dict) self.assertEqual(set(content['__types'].keys()), { 'demosite.EventPage', 'demosite.StandardIndexPage', 'demosite.PersonPage', 'demosite.HomePage', 'demosite.StandardPage', 'demosite.EventIndexPage', 'demosite.ContactPage', 'demosite.BlogEntryPage', 'demosite.BlogIndexPage', }) self.assertEqual(set(content['__types']['demosite.EventPage'].keys()), {'verbose_name', 'verbose_name_plural'}) self.assertEqual(content['__types']['demosite.EventPage']['verbose_name'], 'event page') self.assertEqual(content['__types']['demosite.EventPage']['verbose_name_plural'], 'event pages') # Not applicable to the admin API test_unpublished_pages_dont_appear_in_list = None test_private_pages_dont_appear_in_list = None def test_unpublished_pages_appear_in_list(self): total_count = get_total_page_count() page = models.BlogEntryPage.objects.get(id=16) page.unpublish() response = self.get_response() content = json.loads(response.content.decode('UTF-8')) self.assertEqual(content['meta']['total_count'], total_count) def test_private_pages_appear_in_list(self): total_count = get_total_page_count() page = models.BlogIndexPage.objects.get(id=5) page.view_restrictions.create(password='test') new_total_count = get_total_page_count() self.assertEqual(total_count, total_count) response = self.get_response() content = json.loads(response.content.decode('UTF-8')) self.assertEqual(content['meta']['total_count'], new_total_count) # FIELDS # Not applicable to the admin API test_parent_field_gives_error = None def test_fields(self): response = self.get_response(type='demosite.BlogEntryPage', fields='title,date,feed_image') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: self.assertEqual(set(page.keys()), {'id', 'meta', 'title', 'admin_display_title', 'date', 'feed_image'}) def test_fields_default(self): response = self.get_response(type='demosite.BlogEntryPage') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: self.assertEqual(set(page.keys()), {'id', 'meta', 'title', 'admin_display_title'}) self.assertEqual(set(page['meta'].keys()), {'type', 'detail_url', 'html_url', 'children', 'status', 'slug', 'first_published_at', 'latest_revision_created_at'}) def test_remove_meta_fields(self): response = self.get_response(fields='-html_url') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: self.assertEqual(set(page.keys()), {'id', 'meta', 'title', 'admin_display_title'}) self.assertEqual(set(page['meta'].keys()), {'type', 'detail_url', 'slug', 'first_published_at', 'latest_revision_created_at', 'status', 'children'}) def test_remove_all_meta_fields(self): response = self.get_response(fields='-type,-detail_url,-slug,-first_published_at,-html_url,-latest_revision_created_at,-status,-children') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: self.assertEqual(set(page.keys()), {'id', 'title', 'admin_display_title'}) def test_remove_fields(self): response = self.get_response(fields='-title,-admin_display_title') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: self.assertEqual(set(page.keys()), {'id', 'meta'}) def test_remove_id_field(self): response = self.get_response(fields='-id') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: self.assertEqual(set(page.keys()), {'meta', 'title', 'admin_display_title'}) def test_all_fields(self): response = self.get_response(type='demosite.BlogEntryPage', fields='*') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: self.assertEqual(set(page.keys()), {'id', 'meta', 'title', 'admin_display_title', 'date', 'related_links', 'tags', 'carousel_items', 'body', 'feed_image', 'feed_image_thumbnail'}) self.assertEqual(set(page['meta'].keys()), {'type', 'detail_url', 'show_in_menus', 'first_published_at', 'seo_title', 'slug', 'parent', 'html_url', 'search_description', 'children', 'descendants', 'status', 'latest_revision_created_at'}) def test_all_fields_then_remove_something(self): response = self.get_response(type='demosite.BlogEntryPage', fields='*,-title,-admin_display_title,-date,-seo_title,-status') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: self.assertEqual(set(page.keys()), {'id', 'meta', 'related_links', 'tags', 'carousel_items', 'body', 'feed_image', 'feed_image_thumbnail'}) self.assertEqual(set(page['meta'].keys()), {'type', 'detail_url', 'show_in_menus', 'first_published_at', 'slug', 'parent', 'html_url', 'search_description', 'children', 'descendants', 'latest_revision_created_at'}) def test_all_nested_fields(self): response = self.get_response(type='demosite.BlogEntryPage', fields='feed_image(*)') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: self.assertEqual(set(page['feed_image'].keys()), {'id', 'meta', 'title', 'width', 'height', 'thumbnail'}) def test_fields_foreign_key(self): # Only the base the detail_url is different here from the public API response = self.get_response(type='demosite.BlogEntryPage', fields='title,date,feed_image') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: feed_image = page['feed_image'] if feed_image is not None: self.assertIsInstance(feed_image, dict) self.assertEqual(set(feed_image.keys()), {'id', 'meta', 'title'}) self.assertIsInstance(feed_image['id'], int) self.assertIsInstance(feed_image['meta'], dict) self.assertEqual(set(feed_image['meta'].keys()), {'type', 'detail_url', 'download_url'}) self.assertEqual(feed_image['meta']['type'], 'wagtailimages.Image') self.assertEqual(feed_image['meta']['detail_url'], 'http://localhost/admin/api/v2beta/images/%d/' % feed_image['id']) def test_fields_parent(self): response = self.get_response(type='demosite.BlogEntryPage', fields='parent') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: parent = page['meta']['parent'] # All blog entry pages have the same parent self.assertDictEqual(parent, { 'id': 5, 'meta': { 'type': 'demosite.BlogIndexPage', 'detail_url': 'http://localhost/admin/api/v2beta/pages/5/', 'html_url': 'http://localhost/blog-index/', }, 'title': "Blog index" }) def test_fields_descendants(self): response = self.get_response(fields='descendants') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: descendants = page['meta']['descendants'] self.assertEqual(set(descendants.keys()), {'count', 'listing_url'}) self.assertIsInstance(descendants['count'], int) self.assertEqual(descendants['listing_url'], 'http://localhost/admin/api/v2beta/pages/?descendant_of=%d' % page['id']) def test_fields_child_relation(self): response = self.get_response(type='demosite.BlogEntryPage', fields='title,related_links') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: self.assertEqual(set(page.keys()), {'id', 'meta', 'title', 'admin_display_title', 'related_links'}) self.assertIsInstance(page['related_links'], list) def test_fields_ordering(self): response = self.get_response(type='demosite.BlogEntryPage', fields='date,title,feed_image,related_links') # Will crash if the JSON is invalid content = json.loads(response.content.decode('UTF-8')) # Test field order content = json.JSONDecoder(object_pairs_hook=collections.OrderedDict).decode(response.content.decode('UTF-8')) field_order = [ 'id', 'meta', 'title', 'admin_display_title', 'date', 'feed_image', 'related_links', ] self.assertEqual(list(content['items'][0].keys()), field_order) def test_fields_tags(self): response = self.get_response(type='demosite.BlogEntryPage', fields='tags') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: self.assertEqual(set(page.keys()), {'id', 'meta', 'tags', 'title', 'admin_display_title'}) self.assertIsInstance(page['tags'], list) # CHILD OF FILTER # Not applicable to the admin API test_child_of_page_thats_not_in_same_site_gives_error = None def test_child_of_root(self): # Only return the homepage as that's the only child of the "root" node # in the tree. This is different to the public API which pretends the # homepage of the current site is the root page. response = self.get_response(child_of='root') content = json.loads(response.content.decode('UTF-8')) page_id_list = self.get_page_id_list(content) self.assertEqual(page_id_list, [2]) def test_child_of_page_1(self): # Public API doesn't allow this, as it's the root page response = self.get_response(child_of=1) json.loads(response.content.decode('UTF-8')) self.assertEqual(response.status_code, 200) # DESCENDANT OF FILTER # Not applicable to the admin API test_descendant_of_page_thats_not_in_same_site_gives_error = None def test_descendant_of_root(self): response = self.get_response(descendant_of='root') content = json.loads(response.content.decode('UTF-8')) page_id_list = self.get_page_id_list(content) self.assertEqual(page_id_list, [2, 4, 8, 9, 5, 16, 18, 19, 6, 10, 15, 17, 21, 22, 23, 20, 13, 14, 12]) def test_descendant_of_root_doesnt_give_error(self): # Public API doesn't allow this response = self.get_response(descendant_of=1) json.loads(response.content.decode('UTF-8')) self.assertEqual(response.status_code, 200) # FOR EXPLORER FILTER def make_simple_page(self, parent, title): return parent.add_child(instance=SimplePage(title=title, content='Simple page')) def test_for_explorer_filter(self): movies = self.make_simple_page(Page.objects.get(pk=1), 'Movies') visible_movies = [ self.make_simple_page(movies, 'The Way of the Dragon'), self.make_simple_page(movies, 'Enter the Dragon'), self.make_simple_page(movies, 'Dragons Forever'), ] hidden_movies = [ self.make_simple_page(movies, 'The Hidden Fortress'), self.make_simple_page(movies, 'Crouching Tiger, Hidden Dragon'), self.make_simple_page(movies, 'Crouching Tiger, Hidden Dragon: Sword of Destiny'), ] response = self.get_response(child_of=movies.pk, for_explorer=1) content = json.loads(response.content.decode('UTF-8')) page_id_list = self.get_page_id_list(content) self.assertEqual(page_id_list, [page.pk for page in visible_movies]) response = self.get_response(child_of=movies.pk) content = json.loads(response.content.decode('UTF-8')) page_id_list = self.get_page_id_list(content) self.assertEqual(page_id_list, [page.pk for page in visible_movies + hidden_movies]) def test_for_explorer_no_child_of(self): response = self.get_response(for_explorer=1) self.assertEqual(response.status_code, 400) content = json.loads(response.content.decode('UTF-8')) self.assertEqual(content, { 'message': 'filtering by for_explorer without child_of is not supported', }) # HAS CHILDREN FILTER def test_has_children_filter(self): response = self.get_response(has_children='true') content = json.loads(response.content.decode('UTF-8')) page_id_list = self.get_page_id_list(content) self.assertEqual(page_id_list, [2, 4, 5, 6, 21, 20]) def test_has_children_filter_off(self): response = self.get_response(has_children='false') content = json.loads(response.content.decode('UTF-8')) page_id_list = self.get_page_id_list(content) self.assertEqual(page_id_list, [8, 9, 16, 18, 19, 10, 15, 17, 22, 23, 13, 14, 12]) def test_has_children_filter_int(self): response = self.get_response(has_children=1) content = json.loads(response.content.decode('UTF-8')) page_id_list = self.get_page_id_list(content) self.assertEqual(page_id_list, [2, 4, 5, 6, 21, 20]) def test_has_children_filter_int_off(self): response = self.get_response(has_children=0) content = json.loads(response.content.decode('UTF-8')) page_id_list = self.get_page_id_list(content) self.assertEqual(page_id_list, [8, 9, 16, 18, 19, 10, 15, 17, 22, 23, 13, 14, 12]) def test_has_children_filter_invalid_integer(self): response = self.get_response(has_children=3) content = json.loads(response.content.decode('UTF-8')) self.assertEqual(response.status_code, 400) self.assertEqual(content, {'message': "has_children must be 'true' or 'false'"}) def test_has_children_filter_invalid_value(self): response = self.get_response(has_children='yes') content = json.loads(response.content.decode('UTF-8')) self.assertEqual(response.status_code, 400) self.assertEqual(content, {'message': "has_children must be 'true' or 'false'"}) # TYPE FILTER def test_type_filter_items_are_all_blog_entries(self): response = self.get_response(type='demosite.BlogEntryPage') content = json.loads(response.content.decode('UTF-8')) for page in content['items']: self.assertEqual(page['meta']['type'], 'demosite.BlogEntryPage') # No specific fields available by default self.assertEqual(set(page.keys()), {'id', 'meta', 'title', 'admin_display_title'}) def test_type_filter_multiple(self): response = self.get_response(type='demosite.BlogEntryPage,demosite.EventPage') content = json.loads(response.content.decode('UTF-8')) blog_page_seen = False event_page_seen = False for page in content['items']: self.assertIn(page['meta']['type'], ['demosite.BlogEntryPage', 'demosite.EventPage']) if page['meta']['type'] == 'demosite.BlogEntryPage': blog_page_seen = True elif page['meta']['type'] == 'demosite.EventPage': event_page_seen = True # Only generic fields available self.assertEqual(set(page.keys()), {'id', 'meta', 'title', 'admin_display_title'}) self.assertTrue(blog_page_seen, "No blog pages were found in the items") self.assertTrue(event_page_seen, "No event pages were found in the items") class TestAdminPageDetail(AdminAPITestCase, TestPageDetail): fixtures = ['demosite.json'] def get_response(self, page_id, **params): return self.client.get(reverse('wagtailadmin_api_v1:pages:detail', args=(page_id, )), params) def test_basic(self): response = self.get_response(16) self.assertEqual(response.status_code, 200) self.assertEqual(response['Content-type'], 'application/json') # Will crash if the JSON is invalid content = json.loads(response.content.decode('UTF-8')) # Check the id field self.assertIn('id', content) self.assertEqual(content['id'], 16) # Check that the meta section is there self.assertIn('meta', content) self.assertIsInstance(content['meta'], dict) # Check the meta type self.assertIn('type', content['meta']) self.assertEqual(content['meta']['type'], 'demosite.BlogEntryPage') # Check the meta detail_url self.assertIn('detail_url', content['meta']) self.assertEqual(content['meta']['detail_url'], 'http://localhost/admin/api/v2beta/pages/16/') # Check the meta html_url self.assertIn('html_url', content['meta']) self.assertEqual(content['meta']['html_url'], 'http://localhost/blog-index/blog-post/') # Check the meta status self.assertIn('status', content['meta']) self.assertEqual(content['meta']['status'], { 'status': 'live', 'live': True, 'has_unpublished_changes': False }) # Check the meta children self.assertIn('children', content['meta']) self.assertEqual(content['meta']['children'], { 'count': 0, 'listing_url': 'http://localhost/admin/api/v2beta/pages/?child_of=16' }) # Check the parent field self.assertIn('parent', content['meta']) self.assertIsInstance(content['meta']['parent'], dict) self.assertEqual(set(content['meta']['parent'].keys()), {'id', 'meta', 'title'}) self.assertEqual(content['meta']['parent']['id'], 5) self.assertIsInstance(content['meta']['parent']['meta'], dict) self.assertEqual(set(content['meta']['parent']['meta'].keys()), {'type', 'detail_url', 'html_url'}) self.assertEqual(content['meta']['parent']['meta']['type'], 'demosite.BlogIndexPage') self.assertEqual(content['meta']['parent']['meta']['detail_url'], 'http://localhost/admin/api/v2beta/pages/5/') self.assertEqual(content['meta']['parent']['meta']['html_url'], 'http://localhost/blog-index/') # Check that the custom fields are included self.assertIn('date', content) self.assertIn('body', content) self.assertIn('tags', content) self.assertIn('feed_image', content) self.assertIn('related_links', content) self.assertIn('carousel_items', content) # Check that the date was serialised properly self.assertEqual(content['date'], '2013-12-02') # Check that the tags were serialised properly self.assertEqual(content['tags'], ['bird', 'wagtail']) # Check that the feed image was serialised properly self.assertIsInstance(content['feed_image'], dict) self.assertEqual(set(content['feed_image'].keys()), {'id', 'meta', 'title'}) self.assertEqual(content['feed_image']['id'], 7) self.assertIsInstance(content['feed_image']['meta'], dict) self.assertEqual(set(content['feed_image']['meta'].keys()), {'type', 'detail_url', 'download_url'}) self.assertEqual(content['feed_image']['meta']['type'], 'wagtailimages.Image') self.assertEqual(content['feed_image']['meta']['detail_url'], 'http://localhost/admin/api/v2beta/images/7/') # Check that the child relations were serialised properly self.assertEqual(content['related_links'], []) for carousel_item in content['carousel_items']: self.assertEqual(set(carousel_item.keys()), {'id', 'meta', 'embed_url', 'link', 'caption', 'image'}) self.assertEqual(set(carousel_item['meta'].keys()), {'type'}) # Check the type info self.assertIsInstance(content['__types'], dict) self.assertEqual(set(content['__types'].keys()), { 'demosite.BlogIndexPage', 'demosite.BlogEntryPageCarouselItem', 'demosite.BlogEntryPage', 'wagtailimages.Image' }) self.assertEqual(set(content['__types']['demosite.BlogIndexPage'].keys()), {'verbose_name', 'verbose_name_plural'}) self.assertEqual(content['__types']['demosite.BlogIndexPage']['verbose_name'], 'blog index page') self.assertEqual(content['__types']['demosite.BlogIndexPage']['verbose_name_plural'], 'blog index pages') def test_field_ordering(self): # Need to override this as the admin API has a __types field response = self.get_response(16) # Will crash if the JSON is invalid content = json.loads(response.content.decode('UTF-8')) # Test field order content = json.JSONDecoder(object_pairs_hook=collections.OrderedDict).decode(response.content.decode('UTF-8')) field_order = [ 'id', 'meta', 'title', 'admin_display_title', 'body', 'tags', 'date', 'feed_image', 'feed_image_thumbnail', 'carousel_items', 'related_links', '__types', ] self.assertEqual(list(content.keys()), field_order) def test_meta_status_draft(self): # Unpublish the page Page.objects.get(id=16).unpublish() response = self.get_response(16) content = json.loads(response.content.decode('UTF-8')) self.assertIn('status', content['meta']) self.assertEqual(content['meta']['status'], { 'status': 'draft', 'live': False, 'has_unpublished_changes': True }) def test_meta_status_live_draft(self): # Save revision without republish Page.objects.get(id=16).save_revision() response = self.get_response(16) content = json.loads(response.content.decode('UTF-8')) self.assertIn('status', content['meta']) self.assertEqual(content['meta']['status'], { 'status': 'live + draft', 'live': True, 'has_unpublished_changes': True }) def test_meta_status_scheduled(self): # Unpublish and save revision with go live date in the future Page.objects.get(id=16).unpublish() tomorrow = timezone.now() + datetime.timedelta(days=1) Page.objects.get(id=16).save_revision(approved_go_live_at=tomorrow) response = self.get_response(16) content = json.loads(response.content.decode('UTF-8')) self.assertIn('status', content['meta']) self.assertEqual(content['meta']['status'], { 'status': 'scheduled', 'live': False, 'has_unpublished_changes': True }) def test_meta_status_expired(self): # Unpublish and set expired flag Page.objects.get(id=16).unpublish() Page.objects.filter(id=16).update(expired=True) response = self.get_response(16) content = json.loads(response.content.decode('UTF-8')) self.assertIn('status', content['meta']) self.assertEqual(content['meta']['status'], { 'status': 'expired', 'live': False, 'has_unpublished_changes': True }) def test_meta_children_for_parent(self): # Homepage should have children response = self.get_response(2) content = json.loads(response.content.decode('UTF-8')) self.assertIn('children', content['meta']) self.assertEqual(content['meta']['children'], { 'count': 5, 'listing_url': 'http://localhost/admin/api/v2beta/pages/?child_of=2' }) def test_meta_descendants(self): # Homepage should have children response = self.get_response(2) content = json.loads(response.content.decode('UTF-8')) self.assertIn('descendants', content['meta']) self.assertEqual(content['meta']['descendants'], { 'count': 18, 'listing_url': 'http://localhost/admin/api/v2beta/pages/?descendant_of=2' }) # FIELDS def test_remove_all_meta_fields(self): response = self.get_response(16, fields='-type,-detail_url,-slug,-first_published_at,-html_url,-descendants,-latest_revision_created_at,-children,-show_in_menus,-seo_title,-parent,-status,-search_description') content = json.loads(response.content.decode('UTF-8')) self.assertNotIn('meta', set(content.keys())) self.assertIn('id', set(content.keys())) def test_remove_all_fields(self): response = self.get_response(16, fields='_,id,type') content = json.loads(response.content.decode('UTF-8')) self.assertEqual(set(content.keys()), {'id', 'meta', '__types'}) self.assertEqual(set(content['meta'].keys()), {'type'}) def test_all_nested_fields(self): response = self.get_response(16, fields='feed_image(*)') content = json.loads(response.content.decode('UTF-8')) self.assertEqual(set(content['feed_image'].keys()), {'id', 'meta', 'title', 'width', 'height', 'thumbnail'}) def test_fields_foreign_key(self): response = self.get_response(16) content = json.loads(response.content.decode('UTF-8')) feed_image = content['feed_image'] self.assertIsInstance(feed_image, dict) self.assertEqual(set(feed_image.keys()), {'id', 'meta', 'title'}) self.assertIsInstance(feed_image['id'], int) self.assertIsInstance(feed_image['meta'], dict) self.assertEqual(set(feed_image['meta'].keys()), {'type', 'detail_url', 'download_url'}) self.assertEqual(feed_image['meta']['type'], 'wagtailimages.Image') self.assertEqual(feed_image['meta']['detail_url'], 'http://localhost/admin/api/v2beta/images/%d/' % feed_image['id']) class TestAdminPageDetailWithStreamField(AdminAPITestCase): fixtures = ['test.json'] def setUp(self): super().setUp() self.homepage = Page.objects.get(url_path='/home/') def make_stream_page(self, body): stream_page = StreamPage( title='stream page', slug='stream-page', body=body ) return self.homepage.add_child(instance=stream_page) def test_can_fetch_streamfield_content(self): stream_page = self.make_stream_page('[{"type": "text", "value": "foo"}]') response_url = reverse('wagtailadmin_api_v1:pages:detail', args=(stream_page.id, )) response = self.client.get(response_url) self.assertEqual(response.status_code, 200) self.assertEqual(response['content-type'], 'application/json') content = json.loads(response.content.decode('utf-8')) self.assertIn('id', content) self.assertEqual(content['id'], stream_page.id) self.assertIn('body', content) self.assertEqual(len(content['body']), 1) self.assertEqual(content['body'][0]['type'], 'text') self.assertEqual(content['body'][0]['value'], 'foo') self.assertTrue(content['body'][0]['id']) def test_image_block(self): stream_page = self.make_stream_page('[{"type": "image", "value": 1}]') response_url = reverse('wagtailadmin_api_v1:pages:detail', args=(stream_page.id, )) response = self.client.get(response_url) content = json.loads(response.content.decode('utf-8')) # ForeignKeys in a StreamField shouldn't be translated into dictionary representation self.assertEqual(content['body'][0]['type'], 'image') self.assertEqual(content['body'][0]['value'], 1) class TestCustomAdminDisplayTitle(AdminAPITestCase): fixtures = ['test.json'] def setUp(self): super().setUp() self.event_page = Page.objects.get(url_path='/home/events/saint-patrick/') def test_custom_admin_display_title_shown_on_detail_page(self): api_url = reverse('wagtailadmin_api_v1:pages:detail', args=(self.event_page.id, )) response = self.client.get(api_url) content = json.loads(response.content.decode('utf-8')) self.assertEqual(content['title'], "Saint Patrick") self.assertEqual(content['admin_display_title'], "Saint Patrick (single event)") def test_custom_admin_display_title_shown_on_listing(self): api_url = reverse('wagtailadmin_api_v1:pages:listing') response = self.client.get(api_url) content = json.loads(response.content.decode('utf-8')) matching_items = [item for item in content['items'] if item['id'] == self.event_page.id] self.assertEqual(1, len(matching_items)) self.assertEqual(matching_items[0]['title'], "Saint Patrick") self.assertEqual(matching_items[0]['admin_display_title'], "Saint Patrick (single event)")
#!/usr/bin/python ##Time from datetime import datetime, timedelta from time import gmtime, strftime, sleep ##Data Acqusition from xml.dom import minidom import urllib2 import json import feedparser ##Scheduling import schedule import time ## Raspberry libraries import RPi.GPIO as GPIO from RPLCD import CharLCD ## Shutdown management import os.path ##define staic values ## LCD SETUP ### Pin number has to be change to the pin numbers you are using on your Raspberry Pi. ### The LCD is a 40x4 display. The library RPLCD can only handle 40x2 so the LCD has to be set up as two 40x2 displays. ### using two enable signals. The handling of this is done under LCD handler. ### The number are the pin numbers of the Raspberry Pi, not the GPIO numbers. ### If using a older Raspberry Pi with only 26 pins make sure you have the correct pin pinnumbers. GPIO_PIN_RS = 32 GPIO_PIN_RW = None ## Raspberry Pi cannot handle if the display writes data. Could damage RPi. This pin on the LCD was connected to gound. GPIO_PIN_E_TOP = 33 GPIO_PIN_E_BOTTOM = 31 GPIO_PIN_D4 = 36 GPIO_PIN_D5 = 35 GPIO_PIN_D6 = 38 GPIO_PIN_D7 = 40 LCD_COLUMNS = 40 LCD_ROWS = 2 LCD_DOT_SIZE = 8 LCD_BRIGHTNESS = 0 # to be used with PWM for control of the LCD brightness. ### Initialize the LCD lcd_top = CharLCD(pin_rs=GPIO_PIN_RS, pin_rw=GPIO_PIN_RW, pin_e=GPIO_PIN_E_TOP, pins_data=[GPIO_PIN_D4, GPIO_PIN_D5, GPIO_PIN_D6, GPIO_PIN_D7], numbering_mode=GPIO.BOARD, cols=LCD_COLUMNS, rows=LCD_ROWS, dotsize=LCD_DOT_SIZE) lcd_bottom = CharLCD(pin_rs=GPIO_PIN_RS, pin_rw=GPIO_PIN_RW, pin_e=GPIO_PIN_E_BOTTOM, pins_data=[GPIO_PIN_D4, GPIO_PIN_D5, GPIO_PIN_D6, GPIO_PIN_D7], numbering_mode=GPIO.BOARD, cols=LCD_COLUMNS, rows=LCD_ROWS, dotsize=LCD_DOT_SIZE) var = 1 i = 0 ### Functions for getting time def getTime(): "Gets the current time and date and returns as a string" time=strftime("%A %Y-%m-%d %H:%M:%S") return time ### Functions for XML parsing def getNodeText(node): nodelist = node.childNodes result = [] for node in nodelist: if node.nodeType == node.TEXT_NODE: result.append(node.data) return ''.join(result) ### Functions for downloading data def getUrlData(url): try: my_data = urllib2.urlopen(url) except urllib2.URLError, e: my_data = "-1" return my_data ### Functions and variables for getting bus times busTimes="Not available yet..." def getBusTimes(): ## Skanetrafiken Open Lab API stationID = "81748" busStopName = "Lund Gambro" skanetrafikenURL="http://www.labs.skanetrafiken.se/v2.2/stationresults.asp?selPointFrKey=" + stationID myStopPoint = "A" # towards city/Gunnesbo global busTimes ##Get XML Data from API my_data = getUrlData(skanetrafikenURL) if "-1" in my_data: busTimes = "Something went wrong..." print "Something went wrong..." else: xml_data = minidom.parse(urllib2.urlopen(skanetrafikenURL)) ##Get all line elements (each arriving bus is one line" results = xml_data.getElementsByTagName("Line") # Lists for the bus times and DepDeviation timeList = [] deviationList = [] #Loop through all departures for departure in results: # Get stopPoint stopPoint = getNodeText(departure.getElementsByTagName("StopPoint")[0]) # We only want buses going towards city centre if stopPoint == myStopPoint: # Save bus name (bus 4) name = getNodeText(departure.getElementsByTagName("Name")[0]) # Get date and time, formatted YYYY-MM-DDTHH:MM:SS and get only HH:MM time = getNodeText(departure.getElementsByTagName("JourneyDateTime")[0])[11:-3] # Check if there is any deviation in time. if( len(departure.getElementsByTagName("DepTimeDeviation") ) != 0 ): # IF deviation, save the deviation deviation = getNodeText(departure.getElementsByTagName("DepTimeDeviation")[0]) else: # if no deviation, save 0 as deviation deviation = "0" # Append time and deviation to respective list. timeList.append(time) deviationList.append(deviation) ## Create string from times and deviations nbrBusTimes = 6 # How many bus times that can possibly fit screen (Best case) maxChar = 34 my_times = "" for i in range (0,nbrBusTimes): # Format should be HH:MM+dev devInt = int(float(deviationList[i])) nextTime = "" if(devInt < 0): nextTime = timeList[i]+deviationList[i]+" " elif(devInt >0): nextTime = timeList[i]+"+"+str(devInt)+" " else: nextTime = timeList[i]+" " if len(my_times)+len(nextTime) < maxChar: my_times += nextTime busTimes = my_times #print "New BusTimes: "+busTimes return ### Temperature ## yr.no API curTemp = "NA" #placeholder... def getTemp(): placeID = "Sverige/Scania/Lund" weatherNowURL = "http://www.yr.no/place/" + placeID + "/forecast.xml" global curTemp my_data = getUrlData(weatherNowURL) if "-1" in my_data: curTemp = "NA" print "Lost internet connection..." else: xml_data = minidom.parse(urllib2.urlopen(weatherNowURL)) node = xml_data.getElementsByTagName("temperature")[0] temp = getNodeText(node.attributes.values()[0]) curTemp = temp #print "New temp: "+curTemp ### Exchange rates my_currencies = ["USD", "EUR","CNY","GBP","NOK", "DKK"] exchange_rates = [] for i in range(0,len(my_currencies)): exchange_rates.append("N/A") #placeholder xrt_count = 0 # API information app_id = "" with open("openxrtappid") as f: app_id = f.readline() base_url = "https://openexchangerates.org/api/" def getLatest(currencies): latest = "latest.json?app_id=" # Create URL my_url = base_url + latest + app_id # Get JSON data from URL json_data = json.load(getUrlData(my_url)) # Get exchange rates from JSON data rates = json_data['rates'] my_rates = [] for currency in currencies: #print currency #All currencies correlating to USD, we convert to SEK... USD = rates['SEK'] if "USD" in currency: this_xrt = "%.2f" % USD else: this_xrt = "%.2f" % (USD/rates[currency]) # After getting XRT, append it to #print type(this_xrt) my_rates.append(this_xrt) #print my_rates return my_rates def getHistory(date, currencies): history = "historical/"+date+".json?app_id=" # Create URL my_url = base_url + history + app_id #print my_url # Get JSON data from URL json_data = json.load(getUrlData(my_url)) rates = json_data['rates'] my_rates = [] for currency in currencies: #print currency #All currencies correlating to USD, we convert to SEK... USD = rates['SEK'] if "USD" in currency: this_xrt = "%.2f" % USD else: this_xrt = "%.2f" % (USD/rates[currency]) # After getting XRT, append it to #print type(this_xrt) my_rates.append(this_xrt) #print my_rates return my_rates def getPercent(now,then): percents = [] nbr = len(now) for i in range(0, nbr): #print float(now[i]) #print float(then[i]) percent = 100*(float(now[i]) - float(then[i]))/float(then[i]) #print percent percents.append(str("%.2f" % percent)) return percents ## Function for getting XRT (Exchange Rate) def changeXRT_count(): global xrt_count xrt_count+=1 if xrt_count >= len(my_currencies): xrt_count = 0 def getXRT(): #Variable to save printed string to global exchange_rates #print "get latest XRT" xrt_latest = getLatest(my_currencies) # Get dates date_today = datetime.now().date() date_oneday = str(date_today - timedelta(days = 1)) date_oneweek = str(date_today - timedelta(days = 7)) date_onemonth = str(date_today - timedelta(days = 30)) date_oneyear = str(date_today - timedelta(days = 365)) #Getting historical data xrt_oneday = getHistory(date_oneday, my_currencies) xrt_oneweek = getHistory(date_oneweek, my_currencies) xrt_onemonth = getHistory(date_onemonth, my_currencies) xrt_oneyear = getHistory(date_oneyear, my_currencies) # Calculating percentages percent_oneday = getPercent(xrt_latest,xrt_oneday) percent_oneweek = getPercent(xrt_latest,xrt_oneweek) percent_onemonth = getPercent(xrt_latest,xrt_onemonth) percent_oneyear = getPercent(xrt_latest,xrt_oneyear) #Store to array of rates for i in range(0,len(my_currencies)): exchange_rates[i] = my_currencies[i]+": "+xrt_latest[i]+"kr "+percent_oneday[i]+"% "+percent_oneweek[i]+"% "+percent_onemonth[i]+"% "+percent_oneyear[i]+"% " ### News from Reddit World News feed_url = "http://www.reddit.com/r/worldnews/.rss" nbrTitles = 10 #number of headlines wanted news_count = 0 curNews = [] for i in range(0,nbrTitles): curNews.append("N/A") scrollCount = 0 # For changing which headline to show def changenews_count(): global news_count news_count+=1 if news_count >= nbrTitles: news_count = 0 global scrollCount scrollCount = 0 return # For getting news def getNews(): #Downloading feed d = feedparser.parse(feed_url) global curNews # Emptying curNews curNews = [] # Fill it up with news from feed for post in d.entries: #print "Printing headline" curNews.append(post.title) return ### LCD Functions def printLine( lineNr, str): #Add spaces for automatic clearing of LCD str+=" " "Prints one line on LCD, lineNR, 0-3 is LCD Row and str is string to be printed, max 40 char (will be cropped if longer)" str=str[:40] #Crop string to first 40 char # If lineNr 0 or 1, top LCD if lineNr==0 or lineNr==1: lcd_top.cursor_pos=(lineNr,0) lcd_top.write_string(str) # If lineNr 2 or 3, bottom LCD elif lineNr==2 or lineNr==3: lineNr-=2 #Still called as row 0,1 to lcd... lcd_bottom.cursor_pos=(lineNr,0) lcd_bottom.write_string(str) return def clearLine(lineNr): printLine(lineNr, " ") return def firstString(): "Creates first string for LCD" degree_sign=unichr(223).rstrip() str = "Lund "+curTemp+degree_sign+"C, "+getTime() return str def secondString(): "Creates second string for LCD" str = "Bus 4: "+busTimes return str def thirdString(): "Creates third string for LCD" my_news = " "+curNews[news_count] str = "News: "+my_news[scrollCount:scrollCount+34] global scrollCount scrollCount +=1 return str def fourthString(): "Creates fourth string for LCD" global xrt_count str = exchange_rates[xrt_count] return str def updateLCD(): printLine(0,firstString()) printLine(1,secondString()) printLine(2,thirdString()) printLine(3,fourthString()) #print "LCD update" ## Shutdown management def shutdown_message(): # Print shutdown message printLine(0,40*'-') printLine(1,13*' '+"Shutting down") printLine(2,5*' '+"Re-plug power cable to restart") printLine(3,40*'-') # Terminate LCD program quit() ### MAIN PROGRAM # Remove old shutdown file try: os.remove("/home/pi/RPi-LCD/shutdown") except (OSError): pass ### SCHEDULING # Run everything once at start of program getBusTimes() getTemp() getXRT() getNews() updateLCD() #Update bus times every 30 sec schedule.every(30).seconds.do(getBusTimes) # Update temp every 30 minutes schedule.every(30).minutes.do(getTemp) # Update exchange rate XRT every 12 hours schedule.every(12).hours.do(getXRT) # Update exchange rate counter ever 15 seconds schedule.every(15).seconds.do(changeXRT_count) # Update news every 30 mins schedule.every(30).minutes.do(getNews) # Update new counter every 20 seconds schedule.every(20).seconds.do(changenews_count) ### MAIN FUNCTION cnt=0 while True: schedule.run_pending() time.sleep(0.01) #Check if shutting down try: if os.path.isfile("/home/pi/RPi-LCD/shutdown"): print "Shutting down" shutdown_message() except (OSError): pass #Update LCD every 100 ms updateLCD()
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright 2013 New Dream Network, LLC (DreamHost) # Copyright 2013 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # @author: Mark McClain, DreamHost # @author: Youcef Laribi, Citrix import weakref from oslo.config import cfg from neutron.agent.common import config from neutron.agent import rpc as agent_rpc from neutron.common import constants from neutron import context from neutron.openstack.common import importutils from neutron.openstack.common import log as logging from neutron.openstack.common import loopingcall from neutron.openstack.common import periodic_task from neutron.services.loadbalancer.drivers.netscaler import ( agent_api, plugin_driver ) LOG = logging.getLogger(__name__) NS_PREFIX = 'qlbaas-' OPTS = [ cfg.StrOpt( 'device_driver', default=('neutron.services.loadbalancer.drivers' '.netscaler.netscaler_ncc_driver.AgentDriver'), help=_('The driver used to manage the NetScaler devices'), ), cfg.StrOpt( 'agent_bind_host', default='0.0.0.0', help=_('The host IP address on which the lbaas agent listens'), ), cfg.StrOpt( 'agent_bind_port', default='20371', help=_('The host port address on which the lbaas agent listens') ) ] class LogicalDeviceCache(object): """Manage a cache of known devices.""" class Device(object): """Inner classes used to hold values for weakref lookups.""" def __init__(self, port_id, pool_id): self.port_id = port_id self.pool_id = pool_id def __eq__(self, other): return self.__dict__ == other.__dict__ def __hash__(self): return hash((self.port_id, self.pool_id)) def __init__(self): self.devices = set() self.port_lookup = weakref.WeakValueDictionary() self.pool_lookup = weakref.WeakValueDictionary() def put(self, device): port_id = device['vip']['port_id'] pool_id = device['pool']['id'] d = self.Device(device['vip']['port_id'], device['pool']['id']) if d not in self.devices: self.devices.add(d) self.port_lookup[port_id] = d self.pool_lookup[pool_id] = d def remove(self, device): if not isinstance(device, self.Device): device = self.Device( device['vip']['port_id'], device['pool']['id'] ) if device in self.devices: self.devices.remove(device) def remove_by_pool_id(self, pool_id): d = self.pool_lookup.get(pool_id) if d: self.devices.remove(d) def get_by_pool_id(self, pool_id): return self.pool_lookup.get(pool_id) def get_by_port_id(self, port_id): return self.port_lookup.get(port_id) def get_pool_ids(self): return self.pool_lookup.keys() class LbaasAgentManager(periodic_task.PeriodicTasks): # history # 1.0 Initial version # 1.1 Support agent_updated call RPC_API_VERSION = '1.1' def __init__(self, conf): self.conf = conf try: self.driver = importutils.import_object( conf.device_driver, self.conf) except ImportError: msg = _('Error importing loadbalancer device driver: %s') raise SystemExit(msg % conf.device_driver) self.agent_state = { 'binary': 'neutron-loadbalancer-agent', 'host': conf.host, 'topic': plugin_driver.TOPIC_LOADBALANCER_AGENT, 'configurations': {'device_driver': conf.device_driver}, 'agent_type': constants.AGENT_TYPE_LOADBALANCER, 'start_flag': True} self.admin_state_up = True self.context = context.get_admin_context_without_session() self._setup_rpc() self.needs_resync = False self.cache = LogicalDeviceCache() def _setup_rpc(self): self.plugin_rpc = agent_api.LbaasAgentApi( plugin_driver.TOPIC_LOADBALANCER_DEVICE, self.context, self.conf.host ) self.state_rpc = agent_rpc.PluginReportStateAPI( plugin_driver.TOPIC_LOADBALANCER_DEVICE) report_interval = self.conf.AGENT.report_interval if report_interval: heartbeat = loopingcall.FixedIntervalLoopingCall( self._report_state) heartbeat.start(interval=report_interval) def _report_state(self): try: device_count = len(self.cache.devices) self.agent_state['configurations']['devices'] = device_count self.state_rpc.report_state(self.context, self.agent_state) self.agent_state.pop('start_flag', None) except Exception: LOG.exception(_("Failed reporting state!")) @periodic_task.periodic_task(spacing=6) def collect_stats(self, context): for pool_id in self.cache.get_pool_ids(): try: stats = self.driver.get_stats(pool_id) if stats: self.plugin_rpc.update_pool_stats(pool_id, stats) except Exception: LOG.exception(_('Error upating stats')) self.needs_resync = True def create_vip(self, context, vip, netinfo): """Handle RPC cast from plugin to reload a pool.""" LOG.info(_("Agent received create_vip")) self.driver.create_vip(vip, netinfo) def update_vip(self, context, old_vip, vip, old_netinfo, netinfo): LOG.info(_("Agent received update_vip")) self.driver.update_vip(old_vip, vip, old_netinfo, netinfo) def delete_vip(self, context, vip, netinfo): LOG.info(_("Agent received delete_vip")) self.driver.delete_vip(vip, netinfo) def create_pool(self, context, pool, netinfo): LOG.info(_("Agent received create_pool")) self.driver.create_pool(pool, netinfo) def update_pool(self, context, old_pool, pool, old_netinfo, netinfo): LOG.info(_('Agent received update_pool...')) self.driver.update_pool(old_pool, pool, old_netinfo, netinfo) def delete_pool(self, context, pool, netinfo): LOG.info(_('Agent received delete_pool...')) self.driver.delete_pool(pool, netinfo) def create_member(self, context, member, netinfo): LOG.info(_('Agent received create_member...')) self.driver.create_member(member, netinfo) def update_member(self, context, old_member, member, old_netinfo, netinfo): LOG.info(_('Agent received update_member...')) self.driver.update_member(old_member, member, old_netinfo, netinfo) def delete_member(self, context, member, netinfo): LOG.info(_('Agent received delete_member...')) self.driver.delete_member(member, netinfo) def create_pool_health_monitor(self, context, health_monitor, pool_id, netinfo): LOG.info(_('Agent received create_pool_health_monitor...')) self.driver.create_pool_health_monitor(health_monitor, pool_id, netinfo) def update_health_monitor(self, context, old_health_monitor, health_monitor, pool_id, netinfo): LOG.info(_('Agent received update_health_monitor...')) self.driver.update_health_monitor(old_health_monitor, health_monitor, pool_id, netinfo) def delete_pool_health_monitor(self, context, health_monitor, pool_id, netinfo): LOG.info(_('Agent received delete_pool_health_monitor...')) self.driver.delete_pool_health_monitor(health_monitor, pool_id, netinfo) def stats(self, context, pool_id, host): LOG.info(_('Agent received stats...')) @periodic_task.periodic_task(spacing=6) def poll_for_pending_tasks(self, context): tasks = self.driver.get_tasks() for task in tasks: try: self._process_task(task) except: LOG.exception(_("processing task %s failed with an exception" % task["id"])) def remove_orphans(self): try: self.driver.remove_orphans(self.cache.get_pool_ids()) except NotImplementedError: pass # Not all drivers will support this def destroy_pool(self, context, pool_id=None, host=None): """Handle RPC cast from plugin to destroy a pool if known to agent.""" if self.cache.get_by_pool_id(pool_id): self.destroy_device(pool_id) def agent_updated(self, context, payload): """Handle the agent_updated notification event.""" if payload['admin_state_up'] != self.admin_state_up: self.admin_state_up = payload['admin_state_up'] if self.admin_state_up: self.needs_resync = True else: for pool_id in self.cache.get_pool_ids(): self.destroy_device(pool_id) LOG.info(_("agent_updated by server side %s!"), payload)
import math import sys import operator import networkx as nx #import matplotlib.pyplot as plt import numpy as np import scipy.spatial.distance import scipy.signal import skimage import skimage.io from skimage.segmentation import slic from skimage.util import img_as_float from scipy.optimize import minimize #import pdb def raster_scan(img,L,U,D): n_rows = len(img) n_cols = len(img[0]) for x in xrange(1,n_rows - 1): for y in xrange(1,n_cols - 1): ix = img[x][y] d = D[x][y] u1 = U[x-1][y] l1 = L[x-1][y] u2 = U[x][y-1] l2 = L[x][y-1] b1 = max(u1,ix) - min(l1,ix) b2 = max(u2,ix) - min(l2,ix) if d <= b1 and d <= b2: continue elif b1 < d and b1 <= b2: D[x][y] = b1 U[x][y] = max(u1,ix) L[x][y] = min(l1,ix) else: D[x][y] = b2 U[x][y] = max(u2,ix) L[x][y] = min(l2,ix) return True def raster_scan_inv(img,L,U,D): n_rows = len(img) n_cols = len(img[0]) for x in xrange(n_rows - 2,1,-1): for y in xrange(n_cols - 2,1,-1): ix = img[x][y] d = D[x][y] u1 = U[x+1][y] l1 = L[x+1][y] u2 = U[x][y+1] l2 = L[x][y+1] b1 = max(u1,ix) - min(l1,ix) b2 = max(u2,ix) - min(l2,ix) if d <= b1 and d <= b2: continue elif b1 < d and b1 <= b2: D[x][y] = b1 U[x][y] = max(u1,ix) L[x][y] = min(l1,ix) else: D[x][y] = b2 U[x][y] = max(u2,ix) L[x][y] = min(l2,ix) return True def mbd(img, num_iters): if len(img.shape) != 2: print('did not get 2d np array to fast mbd') return None if (img.shape[0] <= 3 or img.shape[1] <= 3): print('image is too small') return None L = np.copy(img) U = np.copy(img) D = float('Inf') * np.ones(img.shape) D[0,:] = 0 D[-1,:] = 0 D[:,0] = 0 D[:,-1] = 0 # unfortunately, iterating over numpy arrays is very slow img_list = img.tolist() L_list = L.tolist() U_list = U.tolist() D_list = D.tolist() for x in xrange(0,num_iters): if x%2 == 1: raster_scan(img_list,L_list,U_list,D_list) else: raster_scan_inv(img_list,L_list,U_list,D_list) return np.array(D_list) def get_saliency_mbd(input,method='b'): img_path_list = [] #we get either a filename or a list of filenames if type(input) == type(str()): img_path_list.append(input) elif type(input) == type(list()): img_path_list = input else: print('Input type is neither list or string') return None # Saliency map calculation based on: Minimum Barrier Salient Object Detection at 80 FPS for img_path in img_path_list: img = skimage.io.imread(img_path) img_mean = np.mean(img,axis=(2)) sal = mbd(img_mean,3) if method == 'b': # get the background map # paper uses 30px for an image of size 300px, so we use 10% (n_rows,n_cols,n_channels) = img.shape img_size = math.sqrt(n_rows * n_cols) border_thickness = int(math.floor(0.1 * img_size)) img_lab = img_as_float(skimage.color.rgb2lab(img)) px_left = img_lab[0:border_thickness,:,:] px_right = img_lab[n_rows - border_thickness-1:-1,:,:] px_top = img_lab[:,0:border_thickness,:] px_bottom = img_lab[:,n_cols - border_thickness-1:-1,:] px_mean_left = np.mean(px_left,axis=(0,1)) px_mean_right = np.mean(px_right,axis=(0,1)) px_mean_top = np.mean(px_top,axis=(0,1)) px_mean_bottom = np.mean(px_bottom,axis=(0,1)) px_left = px_left.reshape((n_cols*border_thickness,3)) px_right = px_right.reshape((n_cols*border_thickness,3)) px_top = px_top.reshape((n_rows*border_thickness,3)) px_bottom = px_bottom.reshape((n_rows*border_thickness,3)) cov_left = np.cov(px_left.T) cov_right = np.cov(px_right.T) cov_top = np.cov(px_top.T) cov_bottom = np.cov(px_bottom.T) cov_left = np.linalg.inv(cov_left) cov_right = np.linalg.inv(cov_right) cov_top = np.linalg.inv(cov_top) cov_bottom = np.linalg.inv(cov_bottom) u_left = np.zeros(sal.shape) u_right = np.zeros(sal.shape) u_top = np.zeros(sal.shape) u_bottom = np.zeros(sal.shape) u_final = np.zeros(sal.shape) img_lab_unrolled = img_lab.reshape(img_lab.shape[0]*img_lab.shape[1],3) px_mean_left_2 = np.zeros((1,3)) px_mean_left_2[0,:] = px_mean_left u_left = scipy.spatial.distance.cdist(img_lab_unrolled,px_mean_left_2,'mahalanobis', VI=cov_left) u_left = u_left.reshape((img_lab.shape[0],img_lab.shape[1])) px_mean_right_2 = np.zeros((1,3)) px_mean_right_2[0,:] = px_mean_right u_right = scipy.spatial.distance.cdist(img_lab_unrolled,px_mean_right_2,'mahalanobis', VI=cov_right) u_right = u_right.reshape((img_lab.shape[0],img_lab.shape[1])) px_mean_top_2 = np.zeros((1,3)) px_mean_top_2[0,:] = px_mean_top u_top = scipy.spatial.distance.cdist(img_lab_unrolled,px_mean_top_2,'mahalanobis', VI=cov_top) u_top = u_top.reshape((img_lab.shape[0],img_lab.shape[1])) px_mean_bottom_2 = np.zeros((1,3)) px_mean_bottom_2[0,:] = px_mean_bottom u_bottom = scipy.spatial.distance.cdist(img_lab_unrolled,px_mean_bottom_2,'mahalanobis', VI=cov_bottom) u_bottom = u_bottom.reshape((img_lab.shape[0],img_lab.shape[1])) max_u_left = np.max(u_left) max_u_right = np.max(u_right) max_u_top = np.max(u_top) max_u_bottom = np.max(u_bottom) u_left = u_left / max_u_left u_right = u_right / max_u_right u_top = u_top / max_u_top u_bottom = u_bottom / max_u_bottom u_max = np.maximum(np.maximum(np.maximum(u_left,u_right),u_top),u_bottom) u_final = (u_left + u_right + u_top + u_bottom) - u_max u_max_final = np.max(u_final) sal_max = np.max(sal) sal = sal / sal_max + u_final / u_max_final #postprocessing # apply centredness map sal = sal / np.max(sal) s = np.mean(sal) alpha = 50.0 delta = alpha * math.sqrt(s) xv,yv = np.meshgrid(np.arange(sal.shape[1]),np.arange(sal.shape[0])) (w,h) = sal.shape w2 = w/2.0 h2 = h/2.0 C = 1 - np.sqrt(np.power(xv - h2,2) + np.power(yv - w2,2)) / math.sqrt(np.power(w2,2) + np.power(h2,2)) sal = sal * C #increase bg/fg contrast def f(x): b = 10.0 return 1.0 / (1.0 + math.exp(-b*(x - 0.5))) fv = np.vectorize(f) sal = sal / np.max(sal) sal = fv(sal) return sal* 255.0
from __future__ import division, with_statement import gzip import mmap import os import shutil import sys import warnings import zipfile import numpy as np from ..extern.six import BytesIO import pyfits as fits from ..convenience import _getext from ..file import _File from ..util import PyfitsDeprecationWarning from . import PyfitsTestCase from .util import catch_warnings, ignore_warnings, CaptureStdio from nose.tools import assert_raises class TestCore(PyfitsTestCase): def test_with_statement(self): with fits.open(self.data('ascii.fits')) as f: pass def test_missing_file(self): assert_raises(IOError, fits.open, self.temp('does-not-exist.fits')) def test_naxisj_check(self): hdulist = fits.open(self.data('o4sp040b0_raw.fits')) hdulist[1].header['NAXIS3'] = 500 assert 'NAXIS3' in hdulist[1].header hdulist.verify('silentfix') assert 'NAXIS3' not in hdulist[1].header def test_byteswap(self): p = fits.PrimaryHDU() l = fits.HDUList() n = np.zeros(3, dtype='i2') n[0] = 1 n[1] = 60000 n[2] = 2 c = fits.Column(name='foo', format='i2', bscale=1, bzero=32768, array=n) t = fits.BinTableHDU.from_columns([c]) l.append(p) l.append(t) l.writeto(self.temp('test.fits'), clobber=True) with fits.open(self.temp('test.fits')) as p: assert p[1].data[1]['foo'] == 60000.0 def test_add_del_columns(self): p = fits.ColDefs([]) p.add_col(fits.Column(name='FOO', format='3J')) p.add_col(fits.Column(name='BAR', format='1I')) assert p.names == ['FOO', 'BAR'] p.del_col('FOO') assert p.names == ['BAR'] def test_add_del_columns2(self): hdulist = fits.open(self.data('tb.fits')) table = hdulist[1] assert table.data.dtype.names == ('c1', 'c2', 'c3', 'c4') assert table.columns.names == ['c1', 'c2', 'c3', 'c4'] table.columns.del_col('c1') assert table.data.dtype.names == ('c2', 'c3', 'c4') assert table.columns.names == ['c2', 'c3', 'c4'] table.columns.del_col('c3') assert table.data.dtype.names == ('c2', 'c4') assert table.columns.names == ['c2', 'c4'] table.columns.add_col(fits.Column('foo', '3J')) assert table.data.dtype.names == ('c2', 'c4', 'foo') assert table.columns.names == ['c2', 'c4', 'foo'] hdulist.writeto(self.temp('test.fits'), clobber=True) with ignore_warnings(): # TODO: The warning raised by this test is actually indication of a # bug and should *not* be ignored. But as it is a known issue we # hide it for now. See # https://github.com/spacetelescope/PyFITS/issues/44 with fits.open(self.temp('test.fits')) as hdulist: table = hdulist[1] assert table.data.dtype.names == ('c2', 'c4', 'foo') assert table.columns.names == ['c2', 'c4', 'foo'] @ignore_warnings(PyfitsDeprecationWarning) def test_update_header_card(self): """A very basic test for the Header.update method--I'd like to add a few more cases to this at some point. """ header = fits.Header() comment = 'number of bits per data pixel' header['BITPIX'] = (16, comment) assert 'BITPIX' in header assert header['BITPIX'] == 16 assert header.ascard['BITPIX'].comment == comment # The new API doesn't support savecomment so leave this line here; at # any rate good to have testing of the new API mixed with the old API header.update('BITPIX', 32, savecomment=True) # Make sure the value has been updated, but the comment was preserved assert header['BITPIX'] == 32 assert header.ascard['BITPIX'].comment == comment # The comment should still be preserved--savecomment only takes effect if # a new comment is also specified header['BITPIX'] = 16 assert header.ascard['BITPIX'].comment == comment header.update('BITPIX', 16, 'foobarbaz', savecomment=True) assert header.ascard['BITPIX'].comment == comment @ignore_warnings(PyfitsDeprecationWarning) def test_set_card_value(self): """Similar to test_update_header_card(), but tests the the `header['FOO'] = 'bar'` method of updating card values. """ header = fits.Header() comment = 'number of bits per data pixel' card = fits.Card.fromstring('BITPIX = 32 / %s' % comment) header.ascard.append(card) header['BITPIX'] = 32 assert 'BITPIX' in header assert header['BITPIX'] == 32 assert header.ascard['BITPIX'].key == 'BITPIX' assert header.ascard['BITPIX'].value == 32 assert header.ascard['BITPIX'].comment == comment def test_uint(self): hdulist_f = fits.open(self.data('o4sp040b0_raw.fits')) hdulist_i = fits.open(self.data('o4sp040b0_raw.fits'), uint=True) assert hdulist_f[1].data.dtype == np.float32 assert hdulist_i[1].data.dtype == np.uint16 assert np.all(hdulist_f[1].data == hdulist_i[1].data) @ignore_warnings(PyfitsDeprecationWarning) def test_fix_missing_card_append(self): hdu = fits.ImageHDU() errs = hdu.req_cards('TESTKW', None, None, 'foo', 'silentfix', []) assert len(errs) == 1 assert 'TESTKW' in hdu.header assert hdu.header['TESTKW'] == 'foo' assert hdu.header.ascard[-1].key == 'TESTKW' def test_fix_invalid_keyword_value(self): hdu = fits.ImageHDU() hdu.header['TESTKW'] = 'foo' errs = hdu.req_cards('TESTKW', None, lambda v: v == 'foo', 'foo', 'ignore', []) assert len(errs) == 0 # Now try a test that will fail, and ensure that an error will be # raised in 'exception' mode errs = hdu.req_cards('TESTKW', None, lambda v: v == 'bar', 'bar', 'exception', []) assert len(errs) == 1 assert errs[0][1] == "'TESTKW' card has invalid value 'foo'." # See if fixing will work hdu.req_cards('TESTKW', None, lambda v: v == 'bar', 'bar', 'silentfix', []) assert hdu.header['TESTKW'] == 'bar' def test_unfixable_missing_card(self): class TestHDU(fits.hdu.base.NonstandardExtHDU): def _verify(self, option='warn'): errs = super(TestHDU, self)._verify(option) hdu.req_cards('TESTKW', None, None, None, 'fix', errs) return errs hdu = TestHDU(header=fits.Header()) assert_raises(fits.VerifyError, hdu.verify, 'fix') def test_exception_on_verification_error(self): hdu = fits.ImageHDU() del hdu.header['XTENSION'] assert_raises(fits.VerifyError, hdu.verify, 'exception') def test_ignore_verification_error(self): hdu = fits.ImageHDU() # The default here would be to issue a warning; ensure that no warnings # or exceptions are raised with catch_warnings(): warnings.simplefilter('error') del hdu.header['NAXIS'] try: hdu.verify('ignore') except Exception: exc = sys.exc_info()[1] self.fail('An exception occurred when the verification error ' 'should have been ignored: %s' % exc) # Make sure the error wasn't fixed either, silently or otherwise assert 'NAXIS' not in hdu.header def test_unrecognized_verify_option(self): hdu = fits.ImageHDU() assert_raises(ValueError, hdu.verify, 'foobarbaz') def test_combined_verify_options(self): """ Test verify options like fix+ignore. """ def make_invalid_hdu(): hdu = fits.ImageHDU() # Add one keyword to the header that contains a fixable defect, and one # with an unfixable defect c1 = fits.Card.fromstring("test = ' test'") c2 = fits.Card.fromstring("P.I. = ' Hubble'") hdu.header.append(c1) hdu.header.append(c2) return hdu # silentfix+ignore should be completely silent hdu = make_invalid_hdu() with catch_warnings(): warnings.simplefilter('error') try: hdu.verify('silentfix+ignore') except Exception: exc = sys.exc_info()[1] self.fail('An exception occurred when the verification error ' 'should have been ignored: %s' % exc) # silentfix+warn should be quiet about the fixed HDU and only warn # about the unfixable one hdu = make_invalid_hdu() with catch_warnings(record=True) as w: hdu.verify('silentfix+warn') assert len(w) == 4 assert 'Illegal keyword name' in str(w[2].message) # silentfix+exception should only mention the unfixable error in the # exception hdu = make_invalid_hdu() try: hdu.verify('silentfix+exception') except fits.VerifyError: exc = sys.exc_info()[1] assert 'Illegal keyword name' in str(exc) assert 'not upper case' not in str(exc) else: self.fail('An exception should have been raised.') # fix+ignore is not too useful, but it should warn about the fixed # problems while saying nothing about the unfixable problems hdu = make_invalid_hdu() with catch_warnings(record=True) as w: hdu.verify('fix+ignore') assert len(w) == 4 assert 'not upper case' in str(w[2].message) # fix+warn hdu = make_invalid_hdu() with catch_warnings(record=True) as w: hdu.verify('fix+warn') assert len(w) == 6 assert 'not upper case' in str(w[2].message) assert 'Illegal keyword name' in str(w[4].message) # fix+exception hdu = make_invalid_hdu() try: hdu.verify('fix+exception') except fits.VerifyError: exc = sys.exc_info()[1] assert 'Illegal keyword name' in str(exc) assert 'not upper case' in str(exc) else: self.fail('An exception should have been raised.') def test_getext(self): """ Test the various different ways of specifying an extension header in the convenience functions. """ hl, ext = _getext(self.data('test0.fits'), 'readonly', 1) assert ext == 1 assert_raises(ValueError, _getext, self.data('test0.fits'), 'readonly', 1, 2) assert_raises(ValueError, _getext, self.data('test0.fits'), 'readonly', (1, 2)) assert_raises(ValueError, _getext, self.data('test0.fits'), 'readonly', 'sci', 'sci') assert_raises(TypeError, _getext, self.data('test0.fits'), 'readonly', 1, 2, 3) hl, ext = _getext(self.data('test0.fits'), 'readonly', ext=1) assert ext == 1 hl, ext = _getext(self.data('test0.fits'), 'readonly', ext=('sci', 2)) assert ext == ('sci', 2) assert_raises(TypeError, _getext, self.data('test0.fits'), 'readonly', 1, ext=('sci', 2), extver=3) assert_raises(TypeError, _getext, self.data('test0.fits'), 'readonly', ext=('sci', 2), extver=3) hl, ext = _getext(self.data('test0.fits'), 'readonly', 'sci') assert ext == ('sci', 1) hl, ext = _getext(self.data('test0.fits'), 'readonly', 'sci', 1) assert ext == ('sci', 1) hl, ext = _getext(self.data('test0.fits'), 'readonly', ('sci', 1)) assert ext == ('sci', 1) hl, ext = _getext(self.data('test0.fits'), 'readonly', 'sci', extver=1, do_not_scale_image_data=True) assert ext == ('sci', 1) assert_raises(TypeError, _getext, self.data('test0.fits'), 'readonly', 'sci', ext=1) assert_raises(TypeError, _getext, self.data('test0.fits'), 'readonly', 'sci', 1, extver=2) hl, ext = _getext(self.data('test0.fits'), 'readonly', extname='sci') assert ext == ('sci', 1) hl, ext = _getext(self.data('test0.fits'), 'readonly', extname='sci', extver=1) assert ext == ('sci', 1) assert_raises(TypeError, _getext, self.data('test0.fits'), 'readonly', extver=1) def test_extension_name_case_sensitive(self): """ Tests that setting fits.EXTENSION_NAME_CASE_SENSITIVE at runtime works. """ if 'PYFITS_EXTENSION_NAME_CASE_SENSITIVE' in os.environ: del os.environ['PYFITS_EXTENSION_NAME_CASE_SENSITIVE'] hdu = fits.ImageHDU() hdu.name = 'sCi' assert hdu.name == 'SCI' assert hdu.header['EXTNAME'] == 'SCI' try: fits.EXTENSION_NAME_CASE_SENSITIVE = True hdu = fits.ImageHDU() hdu.name = 'sCi' assert hdu.name == 'sCi' assert hdu.header['EXTNAME'] == 'sCi' finally: fits.EXTENSION_NAME_CASE_SENSITIVE = False hdu.name = 'sCi' assert hdu.name == 'SCI' assert hdu.header['EXTNAME'] == 'SCI' def test_hdu_fromstring(self): """ Tests creating a fully-formed HDU object from a string containing the bytes of the HDU. """ dat = open(self.data('test0.fits'), 'rb').read() offset = 0 with fits.open(self.data('test0.fits')) as hdul: hdulen = hdul[0]._data_offset + hdul[0]._data_size hdu = fits.PrimaryHDU.fromstring(dat[:hdulen]) assert isinstance(hdu, fits.PrimaryHDU) assert hdul[0].header == hdu.header assert hdu.data is None hdu.header['TEST'] = 'TEST' hdu.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as hdul: assert isinstance(hdu, fits.PrimaryHDU) assert hdul[0].header[:-1] == hdu.header[:-1] assert hdul[0].header['TEST'] == 'TEST' assert hdu.data is None with fits.open(self.data('test0.fits'))as hdul: for ext_hdu in hdul[1:]: offset += hdulen hdulen = len(str(ext_hdu.header)) + ext_hdu._data_size hdu = fits.ImageHDU.fromstring(dat[offset:offset + hdulen]) assert isinstance(hdu, fits.ImageHDU) assert ext_hdu.header == hdu.header assert (ext_hdu.data == hdu.data).all() def test_nonstandard_hdu(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/157 Tests that "Nonstandard" HDUs with SIMPLE = F are read and written without prepending a superfluous and unwanted standard primary HDU. """ data = np.arange(100, dtype=np.uint8) hdu = fits.PrimaryHDU(data=data) hdu.header['SIMPLE'] = False hdu.writeto(self.temp('test.fits')) info = [(0, '', 'NonstandardHDU', 5, (), '', '')] with fits.open(self.temp('test.fits')) as hdul: assert hdul.info(output=False) == info # NonstandardHDUs just treat the data as an unspecified array of # bytes. The first 100 bytes should match the original data we # passed in...the rest should be zeros padding out the rest of the # FITS block assert (hdul[0].data[:100] == data).all() assert (hdul[0].data[100:] == 0).all() def test_extname(self): """Test getting/setting the EXTNAME of an HDU.""" h1 = fits.PrimaryHDU() assert h1.name == 'PRIMARY' # Normally a PRIMARY HDU should not have an EXTNAME, though it should # have a default .name attribute assert 'EXTNAME' not in h1.header # The current version of the FITS standard does allow PRIMARY HDUs to # have an EXTNAME, however. h1.name = 'NOTREAL' assert h1.name == 'NOTREAL' assert h1.header.get('EXTNAME') == 'NOTREAL' # Updating the EXTNAME in the header should update the .name h1.header['EXTNAME'] = 'TOOREAL' assert h1.name == 'TOOREAL' # If we delete an EXTNAME keyword from a PRIMARY HDU it should go back # to the default del h1.header['EXTNAME'] assert h1.name == 'PRIMARY' # For extension HDUs the situation is a bit simpler: h2 = fits.ImageHDU() assert h2.name == '' assert 'EXTNAME' not in h2.header h2.name = 'HELLO' assert h2.name == 'HELLO' assert h2.header.get('EXTNAME') == 'HELLO' h2.header['EXTNAME'] = 'GOODBYE' assert h2.name == 'GOODBYE' def test_extver_extlevel(self): """Test getting/setting the EXTVER and EXTLEVEL of and HDU.""" # EXTVER and EXTNAME work exactly the same; their semantics are, for # now, to be inferred by the user. Although they should never be less # than 1, the standard does not explicitly forbid any value so long as # it's an integer h1 = fits.PrimaryHDU() assert h1.ver == 1 assert h1.level == 1 assert 'EXTVER' not in h1.header assert 'EXTLEVEL' not in h1.header h1.ver = 2 assert h1.header.get('EXTVER') == 2 h1.header['EXTVER'] = 3 assert h1.ver == 3 del h1.header['EXTVER'] h1.ver == 1 h1.level = 2 assert h1.header.get('EXTLEVEL') == 2 h1.header['EXTLEVEL'] = 3 assert h1.level == 3 del h1.header['EXTLEVEL'] assert h1.level == 1 assert_raises(TypeError, setattr, h1, 'ver', 'FOO') assert_raises(TypeError, setattr, h1, 'level', 'BAR') def test_consecutive_writeto(self): """ Regression test for an issue where calling writeto twice on the same HDUList could write a corrupted file. https://github.com/spacetelescope/PyFITS/issues/40 is actually a particular instance of this problem, though isn't unique to sys.stdout. """ with fits.open(self.data('test0.fits')) as hdul1: # Add a bunch of header keywords so that the data will be forced to # new offsets within the file: for idx in range(40): hdul1[1].header['TEST%d' % idx] = 'test' hdul1.writeto(self.temp('test1.fits')) hdul1.writeto(self.temp('test2.fits')) # Open a second handle to the original file and compare it to hdul1 # (We only compare part of the one header that was modified) # Compare also with the second writeto output with fits.open(self.data('test0.fits')) as hdul2: with fits.open(self.temp('test2.fits')) as hdul3: for hdul in (hdul1, hdul3): for idx, hdus in enumerate(zip(hdul1, hdul)): hdu1, hdu2 = hdus if idx != 1: assert hdu1.header == hdu2.header else: assert (hdu1.header == hdu2.header[:len(hdu1.header)]) assert np.all(hdu1.data == hdu2.data) class TestConvenienceFunctions(PyfitsTestCase): def test_writeto(self): """ Simple test for writing a trivial header and some data to a file with the `writeto()` convenience function. """ data = np.zeros((100, 100)) header = fits.Header() fits.writeto(self.temp('array.fits'), data, header=header, clobber=True) hdul = fits.open(self.temp('array.fits')) assert len(hdul) == 1 assert (data == hdul[0].data).all() @ignore_warnings(PyfitsDeprecationWarning) def test_writeto_2(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/107 Test of `writeto()` with a trivial header containing a single keyword. """ data = np.zeros((100, 100)) header = fits.Header() header.update('CRPIX1', 1.) fits.writeto(self.temp('array.fits'), data, header=header, clobber=True, output_verify='silentfix') hdul = fits.open(self.temp('array.fits')) assert len(hdul) == 1 assert (data == hdul[0].data).all() assert 'CRPIX1' in hdul[0].header assert hdul[0].header['CRPIX1'] == 1.0 class TestFileFunctions(PyfitsTestCase): """ Tests various basic I/O operations, specifically in the pyfits.file._File class. """ def test_open_nonexistent(self): """Test that trying to open a non-existent file results in an IOError (and not some other arbitrary exception). """ try: fits.open(self.temp('foobar.fits')) except IOError: exc = sys.exc_info()[1] assert 'File does not exist' in str(exc) except: raise # But opening in ostream or append mode should be okay, since they # allow writing new files for mode in ('ostream', 'append'): with fits.open(self.temp('foobar.fits'), mode=mode) as h: pass assert os.path.exists(self.temp('foobar.fits')) os.remove(self.temp('foobar.fits')) def test_open_gzipped(self): with ignore_warnings(): assert len(fits.open(self._make_gzip_file())) == 5 def test_detect_gzipped(self): """Test detection of a gzip file when the extension is not .gz.""" with ignore_warnings(): assert len(fits.open(self._make_gzip_file('test0.fz'))) == 5 def test_writeto_append_mode_gzip(self): """Regression test for https://github.com/spacetelescope/PyFITS/issues/33 Check that a new GzipFile opened in append mode can be used to write out a new FITS file. """ # Note: when opening a GzipFile the 'b+' is superfluous, but this was # still how the original test case looked # Note: with statement not supported on GzipFile in older Python # versions fileobj = gzip.GzipFile(self.temp('test.fits.gz'), 'ab+') h = fits.PrimaryHDU() try: h.writeto(fileobj) finally: fileobj.close() with fits.open(self.temp('test.fits.gz')) as hdul: assert hdul[0].header == h.header def test_open_zipped(self): zf = self._make_zip_file() with ignore_warnings(): assert len(fits.open(self._make_zip_file())) == 5 with ignore_warnings(): assert len(fits.open(zipfile.ZipFile(zf))) == 5 def test_detect_zipped(self): """Test detection of a zip file when the extension is not .zip.""" zf = self._make_zip_file(filename='test0.fz') with ignore_warnings(): assert len(fits.open(zf)) == 5 def test_open_zipped_writeable(self): """Opening zipped files in a writeable mode should fail.""" zf = self._make_zip_file() assert_raises(IOError, fits.open, zf, 'update') assert_raises(IOError, fits.open, zf, 'append') zf = zipfile.ZipFile(zf, 'a') assert_raises(IOError, fits.open, zf, 'update') assert_raises(IOError, fits.open, zf, 'append') def test_open_multiple_member_zipfile(self): """ Opening zip files containing more than one member files should fail as there's no obvious way to specify which file is the FITS file to read. """ zfile = zipfile.ZipFile(self.temp('test0.zip'), 'w') zfile.write(self.data('test0.fits')) zfile.writestr('foo', 'bar') zfile.close() assert_raises(IOError, fits.open, zfile.filename) def test_read_open_file(self): """Read from an existing file object.""" with open(self.data('test0.fits'), 'rb') as f: assert len(fits.open(f)) == 5 def test_read_closed_file(self): """Read from an existing file object that's been closed.""" f = open(self.data('test0.fits'), 'rb') f.close() assert len(fits.open(f)) == 5 def test_read_open_gzip_file(self): """Read from an open gzip file object.""" gf = gzip.GzipFile(self._make_gzip_file()) try: assert len(fits.open(gf)) == 5 finally: gf.close() def test_open_gzip_file_for_writing(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/195.""" gf = self._make_gzip_file() with fits.open(gf, mode='update') as h: h[0].header['EXPFLAG'] = 'ABNORMAL' with fits.open(gf) as h: # Just to make sur ethe update worked; if updates work # normal writes should work too... assert h[0].header['EXPFLAG'] == 'ABNORMAL' def test_read_file_like_object(self): """Test reading a FITS file from a file-like object.""" filelike = BytesIO() with open(self.data('test0.fits'), 'rb') as f: filelike.write(f.read()) filelike.seek(0) with ignore_warnings(): assert len(fits.open(filelike)) == 5 def test_updated_file_permissions(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/79 Tests that when a FITS file is modified in update mode, the file permissions are preserved. """ filename = self.temp('test.fits') hdul = [fits.PrimaryHDU(), fits.ImageHDU()] hdul = fits.HDUList(hdul) hdul.writeto(filename) old_mode = os.stat(filename).st_mode hdul = fits.open(filename, mode='update') hdul.insert(1, fits.ImageHDU()) hdul.flush() hdul.close() assert old_mode == os.stat(filename).st_mode def test_fileobj_mode_guessing(self): """Tests whether a file opened without a specified pyfits mode ('readonly', etc.) is opened in a mode appropriate for the given file object. """ self.copy_file('test0.fits') # Opening in text mode should outright fail for mode in ('r', 'w', 'a'): with open(self.temp('test0.fits'), mode) as f: assert_raises(ValueError, fits.HDUList.fromfile, f) # Need to re-copy the file since opening it in 'w' mode blew it away self.copy_file('test0.fits') with open(self.temp('test0.fits'), 'rb') as f: with fits.HDUList.fromfile(f) as h: assert h.fileinfo(0)['filemode'] == 'readonly' for mode in ('wb', 'ab'): with open(self.temp('test0.fits'), mode) as f: with fits.HDUList.fromfile(f) as h: # Basically opening empty files for output streaming assert len(h) == 0 # Need to re-copy the file since opening it in 'w' mode blew it away self.copy_file('test0.fits') with open(self.temp('test0.fits'), 'wb+') as f: with fits.HDUList.fromfile(f) as h: # wb+ still causes an existing file to be overwritten so there # are no HDUs assert len(h) == 0 # Need to re-copy the file since opening it in 'w' mode blew it away self.copy_file('test0.fits') with open(self.temp('test0.fits'), 'rb+') as f: with fits.HDUList.fromfile(f) as h: assert h.fileinfo(0)['filemode'] == 'update' with open(self.temp('test0.fits'), 'ab+') as f: with fits.HDUList.fromfile(f) as h: assert h.fileinfo(0)['filemode'] == 'append' if sys.version_info[:2] > (2, 5): # After a fair bit of experimentation I found that it's more difficult # than it's worth to wrap mmap in Python 2.5. def test_mmap_unwriteable(self): """Regression test for https://github.com/astropy/astropy/issues/968 Temporarily patches mmap.mmap to exhibit platform-specific bad behavior. """ class MockMmap(mmap.mmap): def flush(self): raise mmap.error('flush is broken on this platform') old_mmap = mmap.mmap mmap.mmap = MockMmap # Force the mmap test to be rerun _File._mmap_available = None try: # TODO: Use self.copy_file once it's merged into Astropy shutil.copy(self.data('test0.fits'), self.temp('test0.fits')) with catch_warnings(record=True) as w: with fits.open(self.temp('test0.fits'), mode='update', memmap=True) as h: h[1].data[0, 0] = 999 assert len(w) == 1 assert 'mmap.flush is unavailable' in str(w[0].message) # Double check that writing without mmap still worked with fits.open(self.temp('test0.fits')) as h: assert h[1].data[0, 0] == 999 finally: mmap.mmap = old_mmap _File._mmap_available = None def test_uncloseable_file(self): """ Regression test for https://github.com/astropy/astropy/issues/2356 Demonstrates that FITS files can still be read from "file-like" objects that don't have an obvious "open" or "closed" state. """ class MyFileLike(object): def __init__(self, foobar): self._foobar = foobar def read(self, n): return self._foobar.read(n) def seek(self, offset, whence=os.SEEK_SET): self._foobar.seek(offset, whence) def tell(self): return self._foobar.tell() with open(self.data('test0.fits'), 'rb') as f: fileobj = MyFileLike(f) with fits.open(fileobj) as hdul1: with fits.open(self.data('test0.fits')) as hdul2: assert hdul1.info(output=False) == hdul2.info(output=False) for hdu1, hdu2 in zip(hdul1, hdul2): assert hdu1.header == hdu2.header if hdu1.data is not None and hdu2.data is not None: assert np.all(hdu1.data == hdu2.data) def _make_gzip_file(self, filename='test0.fits.gz'): gzfile = self.temp(filename) with open(self.data('test0.fits'), 'rb') as f: gz = gzip.open(gzfile, 'wb') gz.write(f.read()) gz.close() return gzfile def _make_zip_file(self, mode='copyonwrite', filename='test0.fits.zip'): zfile = zipfile.ZipFile(self.temp(filename), 'w') zfile.write(self.data('test0.fits')) zfile.close() return zfile.filename class TestStreamingFunctions(PyfitsTestCase): """Test functionality of the StreamingHDU class.""" def test_streaming_hdu(self): shdu = self._make_streaming_hdu(self.temp('new.fits')) assert isinstance(shdu.size, int) assert shdu.size == 100 def test_streaming_hdu_file_wrong_mode(self): """ Test that streaming an HDU to a file opened in the wrong mode fails as expected (any writeable mode is acceptable; any read-only mode should fail). """ # touch new.fits with open(self.temp('new.fits'), 'wb'): pass with open(self.temp('new.fits'), 'rb') as f: header = fits.Header() assert_raises(ValueError, fits.StreamingHDU, f, header) def test_streaming_hdu_write_file(self): """Test streaming an HDU to an open file object.""" arr = np.zeros((5, 5), dtype=np.int32) with open(self.temp('new.fits'), 'ab+') as f: shdu = self._make_streaming_hdu(f) shdu.write(arr) assert shdu.writecomplete assert shdu.size == 100 hdul = fits.open(self.temp('new.fits')) assert len(hdul) == 1 assert (hdul[0].data == arr).all() def test_streaming_hdu_write_file_like(self): """Test streaming an HDU to an open file-like object.""" arr = np.zeros((5, 5), dtype=np.int32) # The file-like object underlying a StreamingHDU must be in binary mode sf = BytesIO() shdu = self._make_streaming_hdu(sf) shdu.write(arr) assert shdu.writecomplete assert shdu.size == 100 sf.seek(0) hdul = fits.open(sf) assert len(hdul) == 1 assert (hdul[0].data == arr).all() def test_streaming_hdu_append_extension(self): arr = np.zeros((5, 5), dtype=np.int32) with open(self.temp('new.fits'), 'ab+') as f: shdu = self._make_streaming_hdu(f) shdu.write(arr) # Doing this again should update the file with an extension with open(self.temp('new.fits'), 'ab+') as f: shdu = self._make_streaming_hdu(f) shdu.write(arr) def test_fix_invalid_extname(self): phdu = fits.PrimaryHDU() ihdu = fits.ImageHDU() ihdu.header['EXTNAME'] = 12345678 hdul = fits.HDUList([phdu, ihdu]) assert_raises(fits.VerifyError, hdul.writeto, self.temp('temp.fits'), output_verify='exception') with CaptureStdio(): hdul.writeto(self.temp('temp.fits'), output_verify='fix') with fits.open(self.temp('temp.fits')): assert hdul[1].name == '12345678' assert hdul[1].header['EXTNAME'] == '12345678' def _make_streaming_hdu(self, fileobj): hd = fits.Header() hd['SIMPLE'] = (True, 'conforms to FITS standard') hd['BITPIX'] = (32, 'array data type') hd['NAXIS'] = (2, 'number of array dimensions') hd['NAXIS1'] = 5 hd['NAXIS2'] = 5 hd['EXTEND'] = True return fits.StreamingHDU(fileobj, hd)
# Copyright (c) 2014-2015, NVIDIA CORPORATION. All rights reserved. import os.path import re import time import logging import subprocess import signal import flask import gevent.event from . import utils import digits.log from config import config_value from status import Status, StatusCls import platform # NOTE: Increment this everytime the pickled version changes PICKLE_VERSION = 1 class Task(StatusCls): """ Base class for Tasks A Task is a compute-heavy operation that runs in a separate executable Communication is done by processing the stdout of the executable """ def __init__(self, job_dir, parents=None): super(Task, self).__init__() self.pickver_task = PICKLE_VERSION self.job_dir = job_dir self.job_id = os.path.basename(job_dir) if parents is None: self.parents = None elif isinstance(parents, (list, tuple)): self.parents = parents elif isinstance(parents, Task): self.parents = [parents] else: raise TypeError('parents is %s' % type(parents)) self.exception = None self.traceback = None self.aborted = gevent.event.Event() self.set_logger() def __getstate__(self): d = self.__dict__.copy() if 'aborted' in d: del d['aborted'] if 'logger' in d: del d['logger'] return d def __setstate__(self, state): self.__dict__ = state self.aborted = gevent.event.Event() self.set_logger() def set_logger(self): self.logger = digits.log.JobIdLoggerAdapter( logging.getLogger('digits.webapp'), {'job_id': self.job_id}, ) def name(self): """ Returns a string """ raise NotImplementedError def html_id(self): """ Returns a string """ return 'task-%s' % id(self) def on_status_update(self): """ Called when StatusCls.status.setter is used """ from digits.webapp import app, socketio # Send socketio updates message = { 'task': self.html_id(), 'update': 'status', 'status': self.status.name, 'css': self.status.css, 'show': (self.status in [Status.RUN, Status.ERROR]), 'running': self.status.is_running(), } with app.app_context(): message['html'] = flask.render_template('status_updates.html', updates = self.status_history, exception = self.exception, traceback = self.traceback, ) socketio.emit('task update', message, namespace='/jobs', room=self.job_id, ) def path(self, filename, relative=False): """ Returns a path to the given file Arguments: filename -- the requested file Keyword arguments: relative -- If False, return an absolute path to the file If True, return a path relative to the jobs directory """ if not filename: return None if os.path.isabs(filename): path = filename else: path = os.path.join(self.job_dir, filename) if relative: path = os.path.relpath(path, config_value('jobs_dir')) return str(path).replace("\\","/") def ready_to_queue(self): """ Returns True if all parents are done """ if not self.parents: return True for parent in self.parents: if parent.status != Status.DONE: return False return True def offer_resources(self, resources): """ Check the available resources and return a set of requested resources Arguments: resources -- a copy of scheduler.resources """ raise NotImplementedError def task_arguments(self, resources): """ Returns args used by subprocess.Popen to execute the task Returns False if the args cannot be set properly Arguments: resources -- the resources assigned by the scheduler for this task """ raise NotImplementedError def before_run(self): """ Called before run() executes Raises exceptions """ pass def run(self, resources): """ Execute the task Arguments: resources -- the resources assigned by the scheduler for this task """ self.before_run() args = self.task_arguments(resources) if not args: self.logger.error('Could not create the arguments for Popen') self.status = Status.ERROR return False # Convert them all to strings args = [str(x) for x in args] self.logger.info('%s task started.' % self.name()) self.status = Status.RUN unrecognized_output = [] p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=self.job_dir, close_fds=False if platform.system() == 'Windows' else True, ) try: sigterm_time = None # When was the SIGTERM signal sent sigterm_timeout = 2 # When should the SIGKILL signal be sent while p.poll() is None: for line in utils.nonblocking_readlines(p.stdout): if self.aborted.is_set(): if sigterm_time is None: # Attempt graceful shutdown p.send_signal(signal.SIGTERM) sigterm_time = time.time() self.status = Status.ABORT break if line is not None: # Remove whitespace line = line.strip() if line: if not self.process_output(line): self.logger.warning('%s unrecognized output: %s' % (self.name(), line.strip())) unrecognized_output.append(line) else: time.sleep(0.05) if sigterm_time is not None and (time.time() - sigterm_time > sigterm_timeout): p.send_signal(signal.SIGKILL) self.logger.warning('Sent SIGKILL to task "%s"' % self.name()) time.sleep(0.1) except: p.terminate() self.after_run() raise self.after_run() if self.status != Status.RUN: return False elif p.returncode != 0: self.logger.error('%s task failed with error code %d' % (self.name(), p.returncode)) if self.exception is None: self.exception = 'error code %d' % p.returncode if unrecognized_output: if self.traceback is None: self.traceback = '\n'.join(unrecognized_output) else: self.traceback = self.traceback + ('\n'.join(unrecognized_output)) self.after_runtime_error() self.status = Status.ERROR return False else: self.logger.info('%s task completed.' % self.name()) self.status = Status.DONE return True def abort(self): """ Abort the Task """ if self.status.is_running(): self.aborted.set() def preprocess_output_digits(self, line): """ Takes line of output and parses it according to DIGITS's log format Returns (timestamp, level, message) or (None, None, None) """ # NOTE: This must change when the logging format changes # YYYY-MM-DD HH:MM:SS [LEVEL] message match = re.match(r'(\S{10} \S{8}) \[(\w+)\s*\] (.*)$', line) if match: timestr = match.group(1) timestamp = time.mktime(time.strptime(timestr, digits.log.DATE_FORMAT)) level = match.group(2) message = match.group(3) if level.startswith('DEB'): level = 'debug' elif level.startswith('INF'): level = 'info' elif level.startswith('WAR'): level = 'warning' elif level.startswith('ERR'): level = 'error' elif level.startswith('CRI'): level = 'critical' return (timestamp, level, message) else: return (None, None, None) def process_output(self, line): """ Process a line of output from the task Returns True if the output was able to be processed Arguments: line -- a line of output """ raise NotImplementedError def est_done(self): """ Returns the estimated time in seconds until the task is done """ if self.status != Status.RUN or self.progress == 0: return None elapsed = time.time() - self.status_history[-1][1] return (1 - self.progress) * elapsed // self.progress def after_run(self): """ Called after run() executes """ pass def after_runtime_error(self): """ Called after a runtime error during run() """ pass
# -*- coding: utf-8 -*- """ Smoothers. :copyright: 2015 Agile Geoscience :license: Apache 2.0 """ import numpy as np import scipy.ndimage from bruges.bruges import BrugesError from bruges.util import nearest from bruges.util import rms as rms_ # TODO: # - 1D and 2D Gaussian (or, better, n-D) # - See how these handle Nans, consider removing, interpolating, replacing. def mean(arr, size=5): """ A linear n-D smoothing filter. Can be used as a moving average on 1D data. Args: arr (ndarray): an n-dimensional array, such as a seismic horizon. size (int): the kernel size, e.g. 5 for 5x5. Should be odd, rounded up if not. Returns: ndarray: the resulting smoothed array. """ arr = np.array(arr, dtype=np.float) if not size // 2: size += 1 return scipy.ndimage.generic_filter(arr, np.mean, size=size) def rms(arr, size=5): """ A linear n-D smoothing filter. Can be used as a moving average on 1D data. Args: arr (ndarray): an n-dimensional array, such as a seismic horizon. size (int): the kernel size, e.g. 5 for 5x5. Should be odd, rounded up if not. Returns: ndarray: the resulting smoothed array. """ arr = np.array(arr, dtype=np.float) if not size // 2: size += 1 return scipy.ndimage.generic_filter(arr, rms_, size=size) def median(arr, size=5): """ A nonlinear n-D edge-preserving smoothing filter. Args: arr (ndarray): an n-dimensional array, such as a seismic horizon. size (int): the kernel size, e.g. 5 for 5x5. Should be odd, rounded up if not. Returns: ndarray: the resulting smoothed array. """ arr = np.array(arr, dtype=np.float) if not size // 2: size += 1 return scipy.ndimage.generic_filter(arr, np.median, size=size) def mode(arr, size=5, tie='smallest'): """ A nonlinear n-D categorical smoothing filter. Use this to filter non- continuous variables, such as categorical integers, e.g. to label facies. Args: arr (ndarray): an n-dimensional array, such as a seismic horizon. size (int): the kernel size, e.g. 5 for 5x5. Should be odd, rounded up if not. tie (str): `'smallest'` or `'largest`'. In the event of a tie (i.e. two or more values having the same count in the kernel), whether to give back the smallest of the tying values, or the largest. Returns: ndarray: the resulting smoothed array. """ def func(this, tie): if tie == 'smallest': m, _ = scipy.stats.mode(this) else: m, _ = -scipy.stats.mode(-this) return np.squeeze(m) arr = np.array(arr, dtype=np.float) if not size // 2: size += 1 return scipy.ndimage.generic_filter(arr, func, size=size, extra_keywords={'tie': tie} ) def snn(arr, size=5, include=True): """ Symmetric nearest neighbour, a nonlinear 2D smoothing filter. http://subsurfwiki.org/wiki/Symmetric_nearest_neighbour_filter Args: arr (ndarray): a 2D array, such as a seismic horizon. size (int): the kernel size, e.g. 5 for 5x5. Should be odd, rounded up if not. include (bool): whether to include the central pixel itself. Returns: ndarray: the resulting smoothed array. """ def func(this, pairs, include): """ Deal with this patch. """ centre = this[this.size // 2] select = [nearest(this[p], centre) for p in pairs] if include: select += [centre] return np.mean(select) arr = np.array(arr, dtype=np.float) if arr.ndim != 2: raise BrugesError("arr must have 2-dimensions") if not size // 2: size += 1 pairs = [[i, size**2-1 - i] for i in range(size**2 // 2)] return scipy.ndimage.generic_filter(arr, func, size=size, extra_keywords={'pairs': pairs, 'include': include} ) def kuwahara(arr, size=5): """ Kuwahara, a nonlinear 2D smoothing filter. http://subsurfwiki.org/wiki/Kuwahara_filter Args: arr (ndarray): a 2D array, such as a seismic horizon. size (int): the kernel size, e.g. 5 for 5x5. Should be odd, rounded up if not. Returns: ndarray: the resulting smoothed array. """ def func(this, s, k): """ Deal with this patch. """ t = this.reshape((s, s)) sub = np.array([t[:k, :k].flatten(), t[:k, k-1:].flatten(), t[k-1:, :k].flatten(), t[k-1:, k-1:].flatten()] ) select = sub[np.argmin(np.var(sub, axis=1))] return np.mean(select) arr = np.array(arr, dtype=np.float) if arr.ndim != 2: raise BrugesError("arr must have 2-dimensions") if not size // 2: size += 1 k = int(np.ceil(size / 2)) return scipy.ndimage.generic_filter(arr, func, size=size, extra_keywords={'s': size, 'k': k, } ) def conservative(arr, size=5, supercon=False): """ Conservative, a nonlinear n-D despiking filter. Very conservative! Only changes centre value if it is outside the range of all the other values in the kernel. Read http://subsurfwiki.org/wiki/Conservative_filter Args: arr (ndarray): an n-dimensional array, such as a seismic horizon. size (int): the kernel size, e.g. 5 for 5x5 (in a 2D arr). Should be odd, rounded up if not. supercon (bool): whether to be superconservative. If True, replaces pixel with min or max of kernel. If False (default), replaces pixel with mean of kernel. Returns: ndarray: the resulting smoothed array. """ def func(this, k, supercon): this = this.flatten() centre = this[k] rest = [this[:k], this[-k:]] mi, ma = np.nanmin(rest), np.nanmax(rest) if centre < mi: return mi if supercon else np.mean(rest) elif centre > ma: return ma if supercon else np.mean(rest) else: return centre arr = np.array(arr, dtype=np.float) if not size // 2: size += 1 k = int(np.floor(size**arr.ndim / 2)) return scipy.ndimage.generic_filter(arr, func, size=size, extra_keywords={'k': k, 'supercon': supercon, } )
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.session_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import session_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class SessionOpsTest(test.TestCase): def testHandleBasic(self): with self.cached_session() as sess: # Return a handle. a = constant_op.constant(10) b = constant_op.constant(5) c = math_ops.multiply(a, b) h = session_ops.get_session_handle(c) h = sess.run(h) # Feed a tensor handle. f, x = session_ops.get_session_tensor(h.handle, dtypes.int32) y = math_ops.multiply(x, 10) self.assertEqual(500, sess.run(y, feed_dict={f: h.handle})) def testHandleEval(self): with self.cached_session() as sess: # Return a handle. a = constant_op.constant(10) b = constant_op.constant(5) c = math_ops.multiply(a, b) h = session_ops.get_session_handle(c) h = sess.run(h) # Get the tensor from its handle. self.assertEqual(50, h.eval()) def testHandleAndValue(self): with self.cached_session() as sess: # Return a handle and a value. a = constant_op.constant(10) b = constant_op.constant(5) c = math_ops.multiply(a, b) h = session_ops.get_session_handle(c) v = math_ops.multiply(a, c) h, v = sess.run([h, v]) self.assertEqual(50, h.eval()) self.assertEqual(500, v) def testHandleCond(self): with self.cached_session() as sess: # Return a handle and a value a = constant_op.constant(10) b = constant_op.constant(5) p = math_ops.less(a, b) c = math_ops.multiply(a, b) h = session_ops.get_session_handle(c) p, h = sess.run([p, h]) # Run by feeding a tensor handle. f, x = session_ops.get_session_tensor(h.handle, dtypes.int32) if p: y = math_ops.multiply(x, 10) else: y = math_ops.multiply(x, 100) result = sess.run(y, feed_dict={f: h.handle}) self.assertEqual(5000, result) def testHandleForLoop(self): with self.cached_session() as sess: # Initialize a handle. a = constant_op.constant(0) h = session_ops.get_session_handle(a) h = sess.run(h) # Do some computation. f, x = session_ops.get_session_tensor(h.handle, dtypes.int32) # Must define the loop body outside the loop. h_x = session_ops.get_session_handle(math_ops.add(x, 1)) for _ in range(100): # This exercises garbage collection. h = sess.run(h_x, feed_dict={f: h.handle}) self.assertEqual(100, h.eval()) def testHandleWhileLoop(self): with self.cached_session() as sess: # Initialize a handle. a = constant_op.constant(0) h = session_ops.get_session_handle(a) h = sess.run(h) # Do some computation. f, x = session_ops.get_session_tensor(h.handle, dtypes.int32) b = constant_op.constant(100) p = math_ops.less(x, b) # Must define the loop body outside the loop. h_x = session_ops.get_session_handle(math_ops.add(x, 1)) while True: rp, h = sess.run([p, h_x], feed_dict={f: h.handle}) if not rp: break self.assertEqual(101, h.eval()) def testHandleMover(self): with self.cached_session() as sess: # Return a handle. a = constant_op.constant(10) b = constant_op.constant(5) c = math_ops.multiply(a, b) h = session_ops.get_session_handle(c) h = sess.run(h) # Feed a tensor handle. f, x = session_ops.get_session_tensor(h.handle, dtypes.int32) y = math_ops.multiply(x, 10) self.assertEqual(500, sess.run(y, feed_dict={f: h.handle})) # Feed another tensor handle. with ops.device(test.gpu_device_name()): a = constant_op.constant(10) h = session_ops.get_session_handle(a) h = sess.run(h) self.assertEqual(100, sess.run(y, feed_dict={f: h.handle})) def testHandleDelete(self): with self.cached_session() as sess: # Return a handle. a = constant_op.constant(10) b = constant_op.constant(5) c = math_ops.multiply(a, b) h = session_ops.get_session_handle(c) sess.run(h).delete() def testHandleDeleteRaw(self): with self.cached_session() as sess: # Return a handle. a = constant_op.constant(10) b = constant_op.constant(5) c = math_ops.multiply(a, b) h = session_ops.get_session_handle(c) h = sess.run(h) # Delete using a raw tensor handle. raw_h = h.get_raw_handle() f, x = session_ops.delete_session_tensor(raw_h) sess.run(x, feed_dict={f: raw_h}) def testMultiDevices(self): with self.cached_session() as sess: with ops.device(test.gpu_device_name()): a = constant_op.constant(1.0) a_handle = sess.run(session_ops.get_session_handle(a)) with ops.device("/cpu:0"): b = constant_op.constant(2.0) b_handle = sess.run(session_ops.get_session_handle(b)) a_p, a_t = session_ops.get_session_tensor(a_handle.handle, dtypes.float32) b_p, b_t = session_ops.get_session_tensor(b_handle.handle, dtypes.float32) c = math_ops.add(a_t, b_t) c_handle = sess.run( session_ops.get_session_handle(c), feed_dict={a_p: a_handle.handle, b_p: b_handle.handle}) self.assertEqual(3.0, c_handle.eval()) def testHandleGC(self): with self.cached_session() as sess: # initial values live on CPU with ops.device("/cpu:0"): one = constant_op.constant(1, dtype=dtypes.float32) one_handle = sess.run(session_ops.get_session_handle(one)) x_handle = sess.run(session_ops.get_session_handle(one)) # addition lives on GPU with ops.device(test.gpu_device_name()): add_h1, add_t1 = session_ops.get_session_tensor(one_handle.handle, dtypes.float32) add_h2, add_t2 = session_ops.get_session_tensor(x_handle.handle, dtypes.float32) add_op = math_ops.add(add_t1, add_t2) add_output = session_ops.get_session_handle(add_op) # add 1 to tensor 20 times for _ in range(20): x_handle = sess.run( add_output, feed_dict={add_h1: one_handle.handle, add_h2: x_handle.handle}) def testHandlePlacement(self): with self.cached_session() as sess: a = constant_op.constant(1.0) a_handle_op = session_ops.get_session_handle(a) b = constant_op.constant(2.0) b_handle_op = session_ops.get_session_handle(b) a_handle = sess.run(a_handle_op) b_handle = sess.run(b_handle_op) a_p, a_t = session_ops.get_session_tensor(a_handle.handle, dtypes.float32) b_p, b_t = session_ops.get_session_tensor(b_handle.handle, dtypes.float32) c = math_ops.add(a_t, b_t) c_handle = sess.run( session_ops.get_session_handle(c), feed_dict={a_p: a_handle.handle, b_p: b_handle.handle}) self.assertEqual(3.0, c_handle.eval()) def testFeedOneHandleDirectly(self): with self.cached_session() as sess: a = constant_op.constant(10.0) b = constant_op.constant(5.0) c = math_ops.multiply(a, b) d = math_ops.multiply(c, c) h_c = sess.run(session_ops.get_session_handle(c)) self.assertAllClose(2500.0, sess.run(d, feed_dict={c: h_c})) def testDirectHandleFeedOverlappingWithFetches(self): with self.cached_session() as sess: a = constant_op.constant(10.0) b = constant_op.constant(5.0) c = math_ops.multiply(a, b) h_c = sess.run(session_ops.get_session_handle(c)) d = array_ops.identity(c) c_val = sess.run(c, feed_dict={c: h_c}) self.assertAllClose(50.0, c_val) d_val = sess.run(d, feed_dict={c: h_c}) self.assertAllClose(50.0, d_val) c_val, d_val = sess.run([c, d], feed_dict={c: h_c, d: 60.0}) self.assertAllClose(50.0, c_val) self.assertAllClose(60.0, d_val) c_val, d_val = sess.run([c, d], feed_dict={c: 60.0, d: h_c}) self.assertAllClose(60.0, c_val) self.assertAllClose(50.0, d_val) c_val, d_val = sess.run([c, d], feed_dict={c: h_c, d: h_c}) self.assertAllClose(50.0, c_val) self.assertAllClose(50.0, d_val) def testFeedTwoHandlesDirectly(self): with self.cached_session() as sess: a = constant_op.constant(10.0) b = constant_op.constant(5.0) c = math_ops.multiply(a, b) d = math_ops.div(a, b) e = math_ops.subtract(c, d) h_c = sess.run(session_ops.get_session_handle(c)) h_d = sess.run(session_ops.get_session_handle(d)) self.assertAllClose(48.0, sess.run(e, feed_dict={c: h_c, d: h_d})) self.assertAllClose(-48.0, sess.run(e, feed_dict={c: h_d, d: h_c})) def testFeedHandleToVariableDirectly(self): with self.cached_session() as sess: a = variables.Variable(12.0) inc_a = state_ops.assign_add(a, 2.0) b = math_ops.add(a, 5.0) sess.run(a.initializer) h_a_read = sess.run(session_ops.get_session_handle(a.read_value())) self.assertAllClose(12.0, sess.run(a)) self.assertAllClose(17.0, sess.run(b, feed_dict={a: h_a_read})) sess.run(inc_a) self.assertAllClose(19.0, sess.run(b, feed_dict={a: h_a_read})) if __name__ == "__main__": test.main()
# python3 # pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A simple implementation of Bootstrapped DQN with prior networks. References: 1. "Deep Exploration via Bootstrapped DQN" (Osband et al., 2016) 2. "Deep Exploration via Randomized Value Functions" (Osband et al., 2017) 3. "Randomized Prior Functions for Deep RL" (Osband et al, 2018) Links: 1. https://arxiv.org/abs/1602.04621 2. https://arxiv.org/abs/1703.07608 3. https://arxiv.org/abs/1806.03335 Notes: - This agent is implemented with TensorFlow 2 and Sonnet 2. For installation instructions for these libraries, see the README.md in the parent folder. - This implementation is potentially inefficient, as it does not parallelise computation across the ensemble for simplicity and readability. """ from typing import Any, Callable, NamedTuple, Sequence from bsuite.baselines import base from bsuite.baselines.utils import replay import dm_env from dm_env import specs import haiku as hk import jax from jax import lax import jax.numpy as jnp import numpy as np import optax import rlax class TrainingState(NamedTuple): params: hk.Params target_params: hk.Params opt_state: Any step: int class BootstrappedDqn(base.Agent): """Bootstrapped DQN with randomized prior functions.""" def __init__( self, obs_spec: specs.Array, action_spec: specs.DiscreteArray, network: Callable[[jnp.ndarray], jnp.ndarray], num_ensemble: int, batch_size: int, discount: float, replay_capacity: int, min_replay_size: int, sgd_period: int, target_update_period: int, optimizer: optax.GradientTransformation, mask_prob: float, noise_scale: float, epsilon_fn: Callable[[int], float] = lambda _: 0., seed: int = 1, ): # Transform the (impure) network into a pure function. network = hk.without_apply_rng(hk.transform(network)) # Define loss function, including bootstrap mask `m_t` & reward noise `z_t`. def loss(params: hk.Params, target_params: hk.Params, transitions: Sequence[jnp.ndarray]) -> jnp.ndarray: """Q-learning loss with added reward noise + half-in bootstrap.""" o_tm1, a_tm1, r_t, d_t, o_t, m_t, z_t = transitions q_tm1 = network.apply(params, o_tm1) q_t = network.apply(target_params, o_t) r_t += noise_scale * z_t batch_q_learning = jax.vmap(rlax.q_learning) td_error = batch_q_learning(q_tm1, a_tm1, r_t, discount * d_t, q_t) return jnp.mean(m_t * td_error**2) # Define update function for each member of ensemble.. @jax.jit def sgd_step(state: TrainingState, transitions: Sequence[jnp.ndarray]) -> TrainingState: """Does a step of SGD for the whole ensemble over `transitions`.""" gradients = jax.grad(loss)(state.params, state.target_params, transitions) updates, new_opt_state = optimizer.update(gradients, state.opt_state) new_params = optax.apply_updates(state.params, updates) return TrainingState( params=new_params, target_params=state.target_params, opt_state=new_opt_state, step=state.step + 1) # Initialize parameters and optimizer state for an ensemble of Q-networks. rng = hk.PRNGSequence(seed) dummy_obs = np.zeros((1, *obs_spec.shape), jnp.float32) initial_params = [ network.init(next(rng), dummy_obs) for _ in range(num_ensemble) ] initial_target_params = [ network.init(next(rng), dummy_obs) for _ in range(num_ensemble) ] initial_opt_state = [optimizer.init(p) for p in initial_params] # Internalize state. self._ensemble = [ TrainingState(p, tp, o, step=0) for p, tp, o in zip( initial_params, initial_target_params, initial_opt_state) ] self._forward = jax.jit(network.apply) self._sgd_step = sgd_step self._num_ensemble = num_ensemble self._optimizer = optimizer self._replay = replay.Replay(capacity=replay_capacity) # Agent hyperparameters. self._num_actions = action_spec.num_values self._batch_size = batch_size self._sgd_period = sgd_period self._target_update_period = target_update_period self._min_replay_size = min_replay_size self._epsilon_fn = epsilon_fn self._mask_prob = mask_prob # Agent state. self._active_head = self._ensemble[0] self._total_steps = 0 def select_action(self, timestep: dm_env.TimeStep) -> base.Action: """Select values via Thompson sampling, then use epsilon-greedy policy.""" self._total_steps += 1 if np.random.rand() < self._epsilon_fn(self._total_steps): return np.random.randint(self._num_actions) # Greedy policy, breaking ties uniformly at random. batched_obs = timestep.observation[None, ...] q_values = self._forward(self._active_head.params, batched_obs) action = np.random.choice(np.flatnonzero(q_values == q_values.max())) return int(action) def update( self, timestep: dm_env.TimeStep, action: base.Action, new_timestep: dm_env.TimeStep, ): """Update the agent: add transition to replay and periodically do SGD.""" # Thompson sampling: every episode pick a new Q-network as the policy. if new_timestep.last(): k = np.random.randint(self._num_ensemble) self._active_head = self._ensemble[k] # Generate bootstrapping mask & reward noise. mask = np.random.binomial(1, self._mask_prob, self._num_ensemble) noise = np.random.randn(self._num_ensemble) # Make transition and add to replay. transition = [ timestep.observation, action, np.float32(new_timestep.reward), np.float32(new_timestep.discount), new_timestep.observation, mask, noise, ] self._replay.add(transition) if self._replay.size < self._min_replay_size: return # Periodically sample from replay and do SGD for the whole ensemble. if self._total_steps % self._sgd_period == 0: transitions = self._replay.sample(self._batch_size) o_tm1, a_tm1, r_t, d_t, o_t, m_t, z_t = transitions for k, state in enumerate(self._ensemble): transitions = [o_tm1, a_tm1, r_t, d_t, o_t, m_t[:, k], z_t[:, k]] self._ensemble[k] = self._sgd_step(state, transitions) # Periodically update target parameters. for k, state in enumerate(self._ensemble): if state.step % self._target_update_period == 0: self._ensemble[k] = state._replace(target_params=state.params) def default_agent( obs_spec: specs.Array, action_spec: specs.DiscreteArray, seed: int = 0, num_ensemble: int = 20, ) -> BootstrappedDqn: """Initialize a Bootstrapped DQN agent with default parameters.""" # Define network. prior_scale = 5. hidden_sizes = [50, 50] def network(inputs: jnp.ndarray) -> jnp.ndarray: """Simple Q-network with randomized prior function.""" net = hk.nets.MLP([*hidden_sizes, action_spec.num_values]) prior_net = hk.nets.MLP([*hidden_sizes, action_spec.num_values]) x = hk.Flatten()(inputs) return net(x) + prior_scale * lax.stop_gradient(prior_net(x)) optimizer = optax.adam(learning_rate=1e-3) return BootstrappedDqn( obs_spec=obs_spec, action_spec=action_spec, network=network, batch_size=128, discount=.99, num_ensemble=num_ensemble, replay_capacity=10000, min_replay_size=128, sgd_period=1, target_update_period=4, optimizer=optimizer, mask_prob=1., noise_scale=0., epsilon_fn=lambda _: 0., seed=seed, )
from __future__ import print_function import unittest import argparse import re import tempfile import subprocess import threading import os import sys import inspect lldb = '' clrdir = '' workdir = '' corerun = '' sosplugin = '' assembly = '' fail_flag = '' fail_flag_lldb = '' summary_file = '' timeout = 0 regex = '' repeat = 0 def runWithTimeout(cmd): p = None def run(): global p p = subprocess.Popen(cmd, shell=True) p.communicate() thread = threading.Thread(target=run) thread.start() thread.join(timeout) if thread.is_alive(): with open(summary_file, 'a+') as summary: print('Timeout!', file=summary) p.kill() thread.join() class TestSosCommands(unittest.TestCase): def do_test(self, command): open(fail_flag, 'a').close() try: os.unlink(fail_flag_lldb) except: pass cmd = (('%s -b ' % lldb) + ("-k \"script open('%s', 'a').close()\" " % fail_flag_lldb) + ("-k 'quit' ") + ("--no-lldbinit ") + ("-O \"plugin load %s \" " % sosplugin) + ("-o \"script import testutils as test\" ") + ("-o \"script test.fail_flag = '%s'\" " % fail_flag) + ("-o \"script test.summary_file = '%s'\" " % summary_file) + ("-o \"script test.run('%s', '%s')\" " % (assembly, command)) + ("-o \"quit\" ") + (" -- %s %s > %s.log 2> %s.log.2" % (corerun, assembly, command, command))) runWithTimeout(cmd) self.assertFalse(os.path.isfile(fail_flag)) self.assertFalse(os.path.isfile(fail_flag_lldb)) try: os.unlink(fail_flag) except: pass try: os.unlink(fail_flag_lldb) except: pass def t_cmd_bpmd_nofuturemodule_module_function(self): self.do_test('t_cmd_bpmd_nofuturemodule_module_function') def t_cmd_bpmd_module_function(self): self.do_test('t_cmd_bpmd_module_function') def t_cmd_bpmd_module_function_iloffset(self): self.do_test('t_cmd_bpmd_module_function_iloffset') def t_cmd_bpmd_methoddesc(self): self.do_test('t_cmd_bpmd_methoddesc') def t_cmd_bpmd_clearall(self): self.do_test('t_cmd_bpmd_clearall') def t_cmd_clrstack(self): self.do_test('t_cmd_clrstack') def t_cmd_clrthreads(self): self.do_test('t_cmd_clrthreads') def t_cmd_clru(self): self.do_test('t_cmd_clru') def t_cmd_dumpclass(self): self.do_test('t_cmd_dumpclass') def t_cmd_dumpheap(self): self.do_test('t_cmd_dumpheap') def t_cmd_dumpil(self): self.do_test('t_cmd_dumpil') def t_cmd_dumplog(self): self.do_test('t_cmd_dumplog') def t_cmd_dumpmd(self): self.do_test('t_cmd_dumpmd') def t_cmd_dumpmodule(self): self.do_test('t_cmd_dumpmodule') def t_cmd_dumpmt(self): self.do_test('t_cmd_dumpmt') def t_cmd_dumpobj(self): self.do_test('t_cmd_dumpobj') def t_cmd_dumpstack(self): self.do_test('t_cmd_dumpstack') def t_cmd_dso(self): self.do_test('t_cmd_dso') def t_cmd_eeheap(self): self.do_test('t_cmd_eeheap') def t_cmd_eestack(self): self.do_test('t_cmd_eestack') def t_cmd_gcroot(self): self.do_test('t_cmd_gcroot') def t_cmd_ip2md(self): self.do_test('t_cmd_ip2md') def t_cmd_name2ee(self): self.do_test('t_cmd_name2ee') def t_cmd_pe(self): self.do_test('t_cmd_pe') def t_cmd_histclear(self): self.do_test('t_cmd_histclear') def t_cmd_histinit(self): self.do_test('t_cmd_histinit') def t_cmd_histobj(self): self.do_test('t_cmd_histobj') def t_cmd_histobjfind(self): self.do_test('t_cmd_histobjfind') def t_cmd_histroot(self): self.do_test('t_cmd_histroot') def t_cmd_sos(self): self.do_test('t_cmd_sos') def t_cmd_soshelp(self): self.do_test('t_cmd_soshelp') def generate_report(): report = [{'name': 'TOTAL', True: 0, False: 0, 'completed': True}] fail_messages = [] if not os.path.isfile(summary_file): print('No summary file to process!') return with open(summary_file, 'r') as summary: for line in summary: if line.startswith('new_suite: '): report.append({'name': line.split()[-1], True: 0, False: 0, 'completed': False, 'timeout': False}) elif line.startswith('True'): report[-1][True] += 1 elif line.startswith('False'): report[-1][False] += 1 elif line.startswith('Completed!'): report[-1]['completed'] = True elif line.startswith('Timeout!'): report[-1]['timeout'] = True elif line.startswith('!!! '): fail_messages.append(line.rstrip('\n')) for suite in report[1:]: report[0][True] += suite[True] report[0][False] += suite[False] report[0]['completed'] &= suite['completed'] for line in fail_messages: print(line) print() print('=' * 79) print('{:72} {:6}'.format('Test suite', 'Result')) print('-' * 79) for suite in report[1:]: if suite['timeout']: result = 'Timeout' elif suite[False]: result = 'Fail' elif not suite['completed']: result = 'Crash' elif suite[True]: result = 'Success' else: result = 'Please, report' print('{:68} {:>10}'.format(suite['name'], result)) print('=' * 79) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--lldb', default='lldb') parser.add_argument('--clrdir', default='.') parser.add_argument('--workdir', default='.') parser.add_argument('--assembly', default='Test.exe') parser.add_argument('--timeout', default=90) parser.add_argument('--regex', default='t_cmd_') parser.add_argument('--repeat', default=1) parser.add_argument('unittest_args', nargs='*') args = parser.parse_args() lldb = args.lldb clrdir = args.clrdir workdir = args.workdir assembly = args.assembly timeout = int(args.timeout) regex = args.regex repeat = int(args.repeat) print("lldb: %s" % lldb) print("clrdir: %s" % clrdir) print("workdir: %s" % workdir) print("assembly: %s" % assembly) print("timeout: %i" % timeout) print("regex: %s" % regex) print("repeat: %i" % repeat) corerun = os.path.join(clrdir, 'corerun') sosplugin = os.path.join(clrdir, 'libsosplugin.so') if os.name != 'posix': print('Not implemented: corerun.exe, sosplugin.dll?') exit(1) print("corerun: %s" % corerun) print("sosplugin: %s" % sosplugin) fail_flag = os.path.join(workdir, 'fail_flag') fail_flag_lldb = os.path.join(workdir, 'fail_flag.lldb') print("fail_flag: %s" % fail_flag) print("fail_flag_lldb: %s" % fail_flag_lldb) summary_file = os.path.join(workdir, 'summary') print("summary_file: %s" % summary_file) try: os.unlink(summary_file) except: pass sys.argv[1:] = args.unittest_args suite = unittest.TestSuite() all_tests = inspect.getmembers(TestSosCommands, predicate=inspect.ismethod) for (test_name, test_func) in all_tests: if re.match(regex, test_name): suite.addTest(TestSosCommands(test_name)) unittest.TextTestRunner(verbosity=1).run(suite) generate_report()
#!/usr/bin/env python """ Update an ROI IR timeseries CSV file. """ from __future__ import absolute_import from __future__ import print_function import argparse import os import sys from configparser import ConfigParser as configparser from datetime import timedelta # use this because numpy/openblas is automatically multi-threaded. os.environ["OMP_NUM_THREADS"] = "1" os.environ["MKL_NUM_THREADS"] = "1" import numpy as np from PIL import Image import vegindex as vi from vegindex.ir_roitimeseries import IRROITimeSeries from vegindex.vegindex import get_roi_list from . import utils # use this because numpy/openblas is automatically multi-threaded. os.environ["OMP_NUM_THREADS"] = "1" # set vars # you can set the archive directory to somewhere else for testing by # using the env variable, PHENOCAM_ARCHIVE_DIR. archive_dir = vi.config.archive_dir debug = False default_resize = vi.config.RESIZE # if __name__ == "__main__": def main(): # set up command line argument processing parser = argparse.ArgumentParser() # options parser.add_argument( "-v", "--verbose", help="increase output verbosity", action="store_true", default=False, ) parser.add_argument( "-n", "--dry-run", help="Process data but don't save results", action="store_true", default=False, ) # positional arguments parser.add_argument("site", help="PhenoCam site name") parser.add_argument("roiname", help="ROI name, e.g. canopy_0001") # get args args = parser.parse_args() sitename = args.site roiname = args.roiname verbose = args.verbose dryrun = args.dry_run if verbose: print("site: {0}".format(sitename)) print("roiname: {0}".format(roiname)) print("verbose: {0}".format(verbose)) print("dryrun: {0}".format(dryrun)) # set input/output filename inname = "%s_%s_IR_roistats.csv" % (sitename, roiname) outname = inname inpath = os.path.join(archive_dir, sitename, "ROI", outname) outpath = inpath if verbose: print("output file: {0}".format(outname)) # get ROI list roi_list = get_roi_list(sitename, roiname) # read existing CSV file - since this is an update throw # exception if the file doesn't already exist try: roits = IRROITimeSeries(site=sitename, ROIListID=roiname) roits.readCSV(inpath) except IOError: errmsg = "Unable to read IR CSV file: {0}\n".format(outpath) sys.stderr.write(errmsg) sys.exit(1) # read in config file for this site if it exists config_file = "{0}_{1}.cfg".format(sitename, roiname) config_path = os.path.join(archive_dir, sitename, "ROI", config_file) if os.path.exists(config_path): cfgparser = configparser(defaults={"resize": str(default_resize)}) cfgparser.read(config_path) if cfgparser.has_section("roi_timeseries"): resizeFlg = cfgparser.getboolean("roi_timeseries", "resize") else: resizeFlg = default_resize # verify that config matches CSV header! if resizeFlg != roits.resizeFlg: errmsg = "resize flag from config doesn't match CSV header\n" sys.stderr.write(errmsg) sys.exit(1) else: resizeFlg = default_resize # print config values if verbose: print("") print("ROI timeseries config:") print("======================") print("roi_list: ", "{0}_{1}_roi.csv".format(sitename, roiname)) if os.path.exists(config_path): print("config file: {0}".format(config_file)) else: print("config file: None") print("Resize Flag: ", resizeFlg) # get list of images already in CSV old_imglist = roits.get_image_list() # find last dt in current timeseries CSV nlast = len(roits.rows) - 1 dt_last = roits.rows[nlast]["datetime"] # add five seconds so that we don't reprocess last image dt_last = dt_last + timedelta(seconds=5) # start with images newer than last dt dt_start = dt_last if verbose: print("last image at: {0}".format(dt_last)) # loop over mask entries in ROI list nimage = 0 nupdate = 0 for imask, roimask in enumerate(roi_list.masks): roi_startDT = roimask["start_dt"] roi_endDT = roimask["end_dt"] # skip this ROI maskfile if it's validity interval ends # before last date before update if roi_endDT < dt_start: continue # start_date = roi_startDT.date() # end_date = roi_endDT.date() # start_time = roi_startDT.time() # end_time = roi_endDT.time() maskfile = roimask["maskfile"] # okay set the start datetime to the larger of dt_start (from # last row of existing timeseries CSV) and the beginning of # the ROI validity. We need to do this for the case where # there is a gap between last row of CSV and beginning of next # validity interval. This will often be the case when there # are a series of "transitional images" between two # stable/useful camera positions. if dt_start < roi_startDT: dt_start = roi_startDT mask_path = os.path.join(archive_dir, sitename, "ROI", maskfile) # print roi_path try: mask_img = Image.open(mask_path) except Exception: sys.stderr.write("Unable to open ROI mask file\n") sys.exit(1) # check that mask_img is in expected form mask_mode = mask_img.mode if mask_mode != "L": # convert to 8-bit mask mask_img = mask_img.convert("L") # make a numpy mask roimask = np.asarray(mask_img, dtype=np.bool8) # get list of images for this timeperiod imglist = utils.getsiteimglist( sitename, getIR=True, startDT=dt_start, endDT=roi_endDT ) nimage += len(imglist) for impath in imglist: if debug: print(maskfile, impath) # check if image already exists in list -- just to be # sure! fn = os.path.basename(impath) try: row_index = old_imglist.index(fn) except Exception: row_index = None # append/insert row for this image/mask - shouldn't happen # but just to be on safe side! if row_index: roits_row = roits.insert_row(impath, roimask, imask + 1) else: roits_row = roits.append_row(impath, roimask, imask + 1) # check that we could append/insert a row if roits_row: nupdate += 1 else: continue if verbose: csvstr = roits.format_csvrow(roits_row) print(csvstr) if debug: if nupdate == 10: break # output CSV file if dryrun: nout = 0 else: nout = roits.writeCSV(outpath) print("Images processed: %d" % (nimage,)) print("Images added to CSV: %d" % (nupdate,)) print("Total: %d" % (nout,))
""" Templating for ops docstrings """ from typing import Dict, Optional def _make_flex_doc(op_name, typ): """ Make the appropriate substitutions for the given operation and class-typ into either _flex_doc_SERIES or _flex_doc_FRAME to return the docstring to attach to a generated method. Parameters ---------- op_name : str {'__add__', '__sub__', ... '__eq__', '__ne__', ...} typ : str {series, 'dataframe']} Returns ------- doc : str """ op_name = op_name.replace("__", "") op_desc = _op_descriptions[op_name] if op_name.startswith("r"): equiv = "other " + op_desc["op"] + " " + typ else: equiv = typ + " " + op_desc["op"] + " other" if typ == "series": base_doc = _flex_doc_SERIES doc_no_examples = base_doc.format( desc=op_desc["desc"], op_name=op_name, equiv=equiv, reverse=op_desc["reverse"], ) if op_desc["series_examples"]: doc = doc_no_examples + op_desc["series_examples"] else: doc = doc_no_examples elif typ == "dataframe": base_doc = _flex_doc_FRAME doc = base_doc.format( desc=op_desc["desc"], op_name=op_name, equiv=equiv, reverse=op_desc["reverse"], ) else: raise AssertionError("Invalid typ argument.") return doc _add_example_SERIES = """ Examples -------- >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.add(b, fill_value=0) a 2.0 b 1.0 c 1.0 d 1.0 e NaN dtype: float64 """ _sub_example_SERIES = """ Examples -------- >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.subtract(b, fill_value=0) a 0.0 b 1.0 c 1.0 d -1.0 e NaN dtype: float64 """ _mul_example_SERIES = """ Examples -------- >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.multiply(b, fill_value=0) a 1.0 b 0.0 c 0.0 d 0.0 e NaN dtype: float64 """ _div_example_SERIES = """ Examples -------- >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divide(b, fill_value=0) a 1.0 b inf c inf d 0.0 e NaN dtype: float64 """ _floordiv_example_SERIES = """ Examples -------- >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.floordiv(b, fill_value=0) a 1.0 b NaN c NaN d 0.0 e NaN dtype: float64 """ _mod_example_SERIES = """ Examples -------- >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.mod(b, fill_value=0) a 0.0 b NaN c NaN d 0.0 e NaN dtype: float64 """ _pow_example_SERIES = """ Examples -------- >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.pow(b, fill_value=0) a 1.0 b 1.0 c 1.0 d 0.0 e NaN dtype: float64 """ _op_descriptions = { # Arithmetic Operators "add": { "op": "+", "desc": "Addition", "reverse": "radd", "series_examples": _add_example_SERIES, }, "sub": { "op": "-", "desc": "Subtraction", "reverse": "rsub", "series_examples": _sub_example_SERIES, }, "mul": { "op": "*", "desc": "Multiplication", "reverse": "rmul", "series_examples": _mul_example_SERIES, "df_examples": None, }, "mod": { "op": "%", "desc": "Modulo", "reverse": "rmod", "series_examples": _mod_example_SERIES, }, "pow": { "op": "**", "desc": "Exponential power", "reverse": "rpow", "series_examples": _pow_example_SERIES, "df_examples": None, }, "truediv": { "op": "/", "desc": "Floating division", "reverse": "rtruediv", "series_examples": _div_example_SERIES, "df_examples": None, }, "floordiv": { "op": "//", "desc": "Integer division", "reverse": "rfloordiv", "series_examples": _floordiv_example_SERIES, "df_examples": None, }, "divmod": { "op": "divmod", "desc": "Integer division and modulo", "reverse": "rdivmod", "series_examples": None, "df_examples": None, }, # Comparison Operators "eq": {"op": "==", "desc": "Equal to", "reverse": None, "series_examples": None}, "ne": { "op": "!=", "desc": "Not equal to", "reverse": None, "series_examples": None, }, "lt": {"op": "<", "desc": "Less than", "reverse": None, "series_examples": None}, "le": { "op": "<=", "desc": "Less than or equal to", "reverse": None, "series_examples": None, }, "gt": {"op": ">", "desc": "Greater than", "reverse": None, "series_examples": None}, "ge": { "op": ">=", "desc": "Greater than or equal to", "reverse": None, "series_examples": None, }, } # type: Dict[str, Dict[str, Optional[str]]] _op_names = list(_op_descriptions.keys()) for key in _op_names: reverse_op = _op_descriptions[key]["reverse"] if reverse_op is not None: _op_descriptions[reverse_op] = _op_descriptions[key].copy() _op_descriptions[reverse_op]["reverse"] = key _flex_doc_SERIES = """ Return {desc} of series and other, element-wise (binary operator `{op_name}`). Equivalent to ``{equiv}``, but with support to substitute a fill_value for missing data in one of the inputs. Parameters ---------- other : Series or scalar value fill_value : None or float value, default None (NaN) Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result will be missing. level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level. Returns ------- Series The result of the operation. See Also -------- Series.{reverse} """ _arith_doc_FRAME = """ Binary operator %s with support to substitute a fill_value for missing data in one of the inputs Parameters ---------- other : Series, DataFrame, or constant axis : {0, 1, 'index', 'columns'} For Series input, axis to match Series index on fill_value : None or float value, default None Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns ------- result : DataFrame Notes ----- Mismatched indices will be unioned together """ _flex_doc_FRAME = """ Get {desc} of dataframe and other, element-wise (binary operator `{op_name}`). Equivalent to ``{equiv}``, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, `{reverse}`. Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`) to arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`. Parameters ---------- other : scalar, sequence, Series, or DataFrame Any single or multiple element data structure, or list-like object. axis : {{0 or 'index', 1 or 'columns'}} Whether to compare by the index (0 or 'index') or columns (1 or 'columns'). For Series input, axis to match Series index on. level : int or label Broadcast across a level, matching Index values on the passed MultiIndex level. fill_value : float or None, default None Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. Returns ------- DataFrame Result of the arithmetic operation. See Also -------- DataFrame.add : Add DataFrames. DataFrame.sub : Subtract DataFrames. DataFrame.mul : Multiply DataFrames. DataFrame.div : Divide DataFrames (float division). DataFrame.truediv : Divide DataFrames (float division). DataFrame.floordiv : Divide DataFrames (integer division). DataFrame.mod : Calculate modulo (remainder after division). DataFrame.pow : Calculate exponential power. Notes ----- Mismatched indices will be unioned together. Examples -------- >>> df = pd.DataFrame({{'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({{'angles': [0, 3, 4]}}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({{'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0 """ _flex_comp_doc_FRAME = """ Get {desc} of dataframe and other, element-wise (binary operator `{op_name}`). Among flexible wrappers (`eq`, `ne`, `le`, `lt`, `ge`, `gt`) to comparison operators. Equivalent to `==`, `=!`, `<=`, `<`, `>=`, `>` with support to choose axis (rows or columns) and level for comparison. Parameters ---------- other : scalar, sequence, Series, or DataFrame Any single or multiple element data structure, or list-like object. axis : {{0 or 'index', 1 or 'columns'}}, default 'columns' Whether to compare by the index (0 or 'index') or columns (1 or 'columns'). level : int or label Broadcast across a level, matching Index values on the passed MultiIndex level. Returns ------- DataFrame of bool Result of the comparison. See Also -------- DataFrame.eq : Compare DataFrames for equality elementwise. DataFrame.ne : Compare DataFrames for inequality elementwise. DataFrame.le : Compare DataFrames for less than inequality or equality elementwise. DataFrame.lt : Compare DataFrames for strictly less than inequality elementwise. DataFrame.ge : Compare DataFrames for greater than inequality or equality elementwise. DataFrame.gt : Compare DataFrames for strictly greater than inequality elementwise. Notes ----- Mismatched indices will be unioned together. `NaN` values are considered different (i.e. `NaN` != `NaN`). Examples -------- >>> df = pd.DataFrame({{'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300 Comparison with a scalar, using either the operator or method: >>> df == 100 cost revenue A False True B False False C True False >>> df.eq(100) cost revenue A False True B False False C True False When `other` is a :class:`Series`, the columns of a DataFrame are aligned with the index of `other` and broadcast: >>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True Use the method to control the broadcast axis: >>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True When comparing to an arbitrary sequence, the number of columns must match the number elements in `other`: >>> df == [250, 100] cost revenue A True True B False False C False False Use the method to control the axis: >>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False Compare to a DataFrame of different shape. >>> other = pd.DataFrame({{'revenue': [300, 250, 100, 150]}}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150 >>> df.gt(other) cost revenue A False False B False False C False True D False False Compare to a MultiIndex by level. >>> df_multindex = pd.DataFrame({{'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225 >>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False """
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Inverse Cloze Task model.""" import functools from bert import optimization from language.common.utils import tensor_utils from language.common.utils import tpu_utils from language.orqa.datasets import ict_dataset import tensorflow.compat.v1 as tf import tensorflow_hub as hub def module_fn(is_training, params): """Module function.""" input_ids = tf.placeholder(tf.int32, [None, None], "input_ids") input_mask = tf.placeholder(tf.int32, [None, None], "input_mask") segment_ids = tf.placeholder(tf.int32, [None, None], "segment_ids") bert_module = hub.Module( params["bert_hub_module_path"], tags={"train"} if is_training else {}, trainable=True) output_layer = bert_module( inputs=dict( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids), signature="tokens", as_dict=True)["pooled_output"] projected_emb = tf.layers.dense(output_layer, params["projection_size"]) projected_emb = tf.keras.layers.LayerNormalization(axis=-1)(projected_emb) if is_training: projected_emb = tf.nn.dropout(projected_emb, rate=0.1) hub.add_signature( name="projected", inputs=dict( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids), outputs=projected_emb) hub.add_signature( name="tokenization_info", inputs={}, outputs=bert_module(signature="tokenization_info", as_dict=True)) def create_ict_module(params, mode): """Create hub module.""" tags_and_args = [] for is_training in (True, False): tags = set() if is_training: tags.add("train") tags_and_args.append((tags, dict(is_training=is_training))) ict_module_spec = hub.create_module_spec( functools.partial(module_fn, params=params), tags_and_args=tags_and_args) ict_module = hub.Module( ict_module_spec, tags={"train"} if mode == tf.estimator.ModeKeys.TRAIN else {}, trainable=True) hub.register_module_for_export(ict_module, "ict") return ict_module def model_fn(features, labels, mode, params): """Model function.""" del labels # [local_batch_size, block_seq_len] block_ids = features["block_ids"] block_mask = features["block_mask"] block_segment_ids = features["block_segment_ids"] # [local_batch_size, query_seq_len] query_ids = features["query_ids"] query_mask = features["query_mask"] local_batch_size = tensor_utils.shape(block_ids, 0) tf.logging.info("Model batch size: %d", local_batch_size) ict_module = create_ict_module(params, mode) query_emb = ict_module( inputs=dict( input_ids=query_ids, input_mask=query_mask, segment_ids=tf.zeros_like(query_ids)), signature="projected") block_emb = ict_module( inputs=dict( input_ids=block_ids, input_mask=block_mask, segment_ids=block_segment_ids), signature="projected") if params["use_tpu"]: # [global_batch_size, hidden_size] block_emb = tpu_utils.cross_shard_concat(block_emb) # [global_batch_size, local_batch_size] labels = tpu_utils.cross_shard_pad(tf.eye(local_batch_size)) # [local_batch_size] labels = tf.argmax(labels, 0) else: # [local_batch_size] labels = tf.range(local_batch_size) tf.logging.info("Global batch size: %s", tensor_utils.shape(block_emb, 0)) # [batch_size, global_batch_size] logits = tf.matmul(query_emb, block_emb, transpose_b=True) # [] loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) train_op = optimization.create_optimizer( loss=loss, init_lr=params["learning_rate"], num_train_steps=params["num_train_steps"], num_warmup_steps=min(10000, max(100, int(params["num_train_steps"]/10))), use_tpu=params["use_tpu"] if "use_tpu" in params else False) predictions = tf.argmax(logits, -1) metric_args = [query_mask, block_mask, labels, predictions, features["mask_query"]] def metric_fn(query_mask, block_mask, labels, predictions, mask_query): masked_accuracy = tf.metrics.accuracy( labels=labels, predictions=predictions, weights=mask_query) unmasked_accuracy = tf.metrics.accuracy( labels=labels, predictions=predictions, weights=tf.logical_not(mask_query)) return dict( query_non_padding=tf.metrics.mean(query_mask), block_non_padding=tf.metrics.mean(block_mask), actual_mask_ratio=tf.metrics.mean(mask_query), masked_accuracy=masked_accuracy, unmasked_accuracy=unmasked_accuracy) if params["use_tpu"]: return tf.estimator.tpu.TPUEstimatorSpec( mode=mode, loss=loss, train_op=train_op, eval_metrics=(metric_fn, metric_args)) else: return tf.estimator.EstimatorSpec( mode=mode, loss=loss, train_op=train_op, eval_metric_ops=metric_fn(*metric_args), predictions=predictions) def input_fn(params, is_train): """An input function satisfying the tf.estimator API.""" dataset = ict_dataset.get_dataset( examples_path=params["examples_path"], mask_rate=params["mask_rate"], bert_hub_module_path=params["bert_hub_module_path"], query_seq_len=params["query_seq_len"], block_seq_len=params["block_seq_len"], num_block_records=params["num_block_records"], num_input_threads=params["num_input_threads"]) batch_size = params["batch_size"] if is_train else params["eval_batch_size"] dataset = dataset.batch(batch_size, drop_remainder=True) return dataset def exporter(): """Create exporters.""" serving_input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn( features=dict( block_ids=tf.placeholder(tf.int32, [None, None]), block_mask=tf.placeholder(tf.int32, [None, None]), block_segment_ids=tf.placeholder(tf.int32, [None, None]), query_ids=tf.placeholder(tf.int32, [None, None]), query_mask=tf.placeholder(tf.int32, [None, None]), mask_query=tf.placeholder(tf.bool, [None])), default_batch_size=8) return hub.LatestModuleExporter("tf_hub", serving_input_fn, exports_to_keep=1)
from __future__ import print_function from io import open import vstruct import vstruct.defs.inet as vs_inet from vstruct.primitives import * PCAP_LINKTYPE_ETHER = 1 PCAP_LINKTYPE_RAW = 101 PCAP_LINKTYPE_LINUX_SLL = 113 PCAP_DLT_RAW = 12 PCAPNG_BOM = 0x1A2B3C4D OPT_ENDOFOPT = 0 OPT_COMMENT = 1 #PCAPNG_BLOCKTYPE_SECTION_HEADER options OPT_SHB_HARDWARE = 2 OPT_SHB_OS = 3 OPT_SHB_USERAPPL = 4 #PCAPNG_INTERFACE_DESCRIPTION_BLOCK options OPT_IF_NAME = 2 OPT_IF_DESCRIPTION = 3 OPT_IF_IPV4ADDR = 4 OPT_IF_IPV6ADDR = 5 OPT_IF_MACADDR = 6 OPT_IF_EUIADDR = 7 OPT_IF_SPEED = 8 OPT_IF_TSRESOL = 9 OPT_IF_TZONE = 10 OPT_IF_FILTER = 11 OPT_IF_OS = 12 OPT_IF_FCSLEN = 13 OPT_IF_TSOFFSET = 14 # options for PCAPNG_ENHANCED_PACKET_BLOCK OPT_EPB_FLAGS = 2 OPT_EPB_HASH = 3 OPT_EPB_DROPCOUNT = 4 # values used in the blocktype field PCAPNG_BLOCKTYPE_INTERFACE_DESCRIPTION = 0x00000001 PCAPNG_BLOCKTYPE_PACKET = 0x00000002 PCAPNG_BLOCKTYPE_SIMPLE_PACKET = 0x00000003 PCAPNG_BLOCKTYPE_NAME_RESOLUTION = 0x00000004 PCAPNG_BLOCKTYPE_INTERFACE_STATS = 0x00000005 PCAPNG_BLOCKTYPE_ENHANCED_PACKET = 0x00000006 PCAPNG_BLOCKTYPE_SECTION_HEADER = 0x0a0d0d0a def pad4bytes(size): if (size % 4) == 0: return size return size + (4 -( size % 4)) class PCAP_FILE_HEADER(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.magic = v_uint32() self.vers_maj = v_uint16() self.vers_min = v_uint16() self.thiszone = v_uint32() self.sigfigs = v_uint32() self.snaplen = v_uint32() self.linktype = v_uint32() class PCAP_PACKET_HEADER(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.tvsec = v_uint32() self.tvusec = v_uint32() self.caplen = v_uint32() self.len = v_uint32() class PCAPNG_GENERIC_BLOCK_HEADER(vstruct.VStruct): ''' Used to read the block type & size when parsing the file ''' def __init__(self, bigend=False): vstruct.VStruct.__init__(self) self.blocktype = v_uint32(bigend=bigend) self.blocksize = v_uint32(bigend=bigend) class PCAPNG_BLOCK_PARENT(vstruct.VStruct): ''' Used to inherit the weird parsing style where there's variable length options at the end, followed by the duplicate block total length ''' def __init__(self, bigend=False): vstruct.VStruct.__init__(self) #non-vstruct field, set during checking BOM self.bigend = False def vsParse(self, bytez, offset=0): startoff = offset roff = vstruct.VStruct.vsParse(self, bytez, offset=offset) #(blocksize-4): because we still need the trailing blocksize2 # apparently blocks can completely omit the options list and not # even have the OPT_ENDOFOPT entry while (roff < len(bytez)) and ((roff-startoff) < (self.blocksize-4)): opt = PCAPNG_OPTION(bigend=self.bigend) roff = opt.vsParse(bytez, roff) if opt.code == OPT_ENDOFOPT: break self.options.vsAddElement(opt) # append trailing blocksize2 bs2 = v_uint32(bigend=self.bigend) self.vsAddField('blocksize2', bs2) roff = bs2.vsParse(bytez, roff) #pad, plus we skip return pad4bytes(roff) class PCAPNG_SECTION_HEADER_BLOCK(PCAPNG_BLOCK_PARENT): def __init__(self, bigend=False): PCAPNG_BLOCK_PARENT.__init__(self, bigend) self.blocktype = v_uint32(bigend=bigend) self.blocksize = v_uint32(bigend=bigend) self.bom = v_uint32(bigend=bigend) self.vers_maj = v_uint16(bigend=bigend) self.vers_min = v_uint16(bigend=bigend) self.sectionsize = v_uint64(bigend=bigend) self.options = vstruct.VArray([]) #blocksize2: dynamcally added in vsParse() #self.blocksize2 = v_uint32(bigend=bigend) def pcb_bom(self): bom = self.vsGetField('bom') if self.bom == PCAPNG_BOM: #if it matches, then the endian of bom is correct self.bigend = bom._vs_bigend else: self.bigend = not bom._vs_bigend class PCAPNG_OPTION(vstruct.VStruct): def __init__(self, bigend=False): vstruct.VStruct.__init__(self) self.code = v_uint16(bigend=bigend) self.optsize = v_uint16(bigend=bigend) self.bytes = v_bytes(0) def pcb_optsize(self): size = pad4bytes(self.optsize) self.vsGetField('bytes').vsSetLength(size) class PCAPNG_INTERFACE_DESCRIPTION_BLOCK(PCAPNG_BLOCK_PARENT): def __init__(self, bigend=False): PCAPNG_BLOCK_PARENT.__init__(self, bigend) self.blocktype = v_uint32(bigend=bigend) self.blocksize = v_uint32(bigend=bigend) self.linktype = v_uint16(bigend=bigend) self.reserved = v_uint16(bigend=bigend) self.snaplen = v_uint32(bigend=bigend) self.options = vstruct.VArray([]) #blocksize2: dynamcally added in vsParse() #self.blocksize2 = v_uint32(bigend=bigend) def vsParse(self, bytez, offset=0): ''' We need the tsresol value to adjust timestamp values, so pull it out here ''' ret = PCAPNG_BLOCK_PARENT.vsParse(self, bytez, offset=0) self.tsresol = None #default offset is 0 self.tsoffset = 0 #sys.stderr.write('PCAPNG_INTERFACE_DESCRIPTION_BLOCK: searching options') for i, opt in self.options: if opt.code == OPT_IF_TSRESOL: self.tsresol = opt.bytes[0] #sys.stderr.write('Got tsresol: 0x%x\n' % self.tsresol) elif opt.code == OPT_IF_TSOFFSET: fmt = '<Q' if self.bigend: fmt = '>Q' self.tsoffset = struct.unpack_from(fmt, opt.bytes)[0] #sys.stderr.write('Got tsoffset: 0x%x\n' % self.tsoffset) return ret class PCAPNG_ENHANCED_PACKET_BLOCK(PCAPNG_BLOCK_PARENT): def __init__(self, bigend=False): PCAPNG_BLOCK_PARENT.__init__(self, bigend) self.blocktype = v_uint32(bigend=bigend) self.blocksize = v_uint32(bigend=bigend) self.interfaceid = v_uint32(bigend=bigend) self.tstamphi = v_uint32(bigend=bigend) self.tstamplow = v_uint32(bigend=bigend) self.caplen = v_uint32(bigend=bigend) self.packetlen = v_uint32(bigend=bigend) self.data = v_bytes(0) self.options = vstruct.VArray([]) #blocksize2: dynamcally added in vsParse() #self.blocksize2 = v_uint32(bigend=bigend) def pcb_caplen(self): size = pad4bytes(self.caplen) self.vsGetField('data').vsSetLength(size) def setPcapTimestamp(self, idb): ''' Adds a libpcap compatible tvsec and tvusec fields, based on the pcapng timestamp ''' #orange left off here self.snaplen = idb.snaplen tstamp = (self.tstamphi << 32) | self.tstamplow scale = 1000000 if idb.tsresol is None: #if not set, capture assumes 10e-6 resolution pass elif (0x80 & idb.tsresol) == 0: # remaining bits are resolution, to a negative power of 10 scale = 10**(idb.tsresol & 0x7f) else: # remaining bits are resolution, to a negative power of 2 scale = 1 << (idb.tsresol & 0x7f) self.tvsec = (tstamp / scale) + idb.tsoffset self.tvusec = tstamp % scale class PCAPNG_SIMPLE_PACKET_BLOCK(vstruct.VStruct): ''' Note: no variable length options fields, so inheriting from vstruct directly ''' def __init__(self, bigend=False): vstruct.VStruct.__init__(self) self.blocktype = v_uint32(bigend=bigend) self.blocksize = v_uint32(bigend=bigend) self.packetlen = v_uint32(bigend=bigend) self.data = v_bytes(0) self.blocksize2 = v_uint32(bigend=bigend) def pcb_blocksize(self): self.caplen = pad4bytes(self.blocksize - 16) self.vsGetField('data').vsSetLength(self.caplen) def setPcapTimestamp(self, idb): #no timestamp in this type of block :( self.tvsec = idb.tsoffset self.tvusec = 0 def iterPcapFileName(filename, reuse=False): fd = open(filename, 'rb') for x in iterPcapFile(fd, reuse=reuse): yield x def iterPcapFile(fd, reuse=False): ''' Figure out if it's a tcpdump format, or pcapng ''' h = PCAP_FILE_HEADER() b = fd.read(len(h)) h.vsParse(b, fast=True) fd.seek(0) if h.magic == PCAPNG_BLOCKTYPE_SECTION_HEADER: return _iterPcapNgFile(fd, reuse) return _iterPcapFile(fd, reuse) def _iterPcapFile(fd, reuse=False): h = PCAP_FILE_HEADER() b = fd.read(len(h)) h.vsParse(b, fast=True) linktype = h.linktype if linktype not in (PCAP_LINKTYPE_ETHER, PCAP_LINKTYPE_RAW): raise Exception('PCAP Link Type %d Not Supported Yet!' % linktype) pkt = PCAP_PACKET_HEADER() eII = vs_inet.ETHERII() pktsize = len(pkt) eIIsize = len(eII) ipv4 = vs_inet.IPv4() ipv4size = 20 tcp_hdr = vs_inet.TCP() udp_hdr = vs_inet.UDP() icmp_hdr = vs_inet.ICMP() go = True while go: hdr = fd.read(pktsize) if len(hdr) != pktsize: break pkt.vsParse(hdr, fast=True) b = fd.read(pkt.caplen) offset = 0 if linktype == PCAP_LINKTYPE_ETHER: if len(b) < eIIsize: continue eII.vsParse(b, 0, fast=True) # No support for non-ip protocol yet... if eII.etype not in (vs_inet.ETH_P_IP,vs_inet.ETH_P_VLAN): continue offset += eIIsize if eII.etype == vs_inet.ETH_P_VLAN: offset += 4 elif linktype == PCAP_LINKTYPE_RAW: pass #print(eII.tree()) if not reuse: ipv4 = vs_inet.IPv4() if (len(b) - offset) < ipv4size: continue ipv4.vsParse(b, offset, fast=True) # Make b *only* the IP datagram bytes... b = b[offset:offset+ipv4.totlen] offset = 0 offset += len(ipv4) tsize = len(b) - offset if ipv4.proto == vs_inet.IPPROTO_TCP: if tsize < 20: continue if not reuse: tcp_hdr = vs_inet.TCP() tcp_hdr.vsParse(b, offset, fast=True) offset += len(tcp_hdr) pdata = b[offset:] yield pkt,ipv4,tcp_hdr,pdata elif ipv4.proto == vs_inet.IPPROTO_UDP: if tsize < 8: continue if not reuse: udp_hdr = vs_inet.UDP() udp_hdr.vsParse(b, offset, fast=True) offset += len(udp_hdr) pdata = b[offset:] yield pkt,ipv4,udp_hdr,pdata elif ipv4.proto == vs_inet.IPPROTO_ICMP: if tsize < 4: continue if not reuse: icmp_hdr = vs_inet.ICMP() icmp_hdr.vsParse(b, offset, fast=True) offset += len(icmp_hdr) pdata = b[offset:] yield pkt,ipv4,icmp_hdr,pdata else: pass #print('UNHANDLED IP PROTOCOL: %d' % ipv4.proto) def _iterPcapNgFile(fd, reuse=False): header = PCAPNG_GENERIC_BLOCK_HEADER() ifaceidx = 0 ifacedict = {} roff = 0 bigend = False curroff = fd.tell() b0 = fd.read(len(header)) fd.seek(curroff) while len(b0) == len(header): header.vsParse(b0, fast=True) body = fd.read(header.blocksize) if header.blocktype == PCAPNG_BLOCKTYPE_SECTION_HEADER: shb = PCAPNG_SECTION_HEADER_BLOCK() roff = shb.vsParse(body) bigend = shb.bigend #reset interface stuff since we're in a new section ifaceidx = 0 ifacedict = {} elif header.blocktype == PCAPNG_BLOCKTYPE_INTERFACE_DESCRIPTION: idb = PCAPNG_INTERFACE_DESCRIPTION_BLOCK(bigend) roff = idb.vsParse(body) #save off the interface for later reference ifacedict[ifaceidx] = idb ifaceidx += 1 elif header.blocktype == PCAPNG_BLOCKTYPE_SIMPLE_PACKET: spb = PCAPNG_SIMPLE_PACKET_BLOCK(bigend) roff = spb.vsParse(body) tup = _parsePcapngPacketBytes(iface.linktype, spb) if tup is not None: #if it is None, just fall through & read next block yield tup elif header.blocktype == PCAPNG_BLOCKTYPE_ENHANCED_PACKET: epb = PCAPNG_ENHANCED_PACKET_BLOCK(bigend) roff = epb.vsParse(body) iface = ifacedict.get(epb.interfaceid) epb.setPcapTimestamp(iface) tup = _parsePcapngPacketBytes(iface.linktype, epb) if tup is not None: #if tup is None, just fall through & read next block yield tup #TODO: other blocks needed? #PCAPNG_BLOCKTYPE_PACKET (obsolete) #PCAPNG_BLOCKTYPE_NAME_RESOLUTION: #PCAPNG_BLOCKTYPE_INTERFACE_STATS: else: #print('Unknown block type: 0x%08x: 0x%08x 0x%08x bytes' % (roff, header.blocktype, header.blocksize)) pass curroff = fd.tell() b0 = fd.read(len(header)) fd.seek(curroff) def _parsePcapngPacketBytes(linktype, pkt): ''' pkt is either a parsed PCAPNG_SIMPLE_PACKET_BLOCK or PCAPNG_ENHANCED_PACKET_BLOCK On success Returns tuple (pcapng_pkt, ipv4_vstruct, transport_vstruc, pdata) Returns None if the packet can't be parsed ''' if linktype not in (PCAP_LINKTYPE_ETHER, PCAP_LINKTYPE_RAW): raise Exception('PCAP Link Type %d Not Supported Yet!' % linktype) #pkt = PCAP_PACKET_HEADER() eII = vs_inet.ETHERII() eIIsize = len(eII) offset = 0 if linktype == PCAP_LINKTYPE_ETHER: if len(pkt.data) < eIIsize: return None eII.vsParse(pkt.data, 0, fast=True) # No support for non-ip protocol yet... if eII.etype not in (vs_inet.ETH_P_IP,vs_inet.ETH_P_VLAN): return None offset += eIIsize if eII.etype == vs_inet.ETH_P_VLAN: offset += 4 elif linktype == PCAP_LINKTYPE_RAW: pass ipv4 = vs_inet.IPv4() if (len(pkt.data) - offset) < len(ipv4): return None ipv4.vsParse(pkt.data, offset, fast=True) # Make b *only* the IP datagram bytes... b = pkt.data[offset:offset+ipv4.totlen] offset = 0 offset += len(ipv4) tsize = len(b) - offset if ipv4.proto == vs_inet.IPPROTO_TCP: if tsize < 20: return None tcp_hdr = vs_inet.TCP() tcp_hdr.vsParse(b, offset, fast=True) offset += len(tcp_hdr) pdata = b[offset:] return pkt,ipv4,tcp_hdr,pdata elif ipv4.proto == vs_inet.IPPROTO_UDP: if tsize < 8: return None udp_hdr = vs_inet.UDP() udp_hdr.vsParse(b, offset, fast=True) offset += len(udp_hdr) pdata = b[offset:] return pkt,ipv4,udp_hdr,pdata elif ipv4.proto == vs_inet.IPPROTO_ICMP: if tsize < 4: return None icmp_hdr = vs_inet.ICMP() icmp_hdr.vsParse(b, offset, fast=True) offset += len(icmp_hdr) pdata = b[offset:] return pkt,ipv4,icmp_hdr,pdata else: pass #print('UNHANDLED IP PROTOCOL: %d' % ipv4.proto) return None
from __future__ import absolute_import, division, print_function import collections from contextlib import closing import errno import gzip import logging import os import re import socket import ssl import sys from tornado.escape import to_unicode, utf8 from tornado import gen from tornado.httpclient import AsyncHTTPClient from tornado.httputil import HTTPHeaders, ResponseStartLine from tornado.ioloop import IOLoop from tornado.iostream import UnsatisfiableReadError from tornado.locks import Event from tornado.log import gen_log from tornado.concurrent import Future from tornado.netutil import Resolver, bind_sockets from tornado.simple_httpclient import SimpleAsyncHTTPClient, HTTPStreamClosedError, HTTPTimeoutError from tornado.test.httpclient_test import ChunkHandler, CountdownHandler, HelloWorldHandler, RedirectHandler # noqa: E501 from tornado.test import httpclient_test from tornado.testing import (AsyncHTTPTestCase, AsyncHTTPSTestCase, AsyncTestCase, ExpectLog, gen_test) from tornado.test.util import skipOnTravis, skipIfNoIPv6, refusing_port, skipBefore35, exec_test from tornado.web import RequestHandler, Application, url, stream_request_body class SimpleHTTPClientCommonTestCase(httpclient_test.HTTPClientCommonTestCase): def get_http_client(self): client = SimpleAsyncHTTPClient(force_instance=True) self.assertTrue(isinstance(client, SimpleAsyncHTTPClient)) return client class TriggerHandler(RequestHandler): def initialize(self, queue, wake_callback): self.queue = queue self.wake_callback = wake_callback @gen.coroutine def get(self): logging.debug("queuing trigger") self.queue.append(self.finish) if self.get_argument("wake", "true") == "true": self.wake_callback() never_finish = Event() yield never_finish.wait() class HangHandler(RequestHandler): @gen.coroutine def get(self): never_finish = Event() yield never_finish.wait() class ContentLengthHandler(RequestHandler): def get(self): self.stream = self.detach() IOLoop.current().spawn_callback(self.write_response) @gen.coroutine def write_response(self): yield self.stream.write(utf8("HTTP/1.0 200 OK\r\nContent-Length: %s\r\n\r\nok" % self.get_argument("value"))) self.stream.close() class HeadHandler(RequestHandler): def head(self): self.set_header("Content-Length", "7") class OptionsHandler(RequestHandler): def options(self): self.set_header("Access-Control-Allow-Origin", "*") self.write("ok") class NoContentHandler(RequestHandler): def get(self): self.set_status(204) self.finish() class SeeOtherPostHandler(RequestHandler): def post(self): redirect_code = int(self.request.body) assert redirect_code in (302, 303), "unexpected body %r" % self.request.body self.set_header("Location", "/see_other_get") self.set_status(redirect_code) class SeeOtherGetHandler(RequestHandler): def get(self): if self.request.body: raise Exception("unexpected body %r" % self.request.body) self.write("ok") class HostEchoHandler(RequestHandler): def get(self): self.write(self.request.headers["Host"]) class NoContentLengthHandler(RequestHandler): def get(self): if self.request.version.startswith('HTTP/1'): # Emulate the old HTTP/1.0 behavior of returning a body with no # content-length. Tornado handles content-length at the framework # level so we have to go around it. stream = self.detach() stream.write(b"HTTP/1.0 200 OK\r\n\r\n" b"hello") stream.close() else: self.finish('HTTP/1 required') class EchoPostHandler(RequestHandler): def post(self): self.write(self.request.body) @stream_request_body class RespondInPrepareHandler(RequestHandler): def prepare(self): self.set_status(403) self.finish("forbidden") class SimpleHTTPClientTestMixin(object): def get_app(self): # callable objects to finish pending /trigger requests self.triggers = collections.deque() return Application([ url("/trigger", TriggerHandler, dict(queue=self.triggers, wake_callback=self.stop)), url("/chunk", ChunkHandler), url("/countdown/([0-9]+)", CountdownHandler, name="countdown"), url("/hang", HangHandler), url("/hello", HelloWorldHandler), url("/content_length", ContentLengthHandler), url("/head", HeadHandler), url("/options", OptionsHandler), url("/no_content", NoContentHandler), url("/see_other_post", SeeOtherPostHandler), url("/see_other_get", SeeOtherGetHandler), url("/host_echo", HostEchoHandler), url("/no_content_length", NoContentLengthHandler), url("/echo_post", EchoPostHandler), url("/respond_in_prepare", RespondInPrepareHandler), url("/redirect", RedirectHandler), ], gzip=True) def test_singleton(self): # Class "constructor" reuses objects on the same IOLoop self.assertTrue(SimpleAsyncHTTPClient() is SimpleAsyncHTTPClient()) # unless force_instance is used self.assertTrue(SimpleAsyncHTTPClient() is not SimpleAsyncHTTPClient(force_instance=True)) # different IOLoops use different objects with closing(IOLoop()) as io_loop2: client1 = self.io_loop.run_sync(gen.coroutine(SimpleAsyncHTTPClient)) client2 = io_loop2.run_sync(gen.coroutine(SimpleAsyncHTTPClient)) self.assertTrue(client1 is not client2) def test_connection_limit(self): with closing(self.create_client(max_clients=2)) as client: self.assertEqual(client.max_clients, 2) seen = [] # Send 4 requests. Two can be sent immediately, while the others # will be queued for i in range(4): client.fetch(self.get_url("/trigger")).add_done_callback( lambda fut, i=i: (seen.append(i), self.stop())) self.wait(condition=lambda: len(self.triggers) == 2) self.assertEqual(len(client.queue), 2) # Finish the first two requests and let the next two through self.triggers.popleft()() self.triggers.popleft()() self.wait(condition=lambda: (len(self.triggers) == 2 and len(seen) == 2)) self.assertEqual(set(seen), set([0, 1])) self.assertEqual(len(client.queue), 0) # Finish all the pending requests self.triggers.popleft()() self.triggers.popleft()() self.wait(condition=lambda: len(seen) == 4) self.assertEqual(set(seen), set([0, 1, 2, 3])) self.assertEqual(len(self.triggers), 0) @gen_test def test_redirect_connection_limit(self): # following redirects should not consume additional connections with closing(self.create_client(max_clients=1)) as client: response = yield client.fetch(self.get_url('/countdown/3'), max_redirects=3) response.rethrow() def test_gzip(self): # All the tests in this file should be using gzip, but this test # ensures that it is in fact getting compressed. # Setting Accept-Encoding manually bypasses the client's # decompression so we can see the raw data. response = self.fetch("/chunk", use_gzip=False, headers={"Accept-Encoding": "gzip"}) self.assertEqual(response.headers["Content-Encoding"], "gzip") self.assertNotEqual(response.body, b"asdfqwer") # Our test data gets bigger when gzipped. Oops. :) # Chunked encoding bypasses the MIN_LENGTH check. self.assertEqual(len(response.body), 34) f = gzip.GzipFile(mode="r", fileobj=response.buffer) self.assertEqual(f.read(), b"asdfqwer") def test_max_redirects(self): response = self.fetch("/countdown/5", max_redirects=3) self.assertEqual(302, response.code) # We requested 5, followed three redirects for 4, 3, 2, then the last # unfollowed redirect is to 1. self.assertTrue(response.request.url.endswith("/countdown/5")) self.assertTrue(response.effective_url.endswith("/countdown/2")) self.assertTrue(response.headers["Location"].endswith("/countdown/1")) def test_header_reuse(self): # Apps may reuse a headers object if they are only passing in constant # headers like user-agent. The header object should not be modified. headers = HTTPHeaders({'User-Agent': 'Foo'}) self.fetch("/hello", headers=headers) self.assertEqual(list(headers.get_all()), [('User-Agent', 'Foo')]) def test_see_other_redirect(self): for code in (302, 303): response = self.fetch("/see_other_post", method="POST", body="%d" % code) self.assertEqual(200, response.code) self.assertTrue(response.request.url.endswith("/see_other_post")) self.assertTrue(response.effective_url.endswith("/see_other_get")) # request is the original request, is a POST still self.assertEqual("POST", response.request.method) @skipOnTravis @gen_test def test_connect_timeout(self): timeout = 0.1 class TimeoutResolver(Resolver): def resolve(self, *args, **kwargs): return Future() # never completes with closing(self.create_client(resolver=TimeoutResolver())) as client: with self.assertRaises(HTTPTimeoutError): yield client.fetch(self.get_url('/hello'), connect_timeout=timeout, request_timeout=3600, raise_error=True) @skipOnTravis def test_request_timeout(self): timeout = 0.1 if os.name == 'nt': timeout = 0.5 with self.assertRaises(HTTPTimeoutError): self.fetch('/trigger?wake=false', request_timeout=timeout, raise_error=True) # trigger the hanging request to let it clean up after itself self.triggers.popleft()() @skipIfNoIPv6 def test_ipv6(self): [sock] = bind_sockets(None, '::1', family=socket.AF_INET6) port = sock.getsockname()[1] self.http_server.add_socket(sock) url = '%s://[::1]:%d/hello' % (self.get_protocol(), port) # ipv6 is currently enabled by default but can be disabled with self.assertRaises(Exception): self.fetch(url, allow_ipv6=False, raise_error=True) response = self.fetch(url) self.assertEqual(response.body, b"Hello world!") def test_multiple_content_length_accepted(self): response = self.fetch("/content_length?value=2,2") self.assertEqual(response.body, b"ok") response = self.fetch("/content_length?value=2,%202,2") self.assertEqual(response.body, b"ok") with ExpectLog(gen_log, ".*Multiple unequal Content-Lengths"): with self.assertRaises(HTTPStreamClosedError): self.fetch("/content_length?value=2,4", raise_error=True) with self.assertRaises(HTTPStreamClosedError): self.fetch("/content_length?value=2,%202,3", raise_error=True) def test_head_request(self): response = self.fetch("/head", method="HEAD") self.assertEqual(response.code, 200) self.assertEqual(response.headers["content-length"], "7") self.assertFalse(response.body) def test_options_request(self): response = self.fetch("/options", method="OPTIONS") self.assertEqual(response.code, 200) self.assertEqual(response.headers["content-length"], "2") self.assertEqual(response.headers["access-control-allow-origin"], "*") self.assertEqual(response.body, b"ok") def test_no_content(self): response = self.fetch("/no_content") self.assertEqual(response.code, 204) # 204 status shouldn't have a content-length # # Tests with a content-length header are included below # in HTTP204NoContentTestCase. self.assertNotIn("Content-Length", response.headers) def test_host_header(self): host_re = re.compile(b"^127.0.0.1:[0-9]+$") response = self.fetch("/host_echo") self.assertTrue(host_re.match(response.body)) url = self.get_url("/host_echo").replace("http://", "http://me:secret@") response = self.fetch(url) self.assertTrue(host_re.match(response.body), response.body) def test_connection_refused(self): cleanup_func, port = refusing_port() self.addCleanup(cleanup_func) with ExpectLog(gen_log, ".*", required=False): with self.assertRaises(socket.error) as cm: self.fetch("http://127.0.0.1:%d/" % port, raise_error=True) if sys.platform != 'cygwin': # cygwin returns EPERM instead of ECONNREFUSED here contains_errno = str(errno.ECONNREFUSED) in str(cm.exception) if not contains_errno and hasattr(errno, "WSAECONNREFUSED"): contains_errno = str(errno.WSAECONNREFUSED) in str(cm.exception) self.assertTrue(contains_errno, cm.exception) # This is usually "Connection refused". # On windows, strerror is broken and returns "Unknown error". expected_message = os.strerror(errno.ECONNREFUSED) self.assertTrue(expected_message in str(cm.exception), cm.exception) def test_queue_timeout(self): with closing(self.create_client(max_clients=1)) as client: # Wait for the trigger request to block, not complete. fut1 = client.fetch(self.get_url('/trigger'), request_timeout=10) self.wait() with self.assertRaises(HTTPTimeoutError) as cm: self.io_loop.run_sync(lambda: client.fetch( self.get_url('/hello'), connect_timeout=0.1, raise_error=True)) self.assertEqual(str(cm.exception), "Timeout in request queue") self.triggers.popleft()() self.io_loop.run_sync(lambda: fut1) def test_no_content_length(self): response = self.fetch("/no_content_length") if response.body == b"HTTP/1 required": self.skipTest("requires HTTP/1.x") else: self.assertEquals(b"hello", response.body) def sync_body_producer(self, write): write(b'1234') write(b'5678') @gen.coroutine def async_body_producer(self, write): yield write(b'1234') yield gen.moment yield write(b'5678') def test_sync_body_producer_chunked(self): response = self.fetch("/echo_post", method="POST", body_producer=self.sync_body_producer) response.rethrow() self.assertEqual(response.body, b"12345678") def test_sync_body_producer_content_length(self): response = self.fetch("/echo_post", method="POST", body_producer=self.sync_body_producer, headers={'Content-Length': '8'}) response.rethrow() self.assertEqual(response.body, b"12345678") def test_async_body_producer_chunked(self): response = self.fetch("/echo_post", method="POST", body_producer=self.async_body_producer) response.rethrow() self.assertEqual(response.body, b"12345678") def test_async_body_producer_content_length(self): response = self.fetch("/echo_post", method="POST", body_producer=self.async_body_producer, headers={'Content-Length': '8'}) response.rethrow() self.assertEqual(response.body, b"12345678") @skipBefore35 def test_native_body_producer_chunked(self): namespace = exec_test(globals(), locals(), """ async def body_producer(write): await write(b'1234') import asyncio await asyncio.sleep(0) await write(b'5678') """) response = self.fetch("/echo_post", method="POST", body_producer=namespace["body_producer"]) response.rethrow() self.assertEqual(response.body, b"12345678") @skipBefore35 def test_native_body_producer_content_length(self): namespace = exec_test(globals(), locals(), """ async def body_producer(write): await write(b'1234') import asyncio await asyncio.sleep(0) await write(b'5678') """) response = self.fetch("/echo_post", method="POST", body_producer=namespace["body_producer"], headers={'Content-Length': '8'}) response.rethrow() self.assertEqual(response.body, b"12345678") def test_100_continue(self): response = self.fetch("/echo_post", method="POST", body=b"1234", expect_100_continue=True) self.assertEqual(response.body, b"1234") def test_100_continue_early_response(self): def body_producer(write): raise Exception("should not be called") response = self.fetch("/respond_in_prepare", method="POST", body_producer=body_producer, expect_100_continue=True) self.assertEqual(response.code, 403) def test_streaming_follow_redirects(self): # When following redirects, header and streaming callbacks # should only be called for the final result. # TODO(bdarnell): this test belongs in httpclient_test instead of # simple_httpclient_test, but it fails with the version of libcurl # available on travis-ci. Move it when that has been upgraded # or we have a better framework to skip tests based on curl version. headers = [] chunks = [] self.fetch("/redirect?url=/hello", header_callback=headers.append, streaming_callback=chunks.append) chunks = list(map(to_unicode, chunks)) self.assertEqual(chunks, ['Hello world!']) # Make sure we only got one set of headers. num_start_lines = len([h for h in headers if h.startswith("HTTP/")]) self.assertEqual(num_start_lines, 1) class SimpleHTTPClientTestCase(SimpleHTTPClientTestMixin, AsyncHTTPTestCase): def setUp(self): super(SimpleHTTPClientTestCase, self).setUp() self.http_client = self.create_client() def create_client(self, **kwargs): return SimpleAsyncHTTPClient(force_instance=True, **kwargs) class SimpleHTTPSClientTestCase(SimpleHTTPClientTestMixin, AsyncHTTPSTestCase): def setUp(self): super(SimpleHTTPSClientTestCase, self).setUp() self.http_client = self.create_client() def create_client(self, **kwargs): return SimpleAsyncHTTPClient(force_instance=True, defaults=dict(validate_cert=False), **kwargs) def test_ssl_options(self): resp = self.fetch("/hello", ssl_options={}) self.assertEqual(resp.body, b"Hello world!") def test_ssl_context(self): resp = self.fetch("/hello", ssl_options=ssl.SSLContext(ssl.PROTOCOL_SSLv23)) self.assertEqual(resp.body, b"Hello world!") def test_ssl_options_handshake_fail(self): with ExpectLog(gen_log, "SSL Error|Uncaught exception", required=False): with self.assertRaises(ssl.SSLError): self.fetch( "/hello", ssl_options=dict(cert_reqs=ssl.CERT_REQUIRED), raise_error=True) def test_ssl_context_handshake_fail(self): with ExpectLog(gen_log, "SSL Error|Uncaught exception"): ctx = ssl.SSLContext(ssl.PROTOCOL_SSLv23) ctx.verify_mode = ssl.CERT_REQUIRED with self.assertRaises(ssl.SSLError): self.fetch("/hello", ssl_options=ctx, raise_error=True) def test_error_logging(self): # No stack traces are logged for SSL errors (in this case, # failure to validate the testing self-signed cert). # The SSLError is exposed through ssl.SSLError. with ExpectLog(gen_log, '.*') as expect_log: with self.assertRaises(ssl.SSLError): self.fetch("/", validate_cert=True, raise_error=True) self.assertFalse(expect_log.logged_stack) class CreateAsyncHTTPClientTestCase(AsyncTestCase): def setUp(self): super(CreateAsyncHTTPClientTestCase, self).setUp() self.saved = AsyncHTTPClient._save_configuration() def tearDown(self): AsyncHTTPClient._restore_configuration(self.saved) super(CreateAsyncHTTPClientTestCase, self).tearDown() def test_max_clients(self): AsyncHTTPClient.configure(SimpleAsyncHTTPClient) with closing(AsyncHTTPClient(force_instance=True)) as client: self.assertEqual(client.max_clients, 10) with closing(AsyncHTTPClient( max_clients=11, force_instance=True)) as client: self.assertEqual(client.max_clients, 11) # Now configure max_clients statically and try overriding it # with each way max_clients can be passed AsyncHTTPClient.configure(SimpleAsyncHTTPClient, max_clients=12) with closing(AsyncHTTPClient(force_instance=True)) as client: self.assertEqual(client.max_clients, 12) with closing(AsyncHTTPClient( max_clients=13, force_instance=True)) as client: self.assertEqual(client.max_clients, 13) with closing(AsyncHTTPClient( max_clients=14, force_instance=True)) as client: self.assertEqual(client.max_clients, 14) class HTTP100ContinueTestCase(AsyncHTTPTestCase): def respond_100(self, request): self.http1 = request.version.startswith('HTTP/1.') if not self.http1: request.connection.write_headers(ResponseStartLine('', 200, 'OK'), HTTPHeaders()) request.connection.finish() return self.request = request fut = self.request.connection.stream.write( b"HTTP/1.1 100 CONTINUE\r\n\r\n") fut.add_done_callback(self.respond_200) def respond_200(self, fut): fut.result() fut = self.request.connection.stream.write( b"HTTP/1.1 200 OK\r\nContent-Length: 1\r\n\r\nA") fut.add_done_callback(lambda f: self.request.connection.stream.close()) def get_app(self): # Not a full Application, but works as an HTTPServer callback return self.respond_100 def test_100_continue(self): res = self.fetch('/') if not self.http1: self.skipTest("requires HTTP/1.x") self.assertEqual(res.body, b'A') class HTTP204NoContentTestCase(AsyncHTTPTestCase): def respond_204(self, request): self.http1 = request.version.startswith('HTTP/1.') if not self.http1: # Close the request cleanly in HTTP/2; it will be skipped anyway. request.connection.write_headers(ResponseStartLine('', 200, 'OK'), HTTPHeaders()) request.connection.finish() return # A 204 response never has a body, even if doesn't have a content-length # (which would otherwise mean read-until-close). We simulate here a # server that sends no content length and does not close the connection. # # Tests of a 204 response with no Content-Length header are included # in SimpleHTTPClientTestMixin. stream = request.connection.detach() stream.write(b"HTTP/1.1 204 No content\r\n") if request.arguments.get("error", [False])[-1]: stream.write(b"Content-Length: 5\r\n") else: stream.write(b"Content-Length: 0\r\n") stream.write(b"\r\n") stream.close() def get_app(self): return self.respond_204 def test_204_no_content(self): resp = self.fetch('/') if not self.http1: self.skipTest("requires HTTP/1.x") self.assertEqual(resp.code, 204) self.assertEqual(resp.body, b'') def test_204_invalid_content_length(self): # 204 status with non-zero content length is malformed with ExpectLog(gen_log, ".*Response with code 204 should not have body"): with self.assertRaises(HTTPStreamClosedError): self.fetch("/?error=1", raise_error=True) if not self.http1: self.skipTest("requires HTTP/1.x") if self.http_client.configured_class != SimpleAsyncHTTPClient: self.skipTest("curl client accepts invalid headers") class HostnameMappingTestCase(AsyncHTTPTestCase): def setUp(self): super(HostnameMappingTestCase, self).setUp() self.http_client = SimpleAsyncHTTPClient( hostname_mapping={ 'www.example.com': '127.0.0.1', ('foo.example.com', 8000): ('127.0.0.1', self.get_http_port()), }) def get_app(self): return Application([url("/hello", HelloWorldHandler), ]) def test_hostname_mapping(self): response = self.fetch( 'http://www.example.com:%d/hello' % self.get_http_port()) response.rethrow() self.assertEqual(response.body, b'Hello world!') def test_port_mapping(self): response = self.fetch('http://foo.example.com:8000/hello') response.rethrow() self.assertEqual(response.body, b'Hello world!') class ResolveTimeoutTestCase(AsyncHTTPTestCase): def setUp(self): # Dummy Resolver subclass that never finishes. class BadResolver(Resolver): @gen.coroutine def resolve(self, *args, **kwargs): yield Event().wait() super(ResolveTimeoutTestCase, self).setUp() self.http_client = SimpleAsyncHTTPClient( resolver=BadResolver()) def get_app(self): return Application([url("/hello", HelloWorldHandler), ]) def test_resolve_timeout(self): with self.assertRaises(HTTPTimeoutError): self.fetch('/hello', connect_timeout=0.1, raise_error=True) class MaxHeaderSizeTest(AsyncHTTPTestCase): def get_app(self): class SmallHeaders(RequestHandler): def get(self): self.set_header("X-Filler", "a" * 100) self.write("ok") class LargeHeaders(RequestHandler): def get(self): self.set_header("X-Filler", "a" * 1000) self.write("ok") return Application([('/small', SmallHeaders), ('/large', LargeHeaders)]) def get_http_client(self): return SimpleAsyncHTTPClient(max_header_size=1024) def test_small_headers(self): response = self.fetch('/small') response.rethrow() self.assertEqual(response.body, b'ok') def test_large_headers(self): with ExpectLog(gen_log, "Unsatisfiable read"): with self.assertRaises(UnsatisfiableReadError): self.fetch('/large', raise_error=True) class MaxBodySizeTest(AsyncHTTPTestCase): def get_app(self): class SmallBody(RequestHandler): def get(self): self.write("a" * 1024 * 64) class LargeBody(RequestHandler): def get(self): self.write("a" * 1024 * 100) return Application([('/small', SmallBody), ('/large', LargeBody)]) def get_http_client(self): return SimpleAsyncHTTPClient(max_body_size=1024 * 64) def test_small_body(self): response = self.fetch('/small') response.rethrow() self.assertEqual(response.body, b'a' * 1024 * 64) def test_large_body(self): with ExpectLog(gen_log, "Malformed HTTP message from None: Content-Length too long"): with self.assertRaises(HTTPStreamClosedError): self.fetch('/large', raise_error=True) class MaxBufferSizeTest(AsyncHTTPTestCase): def get_app(self): class LargeBody(RequestHandler): def get(self): self.write("a" * 1024 * 100) return Application([('/large', LargeBody)]) def get_http_client(self): # 100KB body with 64KB buffer return SimpleAsyncHTTPClient(max_body_size=1024 * 100, max_buffer_size=1024 * 64) def test_large_body(self): response = self.fetch('/large') response.rethrow() self.assertEqual(response.body, b'a' * 1024 * 100) class ChunkedWithContentLengthTest(AsyncHTTPTestCase): def get_app(self): class ChunkedWithContentLength(RequestHandler): def get(self): # Add an invalid Transfer-Encoding to the response self.set_header('Transfer-Encoding', 'chunked') self.write("Hello world") return Application([('/chunkwithcl', ChunkedWithContentLength)]) def get_http_client(self): return SimpleAsyncHTTPClient() def test_chunked_with_content_length(self): # Make sure the invalid headers are detected with ExpectLog(gen_log, ("Malformed HTTP message from None: Response " "with both Transfer-Encoding and Content-Length")): with self.assertRaises(HTTPStreamClosedError): self.fetch('/chunkwithcl', raise_error=True)
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class CustomIPPrefixesOperations: """CustomIPPrefixesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_08_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, custom_ip_prefix_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'customIpPrefixName': self._serialize.url("custom_ip_prefix_name", custom_ip_prefix_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/customIpPrefixes/{customIpPrefixName}'} # type: ignore async def begin_delete( self, resource_group_name: str, custom_ip_prefix_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Deletes the specified custom IP prefix. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param custom_ip_prefix_name: The name of the CustomIpPrefix. :type custom_ip_prefix_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, custom_ip_prefix_name=custom_ip_prefix_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'customIpPrefixName': self._serialize.url("custom_ip_prefix_name", custom_ip_prefix_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/customIpPrefixes/{customIpPrefixName}'} # type: ignore async def get( self, resource_group_name: str, custom_ip_prefix_name: str, expand: Optional[str] = None, **kwargs: Any ) -> "_models.CustomIpPrefix": """Gets the specified custom IP prefix in a specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param custom_ip_prefix_name: The name of the custom IP prefix. :type custom_ip_prefix_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CustomIpPrefix, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_08_01.models.CustomIpPrefix :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CustomIpPrefix"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'customIpPrefixName': self._serialize.url("custom_ip_prefix_name", custom_ip_prefix_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('CustomIpPrefix', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/customIpPrefixes/{customIpPrefixName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, custom_ip_prefix_name: str, parameters: "_models.CustomIpPrefix", **kwargs: Any ) -> "_models.CustomIpPrefix": cls = kwargs.pop('cls', None) # type: ClsType["_models.CustomIpPrefix"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'customIpPrefixName': self._serialize.url("custom_ip_prefix_name", custom_ip_prefix_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'CustomIpPrefix') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('CustomIpPrefix', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('CustomIpPrefix', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/customIpPrefixes/{customIpPrefixName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, custom_ip_prefix_name: str, parameters: "_models.CustomIpPrefix", **kwargs: Any ) -> AsyncLROPoller["_models.CustomIpPrefix"]: """Creates or updates a custom IP prefix. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param custom_ip_prefix_name: The name of the custom IP prefix. :type custom_ip_prefix_name: str :param parameters: Parameters supplied to the create or update custom IP prefix operation. :type parameters: ~azure.mgmt.network.v2020_08_01.models.CustomIpPrefix :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either CustomIpPrefix or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_08_01.models.CustomIpPrefix] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.CustomIpPrefix"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, custom_ip_prefix_name=custom_ip_prefix_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('CustomIpPrefix', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'customIpPrefixName': self._serialize.url("custom_ip_prefix_name", custom_ip_prefix_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/customIpPrefixes/{customIpPrefixName}'} # type: ignore async def update_tags( self, resource_group_name: str, custom_ip_prefix_name: str, parameters: "_models.TagsObject", **kwargs: Any ) -> "_models.CustomIpPrefix": """Updates custom IP prefix tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param custom_ip_prefix_name: The name of the custom IP prefix. :type custom_ip_prefix_name: str :param parameters: Parameters supplied to update custom IP prefix tags. :type parameters: ~azure.mgmt.network.v2020_08_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :return: CustomIpPrefix, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_08_01.models.CustomIpPrefix :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CustomIpPrefix"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update_tags.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'customIpPrefixName': self._serialize.url("custom_ip_prefix_name", custom_ip_prefix_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('CustomIpPrefix', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/customIpPrefixes/{customIpPrefixName}'} # type: ignore def list_all( self, **kwargs: Any ) -> AsyncIterable["_models.CustomIpPrefixListResult"]: """Gets all the custom IP prefixes in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CustomIpPrefixListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_08_01.models.CustomIpPrefixListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CustomIpPrefixListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('CustomIpPrefixListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/customIpPrefixes'} # type: ignore def list( self, resource_group_name: str, **kwargs: Any ) -> AsyncIterable["_models.CustomIpPrefixListResult"]: """Gets all custom IP prefixes in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CustomIpPrefixListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_08_01.models.CustomIpPrefixListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CustomIpPrefixListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('CustomIpPrefixListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/customIpPrefixes'} # type: ignore
"""Support to manage a shopping list.""" import asyncio import logging import uuid import voluptuous as vol from homeassistant.const import HTTP_NOT_FOUND, HTTP_BAD_REQUEST from homeassistant.core import callback from homeassistant.components import http from homeassistant.components.http.data_validator import RequestDataValidator from homeassistant.helpers import intent import homeassistant.helpers.config_validation as cv from homeassistant.util.json import load_json, save_json from homeassistant.components import websocket_api ATTR_NAME = "name" DOMAIN = "shopping_list" _LOGGER = logging.getLogger(__name__) CONFIG_SCHEMA = vol.Schema({DOMAIN: {}}, extra=vol.ALLOW_EXTRA) EVENT = "shopping_list_updated" INTENT_ADD_ITEM = "HassShoppingListAddItem" INTENT_LAST_ITEMS = "HassShoppingListLastItems" ITEM_UPDATE_SCHEMA = vol.Schema({"complete": bool, ATTR_NAME: str}) PERSISTENCE = ".shopping_list.json" SERVICE_ADD_ITEM = "add_item" SERVICE_COMPLETE_ITEM = "complete_item" SERVICE_ITEM_SCHEMA = vol.Schema({vol.Required(ATTR_NAME): vol.Any(None, cv.string)}) WS_TYPE_SHOPPING_LIST_ITEMS = "shopping_list/items" WS_TYPE_SHOPPING_LIST_ADD_ITEM = "shopping_list/items/add" WS_TYPE_SHOPPING_LIST_UPDATE_ITEM = "shopping_list/items/update" WS_TYPE_SHOPPING_LIST_CLEAR_ITEMS = "shopping_list/items/clear" SCHEMA_WEBSOCKET_ITEMS = websocket_api.BASE_COMMAND_MESSAGE_SCHEMA.extend( {vol.Required("type"): WS_TYPE_SHOPPING_LIST_ITEMS} ) SCHEMA_WEBSOCKET_ADD_ITEM = websocket_api.BASE_COMMAND_MESSAGE_SCHEMA.extend( {vol.Required("type"): WS_TYPE_SHOPPING_LIST_ADD_ITEM, vol.Required("name"): str} ) SCHEMA_WEBSOCKET_UPDATE_ITEM = websocket_api.BASE_COMMAND_MESSAGE_SCHEMA.extend( { vol.Required("type"): WS_TYPE_SHOPPING_LIST_UPDATE_ITEM, vol.Required("item_id"): str, vol.Optional("name"): str, vol.Optional("complete"): bool, } ) SCHEMA_WEBSOCKET_CLEAR_ITEMS = websocket_api.BASE_COMMAND_MESSAGE_SCHEMA.extend( {vol.Required("type"): WS_TYPE_SHOPPING_LIST_CLEAR_ITEMS} ) @asyncio.coroutine def async_setup(hass, config): """Initialize the shopping list.""" @asyncio.coroutine def add_item_service(call): """Add an item with `name`.""" data = hass.data[DOMAIN] name = call.data.get(ATTR_NAME) if name is not None: data.async_add(name) @asyncio.coroutine def complete_item_service(call): """Mark the item provided via `name` as completed.""" data = hass.data[DOMAIN] name = call.data.get(ATTR_NAME) if name is None: return try: item = [item for item in data.items if item["name"] == name][0] except IndexError: _LOGGER.error("Removing of item failed: %s cannot be found", name) else: data.async_update(item["id"], {"name": name, "complete": True}) data = hass.data[DOMAIN] = ShoppingData(hass) yield from data.async_load() intent.async_register(hass, AddItemIntent()) intent.async_register(hass, ListTopItemsIntent()) hass.services.async_register( DOMAIN, SERVICE_ADD_ITEM, add_item_service, schema=SERVICE_ITEM_SCHEMA ) hass.services.async_register( DOMAIN, SERVICE_COMPLETE_ITEM, complete_item_service, schema=SERVICE_ITEM_SCHEMA ) hass.http.register_view(ShoppingListView) hass.http.register_view(CreateShoppingListItemView) hass.http.register_view(UpdateShoppingListItemView) hass.http.register_view(ClearCompletedItemsView) hass.components.conversation.async_register( INTENT_ADD_ITEM, ["Add [the] [a] [an] {item} to my shopping list"] ) hass.components.conversation.async_register( INTENT_LAST_ITEMS, ["What is on my shopping list"] ) hass.components.frontend.async_register_built_in_panel( "shopping-list", "shopping_list", "mdi:cart" ) hass.components.websocket_api.async_register_command( WS_TYPE_SHOPPING_LIST_ITEMS, websocket_handle_items, SCHEMA_WEBSOCKET_ITEMS ) hass.components.websocket_api.async_register_command( WS_TYPE_SHOPPING_LIST_ADD_ITEM, websocket_handle_add, SCHEMA_WEBSOCKET_ADD_ITEM ) hass.components.websocket_api.async_register_command( WS_TYPE_SHOPPING_LIST_UPDATE_ITEM, websocket_handle_update, SCHEMA_WEBSOCKET_UPDATE_ITEM, ) hass.components.websocket_api.async_register_command( WS_TYPE_SHOPPING_LIST_CLEAR_ITEMS, websocket_handle_clear, SCHEMA_WEBSOCKET_CLEAR_ITEMS, ) return True class ShoppingData: """Class to hold shopping list data.""" def __init__(self, hass): """Initialize the shopping list.""" self.hass = hass self.items = [] @callback def async_add(self, name): """Add a shopping list item.""" item = {"name": name, "id": uuid.uuid4().hex, "complete": False} self.items.append(item) self.hass.async_add_job(self.save) return item @callback def async_update(self, item_id, info): """Update a shopping list item.""" item = next((itm for itm in self.items if itm["id"] == item_id), None) if item is None: raise KeyError info = ITEM_UPDATE_SCHEMA(info) item.update(info) self.hass.async_add_job(self.save) return item @callback def async_clear_completed(self): """Clear completed items.""" self.items = [itm for itm in self.items if not itm["complete"]] self.hass.async_add_job(self.save) @asyncio.coroutine def async_load(self): """Load items.""" def load(): """Load the items synchronously.""" return load_json(self.hass.config.path(PERSISTENCE), default=[]) self.items = yield from self.hass.async_add_job(load) def save(self): """Save the items.""" save_json(self.hass.config.path(PERSISTENCE), self.items) class AddItemIntent(intent.IntentHandler): """Handle AddItem intents.""" intent_type = INTENT_ADD_ITEM slot_schema = {"item": cv.string} @asyncio.coroutine def async_handle(self, intent_obj): """Handle the intent.""" slots = self.async_validate_slots(intent_obj.slots) item = slots["item"]["value"] intent_obj.hass.data[DOMAIN].async_add(item) response = intent_obj.create_response() response.async_set_speech("I've added {} to your shopping list".format(item)) intent_obj.hass.bus.async_fire(EVENT) return response class ListTopItemsIntent(intent.IntentHandler): """Handle AddItem intents.""" intent_type = INTENT_LAST_ITEMS slot_schema = {"item": cv.string} @asyncio.coroutine def async_handle(self, intent_obj): """Handle the intent.""" items = intent_obj.hass.data[DOMAIN].items[-5:] response = intent_obj.create_response() if not items: response.async_set_speech("There are no items on your shopping list") else: response.async_set_speech( "These are the top {} items on your shopping list: {}".format( min(len(items), 5), ", ".join(itm["name"] for itm in reversed(items)), ) ) return response class ShoppingListView(http.HomeAssistantView): """View to retrieve shopping list content.""" url = "/api/shopping_list" name = "api:shopping_list" @callback def get(self, request): """Retrieve shopping list items.""" return self.json(request.app["hass"].data[DOMAIN].items) class UpdateShoppingListItemView(http.HomeAssistantView): """View to retrieve shopping list content.""" url = "/api/shopping_list/item/{item_id}" name = "api:shopping_list:item:id" async def post(self, request, item_id): """Update a shopping list item.""" data = await request.json() try: item = request.app["hass"].data[DOMAIN].async_update(item_id, data) request.app["hass"].bus.async_fire(EVENT) return self.json(item) except KeyError: return self.json_message("Item not found", HTTP_NOT_FOUND) except vol.Invalid: return self.json_message("Item not found", HTTP_BAD_REQUEST) class CreateShoppingListItemView(http.HomeAssistantView): """View to retrieve shopping list content.""" url = "/api/shopping_list/item" name = "api:shopping_list:item" @RequestDataValidator(vol.Schema({vol.Required("name"): str})) @asyncio.coroutine def post(self, request, data): """Create a new shopping list item.""" item = request.app["hass"].data[DOMAIN].async_add(data["name"]) request.app["hass"].bus.async_fire(EVENT) return self.json(item) class ClearCompletedItemsView(http.HomeAssistantView): """View to retrieve shopping list content.""" url = "/api/shopping_list/clear_completed" name = "api:shopping_list:clear_completed" @callback def post(self, request): """Retrieve if API is running.""" hass = request.app["hass"] hass.data[DOMAIN].async_clear_completed() hass.bus.async_fire(EVENT) return self.json_message("Cleared completed items.") @callback def websocket_handle_items(hass, connection, msg): """Handle get shopping_list items.""" connection.send_message( websocket_api.result_message(msg["id"], hass.data[DOMAIN].items) ) @callback def websocket_handle_add(hass, connection, msg): """Handle add item to shopping_list.""" item = hass.data[DOMAIN].async_add(msg["name"]) hass.bus.async_fire(EVENT) connection.send_message(websocket_api.result_message(msg["id"], item)) @websocket_api.async_response async def websocket_handle_update(hass, connection, msg): """Handle update shopping_list item.""" msg_id = msg.pop("id") item_id = msg.pop("item_id") msg.pop("type") data = msg try: item = hass.data[DOMAIN].async_update(item_id, data) hass.bus.async_fire(EVENT) connection.send_message(websocket_api.result_message(msg_id, item)) except KeyError: connection.send_message( websocket_api.error_message(msg_id, "item_not_found", "Item not found") ) @callback def websocket_handle_clear(hass, connection, msg): """Handle clearing shopping_list items.""" hass.data[DOMAIN].async_clear_completed() hass.bus.async_fire(EVENT) connection.send_message(websocket_api.result_message(msg["id"]))
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from oslo_db.sqlalchemy import utils as sa_utils from oslo_utils import timeutils as tu import six from senlin.common import consts from senlin.common import exception from senlin.db.sqlalchemy import api as db_api from senlin.engine import parser from senlin.tests.unit.common import base from senlin.tests.unit.common import utils from senlin.tests.unit.db import shared class DBAPIProfileTest(base.SenlinTestCase): def setUp(self): super(DBAPIProfileTest, self).setUp() self.ctx = utils.dummy_context() def test_profile_create(self): data = parser.simple_parse(shared.sample_profile) profile = shared.create_profile(self.ctx) self.assertIsNotNone(profile.id) self.assertEqual(data['name'], profile.name) self.assertEqual(data['type'], profile.type) self.assertEqual(data['spec'], profile.spec) def test_profile_get(self): profile = shared.create_profile(self.ctx) retobj = db_api.profile_get(self.ctx, profile.id) self.assertEqual(profile.id, retobj.id) self.assertEqual(profile.spec, retobj.spec) def test_profile_get_diff_project(self): profile = shared.create_profile(self.ctx) new_ctx = utils.dummy_context(project='a-different-project') res = db_api.profile_get(new_ctx, profile.id) self.assertIsNone(res) res = db_api.profile_get(new_ctx, profile.id, project_safe=False) self.assertIsNotNone(res) self.assertEqual(profile.id, res.id) def test_profile_get_admin_context(self): profile = shared.create_profile(self.ctx) admin_ctx = utils.dummy_context(project='a-different-project', is_admin=True) res = db_api.profile_get(admin_ctx, profile.id, project_safe=True) self.assertIsNotNone(res) def test_profile_get_not_found(self): profile = db_api.profile_get(self.ctx, 'BogusProfileID') self.assertIsNone(profile) def test_profile_get_by_name(self): profile_name = 'my_best_profile' # before creation profile = db_api.profile_get_by_name(self.ctx, profile_name) self.assertIsNone(profile) profile = shared.create_profile(self.ctx, name=profile_name) # after creation retobj = db_api.profile_get_by_name(self.ctx, profile_name) self.assertIsNotNone(retobj) self.assertEqual(profile_name, retobj.name) # bad name retobj = db_api.profile_get_by_name(self.ctx, 'non-exist') self.assertIsNone(retobj) def test_profile_get_by_name_diff_project(self): profile_name = 'my_best_profile' shared.create_profile(self.ctx, name=profile_name) new_ctx = utils.dummy_context(project='a-different-project') res = db_api.profile_get_by_name(new_ctx, profile_name) self.assertIsNone(res) res = db_api.profile_get_by_name(new_ctx, profile_name, project_safe=False) self.assertIsNotNone(res) self.assertEqual(profile_name, res.name) def test_profile_get_by_short_id(self): profile_ids = ['same-part-unique-part', 'same-part-part-unique'] for pid in profile_ids: shared.create_profile(self.ctx, id=pid) # verify creation with set ID profile = db_api.profile_get(self.ctx, pid) self.assertIsNotNone(profile) self.assertEqual(pid, profile.id) # too short -> multiple choices for x in range(len('same-part-')): self.assertRaises(exception.MultipleChoices, db_api.profile_get_by_short_id, self.ctx, profile_ids[0][:x]) # ids are unique profile = db_api.profile_get_by_short_id(self.ctx, profile_ids[0][:11]) self.assertEqual(profile_ids[0], profile.id) profile = db_api.profile_get_by_short_id(self.ctx, profile_ids[1][:11]) self.assertEqual(profile_ids[1], profile.id) # bad ids res = db_api.profile_get_by_short_id(self.ctx, 'non-existent') self.assertIsNone(res) def test_profile_get_by_short_id_diff_project(self): profile_id = 'same-part-unique-part' shared.create_profile(self.ctx, id=profile_id) new_ctx = utils.dummy_context(project='a-different-project') res = db_api.profile_get_by_short_id(new_ctx, profile_id) self.assertIsNone(res) res = db_api.profile_get_by_short_id(new_ctx, profile_id, project_safe=False) self.assertIsNotNone(res) self.assertEqual(profile_id, res.id) def test_profile_get_all(self): ids = ['profile1', 'profile2'] for pid in ids: shared.create_profile(self.ctx, id=pid) profiles = db_api.profile_get_all(self.ctx) self.assertEqual(2, len(profiles)) profile_ids = [p.id for p in profiles] for pid in ids: self.assertIn(pid, profile_ids) db_api.profile_delete(self.ctx, profiles[1].id) # after delete one of them profiles = db_api.profile_get_all(self.ctx) self.assertEqual(1, len(profiles)) # after delete both profiles db_api.profile_delete(self.ctx, profiles[0].id) profiles = db_api.profile_get_all(self.ctx) self.assertEqual(0, len(profiles)) def test_profile_get_all_diff_project(self): ids = ['profile1', 'profile2'] for pid in ids: shared.create_profile(self.ctx, id=pid) new_ctx = utils.dummy_context(project='a-different-project') profiles = db_api.profile_get_all(new_ctx) self.assertEqual(0, len(profiles)) profiles = db_api.profile_get_all(new_ctx, project_safe=False) self.assertEqual(2, len(profiles)) def test_profile_get_all_admin_context(self): ids = ['profile1', 'profile2'] for pid in ids: shared.create_profile(self.ctx, id=pid) admin_ctx = utils.dummy_context(project='a-different-project', is_admin=True) profiles = db_api.profile_get_all(admin_ctx, project_safe=True) self.assertEqual(2, len(profiles)) def test_profile_get_all_with_limit_marker(self): ids = ['profile1', 'profile2', 'profile3'] for pid in ids: timestamp = tu.utcnow() shared.create_profile(self.ctx, id=pid, created_at=timestamp) # different limit settings profiles = db_api.profile_get_all(self.ctx, limit=1) self.assertEqual(1, len(profiles)) profiles = db_api.profile_get_all(self.ctx, limit=2) self.assertEqual(2, len(profiles)) # a large limit profiles = db_api.profile_get_all(self.ctx, limit=5) self.assertEqual(3, len(profiles)) # use marker here profiles = db_api.profile_get_all(self.ctx, marker='profile1') self.assertEqual(2, len(profiles)) profiles = db_api.profile_get_all(self.ctx, marker='profile2') self.assertEqual(1, len(profiles)) profiles = db_api.profile_get_all(self.ctx, marker='profile3') self.assertEqual(0, len(profiles)) profiles = db_api.profile_get_all(self.ctx, limit=1, marker='profile1') self.assertEqual(1, len(profiles)) @mock.patch.object(sa_utils, 'paginate_query') def test_profile_get_all_used_sort_keys(self, mock_paginate): ids = ['profile1', 'profile2', 'profile3'] for pid in ids: shared.create_profile(self.ctx, id=pid) sort_keys = consts.PROFILE_SORT_KEYS db_api.profile_get_all(self.ctx, sort=','.join(sort_keys)) args = mock_paginate.call_args[0] sort_keys.append('id') self.assertEqual(set(sort_keys), set(args[3])) def test_profile_get_all_sorting(self): values = [{'id': '001', 'name': 'profile1', 'type': 'C'}, {'id': '002', 'name': 'profile3', 'type': 'B'}, {'id': '003', 'name': 'profile2', 'type': 'A'}] for v in values: shared.create_profile(self.ctx, **v) # Sorted by name,type profiles = db_api.profile_get_all(self.ctx, sort='name,type') self.assertEqual(3, len(profiles)) self.assertEqual('001', profiles[0].id) self.assertEqual('003', profiles[1].id) self.assertEqual('002', profiles[2].id) # Sorted by type,name (ascending) profiles = db_api.profile_get_all(self.ctx, sort='type,name') self.assertEqual(3, len(profiles)) self.assertEqual('003', profiles[0].id) self.assertEqual('002', profiles[1].id) self.assertEqual('001', profiles[2].id) # Sorted by type,name (descending) profiles = db_api.profile_get_all(self.ctx, sort='type:desc,name:desc') self.assertEqual(3, len(profiles)) self.assertEqual('001', profiles[0].id) self.assertEqual('002', profiles[1].id) self.assertEqual('003', profiles[2].id) def test_profile_get_all_default_sorting(self): profiles = [] for x in range(3): profile = shared.create_profile(self.ctx, created_at=tu.utcnow()) profiles.append(profile) results = db_api.profile_get_all(self.ctx) self.assertEqual(3, len(results)) self.assertEqual(profiles[0].id, results[0].id) self.assertEqual(profiles[1].id, results[1].id) self.assertEqual(profiles[2].id, results[2].id) def test_profile_get_all_with_filters(self): for name in ['profile1', 'profile2']: shared.create_profile(self.ctx, name=name) filters = {'name': ['profile1', 'profilex']} results = db_api.profile_get_all(self.ctx, filters=filters) self.assertEqual(1, len(results)) self.assertEqual('profile1', results[0]['name']) filters = {'name': 'profile1'} results = db_api.profile_get_all(self.ctx, filters=filters) self.assertEqual(1, len(results)) self.assertEqual('profile1', results[0]['name']) def test_profile_get_all_with_empty_filters(self): for name in ['profile1', 'profile2']: shared.create_profile(self.ctx, name=name) filters = None results = db_api.profile_get_all(self.ctx, filters=filters) self.assertEqual(2, len(results)) def test_profile_update(self): new_fields = { 'name': 'test_profile_name_2', 'type': 'my_test_profile_type', 'spec': { 'template': { 'heat_template_version': '2013-05-23', 'resources': { 'myrandom': 'OS::Heat::RandomString', }, }, 'files': { 'myfile': 'new contents', }, }, } old_profile = shared.create_profile(self.ctx) new_profile = db_api.profile_update(self.ctx, old_profile.id, new_fields) self.assertEqual(old_profile.id, new_profile.id) self.assertEqual(new_fields['name'], new_profile.name) self.assertEqual('test_profile_name_2', new_profile.name) def test_profile_update_not_found(self): self.assertRaises(exception.ProfileNotFound, db_api.profile_update, self.ctx, 'BogusID', {}) def test_profile_delete(self): profile = shared.create_profile(self.ctx) self.assertIsNotNone(profile) profile_id = profile.id db_api.profile_delete(self.ctx, profile_id) profile = db_api.profile_get(self.ctx, profile_id) self.assertIsNone(profile) # not found in delete is okay res = db_api.profile_delete(self.ctx, profile_id) self.assertIsNone(res) def test_profile_delete_profile_used_by_cluster(self): profile = shared.create_profile(self.ctx) cluster = shared.create_cluster(self.ctx, profile) profile_id = profile.id ex = self.assertRaises(exception.ResourceBusyError, db_api.profile_delete, self.ctx, profile_id) self.assertEqual('The profile (%s) is busy now.' % profile_id, six.text_type(ex)) db_api.cluster_delete(self.ctx, cluster.id) db_api.profile_delete(self.ctx, profile_id) def test_profile_delete_profile_used_by_node(self): profile = shared.create_profile(self.ctx) node = shared.create_node(self.ctx, None, profile) profile_id = profile.id ex = self.assertRaises(exception.ResourceBusyError, db_api.profile_delete, self.ctx, profile_id) self.assertEqual('The profile (%s) is busy now.' % profile_id, six.text_type(ex)) db_api.node_delete(self.ctx, node.id) db_api.profile_delete(self.ctx, profile_id)
import numpy as np import pylab as plt import sys plt.ion() #plt.close('all') #constants TRAIN=0 TESTLOC=1 TESTHIC=2 D=10 a2str=['B','W','G','RS','RM','RL','S','M','L','XL'] a2data=np.array([[0,1,2,2,1,0,2,1,0,np.nan], [2,1,0,2,1,0,2,1,0,np.nan],[np.nan,np.nan,np.nan,2,1,0,np.nan,2,1,0]]) data2a=np.zeros((3,D,3)) for i in range(3): data2a[i,:,:] = np.int32(a2data==i).T feedback=np.array([[1,0,0,0,0,1,0,0,1,np.nan], [0,0,1,0,0,1,0,0,1,np.nan],[np.nan,np.nan,np.nan,0,0,1,0,0,0,1]]) w=np.array([1,1,1,0.5,0.5,0.5,0.5,0.5,0.5,0.5]) # functions def getProb(a,d): p=np.power(a,d) p/=np.nansum(p) return p def chooseAction(p): action=np.random.multinomial(1,p) return action.nonzero()[0][0] class Model(): def __init__(self,q0=0.5,u0=0.5,d=1,g=0.7,h=0.5,m=1): ''' q0 - prior preference of color over length (0,1) u0 - prior preference of rel. over abs. length (0,1) d - decision consistency (0,inf), 0=random, 1=deterministic h - learning from positive feedback (0,1); 1=current evidence (fast shifting), 0= prior(slow shifing) g - learning from negative feedback (0,1); m - attentional focus (0, inf); 0= uniform distribution ''' self.q0=q0; self.u0=u0; self.d=d self.g=g; self.h=h; self.m=m def exp1run(self): T=20 #initialize q=np.zeros(T+1); q[0]=self.q0 u=np.zeros(T+1); u[0]=self.u0 a=np.zeros((T+1,D));self.f=[] p=np.zeros((T+1,D));dat=np.zeros(T) a[0,:]=np.ones(10)/3.0 a[0,-1]=np.nan a[0,:3]*=q[0] a[0,3:6]*=(1-q[0])*u[0] a[0,6:]*=(1-q[0])*(1-u[0]) b=np.zeros(T)# observed behavior phase=0 #print a[0,:] for t in range(T): if t>10: phase=1 else: phase=0 p[t,:]=getProb(a[t,:],self.d) b[t]=chooseAction(p[t,:]) dat[t]=a2data[phase,b[t]] m=data2a[dat[t],:,phase] f=feedback[phase,b[t]] w=np.power(a[t,:],self.m) self.f.append(f) if f==1: s=m*w a[t+1,:]= self.h*s/np.nansum(s) + (1-self.h)*a[t,:] else: s=(1-m)*w a[t+1,:]= self.g*s/np.nansum(s) + (1-self.g)*a[t,:] u[t+1]= np.nansum(a[t+1,3:6])/np.nansum(a[t+1,3:]) q[t+1]= np.nansum(a[t+1,:3])/np.nansum(a[t+1,:]) #(np.nansum(a[t+1,:3])+(1-u[t+1])*np.nansum(a[t+1,6:])+u[t+1]*np.nansum(a[t+1,3:6]) self.a=a self.b=b self.dat=dat self.f=np.array(self.f) return self.dat,self.f def exp1computeLL(self,dat,f): T=20 #initialize q=np.zeros(T+1); q[0]=self.q0 u=np.zeros(T+1); u[0]=self.u0 a=np.zeros((T+1,D));self.f=[] p=np.zeros((T+1,D)); a[0,:]=np.ones(10)/3.0 a[0,-1]=np.nan a[0,:3]*=q[0] a[0,3:6]*=(1-q[0])*u[0] a[0,6:]*=(1-q[0])*(1-u[0]) phase=0 LL=0 #print a[0,:] for t in range(T): if t>10: phase=1 else: phase=0 p[t,:]=getProb(a[t,:],self.d) m=data2a[dat[t],:,phase] w=np.power(a[t,:],self.m) loglik= np.nansum(np.log(np.maximum(0.001,p[t,m==f[t]]))) if f[t]==1: s=m*w a[t+1,:]= self.h*s/np.nansum(s) + (1-self.h)*a[t,:] else: s=(1-m)*w a[t+1,:]= self.g*s/np.nansum(s) + (1-self.g)*a[t,:] #print t,dat[t],f[t],np.nansum(p[t,m==f[t]]),loglik #print 'm= ',m #print 'p= ',p LL+=loglik return LL def plothistory(self): a=self.a b=self.b plt.figure(figsize=(12,6)) I=np.concatenate([a.T,np.array(np.nansum(a[:,:3],1),ndmin=2), np.array(np.nansum(a[:,3:6],1),ndmin=2),np.array(np.nansum(a[:,6:],1),ndmin=2)],axis=0) plt.plot(range(b.size),b,'rx',ms=8,mew=2) plt.plot([10.5,10.5],[-1,I.shape[1]],'r',lw=2) plt.imshow(I,interpolation='nearest',cmap='winter') plt.colorbar() ax=plt.gca() ax.set_yticks(range(I.shape[0])) ax.set_yticklabels(['']*a.shape[0]+['color','rel len','abs len']) c1=plt.Circle((-1.5,0),radius=0.4,color='blue',clip_on=False) c2=plt.Circle((-1.5,1),radius=0.4,color='white',clip_on=False) c3=plt.Circle((-1.5,2),radius=0.4,color='yellow',clip_on=False) ax.add_patch(c1);ax.add_patch(c2);ax.add_patch(c3); c1=plt.Rectangle((-2,3),1,0.2,color='white',clip_on=False) c2=plt.Rectangle((-2.5,4),1.5,0.2,color='white',clip_on=False) c3=plt.Rectangle((-3,5),2,0.2,color='white',clip_on=False) ax.add_patch(c1);ax.add_patch(c2);ax.add_patch(c3); c1=plt.Rectangle((-2,6),1,0.2,color='gray',clip_on=False) c2=plt.Rectangle((-2.5,7),1.5,0.2,color='gray',clip_on=False) c3=plt.Rectangle((-3,8),2,0.2,color='gray',clip_on=False) c4=plt.Rectangle((-3.5,9),2.5,0.2,color='gray',clip_on=False) ax.add_patch(c1);ax.add_patch(c2);ax.add_patch(c3);ax.add_patch(c4); print I[-3,-1] def LLsample(M,Y): LL=0 for y in Y: LL+= M.exp1computeLL(y[0],y[1]) return LL def checkLL(M,n=50): np.random.seed(4) fname='LLRq%.2fu%.2fh%.2fm%.2fd%.2f'%(M.q0,M.u0,M.h,M.m,M.d) Y=[] for i in range(n): dat,f=M.exp1run() Y.append([dat,f]) #return np.array(Y) #M.plothistory() h= np.linspace(0,1,21)#np.array([1]) #g= np.linspace(0,1,21) g=np.linspace(0,1,21) import time t0=time.time() out=np.ones((h.size,g.size)) for hh in range(h.size): print np.round(hh/float(h.size),2) #for gg in range(g.size): for gg in range(g.size): M.h=h[hh];#M.g=g[gg] M.g=g[gg] out[hh,gg]=LLsample(M,Y) print time.time()-t0 np.save(fname,out) return out def plotLL(fname='out4.npy'): plt.figure() h= np.linspace(0,1,21) g= np.linspace(0,1,21) m=np.linspace(0,2,21) d=np.linspace(0,2,21) out=np.load(fname) print np.nanmax(out),np.nanmin(out) rang=np.nanmax(out)-np.nanmin(out) maxloc= np.squeeze(np.array((np.nanmax(out)==out).nonzero())) H,G=np.meshgrid(h,g) print maxloc for mm in range(m.size/2): for dd in range(d.size/2): plt.subplot(10,10,(9-mm)*10+dd+1) plt.pcolormesh(h,g,out[:,:,mm*2,dd*2].T, vmax=np.nanmax(out),vmin=np.nanmax(out)-rang/4.) plt.gca().set_xticks([]) plt.gca().set_yticks([]) if mm==maxloc[2]/2 and dd==maxloc[3]/2: plt.plot(h[maxloc[0]],g[maxloc[1]],'ow',ms=8) if dd==0: print mm,dd plt.ylabel('%.1f'%m[mm*2]) if mm==0: plt.xlabel('%.1f'%d[dd*2]) plt.title(fname[:6]) if __name__ == '__main__': ags=[] #for i in range(1,len(sys.argv)): ags.append(float(sys.argv[i])) np.random.seed(5) M=Model(q0=0.9,u0=1,h=0.9,g=0.5,m=1,d=1) out=checkLL(M)
import sublime import sublime_plugin from os import path import tempfile import sys import re PACKAGE_SETTINGS = "ExportHtml.sublime-settings" if sublime.platform() == "linux": # Try and load Linux Python2.6 lib. Default path is for Ubuntu. linux_lib = sublime.load_settings(PACKAGE_SETTINGS).get("linux_python2.6_lib", "/usr/lib/python2.6/lib-dynload") if not linux_lib in sys.path and path.exists(linux_lib): sys.path.append(linux_lib) from plistlib import readPlist from ExportHtmlLib.rgba.rgba import RGBA NUMBERED_BBCODE_LINE = '[color=%(color)s]%(line)s [/color]%(code)s\n' BBCODE_LINE = '%(code)s\n' BBCODE_CODE = '[color=%(color)s]%(content)s[/color]' BBCODE_ESCAPE = '[/color][color=%(color_open)s]%(content)s[/color][color=%(color_close)s]' BBCODE_BOLD = '[b]%(content)s[/b]' BBCODE_ITALIC = '[i]%(content)s[/i]' POST_START = '[pre=%(bg_color)s]' POST_END = '[/pre]\n' BBCODE_MATCH = re.compile(r"""(\[/?)((?:code|pre|table|tr|td|th|b|i|u|sup|color|url|img|list|trac|center|quote|size|li|ul|ol|youtube|gvideo)(?:=[^\]]+)?)(\])""") FILTER_MATCH = re.compile(r'^(?:(brightness|saturation|hue|colorize)\((-?[\d]+|[\d]*\.[\d]+)\)|(sepia|grayscale|invert))$') class ExportBbcodePanelCommand(sublime_plugin.WindowCommand): def execute(self, value): if value >= 0: view = self.window.active_view() if view != None: ExportBbcode(view).run(**self.args[value]) def run(self): options = sublime.load_settings(PACKAGE_SETTINGS).get("bbcode_panel", {}) menu = [] self.args = [] for opt in options: k, v = opt.items()[0] menu.append(k) self.args.append(v) if len(menu): self.window.show_quick_panel( menu, self.execute ) class ExportBbcodeCommand(sublime_plugin.WindowCommand): def run(self, **kwargs): view = self.window.active_view() if view != None: ExportBbcode(view).run(**kwargs) class ExportBbcode(object): def __init__(self, view): self.view = view def process_inputs(self, **kwargs): return { "numbers": bool(kwargs.get("numbers", False)), "color_scheme": kwargs.get("color_scheme", None), "multi_select": bool(kwargs.get("multi_select", False)), "clipboard_copy": bool(kwargs.get("clipboard_copy", True)), "view_open": bool(kwargs.get("view_open", False)), "filter": kwargs.get("filter", "") } def setup(self, **kwargs): path_packages = sublime.packages_path() # Get get general document preferences from sublime preferences settings = sublime.load_settings('Preferences.sublime-settings') eh_settings = sublime.load_settings(PACKAGE_SETTINGS) self.tab_size = settings.get('tab_size', 4) self.char_limit = int(eh_settings.get("valid_selection_size", 4)) self.bground = '' self.fground = '' self.gbground = '' self.gfground = '' self.sbground = '' self.sfground = '' self.numbers = kwargs["numbers"] self.hl_continue = None self.curr_hl = None self.sels = [] self.multi_select = self.check_sel() if kwargs["multi_select"] else False self.size = self.view.size() self.pt = 0 self.end = 0 self.curr_row = 0 self.empty_space = None self.filter = [] for f in kwargs["filter"].split(";"): m = FILTER_MATCH.match(f) if m: if m.group(1): self.filter.append((m.group(1), float(m.group(2)))) else: self.filter.append((m.group(3), 0.0)) # Get color scheme if kwargs["color_scheme"] != None: alt_scheme = kwargs["color_scheme"] else: alt_scheme = eh_settings.get("alternate_scheme", False) scheme_file = settings.get('color_scheme') if alt_scheme == False else alt_scheme colour_scheme = path.normpath(scheme_file) self.plist_file = self.apply_filters(readPlist(path_packages + colour_scheme.replace('Packages', ''))) colour_settings = self.plist_file["settings"][0]["settings"] # Get general theme colors from color scheme file self.bground = self.strip_transparency(colour_settings.get("background", '#FFFFFF'), simple_strip=True) self.fground = self.strip_transparency(colour_settings.get("foreground", '#000000')) self.gbground = self.bground self.gfground = self.fground # Create scope colors mapping from color scheme file self.colours = {self.view.scope_name(self.end).split(' ')[0]: {"color": self.fground, "style": []}} for item in self.plist_file["settings"]: scope = item.get('scope', None) colour = None style = [] if 'scope' in item: scope = item['scope'] if 'settings' in item: colour = item['settings'].get('foreground', None) if 'fontStyle' in item['settings']: for s in item['settings']['fontStyle'].split(' '): if s == "bold" or s == "italic": # or s == "underline": style.append(s) if scope != None and colour != None: self.colours[scope] = {"color": self.strip_transparency(colour), "style": style} def apply_filters(self, tmtheme): def filter_color(color): rgba = RGBA(color) for f in self.filter: name = f[0] value = f[1] if name == "grayscale": rgba.grayscale() elif name == "sepia": rgba.sepia() elif name == "saturation": rgba.saturation(value) elif name == "invert": rgba.invert() elif name == "brightness": rgba.brightness(value) elif name == "hue": rgba.hue(value) elif name == "colorize": rgba.colorize(value) return rgba.get_rgba() if len(self.filter): general_settings_read = False for settings in tmtheme["settings"]: if not general_settings_read: for k, v in settings["settings"].items(): try: settings["settings"][k] = filter_color(v) except: pass general_settings_read = True continue try: settings["settings"]["foreground"] = filter_color(settings["settings"]["foreground"]) except: pass try: settings["settings"]["background"] = filter_color(settings["settings"]["background"]) except: pass return tmtheme def strip_transparency(self, color, track_darkness=False, simple_strip=False): if color is None: return color rgba = RGBA(color.replace(" ", "")) if not simple_strip: rgba.apply_alpha(self.bground if self.bground != "" else "#FFFFFF") return rgba.get_rgb() def setup_print_block(self, curr_sel, multi=False): # Determine start and end points and whether to parse whole file or selection if not multi and (curr_sel.empty() or curr_sel.size() <= self.char_limit): self.size = self.view.size() self.pt = 0 self.end = 1 self.curr_row = 1 else: self.size = curr_sel.end() self.pt = curr_sel.begin() self.end = self.pt + 1 self.curr_row = self.view.rowcol(self.pt)[0] + 1 self.start_line = self.curr_row self.gutter_pad = len(str(self.view.rowcol(self.size)[0])) + 1 def check_sel(self): multi = False for sel in self.view.sel(): if not sel.empty() and sel.size() >= self.char_limit: multi = True self.sels.append(sel) return multi def guess_colour(self, the_key): the_colour = None the_style = None if the_key in self.colours: the_colour = self.colours[the_key]["color"] the_style = self.colours[the_key]["style"] else: best_match = 0 for key in self.colours: if self.view.score_selector(self.pt, key) > best_match: best_match = self.view.score_selector(self.pt, key) the_colour = self.colours[key]["color"] the_style = self.colours[key]["style"] self.colours[the_key] = {"color": the_colour, "style": the_style} return the_colour, the_style def print_line(self, line, num): if self.numbers: bbcode_line = NUMBERED_BBCODE_LINE % { "color": self.gfground, "line": str(num).rjust(self.gutter_pad), "code": line } else: bbcode_line = BBCODE_LINE % {"code": line} return bbcode_line def convert_view_to_bbcode(self, the_bbcode): for line in self.view.split_by_newlines(sublime.Region(self.end, self.size)): self.empty_space = None self.size = line.end() line = self.convert_line_to_bbcode() the_bbcode.write(self.print_line(line, self.curr_row)) self.curr_row += 1 def repl(self, m, the_colour): return m.group(1) + ( BBCODE_ESCAPE % { "color_open": the_colour, "color_close": the_colour, "content": m.group(2) } ) + m.group(3) def format_text(self, line, text, the_colour, the_style): text = text.replace('\t', ' ' * self.tab_size).replace('\n', '') if self.empty_space != None: text = self.empty_space + text self.empty_space = None if text.strip(' ') == '': self.empty_space = text else: code = "" text = BBCODE_MATCH.sub(lambda m: self.repl(m, the_colour), text) bold = False italic = False for s in the_style: if s == "bold": bold = True if s == "italic": italic = True code += (BBCODE_CODE % {"color": the_colour, "content": text}) if italic: code = (BBCODE_ITALIC % {"color": the_colour, "content": code}) if bold: code = (BBCODE_BOLD % {"color": the_colour, "content": code}) line.append(code) def convert_line_to_bbcode(self): line = [] while self.end <= self.size: # Get text of like scope up to a highlight scope_name = self.view.scope_name(self.pt) while self.view.scope_name(self.end) == scope_name and self.end < self.size: self.end += 1 the_colour, the_style = self.guess_colour(scope_name) region = sublime.Region(self.pt, self.end) # Normal text formatting text = self.view.substr(region) self.format_text(line, text, the_colour, the_style) # Continue walking through line self.pt = self.end self.end = self.pt + 1 # Join line segments return ''.join(line) def write_body(self, the_bbcode): the_bbcode.write(POST_START % {"bg_color": self.bground}) # Convert view to HTML if self.multi_select: count = 0 total = len(self.sels) for sel in self.sels: self.setup_print_block(sel, multi=True) self.convert_view_to_bbcode(the_bbcode) count += 1 if count < total: the_bbcode.write("\n" + (BBCODE_CODE % {"color": self.fground, "content": "..."}) + "\n\n") else: self.setup_print_block(self.view.sel()[0]) self.convert_view_to_bbcode(the_bbcode) the_bbcode.write(POST_END) def run(self, **kwargs): inputs = self.process_inputs(**kwargs) self.setup(**inputs) delete = False if inputs["view_open"] else True with tempfile.NamedTemporaryFile(delete=delete, suffix='.txt') as the_bbcode: self.write_body(the_bbcode) if inputs["clipboard_copy"]: the_bbcode.seek(0) sublime.set_clipboard(the_bbcode.read()) sublime.status_message("Export to BBCode: copied to clipboard") if inputs["view_open"]: self.view.window().open_file(the_bbcode.name)
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (c) 2012 VMware, Inc. # Copyright (c) 2011 Citrix Systems, Inc. # Copyright 2011 OpenStack LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Test suite for VMwareAPI. """ from nova.compute import power_state from nova.compute import task_states from nova import context from nova import db from nova import exception from nova import test import nova.tests.image.fake from nova.tests import matchers from nova.tests.vmwareapi import db_fakes from nova.tests.vmwareapi import stubs from nova.virt.vmwareapi import driver from nova.virt.vmwareapi import fake as vmwareapi_fake class VMwareAPIVMTestCase(test.TestCase): """Unit tests for Vmware API connection calls.""" def setUp(self): super(VMwareAPIVMTestCase, self).setUp() self.context = context.RequestContext('fake', 'fake', is_admin=False) self.flags(vmwareapi_host_ip='test_url', vmwareapi_host_username='test_username', vmwareapi_host_password='test_pass', vnc_enabled=False, use_linked_clone=False) self.user_id = 'fake' self.project_id = 'fake' self.context = context.RequestContext(self.user_id, self.project_id) vmwareapi_fake.reset() db_fakes.stub_out_db_instance_api(self.stubs) stubs.set_stubs(self.stubs) self.conn = driver.VMwareESXDriver(None, False) # NOTE(vish): none of the network plugging code is actually # being tested self.network_info = [({'bridge': 'fa0', 'id': 0, 'vlan': None, 'bridge_interface': None, 'injected': True}, {'broadcast': '192.168.0.255', 'dns': ['192.168.0.1'], 'gateway': '192.168.0.1', 'gateway_v6': 'dead:beef::1', 'ip6s': [{'enabled': '1', 'ip': 'dead:beef::dcad:beff:feef:0', 'netmask': '64'}], 'ips': [{'enabled': '1', 'ip': '192.168.0.100', 'netmask': '255.255.255.0'}], 'label': 'fake', 'mac': 'DE:AD:BE:EF:00:00', 'rxtx_cap': 3})] self.image = { 'id': 'c1c8ce3d-c2e0-4247-890c-ccf5cc1c004c', 'disk_format': 'vhd', 'size': 512, } nova.tests.image.fake.stub_out_image_service(self.stubs) def tearDown(self): super(VMwareAPIVMTestCase, self).tearDown() vmwareapi_fake.cleanup() nova.tests.image.fake.FakeImageService_reset() def _create_instance_in_the_db(self): values = {'name': 1, 'id': 1, 'project_id': self.project_id, 'user_id': self.user_id, 'image_ref': "1", 'kernel_id': "1", 'ramdisk_id': "1", 'mac_address': "de:ad:be:ef:be:ef", 'instance_type': 'm1.large', } self.instance = db.instance_create(None, values) def _create_vm(self): """Create and spawn the VM.""" self._create_instance_in_the_db() self.type_data = db.instance_type_get_by_name(None, 'm1.large') self.conn.spawn(self.context, self.instance, self.image, injected_files=[], admin_password=None, network_info=self.network_info, block_device_info=None) self._check_vm_record() def _check_vm_record(self): """ Check if the spawned VM's properties correspond to the instance in the db. """ instances = self.conn.list_instances() self.assertEquals(len(instances), 1) # Get Nova record for VM vm_info = self.conn.get_info({'name': 1}) # Get record for VM vms = vmwareapi_fake._get_objects("VirtualMachine") vm = vms[0] # Check that m1.large above turned into the right thing. mem_kib = long(self.type_data['memory_mb']) << 10 vcpus = self.type_data['vcpus'] self.assertEquals(vm_info['max_mem'], mem_kib) self.assertEquals(vm_info['mem'], mem_kib) self.assertEquals(vm.get("summary.config.numCpu"), vcpus) self.assertEquals(vm.get("summary.config.memorySizeMB"), self.type_data['memory_mb']) # Check that the VM is running according to Nova self.assertEquals(vm_info['state'], power_state.RUNNING) # Check that the VM is running according to vSphere API. self.assertEquals(vm.get("runtime.powerState"), 'poweredOn') def _check_vm_info(self, info, pwr_state=power_state.RUNNING): """ Check if the get_info returned values correspond to the instance object in the db. """ mem_kib = long(self.type_data['memory_mb']) << 10 self.assertEquals(info["state"], pwr_state) self.assertEquals(info["max_mem"], mem_kib) self.assertEquals(info["mem"], mem_kib) self.assertEquals(info["num_cpu"], self.type_data['vcpus']) def test_list_instances(self): instances = self.conn.list_instances() self.assertEquals(len(instances), 0) def test_list_instances_1(self): self._create_vm() instances = self.conn.list_instances() self.assertEquals(len(instances), 1) def test_list_interfaces(self): self._create_vm() interfaces = self.conn.list_interfaces(1) self.assertEquals(len(interfaces), 1) self.assertEquals(interfaces[0], 4000) def test_spawn(self): self._create_vm() info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) def test_snapshot(self): expected_calls = [ {'args': (), 'kwargs': {'task_state': task_states.IMAGE_PENDING_UPLOAD}}, {'args': (), 'kwargs': {'task_state': task_states.IMAGE_UPLOADING, 'expected_state': task_states.IMAGE_PENDING_UPLOAD}}] func_call_matcher = matchers.FunctionCallMatcher(expected_calls) self._create_vm() info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) self.conn.snapshot(self.context, self.instance, "Test-Snapshot", func_call_matcher.call) info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) self.assertIsNone(func_call_matcher.match()) def test_snapshot_non_existent(self): self._create_instance_in_the_db() self.assertRaises(exception.InstanceNotFound, self.conn.snapshot, self.context, self.instance, "Test-Snapshot", lambda *args, **kwargs: None) def test_reboot(self): self._create_vm() info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) reboot_type = "SOFT" self.conn.reboot(self.instance, self.network_info, reboot_type) info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) def test_reboot_non_existent(self): self._create_instance_in_the_db() self.assertRaises(exception.InstanceNotFound, self.conn.reboot, self.instance, self.network_info, 'SOFT') def test_reboot_not_poweredon(self): self._create_vm() info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) self.conn.suspend(self.instance) info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.SUSPENDED) self.assertRaises(exception.InstanceRebootFailure, self.conn.reboot, self.instance, self.network_info, 'SOFT') def test_suspend(self): self._create_vm() info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) self.conn.suspend(self.instance) info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.SUSPENDED) def test_suspend_non_existent(self): self._create_instance_in_the_db() self.assertRaises(exception.InstanceNotFound, self.conn.suspend, self.instance) def test_resume(self): self._create_vm() info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) self.conn.suspend(self.instance) info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.SUSPENDED) self.conn.resume(self.instance, self.network_info) info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) def test_resume_non_existent(self): self._create_instance_in_the_db() self.assertRaises(exception.InstanceNotFound, self.conn.resume, self.instance, self.network_info) def test_resume_not_suspended(self): self._create_vm() info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) self.assertRaises(exception.InstanceResumeFailure, self.conn.resume, self.instance, self.network_info) def test_power_on(self): self._create_vm() info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) self.conn.power_off(self.instance) info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.SHUTDOWN) self.conn.power_on(self.instance) info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) def test_power_on_non_existent(self): self._create_instance_in_the_db() self.assertRaises(exception.InstanceNotFound, self.conn.power_on, self.instance) def test_power_off(self): self._create_vm() info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) self.conn.power_off(self.instance) info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.SHUTDOWN) def test_power_off_non_existent(self): self._create_instance_in_the_db() self.assertRaises(exception.InstanceNotFound, self.conn.power_off, self.instance) def test_power_off_suspended(self): self._create_vm() self.conn.suspend(self.instance) info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.SUSPENDED) self.assertRaises(exception.InstancePowerOffFailure, self.conn.power_off, self.instance) def test_get_info(self): self._create_vm() info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) def test_destroy(self): self._create_vm() info = self.conn.get_info({'name': 1}) self._check_vm_info(info, power_state.RUNNING) instances = self.conn.list_instances() self.assertEquals(len(instances), 1) self.conn.destroy(self.instance, self.network_info) instances = self.conn.list_instances() self.assertEquals(len(instances), 0) def test_destroy_non_existent(self): self._create_instance_in_the_db() self.assertEquals(self.conn.destroy(self.instance, self.network_info), None) def test_pause(self): pass def test_unpause(self): pass def test_diagnostics(self): pass def test_get_console_output(self): pass class VMwareAPIHostTestCase(test.TestCase): """Unit tests for Vmware API host calls.""" def setUp(self): super(VMwareAPIHostTestCase, self).setUp() self.flags(vmwareapi_host_ip='test_url', vmwareapi_host_username='test_username', vmwareapi_host_password='test_pass') vmwareapi_fake.reset() stubs.set_stubs(self.stubs) self.conn = driver.VMwareESXDriver(False) def tearDown(self): super(VMwareAPIHostTestCase, self).tearDown() vmwareapi_fake.cleanup() def test_host_state(self): stats = self.conn.get_host_stats() self.assertEquals(stats['vcpus'], 16) self.assertEquals(stats['disk_total'], 1024) self.assertEquals(stats['disk_available'], 500) self.assertEquals(stats['disk_used'], 1024 - 500) self.assertEquals(stats['host_memory_total'], 1024) self.assertEquals(stats['host_memory_free'], 1024 - 500) def _test_host_action(self, method, action, expected=None): result = method('host', action) self.assertEqual(result, expected) def test_host_reboot(self): self._test_host_action(self.conn.host_power_action, 'reboot') def test_host_shutdown(self): self._test_host_action(self.conn.host_power_action, 'shutdown') def test_host_startup(self): self._test_host_action(self.conn.host_power_action, 'startup') def test_host_maintenance_on(self): self._test_host_action(self.conn.host_maintenance_mode, True) def test_host_maintenance_off(self): self._test_host_action(self.conn.host_maintenance_mode, False)
""" Maximum likelihood covariance estimator. """ # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Gael Varoquaux <gael.varoquaux@normalesup.org> # Virgile Fritsch <virgile.fritsch@inria.fr> # # License: BSD 3 clause # avoid division truncation import warnings import numpy as np from scipy import linalg from .. import config_context from ..base import BaseEstimator from ..utils import check_array from ..utils.extmath import fast_logdet from ..metrics.pairwise import pairwise_distances def log_likelihood(emp_cov, precision): """Computes the sample mean of the log_likelihood under a covariance model computes the empirical expected log-likelihood (accounting for the normalization terms and scaling), allowing for universal comparison (beyond this software package) Parameters ---------- emp_cov : ndarray of shape (n_features, n_features) Maximum Likelihood Estimator of covariance. precision : ndarray of shape (n_features, n_features) The precision matrix of the covariance model to be tested. Returns ------- log_likelihood_ : float Sample mean of the log-likelihood. """ p = precision.shape[0] log_likelihood_ = - np.sum(emp_cov * precision) + fast_logdet(precision) log_likelihood_ -= p * np.log(2 * np.pi) log_likelihood_ /= 2. return log_likelihood_ def empirical_covariance(X, *, assume_centered=False): """Computes the Maximum likelihood covariance estimator Parameters ---------- X : ndarray of shape (n_samples, n_features) Data from which to compute the covariance estimate assume_centered : bool, default=False If True, data will not be centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data will be centered before computation. Returns ------- covariance : ndarray of shape (n_features, n_features) Empirical covariance (Maximum Likelihood Estimator). Examples -------- >>> from sklearn.covariance import empirical_covariance >>> X = [[1,1,1],[1,1,1],[1,1,1], ... [0,0,0],[0,0,0],[0,0,0]] >>> empirical_covariance(X) array([[0.25, 0.25, 0.25], [0.25, 0.25, 0.25], [0.25, 0.25, 0.25]]) """ X = np.asarray(X) if X.ndim == 1: X = np.reshape(X, (1, -1)) if X.shape[0] == 1: warnings.warn("Only one sample available. " "You may want to reshape your data array") if assume_centered: covariance = np.dot(X.T, X) / X.shape[0] else: covariance = np.cov(X.T, bias=1) if covariance.ndim == 0: covariance = np.array([[covariance]]) return covariance class EmpiricalCovariance(BaseEstimator): """Maximum likelihood covariance estimator Read more in the :ref:`User Guide <covariance>`. Parameters ---------- store_precision : bool, default=True Specifies if the estimated precision is stored. assume_centered : bool, default=False If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False (default), data are centered before computation. Attributes ---------- location_ : ndarray of shape (n_features,) Estimated location, i.e. the estimated mean. covariance_ : ndarray of shape (n_features, n_features) Estimated covariance matrix precision_ : ndarray of shape (n_features, n_features) Estimated pseudo-inverse matrix. (stored only if store_precision is True) n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 Examples -------- >>> import numpy as np >>> from sklearn.covariance import EmpiricalCovariance >>> from sklearn.datasets import make_gaussian_quantiles >>> real_cov = np.array([[.8, .3], ... [.3, .4]]) >>> rng = np.random.RandomState(0) >>> X = rng.multivariate_normal(mean=[0, 0], ... cov=real_cov, ... size=500) >>> cov = EmpiricalCovariance().fit(X) >>> cov.covariance_ array([[0.7569..., 0.2818...], [0.2818..., 0.3928...]]) >>> cov.location_ array([0.0622..., 0.0193...]) """ def __init__(self, *, store_precision=True, assume_centered=False): self.store_precision = store_precision self.assume_centered = assume_centered def _set_covariance(self, covariance): """Saves the covariance and precision estimates Storage is done accordingly to `self.store_precision`. Precision stored only if invertible. Parameters ---------- covariance : array-like of shape (n_features, n_features) Estimated covariance matrix to be stored, and from which precision is computed. """ covariance = check_array(covariance) # set covariance self.covariance_ = covariance # set precision if self.store_precision: self.precision_ = linalg.pinvh(covariance, check_finite=False) else: self.precision_ = None def get_precision(self): """Getter for the precision matrix. Returns ------- precision_ : array-like of shape (n_features, n_features) The precision matrix associated to the current covariance object. """ if self.store_precision: precision = self.precision_ else: precision = linalg.pinvh(self.covariance_, check_finite=False) return precision def fit(self, X, y=None): """Fits the Maximum Likelihood Estimator covariance model according to the given training data and parameters. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object """ X = self._validate_data(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) covariance = empirical_covariance( X, assume_centered=self.assume_centered) self._set_covariance(covariance) return self def score(self, X_test, y=None): """Computes the log-likelihood of a Gaussian data set with `self.covariance_` as an estimator of its covariance matrix. Parameters ---------- X_test : array-like of shape (n_samples, n_features) Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X_test is assumed to be drawn from the same distribution than the data used in fit (including centering). y : Ignored Not used, present for API consistency by convention. Returns ------- res : float The likelihood of the data set with `self.covariance_` as an estimator of its covariance matrix. """ X_test = self._validate_data(X_test, reset=False) # compute empirical covariance of the test set test_cov = empirical_covariance( X_test - self.location_, assume_centered=True) # compute log likelihood res = log_likelihood(test_cov, self.get_precision()) return res def error_norm(self, comp_cov, norm='frobenius', scaling=True, squared=True): """Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius norm). Parameters ---------- comp_cov : array-like of shape (n_features, n_features) The covariance to compare with. norm : {"frobenius", "spectral"}, default="frobenius" The type of norm used to compute the error. Available error types: - 'frobenius' (default): sqrt(tr(A^t.A)) - 'spectral': sqrt(max(eigenvalues(A^t.A)) where A is the error ``(comp_cov - self.covariance_)``. scaling : bool, default=True If True (default), the squared error norm is divided by n_features. If False, the squared error norm is not rescaled. squared : bool, default=True Whether to compute the squared error norm or the error norm. If True (default), the squared error norm is returned. If False, the error norm is returned. Returns ------- result : float The Mean Squared Error (in the sense of the Frobenius norm) between `self` and `comp_cov` covariance estimators. """ # compute the error error = comp_cov - self.covariance_ # compute the error norm if norm == "frobenius": squared_norm = np.sum(error ** 2) elif norm == "spectral": squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error))) else: raise NotImplementedError( "Only spectral and frobenius norms are implemented") # optionally scale the error norm if scaling: squared_norm = squared_norm / error.shape[0] # finally get either the squared norm or the norm if squared: result = squared_norm else: result = np.sqrt(squared_norm) return result def mahalanobis(self, X): """Computes the squared Mahalanobis distances of given observations. Parameters ---------- X : array-like of shape (n_samples, n_features) The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit. Returns ------- dist : ndarray of shape (n_samples,) Squared Mahalanobis distances of the observations. """ X = self._validate_data(X, reset=False) precision = self.get_precision() with config_context(assume_finite=True): # compute mahalanobis distances dist = pairwise_distances(X, self.location_[np.newaxis, :], metric='mahalanobis', VI=precision) return np.reshape(dist, (len(X),)) ** 2
# -*- coding: utf-8 -*- __author__ = 'tivvit' from google.appengine.ext import ndb from google.appengine.ext.ndb import msgprop from protorpc import messages from google.appengine.api import memcache from backend.cdh_m import User_m, UsersCollection_m, SolvedQuestSum_m, SolvedQuest_m, SolvedQuestsCollection_m from solved_quest import SolvedQuest from quests import Quests from faction_names import faction_names # from game import Game import logging class Users(ndb.Model): # id = messages.IntegerField(1) name = ndb.StringProperty() email = ndb.StringProperty() faction = ndb.IntegerProperty() # user = msgprop.MessageProperty(User_m, indexed_fields=['name', 'faction']) # def __init__(self): # self.solved_quest = SolvedQuest() def list(self): data = memcache.get('users') if data is not None: return data else: users = [] for user in Users.query().order(Users.name).fetch(): users.append(self._map_message(user)) # logging.info(users) users_m = UsersCollection_m(user=users) memcache.add(key="users", value=users_m, time=600) return users_m def search(self, query): users = [] # for user in Users.query(Users.name==query).fetch(): # todo use search API for user in Users.query().fetch(): if user.name and query in user.name: users.append(self._map_message(user)) logging.info(users) return UsersCollection_m(user=users) def get(self, id): return self._map_message(ndb.Key(Users, id).get()) def delete(self, id): return ndb.Key(Users, id).delete() def allowed_to_faction(self, game, user_id): user_points = self.get_points_sum(user_id) # print "points" + str(user_points) # print game.get_min_faction_points() # print user_points >= game.get_min_faction_points() return user_points >= game.get_min_faction_points() def set_faction(self, game, user_id, faction_id): user = ndb.Key(Users, user_id).get() print self.allowed_to_faction(game, user_id) print game.faction_hiring(faction_id).hiring if not user.faction and self.allowed_to_faction(game, user_id) and game.faction_hiring(faction_id).hiring: user.faction = faction_id user.put() return self._map_message(user) def create(self, name, email, faction=0): user = Users( name=name, email=email, faction=faction ) user.put() return self._map_message(user) def get_points(self, user_id): solved_quest = SolvedQuest() solved = solved_quest.get_user_points_list(user_id) # logging.debug(solved) solved_quests = [] for solve in solved: if solve.id_quest: quest = Quests().get(solve.id_quest) else: quest = None solved_quests.append( SolvedQuest_m( userId=solve.id_user, questId=solve.id_quest, points=solve.points, quest=quest ) ) return SolvedQuestsCollection_m(solved_quests=solved_quests) def get_points_sum(self, user_id): solved_quest = SolvedQuest() return solved_quest.get_user_points_sum(user_id) def get_points_sum_m(self, user_id): return SolvedQuestSum_m( sum=self.get_points_sum(user_id) ) def add_points(self, user_id, points): solved_quest = SolvedQuest() points = solved_quest.add_points(user_id, points) return SolvedQuest_m( userId=points.id_user, points=points.points ) def solve_quest(self, user_id, quest_id): # solved_quest = SolvedQuest() # quests = Quests() quest = Quests.query(Quests.num == quest_id).get() points = quest.points user = ndb.Key(Users, user_id).get() logging.info(user.faction) logging.info(quest.faction) if quest.faction == 0 or quest.faction == user.faction: solved_c = self.get_points(user_id) solved_c = solved_c.solved_quests alreadySolved = False for s in solved_c: if s.quest and quest.num == s.quest.num: alreadySolved = True break if not alreadySolved: solved_quest = SolvedQuest() solved = solved_quest.solve_quest(user_id, quest_id, points) logging.warning(solved) return SolvedQuest_m( userId=solved.id_user, questId=solved.id_quest, points=solved.points ) # else: # raise Exception else: raise Exception def get_stats(self, game, user_id, faction_id): from backend.cdh_m import Quest_m, User_stats_m user = ndb.Key(Users, user_id).get() user_m = self._map_message(user) # q = [] # q.append(Quest_m(name="Zabij vsechny kolem", faction="Nefrakcni", points=2)) # q.append(Quest_m(name="Zabij vsechny Vitalisty", faction="Metalide", points=10)) #logging.debug() solved = self.get_points(user_id) solved = solved.solved_quests # solved = [] # for s in solved_c: # if s.quest: # solved.append(s.quest) q = Quests() list_faction = 0 if user.faction == faction_id: list_faction = faction_id todo = q.list_by_fraction(list_faction) todo = todo.quest # logging.info("cnt: " + todo) # logging.info(">>>>>>>>>>>>>>") filtered_todo = [] for t in todo: add = True # logging.info(solved) # logging.info("========") logging.info("========") for solv in solved: # logging.info("solv" + solv.num) # logging.info("todo" + t.num) if t.num and solv.quest and solv.quest.num == t.num: add = False break if add: filtered_todo.append(SolvedQuest_m(quest=t, points=t.points)) return User_stats_m( user=user_m, todo=filtered_todo, quests=solved, pointsSum=self.get_points_sum(user_id), allowedToFaction=int(user.faction == 0 and self.allowed_to_faction(game, user_id) and game.faction_hiring(faction_id).hiring) ) def _map_message(self, user): return User_m( name=user.name, email=user.email, factionId=user.faction, faction=faction_names[user.faction] if user.faction >= 0 else "", id=long(user.key.id()) )
############################################################################### ## ## Copyright (C) 2014-2016, New York University. ## Copyright (C) 2011-2014, NYU-Poly. ## Copyright (C) 2006-2011, University of Utah. ## All rights reserved. ## Contact: contact@vistrails.org ## ## This file is part of VisTrails. ## ## "Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions are met: ## ## - Redistributions of source code must retain the above copyright notice, ## this list of conditions and the following disclaimer. ## - Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in the ## documentation and/or other materials provided with the distribution. ## - Neither the name of the New York University nor the names of its ## contributors may be used to endorse or promote products derived from ## this software without specific prior written permission. ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ## THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ## PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ## EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ## PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ## OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, ## WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR ## OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ## ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ## ############################################################################### from __future__ import division import colorsys from string import Template from vistrails.core.modules.config import IPort, OPort, ModuleSettings from vistrails.core.modules.vistrails_module import ModuleError, Module from vistrails.core.utils import InstanceObject # FIXME make package imports better from vistrails.packages.tabledata.common import choose_column from .utils import * ############################################################################### # Modules and Data class GMapVisData(object): def __init__(self, gmaps_libs, init_template, data, center=None): self.gmaps_libs = gmaps_libs self.init_template = init_template self.data = data self.center = center def convert_color(c): c = c.tuple return GMapColor(c[0] * 255.0, c[1] * 255.0, c[2] * 255.0) class TitlesMixin(object): def get_titles(self, table=None, default_col=None): if table is None: table = self.get_input("table") title_col_idx = self.force_get_input('titleColIdx') title_col_name = self.force_get_input('titleColName') print "title_col_idx:", title_col_idx print "title_col_name:", title_col_name if (title_col_idx is None and title_col_name is None and default_col is not None and default_col < table.columns): # only allow default if in range title_col_idx = default_col if title_col_idx is not None or title_col_name is not None: title_idx = choose_column(table.columns, table.names, title_col_name, title_col_idx) title_col = table.get_column(title_idx) return title_col return None class GMapVis(Module, OptionsMixin): _input_ports = [IPort('table', 'tabledata:Table'), IPort('latitudeColIdx', 'basic:Integer', optional=True, default=0), IPort('latitudeColName', 'basic:String', optional=True), IPort('longitudeColIdx', 'basic:Integer', optional=True, default=1), IPort('longitudeColName', 'basic:String', optional=True)] _output_ports = [OPort('self', 'GMapVis')] _settings = ModuleSettings(abstract=True) def get_positions(self, table=None): if table is None: table = self.get_input("table") lat_col_idx = self.force_get_input('latitudeColIdx') lat_col_name = self.force_get_input('latitudeColName') lng_col_idx = self.force_get_input('longitudeColIdx') lng_col_name = self.force_get_input('longitudeColName') if lat_col_idx is None and lat_col_name is None: lat_idx = self.get_input('latitudeColIdx') # default 0 else: lat_idx = choose_column(table.columns, table.names, lat_col_name, lat_col_idx) if lng_col_idx is None and lng_col_name is None: lng_idx = self.get_input('longitudeColIdx') # default 1 else: lng_idx = choose_column(table.columns, table.names, lng_col_name, lng_col_idx) lat_col = table.get_column(lat_idx, True) lng_col = table.get_column(lng_idx, True) center = (sum(float(x) for x in lat_col)/len(lat_col), sum(float(x) for x in lng_col)/len(lng_col)) positions = [] for i in xrange(table.rows): positions.append(GMapLatLng(lat_col[i], lng_col[i])) return (positions, center) class GMapMarkers(GMapVis, TitlesMixin): """Turns tabular data into markers to be shown on a map. """ TEMPLATE = Template(""" var positions = $marker_data; var options = $marker_options; var titles = $marker_titles; for (var i=0; i < positions.length; i++) { marker = new google.maps.Marker({"position": positions[i], "map": map}); marker.setOptions(options); if (titles) { marker.setTitle(titles[i]); } } """) SPECS = ['flat'] _input_ports = [IPort("flat", "basic:Boolean", optional=True), IPort('titleColIdx', 'basic:Integer', optional=True), IPort('titleColName', 'basic:String', optional=True)] def compute(self): (positions, center) = self.get_positions() marker_options = self.get_options(self.SPECS) titles = self.get_titles() print "got titles:", titles data = {"marker_options": marker_options, "marker_data": positions, "marker_titles": titles} vis_data = GMapVisData([], self.TEMPLATE, data, center) self.set_output("self", vis_data) class GMapValueVis(GMapVis): _input_ports = [IPort('valueColIdx', 'basic:Integer', optional=True, default=2), IPort('valueColName', 'basic:String', optional=True),] _settings = ModuleSettings(abstract=True) def get_values(self, table=None): if table is None: table = self.get_input("table") value_col_idx = self.force_get_input("valueColIdx") value_col_name = self.force_get_input("valueColName") if value_col_idx is None and value_col_name is None: value_idx = self.get_input("valueColIdx") # default 2 else: value_idx = choose_column(table.columns, table.names, value_col_name, value_col_idx) value_col = table.get_column(value_idx, True) return value_col class GMapCircles(GMapValueVis): """Turns tabular data into circles of different sizes to be shown on a map. """ TEMPLATE = Template(""" var data = $circle_data; for (var i=0; i < data.length; i++) { var options = $circle_options; options["center"] = data[i][0]; options["radius"] = data[i][1]; options["map"] = map; circle = new google.maps.Circle(options); } """) SPECS = [('strokeColor', convert_color, True), ('fillColor', convert_color), 'strokeWeight', 'strokeOpacity', 'fillOpacity'] _input_ports = [IPort("strokeColor", "basic:Color", optional=True, default=InstanceObject(tuple=(0,0,0))), IPort("strokeWeight", "basic:Integer", optional=True), IPort("strokeOpacity", "basic:Float", optional=True), IPort("fillColor", "basic:Color", optional=True), IPort("fillOpacity", "basic:Float", optional=True), IPort("scale", "basic:Float", optional=True)] def compute(self): (positions, center) = self.get_positions() values = self.get_values() circle_data = [[positions[i], float(values[i])/200.0] for i in xrange(len(positions))] circle_options = self.get_options(self.SPECS) data = {"circle_options": circle_options, "circle_data": circle_data} vis_data = GMapVisData([], self.TEMPLATE, data, center) self.set_output("self", vis_data) class GMapSymbols(GMapValueVis, TitlesMixin): """Turns tabular data into different symbols to be shown on a map. """ TEMPLATE = Template(""" var data = $symbol_data; var titles = $symbol_titles; for (var i=0; i < data.length; i++) { var marker_options = {"position": data[i][0], "map": map}; if (titles) { marker_options["title"] = titles[i]; } if ($use_values) { var icon_options = $symbol_options; icon_options["fillColor"] = data[i][1]; marker_options["icon"] = icon_options; } marker = new google.maps.Marker(marker_options); } """) SPECS = [('strokeColor', convert_color, True), ('fillStartColor', None, True), ('fillEndColor', None, True), ('strokeWeight', None, True), 'strokeOpacity', ('fillOpacity', None, True), ('scale', None, True)] _input_ports = [IPort("strokeColor", "basic:Color", optional=True, default=InstanceObject(tuple=(0,0,0))), IPort("strokeWeight", "basic:Integer", optional=True, default=1), IPort("strokeOpacity", "basic:Float", optional=True), IPort("fillStartColor", "basic:Color", optional=True, default=InstanceObject(tuple=(1,1,1))), IPort("fillEndColor", "basic:Color", optional=True, default=InstanceObject(tuple=(1,0,0))), IPort("fillOpacity", "basic:Float", optional=True, default=1.0), IPort("scale", "basic:Float", optional=True, default=5.0), IPort('titleColIdx', 'basic:Integer', optional=True), IPort('titleColName', 'basic:String', optional=True), IPort("allowLegacy", "basic:Boolean", optional=True, default=False)] def compute(self): (positions, center) = self.get_positions() legacy = self.get_input("allowLegacy") use_values = True try: values = [float(x) for x in self.get_values()] except ValueError, e: # LEGACY SUPPORT if legacy: use_values = False else: raise ModuleError(self, "Must provide values column") if not use_values: symbol_data = positions symbol_options = {} else: symbol_options = self.get_options(self.SPECS) symbol_options["path"] = \ RawJavaScriptText("google.maps.SymbolPath.CIRCLE") min_value = min(values) max_value = max(values) # if we have black or white, we want hue to match the other side def white_or_black(c): return ((c[0] < 1e-8 and c[1] < 1e-8 and c[2] < 1e-8) or (c[0] > 1-1e-8 and c[1] > 1-1e-8 and c[2] > 1-1e-8)) start_c = symbol_options.pop("fillStartColor").tuple end_c = symbol_options.pop("fillEndColor").tuple start_wb = white_or_black(start_c) end_wb = white_or_black(end_c) start_c = list(colorsys.rgb_to_hsv(*start_c)) end_c = list(colorsys.rgb_to_hsv(*end_c)) if start_wb: start_c[0] = end_c[0] elif end_wb: end_c[0] = start_c[0] symbol_data = [] for i in xrange(len(positions)): val = values[i] if max_value - min_value < 1e-8: norm_val = 1.0 else: norm_val = (val - min_value) / (max_value - min_value) color = [] for j in xrange(len(start_c)): color.append((1.0 - norm_val) * start_c[j] + norm_val * end_c[j]) color = colorsys.hsv_to_rgb(*color) symbol_data.append([positions[i], GMapColor(255 * color[0], 255 * color[1], 255 * color[2])]) symbol_titles = self.get_titles(default_col=(3 if legacy else None)) data = {"symbol_data": symbol_data, "symbol_options": symbol_options, "symbol_titles": symbol_titles, "use_values": use_values} vis_data = GMapVisData([], self.TEMPLATE, data, center) self.set_output("self", vis_data) class GMapHeatmap(GMapValueVis): """Turns tabular data into a heatmap layer to be shown on a map. """ TEMPLATE = Template(""" var data = $heatmap_data; var options = $heatmap_options; options["data"] = data; options["map"] = map; heatmap = new google.maps.visualization.HeatmapLayer(options); """) SPECS = ['dissipating', 'maxIntensity', 'opacity', 'radius'] _input_ports = [IPort("dissipating", "basic:Boolean", optional=True, default=True), IPort("maxIntensity", "basic:Float", optional=True), IPort("opacity", "basic:Float", optional=True, default=0.6), IPort("radius", "basic:Float", optional=True)] def compute(self): (positions, center) = self.get_positions() values = self.get_values() heatmap_data = [{"location": positions[i], "weight": float(values[i])} for i in xrange(len(positions))] heatmap_options = self.get_options(self.SPECS) data = {"heatmap_data": heatmap_data, "heatmap_options": heatmap_options} vis_data = GMapVisData([], self.TEMPLATE, data, center) self.set_output("self", vis_data) _modules = [GMapVis, GMapMarkers, GMapValueVis, GMapCircles, GMapSymbols, GMapHeatmap]
# # DrawingMixin.py -- enable drawing capabilities. # # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. # import time import math from ginga import trcalc from ginga.misc.Bunch import Bunch from ginga.Bindings import KeyEvent from .CanvasMixin import CanvasMixin __all__ = ['DrawingMixin'] class DrawingMixin(object): """The DrawingMixin is a mixin class that adds drawing capability for some of the basic CanvasObject-derived types. The set_surface method is used to associate a ImageViewCanvas object for layering on. """ def __init__(self): assert isinstance(self, CanvasMixin), "Missing CanvasMixin class" from .CanvasObject import drawCatalog # For interactive drawing self.candraw = False self.draw_dict = drawCatalog # canvas objects which we know how to draw have an "idraw" # class method self.drawtypes = [ key for key in self.draw_dict.keys() if hasattr(self.draw_dict[key], 'idraw') ] self.drawtypes.sort() self.t_drawtype = 'point' self.t_drawparams = {} # holds the drawing context self._draw_cxt = None # For interactive editing self.canedit = False # Set to False to disable drag moves except from move control pt self.easymove = True self._start_x = 0 self._start_y = 0 self._cp_index = None self._edit_obj = None self._edit_status = False self._edit_detail = {} self._pick_cur_obj = None # For modes self._mode = 'draw' self._mode_tbl = Bunch() self.add_draw_mode(None) self.add_draw_mode('draw', down=self.draw_start, move=self.draw_motion, up=self.draw_stop, poly_add=self.draw_poly_add, poly_delete=self.draw_poly_delete) self.add_draw_mode('edit', down=self.edit_start, move=self.edit_motion, up=self.edit_stop, poly_add=self.edit_poly_add, poly_delete=self.edit_poly_delete) self.add_draw_mode('pick', down=self.pick_start, move=self.pick_motion, up=self.pick_stop, hover=self.pick_hover, poly_add=self.edit_poly_add, poly_delete=self.edit_poly_delete) # For selection self._selected = [] self.multi_select_ok = False # this controls whether an object is automatically selected for # editing immediately after being drawn self.edit_follows_draw = False self._process_time = 0.0 # time delta threshold for deciding whether to update the image self._delta_time = 0.020 self._draw_obj = None # NOTE: must be mixed in with a Callback.Callbacks for name in ('draw-event', 'draw-down', 'draw-move', 'draw-up', 'cursor-down', 'cursor-up', 'cursor-move', 'draw-scroll', 'keydown-poly_add', 'keydown-poly_del', 'keydown-edit_del', 'edit-event', 'edit-select', 'drag-drop'): self.enable_callback(name) def set_surface(self, viewer): self.viewer = viewer # Register this canvas for events of interest. # Assumes we are mixed in with a canvas canvas = self # for legacy drawing via draw mode in Bindmap canvas.add_callback('draw-down', self.draw_start, viewer) canvas.add_callback('draw-move', self.draw_motion, viewer) canvas.add_callback('draw-up', self.draw_stop, viewer) canvas.add_callback('key-press', self._draw_key, 'key', viewer) canvas.add_callback('keydown-poly_add', self._draw_op, 'poly_add', viewer) canvas.add_callback('keydown-poly_del', self._draw_op, 'poly_delete', viewer) canvas.add_callback('keydown-edit_del', self.edit_delete_cb, viewer) #canvas.add_callback('draw-scroll', self._edit_rotate_cb, viewer) #canvas.add_callback('draw-scroll', self._edit_scale_cb, viewer) def register_for_cursor_drawing(self, viewer): canvas = self canvas.add_callback('cursor-down', self._draw_op, 'down', viewer) canvas.add_callback('cursor-move', self._draw_op, 'move', viewer) canvas.add_callback('cursor-up', self._draw_op, 'up', viewer) canvas.set_callback('none-move', self._draw_op, 'hover', viewer) ##### MODE LOGIC ##### def add_draw_mode(self, name, **kwargs): try: bnch = self._mode_tbl[name] except KeyError: bnch = Bunch(name=name, **kwargs) self._mode_tbl[name] = bnch return bnch def set_draw_mode(self, mode): if not mode in self._mode_tbl: modes = list(self._mode_tbl.keys()) raise ValueError("mode must be one of: %s" % (str(modes))) self._mode = mode if mode != 'edit': self.clear_selected() self.update_canvas() def get_draw_mode(self): return self._mode def _draw_op(self, canvas, event, data_x, data_y, opn, viewer): if viewer != event.viewer: return False mode = self._mode # Hack to handle legacy drawing using draw mode in Bindmap if self.is_drawing(): mode = 'draw' try: method = self._mode_tbl[mode][opn] except KeyError: return False if method is not None: return method(canvas, event, data_x, data_y, viewer) return False def _draw_key(self, canvas, keyname, opn, viewer): # synthesize a KeyEvent # TODO: this is hacky--see if we can rethink how this is handled # so that we get passed an event similar to _draw_op() last_x, last_y = viewer.get_last_data_xy() event = KeyEvent(key=keyname, state='down', mode=self._mode, modifiers=[], viewer=viewer, data_x=last_x, data_y=last_y) return self._draw_op(canvas, event, last_x, last_y, opn, viewer) ##### DRAWING LOGIC ##### def _draw_update(self, data_x, data_y, cxt, force_update=False): obj = None # update the context with current position x, y = cxt.crdmap.data_to(data_x, data_y) cxt.setvals(x=x, y=y, data_x=data_x, data_y=data_y) draw_class = cxt.draw_class if draw_class is None: return False obj = draw_class.idraw(self, cxt) # update display every delta_time secs if obj is not None: obj.initialize(self, cxt.viewer, self.logger) self._draw_obj = obj if force_update or (time.time() - self._process_time > self._delta_time): self.process_drawing() return True def draw_start(self, canvas, event, data_x, data_y, viewer): if not self.candraw: return False self._draw_obj = None # get the drawing coordinate type (default 'data') crdtype = self.t_drawparams.get('coord', 'data') crdmap = viewer.get_coordmap(crdtype) x, y = crdmap.data_to(data_x, data_y) klass = self.draw_dict.get(self.t_drawtype, None) # create the drawing context self._draw_cxt = Bunch(start_x=x, start_y=y, points=[(x, y)], x=x, y=y, data_x=data_x, data_y=data_y, drawparams=self.t_drawparams, crdmap=crdmap, viewer=viewer, draw_class=klass, logger=self.logger) self._draw_update(data_x, data_y, self._draw_cxt, force_update=True) return True def draw_stop(self, canvas, event, data_x, data_y, viewer): if not self.candraw: return False self._draw_update(data_x, data_y, self._draw_cxt) obj, self._draw_obj = self._draw_obj, None if obj is not None: objtag = self.add(obj) self.make_callback('draw-event', objtag) if self.edit_follows_draw: #self.set_draw_mode('edit') self.clear_selected() self.edit_select(obj) self.make_callback('edit-select', self._edit_obj) return True else: self.process_drawing() def draw_motion(self, canvas, event, data_x, data_y, viewer): if not self.candraw: return False self._draw_update(data_x, data_y, self._draw_cxt) return True def draw_poly_add(self, canvas, event, data_x, data_y, viewer): if not self.candraw: return False cxt = self._draw_cxt if self.t_drawtype in ('polygon', 'freepolygon', 'path', 'freepath'): x, y = cxt.crdmap.data_to(data_x, data_y) cxt.points.append((x, y)) elif self.t_drawtype == 'beziercurve' and len(cxt.points) < 3: x, y = cxt.crdmap.data_to(data_x, data_y) cxt.points.append((x, y)) self._draw_update(data_x, data_y, cxt, force_update=True) return True def draw_poly_delete(self, canvas, event, data_x, data_y, viewer): if not self.candraw: return False cxt = self._draw_cxt if self.t_drawtype in ('polygon', 'freepolygon', 'path', 'freepath', 'beziercurve'): if len(cxt.points) > 0: cxt.points.pop() self._draw_update(data_x, data_y, cxt, force_update=True) return True def is_drawing(self): return self._draw_obj is not None def enable_draw(self, tf): self.candraw = tf def set_drawcolor(self, colorname): self.t_drawparams['color'] = colorname def set_drawtype(self, drawtype, **drawparams): if drawtype is not None: drawtype = drawtype.lower() assert drawtype in self.drawtypes, \ ValueError("Bad drawing type '%s': must be one of %s" % ( drawtype, self.drawtypes)) self.t_drawtype = drawtype self.t_drawparams = drawparams.copy() def get_drawtypes(self): return self.drawtypes def get_drawtype(self): return self.t_drawtype def get_draw_class(self, drawtype): drawtype = drawtype.lower() klass = self.draw_dict[drawtype] return klass def get_drawparams(self): return self.t_drawparams.copy() def process_drawing(self): self._process_time = time.time() #self.redraw(whence=3) self.update_canvas() def register_canvas_type(self, name, klass): drawtype = name.lower() self.draw_dict[drawtype] = klass if not drawtype in self.drawtypes: self.drawtypes.append(drawtype) self.drawtypes.sort() ##### EDITING LOGIC ##### def get_edit_object(self): return self._edit_obj def is_editing(self): return self.get_edit_obj() is not None def enable_edit(self, tf): self.canedit = tf def _rot_xlate(self, obj, data_x, data_y): # translate point back into non-rotated form rot_deg = - obj.rot_deg xoff, yoff = obj.get_center_pt() data_x, data_y = trcalc.rotate_pt(data_x, data_y, rot_deg, xoff=xoff, yoff=yoff) return data_x, data_y def _edit_update(self, data_x, data_y, viewer): if (not self.canedit) or (self._cp_index is None): return False x, y = data_x, data_y if self._cp_index < 0: if self.easymove: self._edit_obj.set_edit_point(0, (x - self._start_x, y - self._start_y), self._edit_detail) else: # special hack for objects that have rot_deg attribute if hasattr(self._edit_obj, 'rot_deg') and (self._cp_index > 0): x, y = self._rot_xlate(self._edit_obj, x, y) self._edit_obj.set_edit_point(self._cp_index, (x, y), self._edit_detail) #self._edit_obj.sync_state() if time.time() - self._process_time > self._delta_time: self.process_drawing() return True def _is_editable(self, obj, x, y, is_inside): return is_inside and obj.editable def _prepare_to_move(self, obj, data_x, data_y): #print(("moving an object", obj.editable)) self.edit_select(obj) self._cp_index = -1 ref_x, ref_y = self._edit_obj.get_reference_pt() self._start_x, self._start_y = data_x - ref_x, data_y - ref_y #print(("end moving an object", obj.editable)) def edit_start(self, canvas, event, data_x, data_y, viewer): if not self.canedit: return False self._edit_tmp = self._edit_obj self._edit_status = False self._edit_detail = Bunch() self._cp_index = None #shift_held = 'shift' in event.modifiers shift_held = False selects = self.get_selected() if len(selects) == 0: #print("no objects already selected") # <-- no objects already selected # check for objects at this location #print("getting items") objs = canvas.select_items_at(viewer, data_x, data_y, test=self._is_editable) #print("items: %s" % (str(objs))) if len(objs) == 0: # <-- no objects under cursor return False # pick top object obj = objs[-1] self._prepare_to_move(obj, data_x, data_y) else: self._edit_status = True # Ugh. Check each selected object's control points # for a match contains = [] for obj in selects: #print("editing: checking for cp") edit_pts = obj.get_edit_points(viewer) #print((self._edit_obj, edit_pts)) i = obj.get_pt(viewer, edit_pts, data_x, data_y, obj.cap_radius) #print(('got point', i)) if i is not None: #print("editing cp #%d" % (i)) # editing a control point from an existing object self._edit_obj = obj self._cp_index = i if hasattr(obj, 'rot_deg'): x, y = self._rot_xlate(self._edit_obj, data_x, data_y) else: x, y = data_x, data_y self._edit_detail.start_pos = (x, y) obj.setup_edit(self._edit_detail) self._edit_update(data_x, data_y, viewer) return True ## if obj.contains(data_x, data_y): ## contains.append(obj) # update: check if objects bbox contains this point x1, y1, x2, y2 = obj.get_llur() if (x1 <= data_x <= x2) and (y1 <= data_y <= y2): contains.append(obj) # <-- no control points match, is there an object that contains # this point? if len(contains) > 0: # TODO?: make a compound object of contains and move it? obj = contains[-1] if self.is_selected(obj) and shift_held: # deselecting object self.select_remove(obj) else: self._prepare_to_move(obj, data_x, data_y) ## Compound = self.get_draw_class('compoundobject') ## c_obj = Compound(*self.get_selected()) ## c_obj.inherit_from(obj) ## self._prepare_to_move(c_obj, data_x, data_y) else: # <-- user clicked outside any selected item's control pt # and outside any selected item if not shift_held: self.clear_selected() # see now if there is an unselected item at this location objs = canvas.select_items_at(viewer, data_x, data_y, test=self._is_editable) #print("new items: %s" % (str(objs))) if len(objs) > 0: # pick top object obj = objs[-1] #print(("top object", obj)) if self.num_selected() > 0: #print("there are previously selected items") # if there are already some selected items, then # add this object to the selection, make a compound # object self.edit_select(obj) Compound = self.get_draw_class('compoundobject') c_obj = Compound(*self.get_selected()) c_obj.inherit_from(obj) self._prepare_to_move(c_obj, data_x, data_y) else: # otherwise just start over with this new object #print(("starting over")) self._prepare_to_move(obj, data_x, data_y) self.process_drawing() return True def edit_stop(self, canvas, event, data_x, data_y, viewer): if not self.canedit: return False if (self._edit_tmp != self._edit_obj) or ( (self._edit_obj is not None) and (self._edit_status != self.is_selected(self._edit_obj))): # <-- editing status has changed #print("making edit-select callback") self.make_callback('edit-select', self._edit_obj) if (self._edit_obj is not None) and (self._cp_index is not None): # <-- an object has been edited self._edit_update(data_x, data_y, viewer) self._cp_index = None self.make_callback('edit-event', self._edit_obj) self._edit_obj.make_callback('edited') return True def edit_motion(self, canvas, event, data_x, data_y, viewer): if not self.canedit: return False if (self._edit_obj is not None) and (self._cp_index is not None): self._edit_update(data_x, data_y, viewer) return True return False def edit_poly_add(self, canvas, event, data_x, data_y, viewer): if not self.canedit: return False obj = self._edit_obj if (obj is not None) and self.is_selected(obj) and \ (obj.kind in ('polygon', 'path')): self.logger.debug("checking points") # determine which line we are adding a point to points = list(obj.get_data_points()) if obj.kind == 'polygon': points = points + [points[0]] x0, y0 = points[0] insert = None for i in range(1, len(points[1:])+1): x1, y1 = points[i] self.logger.debug("checking line %d" % (i)) if obj.within_line(viewer, data_x, data_y, x0, y0, x1, y1, 8): insert = i break x0, y0 = x1, y1 if insert is not None: self.logger.debug("inserting point") # Point near a line pt = obj.crdmap.data_to(data_x, data_y) obj.insert_pt(insert, pt) self.process_drawing() else: self.logger.debug("cursor not near a line") return True def edit_poly_delete(self, canvas, event, data_x, data_y, viewer): if not self.canedit: return False obj = self._edit_obj if (obj is not None) and self.is_selected(obj) and \ (obj.kind in ('polygon', 'path')): self.logger.debug("checking points") # determine which point we are deleting points = list(obj.get_data_points()) delete = None for i in range(len(points)): x1, y1 = points[i] self.logger.debug("checking vertex %d" % (i)) if obj.within_radius(viewer, data_x, data_y, x1, y1, 8): delete = i break if delete is not None: self.logger.debug("deleting point") obj.delete_pt(delete) self.process_drawing() else: self.logger.debug("cursor not near a point") return True def edit_rotate(self, delta_deg, viewer): if self._edit_obj is None: return False self._edit_obj.rotate_by(delta_deg) self.process_drawing() self.make_callback('edit-event', self._edit_obj) return True def _edit_rotate_cb(self, canvas, event, viewer, msg=True): if not self.canedit or (viewer != event.viewer): return False bd = viewer.get_bindings() amount = event.amount if bd.get_direction(event.direction) == 'down': amount = - amount return self.edit_rotate(amount) def edit_scale(self, delta_x, delta_y, viewer): if self._edit_obj is None: return False self._edit_obj.scale_by(delta_x, delta_y) self.process_drawing() self.make_callback('edit-event', self._edit_obj) return True def _edit_scale_cb(self, canvas, event, viewer, msg=True): if not self.canedit or (viewer != event.viewer): return False bd = viewer.get_bindings() if bd.get_direction(event.direction) == 'down': amount = 0.9 else: amount = 1.1 return self.edit_scale(amount, amount) def edit_delete(self): if (self._edit_obj is not None) and self.is_selected(self._edit_obj): self.select_remove(self._edit_obj) obj, self._edit_obj = self._edit_obj, None self.delete_object(obj) self.make_callback('edit-event', self._edit_obj) return True def edit_delete_cb(self, canvas, event, data_x, data_y, viewer): if not self.canedit or (viewer != event.viewer): return False return self.edit_delete() def edit_select(self, newobj): if not self.canedit: return False if not self.multi_select_ok: self.clear_selected() # add new object to selection self.select_add(newobj) self._edit_obj = newobj return True ##### SELECTION LOGIC ##### def _is_selectable(self, obj, x, y, is_inside): return is_inside and obj.editable #return is_inside def is_selected(self, obj): return obj in self._selected def get_selected(self): return self._selected def num_selected(self): return len(self._selected) def clear_selected(self): self._selected = [] def select_remove(self, obj): try: self._selected.remove(obj) except: pass def select_add(self, obj): if obj not in self._selected: self._selected.append(obj) ##### PICK LOGIC ##### def _do_pick(self, canvas, event, data_x, data_y, cb_name, viewer): # check for objects at this location objs = canvas.select_items_at(viewer, data_x, data_y) if len(objs) == 0: # <-- no objects under cursor if self._pick_cur_obj is not None: # leaving an object that we were in--make pick-leave cb obj, self._pick_cur_obj = self._pick_cur_obj, None pt = obj.crdmap.data_to(data_x, data_y) obj.make_callback('pick-leave', canvas, event, pt) return False # pick top object obj = objs[-1] self.logger.debug("%s event in %s obj at x, y = %d, %d" % ( cb_name, obj.kind, data_x, data_y)) # get coordinates in native form for this object pt = obj.crdmap.data_to(data_x, data_y) if self._pick_cur_obj is None: # entering a new object--make pick-enter cb self._pick_cur_obj = obj obj.make_callback('pick-enter', canvas, event, pt) # make pick callback obj.make_callback(cb_name, canvas, event, pt) return True def pick_start(self, canvas, event, data_x, data_y, viewer): return self._do_pick(canvas, event, data_x, data_y, 'pick-down', viewer) def pick_motion(self, canvas, event, data_x, data_y, viewer): return self._do_pick(canvas, event, data_x, data_y, 'pick-move', viewer) def pick_hover(self, canvas, event, data_x, data_y, viewer): return self._do_pick(canvas, event, data_x, data_y, 'pick-hover', viewer) def pick_stop(self, canvas, event, data_x, data_y, viewer): return self._do_pick(canvas, event, data_x, data_y, 'pick-up', viewer) # The canvas drawing def draw(self, viewer): # Draw everything else as usual super(DrawingMixin, self).draw(viewer) # Draw our current drawing object, if any if self._draw_obj: self._draw_obj.draw(viewer) # Draw control points on edited objects selected = list(self.get_selected()) if len(selected) > 0: for obj in selected: ## if not self.has_object(obj): ## # <-- the object has been removed from the canvas ## # but not removed from the selection ## self.select_remove(obj) ## continue cr = viewer.renderer.setup_cr(obj) obj.draw_edit(cr, viewer) ### NON-PEP8 EQUIVALENTS -- TO BE DEPRECATED ### setSurface = set_surface getDrawClass = get_draw_class #END
import pathlib from collections import defaultdict from operator import itemgetter from itertools import groupby from flask import Flask, send_from_directory, request, jsonify from logbook import Logger from aesop import isocodes, events from aesop.models import Movie, TVShow, TVShowEpisode, Source, Config, database_proxy, Genre, MovieGenre, TVShowGenre app = Flask('aesop.ui') log = Logger('aesop.ui') @app.route('/') def root(): templates = str(pathlib.Path(__file__).with_name('templates')) return send_from_directory(templates, 'index.html') @app.route('/series') def series(): series = list(TVShow.select().order_by(TVShow.title).dicts()) tvshow_genre_map = Genre.select(TVShowGenre.media, Genre.text).join(TVShowGenre).tuples() d = defaultdict(list) for show_id, text in tvshow_genre_map: d[show_id].append(text) for tv in series: tv['genres'] = d[tv['id']] return jsonify({'data': series}) @app.route('/series/<id>') def singleseries(id): tvshow = TVShow.select(TVShow.media_id, TVShow.title).where(TVShow.media_id == id).dicts().get() return jsonify({'data': tvshow}) # this and set_watched_movie are not websocket commands because they need data # back. @app.route('/series/setwatched/<int:video_id>', methods=['POST']) def set_watched_series(video_id): m = TVShowEpisode.select().where(TVShowEpisode.id == video_id).get() with database_proxy.transaction(): m.watched = not m.watched m.save() show = m.show if all([episode.watched for episode in show.episodes]): show.watched = True if show.is_dirty(): show.save() return jsonify({'watched': m.watched}) @app.route('/series/<id>/seasons') def seasons(id): tvshow = TVShow.select().where(TVShow.media_id == id).get() seasons = tvshow.episodes.select(TVShowEpisode.season, TVShowEpisode.watched).group_by(TVShowEpisode.season, TVShowEpisode.watched).dicts() collapsed_seasons = defaultdict(bool) for season in seasons: watched = season['watched'] season = season['season'] if season in collapsed_seasons: watched = collapsed_seasons[season] and watched collapsed_seasons[season] = watched seasons = [dict(season=season, watched=watched) for (season, watched) in collapsed_seasons.items()] return jsonify({'data': seasons}) @app.route('/series/<id>/episodes/<int:season>') def episodes(id, season): tvshow = TVShow.select().where(TVShow.media_id == id).get() return jsonify({'data': list(tvshow.episodes.select().where(TVShowEpisode.season == season).order_by(TVShowEpisode.episode).dicts())}) @app.route('/movies') def movies(): movies = list(Movie.select(Movie.id, Movie.title, Movie.watched, Movie.year).order_by(Movie.title).dicts()) movie_genre_map = Genre.select(MovieGenre.media, Genre.text).join(MovieGenre).tuples() d = defaultdict(list) for movie_id, text in movie_genre_map: d[movie_id].append(text) for m in movies: m['genres'] = d[m['id']] return jsonify({'data': movies}) @app.route('/movies/<int:id>', methods=['GET', 'POST']) def movie(id): if request.method == 'POST': genres = request.json['movie'].pop('genres') Movie.update(**request.json['movie']).where(Movie.id == id).execute() m = Movie.get(Movie.id == id) m.replace_genres([Genre.get_or_create(g) for g in genres]) return jsonify({'status': 'ok'}) else: movie = Movie.select().where(Movie.id == id).dicts().get() q = Genre.select(Genre.text).join(MovieGenre).where(MovieGenre.media == movie['id']) movie['genres'] = [g[0] for g in q.tuples()] return jsonify({'movie': movie}) @app.route('/movies/setwatched/<int:video_id>', methods=['POST']) def set_watched_movie(video_id): m = Movie.select(Movie.id, Movie.watched).where(Movie.id == video_id).get() m.watched = not m.watched m.save() return jsonify({'watched': m.watched}) @app.route('/genres') def genres(): return jsonify({'genres': [g[0] for g in Genre.select(Genre.text).order_by(Genre.text).tuples()]}) @app.route('/update/', methods=['POST']) def update(): raise NotImplementedError() @app.route('/settings/', methods=['GET', 'POST']) def settings(): if request.method == 'POST': from aesop.models import database try: with database.transaction(): Config.delete().execute() for setting in request.json['configuration']: Config.create(**setting) Source.delete().execute() for setting in request.json['sources']: Source.create(**setting) except Exception as e: events.error.blocking("Settings could not be saved: {!r}".format(str(e))) raise else: events.success.blocking("Settings saved") else: configuration = [] for section, values in groupby(list(Config.select(Config.section, Config.key, Config.value).dicts()), key=itemgetter('section')): configuration.append({ 'name': section, 'values': [config_with_help(v) for v in values], }) return jsonify({ 'configuration': configuration, 'sources': list(Source.select().dicts()), }) return jsonify({'response': 'ok'}) @app.route('/stats/') def stats(): series = TVShow.select().count() episodes = TVShowEpisode.select().count() episodes_watched = TVShowEpisode.select().where(TVShowEpisode.watched == True).count() movies = Movie.select().count() movies_watched = Movie.select().where(Movie.watched == True).count() stats = { 'series': series, 'episodes': episodes, 'episodes watched': episodes_watched, 'movies': movies, 'movies watched': movies_watched, } return jsonify({'stats': stats}) @app.route('/manifest.json') def manifest(): return jsonify({ 'name': 'Aesop', "start_url": "/", "display": "standalone", }) @app.route('/search/genres/') def get_upstream_genres(): imdb_id = request.values['i'] video_type = request.values['type'] upstream = request.values.get('m', 'omdb') if upstream == 'omdb': import requests params = { 'i': imdb_id, 'p': 'full', 'type': video_type, } resp = requests.get('http://www.omdbapi.com/?', params=params) json = resp.json() if json['Response'] != 'False': genres = json['Genre'].split(', ') else: genres = [] else: assert False, "Unknown upstream type {!r}".format(upstream) return jsonify({'genres': genres}) @app.route('/search/') def search_upstream(): query = request.values['q'] video_type = request.values['type'] upstream = request.values.get('m', 'omdb') if len(query) < 3: results = [] elif upstream == 'omdb': import requests params = { 's': query, 'type': video_type, } resp = requests.get('http://www.omdbapi.com/', params=params) results = resp.json().get('Search', []) results = [ dict(title=t['Title'], year=int(t['Year']), id=t['imdbID'], description='{} {}'.format(t['Year'], t['Title'])) for t in results ] else: assert False, "Unknown upstream type {!r}".format(upstream) return jsonify({'results': list(results)}) help_map = { 'concurrency': 'Amount of concurrent requests to perform when retrieving video metadata.', 'frequency': 'How frequently to scan for new videos', 'theme': 'Website theme to use', 'seek size': 'Amount of time in seconds to jump forward/backward', 'subtitles for matching audio': 'Should subtitles be automatically enabled if the audio and subtitles language are the same?', 'video output': 'Video Output Driver. Messing with this can break things so be careful', } isochoices = [dict(display='-- None --', value='0')] + sorted([ dict(display=nicename, value=iso) for (iso, nicename) in isocodes.isocodes.items() ], key=itemgetter('display')) extras_map = { 'theme': { 'choices': { 'cyborg': 'Cyborg', 'darkly': 'Darkly', 'flatly': 'Flatly', 'journal': 'Journal', 'cosmo': 'Cosmo', 'cerulean': 'Cerulean', }, }, 'preferred subtitle': { 'choices': isochoices, 'typeahead': 'Preferred Subtitle Language', 'default': '', }, 'preferred audio': { 'choices': isochoices, 'typeahead': 'Preferred Audio Language', 'default': '', }, 'subtitles for matching audio': { 'choices': { '1': 'Yes', '0': 'No', }, }, 'concurrency': { 'type': 'number', }, } def config_with_help(config): config['help'] = help_map.get(config['key'], '') config.update(extras_map.get(config['key'], {})) if 'typeahead' in config: value = config['value'] choices = config.get('choices', []) for choice in choices: if choice['value'] == value: config['value'] = dict(value=value, display=choice['display']) break if config['key'] == 'concurrency': config['value'] = int(config['value']) return config def main(): from aesop.models import init from aesop.utils import setup_logging setup_logging('aesop.ui', 'INFO') init() app.run(debug=True, host='0.0.0.0') if __name__ == '__main__': main()
# # # Copyright (C) 2014 Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Common functions for tool scripts. """ import logging import os import time from io import StringIO import OpenSSL from ganeti import constants from ganeti import errors from ganeti import pathutils from ganeti import utils from ganeti import serializer from ganeti import ssconf from ganeti import ssh def VerifyOptions(parser, opts, args): """Verifies options and arguments for correctness. """ if args: parser.error("No arguments are expected") return opts def _VerifyCertificateStrong(cert_pem, error_fn, _check_fn=utils.CheckNodeCertificate): """Verifies a certificate against the local node daemon certificate. Includes elaborate tests of encodings etc., and returns formatted certificate. @type cert_pem: string @param cert_pem: Certificate and key in PEM format @type error_fn: callable @param error_fn: function to call in case of an error @rtype: string @return: Formatted key and certificate """ try: cert = \ OpenSSL.crypto.load_certificate(OpenSSL.crypto.FILETYPE_PEM, cert_pem) except Exception as err: raise error_fn("(stdin) Unable to load certificate: %s" % err) try: key = OpenSSL.crypto.load_privatekey(OpenSSL.crypto.FILETYPE_PEM, cert_pem) except OpenSSL.crypto.Error as err: raise error_fn("(stdin) Unable to load private key: %s" % err) # Check certificate with given key; this detects cases where the key given on # stdin doesn't match the certificate also given on stdin try: utils.X509CertKeyCheck(cert, key) except OpenSSL.SSL.Error: raise error_fn("(stdin) Certificate is not signed with given key") # Standard checks, including check against an existing local certificate # (no-op if that doesn't exist) _check_fn(cert) key_encoded = OpenSSL.crypto.dump_privatekey(OpenSSL.crypto.FILETYPE_PEM, key) cert_encoded = OpenSSL.crypto.dump_certificate(OpenSSL.crypto.FILETYPE_PEM, cert) complete_cert_encoded = key_encoded + cert_encoded if not cert_pem == complete_cert_encoded.decode('ascii'): logging.error("The certificate differs after being reencoded. Please" " renew the certificates cluster-wide to prevent future" " inconsistencies.") # Format for storing on disk buf = StringIO() buf.write(cert_pem) return buf.getvalue() def _VerifyCertificateSoft(cert_pem, error_fn, _check_fn=utils.CheckNodeCertificate): """Verifies a certificate against the local node daemon certificate. @type cert_pem: string @param cert_pem: Certificate in PEM format (no key) """ try: OpenSSL.crypto.load_privatekey(OpenSSL.crypto.FILETYPE_PEM, cert_pem) except OpenSSL.crypto.Error as err: pass else: raise error_fn("No private key may be given") try: cert = \ OpenSSL.crypto.load_certificate(OpenSSL.crypto.FILETYPE_PEM, cert_pem) except Exception as err: raise errors.X509CertError("(stdin)", "Unable to load certificate: %s" % err) _check_fn(cert) def VerifyCertificateSoft(data, error_fn, _verify_fn=_VerifyCertificateSoft): """Verifies cluster certificate if existing. @type data: dict @type error_fn: callable @param error_fn: function to call in case of an error @rtype: string @return: Formatted key and certificate """ cert = data.get(constants.SSHS_NODE_DAEMON_CERTIFICATE) if cert: _verify_fn(cert, error_fn) def VerifyCertificateStrong(data, error_fn, _verify_fn=_VerifyCertificateStrong): """Verifies cluster certificate. Throws error when not existing. @type data: dict @type error_fn: callable @param error_fn: function to call in case of an error @rtype: string @return: Formatted key and certificate """ cert = data.get(constants.NDS_NODE_DAEMON_CERTIFICATE) if not cert: raise error_fn("Node daemon certificate must be specified") return _verify_fn(cert, error_fn) def VerifyClusterName(data, error_fn, cluster_name_constant, _verify_fn=ssconf.VerifyClusterName): """Verifies cluster name. @type data: dict """ name = data.get(cluster_name_constant) if name: _verify_fn(name) else: raise error_fn("Cluster name must be specified") return name def VerifyHmac(data, error_fn): """Verifies the presence of the hmac secret. @type data: dict """ hmac = data.get(constants.NDS_HMAC) if not hmac: raise error_fn("Hmac key must be provided") return hmac def LoadData(raw, data_check): """Parses and verifies input data. @rtype: dict """ result = None try: result = serializer.LoadAndVerifyJson(raw, data_check) logging.debug("Received data: %s", serializer.DumpJson(result)) except Exception as e: logging.warn("Received data is not valid json: %s.", str(raw)) raise e return result def GenerateRootSshKeys(key_type, key_bits, error_fn, _suffix="", _homedir_fn=None): """Generates root's SSH keys for this node. """ ssh.InitSSHSetup(key_type, key_bits, error_fn=error_fn, _homedir_fn=_homedir_fn, _suffix=_suffix) def GenerateClientCertificate( data, error_fn, client_cert=pathutils.NODED_CLIENT_CERT_FILE, signing_cert=pathutils.NODED_CERT_FILE): """Regenerates the client certificate of the node. @type data: string @param data: the JSON-formated input data """ if not os.path.exists(signing_cert): raise error_fn("The signing certificate '%s' cannot be found." % signing_cert) # TODO: This sets the serial number to the number of seconds # since epoch. This is technically not a correct serial number # (in the way SSL is supposed to be used), but it serves us well # enough for now, as we don't have any infrastructure for keeping # track of the number of signed certificates yet. serial_no = int(time.time()) # The hostname of the node is provided with the input data. hostname = data.get(constants.NDS_NODE_NAME) if not hostname: raise error_fn("No hostname found.") utils.GenerateSignedSslCert(client_cert, serial_no, signing_cert, common_name=hostname)
# (C) Datadog, Inc. 2010-2016 # All rights reserved # Licensed under Simplified BSD License (see LICENSE) ''' As of zookeeper 3.4.0, the `mntr` admin command is provided for easy parsing of zookeeper stats. This check first parses the `stat` admin command for a version number. If the zookeeper version supports `mntr`, it is also parsed. Duplicate information is being reported by both `mntr` and `stat` to keep backwards compatibility. Example: `stat` reports: zookeeper.latency.avg `mntr` reports: zookeeper.avg.latency If available, make use of the data reported by `mntr` not `stat`. The duplicate `stat` reports are only kept for backward compatibility. Besides the usual zookeeper state of `leader`, `follower`, `observer` and `standalone`, this check will report three other states: `down`: the check cannot connect to zookeeper `inactive`: the zookeeper instance has lost connection to the cluster `unknown`: an unexpected error has occured in this check States can be accessed through the gauge `zookeeper.instances.<state>, through the set `zookeeper.instances`, or through the `mode:<state>` tag. Parses the response from zookeeper's `stat` admin command, which looks like: ``` Zookeeper version: 3.2.2--1, built on 03/16/2010 07:31 GMT Clients: /10.42.114.160:32634[1](queued=0,recved=12,sent=0) /10.37.137.74:21873[1](queued=0,recved=53613,sent=0) /10.37.137.74:21876[1](queued=0,recved=57436,sent=0) /10.115.77.32:32990[1](queued=0,recved=16,sent=0) /10.37.137.74:21891[1](queued=0,recved=55011,sent=0) /10.37.137.74:21797[1](queued=0,recved=19431,sent=0) Latency min/avg/max: -10/0/20007 Received: 101032173 Sent: 0 Outstanding: 0 Zxid: 0x1034799c7 Mode: leader Node count: 487 ``` `stat` tested with Zookeeper versions 3.0.0 to 3.4.5 The following is an example of the `mntr` commands output: ``` zk_version 3.4.5-cdh4.4.0--1, built on 09/04/2013 01:46 GMT zk_avg_latency 0 zk_max_latency 0 zk_min_latency 0 zk_packets_received 4 zk_packets_sent 3 zk_num_alive_connections 1 zk_outstanding_requests 0 zk_server_state standalone zk_znode_count 4 zk_watch_count 0 zk_ephemerals_count 0 zk_approximate_data_size 27 zk_open_file_descriptor_count 29 zk_max_file_descriptor_count 4096 ``` `mntr` tested with ZooKeeper 3.4.5 ''' # stdlib from collections import defaultdict from distutils.version import LooseVersion # pylint: disable=E0611,E0401 from StringIO import StringIO import re import socket import struct # project from checks import AgentCheck class ZKConnectionFailure(Exception): """ Raised when we are unable to connect or get the output of a command. """ pass class ZKMetric(tuple): """ A Zookeeper metric. Tuple with an optional metric type (default is 'gauge'). """ def __new__(cls, name, value, m_type="gauge"): return super(ZKMetric, cls).__new__(cls, [name, value, m_type]) class ZookeeperCheck(AgentCheck): """ ZooKeeper AgentCheck. Parse content from `stat` and `mntr`(if available) commmands to retrieve health cluster metrics. """ # example match: # "Zookeeper version: 3.4.10-39d3a4f269333c922ed3db283be479f9deacaa0f, built on 03/23/2017 10:13 GMT" version_pattern = re.compile(r'(\d+\.\d+\.\d+)') SOURCE_TYPE_NAME = 'zookeeper' STATUS_TYPES = [ 'leader', 'follower', 'observer', 'standalone', 'down', 'inactive', ] # `mntr` information to report as `rate` _MNTR_RATES = set( [ 'zk_packets_received', 'zk_packets_sent', ] ) def check(self, instance): host = instance.get('host', 'localhost') port = int(instance.get('port', 2181)) timeout = float(instance.get('timeout', 3.0)) expected_mode = (instance.get('expected_mode') or '').strip() tags = instance.get('tags', []) cx_args = (host, port, timeout) sc_tags = ["host:{0}".format(host), "port:{0}".format(port)] + list(set(tags)) hostname = self.hostname report_instance_mode = instance.get("report_instance_mode", True) zk_version = None # parse_stat will parse and set version string # Send a service check based on the `ruok` response. # Set instance status to down if not ok. try: ruok_out = self._send_command('ruok', *cx_args) except ZKConnectionFailure: # The server should not respond at all if it's not OK. status = AgentCheck.CRITICAL message = 'No response from `ruok` command' self.increment('zookeeper.timeouts') if report_instance_mode: self.report_instance_mode(hostname, 'down', tags) raise else: ruok_out.seek(0) ruok = ruok_out.readline() if ruok == 'imok': status = AgentCheck.OK else: status = AgentCheck.WARNING message = u'Response from the server: %s' % ruok finally: self.service_check( 'zookeeper.ruok', status, message=message, tags=sc_tags ) # Read metrics from the `stat` output. try: stat_out = self._send_command('stat', *cx_args) except ZKConnectionFailure: self.increment('zookeeper.timeouts') if report_instance_mode: self.report_instance_mode(hostname, 'down', tags) raise except Exception as e: self.warning(e) self.increment('zookeeper.datadog_client_exception') if report_instance_mode: self.report_instance_mode(hostname, 'unknown', tags) raise else: # Parse the response metrics, new_tags, mode, zk_version = self.parse_stat(stat_out) # Write the data if mode != 'inactive': for metric, value, m_type in metrics: submit_metric = getattr(self, m_type) submit_metric(metric, value, tags=tags + new_tags) if report_instance_mode: self.report_instance_mode(hostname, mode, tags) if expected_mode: if mode == expected_mode: status = AgentCheck.OK message = u"Server is in %s mode" % mode else: status = AgentCheck.CRITICAL message = u"Server is in %s mode but check expects %s mode"\ % (mode, expected_mode) self.service_check('zookeeper.mode', status, message=message, tags=sc_tags) # Read metrics from the `mntr` output if zk_version and LooseVersion(zk_version) > LooseVersion("3.4.0"): try: mntr_out = self._send_command('mntr', *cx_args) except ZKConnectionFailure: self.increment('zookeeper.timeouts') if report_instance_mode: self.report_instance_mode(hostname, 'down', tags) raise except Exception as e: self.warning(e) self.increment('zookeeper.datadog_client_exception') if report_instance_mode: self.report_instance_mode(hostname, 'unknown', tags) raise else: metrics, mode = self.parse_mntr(mntr_out) mode_tag = "mode:%s" % mode if mode != 'inactive': for metric, value, m_type in metrics: submit_metric = getattr(self, m_type) submit_metric(metric, value, tags=tags + [mode_tag]) if report_instance_mode: self.report_instance_mode(hostname, mode, tags) def report_instance_mode(self, hostname, mode, tags): gauges = defaultdict(int) if mode not in self.STATUS_TYPES: mode = "unknown" tags = tags + ['mode:%s' % mode] self.gauge('zookeeper.instances', 1, tags=tags) gauges[mode] = 1 for k, v in gauges.iteritems(): gauge_name = 'zookeeper.instances.%s' % k self.gauge(gauge_name, v) def _send_command(self, command, host, port, timeout): sock = socket.socket() sock.settimeout(timeout) buf = StringIO() chunk_size = 1024 # try-finally and try-except to stay compatible with python 2.4 try: try: # Connect to the zk client port and send the stat command sock.connect((host, port)) sock.sendall(command) # Read the response into a StringIO buffer chunk = sock.recv(chunk_size) buf.write(chunk) num_reads = 1 max_reads = 10000 while chunk: if num_reads > max_reads: # Safeguard against an infinite loop raise Exception("Read %s bytes before exceeding max reads of %s. " % (buf.tell(), max_reads)) chunk = sock.recv(chunk_size) buf.write(chunk) num_reads += 1 except (socket.timeout, socket.error): raise ZKConnectionFailure() finally: sock.close() return buf def parse_stat(self, buf): ''' `buf` is a readable file-like object returns a tuple: (metrics, tags, mode, version) ''' metrics = [] buf.seek(0) # Check the version line to make sure we parse the rest of the # body correctly. Particularly, the Connections val was added in # >= 3.4.4. start_line = buf.readline() match = self.version_pattern.search(start_line) if match is None: return (None, None, "inactive", None) raise Exception("Could not parse version from stat command output: %s" % start_line) else: version = match.group() has_connections_val = LooseVersion(version) > LooseVersion("3.4.4") # Clients: buf.readline() # skip the Clients: header connections = 0 client_line = buf.readline().strip() if client_line: connections += 1 while client_line: client_line = buf.readline().strip() if client_line: connections += 1 # Latency min/avg/max: -10/0/20007 _, value = buf.readline().split(':') l_min, l_avg, l_max = [int(v) for v in value.strip().split('/')] metrics.append(ZKMetric('zookeeper.latency.min', l_min)) metrics.append(ZKMetric('zookeeper.latency.avg', l_avg)) metrics.append(ZKMetric('zookeeper.latency.max', l_max)) # Received: 101032173 _, value = buf.readline().split(':') metrics.append(ZKMetric('zookeeper.bytes_received', long(value.strip()))) # Sent: 1324 _, value = buf.readline().split(':') metrics.append(ZKMetric('zookeeper.bytes_sent', long(value.strip()))) if has_connections_val: # Connections: 1 _, value = buf.readline().split(':') metrics.append(ZKMetric('zookeeper.connections', int(value.strip()))) else: # If the zk version doesnt explicitly give the Connections val, # use the value we computed from the client list. metrics.append(ZKMetric('zookeeper.connections', connections)) # Outstanding: 0 _, value = buf.readline().split(':') # Fixme: This metric name is wrong. It should be removed in a major version of the agent # See https://github.com/DataDog/dd-agent/issues/1383 metrics.append(ZKMetric('zookeeper.bytes_outstanding', long(value.strip()))) metrics.append(ZKMetric('zookeeper.outstanding_requests', long(value.strip()))) # Zxid: 0x1034799c7 _, value = buf.readline().split(':') # Parse as a 64 bit hex int zxid = long(value.strip(), 16) # convert to bytes zxid_bytes = struct.pack('>q', zxid) # the higher order 4 bytes is the epoch (zxid_epoch,) = struct.unpack('>i', zxid_bytes[0:4]) # the lower order 4 bytes is the count (zxid_count,) = struct.unpack('>i', zxid_bytes[4:8]) metrics.append(ZKMetric('zookeeper.zxid.epoch', zxid_epoch)) metrics.append(ZKMetric('zookeeper.zxid.count', zxid_count)) # Mode: leader _, value = buf.readline().split(':') mode = value.strip().lower() tags = [u'mode:' + mode] # Node count: 487 _, value = buf.readline().split(':') metrics.append(ZKMetric('zookeeper.nodes', long(value.strip()))) return metrics, tags, mode, version def parse_mntr(self, buf): ''' Parse `mntr` command's content. `buf` is a readable file-like object Returns: a tuple (metrics, mode) if mode == 'inactive', metrics will be None ''' buf.seek(0) first = buf.readline() # First is version string or error if first == 'This ZooKeeper instance is not currently serving requests': return (None, 'inactive') metrics = [] mode = 'inactive' for line in buf: try: key, value = line.split() if key == "zk_server_state": mode = value.lower() continue metric_name = self._normalize_metric_label(key) metric_type = "rate" if key in self._MNTR_RATES else "gauge" metric_value = int(value) metrics.append(ZKMetric(metric_name, metric_value, metric_type)) except ValueError: self.log.warning( u"Cannot format `mntr` value. key={key}, value{value}".format( key=key, value=value ) ) continue except Exception: self.log.exception( u"Unexpected exception occurred while parsing `mntr` command content:\n" u"{buf}".format( buf=buf ) ) return (metrics, mode) def _normalize_metric_label(self, key): if re.match('zk', key): key = key.replace('zk', 'zookeeper', 1) return key.replace('_', '.', 1)
u''' Created on Jan 9, 2011 @author: Mark V Systems Limited (c) Copyright 2011 Mark V Systems Limited, All rights reserved. ''' from arelle import (XPathContext, XbrlConst, XmlUtil, XbrlUtil, XmlValidate) from arelle.FunctionXs import xsString from arelle.ModelObject import ModelObject from arelle.ModelFormulaObject import (aspectModels, Aspect, aspectModelAspect, ModelFormula, ModelTuple, ModelExistenceAssertion, ModelValueAssertion, ModelFactVariable, ModelGeneralVariable, ModelVariable, ModelParameter, ModelFilter, ModelAspectCover, ModelBooleanFilter) from arelle.PrototypeInstanceObject import DimValuePrototype from arelle.ModelValue import (QName) import datetime, time, logging, re from decimal import Decimal from math import log10, isnan, isinf, fabs from arelle.Locale import format_string from collections import defaultdict ModelDimensionValue = None expressionVariablesPattern = re.compile(ur"([^$]*)([$]\w[\w:.-]*)([^$]*)") def evaluate(xpCtx, varSet, variablesInScope=False, uncoveredAspectFacts=None): # for each dependent variable, find bindings if variablesInScope: stackedEvaluations = (xpCtx.evaluations, xpCtx.evaluationHashDicts) else: xpCtx.varBindings = {} uncoveredAspectFacts = {} xpCtx.evaluations = [] # list of evaluations xpCtx.evaluationHashDicts = [] # hash indexs of evaluations try: xpCtx.variableSet = varSet if isinstance(varSet, ModelExistenceAssertion): varSet.evaluationsCount = 0 if xpCtx.formulaOptions.timeVariableSetEvaluation: varSet.timeEvaluationStarted = timeEvaluationsStarted = time.time() varSet.evaluationNumber = 0 initialTraceCount = xpCtx.modelXbrl.logCount.get(logging.getLevelName(u'INFO'), 0) evaluateVar(xpCtx, varSet, 0, {}, uncoveredAspectFacts) if isinstance(varSet, ModelExistenceAssertion): prog = varSet.testProg if prog: assertionParamQnames = [] # set and then remove assertion variable quames for varRel in varSet.orderedVariableRelationships: varQname = varRel.variableQname var = varRel.toModelObject if isinstance(var, ModelParameter) and varQname not in xpCtx.inScopeVars: assertionParamQnames.append(varQname) xpCtx.inScopeVars[varQname] = xpCtx.inScopeVars.get(var.parameterQname) result = xpCtx.evaluateBooleanValue(prog, contextItem=varSet.evaluationsCount) for varQname in assertionParamQnames: xpCtx.inScopeVars.pop(varQname) else: result = varSet.evaluationsCount > 0 if result: varSet.countSatisfied += 1 else: varSet.countNotSatisfied += 1 if ((xpCtx.formulaOptions.traceSatisfiedAssertions and result) or ((xpCtx.formulaOptions.traceUnsatisfiedAssertions or xpCtx.formulaOptions.errorUnsatisfiedAssertions ) and not result)): xpCtx.modelXbrl.log( u"ERROR" if (xpCtx.formulaOptions.errorUnsatisfiedAssertions and not result) else u"INFO", u"formula:assertionSatisfied" if result else u"formula:assertionUnsatisfied", _(u"%(label)s"), modelObject=varSet, label=varSet.logLabel(), messageCodes=(u"formula:assertionSatisfied", u"formula:assertionUnsatisfied")) if xpCtx.formulaOptions.traceVariableSetExpressionResult: xpCtx.modelXbrl.info(u"formula:trace", _(u"Existence Assertion %(xlinkLabel)s \nResult: %(result)s"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel, result=result) msg = varSet.message(result) if msg is not None: xpCtx.inScopeVars[XbrlConst.qnEaTestExpression] = varSet.test xpCtx.modelXbrl.info(u"message:" + (varSet.id or varSet.xlinkLabel or _(u"unlabeled variableSet")), msg.evaluate(xpCtx), modelObject=varSet, messageCodes=(u"message:{variableSetID|xlinkLabel}",)) xpCtx.inScopeVars.pop(XbrlConst.qnEaTestExpression) if xpCtx.formulaOptions.traceVariableSetExpressionResult and initialTraceCount == xpCtx.modelXbrl.logCount.get(logging._checkLevel(u'INFO'), 0): xpCtx.modelXbrl.info(u"formula:trace", _(u"Variable set %(xlinkLabel)s had no xpCtx.evaluations"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel) if xpCtx.formulaOptions.timeVariableSetEvaluation: xpCtx.modelXbrl.info(u"formula:time", _(u"Variable set %(xlinkLabel)s time for %(count)s evaluations: %(time)s"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel, count=varSet.evaluationNumber, time=format_string(xpCtx.modelXbrl.modelManager.locale, u"%.3f", time.time() - timeEvaluationsStarted)) xpCtx.variableSet = None except XPathContext.XPathException, err: xpCtx.modelXbrl.error(err.code, _(u"Variable set %(label)s \nException: %(error)s"), modelObject=varSet, label=varSet.logLabel(), error=err.message) xpCtx.variableSet = None if xpCtx.formulaOptions.traceVariableSetExpressionResult: xpCtx.modelXbrl.info(u"formula:trace", _(u"Variable set %(xlinkLabel)s evaluations: %(evaluations)s x %(variables)s"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel, evaluations=len(xpCtx.evaluations), variables=max(len(e) for e in xpCtx.evaluations) if xpCtx.evaluations else 0) del xpCtx.evaluations[:] # dereference del xpCtx.evaluationHashDicts[:] if variablesInScope: xpCtx.evaluations, xpCtx.evaluationHashDicts = stackedEvaluations else: for vb in xpCtx.varBindings.values(): vb.close() # dereference xpCtx.varBindings.clear() # dereference uncoveredAspectFacts.clear() # dereference pass def evaluateVar(xpCtx, varSet, varIndex, cachedFilteredFacts, uncoveredAspectFacts): if varIndex == len(varSet.orderedVariableRelationships): # check if all fact vars are fallen back anyFactVar = False; anyBoundFactVar = False for vb in xpCtx.varBindings.values(): if vb.isFactVar: anyFactVar = True if not vb.isFallback: anyBoundFactVar = True if xpCtx.varBindings and anyFactVar and not anyBoundFactVar: if xpCtx.formulaOptions.traceVariableSetExpressionResult: xpCtx.modelXbrl.info(u"formula:trace", _(u"Variable set %(xlinkLabel)s skipped evaluation, all fact variables have fallen back"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel) return # record completed evaluation, for fallback blocking purposes fbVars = set(vb.qname for vb in xpCtx.varBindings.values() if vb.isFallback) thisEvaluation = tuple(vb.matchableBoundFact(fbVars) for vb in xpCtx.varBindings.values()) if evaluationIsUnnecessary(thisEvaluation, xpCtx.evaluationHashDicts, xpCtx.evaluations): if xpCtx.formulaOptions.traceVariableSetExpressionResult: xpCtx.modelXbrl.info(u"formula:trace", _(u"Variable set %(xlinkLabel)s skipped non-different or fallback evaluation, duplicates another evaluation"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel) varSet.evaluationNumber += 1 if xpCtx.formulaOptions.timeVariableSetEvaluation: now = time.time() xpCtx.modelXbrl.info(u"formula:time", _(u"Variable set %(xlinkLabel)s skipped evaluation %(count)s: %(time)s sec"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel, count=varSet.evaluationNumber, time=format_string(xpCtx.modelXbrl.modelManager.locale, u"%.3f", now - varSet.timeEvaluationStarted)) varSet.timeEvaluationStarted = now if xpCtx.isRunTimeExceeded: raise XPathContext.RunTimeExceededException() xpCtx.modelXbrl.profileActivity(u"... evaluation {0} (skipped)".format(varSet.evaluationNumber), minTimeToShow=10.0) return xpCtx.modelXbrl.profileActivity(u"... evaluation {0}".format(varSet.evaluationNumber), minTimeToShow=10.0) for i, fb in enumerate(thisEvaluation): while i >= len(xpCtx.evaluationHashDicts): xpCtx.evaluationHashDicts.append(defaultdict(set)) xpCtx.evaluationHashDicts[i][hash(fb)].add(len(xpCtx.evaluations)) # hash and eval index xpCtx.evaluations.append(thisEvaluation) # complete evaluations tuple # evaluate preconditions for precondition in varSet.preconditions: result = precondition.evalTest(xpCtx) if xpCtx.formulaOptions.traceVariableSetExpressionResult: xpCtx.modelXbrl.info(u"formula:trace", _(u"Variable set %(xlinkLabel)s \nPrecondition %(precondition)s \nResult: %(result)s"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel, precondition=precondition.xlinkLabel, result=result) if not result: # precondition blocks evaluation if xpCtx.formulaOptions.timeVariableSetEvaluation: varSet.evaluationNumber += 1 now = time.time() xpCtx.modelXbrl.info(u"formula:time", _(u"Variable set %(xlinkLabel)s precondition blocked evaluation %(count)s: %(time)s sec"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel, count=varSet.evaluationNumber, time=format_string(xpCtx.modelXbrl.modelManager.locale, u"%.3f", now - varSet.timeEvaluationStarted)) varSet.timeEvaluationStarted = now if xpCtx.isRunTimeExceeded: raise XPathContext.RunTimeExceededException() return # evaluate variable set if isinstance(varSet, ModelExistenceAssertion): varSet.evaluationsCount += 1 else: if isinstance(varSet, ModelTuple): result = u"(tuple)" traceOf = u"Tuple" elif isinstance(varSet, ModelFormula): result = xpCtx.evaluate(varSet.valueProg) traceOf = u"Formula" elif isinstance(varSet, ModelValueAssertion): result = xpCtx.evaluateBooleanValue(varSet.testProg) if result: varSet.countSatisfied += 1 else: varSet.countNotSatisfied += 1 msg = varSet.message(result) if msg is not None: xpCtx.inScopeVars[XbrlConst.qnVaTestExpression] = varSet.test xpCtx.modelXbrl.info(u"message:" + (varSet.id or varSet.xlinkLabel or _(u"unlabeled variableSet")), msg.evaluate(xpCtx), modelObject=varSet, label=varSet.logLabel(), messageCodes=(u"message:{variableSetID|xlinkLabel}",)) xpCtx.inScopeVars.pop(XbrlConst.qnVaTestExpression) if ((xpCtx.formulaOptions.traceSatisfiedAssertions and result) or ((xpCtx.formulaOptions.traceUnsatisfiedAssertions or xpCtx.formulaOptions.errorUnsatisfiedAssertions ) and not result)): _modelObjects = [varSet] factVarBindings = [] for vb in sorted(xpCtx.varBindings.values(), key=lambda _vb: _vb.qname): if vb.isFallback: factVarBindings.append(u", \n${}: fallback {}".format(vb.qname, xpCtx.flattenSequence(vb.values))) else: if vb.isBindAsSequence: _modelObjects.extend(vb.yieldedEvaluation) else: _modelObjects.append(vb.yieldedFact) factVarBindings.append(u", \n${}: {} context {}".format(vb.qname, vb.yieldedFact.qname, vb.yieldedFactContext.id)) xpCtx.modelXbrl.log( u"ERROR" if (xpCtx.formulaOptions.errorUnsatisfiedAssertions and not result) else u"INFO", u"formula:assertionSatisfied" if result else u"formula:assertionUnsatisfied", _(u"%(label)s%(factVarBindings)s"), modelObject=_modelObjects, label=varSet.logLabel(), factVarBindings=u"".join(factVarBindings) + (u"\n" if factVarBindings else u""), messageCodes=(u"formula:assertionSatisfied", u"formula:assertionUnsatisfied")) del _modelObjects[:] traceOf = u"Value Assertion" if xpCtx.formulaOptions.traceVariableSetExpressionResult: label = varSet.logLabel() expression = varSet.expression xpCtx.modelXbrl.info(u"formula:trace", _(u"%(variableSetType)s %(xlinkLabel)s{0} \nExpression: %(expression)s \nEvaluated: %(evaluatedExpression)s \nResult: %(result)s") .format(u" \n%(label)s" if label else u""), modelObject=varSet, variableSetType=traceOf, xlinkLabel=varSet.xlinkLabel, label=label, result=result, expression=expression, evaluatedExpression=u''.join(xpCtx.traceEffectiveVariableValue(varSet,expr) for grp in expressionVariablesPattern.findall(expression) for expr in grp)) if isinstance(varSet, ModelFormula) and varSet.outputInstanceQname in xpCtx.inScopeVars: newFact = produceOutputFact(xpCtx, varSet, result) else: newFact = None if varSet.hasConsistencyAssertion: from arelle import FormulaConsisAsser FormulaConsisAsser.evaluate(xpCtx, varSet, newFact) if xpCtx.formulaOptions.timeVariableSetEvaluation: varSet.evaluationNumber += 1 now = time.time() xpCtx.modelXbrl.info(u"formula:time", _(u"Variable set %(xlinkLabel)s completed evaluation %(count)s: %(time)s sec"), modelObject=varSet, xlinkLabel=varSet.xlinkLabel, count=varSet.evaluationNumber, time=format_string(xpCtx.modelXbrl.modelManager.locale, u"%.3f", now - varSet.timeEvaluationStarted)) varSet.timeEvaluationStarted = now if xpCtx.isRunTimeExceeded: raise XPathContext.RunTimeExceededException() # do dependent variable scope relationships for varScopeRel in xpCtx.modelXbrl.relationshipSet(XbrlConst.variablesScope).fromModelObject(varSet): try: resultQname = varScopeRel.variableQname if resultQname: overriddenInScopeVar = xpCtx.inScopeVars.get(resultQname) xpCtx.inScopeVars[resultQname] = result vb = VariableBinding(xpCtx, varScopeRel) vb.yieldedEvaluation = result vb.yieldedFact = newFact overriddenVarBinding = xpCtx.varBindings.get(resultQname) xpCtx.varBindings[resultQname] = vb evaluate(xpCtx, varScopeRel.toModelObject, True, uncoveredAspectFacts) if resultQname: xpCtx.inScopeVars.pop(resultQname) if overriddenInScopeVar is not None: # restore overridden value if there was one xpCtx.inScopeVars[resultQname] = overriddenInScopeVar xpCtx.varBindings.pop(resultQname) if overriddenVarBinding is not None: xpCtx.varBindings[resultQname] = overriddenVarBinding vb.close() # dereference except XPathContext.XPathException, err: xpCtx.modelXbrl.error(err.code, _(u"Variable set chained in scope of variable set %(variableset)s \nException: \n%(error)s"), modelObject=(varSet, varScopeRel.toModelObject), variableSet=varSet.logLabel(), error=err.message) else: # produce variable bindings varRel = varSet.orderedVariableRelationships[varIndex] varQname = varRel.variableQname vb = VariableBinding(xpCtx, varRel) var = vb.var if vb.isFactVar: vb.aspectsDefined = set(aspectModels[varSet.aspectModel]) # has to be a mutable set vb.values = None varHasNoVariableDependencies = var.hasNoVariableDependencies varHasNilFacts = var.nils == u"true" if varHasNoVariableDependencies and varQname in cachedFilteredFacts: facts, vb.aspectsDefined, vb.aspectsCovered = cachedFilteredFacts[varQname] if xpCtx.formulaOptions.traceVariableFilterWinnowing: xpCtx.modelXbrl.info(u"formula:trace", _(u"Fact Variable %(variable)s: start with %(factCount)s facts previously cached after explicit filters"), modelObject=var, variable=varQname, factCount=len(facts)) else: if var.fromInstanceQnames: groupFilteredFactsKey = u"grp:" + unicode(varQname) # multi instance vars or non-var-dependent variables elif varHasNilFacts: groupFilteredFactsKey = u"grp:stdInstWithNils" else: groupFilteredFactsKey = u"grp:stdInstNonNil" if groupFilteredFactsKey in cachedFilteredFacts: facts = cachedFilteredFacts[groupFilteredFactsKey] if xpCtx.formulaOptions.traceVariableFilterWinnowing: xpCtx.modelXbrl.info(u"formula:trace", _(u"Fact Variable %(variable)s: start with %(factCount)s facts previously cached before variable filters"), modelObject=var, variable=varQname, factCount=len(facts)) else: facts = set.union(*[(inst.factsInInstance if varHasNilFacts else inst.nonNilFactsInInstance) for inst in vb.instances]) if xpCtx.formulaOptions.traceVariableFilterWinnowing: xpCtx.modelXbrl.info(u"formula:trace", _(u"Fact Variable %(variable)s filtering: start with %(factCount)s facts"), modelObject=var, variable=varQname, factCount=len(facts)) facts = filterFacts(xpCtx, vb, facts, varSet.groupFilterRelationships, u"group") vb.aspectsCovered.clear() # group boolean sub-filters may have covered aspects cachedFilteredFacts[groupFilteredFactsKey] = facts facts = filterFacts(xpCtx, vb, facts, var.filterRelationships, None) # also finds covered aspects (except aspect cover filter dims, not known until after this complete pass) # adding dim aspects must be done after explicit filterin for fact in facts: if fact.isItem and fact.context is not None: vb.aspectsDefined |= fact.context.dimAspects(xpCtx.defaultDimensionAspects) coverAspectCoverFilterDims(xpCtx, vb, var.filterRelationships) # filters need to know what dims are covered if varHasNoVariableDependencies: cachedFilteredFacts[varQname] = (facts, vb.aspectsDefined, vb.aspectsCovered) considerFallback = bool(var.fallbackValueProg) if varSet.implicitFiltering == u"true": if any((_vb.isFactVar and not _vb.isFallback) for _vb in xpCtx.varBindings.values()): factCount = len(facts) # uncovered aspects of the prior variable bindings may include aspects not in current variable binding uncoveredAspects = (vb.aspectsDefined | _DICT_SET(uncoveredAspectFacts.keys())) - vb.aspectsCovered - set([Aspect.DIMENSIONS]) facts = implicitFilter(xpCtx, vb, facts, uncoveredAspects, uncoveredAspectFacts) if (considerFallback and varHasNoVariableDependencies and factCount and factCount - len(facts) == 0 and len(xpCtx.varBindings) > 1 and all((len(_vb.aspectsDefined) == len(vb.aspectsDefined) for _vb in xpCtx.varBindings.values()))): considerFallback = False vb.facts = facts if xpCtx.formulaOptions.traceVariableFiltersResult: xpCtx.modelXbrl.info(u"formula:trace", _(u"Fact Variable %(variable)s: filters result %(result)s"), modelObject=var, variable=varQname, result=unicode(vb.facts)) if considerFallback: vb.values = xpCtx.evaluate(var.fallbackValueProg) if xpCtx.formulaOptions.traceVariableExpressionResult: xpCtx.modelXbrl.info(u"formula:trace", _(u"Fact Variable %(variable)s: fallbackValue result %(result)s"), modelObject=var, variable=varQname, result=unicode(vb.values)) elif vb.isGeneralVar: # general variable if var.fromInstanceQnames: contextItem = [inst.modelDocument.xmlRootElement for qn in var.fromInstanceQnames for instSeq in (xpCtx.inScopeVars[qn],) for inst in (instSeq if isinstance(instSeq,(list,tuple)) else (instSeq,)) ] else: contextItem = xpCtx.modelXbrl.modelDocument.xmlRootElement # default is standard input instance vb.values = xpCtx.flattenSequence( xpCtx.evaluate(var.selectProg, contextItem=contextItem) ) if xpCtx.formulaOptions.traceVariableExpressionResult: xpCtx.modelXbrl.info(u"formula:trace", _(u"General Variable %(variable)s: select result %(result)s"), modelObject=var, variable=varQname, result=unicode(vb.values)) elif vb.isParameter: vb.parameterValue = xpCtx.inScopeVars.get(var.parameterQname) # recurse partitions, preserve overlaid var bindings and inScopeVars overriddenVarBinding = xpCtx.varBindings.get(varQname) xpCtx.varBindings[varQname] = vb for evaluationResult in vb.evaluationResults: overriddenInScopeVar = xpCtx.inScopeVars.get(varQname) xpCtx.inScopeVars[varQname] = evaluationResult evaluationContributedUncoveredAspects = {} if vb.isFactVar and not vb.isFallback: # cache uncoveredAspect facts for nested evaluations for aspect in vb.aspectsDefined | vb.aspectsCovered: # covered aspects may not be defined e.g., test 12062 v11, undefined aspect is a complemented aspect if uncoveredAspectFacts.get(aspect) is None: evaluationContributedUncoveredAspects[aspect] = uncoveredAspectFacts.get(aspect,u"none") uncoveredAspectFacts[aspect] = None if vb.hasAspectValueCovered(aspect) else vb.yieldedFact if xpCtx.formulaOptions.traceVariableFiltersResult: xpCtx.modelXbrl.info(u"formula:trace", _(u"%(variableType)s %(variable)s: bound value %(result)s"), modelObject=var, variableType=vb.resourceElementName, variable=varQname, result=unicode(evaluationResult)) if xpCtx.isRunTimeExceeded: raise XPathContext.RunTimeExceededException() evaluateVar(xpCtx, varSet, varIndex + 1, cachedFilteredFacts, uncoveredAspectFacts) xpCtx.inScopeVars.pop(varQname) if overriddenInScopeVar is not None: # restore overridden value if there was one xpCtx.inScopeVars[varQname] = overriddenInScopeVar for aspect, priorFact in evaluationContributedUncoveredAspects.items(): if priorFact == u"none": del uncoveredAspectFacts[aspect] else: uncoveredAspectFacts[aspect] = priorFact xpCtx.varBindings.pop(varQname) vb.close() # dereference if overriddenVarBinding is not None: xpCtx.varBindings[varQname] = overriddenVarBinding def filterFacts(xpCtx, vb, facts, filterRelationships, filterType): typeLbl = filterType + u" " if filterType else u"" orFilter = filterType == u"or" groupFilter = filterType == u"group" if orFilter: factSet = set() for varFilterRel in filterRelationships: _filter = varFilterRel.toModelObject if isinstance(_filter,ModelFilter): # relationship not constrained to real filters result = _filter.filter(xpCtx, vb, facts, varFilterRel.isComplemented) if xpCtx.formulaOptions.traceVariableFilterWinnowing: xpCtx.modelXbrl.info(u"formula:trace", _(u"Fact Variable %(variable)s %(filterType)s %(filter)s filter %(xlinkLabel)s passes %(factCount)s facts"), modelObject=vb.var, variable=vb.qname, filterType=typeLbl, filter=_filter.localName, xlinkLabel=_filter.xlinkLabel, factCount=len(result)), if orFilter: factSet |= result else: facts = result if not groupFilter and varFilterRel.isCovered: # block boolean group filters that have cover in subnetworks vb.aspectsCovered |= _filter.aspectsCovered(vb) if orFilter: return factSet else: return facts def coverAspectCoverFilterDims(xpCtx, vb, filterRelationships): for varFilterRel in filterRelationships: _filter = varFilterRel.toModelObject if isinstance(_filter,ModelAspectCover): # relationship not constrained to real filters if varFilterRel.isCovered: vb.aspectsCovered |= _filter.dimAspectsCovered(vb) elif isinstance(_filter,ModelBooleanFilter) and varFilterRel.isCovered: coverAspectCoverFilterDims(xpCtx, vb, _filter.filterRelationships) def implicitFilter(xpCtx, vb, facts, aspects, uncoveredAspectFacts): if xpCtx.formulaOptions.traceVariableFilterWinnowing: # trace shows by aspect by bound variable match for aspect in aspects: if uncoveredAspectFacts.get(aspect, u"none") is not None: facts = [fact for fact in facts if aspectMatches(xpCtx, uncoveredAspectFacts.get(aspect), fact, aspect)] a = unicode(aspect) if isinstance(aspect,QName) else Aspect.label[aspect] xpCtx.modelXbrl.info(u"formula:trace", _(u"Fact Variable %(variable)s implicit filter %(aspect)s passes %(factCount)s facts"), modelObject=vb.var, variable=vb.qname, aspect=a, factCount=len(facts)) if len(facts) == 0: break else: testableAspectFacts = [(aspect, uncoveredAspectFacts.get(aspect)) for aspect in aspects if uncoveredAspectFacts.get(aspect, u"none") is not None] #testableAspectFacts = [(aspect, fact) # for aspect, fact in uncoveredAspectFacts.items() # if not vb.hasAspectValueCovered(aspect)] if testableAspectFacts: # not tracing, do bulk aspect filtering facts = [fact for fact in facts if all(aspectMatches(xpCtx, uncoveredAspectFact, fact, aspect) for (aspect, uncoveredAspectFact) in testableAspectFacts)] return facts def aspectsMatch(xpCtx, fact1, fact2, aspects): return all(aspectMatches(xpCtx, fact1, fact2, aspect) for aspect in aspects) def aspectMatches(xpCtx, fact1, fact2, aspect): if fact1 is None: # fallback (atomic) never matches any aspect return False if aspect == 1: # Aspect.LOCATION: return (fact2 is not None and fact1.modelXbrl != fact2.modelXbrl or # test deemed true for multi-instance comparisons fact1.getparent() == fact2.getparent()) elif aspect == 2: # Aspect.CONCEPT: return fact2 is not None and fact1.qname == fact2.qname elif fact1.isTuple or fact2.isTuple: return fact1.isTuple and fact2.isTuple # only match the aspects both facts have elif aspect == 5: # Aspect.UNIT: u1 = fact1.unit u2 = fact2.unit if fact2 is not None else None if u1 is not None: return u1.isEqualTo(u2) return u2 is None else: # rest of comparisons are for context c1 = fact1.context c2 = fact2.context if fact2 is not None else None if c1 is None or (c2 is None and aspect != 10): return False # something wrong, must be a context if c1 is c2: return True # same context if aspect == 4: # Aspect.PERIOD: return c1.isPeriodEqualTo(c2) if aspect == 3: # Aspect.ENTITY_IDENTIFIER: return c1.isEntityIdentifierEqualTo(c2) if aspect == 6: # Aspect.COMPLETE_SEGMENT: return XbrlUtil.nodesCorrespond(fact1.modelXbrl, c1.segment, c2.segment, dts2=fact2.modelXbrl) elif aspect == 7: # Aspect.COMPLETE_SCENARIO: return XbrlUtil.nodesCorrespond(fact1.modelXbrl, c1.scenario, c2.scenario, dts2=fact2.modelXbrl) elif aspect == 8 or aspect == 9: # aspect in (Aspect.NON_XDT_SEGMENT, Aspect.NON_XDT_SCENARIO): nXs1 = c1.nonDimValues(aspect) nXs2 = c2.nonDimValues(aspect) lXs1 = len(nXs1) lXs2 = len(nXs2) if lXs1 != lXs2: return False elif lXs1 > 0: for i in xrange(lXs1): if not XbrlUtil.nodesCorrespond(fact1.modelXbrl, nXs1[i], nXs2[i], dts2=fact2.modelXbrl): return False return True elif aspect == 10: # Aspect.DIMENSIONS: u''' (no implicit filtering on ALL dimensions for now) dimQnames1 = fact1.context.dimAspects dimQnames2 = fact2.context.dimAspects if len(dimQnames1 ^ dimQnames2): # dims not in both matches = False else: for dimQname1 in dimQnames1: if dimQname1 not in dimQnames2 or \ not aspectMatches(fact1, fact2, dimQname1): matches = False break ''' elif isinstance(aspect, QName): global ModelDimensionValue if ModelDimensionValue is None: from arelle.ModelInstanceObject import ModelDimensionValue dimValue1 = c1.dimValue(aspect) if c2 is None: if dimValue1 is None: # neither fact nor matching facts have this dimension aspect return True return False dimValue2 = c2.dimValue(aspect) if isinstance(dimValue1, ModelDimensionValue): if dimValue1.isExplicit: if isinstance(dimValue2, QName): if dimValue1.memberQname != dimValue2: return False elif isinstance(dimValue2, (ModelDimensionValue,DimValuePrototype)): if dimValue2.isTyped: return False elif dimValue1.memberQname != dimValue2.memberQname: return False elif dimValue2 is None: return False elif dimValue1.isTyped: if isinstance(dimValue2, QName): return False elif isinstance(dimValue2, (ModelDimensionValue,DimValuePrototype)): if dimValue2.isExplicit: return False elif dimValue1.dimension.typedDomainElement in xpCtx.modelXbrl.modelFormulaEqualityDefinitions: equalityDefinition = xpCtx.modelXbrl.modelFormulaEqualityDefinitions[dimValue1.dimension.typedDomainElement] return equalityDefinition.evalTest(xpCtx, fact1, fact2) elif not XbrlUtil.nodesCorrespond(fact1.modelXbrl, dimValue1.typedMember, dimValue2.typedMember, dts2=fact2.modelXbrl): return False elif dimValue2 is None: return False elif isinstance(dimValue1,QName): # first dim is default value of an explicit dim if isinstance(dimValue2, QName): # second dim is default value of an explicit dim # multi-instance does not consider member's qname here where it is a default # only check if qnames match if the facts are from same instance if fact1.modelXbrl == fact2.modelXbrl and dimValue1 != dimValue2: return False elif isinstance(dimValue2, (ModelDimensionValue,DimValuePrototype)): if dimValue2.isTyped: return False elif dimValue1 != dimValue2.memberQname: return False elif dimValue2 is None: # no dim aspect for fact 2 if fact1.modelXbrl == fact2.modelXbrl: # only allowed for multi-instance return False elif dimValue1 is None: # absent dim member from fact1 allowed if fact2 is default in different instance if isinstance(dimValue2,QName): if fact1.modelXbrl == fact2.modelXbrl: return False elif dimValue2 is not None: return False # else if both are None, matches True for single and multiple instance return True def factsPartitions(xpCtx, facts, aspects): factsPartitions = [] for fact in facts: matched = False for partition in factsPartitions: if aspectsMatch(xpCtx, fact, partition[0], aspects): partition.append(fact) matched = True break if not matched: factsPartitions.append([fact,]) return factsPartitions def evaluationIsUnnecessary(thisEval, otherEvalHashDicts, otherEvals): if otherEvals: if all(e is None for e in thisEval): return True # evaluation not necessary, all fallen back # hash check if any hashes merit further look for equality otherEvalSets = [otherEvalHashDicts[i].get(hash(e), set()) for i, e in enumerate(thisEval) if e is not None] if otherEvalSets: matchingEvals = [otherEvals[i] for i in set.intersection(*otherEvalSets)] # detects evaluations which are not different (duplicate) and extra fallback evaluations return any(all([e == matchingEval[i] for i, e in enumerate(thisEval) if e is not None]) for matchingEval in matchingEvals) return False u''' r = range(len(thisEval)) for otherEval in otherEvals: if all([thisEval[i] is None or thisEval[i] == otherEval[i] for i in r]): return True return False ''' def produceOutputFact(xpCtx, formula, result): priorErrorCount = len(xpCtx.modelXbrl.errors) isTuple = isinstance(formula,ModelTuple) # assemble context conceptQname = formulaAspectValue(xpCtx, formula, Aspect.CONCEPT, u"xbrlfe:missingConceptRule") if isinstance(conceptQname, VariableBindingError): xpCtx.modelXbrl.error(conceptQname.err, _(u"Formula %(label)s concept: %(concept)s"), modelObject=formula, label=formula.logLabel(), concept=conceptQname.msg) modelConcept = None else: modelConcept = xpCtx.modelXbrl.qnameConcepts[conceptQname] if modelConcept is None or (not modelConcept.isTuple if isTuple else not modelConcept.isItem): xpCtx.modelXbrl.error(u"xbrlfe:missingConceptRule", _(u"Formula %(label)s concept %(concept)s is not a %(element)s"), modelObject=formula, label=formula.logLabel(), concept=conceptQname, element=formula.localName) outputLocation = formulaAspectValue(xpCtx, formula, Aspect.LOCATION_RULE, None) if not isTuple: # entity entityIdentScheme = formulaAspectValue(xpCtx, formula, Aspect.SCHEME, u"xbrlfe:missingEntityIdentifierRule") if isinstance(entityIdentScheme, VariableBindingError): xpCtx.modelXbrl.error(unicode(entityIdentScheme), _(u"Formula %(label)s entity identifier scheme: %(scheme)s"), modelObject=formula, label=formula.logLabel(), scheme=entityIdentScheme.msg) entityIdentValue = None else: entityIdentValue = formulaAspectValue(xpCtx, formula, Aspect.VALUE, u"xbrlfe:missingEntityIdentifierRule") if isinstance(entityIdentValue, VariableBindingError): xpCtx.modelXbrl.error(unicode(entityIdentScheme), _(u"Formula %(label)s entity identifier value: %(entityIdentifier)s"), modelObject=formula, label=formula.logLabel(), entityIdentifier=entityIdentValue.msg) # period periodType = formulaAspectValue(xpCtx, formula, Aspect.PERIOD_TYPE, u"xbrlfe:missingPeriodRule") periodStart = None periodEndInstant = None if isinstance(periodType, VariableBindingError): xpCtx.modelXbrl.error(unicode(periodType), _(u"Formula %(label)s period type: %(periodType)s"), modelObject=formula, label=formula.logLabel(), periodType=periodType.msg) elif periodType == u"instant": periodEndInstant = formulaAspectValue(xpCtx, formula, Aspect.INSTANT, u"xbrlfe:missingPeriodRule") if isinstance(periodEndInstant, VariableBindingError): xpCtx.modelXbrl.error(unicode(periodEndInstant), _(u"Formula %(label)s period end: %(period)s"), modelObject=formula, label=formula.logLabel(), period=periodEndInstant.msg) elif periodType == u"duration": periodStart = formulaAspectValue(xpCtx, formula, Aspect.START, u"xbrlfe:missingPeriodRule") if isinstance(periodStart, VariableBindingError): xpCtx.modelXbrl.error(unicode(periodStart), _(u"Formula %(label)s period start: %(period)s"), modelObject=formula, label=formula.logLabel(), period=periodStart.msg) periodEndInstant = formulaAspectValue(xpCtx, formula, Aspect.END, u"xbrlfe:missingPeriodRule") if isinstance(periodEndInstant, VariableBindingError): xpCtx.modelXbrl.error(unicode(periodEndInstant), _(u"Formula %(label)s period end: %(period)s"), modelObject=formula, label=formula.logLabel(), period=periodEndInstant.msg) # unit if modelConcept is not None and modelConcept.isNumeric: unitSource = formulaAspectValue(xpCtx, formula, Aspect.UNIT_MEASURES, None) multDivBy = formulaAspectValue(xpCtx, formula, Aspect.MULTIPLY_BY, u"xbrlfe:missingUnitRule") if isinstance(multDivBy, VariableBindingError): xpCtx.modelXbrl.error(unicode(multDivBy) if isinstance(multDivBy, VariableBindingError) else u"xbrlfe:missingUnitRule", _(u"Formula %(label)s unit: %(unit)s"), modelObject=formula, label=formula.logLabel(), unit=multDivBy.msg) multiplyBy = (); divideBy = () # prevent errors later if bad else: divMultBy = formulaAspectValue(xpCtx, formula, Aspect.DIVIDE_BY, u"xbrlfe:missingUnitRule") if isinstance(divMultBy, VariableBindingError): xpCtx.modelXbrl.error(unicode(multDivBy) if isinstance(divMultBy, VariableBindingError) else u"xbrlfe:missingUnitRule", _(u"Formula %(label)s unit: %(unit)s"), modelObject=formula, label=formula.logLabel(), unit=divMultBy.msg) multiplyBy = (); divideBy = () # prevent errors later if bad else: multiplyBy = unitSource[0] + multDivBy[0] + divMultBy[1] divideBy = unitSource[1] + multDivBy[1] + divMultBy[0] # remove cancelling mult/div units lookForCommonUnits = True while lookForCommonUnits: lookForCommonUnits = False for commonUnit in multiplyBy: if commonUnit in divideBy: multiplyBy.remove(commonUnit) divideBy.remove(commonUnit) lookForCommonUnits = True break if len(multiplyBy) == 0: # if no units add pure if (Aspect.MULTIPLY_BY not in formula.aspectValues and Aspect.MULTIPLY_BY not in formula.aspectProgs and Aspect.DIVIDE_BY not in formula.aspectValues and Aspect.DIVIDE_BY not in formula.aspectProgs): xpCtx.modelXbrl.error(u"xbrlfe:missingUnitRule", _(u"Formula %(label)s"), modelObject=formula, label=formula.logLabel()) multiplyBy.append(XbrlConst.qnXbrliPure) # dimensions segOCCs = [] scenOCCs = [] if formula.aspectModel == u"dimensional": dimAspects = {} dimQnames = formulaAspectValue(xpCtx, formula, Aspect.DIMENSIONS, None) if dimQnames: for dimQname in dimQnames: dimConcept = xpCtx.modelXbrl.qnameConcepts[dimQname] dimErr = u"xbrlfe:missing{0}DimensionRule".format(u"typed" if dimConcept is not None and dimConcept.isTypedDimension else u"explicit") dimValue = formulaAspectValue(xpCtx, formula, dimQname, dimErr) if isinstance(dimValue, VariableBindingError): xpCtx.modelXbrl.error(dimErr, _(u"Formula %(label)s dimension %(dimension)s: %(value)s"), modelObject=formula, label=formula.logLabel(), dimension=dimQname, value=dimValue.msg) elif dimConcept.isTypedDimension: if isinstance(dimValue, list): # result of flatten, always a list if len(dimValue) != 1 or not isinstance(dimValue[0], ModelObject): xpCtx.modelXbrl.error(u"xbrlfe:wrongXpathResultForTypedDimensionRule", _(u"Formula %(label)s dimension %(dimension)s value is not a node: %(value)s"), modelObject=formula, label=formula.logLabel(), dimension=dimQname, value=dimValue) continue dimValue = dimValue[0] dimAspects[dimQname] = dimValue elif dimValue is not None and xpCtx.modelXbrl.qnameDimensionDefaults.get(dimQname) != dimValue: dimAspects[dimQname] = dimValue segOCCs = formulaAspectValue(xpCtx, formula, Aspect.NON_XDT_SEGMENT, None) scenOCCs = formulaAspectValue(xpCtx, formula, Aspect.NON_XDT_SCENARIO, None) for occElt in xpCtx.flattenSequence((segOCCs, scenOCCs)): if isinstance(occElt, ModelObject) and occElt.namespaceURI == XbrlConst.xbrldi: xpCtx.modelXbrl.error(u"xbrlfe:badSubsequentOCCValue", _(u"Formula %(label)s OCC element %(occ)s covers a dimensional aspect"), modelObject=(formula,occElt), label=formula.logLabel(), occ=occElt.elementQname) else: dimAspects = None # non-dimensional segOCCs = formulaAspectValue(xpCtx, formula, Aspect.COMPLETE_SEGMENT, None) scenOCCs = formulaAspectValue(xpCtx, formula, Aspect.COMPLETE_SCENARIO, None) if priorErrorCount < len(xpCtx.modelXbrl.errors): return None # had errors, don't produce output fact # does context exist in out instance document outputInstanceQname = formula.outputInstanceQname outputXbrlInstance = xpCtx.inScopeVars[outputInstanceQname] xbrlElt = outputXbrlInstance.modelDocument.xmlRootElement # in source instance document newFact = None if isTuple: newFact = outputXbrlInstance.createFact(conceptQname, parent=outputLocation, afterSibling=xpCtx.outputLastFact.get(outputInstanceQname)) else: # add context prevCntx = outputXbrlInstance.matchContext( entityIdentScheme, entityIdentValue, periodType, periodStart, periodEndInstant, dimAspects, segOCCs, scenOCCs) if prevCntx is not None: cntxId = prevCntx.id newCntxElt = prevCntx else: newCntxElt = outputXbrlInstance.createContext(entityIdentScheme, entityIdentValue, periodType, periodStart, periodEndInstant, conceptQname, dimAspects, segOCCs, scenOCCs, afterSibling=xpCtx.outputLastContext.get(outputInstanceQname), beforeSibling=xpCtx.outputFirstFact.get(outputInstanceQname)) cntxId = newCntxElt.id xpCtx.outputLastContext[outputInstanceQname] = newCntxElt # does unit exist # add unit if modelConcept.isNumeric: prevUnit = outputXbrlInstance.matchUnit(multiplyBy, divideBy) if prevUnit is not None: unitId = prevUnit.id newUnitElt = prevUnit else: newUnitElt = outputXbrlInstance.createUnit(multiplyBy, divideBy, afterSibling=xpCtx.outputLastUnit.get(outputInstanceQname), beforeSibling=xpCtx.outputFirstFact.get(outputInstanceQname)) unitId = newUnitElt.id xpCtx.outputLastUnit[outputInstanceQname] = newUnitElt # add fact attrs = [(u"contextRef", cntxId)] precision = None decimals = None if modelConcept.isNumeric: attrs.append((u"unitRef", unitId)) value = formula.evaluate(xpCtx) valueSeqLen = len(value) if valueSeqLen > 1: xpCtx.modelXbrl.error(u"xbrlfe:nonSingletonOutputValue", _(u"Formula %(label)s value is a sequence of length %(valueSequenceLength)s"), modelObject=formula, label=formula.logLabel(), valueSequenceLength=valueSeqLen) else: if valueSeqLen == 0: #xsi:nil if no value attrs.append((XbrlConst.qnXsiNil, u"true")) v = None else: # add precision/decimals for non-fraction numerics if modelConcept.isNumeric and not modelConcept.isFraction: if formula.hasDecimals: decimals = formula.evaluateRule(xpCtx, Aspect.DECIMALS) attrs.append((u"decimals", decimals)) else: if formula.hasPrecision: precision = formula.evaluateRule(xpCtx, Aspect.PRECISION) else: precision = 0 attrs.append((u"precision", precision)) x = value[0] if isinstance(x,float): if (isnan(x) or (precision and (isinf(precision) or precision == 0)) or (decimals and isinf(decimals))): v = xsString(xpCtx, None, x) elif decimals is not None: v = u"%.*f" % ( int(decimals), x) elif precision is not None and precision != 0: a = fabs(x) log = log10(a) if a != 0 else 0 v = u"%.*f" % ( int(precision) - int(log) - (1 if a >= 1 else 0), x) else: # no implicit precision yet v = xsString(xpCtx, None, x) elif isinstance(x,Decimal): if (x.is_nan() or (precision and (isinf(precision) or precision == 0)) or (decimals and isinf(decimals))): v = xsString(xpCtx, None, x) elif decimals is not None: v = u"%.*f" % ( int(decimals), x) elif precision is not None and precision != 0: a = x.copy_abs() log = a.log10() if a != 0 else 0 v = u"%.*f" % ( int(precision) - int(log) - (1 if a >= 1 else 0), x) else: # no implicit precision yet v = xsString(xpCtx, None, x) elif isinstance(x,QName): v = XmlUtil.addQnameValue(xbrlElt, x) elif isinstance(x,datetime.datetime): v = XmlUtil.dateunionValue(x) else: v = xsString(xpCtx, None, x) newFact = outputXbrlInstance.createFact(conceptQname, attributes=attrs, text=v, parent=outputLocation, afterSibling=xpCtx.outputLastFact.get(outputInstanceQname)) if newFact is not None: xpCtx.outputLastFact[outputInstanceQname] = newFact if outputInstanceQname not in xpCtx.outputFirstFact: xpCtx.outputFirstFact[outputInstanceQname] = newFact return newFact def formulaAspectValue(xpCtx, formula, aspect, srcMissingErr): ruleValue = formula.evaluateRule(xpCtx, aspect) if ruleValue is not None: if aspect in (Aspect.CONCEPT, Aspect.VALUE, Aspect.SCHEME, Aspect.PERIOD_TYPE, Aspect.START, Aspect.END, Aspect.INSTANT, ): return ruleValue if isinstance(aspect,QName) and ruleValue != XbrlConst.qnFormulaDimensionSAV: return ruleValue sourceQname = formula.source(aspect) formulaUncovered = sourceQname == XbrlConst.qnFormulaUncovered if aspect == Aspect.LOCATION_RULE and sourceQname is None: return xpCtx.inScopeVars[formula.outputInstanceQname].modelDocument.xmlRootElement elif aspect == Aspect.DIMENSIONS and formulaUncovered: aspectSourceValue = set() # union of uncovered dimensions, all variables elif srcMissingErr is None: aspectSourceValue = None # important for dimensions, missing is not an error elif formulaUncovered: if isinstance(aspect,QName): # absent uncovered dimension is ok, just not copied to output OCC aspectSourceValue = None else: aspectSourceValue = xbrlfe_undefinedSAV # other then dimensions, absent is an error else: aspectSourceValue = VariableBindingError(srcMissingErr, _(u"neither source {0}, nor an aspect rule, were found.") .format(sourceQname if sourceQname else u'')) for vb in xpCtx.varBindings.values(): if vb.isFactVar and not vb.isFallback: if aspect == Aspect.DIMENSIONS and formulaUncovered: aspectSourceValue |= vb.aspectValue(aspect) elif formulaUncovered and vb.hasAspectValueUncovered(aspect): aspectSourceValue = vb.aspectValue(aspect) break elif sourceQname == vb.qname: if not vb.isBindAsSequence or vb.hasAspectValueUncovered(aspect): aspectSourceValue = vb.aspectValue(aspect) else: aspectSourceValue = VariableBindingError(u"xbrlfe:sequenceSAVConflicts", _(u"source, {0}, contains the QName of a fact variable that binds as a sequence where that fact's aspect rule covers this filtered aspect") .format(sourceQname)) break elif aspect == Aspect.LOCATION_RULE and sourceQname == vb.qname: aspectSourceValue = vb.aspectValue(aspect) break # modify by any specific rules if aspect in (Aspect.CONCEPT, Aspect.LOCATION_RULE, Aspect.VALUE, Aspect.SCHEME, Aspect.PERIOD_TYPE, Aspect.START, Aspect.END, Aspect.INSTANT, ) or isinstance(aspect,QName): return aspectSourceValue elif aspect == Aspect.UNIT_MEASURES: augment = formula.evaluateRule(xpCtx, Aspect.AUGMENT) if aspectSourceValue and (not augment or augment == u"true"): # true is the default behavior return aspectSourceValue else: return ([],[]) elif aspect in (Aspect.MULTIPLY_BY, Aspect.DIVIDE_BY): if sourceQname and aspectSourceValue: return aspectSourceValue else: return (ruleValue,[]) elif aspect == Aspect.DIMENSIONS: if aspectSourceValue is None: aspectSourceValue = set() if ruleValue is None: ruleValueSet = set() else: ruleValueSet = set(ruleValue) omitDims = formula.evaluateRule(xpCtx, Aspect.OMIT_DIMENSIONS) if omitDims is None: omitDimsSet = set() else: omitDimsSet = set(omitDims) return (aspectSourceValue | ruleValueSet) - omitDimsSet elif isinstance(aspect, QName): return aspectSourceValue elif aspect in (Aspect.COMPLETE_SEGMENT, Aspect.COMPLETE_SCENARIO, Aspect.NON_XDT_SEGMENT, Aspect.NON_XDT_SCENARIO): occFragments = [] occEmpty = ruleValue and ruleValue[0] == XbrlConst.qnFormulaOccEmpty if not occEmpty and aspectSourceValue: occFragments.extend(aspectSourceValue) if ruleValue: occFragments.extend(ruleValue[1 if occEmpty else 0:]) return occFragments return None def uncoveredAspectValue(xpCtx, aspect): for vb in xpCtx.varBindings.values(): if vb.isFactVar and not vb.isFallback and vb.hasAspectValueUncovered(aspect): return vb.aspectValue(aspect) return None def variableBindingIsFallback(xpCtx, variableQname): for vb in xpCtx.varBindings.values(): if vb.qname == variableQname: return vb.isFactVar and vb.isFallback return False def uncoveredVariableSetAspects(xpCtx): aspectsDefined = set() aspectsCovered = set() for vb in xpCtx.varBindings.values(): if vb.isFactVar and not vb.isFallback: aspectsCovered |= vb.aspectsCovered aspectsDefined |= vb.aspectsDefined return (aspectsDefined - aspectsCovered) class VariableBindingError(object): def __init__(self, err, msg=None): self.err = err self.msg = msg def __repr__(self): return self.err xbrlfe_undefinedSAV = VariableBindingError(u"xbrlfe:undefinedSAV") class VariableBinding(object): def __init__(self, xpCtx, varRel=None, boundFact=None): self.xpCtx = xpCtx if varRel is not None: self.qname = varRel.variableQname self.var = varRel.toModelObject else: self.qname = self.var = None self.aspectsDefined = set() self.aspectsCovered = set() self.isFactVar = isinstance(self.var, ModelFactVariable) self.isGeneralVar = isinstance(self.var, ModelGeneralVariable) self.isParameter = isinstance(self.var, ModelParameter) self.isFormulaResult = isinstance(self.var, ModelFormula) self.isBindAsSequence = self.var.bindAsSequence == u"true" if isinstance(self.var,ModelVariable) else False self.yieldedFact = boundFact self.yieldedFactResult = None self.isFallback = False self.instances = ([inst for qn in self.var.fromInstanceQnames for inst in xpCtx.flattenSequence(xpCtx.inScopeVars[qn])] if self.var is not None and self.var.fromInstanceQnames else [xpCtx.modelXbrl]) def close(self): self.__dict__.clear() # dereference pass @property def resourceElementName(self): if self.isFactVar: return _(u"Fact Variable") elif self.isGeneralVar: return _(u"General Variable") elif self.isParameter: return _(u"Parameter") elif isinstance(self.var, ModelTuple): return _(u"Tuple") elif isinstance(self.var, ModelFormula): return _(u"Formula") elif isinstance(self.var, ModelValueAssertion): return _(u"ValueAssertion") elif isinstance(self.var, ModelExistenceAssertion): return _(u"ExistenceAssertion") def matchesSubPartitions(self, partition, aspects): if self.var.matches == u"true": return [partition] subPartitions = [] for fact in partition: foundSubPartition = False for subPartition in subPartitions: matchedInSubPartition = False for fact2 in subPartition: if aspectsMatch(self.xpCtx, fact, fact2, aspects): matchedInSubPartition = True break if not matchedInSubPartition: subPartition.append(fact) foundSubPartition = True break if not foundSubPartition: subPartitions.append([fact,]) return subPartitions @property def evaluationResults(self): if self.isFactVar: if self.isBindAsSequence and self.facts: for factsPartition in factsPartitions(self.xpCtx, self.facts, self.aspectsDefined - self.aspectsCovered): for matchesSubPartition in self.matchesSubPartitions(factsPartition, self.aspectsDefined): self.yieldedFact = matchesSubPartition[0] self.yieldedFactContext = self.yieldedFact.context self.yieldedEvaluation = matchesSubPartition self.isFallback = False yield matchesSubPartition else: for fact in self.facts: self.yieldedFact = fact self.yieldedFactContext = self.yieldedFact.context self.yieldedEvaluation = fact self.isFallback = False yield fact if self.values: self.yieldedFact = None self.yieldedFactContext = None self.yieldedEvaluation = u"fallback" self.isFallback = True yield self.values elif self.isGeneralVar: self.yieldedFact = None self.yieldedFactContext = None self.isFallback = False if self.isBindAsSequence: self.yieldedEvaluation = self.values yield self.values else: for value in self.values: self.yieldedEvaluation = value yield value elif self.isParameter: self.yieldedFact = None self.yieldedEvaluation = None self.isFallback = False yield self.parameterValue def matchableBoundFact(self, fbVars): # return from this function has to be hashable if (self.isFallback or self.isParameter # remove to allow different gen var evaluations: or self.isGeneralVar or (self.isGeneralVar and not fbVars.isdisjoint(self.var.variableRefs()))): return None if self.isBindAsSequence: return tuple(self.yieldedEvaluation) if self.isFormulaResult: return self.yieldedFact return self.yieldedEvaluation def hasDimension(self, dimension): return dimension in self.definedDimensions def hasDimensionValueDefined(self, dimension): return dimension in self.definedDimensions def definedDimensions(self, dimension): return self.yieldedFact.context.dimAspects(self.xpCtx.defaultDimensionAspects) if self.yieldedFact.isItem and self.yieldedFact.context is not None else set() def isDimensionalValid(self, dimension): return False def hasAspectValueUncovered(self, aspect): if aspect in aspectModelAspect: aspect = aspectModelAspect[aspect] return aspect in self.aspectsDefined and aspect not in self.aspectsCovered def hasAspectValueCovered(self, aspect): if aspect in aspectModelAspect: aspect = aspectModelAspect[aspect] return aspect in self.aspectsCovered def aspectsNotCovered(self, aspects): return set(a for a in aspects if not self.hasAspectValueCovered(a)) def hasAspectValueDefined(self, aspect): if aspect in aspectModelAspect: aspect = aspectModelAspect[aspect] return aspect in self.aspectsDefined def aspectValue(self, aspect): fact = self.yieldedFact if fact is None: if aspect == Aspect.DIMENSIONS: return set() else: return None if aspect == Aspect.LOCATION: return fact.getparent() elif aspect == Aspect.LOCATION_RULE: return fact elif aspect == Aspect.CONCEPT: return fact.qname elif fact.isTuple or fact.context is None: return None #subsequent aspects don't exist for tuples # context is known to be not None after here elif aspect == Aspect.PERIOD: return fact.context.period elif aspect == Aspect.PERIOD_TYPE: if fact.context.isInstantPeriod: return u"instant" elif fact.context.isStartEndPeriod: return u"duration" elif fact.context.isForeverPeriod: return u"forever" return None elif aspect == Aspect.INSTANT: return fact.context.instantDatetime elif aspect == Aspect.START: return fact.context.startDatetime elif aspect == Aspect.END: return fact.context.endDatetime elif aspect == Aspect.ENTITY_IDENTIFIER: return fact.context.entityIdentifierElement elif aspect == Aspect.SCHEME: return fact.context.entityIdentifier[0] elif aspect == Aspect.VALUE: return fact.context.entityIdentifier[1] elif aspect in (Aspect.COMPLETE_SEGMENT, Aspect.COMPLETE_SCENARIO, Aspect.NON_XDT_SEGMENT, Aspect.NON_XDT_SCENARIO): return fact.context.nonDimValues(aspect) elif aspect == Aspect.DIMENSIONS: return fact.context.dimAspects(self.xpCtx.defaultDimensionAspects) elif isinstance(aspect, QName): return fact.context.dimValue(aspect) elif fact.unit is not None: if aspect == Aspect.UNIT: return fact.unit elif aspect in (Aspect.UNIT_MEASURES, Aspect.MULTIPLY_BY, Aspect.DIVIDE_BY): return fact.unit.measures return None
import copy import os import socket import sys import pickle from parameterized import parameterized from gssapi import creds as gsscreds from gssapi import mechs as gssmechs from gssapi import names as gssnames from gssapi import sec_contexts as gssctx from gssapi import raw as gb from gssapi import _utils as gssutils from gssapi import exceptions as excs import k5test.unit as ktu import k5test as kt TARGET_SERVICE_NAME = b'host' FQDN = socket.getfqdn().encode('utf-8') SERVICE_PRINCIPAL = TARGET_SERVICE_NAME + b'/' + FQDN # disable error deferring to catch errors immediately gssctx.SecurityContext.__DEFER_STEP_ERRORS__ = False class _GSSAPIKerberosTestCase(kt.KerberosTestCase): @classmethod def setUpClass(cls): super(_GSSAPIKerberosTestCase, cls).setUpClass() svc_princ = SERVICE_PRINCIPAL.decode("UTF-8") cls.realm.kinit(svc_princ, flags=['-k']) cls._init_env() cls.USER_PRINC = cls.realm.user_princ.split('@')[0].encode("UTF-8") cls.ADMIN_PRINC = cls.realm.admin_princ.split('@')[0].encode("UTF-8") @classmethod def _init_env(cls): cls._saved_env = copy.deepcopy(os.environ) for k, v in cls.realm.env.items(): os.environ[k] = v @classmethod def _restore_env(cls): for k in copy.deepcopy(os.environ): if k in cls._saved_env: os.environ[k] = cls._saved_env[k] else: del os.environ[k] cls._saved_env = None @classmethod def tearDownClass(cls): super(_GSSAPIKerberosTestCase, cls).tearDownClass() cls._restore_env() def _perms_cycle(elem, rest, old_d): if elem is None: name_str = "with_params_" true_keys = [k for (k, v) in old_d.items() if v] if not true_keys: name_str += 'none' else: name_str += '_'.join(true_keys) return [(name_str, old_d)] else: if len(rest) > 0: next_elem = rest.pop() else: next_elem = None res = [] for v in (True, False): new_d = copy.deepcopy(old_d) new_d[elem] = v res.extend(_perms_cycle(next_elem, copy.deepcopy(rest), new_d)) return res def exist_perms(**kwargs): all_elems = list(kwargs.keys()) curr_elems = copy.deepcopy(all_elems) perms = _perms_cycle(curr_elems.pop(), curr_elems, {}) res = [] for name_str, perm in perms: args = dict([(k, v) for (k, v) in kwargs.items() if perm[k]]) res.append((name_str, args)) return parameterized.expand(res) def true_false_perms(*all_elems_tuple): all_elems = list(all_elems_tuple) curr_elems = copy.deepcopy(all_elems) perms = _perms_cycle(curr_elems.pop(), curr_elems, {}) return parameterized.expand(perms) # NB(directxman12): MIT Kerberos completely ignores input TTLs for # credentials. I suspect this is because the TTL # is actually set when kinit is called. # NB(directxman12): the above note used to be wonderfully sarcastic class CredsTestCase(_GSSAPIKerberosTestCase): def setUp(self): super(CredsTestCase, self).setUp() svc_princ = SERVICE_PRINCIPAL.decode("UTF-8") self.realm.kinit(svc_princ, flags=['-k']) self.name = gssnames.Name(SERVICE_PRINCIPAL, gb.NameType.kerberos_principal) @exist_perms(lifetime=30, mechs=[gb.MechType.kerberos], usage='both') def test_acquire_by_init(self, str_name, kwargs): creds = gsscreds.Credentials(name=self.name, **kwargs) self.assertIsInstance(creds.lifetime, int) del creds @exist_perms(lifetime=30, mechs=[gb.MechType.kerberos], usage='both') def test_acquire_by_method(self, str_name, kwargs): cred_resp = gsscreds.Credentials.acquire(name=self.name, **kwargs) self.assertIsNotNone(cred_resp) creds, actual_mechs, ttl = cred_resp self.assertIsInstance(creds, gsscreds.Credentials) self.assertIn(gb.MechType.kerberos, actual_mechs) self.assertIsInstance(ttl, int) del creds @ktu.gssapi_extension_test('rfc5588', 'RFC 5588') def test_store_acquire(self): # we need to acquire a forwardable ticket svc_princ = SERVICE_PRINCIPAL.decode("UTF-8") self.realm.kinit(svc_princ, flags=['-k', '-f']) target_name = gssnames.Name(TARGET_SERVICE_NAME, gb.NameType.hostbased_service) client_creds = gsscreds.Credentials(usage='initiate') client_ctx = gssctx.SecurityContext( name=target_name, creds=client_creds, flags=gb.RequirementFlag.delegate_to_peer) client_token = client_ctx.step() server_creds = gsscreds.Credentials(usage='accept') server_ctx = gssctx.SecurityContext(creds=server_creds) server_ctx.step(client_token) deleg_creds = server_ctx.delegated_creds self.assertIsNotNone(deleg_creds) store_res = deleg_creds.store(usage='initiate', set_default=True, overwrite=True) self.assertEqual(store_res.usage, "initiate") self.assertIn(gb.MechType.kerberos, store_res.mechs) reacquired_creds = gsscreds.Credentials(name=deleg_creds.name, usage='initiate') self.assertIsNotNone(reacquired_creds) @ktu.gssapi_extension_test('cred_store', 'credentials store') def test_store_into_acquire_from(self): CCACHE = 'FILE:{tmpdir}/other_ccache'.format(tmpdir=self.realm.tmpdir) KT = '{tmpdir}/other_keytab'.format(tmpdir=self.realm.tmpdir) store = {'ccache': CCACHE, 'keytab': KT} princ_name = 'service/cs@' + self.realm.realm self.realm.addprinc(princ_name) self.realm.extract_keytab(princ_name, KT) self.realm.kinit(princ_name, None, ['-k', '-t', KT]) initial_creds = gsscreds.Credentials(name=None, usage='initiate') store_res = initial_creds.store(store, overwrite=True) self.assertIsNotNone(store_res.mechs) self.assertGreater(len(store_res.mechs), 0) self.assertEqual(store_res.usage, "initiate") name = gssnames.Name(princ_name) retrieved_creds = gsscreds.Credentials(name=name, store=store) self.assertIsNotNone(retrieved_creds) def test_create_from_other(self): raw_creds = gb.acquire_cred(None, usage='accept').creds high_level_creds = gsscreds.Credentials(raw_creds) self.assertEqual(high_level_creds.usage, "accept") @true_false_perms('name', 'lifetime', 'usage', 'mechs') def test_inquire(self, str_name, kwargs): creds = gsscreds.Credentials(name=self.name) resp = creds.inquire(**kwargs) if kwargs['name']: self.assertEqual(resp.name, self.name) else: self.assertIsNone(resp.name) if kwargs['lifetime']: self.assertIsInstance(resp.lifetime, int) else: self.assertIsNone(resp.lifetime) if kwargs['usage']: self.assertEqual(resp.usage, "both") else: self.assertIsNone(resp.usage) if kwargs['mechs']: self.assertIn(gb.MechType.kerberos, resp.mechs) else: self.assertIsNone(resp.mechs) @true_false_perms('name', 'init_lifetime', 'accept_lifetime', 'usage') def test_inquire_by_mech(self, str_name, kwargs): creds = gsscreds.Credentials(name=self.name) resp = creds.inquire_by_mech(mech=gb.MechType.kerberos, **kwargs) if kwargs['name']: self.assertEqual(resp.name, self.name) else: self.assertIsNone(resp.name) if kwargs['init_lifetime']: self.assertIsInstance(resp.init_lifetime, int) else: self.assertIsNone(resp.init_lifetime) if kwargs['accept_lifetime']: self.assertIsInstance(resp.accept_lifetime, int) else: self.assertIsNone(resp.accept_lifetime) if kwargs['usage']: self.assertEqual(resp.usage, "both") else: self.assertIsNone(resp.usage) def test_add(self): input_creds = gsscreds.Credentials(gb.Creds()) name = gssnames.Name(SERVICE_PRINCIPAL) new_creds = input_creds.add(name, gb.MechType.kerberos, usage='initiate') self.assertIsInstance(new_creds, gsscreds.Credentials) @ktu.gssapi_extension_test('cred_store', 'credentials store') def test_store_into_add_from(self): CCACHE = 'FILE:{tmpdir}/other_ccache'.format(tmpdir=self.realm.tmpdir) KT = '{tmpdir}/other_keytab'.format(tmpdir=self.realm.tmpdir) store = {'ccache': CCACHE, 'keytab': KT} princ_name = 'service/cs@' + self.realm.realm self.realm.addprinc(princ_name) self.realm.extract_keytab(princ_name, KT) self.realm.kinit(princ_name, None, ['-k', '-t', KT]) initial_creds = gsscreds.Credentials(name=None, usage='initiate') store_res = initial_creds.store(store, overwrite=True) self.assertIsNotNone(store_res.mechs) self.assertGreater(len(store_res.mechs), 0) self.assertEqual(store_res.usage, "initiate") name = gssnames.Name(princ_name) input_creds = gsscreds.Credentials(gb.Creds()) retrieved_creds = input_creds.add(name, gb.MechType.kerberos, store=store) self.assertIsInstance(retrieved_creds, gsscreds.Credentials) @ktu.gssapi_extension_test('cred_imp_exp', 'credentials import-export') def test_export(self): creds = gsscreds.Credentials(name=self.name) token = creds.export() self.assertIsInstance(token, bytes) @ktu.gssapi_extension_test('cred_imp_exp', 'credentials import-export') def test_import_by_init(self): creds = gsscreds.Credentials(name=self.name) token = creds.export() imported_creds = gsscreds.Credentials(token=token) self.assertEqual(imported_creds.lifetime, creds.lifetime) self.assertEqual(imported_creds.name, creds.name) @ktu.gssapi_extension_test('cred_imp_exp', 'credentials import-export') def test_pickle_unpickle(self): creds = gsscreds.Credentials(name=self.name) pickled_creds = pickle.dumps(creds) unpickled_creds = pickle.loads(pickled_creds) self.assertEqual(unpickled_creds.lifetime, creds.lifetime) self.assertEqual(unpickled_creds.name, creds.name) @exist_perms(lifetime=30, mechs=[gb.MechType.kerberos], usage='initiate') @ktu.gssapi_extension_test('s4u', 'S4U') def test_impersonate(self, str_name, kwargs): server_name = gssnames.Name(SERVICE_PRINCIPAL, gb.NameType.kerberos_principal) password = self.realm.password("user") self.realm.kinit(self.realm.user_princ, password=password, flags=["-f"]) client_ctx = gssctx.SecurityContext( name=server_name, flags=gb.RequirementFlag.delegate_to_peer) client_token = client_ctx.step() self.realm.kinit(SERVICE_PRINCIPAL.decode("utf-8"), flags=["-k"]) server_creds = gsscreds.Credentials(usage="both") server_ctx = gssctx.SecurityContext(creds=server_creds) server_ctx.step(client_token) self.assertTrue(server_ctx.complete) imp_creds = server_ctx.delegated_creds.impersonate(server_name, **kwargs) self.assertIsInstance(imp_creds, gsscreds.Credentials) @ktu.gssapi_extension_test('s4u', 'S4U') def test_add_with_impersonate(self): server_name = gssnames.Name(SERVICE_PRINCIPAL, gb.NameType.kerberos_principal) password = self.realm.password("user") self.realm.kinit(self.realm.user_princ, password=password, flags=["-f"]) client_ctx = gssctx.SecurityContext( name=server_name, flags=gb.RequirementFlag.delegate_to_peer) client_token = client_ctx.step() self.realm.kinit(SERVICE_PRINCIPAL.decode("utf-8"), flags=["-k"]) server_creds = gsscreds.Credentials(usage="both") server_ctx = gssctx.SecurityContext(creds=server_creds) server_ctx.step(client_token) self.assertTrue(server_ctx.complete) # use empty creds to test here input_creds = gsscreds.Credentials(gb.Creds()) new_creds = input_creds.add( server_name, gb.MechType.kerberos, impersonator=server_ctx.delegated_creds, usage='initiate') self.assertIsInstance(new_creds, gsscreds.Credentials) class MechsTestCase(_GSSAPIKerberosTestCase): def test_indicate_mechs(self): mechs = gssmechs.Mechanism.all_mechs() for mech in mechs: s = str(mech) self.assertGreater(len(s), 0) @ktu.gssapi_extension_test('rfc5801', 'RFC 5801: SASL Names') def test_sasl_properties(self): mechs = gssmechs.Mechanism.all_mechs() for mech in mechs: s = str(mech) self.assertGreater(len(s), 0) self.assertIsInstance(s, str) # Note that some mechanisms don't have SASL names or SASL # descriptions; in this case, GSSAPI returns empty strings. if mech.sasl_name: self.assertIsInstance(mech.sasl_name, str) if mech.description: self.assertIsInstance(mech.description, str) cmp_mech = gssmechs.Mechanism.from_sasl_name(mech.sasl_name) self.assertEqual(str(cmp_mech), str(mech)) @ktu.gssapi_extension_test('rfc5587', 'RFC 5587: Mech Inquiry') def test_mech_inquiry(self): mechs = list(gssmechs.Mechanism.all_mechs()) c = len(mechs) g_M_from_attrs = gssmechs.Mechanism.from_attrs for mech in mechs: attrs = mech.attrs known_attrs = mech.known_attrs for attr in attrs: from_desired = g_M_from_attrs(desired_attrs=[attr]) from_except = g_M_from_attrs(except_attrs=[attr]) from_desired = list(from_desired) from_except = list(from_except) self.assertEqual(len(from_desired) + len(from_except), c) self.assertIn(mech, from_desired) self.assertNotIn(mech, from_except) for attr in known_attrs: from_desired = g_M_from_attrs(desired_attrs=[attr]) from_except = g_M_from_attrs(except_attrs=[attr]) from_desired = list(from_desired) from_except = list(from_except) self.assertEqual(len(from_desired) + len(from_except), c) class NamesTestCase(_GSSAPIKerberosTestCase): def test_create_from_other(self): raw_name = gb.import_name(SERVICE_PRINCIPAL) high_level_name = gssnames.Name(raw_name) self.assertEqual(bytes(high_level_name), SERVICE_PRINCIPAL) def test_create_from_name_no_type(self): name = gssnames.Name(SERVICE_PRINCIPAL) self.assertIsNotNone(name) def test_create_from_name_and_type(self): name = gssnames.Name(SERVICE_PRINCIPAL, gb.NameType.kerberos_principal) self.assertIsNotNone(name) self.assertEqual(name.name_type, gb.NameType.kerberos_principal) def test_create_from_token(self): name1 = gssnames.Name(TARGET_SERVICE_NAME, gb.NameType.hostbased_service) exported_name = name1.canonicalize(gb.MechType.kerberos).export() name2 = gssnames.Name(token=exported_name) self.assertEqual(name2.name_type, gb.NameType.kerberos_principal) @ktu.gssapi_extension_test('rfc6680', 'RFC 6680') def test_display_as(self): name = gssnames.Name(TARGET_SERVICE_NAME, gb.NameType.hostbased_service) canonical_name = name.canonicalize(gb.MechType.kerberos) # NB(directxman12): krb5 doesn't implement display_name_ext, so just # check to make sure we return the right types and a reasonable value krb_name = canonical_name.display_as( gb.NameType.hostbased_service) princ_str = SERVICE_PRINCIPAL.decode('utf-8') + '@' self.assertEqual(str(canonical_name), princ_str) self.assertIsInstance(krb_name, str) self.assertEqual(krb_name, princ_str) @ktu.gssapi_extension_test('rfc6680', 'RFC 6680') def test_create_from_composite_token_no_attrs(self): name1 = gssnames.Name(TARGET_SERVICE_NAME, gb.NameType.hostbased_service) exported_name = name1.canonicalize( gb.MechType.kerberos).export(composite=True) name2 = gssnames.Name(token=exported_name, composite=True) self.assertIsNotNone(name2) @ktu.gssapi_extension_test('rfc6680', 'RFC 6680') @ktu.krb_plugin_test('authdata', 'greet_client') def test_create_from_composite_token_with_attrs(self): name1 = gssnames.Name(TARGET_SERVICE_NAME, gb.NameType.hostbased_service) canon_name = name1.canonicalize(gb.MechType.kerberos) canon_name.attributes['urn:greet:greeting'] = b'some val' exported_name = canon_name.export(composite=True) # TODO(directxman12): when you just import a token as composite, # appears as this name whose text is all garbled, since it contains # all of the attributes, etc, but doesn't properly have the attributes. # Once it's canonicalized, the attributes reappear. However, if you # just import it as normal export, the attributes appear directly. # It is thus unclear as to what is going on # name2_raw = gssnames.Name(token=exported_name, composite=True) # name2 = name2_raw.canonicalize(gb.MechType.kerberos) name2 = gssnames.Name(token=exported_name) self.assertIsNotNone(name2) ugg = name2.attributes["urn:greet:greeting"] self.assertEqual(ugg.values, set([b"some val"])) self.assertTrue(ugg.complete) self.assertFalse(ugg.authenticated) def test_to_str(self): name = gssnames.Name(SERVICE_PRINCIPAL, gb.NameType.kerberos_principal) name_str = str(name) if sys.version_info[0] == 2: target_val = SERVICE_PRINCIPAL else: target_val = SERVICE_PRINCIPAL.decode(gssutils._get_encoding()) self.assertEqual(name_str, target_val) def test_to_unicode(self): name = gssnames.Name(SERVICE_PRINCIPAL, gb.NameType.kerberos_principal) self.assertEqual(str(name), SERVICE_PRINCIPAL.decode(gssutils._get_encoding())) def test_to_bytes(self): name = gssnames.Name(SERVICE_PRINCIPAL, gb.NameType.kerberos_principal) # NB(directxman12): bytes only calles __bytes__ on Python 3+ self.assertEqual(name.__bytes__(), SERVICE_PRINCIPAL) def test_compare(self): name1 = gssnames.Name(SERVICE_PRINCIPAL) name2 = gssnames.Name(SERVICE_PRINCIPAL) name3 = gssnames.Name(TARGET_SERVICE_NAME, gb.NameType.hostbased_service) self.assertEqual(name1, name2) self.assertNotEqual(name1, name3) def test_canoncialize_and_export(self): name = gssnames.Name(SERVICE_PRINCIPAL, gb.NameType.kerberos_principal) canonical_name = name.canonicalize(gb.MechType.kerberos) exported_name = canonical_name.export() self.assertIsInstance(exported_name, bytes) def test_canonicalize(self): name = gssnames.Name(TARGET_SERVICE_NAME, gb.NameType.hostbased_service) canonicalized_name = name.canonicalize(gb.MechType.kerberos) self.assertIsInstance(canonicalized_name, gssnames.Name) self.assertEqual(bytes(canonicalized_name), SERVICE_PRINCIPAL + b"@") def test_copy(self): name1 = gssnames.Name(SERVICE_PRINCIPAL) name2 = copy.copy(name1) self.assertEqual(name1, name2) # NB(directxman12): we don't test display_name_ext because the krb5 mech # doesn't actually implement it @ktu.gssapi_extension_test('rfc6680', 'RFC 6680') def test_is_mech_name(self): name = gssnames.Name(TARGET_SERVICE_NAME, gb.NameType.hostbased_service) self.assertFalse(name.is_mech_name) canon_name = name.canonicalize(gb.MechType.kerberos) self.assertTrue(canon_name.is_mech_name) self.assertIsInstance(canon_name.mech, gb.OID) self.assertEqual(canon_name.mech, gb.MechType.kerberos) @ktu.gssapi_extension_test('rfc6680', 'RFC 6680') def test_export_name_composite_no_attrs(self): name = gssnames.Name(TARGET_SERVICE_NAME, gb.NameType.hostbased_service) canon_name = name.canonicalize(gb.MechType.kerberos) exported_name = canon_name.export(composite=True) self.assertIsInstance(exported_name, bytes) @ktu.gssapi_extension_test('rfc6680', 'RFC 6680') @ktu.krb_plugin_test('authdata', 'greet_client') def test_export_name_composite_with_attrs(self): name = gssnames.Name(TARGET_SERVICE_NAME, gb.NameType.hostbased_service) canon_name = name.canonicalize(gb.MechType.kerberos) canon_name.attributes['urn:greet:greeting'] = b'some val' exported_name = canon_name.export(composite=True) self.assertIsInstance(exported_name, bytes) @ktu.gssapi_extension_test('rfc6680', 'RFC 6680') @ktu.krb_plugin_test('authdata', 'greet_client') def test_basic_get_set_del_name_attribute_no_auth(self): name = gssnames.Name(TARGET_SERVICE_NAME, gb.NameType.hostbased_service) canon_name = name.canonicalize(gb.MechType.kerberos) canon_name.attributes['urn:greet:greeting'] = (b'some val', True) ugg = canon_name.attributes["urn:greet:greeting"] self.assertEqual(ugg.values, set([b"some val"])) self.assertTrue(ugg.complete) self.assertFalse(ugg.authenticated) del canon_name.attributes['urn:greet:greeting'] # NB(directxman12): for some reason, the greet:greeting handler plugin # doesn't properly delete itself -- it just clears the value. If we # try to get its value now, we segfault (due to an issue with # greet:greeting's delete). Instead, just set the value again. canon_name.attributes['urn:greet:greeting'] = b'some other val' class SecurityContextTestCase(_GSSAPIKerberosTestCase): def setUp(self): super(SecurityContextTestCase, self).setUp() gssctx.SecurityContext.__DEFER_STEP_ERRORS__ = False self.client_name = gssnames.Name(self.USER_PRINC) self.client_creds = gsscreds.Credentials(name=None, usage='initiate') self.target_name = gssnames.Name(TARGET_SERVICE_NAME, gb.NameType.hostbased_service) self.server_name = gssnames.Name(SERVICE_PRINCIPAL) self.server_creds = gsscreds.Credentials(name=self.server_name, usage='accept') def _create_client_ctx(self, **kwargs): return gssctx.SecurityContext(name=self.target_name, **kwargs) # NB(directxman12): we skip testing process_context_token, because there is # no concrete, non-deprecated was to obtain an "async" # token def test_create_from_other(self): raw_client_ctx, raw_server_ctx = self._create_completed_contexts() high_level_ctx = gssctx.SecurityContext(raw_client_ctx) self.assertEqual(high_level_ctx.target_name, self.target_name) @exist_perms(lifetime=30, flags=[], mech=gb.MechType.kerberos, channel_bindings=None) def test_create_new_init(self, str_name, kwargs): client_ctx = gssctx.SecurityContext(name=self.target_name, creds=self.client_creds, **kwargs) self.assertEqual(client_ctx.usage, "initiate") client_ctx = self._create_client_ctx(**kwargs) self.assertEqual(client_ctx.usage, "initiate") def test_create_new_accept(self): server_ctx = gssctx.SecurityContext(creds=self.server_creds) self.assertEqual(server_ctx.usage, "accept") def test_init_throws_error_on_invalid_args(self): self.assertRaises(TypeError, gssctx.SecurityContext, usage='accept', name=self.target_name) def _create_completed_contexts(self): client_ctx = self._create_client_ctx(lifetime=400) client_token = client_ctx.step() self.assertIsInstance(client_token, bytes) server_ctx = gssctx.SecurityContext(creds=self.server_creds) server_token = server_ctx.step(client_token) self.assertIsInstance(server_token, bytes) client_ctx.step(server_token) return (client_ctx, server_ctx) def test_complete_on_partially_completed(self): client_ctx = self._create_client_ctx() client_tok = client_ctx.step() self.assertFalse(client_ctx.complete) server_ctx = gssctx.SecurityContext(creds=self.server_creds) server_tok = server_ctx.step(client_tok) client_ctx.step(server_tok) self.assertTrue(client_ctx.complete) self.assertTrue(server_ctx.complete) def test_initiate_accept_steps(self): client_ctx, server_ctx = self._create_completed_contexts() # KDC may allow for clockskew by increasing acceptor context lifetime self.assertLessEqual(server_ctx.lifetime, 400 + 300) self.assertEqual(server_ctx.initiator_name, client_ctx.initiator_name) self.assertIsInstance(server_ctx.mech, gb.OID) self.assertIsInstance(server_ctx.actual_flags, gb.IntEnumFlagSet) self.assertFalse(server_ctx.locally_initiated) self.assertTrue(server_ctx.complete) self.assertLessEqual(client_ctx.lifetime, 400) self.assertEqual(client_ctx.target_name, self.target_name) self.assertIsInstance(client_ctx.mech, gb.OID) self.assertIsInstance(client_ctx.actual_flags, gb.IntEnumFlagSet) self.assertTrue(client_ctx.locally_initiated) self.assertTrue(client_ctx.complete) def test_channel_bindings(self): bdgs = gb.ChannelBindings(application_data=b'abcxyz', initiator_address_type=gb.AddressType.ip, initiator_address=b'127.0.0.1', acceptor_address_type=gb.AddressType.ip, acceptor_address=b'127.0.0.1') client_ctx = self._create_client_ctx(lifetime=400, channel_bindings=bdgs) client_token = client_ctx.step() self.assertIsInstance(client_token, bytes) server_ctx = gssctx.SecurityContext(creds=self.server_creds, channel_bindings=bdgs) server_token = server_ctx.step(client_token) self.assertIsInstance(server_token, bytes) client_ctx.step(server_token) def test_bad_channel_bindings_raises_error(self): bdgs = gb.ChannelBindings(application_data=b'abcxyz', initiator_address_type=gb.AddressType.ip, initiator_address=b'127.0.0.1', acceptor_address_type=gb.AddressType.ip, acceptor_address=b'127.0.0.1') client_ctx = self._create_client_ctx(lifetime=400, channel_bindings=bdgs) client_token = client_ctx.step() self.assertIsInstance(client_token, bytes) bdgs.acceptor_address = b'127.0.1.0' server_ctx = gssctx.SecurityContext(creds=self.server_creds, channel_bindings=bdgs) self.assertRaises(gb.BadChannelBindingsError, server_ctx.step, client_token) def test_export_create_from_token(self): client_ctx, server_ctx = self._create_completed_contexts() token = client_ctx.export() self.assertIsInstance(token, bytes) imported_ctx = gssctx.SecurityContext(token=token) self.assertEqual(imported_ctx.usage, "initiate") self.assertEqual(imported_ctx.target_name, self.target_name) def test_pickle_unpickle(self): client_ctx, server_ctx = self._create_completed_contexts() pickled_ctx = pickle.dumps(client_ctx) unpickled_ctx = pickle.loads(pickled_ctx) self.assertIsInstance(unpickled_ctx, gssctx.SecurityContext) self.assertEqual(unpickled_ctx.usage, "initiate") self.assertEqual(unpickled_ctx.target_name, self.target_name) def test_encrypt_decrypt(self): client_ctx, server_ctx = self._create_completed_contexts() encrypted_msg = client_ctx.encrypt(b'test message') self.assertIsInstance(encrypted_msg, bytes) decrypted_msg = server_ctx.decrypt(encrypted_msg) self.assertIsInstance(decrypted_msg, bytes) self.assertEqual(decrypted_msg, b"test message") def test_encrypt_decrypt_throws_error_on_no_encryption(self): client_ctx, server_ctx = self._create_completed_contexts() wrap_res = client_ctx.wrap(b'test message', False) self.assertIsInstance(wrap_res, gb.WrapResult) self.assertFalse(wrap_res.encrypted) self.assertIsInstance(wrap_res.message, bytes) self.assertRaises(excs.EncryptionNotUsed, server_ctx.decrypt, wrap_res.message) def test_wrap_unwrap(self): client_ctx, server_ctx = self._create_completed_contexts() wrap_res = client_ctx.wrap(b'test message', True) self.assertIsInstance(wrap_res, gb.WrapResult) self.assertTrue(wrap_res.encrypted) self.assertIsInstance(wrap_res.message, bytes) unwrap_res = server_ctx.unwrap(wrap_res.message) self.assertIsInstance(unwrap_res, gb.UnwrapResult) self.assertIsInstance(unwrap_res.message, bytes) self.assertEqual(unwrap_res.message, b"test message") self.assertTrue(unwrap_res.encrypted) def test_get_wrap_size_limit(self): client_ctx, server_ctx = self._create_completed_contexts() with_conf = client_ctx.get_wrap_size_limit(100) without_conf = client_ctx.get_wrap_size_limit(100, encrypted=True) self.assertIsInstance(with_conf, int) self.assertIsInstance(without_conf, int) self.assertLessEqual(with_conf, 100) self.assertLessEqual(without_conf, 100) def test_get_signature(self): client_ctx, server_ctx = self._create_completed_contexts() mic_token = client_ctx.get_signature(b'some message') self.assertIsInstance(mic_token, bytes) self.assertGreater(len(mic_token), 0) def test_verify_signature_raise(self): client_ctx, server_ctx = self._create_completed_contexts() mic_token = client_ctx.get_signature(b'some message') server_ctx.verify_signature(b'some message', mic_token) self.assertRaises(gb.GSSError, server_ctx.verify_signature, b"other message", mic_token) @ktu.krb_minversion_test("1.11", "returning tokens") def test_defer_step_error_on_method(self): gssctx.SecurityContext.__DEFER_STEP_ERRORS__ = True bdgs = gb.ChannelBindings(application_data=b'abcxyz') client_ctx = self._create_client_ctx(lifetime=400, channel_bindings=bdgs) client_token = client_ctx.step() self.assertIsInstance(client_token, bytes) bdgs.application_data = b'defuvw' server_ctx = gssctx.SecurityContext(creds=self.server_creds, channel_bindings=bdgs) self.assertIsInstance(server_ctx.step(client_token), bytes) self.assertRaises(gb.BadChannelBindingsError, server_ctx.encrypt, b"test") @ktu.krb_minversion_test("1.11", "returning tokens") def test_defer_step_error_on_complete_property_access(self): gssctx.SecurityContext.__DEFER_STEP_ERRORS__ = True bdgs = gb.ChannelBindings(application_data=b'abcxyz') client_ctx = self._create_client_ctx(lifetime=400, channel_bindings=bdgs) client_token = client_ctx.step() self.assertIsInstance(client_token, bytes) bdgs.application_data = b'defuvw' server_ctx = gssctx.SecurityContext(creds=self.server_creds, channel_bindings=bdgs) self.assertIsInstance(server_ctx.step(client_token), bytes) self.assertRaises(gb.BadChannelBindingsError, lambda: server_ctx.complete)