dataset_name
stringclasses
4 values
dataset_version
timestamp[s]
qid
stringlengths
1
5
queId
stringlengths
32
32
competition_source_list
sequence
difficulty
stringclasses
5 values
qtype
stringclasses
1 value
problem
stringlengths
6
1.51k
answer_option_list
list
knowledge_point_routes
sequence
answer_analysis
sequence
answer_value
stringclasses
7 values
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1013
02d40baa7e964de5adefae753b2dd973
[ "2015年湖北武汉世奥赛五年级竞赛模拟训练题(二)第2题" ]
2
single_choice
某货运公司运送一批货物,原计划安排$$18$$辆小卡车和$$12$$辆大卡车刚过运$$4$$次,已知$$2$$辆大卡车与$$5$$辆小卡车装的重量相同,现在只能派出$$8$$辆小卡车,需运次才能把货物运完.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$18$$ " } ], [ { "aoVal": "C", "content": "$$21$$ " } ], [ { "aoVal": "D", "content": "$$24$$ " } ] ]
[ "知识标签->拓展思维->应用题模块->列方程解应用题->列方程解应用题等量代换->等量代换传递型" ]
[ "$$12$$辆大卡车装的重量等于$$12\\div 2\\times 5=30$$辆小卡车,则原计划运$$1$$次的货物现在要运$$\\left( 18+30 \\right)\\div 8=6$$(次),所以一共需运$$6\\times 4=24$$次. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3215
6bbb925aea634ba68d6b497215983c58
[ "2004年五年级竞赛创新杯" ]
2
single_choice
在$$50$$束鲜花中,$$16$$束有马蹄莲,$$21$$束有白兰花,$$15$$束有月季花,有$$7$$束中既有月季花又有马蹄莲,有$$8$$束中既有马蹄莲又有白兰花,有$$10$$束中既有月季花又有白兰花,还有$$5$$束鲜花中,月季花、马蹄莲、白兰花都有。则这$$50$$束鲜花中,上述三种花都没有的花束有( )。
[ [ { "aoVal": "A", "content": "$$17$$束 " } ], [ { "aoVal": "B", "content": "$$18$$束 " } ], [ { "aoVal": "C", "content": "$$19$$束 " } ], [ { "aoVal": "D", "content": "$$20$$束 " } ] ]
[ "拓展思维->拓展思维->计数模块->容斥原理->三量容斥" ]
[ "由容斥原理:$$50-\\left( 16+15+21-7-8-10+5 \\right)=18$$(束),选$$B $$。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1485
5636e4ca92fa46778dda4efcdd1f91d9
[ "2012年第10届全国创新杯小学高年级六年级竞赛第2题4分" ]
2
single_choice
~有$$n$$个自然数(数可以重复)其中包括$$2012$$,不包括$$0$$,这$$n$$个自然数的平均数是$$572$$,如果去掉$$2012$$后,剩下($$n-1$$)个数的平均数是$$412$$,那么这$$n$$个数最大的数可以是(~ ~ ~ ).
[ [ { "aoVal": "A", "content": "$$2012$$ " } ], [ { "aoVal": "B", "content": "$$4024$$ " } ], [ { "aoVal": "C", "content": "$$3700$$ " } ], [ { "aoVal": "D", "content": "$$3800$$ " } ] ]
[ "拓展思维->思想->整体思想" ]
[ "根据题意可以得到:$$2012+412\\left( n-1 \\right)=572n$$,$$n=10$$,十个数总和为$$5720$$,要使最大的数尽量大,则其他的尽量小,所以最大数最大值为 $$5720-2012-1\\times 8=3700$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
270
c35c69c9d1d54610a3cbdba04a7b550b
[ "2014年全国学而思杯一年级竞赛第10题" ]
1
single_choice
$$5$$名分别来自美国、俄国、中国、日本国和韩国的运动员参加冬奥会滑雪决赛,比赛结束后: 美国运动员说:俄国运动员紧跟在我后面; 俄国运动员说:我才不是最后一名; 中国运动员说:我比日本国人和美国人都快; 韩国运动员说:有三个人比我先到达终点. 那么, 哪个国家运动员是第一名?
[ [ { "aoVal": "A", "content": "美国 " } ], [ { "aoVal": "B", "content": "俄国 " } ], [ { "aoVal": "C", "content": "中国 " } ], [ { "aoVal": "D", "content": "日本 " } ] ]
[ "知识标签->课内知识点->数学广角->推理->解决简单逻辑推理问题" ]
[ "中国比日本、美国快,美国比俄国快,所以日本、美国、俄国都不是第一,而韩国也不是第一个到的,所以中国是第一. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1056
2a290e7bb9ba4275a2b40c7488b86997
[ "2003年六年级竞赛创新杯", "2003年第1届创新杯六年级竞赛初赛第2题" ]
1
single_choice
有两根钢管,第一根用去$$\frac{3}{10}$$米,第二根用去$$\frac{3}{10}$$,比较这两根钢管剩下部分的长度,结果是( )
[ [ { "aoVal": "A", "content": "第一根钢管剩下的部分长些 " } ], [ { "aoVal": "B", "content": "第二根钢管剩下的部分长些 " } ], [ { "aoVal": "C", "content": "两根钢管剩下的部分同样长 " } ], [ { "aoVal": "D", "content": "以上三种结果都有可能 " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题" ]
[ "现在只知道第一根钢管用去$$\\frac{3}{10}$$米,第二根钢管用去$$\\frac{3}{10}$$,并不知道这两只钢管的长度,它们可能很长,也可能很短,这样就可以任意由我们来假设这两根钢管的长度。我们先来看看选项$$A$$是否成立,$$A$$要求第一根钢管剩下的部分长些,那我们可以假设第一根钢管的长为$$10$$米,第二根钢管的长为$$1$$米,显然这样就可以满足选项$$A$$。再来看看选项$$B$$,$$B$$要求第二根钢管剩下的部分长些,那我们可以假设第一根钢管的长为$$1$$米,第二根钢管剩下的部分同样长,我们假设第一根钢管的长为$$1$$米,那么用去$$\\frac{3}{10}$$米后还剩下$$\\frac{7}{10}$$米,若要第二根钢管剩下的长度也为$$\\frac{7}{10}$$米,只要第二根钢管原来的长为$$\\frac{7}{10}\\div \\left( 1-\\frac{3}{10} \\right)=1$$(米)即可,选项$$C$$也可以满足。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
156
a260b3b829ef40db83cdb03306a4afc0
[ "2017年第13届湖北武汉新希望杯小学高年级五年级竞赛决赛第6题" ]
1
single_choice
甲、乙、丙、丁四人进行象棋比赛,并决出了一、二、三、四名.已知:①乙比丙的名次靠前;②甲和丁经常一起打篮球;③第一名和第三名在这次比赛时才认识;④第二名不会骑自行车,也不喜欢打篮球;⑤甲和丙每天一起骑自行车上班. 获得第四名的是谁?
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ], [ { "aoVal": "D", "content": "丁 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->神推理", "Overseas Competition->知识点->组合模块->逻辑推理->条件型逻辑推理->表格法" ]
[ "由②④⑤推断出乙为第二名,由于甲丁一起打球,甲丙一起上班,再由③推断出丙丁一个是第一名,另一个为第三名,则第四名为甲. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1447
7138f7afdb6a41f2ae1cf364599d9d09
[ "2009年第7届创新杯四年级竞赛初赛第8题4分" ]
2
single_choice
黑板上写有一个数,男同学从黑板前走过时,把它乘$$3$$再减去$$14$$,擦去原数,换上答案;女同学从黑板前走过时,把它乘$$2$$再减去$$7$$,擦去原数,换上答案. 全班$$25$$名男生和$$15$$名女生都走过以后,老师把最后的数乘$$5$$,减去$$5$$,结果是$$30$$. 那么黑板上最初的数是.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "全体同学走后,黑板上的数是$$\\left(30+5\\right)\\div5=7$$;最后一名学生走过之前,黑板上的数是$$\\left(7+7\\right)\\div2=7$$,或$$\\left(7+14\\right)\\div3=7$$,总之,最后一名学生(即第$$40$$名学生)走过之前,黑板上的数还是$$7$$. 同理,第$$39$$名学生来到之时,黑板上的数还是$$7\\cdots \\cdots $$由此可知,第$$1$$名学生到来之时,黑板上的数还是$$7$$,即黑板上最初的数是$$7$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1840
81b1619d26fb4f8cbcc718a64acdad55
[ "2018年第22届广东世界少年奥林匹克数学竞赛三年级竞赛初赛第4题6分" ]
1
single_choice
(2018 YMO, Grade 3, Question\#4) According to this set of number, $$3$$,$$1$$,$$2$$,$$3$$,$$1$$,$$2$$,$$\cdots \cdots $$, what will be the $$53$$\textsuperscript{rd} one? . 有一列数:$$3$$,$$1$$,$$2$$,$$3$$,$$1$$,$$2$$,$$\cdots \cdots $$那么第$$53$$个数是.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "这列数按照``$$3$$,$$1$$,$$2$$''的周期排列,则,$$53\\div 3=17$$(组)$$\\cdots \\cdots 2$$(个), 所以第$$53$$个数位这个周期的第$$2$$个数,即为$$1$$. 故选择$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1236
5491c0b36fb84f4a8a9b2adbda948a8e
[ "2015年第13届全国创新杯小学高年级五年级竞赛复赛第3题" ]
1
single_choice
三部同样的抽水机同时抽水,抽干一池水需用$$15$$小时,五部这样的抽水机抽干这一池子水需用(~ ~ ~ )小时.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "一台功效$$\\frac{1}{45}$$,五台需要$$9$$小时. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
319
b5f6c07698d74220b313b32a8551d650
[ "2003年六年级竞赛创新杯", "2003年第1届创新杯六年级竞赛初赛第7题" ]
0
single_choice
一个长方体木块的长、宽、高分别是5厘米、4厘米、3厘米,如果用它锯成一个尽量大的正方体,那么体积比原来减少的百分数是( ).
[ [ { "aoVal": "A", "content": "40\\% " } ], [ { "aoVal": "B", "content": "45\\% " } ], [ { "aoVal": "C", "content": "55\\% " } ], [ { "aoVal": "D", "content": "60\\% " } ] ]
[ "拓展思维->拓展思维->几何模块->立体图形->长方体与正方体->长方体与正方体基本概念运用->正方体的体积" ]
[ "正方形的棱长最大为3厘米,正方形的体积最大为$$3\\times 3\\times 3=27$$(立方厘米),原来长方形体积为$$5\\times 4\\times 3=60$$(立方厘米),那么正方形的体积比原来的体积减少$$\\left( 60-27 \\right)\\div 60\\times 100 \\%=55 \\%$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
974
fa19e75a53a64413a347919c9a23fe77
[ "2017年第17届世奥赛六年级竞赛决赛第2题" ]
1
single_choice
通过下面算式考察个位上数字是$$5$$的数的平方: $${{15}^{2}}=225$$可写成$$100\times 1\times \left( 1+1 \right)+25$$ $${{25}^{2}}=625$$可写成$$100\times 2\times \left( 2+1 \right)+25$$ $${{35}^{2}}=1225$$可写成$$100\times 3\times \left( 3+1 \right)+25$$ $${{45}^{2}}=2025$$可写成$$100\times 4\times \left( 4+1 \right)+25$$ ······ 请你推测$${{\left( 10n+5 \right)}^{2}}$$可写成.
[ [ { "aoVal": "A", "content": "$$100n\\left( n+1 \\right)+25$$ " } ], [ { "aoVal": "B", "content": "$$100\\left( n+1 \\right)+25$$ " } ], [ { "aoVal": "C", "content": "$$100{{n}^{2}}+25$$ " } ], [ { "aoVal": "D", "content": "$$100{{n}^{2}}+100n+5$$ " } ] ]
[ "知识标签->学习能力->七大能力->逻辑分析" ]
[ "$${{\\left( 10n+5 \\right)}^{2}}=100n\\left( n+1 \\right)+25=100{{n}^{2}}+100n+25$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2632
a2c11c1bed4e493c934cfaa1f69e6835
[ "2017年第15届全国希望杯六年级竞赛" ]
2
single_choice
计算:$$\frac{{{5}^{2}}+1}{{{5}^{2}}-1}+\frac{{{7}^{2}}+1}{{{7}^{2}}-1}+\frac{{{9}^{2}}+1}{{{9}^{2}}-1}+...+\frac{9{{9}^{2}}+1}{9{{9}^{2}}-1}$$=~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$50$$ " } ], [ { "aoVal": "B", "content": "$$48\\frac{6}{25}$$ " } ], [ { "aoVal": "C", "content": "$$46\\frac{6}{25}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{6}{25}$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->裂项与通项归纳->分数裂项->分数裂差->两分数间接裂差" ]
[ "原式$$=\\frac{{{5}^{2}}-1+2}{{{5}^{2}}-1}+\\frac{{{7}^{2}}-1+2}{{{7}^{2}}-1}+\\frac{{{9}^{2}}-1+2}{{{9}^{2}}-1}+...+\\frac{{{99}^{2}}-1+2}{{{99}^{2}}-1}$$ $$=1+\\frac{2}{{{5}^{2}}-1}+1+\\frac{2}{{{7}^{2}}-1}+1+\\frac{2}{{{9}^{2}}-1}+...+1+\\frac{2}{{{99}^{2}}-1}$$ $$=48+\\frac{2}{4\\times 6}+\\frac{2}{6\\times 8}+\\frac{2}{8\\times 10}+...+\\frac{2}{98\\times 100}$$ $$=48+\\left( \\frac{1}{4}-\\frac{1}{6} \\right)+\\left( \\frac{1}{6}-\\frac{1}{8} \\right)+\\left( \\frac{1}{8}-\\frac{1}{10} \\right)+...+\\left( \\frac{1}{98}-\\frac{1}{100} \\right)$$ $$=48+\\frac{1}{4}-\\frac{1}{100}$$ $$=48\\frac{6}{25}$$ " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1443
4ce7f76537774ebcbf5952b2004fff68
[ "2018年第22届广东世界少年奥林匹克数学竞赛六年级竞赛决赛第3题5分" ]
1
single_choice
有含糖量为$$7 \%$$的糖水$$600$$克,要使其含糖量加大到$$10 \%$$,需要再加入克糖.
[ [ { "aoVal": "A", "content": "$$30$$ " } ], [ { "aoVal": "B", "content": "$$20$$ " } ], [ { "aoVal": "C", "content": "$$40$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "不变量为水,则水:$$600\\times (1-7 \\%)=558$$(克), 后总:$$558\\div (1-10 \\%)=620$$(克), 加糖:$$620-600=20$$(克). 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
980
0df34268b70a4544bbf791ccb41c00d2
[ "2019年第7届湖北长江杯六年级竞赛复赛B卷第10题3分" ]
1
single_choice
一件工作,甲单独做用的时间比乙单独做少$$\frac{1}{3}$$,甲和乙工作效率的比是.
[ [ { "aoVal": "A", "content": "$$4:3$$ " } ], [ { "aoVal": "B", "content": "$$3:4$$ " } ], [ { "aoVal": "C", "content": "$$3:2$$ " } ], [ { "aoVal": "D", "content": "$$2:3$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "我们把乙的时间看做单位``$$1$$'',则甲的工作时间就是$$1-\\frac{2}{3}$$,然后分别求出他们的工作效率,进一步求出答案. $$1\\div \\left( 1-\\frac{1}{3} \\right)\\div (1\\div 1)$$$$=\\frac{3}{2}\\div 1$$$$=3:2$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3066
b8c8520c17c74665b71065e9bd0ce0af
[ "2014年陕西西安小升初西工大附中入学真卷(六)第1题3分", "2017年河南郑州东风杯竞赛初赛" ]
1
single_choice
$$\frac{a}{b}$$($$a\textgreater2$$)是一个真分数,下面各分数中最大的一个是(~ ).
[ [ { "aoVal": "A", "content": "$$\\frac{a\\times 2}{b\\times 2}$$~~ " } ], [ { "aoVal": "B", "content": "$$\\frac{a-2}{b-2}$$~~~~~~~ " } ], [ { "aoVal": "C", "content": "$$\\frac{a\\div 2}{b\\div 2}$$~~~~~~~~~~~ " } ], [ { "aoVal": "D", "content": "$$\\frac{a+2}{b+2}$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->分数->分数基础->分数的性质" ]
[ "根据分数的基本性质可知,$$\\frac{a\\times 2}{b\\times 2}$$和$$\\frac{a\\div 2}{b\\div 2}$$与$$\\frac{a}{b}$$的大小相等.$$\\frac{a}{b}$$的分子和分母同时加$$2$$得到的分数比$$\\frac{a}{b}$$大.$$\\frac{a}{b}$$的分子和分母同时减$$2$$得到的分数比$$\\frac{a}{b}$$小.所以$$\\frac{a+2}{b+2}$$最大. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2289
c4909e6fe9624da8b3ad855554ce690c
[ "2017年IMAS小学高年级竞赛(第一轮)第16题4分" ]
1
single_choice
小华从早上$$9:00$$到公司上班,下午$$5:00$$下班.请问在此期间分针转过的度数比时针转过的度数多了多少度?
[ [ { "aoVal": "A", "content": "$$120$$ " } ], [ { "aoVal": "B", "content": "$$1200$$ " } ], [ { "aoVal": "C", "content": "$$1320$$ " } ], [ { "aoVal": "D", "content": "$$2640$$ " } ], [ { "aoVal": "E", "content": "$$2880$$ " } ] ]
[ "拓展思维->拓展思维->行程模块->时钟问题->时钟上的追及问题->已知时间求角度" ]
[ "小华上班时间为$$8$$小时, 此期间分针转了$$8$$圈, 即$$8\\times 360=2880$$度, 而时针每小时转$$30$$度, $$8$$小时共转了$$8\\times 30=240$$度, 分针转过的度数比时针转过的度数多了$$2880-240=2640$$度, 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1815
edaa60f19a744655870085ecf372dc3e
[ "2018年全国小学生数学学习能力测评六年级竞赛初赛第8题3分", "2018年四川成都锦江区四川师范大学附属第一实验中学小升初模拟8第3题3分", "2018年湖南长沙小升初数学入学试卷第4题4分" ]
1
single_choice
王师傅加工一批零件,$$\frac{1}{2}$$小时加工了这批零件的$$\frac{3}{8}$$,全部加工完还需要小时.(2018.SDYZ)
[ [ { "aoVal": "A", "content": "$$1\\frac{1}{3}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{3}{10}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{3}{4}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{5}{6}$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->工程问题->简单工程问题->基本工程问题" ]
[ "首先根据王师傅加工一批零件,$$\\frac{1}{2}$$小时加工了这批零件的$$\\frac{3}{8}$$,工作效率$$=$$工作量$$\\div $$工作时间,求出每小时加工这批零件的几分之几;求出剩下的工作量,然后根据工作时间$$=$$工作量$$\\div $$工作效率,求出全部加工完还需要多少小时即可. 解;$$\\frac{3}{8}\\div \\frac{1}{2}=\\frac{3}{4}$$ $$(1-\\frac{3}{8})\\div \\frac{3}{4}$$ $$=\\frac{5}{8}\\div \\frac{3}{4}$$ $$=\\frac{5}{6}$$(小时) 答:全部加工完还需要$$\\frac{5}{6}$$小时. 故选$$\\rm D$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3009
fc16173dbd8c47a392df6c54329c7dfe
[ "2019年亚洲国际数学奥林匹克公开赛(AIMO)四年级竞赛决赛第5题3分" ]
1
single_choice
在以下那一道除法中﹐除数不能整除被除数?(以英文字母作答) In which of the following divisions, the dividend is not divisible by the divisor?
[ [ { "aoVal": "A", "content": "$$45825\\div 33$$ " } ], [ { "aoVal": "B", "content": "$$29484\\div 36$$ " } ], [ { "aoVal": "C", "content": "$$41552\\div 56$$ " } ], [ { "aoVal": "D", "content": "$$39715\\div 65$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数乘除->整数除法运算->表外除法计算" ]
[ "$$\\text{B}$$答案为$$819$$,$$\\text{C}$$答案为$$742$$,$$\\text{D}$$答案为$$611$$,$$BCD$$都能被整除. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2102
e724a20e8f4145ae8906f41c1d3eb1ca
[ "2016年新希望杯六年级竞赛训练题(三)第5题" ]
2
single_choice
祖父年龄$$67$$岁,$$3$$个孙子的年龄分别是$$15$$岁,$$13$$岁,$$9$$岁.多少年后$$3$$个孙子的年龄之和等于祖父的年龄?~
[ [ { "aoVal": "A", "content": "$$10$$ " } ], [ { "aoVal": "B", "content": "$$15$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$12$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->年龄问题->年龄问题基本关系->年龄和" ]
[ "设$$x$$年后$$3$$个孙子的年龄之和等于祖父的年龄. $$67+x=15+13+9+3x$$,$$x=15$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
679
551c1e1c3958413caad7bd88af3ba0c7
[ "2015年湖北武汉世奥赛五年级竞赛模拟训练题(三)第1题" ]
2
single_choice
房间里有一盏灯亮着,突然停电了,第$$1$$个人进来后拉了一下开关,第$$2$$个人进来后拉了$$2$$下开关,第$$3$$个人进来后拉了$$3$$下开关$$\cdots \cdots $$,第$$2014$$个人进来后拉了$$2014$$下开关,来电后,这盏灯是着的.
[ [ { "aoVal": "A", "content": "开 " } ], [ { "aoVal": "B", "content": "关 " } ], [ { "aoVal": "C", "content": "无法确定 " } ] ]
[ "拓展思维->拓展思维->数论模块->奇数与偶数->奇数与偶数的加减规律" ]
[ "第$$2014$$个人进来后,一共拉了开关$$\\left( 1+2+3+\\ldots \\ldots +2014 \\right)$$下,这$$2014$$个加数中有$$2014\\div 2=1007$$个偶数,任意数量的偶数之和一定是偶数;有$$1007$$个奇数,奇数个奇数的和一定是奇数.因为偶数$$+$$奇数$$=$$奇数,而这盏灯开始是亮着的,则拉奇数下开关,灯一定是关着的. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1221
1e73db58a2d14c44adb4e6bbf2ebe9fb
[ "2017年河南郑州联合杯六年级竞赛初赛" ]
1
single_choice
把$$10$$克的盐放入$$100$$克的水中,盐占盐水的:(~ ).
[ [ { "aoVal": "A", "content": "$$\\frac{1}{10}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{11}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{1}{9}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{8}$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->求分率" ]
[ "盐水共$$10+100=110$$克,则盐占盐水的$$\\frac{10}{110}=\\frac{1}{11}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3476
fe245e05216e47bbb208bb4ee97a6ac5
[ "2019年第7届湖北长江杯六年级竞赛复赛B卷第3题3分" ]
1
single_choice
下列描述正确的有句. ($$1$$)$$9$$个连续偶数的平均数是$$90$$,这些数中最小的一个是$$2$$,最大的是$$18$$. ($$2$$)暗室里有红、绿、黄三种颜色的袜子若干只,为确保取出一双相同颜色的袜子,最少要取$$4$$只. ($$3$$)某班共有学生$$48$$人,其中$$27$$人会游泳,$$25$$人会骑自行车,有$$12$$人既不会游泳也不会骑自行车,那么这个班既会游泳又会骑自行车的有$$16$$人. ($$4$$)一个楼梯共有$$10$$级,如果每次能向上迈一级或两级,登上这$$10$$级楼梯,一共有$$89$$种不同的走法.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->思想->分类讨论思想" ]
[ "完成本题要根据每个题目的内容分别进行分析,才能确定正确的选项有几个. ($$1$$)相邻两个偶数相差$$2$$,由此可设这$$9$$个连续的偶数中的中间的那个为$$x$$,则这$$9$$个连续偶数的和为: $$x-2\\times 4+x-2\\times 3+\\cdots +x+x+2+\\cdots +x+2\\times 4$$,则其平均数为$$9x\\div 9=x$$,即$$90$$则最小的为$$90-2\\times 4=82$$,最大的为$$90+2\\times 4=98$$.所以,$$9$$个连续偶数的平均数是$$90$$,这些数中最小的一个是$$2$$,最大的是$$18$$是错误的; ($$2$$)暗室中共有$$3$$种不同颜色的袜子,最差情况是取出三只后,每种颜色各一只,此时只要再取出一只即能确保取出一双相同颜色的袜子,即最少取出$$3+1=4$$只;正确. ($$3$$)由题意可知,游泳或骑自行车会其中至少一项的有$$48-12=36$$人,这$$36$$人中,不会游泳的有$$36-27=9$$人,不会骑自行车的有$$36-25=11$$人,则班既会游泳又会骑自行车的有$$36-(9+11)=16$$人.正确; ($$4$$)如果有一级,则有一种走法:$$1$$;如有两级,则有$$2$$级走法即:$$1$$,$$1$$,如果有$$3$$级有$$3$$种:$$111$$,$$12$$,$$21$$;四级有$$5$$种:$$1111$$,$$22$$,$$121$$,$$211$$,$$112$$;$$\\cdots $$,由此可以发现,从第$$3$$个数开始,每一个数都等于它前面的$$2$$个数之和.共有$$10$$级,$$1$$,$$2$$,$$3$$,$$5$$,$$8$$,$$13$$,$$21$$,$$34$$,$$55$$,$$89$$.则到第十级共有$$89$$种不同走法.正确. 所以,($$1$$)($$3$$)($$4$$)的描述都是正确的,共$$3$$句. 故选$$\\text{C}$$ . " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1137
2abfbcbb42134f3888d252378c13bde9
[ "2006年第4届创新杯四年级竞赛初赛A卷第9题", "2006年四年级竞赛创新杯" ]
2
single_choice
甲、乙、丙、丁四人拿出同样多的钱,合伙订购同样规格的若干件货物,货物买来后,甲、乙、丙分别比丁多拿了3件,7件,14件,乙付给丁14元,那么,丙应付给丁( ).
[ [ { "aoVal": "A", "content": "28元 " } ], [ { "aoVal": "B", "content": "56元 " } ], [ { "aoVal": "C", "content": "70元 " } ], [ { "aoVal": "D", "content": "112元 " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->移多补少" ]
[ "出同样多的钱应拿同样多的货,多拿货就要多出钱,以丁为标准,甲、乙、丙比丁共多$$3+7+14=24$$件,这24件本应平均分配,即每人要拿$$24\\div 4=6$$件(每人所得件数本应是丁现有件数加6),而乙比丁实际多拿7件,也就是说乙比原计划多拿$$7-6=1$$件,乙要多拿出14元,则每件14元.丙比计划多拿$$14-6=8$$件,这样丙应再拿出8件的钱,即$$14\\times 8=112$$元.又因为丁比计划少拿6件,应取回$$6\\times 14=84$$元,但丁已经收了乙的14元,所以丙还应付给丁$$84-14=70$$元,丙另外的钱,3件共$$112-70=42$$(元)应给甲,故选C " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2604
b07881beeba842b9813e25f8a1f71a3f
[ "2017年河南郑州豫才杯四年级竞赛初赛第1题" ]
1
single_choice
聪聪是谁?他今年$$10$$周岁,是一名酷酷的小男生,就读于光明小学四年级($$1$$)班.他爱运动,也爱阅读,是个小机灵鬼,凡是总爱问个究竟.他今年几岁?对,$$10$$岁!如果换个说法呢?估一估,以下哪个选项最接近他的年龄.(~ )
[ [ { "aoVal": "A", "content": "$$100$$个月 " } ], [ { "aoVal": "B", "content": "$$700$$个星期 " } ], [ { "aoVal": "C", "content": "$$36500$$天~~~~~~~~~ " } ], [ { "aoVal": "D", "content": "$$87600$$小时 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$10$$岁相当于$$120$$个月,$$480$$个星期,$$3650$$天,$$87600$$小时. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2491
1e324e666ed7445691a5da4f4db4bc33
[ "2017年四川成都六年级竞赛“全能明星”选拔赛第1题2分", "2017年四川成都锦江区四川师范大学附属第一实验中学小升初模拟(五)第1题2分" ]
1
single_choice
计算:$$\frac{8}{9}\times \left[ \frac{3}{4}-\left( \frac{7}{16}-\frac{1}{4} \right) \right]$$的值为(~ ).
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$0.5$$ " } ], [ { "aoVal": "D", "content": "$$1.5$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$\\frac{8}{9}\\times \\left[ \\frac{3}{4}-\\left( \\frac{7}{16}-\\frac{1}{4} \\right) \\right]=0.5$$. ", "<p>$$\\frac{8}{9}\\times \\left[ \\frac{3}{4}-\\left( \\frac{7}{16}-\\frac{1}{4} \\right) \\right]$$</p>\n<p>$$=\\frac{8}{9}\\times \\left( \\frac{3}{4}-\\frac{7}{16}+\\frac{1}{4} \\right)$$</p>\n<p>$$=\\frac{8}{9}\\times \\frac{9}{16}$$</p>\n<p>$$=\\frac{1}{2}$$</p>\n<p>$$=0.5$$</p>\n\n" ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1213
3002ae4e87374f8ba69f0a2d0393e587
[ "2006年第4届创新杯四年级竞赛复赛第1题" ]
1
single_choice
张师傅加工一批零件,原计划每天加工$$80$$个,$$5$$天加工完,实际张师傅只用$$4$$天就加工完了,实际每天比原计划多加工零件( )个.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$16$$ " } ], [ { "aoVal": "C", "content": "$$20$$ " } ], [ { "aoVal": "D", "content": "$$24$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->归一归总问题->单归一问题" ]
[ "实际每天加工的个数为$$80\\times 5\\div 4=100$$(个);每天比计划增加的个数是$$100-80=20$$ (个),故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2717
889fe50bc8384e9f984992e76ba041ca
[ "2008年六年级竞赛创新杯", "2008年第6届创新杯六年级竞赛初赛B卷第1题5分" ]
1
single_choice
要使$$\frac{x}{15}$$是最简真分数,$$\frac{x}{7}$$是假分数,则符合条件的所有自然数$$x$$的和是( ).
[ [ { "aoVal": "A", "content": "53 " } ], [ { "aoVal": "B", "content": "40 " } ], [ { "aoVal": "C", "content": "39 " } ], [ { "aoVal": "D", "content": "15 " } ] ]
[ "拓展思维->拓展思维->计算模块->分数->分数基础->分数的分类" ]
[ "$$x$$可取7,8,11,13,14.其和为53. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1960
a1acb6bd069545d9ae353b3d1c72259f
[ "2019年第23届广东世界少年奥林匹克数学竞赛四年级竞赛初赛第5题5分" ]
1
single_choice
一串数:$$2$$,$$3$$,$$5$$,$$8$$,$$13$$,$$21$$,$$34$$,$$55$$,$$89$$$$\cdots \cdots $$,其中第一个数$$2$$,第二个数$$3$$,从第三个数起,每个数是前两个数的和.那么在这串数中,第$$2019$$个数被$$3$$除后所得余数是.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$0$$ " } ], [ { "aoVal": "D", "content": "不确定 " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "将这一串数写成除以$$3$$的余数,则为:$$2$$,$$0$$,$$2$$,$$2$$,$$1$$,$$0$$,$$1$$,$$1$$,$$2$$,$$0$$,$$2\\cdots \\cdots $$ 所以重复的为:``$$2$$,$$0$$,$$2$$,$$2$$,$$1$$,$$0$$,$$1$$,$$1$$'', 故周期为$$8$$.$$2019\\div 8=252$$(组)$$\\cdots \\cdots 3$$(个),则答案为$$2$$,故选择$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2712
7ae6bcd5aa934170a931f6e3a9a70015
[ "2008年第6届创新杯四年级竞赛初赛A卷第1题5分" ]
1
single_choice
计算:$$20082008\times 2007-20072007\times 2008=$$.
[ [ { "aoVal": "A", "content": "$$2007$$ " } ], [ { "aoVal": "B", "content": "$$2008$$ " } ], [ { "aoVal": "C", "content": "$$0$$ " } ], [ { "aoVal": "D", "content": "$$20072008$$ " } ] ]
[ "拓展思维->思想->转化与化归的思想" ]
[ "$$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde2008\\times 20072007-2007\\times 20082008$$ $$=2008\\times 2007\\times 10001-2007\\times 2008\\times 10001$$ $$=0$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1831
a9432232674e4cd7808e9ed2f34046fe
[ "2019年第7届湖北长江杯五年级竞赛复赛B卷第6题3分" ]
1
single_choice
英语试卷总分是$$120$$分,淘气四次考试的平均成绩是$$105$$分.为了使平均成绩尽快达到$$110$$分,他至少需要再考次.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "根据题意分析可知,总分数$$\\div $$考的次数$$=$$平均分数;可设他至少要考$$x$$次才能尽快达到$$110$$分以上,那么 淘气的总分数为:$$120x+105\\times 4$$,淘气考试的次数为:$$x+4$$,淘气平均分应为$$\\geqslant $$$$100$$,根据公式列方程解答即可. 设淘气至少要考$$x$$次才能尽快达到$$110$$分以上, $$\\left( 120x+105\\times 4 \\right)$$$$\\div \\left( x+4 \\right)\\geqslant 110$$, $$120x+420\\geqslant 110x+440$$, $$120x-110x\\geqslant 440-420$$, $$10x\\geqslant 20$$, $$x\\geqslant 2$$. 即再考$$2$$次满分平均分可达到$$110$$分以上. 故选答案$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1656
7b6ea61b8fbb464d8390a40df28cef42
[ "2020年新希望杯四年级竞赛初赛第26题", "2020年希望杯四年级竞赛模拟第26题" ]
1
single_choice
【$$2020$$四年级卷第$$26$$题】小和尚、高和尚和胖和尚三人每天轮流到山下打水上山.小和尚第一次打水是星期一,那么,他第$$50$$次打水是.
[ [ { "aoVal": "A", "content": "星期一 " } ], [ { "aoVal": "B", "content": "星期二 " } ], [ { "aoVal": "C", "content": "星期三 " } ], [ { "aoVal": "D", "content": "星期四 " } ], [ { "aoVal": "E", "content": "星期五 " } ], [ { "aoVal": "F", "content": "星期六 " } ], [ { "aoVal": "G", "content": "星期日 " } ] ]
[ "拓展思维->拓展思维->应用题模块->周期问题->时间中的周期问题->日期中的周期" ]
[ "根据题目可知,打水分别按照小和尚,高和尚和胖和尚的顺序进行的,也就是说以每$$3$$天为一个周期进行循环的,所以小和尚第$$50$$次打水应该经过了$$49$$个周期多$$1$$天. 也就是$$3\\times 49+1=148$$(天),小和尚第一次打水是星期一, 那么经过$$148$$天应该是$$148\\div 7=21$$(周)$$\\cdots \\cdots 1$$(天),所以小和尚第$$50$$次打水仍然是星期一. 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1012
09eb4bfdc810468c98624920e0a3051b
[ "其它改编自2015年全国希望杯六年级竞赛初赛第11题" ]
1
single_choice
六年级甲班的女生人数是男生人数的$$\frac{10}{9}$$倍,新年联欢会中,$$\frac{2}{5}$$的女生和$$\frac{1}{3}$$的男生参加了演出,则参加演出的人数占全班人数的~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$\\frac{2}{5}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{3}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{7}{19}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{10}{19}$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->求分率" ]
[ "设女生人数为$$10$$份,男生人数为$$9$$份,则参加演出的人数为$$\\frac{2}{5}\\times 10+\\frac{1}{3}\\times 9=7$$,占全班人数的$$\\frac{7}{10+9}=\\frac{7}{19}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
660
34c984ebc5704bf186ca7db25cd5d736
[ "2004年第2届创新杯六年级竞赛复赛第3题" ]
2
single_choice
一个两位数,它的十位数字加上个位的$$7$$倍,还是等于这个两位数,这样的两位数有.
[ [ { "aoVal": "A", "content": "一个 " } ], [ { "aoVal": "B", "content": "两个 " } ], [ { "aoVal": "C", "content": "三个 " } ], [ { "aoVal": "D", "content": "四个 " } ] ]
[ "拓展思维->拓展思维->数论模块->位值原理与进制->位值原理运用->计算中的位值原理" ]
[ "设这个两位数为$$\\overline{ab}$$,依题意有$$\\overline{ab}=a+7b$$,即$$10a+b=a+7b$$,整理得$$a=\\frac{2}{3}b$$,又$$a$$,$$b$$均为一位数且$$a$$不为$$0$$,那么$$b$$只能为$$3$$,$$6$$,$$9$$对应的$$a$$分别为$$2$$,$$4$$,$$6$$,所以这样的两位数有$$23$$,$$46$$,$$69$$三个,故选$$\\text{C}$$. ", "<p>设十位数是$$x$$,个位数字是$$y$$,</p>\n<p>根据题意,得$$x+7y=10x+y$$,即$$3x=2y$$,</p>\n<p>而$$1\\leqslant x\\leqslant 9$$,$$0\\leqslant y\\leqslant 9$$,且$$x$$,$$y$$都是整数,</p>\n<p>根据条件同时满足的$$x$$,$$y$$的值有:$$2$$,$$3$$;$$4$$,$$6$$;$$6$$,$$9$$共$$3$$组.</p>\n<p>即这样的两位数是$$23$$,$$46$$,$$69$$共$$3$$个.</p>\n<p>故选:$$\\text{C}$$.</p>" ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2339
019d3a64e84c40a5b85007a9d4f9920f
[ "2021年第8届鹏程杯四年级竞赛初赛第5题4分", "2021年第8届鹏程杯五年级竞赛初赛第5题4分" ]
1
single_choice
计算:$$1-2+3-4+5-6+\cdots -\cdots +2019-2020+2021=$$.
[ [ { "aoVal": "A", "content": "$$1010$$ " } ], [ { "aoVal": "B", "content": "$$1011$$ " } ], [ { "aoVal": "C", "content": "$$2020$$ " } ], [ { "aoVal": "D", "content": "$$2021$$ " } ], [ { "aoVal": "E", "content": "以上都不对 " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数加减->整数加减巧算之分组法" ]
[ "分组运算,$$2$$和$$3$$一组,$$4$$和$$5$$一组,$$\\cdots \\cdots 2020$$和$$2021$$一组,每组结果都是$$1$$,一共有$$2020\\div2=1010$$组,所以和是$$1010$$,前面还剩下一个$$1$$,$$1+1010=1011$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2265
84e0b31d7df4444eaea6859f787a46c7
[ "2012年IMAS小学高年级竞赛第一轮检测试题第7题3分" ]
2
single_choice
甲、乙、丙、丁各有一只手表. ($$1$$)甲的手表快了$$10$$分钟,但他以为慢了$$5$$分钟; ($$2$$)乙的手表慢了$$5$$分钟,但他以为快了$$10$$分钟; ($$3$$)丙的手表快了$$5$$分钟,但他以为快了$$3$$分钟; ($$4$$)丁的手表慢了$$5$$分钟,但他以为慢了$$10$$分钟. 用他们的手表,每个人都认为自己恰好能准时到达学校,请问谁会迟到?
[ [ { "aoVal": "A", "content": "甲 " } ], [ { "aoVal": "B", "content": "乙 " } ], [ { "aoVal": "C", "content": "丙 " } ], [ { "aoVal": "D", "content": "丁 " } ], [ { "aoVal": "E", "content": "都不会 " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "甲早到$$5-(-10)=15$$分钟,丙早到$$5-3=2$$分钟,丁早到$$(-5)-(-10)=5$$分钟,乙迟到$$10-(-5)=15$$分钟. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
438
fbd573f06db94e74a2169bc3453a086d
[ "2017年北京学而思杯四年级竞赛年度教学质量测评第20题3分" ]
2
single_choice
有一条长度为$$8$$的绳子,将它对折$$3$$次,梓琪同学用剪刀从正中间剪开,得到一些短绳子.那么长度为$$1$$的绳子有段.
[ [ { "aoVal": "A", "content": "$$5$$ " } ], [ { "aoVal": "B", "content": "$$6$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$8$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->操作与策略->归纳递推" ]
[ "略 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
227
ff46b2a8155d4d77b82eec56d0b63f13
[ "2018年全国小学生数学学习能力测评四年级竞赛初赛第10题3分" ]
2
single_choice
一个整数,与$$1$$、$$2$$、$$3$$这三个数通过加减乘除运算(可以加括号)组成算式,其结果等于$$24$$,那么这个数就称为``可用数''.在$$4$$、$$5$$、$$6$$、$$7$$、$$8$$、$$9$$、$$10$$、$$11$$、$$12$$这$$9$$个数中,``可用数''有个.
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$9$$ " } ] ]
[ "拓展思维->能力->逻辑分析->代数逻辑推理" ]
[ "$$4\\times\\left(1+2+3\\right)=24$$,$$5\\times\\left(2+3\\right)-1=24$$, $$6\\times 2\\times\\left(3-1\\right)=24$$,$$7\\times 3+2+1=24$$, $$8\\times 3\\div\\left(2-1\\right)=24$$,$$9\\times 3-2-1=24$$, $$10\\times 2+3+1=24$$,$$11\\times 2+3-1=24$$, $$12\\times\\left(3+1\\right)\\div 2=24$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
532
fe1592fec28044afa06ca5e8888eec82
[ "2018年第17届春蕾杯一年级竞赛初赛第14题6分" ]
1
single_choice
四耳穴学校也举办了一场足球比赛,皮皮、蛋君和大强所在的三个队伍获得不同的奖牌.根据下面三句话,猜一猜他们分别获得什么奖牌? 皮皮:``我分到的不是金牌.'' 蛋君:``我们队不是第四名.'' 大强:``他们俩的队伍一支获得金牌,一支获得银牌.'' 请问,蛋君所在的队伍获得什么奖牌?
[ [ { "aoVal": "A", "content": "金 " } ], [ { "aoVal": "B", "content": "银 " } ], [ { "aoVal": "C", "content": "铜 " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "推理题目 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
722
514d88517036428f86e757ebfb156b53
[ "2021年新希望杯六年级竞赛初赛第28题5分" ]
2
single_choice
迷糊老师今天上课讲解高斯记号,告诉我们$$\left[ a \right]$$表示不大于$$a$$的最大整数,例如$$\left[ 1.1 \right]=1$$,$$\left[ 3 \right]=3$$,然后计算:$$\left[ \frac{1}{7} \right]+\left[ \frac{3}{7} \right]+\left[ \frac{5}{7} \right]+\cdots +\left[ \frac{2019}{7} \right]+\left[ \frac{2021}{7} \right]=$$~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$145504$$ " } ], [ { "aoVal": "B", "content": "$$135184$$ " } ], [ { "aoVal": "C", "content": "$$145164$$ " } ], [ { "aoVal": "D", "content": "$$135524$$ " } ], [ { "aoVal": "E", "content": "$$145584$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->高斯记号->高斯记号的复杂应用" ]
[ "列出一些分数找规律: ($$1$$)$$\\left[ \\frac{1}{7} \\right]$$、$$\\left[ \\frac{3}{7} \\right]$$、$$\\left[ \\frac{5}{7} \\right]$$都为$$0$$; ($$2$$)$$\\left[ \\frac{7}{7} \\right]$$、$$\\left[ \\frac{9}{7} \\right]$$、$$\\left[ \\frac{11}{7} \\right]$$、$$\\left[ \\frac{13}{7} \\right]$$都为$$1$$; ($$3$$)$$\\left[ \\frac{15}{7} \\right]$$、$$\\left[ \\frac{17}{7} \\right]$$、$$\\left[ \\frac{19}{7} \\right]$$都为$$2$$; ($$4$$)$$\\left[ \\frac{21}{7} \\right]$$、$$\\left[ \\frac{23}{7} \\right]$$、$$\\left[ \\frac{25}{7} \\right]$$、$$\\left[ \\frac{27}{7} \\right]$$都为$$3$$; ($$5$$)$$\\left[ \\frac{29}{7} \\right]$$、$$\\left[ \\frac{31}{7} \\right]$$、$$\\left[ \\frac{33}{7} \\right]$$都为$$4$$; $$\\cdots $$; ($$287$$)$$\\left[ \\frac{2009}{7} \\right]$$、$$\\left[ \\frac{2011}{7} \\right]$$、$$\\left[ \\frac{2013}{7} \\right]$$、$$\\left[ \\frac{2015}{7} \\right]$$都为$$287$$; ($$288$$)$$\\left[ \\frac{2017}{7} \\right]$$、$$\\left[ \\frac{2019}{7} \\right]$$、$$\\left[ \\frac{2021}{7} \\right]$$都为$$288$$, 所以题目式$$=4\\times \\left( 1+3+5+\\cdots +287 \\right)+3\\times \\left( 2+4+\\cdots +288 \\right)$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde=4\\times \\left( 2+4+6+\\cdots +288-144 \\right)+3\\times \\left( 2+4+\\cdots +288 \\right)$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde=7\\times \\left( 2+4+6+\\cdots +288 \\right)-4\\times 144$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde=7\\times 2\\times \\left( 1+2+\\cdots +144 \\right)-576$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde=7\\times 2\\times \\frac{\\left( 1+144 \\right)\\times 144}{2}-576$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde=145584$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2925
8e3fef665580483d8a733b96956002bc
[ "2019年第7届湖北长江杯五年级竞赛复赛A卷第1题3分" ]
1
single_choice
已知$$f\left( m,n \right)=a{{m}^{3}}+b{{n}^{3}}$$,若$$f\left( 1,2 \right)=a\times {{1}^{3}}+b\times {{2}^{3}}=4$$,那么$$\textasciitilde f\left( 2,4 \right)$$的值应为~ ~~ ~ ~ ~ .
[ [ { "aoVal": "A", "content": "$$30$$ " } ], [ { "aoVal": "B", "content": "$$36$$ " } ], [ { "aoVal": "C", "content": "$$34$$ " } ], [ { "aoVal": "D", "content": "$$32$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "已知$$f\\left( m,n \\right)=a{{m}^{3}}+b{{n}^{3}}$$,$$f\\left( 1,2 \\right)=a\\times {{1}^{3}}+b\\times {{2}^{3}}=a+8b=4$$, 那么$$f\\left( 2,4 \\right)=a\\times {{2}^{3}}+b\\times {{4}^{3}}=8a+64b=8\\times \\left( a+8b \\right)=8\\times 4=32$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
754
3c45ef6542654659ac04603c61e0b261
[ "2022年小学高年级六年级竞赛(小学奥数5-2-5整除与分类计数综合专项训练)第6题", "2022年小学高年级六年级竞赛(小学奥数5-2-5整除与分类计数综合专项训练)" ]
3
single_choice
在$$1$$、$$2$$、$$3$$、$$4$$\ldots\ldots$$2007$$这$$2007$$个数中有~\uline{~~~~~~~~~~}~个自然数$$a$$能使$$2008+a$$能被$$2007-a$$整除。
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数" ]
[ "【详解】 要使得$$2008+a$$能被$$2007-a$$整除,我们可以将条件等价的转化为只要让$$\\frac{2008+a}{2007-a}$$是一个整数即可。下面是一个比较难的技巧,我们知道若$$a$$可以使得$$\\frac{2008+a}{2007-a}$$是一个整数,那么$$a$$也同样可以使得$$\\frac{2008+a}{2007-a}+1=\\frac{2008+a+2007-a}{2007-a}=\\frac{4015}{2007-a}$$是一个整数,这样只要$$2007-a$$是$$4015$$的约数即可,将$$4015$$分解可知其共有$$8$$个因数,其中$$4015$$是最大的一个,但是显然没有可以让$$2007-a$$等于$$4015$$的$$a$$的值,其余的$$7$$个均可以有对应的$$a$$的值,所以满足条件的$$a$$的取值共有$$7$$个。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3194
66dd97fb66d04c5f964aa337539ca1fc
[ "2010年第8届创新杯六年级竞赛初赛第3题4分", "2018年四川成都武侯区成都西川中学小升初面试真卷(四)第8题3分" ]
2
single_choice
一个骰子六个面上写着$$1$$、$$2$$、$$3$$、$$4$$、$$5$$、$$6$$,将它投掷两次,则面朝上的两个数字之和为$$3$$的倍数的可能性是.
[ [ { "aoVal": "A", "content": "$$\\frac{1}{3}$$ " } ], [ { "aoVal": "B", "content": "$$\\frac{1}{4}$$ " } ], [ { "aoVal": "C", "content": "$$\\frac{2}{5}$$ " } ], [ { "aoVal": "D", "content": "$$\\frac{1}{6}$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "数字和是$$3$$的倍数有:$$(1,2),(1,5),(2,4),(3,6),(3,3),(4,5)$$,则$$\\frac{6\\times 2}{6\\times 6}=\\frac{1}{3}$$. 故选$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1931
9ccec85772724f31bca78aac0e84ae7d
[ "2019年第23届广东世界少年奥林匹克数学竞赛三年级竞赛决赛第1题5分" ]
0
single_choice
$$2019$$年元旦是星期二,$$2019$$年的国庆节是星期.
[ [ { "aoVal": "A", "content": "一 " } ], [ { "aoVal": "B", "content": "二 " } ], [ { "aoVal": "C", "content": "三 " } ], [ { "aoVal": "D", "content": "四 " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "从$$2019$$年的$$1$$月$$1$$日至$$2019$$年的$$10$$月$$1$$日共:$$31+28+31+30+31+30+31+31+30+1=274$$(天), 根据``二、三、四、五、六、日、一''的周期规律:$$274\\div 7=39$$(周)$$\\cdots \\cdots 1$$(天). 所以$$10$$月$$1$$日是这个周期的第$$1$$天,即星期二. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2770
52ccb806e2444b7d902d7881174c3f8d
[ "2020年新希望杯三年级竞赛初赛(团战)第35题" ]
1
single_choice
下面哪个算式的计算结果是偶数?
[ [ { "aoVal": "A", "content": "$$\\left( 784-455 \\right)\\times 39+44\\times 11$$ " } ], [ { "aoVal": "B", "content": "$$11\\times 1+22\\times 2+33\\times 3+44\\times 4+55\\times 5+66\\times 6+77\\times 7+88\\times 8+99\\times 9$$ " } ], [ { "aoVal": "C", "content": "$$11\\times 2+22\\times 2+33\\times 3+44\\times 4+55\\times 5+66\\times 6+77\\times 7+88\\times 8+99\\times 9$$ " } ], [ { "aoVal": "D", "content": "$$123\\times 456+789$$ " } ], [ { "aoVal": "E", "content": "$$2\\times 4\\times 6\\times \\cdots \\times 2018\\times 2020-1\\times 3\\times 5\\times \\cdots \\times 2017\\times 2019$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数提取公因数->整数乘法巧算之提取公因数(普通型)" ]
[ "暂无 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
306
a81219b29ece4bd48574356eacaa5029
[ "2011年全国华杯赛竞赛初赛第4题" ]
2
single_choice
老师问$$5$$名学生:``昨天你们有几个人复习数学了?'' 张:``没有人.''李:``一个人.''王:``二个人.''赵:``三个人.''刘:``四个人.'' 老师知道,他们昨天下午有人复习,也有人没复习,复习了的人说的都是真话,没复习的人说的都是假话.那么,昨天这$$5$$个人中复习数学的有(~ ~ ~ ~)个人.
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "知识标签->拓展思维->组合模块->逻辑推理->假设型逻辑推理->真假话->找矛盾" ]
[ "任何两人说的话都不能同时为真,所以最多有一个人说的是真话,如果有一个人复习了,那么李说的是真话,符合题意;如果没有人复习了,那么张说的是真话,矛盾. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1763
dfa90a1671214df38a72a5ab88f633e8
[ "2016年新希望杯六年级竞赛训练题(一)第6题" ]
2
single_choice
三位采购员定期去某市场采购,小王每$$8$$天去一次,大刘每$$5$$天去一次,老李每$$6$$天去一次,三人星期二第一次在这里碰面,下次碰面将在星期.
[ [ { "aoVal": "A", "content": "二 " } ], [ { "aoVal": "B", "content": "三 " } ], [ { "aoVal": "C", "content": "四 " } ], [ { "aoVal": "D", "content": "五~ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$8$$、$$5$$、$$6$$的最小公倍数是$$120$$,这三人相会的周期是$$120$$天,$$120\\div 7=17$$(周)$$\\cdots\\cdots1$$(天),下次碰面将在星期三. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1747
b1c8dadc7c524f5dbf346cb915000cc9
[ "2016年创新杯六年级竞赛训练题(二)第6题" ]
2
single_choice
哈利波特制作加强型魔法药剂``生死水''(这是一种效力很强的安眠药,由水仙根粉末和艾草浸液配成,``生死水''的浓度是指水仙根粉末占整个药剂的百分比).他首先在普通型``生死水''中加入一定量的艾草浸液,使``生死水''的浓度变为$$9 \%$$;再加入同等量的水仙根粉末,这时``生死水''的浓度变为$$23 \%$$.那么普通型``生死水''的浓度为.
[ [ { "aoVal": "A", "content": "$$10 \\%$$ " } ], [ { "aoVal": "B", "content": "$$11 \\%$$ " } ], [ { "aoVal": "C", "content": "$$12 \\%$$ " } ], [ { "aoVal": "D", "content": "$$15 \\%$$ " } ] ]
[ "拓展思维->思想->方程思想" ]
[ "设普通型``生死水''的浓度为$$x \\%$$,初始重量为$$100$$,连续两次加入的艾草浸液和水仙根粉末重量都是$$a$$,那么$$\\left { \\begin{matrix} \\dfrac{x}{100+a}=9 \\% \\dfrac{x+a}{100+2a}=23 \\% \\end{matrix}\\Rightarrow \\left { \\begin{matrix} 100x-9a=900 100x+54a=2300 \\end{matrix}\\Rightarrow x=11 \\right. \\right.$$,故普通型``生死水''的浓度为$$11 \\%$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2768
ff8080814694a4fc014694fcff0801a6
[ "2012年全国华杯赛小学高年级竞赛初赛第1题", "2017年全国小升初八中入学备考课程" ]
1
single_choice
计算$$\left[ \left( 0.8+\frac{1}{5} \right)\times 24+6.6 \right]\div \frac{9}{14}-7.6=$$(~ ~ ~ ~~).
[ [ { "aoVal": "A", "content": "$$30$$ " } ], [ { "aoVal": "B", "content": "$$40$$ " } ], [ { "aoVal": "C", "content": "$$50$$ " } ], [ { "aoVal": "D", "content": "$$60$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->分数->分数运算->分小四则混合运算" ]
[ "$$\\left[ \\left( 0.8+\\frac{1}{5} \\right)\\times 24+6.6 \\right]\\div \\frac{9}{14}-7.6$$ $$=\\left[ (0.8+0.2)\\times 24+6.6 \\right]\\div \\frac{9}{14}-7.6$$ $$=\\left[ 1\\times 24+6.6 \\right]\\div \\frac{9}{14}-7.6$$ $$=30.6\\div \\frac{9}{14}-7.6$$ $$=30.6\\times \\frac{14}{9}-7.6$$ $$=47.6-7.6$$ $$=40$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2146
7461c3e158b247d7aedafc04f8ae3c0d
[ "2014年华杯赛六年级竞赛初赛" ]
2
single_choice
某学校组织一次远足活动,计划$$10$$点$$10$$分从甲地出发,$$13$$点$$10$$分到达乙地,但出发晚了$$5$$分钟,却早到达了$$4$$分钟。甲乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是( )
[ [ { "aoVal": "A", "content": "$$11$$点$$40$$分 " } ], [ { "aoVal": "B", "content": "$$11$$点$$50$$分 " } ], [ { "aoVal": "C", "content": "$$12$$点 " } ], [ { "aoVal": "D", "content": "$$12$$点$$10$$分 " } ] ]
[ "拓展思维->拓展思维->行程模块->直线型行程问题->路程速度时间->单人简单行程问题" ]
[ "根据题意,实际走比计划走全程省了$$5+4=9$$(分钟)。将全程平均分成$$9$$等份,则在每一等份中实际走比计划走省$$1$$分钟。所以当走完$$5$$等份时,到达的地点时间实际和计划的时间相同,此时是丙地即在全程的$$\\frac{5}{9}$$处。计划走全程用$$3$$小时即$$180$$分钟,则走到丙地用$$180\\times \\frac{5}{9}=100$$(分钟)。$$10$$点$$10$$分出发走$$100$$分钟是$$11$$点$$50$$分。 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2441
219bb6f5aead4ba3933e8ec598386b28
[ "2008年五年级竞赛创新杯", "2008年第6届创新杯五年级竞赛初赛A卷第9题5分" ]
2
single_choice
快慢两列火车相向而行,快车长50米,慢车长80米,快车速度是慢车的2倍,如果坐在慢车上的人见快车驶过窗口的时间是5秒,那么坐在快车上的人见慢车驶过窗口的时间是( )秒.
[ [ { "aoVal": "A", "content": "6 " } ], [ { "aoVal": "B", "content": "7 " } ], [ { "aoVal": "C", "content": "8 " } ], [ { "aoVal": "D", "content": "10 " } ] ]
[ "拓展思维->拓展思维->计算模块->比和比例->比例->正比例与反比例" ]
[ "记快车、慢车的速度为$${{v}_{\\text{快}}}$$米/秒、$${{v}_{\\text{慢}}}$$米/秒,且$${{v}_{\\text{快}}}={{v}_{\\text{慢}}}$$,快、慢两列火车相向而行,则相对速度为$${{v}_{\\text{快}}}+{{v}_{\\text{慢}}}=3{{v}_{\\text{慢}}}$$(米/秒).设坐在快火车上的人见慢车驶过的时间是$$x$$秒.则$$\\begin{cases}\\frac{50}{3{{v}_{\\text{慢}}}}=5 \\frac{80}{3{{v}_{\\text{慢}}}}=x \\end{cases}$$ 即$$\\begin{cases}80=x\\times 3{{v}_{\\text{慢}}}\\left( 1 \\right) 50=5\\times {{v}_{\\text{慢}}}\\left( 2 \\right) \\end{cases}$$$$\\left( 2 \\right)\\div \\left( 1 \\right)$$ 得$$\\frac{50}{80}=\\frac{5}{x}$$.解得$$x=8$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1158
2aea0cb99cf2476d97b40a86bc4c1036
[ "2020年希望杯二年级竞赛模拟第15题" ]
0
single_choice
鸭妈妈带着小鸭们在池塘里游玩,黄小鸭发现:有$$2$$只小鸭在它的前面,$$3$$只小鸭在它的后面.池塘里共有几只小鸭?
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ], [ { "aoVal": "E", "content": "$$8$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "根据题意分析可知,用黄小鸭前面的数量加上后面的数量再加上自己所以一共有: $$2+3+1=6$$(只)小鸭, 故答案为:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2561
42c1ba38c4ba476f88f3cc5c618d31ae
[ "2017年河南郑州豫才杯竞赛第10题", "2017年河南郑州小升初豫才杯第二场第10题" ]
3
single_choice
古希腊数学家把$$1$$,$$3$$,$$6$$,$$10$$,$$15$$,$$21$$,$$\cdots \cdots $$称为三角形数,它有一定的规律性,则第$$99$$个三角形数和第$$97$$个三角形数的差为 .
[ [ { "aoVal": "A", "content": "$$99$$ " } ], [ { "aoVal": "B", "content": "$$197$$ " } ], [ { "aoVal": "C", "content": "$$97$$ " } ], [ { "aoVal": "D", "content": "$$196$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "分析可知,三角形数的规律为第$$n$$个数比第$$n-1$$个数大$$n$$($$n$$大于$$1$$),则第$$99$$个三角形数比第$$98$$个三角形数大$$99$$,第$$98$$个三角形数比第$$97$$个三角形数大$$98$$,所以所求的差为$$99+98=197$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
55
0b6eb76b77e9451ea2f3bca0c95c4383
[ "2014年迎春杯三年级竞赛复赛" ]
2
single_choice
甲、乙、丙、丁和戊参加$$100$$米比赛,比赛结束后丁说:``我比乙跑得快。''丙说:``戊在我前面冲过终点线。''甲说:``我的名次排在丁的前面,丙的后面。''请根据他们的话排出名次( )
[ [ { "aoVal": "A", "content": "戊$$\\textgreater$$丙$$\\textgreater$$丁$$\\textgreater$$甲$$\\textgreater$$乙 " } ], [ { "aoVal": "B", "content": "甲$$\\textgreater$$乙$$\\textgreater$$丙$$\\textgreater$$丁$$\\textgreater$$戊 " } ], [ { "aoVal": "C", "content": "乙$$\\textgreater$$丁$$\\textgreater$$甲$$\\textgreater$$丙$$\\textgreater$$戊 " } ], [ { "aoVal": "D", "content": "戊$$\\textgreater$$丙$$\\textgreater$$甲$$\\textgreater$$丁$$\\textgreater$$乙 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->神推理" ]
[ "解:根据分析,由丁说的可得``丁$$\\textgreater$$乙'',根据丙说的可得``戊$$\\textgreater$$丙'', 根据甲说的可得``丙$$\\textgreater$$甲$$\\textgreater$$丁'',综合可得``戊$$\\textgreater$$丙$$\\textgreater$$甲$$\\textgreater$$丁$$\\textgreater$$乙''。 故选:D。 " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3193
15e7c56860744089b21f7bd13d4fd783
[ "2019年第24届YMO二年级竞赛决赛第4题3分" ]
1
single_choice
把$$15$$个玻璃球分成数量不同的$$2$$堆,共有种不同的分法.(每堆至少分$$1$$个)
[ [ { "aoVal": "A", "content": "$$4$$ " } ], [ { "aoVal": "B", "content": "$$5$$ " } ], [ { "aoVal": "C", "content": "$$6$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->整数分拆->整数拆分应用->加法拆数(应用)" ]
[ "根据题意可得: $$15=1+2+3+9$$;$$15=1+2+4+8$$; $$15=1+2+5+7$$;$$15=1+3+4+7$$; $$15=1+3+5+6$$;$$15=2+3+4+6$$; 一共有$$6$$种. 答:共有$$6$$种不同的分法. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
553
09982d2d1a6f437bbfc45ba748715bcf
[ "2015年第13届全国创新杯五年级竞赛复赛第7题" ]
3
single_choice
给出一列数:$$23+m$$,$$23+2m$$,$$23+3m$$,$$\cdot \cdot \cdot $$,$$23+2023m$$,这$$2023$$个数的和除以$$14$$的余数是(其中$$m$$为正整数).
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ] ]
[ "拓展思维->能力->逻辑分析->代数逻辑推理" ]
[ "$$23\\times 2023+(1+2+\\cdot \\cdot \\cdot +2023)m$$除以$$14$$的余数, $$23\\div 14$$余$$9$$, $$23\\div 14$$余$$7$$, $$1+2+\\cdot \\cdot \\cdot +2023=2023\\times 1012$$刚好是$$14$$的倍数, 那么只用看$$23\\times 2023$$除以$$14$$的余数是$$7$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3201
2b8323d7b40d4678bf8af1bad0b7d233
[ "2014年IMAS小学高年级竞赛第二轮检测试题第2题4分" ]
1
single_choice
小明将$$27$$个苹果分给若干位小朋友,这些小朋友得到的苹果数是一些连续的正整数,请问 这些小朋友最多有多少位?
[ [ { "aoVal": "A", "content": "$$2$$ " } ], [ { "aoVal": "B", "content": "$$3$$ " } ], [ { "aoVal": "C", "content": "$$4$$ " } ], [ { "aoVal": "D", "content": "$$5$$ " } ], [ { "aoVal": "E", "content": "$$6$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "因为$$2+3+4+5+6+7$$ $$=5+9+13$$ $$=14+13$$ $$=27$$(个) 所以最多有$$6$$位小朋友. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2482
15d058581e4e4de0b6e3386af14ea11a
[ "2017年华杯赛小学高年级竞赛(深圳营一)第4题10分" ]
3
single_choice
对于整数$$n\geqslant 3$$,用$$\varphi \left( n \right)$$表示所有小于$$n$$的素数的乘积,求满足条件$$\varphi \left( n \right)=22n-32$$的所有正整数$$n$$,$$n$$为.
[ [ { "aoVal": "A", "content": "$$n\\textgreater11$$ " } ], [ { "aoVal": "B", "content": "$$n\\textless{}11$$ " } ], [ { "aoVal": "C", "content": "$$n=11$$ " } ], [ { "aoVal": "D", "content": "$$n$$有多个值 " } ] ]
[ "拓展思维->思想->分类讨论思想" ]
[ "若$$n\\textgreater11$$,则$$11$$整除$$\\varphi \\left( n \\right)$$,但$$11$$不能整除$$22n-32$$. 因此,$$n\\textgreater11$$不符合要求.故,$$n\\leqslant 11$$. 若$$7\\textless{}n\\leqslant 11$$,则$$\\varphi \\left( n \\right)=2\\times 3\\times 5\\times 7=210$$, 由$$210=22n-32$$, 得$$n=11$$. 若$$5\\textless{}6\\leqslant 7$$,则$$\\varphi \\left( n \\right)=2\\times 3\\times 5=30$$, 由$$30=22n-32$$,得正整数$$n$$不存在. 若$$3\\textless{}n\\leqslant 5$$,则$$\\varphi \\left( n \\right)=2\\times 3=6$$, 由$$6=22n-32$$,得正整数$$n$$不存在. 若$$n=3$$,则$$\\varphi \\left( n \\right)=2$$,由$$2=22n-32$$, 得正整数$$n$$不存在. ∴满足条件的正整数$$n$$只有$$1$$个,$$n=11$$. 解法二:由$$\\varphi \\left( n \\right)=22n-32$$,得$$\\varphi \\left( n \\right)-1024=22\\left( n-48 \\right)$$. 由于$$\\varphi \\left( n \\right)$$是偶数,但不是$$4$$的倍数,因此,$$n-48$$是奇数. 若$$n-48\\geqslant 3$$,则$$n-48$$含有奇数的素数因子$$p$$, 即$$p$$为奇素数,且$$p$$整除$$n-48$$. 由$$n-48\\textless{}n$$知,$$p$$整除$$\\varphi \\left( n \\right)$$.由此$$p$$整除$$1024$$矛盾. 故,$$n-48\\textless{}3$$,即$$n\\leqslant 49$$,且$$n$$为奇数. ∵$$n\\leqslant 49$$时,$$22n-32\\leqslant 22\\times 49-32=1046$$, ∴$$\\varphi \\left( n \\right)\\leqslant 1046$$. 又$$2\\times 3\\times 5\\times 7=210$$,$$2\\times 3\\times 5\\times 7\\times 11=210\\times 11\\textgreater1046$$. ∴$$n\\leqslant 11$$,即$$n=3,$$5$$,$$7$$,$$9$$,11$$. 将$$n=3,$$5$$,$$7$$,$$9$$,11$$分别代入$$\\varphi \\left( n \\right)=22n-32$$验证, $$n=3$$时,$$\\varphi \\left( 3 \\right)=2$$,$$22n-32=34$$,不符合要求. $$n=$$5时,$$\\varphi \\left( 5 \\right)=2\\times 3=6$$,$$22n-32=78$$,不符合要求. $$n=7$$时,$$\\varphi \\left( 7 \\right)=2\\times 3\\times 5=30$$,$$22n-32=122$$,不符合要求. $$n=9$$时,$$\\varphi \\left( 9 \\right)=2\\times 3\\times 5\\times 7=210$$,$$22n-32=166$$,不符合要求. $$n=11$$时,$$\\varphi \\left( 11 \\right)=2\\times 3\\times 5\\times 7=210$$,$$22n-32=210$$,符合要求. ∴满足条件的正整数$$n$$只有$$1$$个,$$n=11$$. 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1231
8b136ca998cc41a196d8eda98cad7fb9
[ "2016年第21届全国华杯赛小学中年级四年级竞赛初赛B卷", "2019年四川成都锦江区四川师范大学附属第一实验中学小升初(八)第5题3分" ]
1
single_choice
库里是美国NBA勇士队当家球星, 在过去的$$10$$场比赛中已经得了$$333$$分的高分, 他在第$$11$$场得( )分就能使前$$11$$场的平均得分达到$$34$$分.
[ [ { "aoVal": "A", "content": "$$35$$ " } ], [ { "aoVal": "B", "content": "$$40$$ " } ], [ { "aoVal": "C", "content": "$$41$$ " } ], [ { "aoVal": "D", "content": "$$47$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "由前$$11$$场的总分减去前$$10$$场的总分即为第$$11$$场的得分:$$34\\times 11-333=374-333=41$$分. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2999
d7527b0ef227431983da56358e036b82
[ "2017年全国美国数学大联盟杯小学中年级三年级竞赛初赛第39题" ]
2
single_choice
$$9+99+999+9999+\cdots +9999999999$$(最后一项有$$10$$位数字)的和的十位数是多少?
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "十位数是$$0$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3441
bce64defa2f04a00932de1baa7960bf0
[ "2017年河南郑州小升初豫才杯第二场第13题", "2017年河南郑州豫才杯竞赛第13题" ]
1
single_choice
一次数学小测试只有两道题,结果全班有$$10$$人全对,第一题有$$25$$人做对,第二题有$$18$$人做错,那么两题都做错的有(~ )人.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "第一题做对的$$25$$人中,有$$10$$人全对,则有$$25-10=15$$人是只做对第一题,也是做错第二题的;已知第二题总共有$$18$$人做错,那么多的$$3$$人就是两题都错的.故选$$C$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3481
fe7acf7d1cd547e4a229caf51baf04be
[ "2016年创新杯六年级竞赛训练题(二)第5题" ]
1
single_choice
三个大于$$1000$$的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这$$3$$个数之积的末尾$$3$$位数字有(~ )种可能数值.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$7$$ " } ] ]
[ "拓展思维->拓展思维->计数模块->枚举法综合->枚举法->有序枚举" ]
[ "满足这样的尾数有($$0$$,$$0$$,$$0$$),($$0$$,$$5$$,$$5$$),故末三位可能为$$000$$,$$250$$,$$500$$,$$750$$共$$4$$种. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1349
3e8b9289189742c7ae2331d494a0df99
[ "2017年河南郑州联合杯竞赛第2题4分" ]
1
single_choice
青蛙从井底向井口跳,井深$$15$$米,青蛙每次向上跳$$6$$米,又会滑下来$$3$$米,这样青蛙需要跳次才可以出井.
[ [ { "aoVal": "A", "content": "$$3$$ " } ], [ { "aoVal": "B", "content": "$$4$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->思想->逐步调整思想" ]
[ "第一次跳时,向上跳$$6$$米,又下滑$$3$$米,此时距离井底$$3$$米,第二次跳完距离井底$$6$$米,第三次跳完距离井底$$9$$米,第四次先向上跳$$6$$米,此时青蛙跳出了井. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1988
ca6f5d00158140059ce44eedbed58799
[ "2017年全国迎春杯六年级竞赛初赛第3题" ]
2
single_choice
侠客岛的人,原来有$$\frac{2}{3}$$是卧底,后来卧底中有$$20 \% $$的人被驱离出岛,而不是卧底的人有$$\frac{1}{5}$$转变成了卧底.如果侠客岛上现在还有$$728$$人,那么现在侠客岛上有~\uline{~~~~~~~~~~}~人是卧底(没有其他人入岛).
[ [ { "aoVal": "A", "content": "$$320$$ " } ], [ { "aoVal": "B", "content": "$$410$$ " } ], [ { "aoVal": "C", "content": "$$504$$ " } ], [ { "aoVal": "D", "content": "$$610$$ " } ], [ { "aoVal": "E", "content": "$$728$$ " } ] ]
[ "海外竞赛体系->知识点->应用题模块->分百应用题", "拓展思维->拓展思维->应用题模块->分百应用题->转化单位1->统一单位1" ]
[ "分数应用题,既考查了量率对应的思想,也考查了单位$$1$$变化问题的处理,非常全面. 由于卧底的$$20 \\% $$被驱离出岛,相当于原来的$$\\frac{2}{3}\\times 20 \\% =\\frac{2}{15}$$被驱离,那么$$728$$人相当于原来人数的$$1-\\frac{2}{15}=\\frac{13}{15}$$,则原来人数为$$728\\div \\frac{13}{15}=840$$人,那么现在还剩下的卧底有$$840\\times \\frac{2}{3}\\times \\left( 1-20 \\% ~\\right)+840\\times \\left( 1-\\frac{2}{3} \\right)\\times \\frac{1}{5}=504$$人. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
745
4d7568924daa4f409f0de1114044a6a0
[ "2017年第13届湖北武汉新希望杯五年级竞赛决赛第1题" ]
0
single_choice
(人教版)下列说法正确的是.
[ [ { "aoVal": "A", "content": "互质的两个数没有公因数 " } ], [ { "aoVal": "B", "content": "$$12$$和$$18$$的最小公倍数是$$72$$ " } ], [ { "aoVal": "C", "content": "$$24$$和$$30$$的最大公因数是$$6$$ " } ], [ { "aoVal": "D", "content": "两个质数的和一定是偶数 " } ] ]
[ "知识标签->数学思想->转化与化归的思想" ]
[ "$$\\text{A}$$选项:互质的两个数公因数为$$1$$,$$\\text{B}$$选项:$$12$$和$$18$$的最小公倍数是$$36$$,$$\\text{D}$$选项:$$2+3=5$$为奇数. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2078
d48887ed07834122bc7f02518c1e19a5
[ "2017年河南郑州豫才杯小学高年级五年级竞赛初赛第15题" ]
2
single_choice
游览景区期间,爸爸将车放在停车场,收费标准为:不超过$$1$$小时收费$$3$$元,每多停半小时加收$$1.5$$元.爸爸最终一共交了$$13.5$$元的停车费,他们的车在停车场最多停了(~ )小时.
[ [ { "aoVal": "A", "content": "$$4$$小时 ~~~ " } ], [ { "aoVal": "B", "content": "$$4.5$$小时~~ " } ], [ { "aoVal": "C", "content": "$$5$$小时 " } ], [ { "aoVal": "D", "content": "$$6$$小时 " } ] ]
[ "知识标签->拓展思维->应用题模块->经济问题->分段计价问题" ]
[ "设最多在停车场停了$$x$$小时,$$3+\\left( x-1 \\right)\\times 2\\times 1.5=13.5$$,解得$$x=4.5$$,所以他们的车在停车场最多停$$4.5$$小时. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
13
2541c84fa7484b3e8c8d27c91d3d183b
[ "2020年广东广州羊排赛四年级竞赛第9题4分" ]
2
single_choice
六支队伍进行单循环赛,每两队都要赛一场.如果赛平,每队各得$$1$$分,否则胜队得$$2$$分,负队得$$0$$分.那么,打完所有比赛后,六支队伍的总得分是分.
[ [ { "aoVal": "A", "content": "$$20$$ " } ], [ { "aoVal": "B", "content": "$$50$$ " } ], [ { "aoVal": "C", "content": "$$40$$ " } ], [ { "aoVal": "D", "content": "$$30$$ " } ] ]
[ "拓展思维->能力->逻辑分析->代数逻辑推理" ]
[ "在一场比赛中,如果一胜一负, 则胜得$$2$$分,负得$$0$$分, 总分为$$2+0=2$$(分), 如果赛平,则总分为$$1+1=2$$(分), 即在一场比赛中,无论结果如何,比赛总分是不变的,都是$$2$$分, $$6$$支队伍进行单循环赛,共有比赛:$$5+4+3+2+1=15$$(场), 所以六支队伍的总得分是:$$15\\times 2=30$$(分), 故选:$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1215
39112d81c8bc4bc9a686de85e3e0d728
[ "2016年河南郑州联合杯小学高年级六年级竞赛复赛第14题2分", "2018年四川成都锦江区四川师范大学附属第一实验中学小升初模拟12第8题3分", "2014年四川成都小升初七中嘉祥外国语学校第30题", "小学高年级六年级上学期其它北师大版53天天练" ]
1
single_choice
一个玻璃瓶内原有盐水,盐的重量是水的$$\frac{1}{11}$$,加入$$15$$克盐后,盐的重量占盐水总量的$$\frac{1}{9}$$,瓶内原有盐水(~ )克.
[ [ { "aoVal": "A", "content": "$$480$$ " } ], [ { "aoVal": "B", "content": "$$300$$~ " } ], [ { "aoVal": "C", "content": "$$360$$~ " } ], [ { "aoVal": "D", "content": "$$440$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->浓度问题->浓度基本题型->已知溶液浓度求溶质" ]
[ "浓度问题;盐的重量占盐水重量的$$\\frac{1}{9}$$,则盐占水的$$\\frac{1}{8}$$, $$15\\div \\left( \\frac{1}{8}-\\frac{1}{11} \\right)$$ $$=15\\div\\frac{3}{88}$$ $$=440$$. 故选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2296
b73790d29ea74beaa474c19e672686d9
[ "2016年创新杯五年级竞赛训练题(一)第8题" ]
3
single_choice
一条船往返于甲乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶.已知船在静水中的速度为$$8$$千米/小时,平时逆水航行所用时间是顺水航行所用的时间的$$2$$倍.某天恰逢暴雨,水流速度是原来的两倍,这条船往返共用了$$9$$小时.问:甲、乙两地相距千米.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$20$$ " } ], [ { "aoVal": "C", "content": "$$25$$ " } ], [ { "aoVal": "D", "content": "$$30$$ " } ] ]
[ "拓展思维->能力->实践应用" ]
[ "平时逆水航行所用时间是顺水航行所用时间的$$2$$倍,所以顺水航行速度是逆水航行的$$2$$倍,即$${{V}_{水}}+8=2\\times \\left( 8-{{V}_{水}} \\right)$$,解得:$${{V}_{}}=\\frac{8}{3}$$,所以水速为$$\\frac{8}{3}$$千米/小时,变为原来的$$2$$倍后变为$$\\frac{16}{3}$$千米/小时.设甲、乙两地相距$$S$$千米,则:$$\\frac{S}{\\frac{16}{3}+8}+\\frac{S}{8-\\frac{16}{3}}=9$$ 解得:$$S=20$$,所以甲、乙两地相距$$20$$千米. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
834
5cadd11f9f7a4859914151ee792491a5
[ "2006年第4届创新杯五年级竞赛初赛A卷第2题", "2006年五年级竞赛创新杯" ]
1
single_choice
一个电子钟,每9分钟亮一次灯,每到整点响一次铃,中午12点时,电子钟恰好又亮灯又响铃,问下次既亮灯又响铃是( ).
[ [ { "aoVal": "A", "content": "2点 " } ], [ { "aoVal": "B", "content": "3点 " } ], [ { "aoVal": "C", "content": "4点 " } ], [ { "aoVal": "D", "content": "5点 " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数->公倍数与最小公倍数->两数的最小公倍数" ]
[ "整点的分钟数$$60n$$应为9的倍数,即$$n$$最小为3,所以12点后最早为3点时既亮灯又响铃. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2329
004ebef5f5ed4a3abe0867742d37c88c
[ "2014年全港小学数学挑战赛四年级竞赛初赛A卷第13题5分" ]
1
single_choice
(2014 AIMO, Grade 4, Question\#13) The sum of $$5$$ consecutive odd numbers is $$145$$, which is the largest one among these numbers? $$5$$个连续奇数的和是$$145$$,求当中最大的数. .
[ [ { "aoVal": "A", "content": "$$31$$ " } ], [ { "aoVal": "B", "content": "$$33$$ " } ], [ { "aoVal": "C", "content": "$$35$$ " } ], [ { "aoVal": "D", "content": "$$37$$ " } ] ]
[ "拓展思维->思想->逆向思想" ]
[ "因为这$$5$$个奇数是连续的,所以每相邻两个奇数之间相差$$2$$,用$$5$$个连续奇数的和除以$$5$$,可得到最中间的奇数,最大的数与最中间的奇数相差$$4$$,所以用最中间的奇数加上$$4$$即可得到当中最大的奇数,故列式为:$$145\\div 5+4=29+4=33$$,即最大的奇数是$$33$$.故答案为:$$33$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
512
ef5e066f20f9419fa9fec355c9ed0f82
[ "2016年全国学而思杯一年级竞赛样卷第7题" ]
0
single_choice
张、黄、李分别是三位小朋友的姓.根据下面三句话,请你猜一猜,三位小朋友各姓什么? 已知: $$\left( 1 \right)$$甲不姓张; $$\left( 2 \right)$$姓黄的不是丙; $$\left( 3 \right)$$甲和乙正在听姓李的小朋友唱歌.
[ [ { "aoVal": "A", "content": "甲姓张,乙姓黄,丙姓李. " } ], [ { "aoVal": "B", "content": "甲姓黄,乙姓李,丙姓张. " } ], [ { "aoVal": "C", "content": "甲姓黄,乙姓张,丙姓李. " } ], [ { "aoVal": "D", "content": "甲姓李,乙姓张,丙姓黄. " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->表格法" ]
[ "甲姓黄,乙姓张,丙姓李. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2915
7d0e160cf4b948c38a9c23f3aa4e358f
[ "其它改编自2012年全国希望杯六年级竞赛初赛第3题" ]
1
single_choice
在小数$$3.1415926$$的两个数字上方加$$2$$个循环点,得到循环小数,这样的循环小数中,最小的是~\uline{~~~~~~~~~~}~.
[ [ { "aoVal": "A", "content": "$$3.\\dot{1}41592\\dot{6}$$ " } ], [ { "aoVal": "B", "content": "$$3.1\\dot{4}1592\\dot{6}$$ " } ], [ { "aoVal": "C", "content": "$$3.14\\dot{1}592\\dot{6}$$ " } ], [ { "aoVal": "D", "content": "$$3.14159\\dot{2}\\dot{6}$$ " } ] ]
[ "拓展思维->能力->数感认知->小数数字加工" ]
[ "要使小数最小,则循环节开始的几位尽量小,因此从$$1$$开始循环,下一位为$$4$$,依次往下,最小的为$$3.\\dot{1}41592\\dot{6}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1374
554df635cf5b4b3185c49a64e9597705
[ "2016年第16届世奥赛六年级竞赛决赛第7题" ]
2
single_choice
高速智能化办公是当代企业的发展趋势,市面上各种办公软件也是五花八门.甲方要传输一分文件给乙方,若单用$$A$$软件传输,需$$10$$分钟;若单用$$B$$软件传输,需$$8$$分钟;若同时用$$A$$、$$B$$软件传输,$$A$$、$$B$$软件每分钟共少传输$$0.2$$页.已知$$A$$、$$B$$同时传输,$$5$$分钟传完了整份文件,那么这份文件的页数为页.
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$10$$ " } ], [ { "aoVal": "D", "content": "$$16$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->列方程解应用题->一元一次方程解应用题->方程法解其他问题" ]
[ "找到功能做效率的等量关系列出方程,设这份文件总共有$$x$$页,$$\\frac{x}{10}+\\frac{x}{8}-0.2=\\frac{x}{5}$$,解得$$x=8$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2989
bbff3dfc8e2c4253b3da13e789922574
[ "2020年第24届YMO四年级竞赛决赛第9题3分", "2019年第24届YMO四年级竞赛决赛第9题3分", "2021年第24届世界少年奥林匹克数学竞赛四年级竞赛决赛第9题3分" ]
1
single_choice
已知$$5$$,$$a$$,$$b$$,$$c$$,$$4035$$这五个数成等差数列,则$$b=$$. We know that $$5$$, $$a$$, $$b$$, $$c$$, and $$4035$$ are five numbers in an equal series, then $$b = $$.
[ [ { "aoVal": "A", "content": "$$2017$$ " } ], [ { "aoVal": "B", "content": "$$2018$$ " } ], [ { "aoVal": "C", "content": "$$2019$$ " } ], [ { "aoVal": "D", "content": "$$2020$$ " } ] ]
[ "拓展思维->能力->公式记忆->言语化数学原理" ]
[ "$$5$$,$$a$$,$$b$$,$$c$$,$$4035$$是等差数列, 则$$5$$,$$b$$,$$4035$$也是等差数列, 则$$b=\\left( 4035+5 \\right)\\div 2$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde=4040\\div 2$$ $$\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde\\textasciitilde=2020$$. 选$$\\text{D}$$. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3289
63bef6464e6848b8a61255b434fc6194
[ "2019年第24届YMO二年级竞赛决赛第1题3分" ]
1
single_choice
$42$ children line up for the autumn outing. Counting from front to back, $Y$ is the $22$\textsuperscript{nd}. Counting from back to front, $M$ is the $22$\textsuperscript{nd}. How many children are there between $Y$ and $M$? $$42$$个小朋友排成一队去秋游,从排头往后数,小$$Y$$是第$$22$$个,从排尾往前数,小$$M$$是第$$22$$个,小$$Y$$和小$$M$$中间有个人.
[ [ { "aoVal": "A", "content": "$$0$$ " } ], [ { "aoVal": "B", "content": "$$1$$ " } ], [ { "aoVal": "C", "content": "$$2$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ] ]
[ "拓展思维->能力->运算求解", "Overseas Competition->知识点->计数模块->加乘原理->排队问题" ]
[ "根据题意分析可知,小$$Y$$后面有$$42-22=20$$(人),$$22-20-1=1$$(人).那么小$$M$$应该在小$$Y$$的正前方,所以小$$Y$$和小$$M$$之间有$$0$$个人. 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2833
7bc8314a40cc41a5b4d3be203578ff57
[ "2016年全国小学生数学学习能力测评四年级竞赛初赛第8题3分" ]
1
single_choice
两个数相乘,如果一个因数增加$$3$$,积就增加$$54$$;如果另一个因数减少$$4$$,积就减少$$96$$,原来两个因数的积是.
[ [ { "aoVal": "A", "content": "$$432$$ " } ], [ { "aoVal": "B", "content": "$$434$$ " } ], [ { "aoVal": "C", "content": "$$436$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->整数->整数乘除->整数乘法运算->表外乘法计算" ]
[ "一个因数为$$54\\div 3=18$$,另一个因数为$$96\\div 4=24$$, 所以原来两数的积为$$18\\times 24=432$$. 故选:$$\\text{A}$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3475
e73942628a8849ec9b0475a475419cfa
[ "2016年创新杯六年级竞赛训练题(三)第1题" ]
0
single_choice
用$$8$$、$$9$$、$$10$$、$$15$$中的任意两个数组成互质数,可组成(~ ).
[ [ { "aoVal": "A", "content": "$$1$$对 " } ], [ { "aoVal": "B", "content": "$$2$$对 " } ], [ { "aoVal": "C", "content": "$$3$$对 " } ], [ { "aoVal": "D", "content": "$$4$$对 " } ] ]
[ "拓展思维->能力->抽象概括" ]
[ "按照互质的定义枚举判断即可. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3320
5fda18a397a34a4ca7fc75c2ace45c44
[ "2017年第22届全国华杯赛小学中年级竞赛初赛第3题10分", "2021年陕西西安六年级下学期小升初模拟分类专题五十五(计数原理 排列组合 容斥原理 抽屉原理)第2题", "2019年陕西西安碑林区西北工业大学附属中学小升初入学真卷六第4题3分" ]
1
single_choice
小明行李箱锁的密码是由两个数字$$8$$与$$5$$构成的三位数.某次旅行,小明忘记了密码,他最少要试次,才能确保打开箱子.
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$8$$ " } ], [ { "aoVal": "C", "content": "$$7$$ " } ], [ { "aoVal": "D", "content": "$$6$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "由题知,密码由三位数构成,且只包括$$8$$与$$5$$两个数字. 以$$5$$为百位数字,有$$558$$、$$585$$、$$588$$三种情况; 以$$8$$为百位数字,有$$855$$、$$885$$、$$858$$三种情况. 所以最少要试$$3+3=6$$(次),才能确保打开箱子. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1714
69cabd0e97b342fcabfa96c990b0f56e
[ "2016年新希望杯六年级竞赛训练题(五)第1题" ]
1
single_choice
一根绳子剪去全长的$$20 \% $$后,又接上$$20$$米,接上后的长度是接上前的$$125 \% $$,那么原来的绳子长(~ )米.
[ [ { "aoVal": "A", "content": "$$44$$ " } ], [ { "aoVal": "B", "content": "$$100$$ " } ], [ { "aoVal": "C", "content": "$$125$$ " } ], [ { "aoVal": "D", "content": "$$150$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->分百应用题->量率对应求单位1" ]
[ "$$20\\div \\left( 125 \\% -1 \\right)=80$$(米),$$80\\div \\left( 1-20 \\% \\right)=100$$(米). " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
760
df1bdc287d8b46c293d5a2c204217da9
[ "2015年第13届全国创新杯五年级竞赛复赛第7题" ]
2
single_choice
给出一列数:$$23+m$$,$$23+2m$$,$$23+3m$$,$$\cdot \cdot \cdot $$,$$23+2015m$$,这$$2015$$个数的和除以$$14$$的余数是(其中$$m$$为正整数).(注意写过程)
[ [ { "aoVal": "A", "content": "$$9$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$5$$ " } ], [ { "aoVal": "D", "content": "$$3$$ " } ] ]
[ "拓展思维->拓展思维->数论模块->余数问题->余数的性质->余数性质综合" ]
[ "$$23\\times 2015+(1+2+\\cdot \\cdot \\cdot +2015)m$$除以$$14$$的余数,由于$$1+2+\\cdot \\cdot \\cdot +2015=2015\\times 1008$$是$$14$$的倍数,那么只用看$$23\\times 2015$$除以$$14$$的余数是$$5$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2494
1e404817621145e297927366f0cecb7c
[ "2013年全国美国数学大联盟杯小学高年级竞赛初赛第13题" ]
2
single_choice
在前$$100$$个正整数中,$$8$$的倍数个数与$$4$$的倍数个数之比是多少? Of the first $$100$$ positive whole numbers, the ratio of the number of multiples of $$8$$ to the number of multiples of $$4$$ is .
[ [ { "aoVal": "A", "content": "$$2:1$$ " } ], [ { "aoVal": "B", "content": "$$12:25$$ " } ], [ { "aoVal": "C", "content": "$$13:25$$ " } ], [ { "aoVal": "D", "content": "$$1:2$$ " } ] ]
[ "拓展思维->能力->运算求解", "Overseas Competition->知识点->计算模块->比和比例" ]
[ "$4$的倍数有$$25$$个 $8$的倍数有$$12$$个 " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2447
2abe4d2652c7431a9b6e3161568fe826
[ "走美杯三年级竞赛", "走美杯六年级竞赛" ]
0
single_choice
计算:$$1+2+3+\cdots +50+\cdots +3+2+1=$$( )
[ [ { "aoVal": "A", "content": "$$50$$ " } ], [ { "aoVal": "B", "content": "$$100$$ " } ], [ { "aoVal": "C", "content": "$$2500$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->数列与数表->数列规律->金字塔数列" ]
[ "原式$$=50\\times50=2500$$ " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2
0097cb8eaf6448ee990b0613c9ee36bb
[ "2015年第11届全国新希望杯五年级竞赛复赛第4题" ]
1
single_choice
星星、希希、望望、贝贝四个人参加了``新希望杯''全国数学大赛,他们的得分情况是:望望的分数没有希希的分数高,星星的分数比贝贝的分数高,希希的分数不是最高的,贝贝的分数没有希希的分数高,他们中分数最高的是(~~~ ).
[ [ { "aoVal": "A", "content": "星星 " } ], [ { "aoVal": "B", "content": "希希 " } ], [ { "aoVal": "C", "content": "望望 " } ], [ { "aoVal": "D", "content": "贝贝 " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->条件型逻辑推理->表格法" ]
[ "星星和希希比贝贝高,希希比望望高,希希不是最高,那么只能是星星. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2784
d1775673f25c4c92b2197841d00e4cb8
[ "2017年第16届湖北武汉创新杯五年级竞赛邀请赛训练题(一)" ]
2
single_choice
~已知一个数列按照一定规律排列,如:$$1$$,$$1$$,$$2$$,$$3$$,$$5$$,$$8$$,$$13$$,$$21$$,$$34$$,$$\ldots \ldots $$,那么这个数列第$$2017$$个数除以$$5$$的余数是(~ ).
[ [ { "aoVal": "A", "content": "$$1$$ " } ], [ { "aoVal": "B", "content": "$$2$$ " } ], [ { "aoVal": "C", "content": "$$3$$ " } ], [ { "aoVal": "D", "content": "$$4$$ " } ] ]
[ "拓展思维->能力->数据处理" ]
[ "从数列的第一个数开始余数分别是$$1$$,$$1$$,$$2$$,$$3$$,$$0$$,$$3$$,$$3$$,$$1$$,$$4$$,$$0$$,$$4$$,$$4$$,$$3$$,$$2$$,$$0$$,$$2$$,$$2$$,$$4$$,$$1$$,$$0$$.周期为$$20$$ $$2017\\div 5=100$$(组)$$\\ldots \\ldots 17$$(个),所以余数是此数列第$$17$$个余数,是$$2$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1484
f17aab6f17334076aa6f857aa635e64c
[ "2016年创新杯六年级竞赛训练题(二)第2题" ]
1
single_choice
五个数$$a$$, $$b$$,$$c$$,$$d$$,$$e$$每次去掉一个数,将其余得四个平均数,这样算了五次,结果分别为:$$7$$、$$7.5$$、$$8$$、$$8.5$$,那么原来的五个数的平均数是(~ ).
[ [ { "aoVal": "A", "content": "$$7$$ " } ], [ { "aoVal": "B", "content": "$$7.5$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$8.5$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->综合题->综合题普通型" ]
[ "$$\\left( 7+7.5+8+8.5+9 \\right)\\div 5=8$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2242
e844fa1e48c24583a9975d5e96f6ec8e
[ "2015年第11届全国新希望杯五年级竞赛复赛第6题", "2016年创新杯五年级竞赛训练题(四)第6题" ]
2
single_choice
★★★★甲、乙两船在静水中的速度相同,它们分别从相距$$60$$千米的两港同时出发相向而行,$$2$$小时后相遇,如果两船的速度各增加$$5$$千米/小时,再次从两港同时出发相向而行,那么,它们再次相遇的地点就与前一次的相遇地点相距$$0.45$$千米,则水流的速度是.
[ [ { "aoVal": "A", "content": "$$0.7$$千米/小时 " } ], [ { "aoVal": "B", "content": "$$1.4$$干米/小时 " } ], [ { "aoVal": "C", "content": "$$0.9$$千米/小时 " } ], [ { "aoVal": "D", "content": "$$1.8$$千米/小时 " } ] ]
[ "知识标签->数学思想->转化与化归的思想" ]
[ "原来的速度和是船速和$$60\\div 2=30$$,那么船速是$$30\\div 2=15$$千米/时,第二次时间为$$60\\div 40=1.5$$小时.两船两次相向运动的速度差都是$$2$$个水速,路程差为$$0.45\\times 2=0.9千米,那么$$0.9$$除以(2-1.5)等于$$1.8$$,$$1.8$$除以$$2$$等于$$0.9$$,故水速为$$0.9$$千米/时. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
97
58cfd5b230a741c083c6577cba5103aa
[ "2014年全国迎春杯五年级竞赛复赛第15题" ]
3
single_choice
老师把某两位数的六个不同因数分别告诉了$$A\sim F$$六个聪明诚实的同学. $$A$$和$$B$$同时说:我知道这个数是多少了. $$C$$和$$D$$同时说:听了他们的话,我也知道这个数是多少了. $$E$$:听了他们的话,我知道我的数一定比$$F$$的大. $$F$$:我拿的数的大小在$$C$$和$$D$$之间. 那么六个人拿的数之和是.
[ [ { "aoVal": "A", "content": "$$141$$ " } ], [ { "aoVal": "B", "content": "$$152$$ " } ], [ { "aoVal": "C", "content": "$$171$$ " } ], [ { "aoVal": "D", "content": "$$175$$ " } ] ]
[ "拓展思维->思想->枚举思想" ]
[ "(1)这个数的因数个数肯定不低于$$6$$个(假定这个数为$$N$$,且拿到的$$6$$个数从大到小分别是$$ABCDEF$$~) (2)有两个人同时第一时间知道结果,这说明以下几个问题: 第一种情况:有一个人知道了最后的结果,这个结果是怎么知道的呢?很简单,他拿到的因数在$$50\\sim 99$$之间(也就是说$$A$$ 的$$2$$倍是$$3$$位数,所以$$A$$其实就是$$N$$) 第二种情况:有一个人拿到的不是最后结果,但是具备以下条件: 这个数的约数少于$$6$$个,比如:有人拿到$$36$$,但他不能判断$$N$$究竟是$$36$$还是$$72$$. 这个数小于$$50$$,不然这个数就只能也是$$N$$了. 这个数大于$$33$$,比如:有人拿到$$29$$,那么他不能断定$$N$$ 是$$58$$还是$$87$$;(这里有个特例是$$27$$,因为$$27\\times 2=54$$,因数个数不少于$$6$$个;$$27\\times 3=81$$,因数个数少于$$6$$个,所以如果拿到$$27$$可以判断$$N$$只能为$$54$$) 这个数还不能是是质数,不然不存在含有这个因数的两位数. 最关键的是,这两人的数是$$2$$倍关系 但是上述内容并不完全正确,需要注意还有一些``奇葩''数:$$17$$、$$19$$、$$23$$也能顺利通过第一轮. 因此,这两个人拿到的数有如下可能: ($$54$$,$$27$$)($$68$$,$$34$$)($$70$$,$$35$$)($$76$$,$$38$$)($$78$$,$$39$$)($$92$$,$$46$$)($$98$$,$$49$$) (3)为了对比清晰,再来把上面所有的情况的因数都列举出来: ($$54$$,$$27$$,$$18$$,$$9$$,$$6$$,$$3$$,$$2$$,$$1$$) ($$68$$,$$34$$,$$17$$,$$4$$,$$2$$,$$1$$)($$\\times$$) ($$70$$,$$35$$,$$14$$,$$10$$,$$7$$,$$5$$,$$2$$,$$1$$) ($$76$$,$$38$$,$$19$$,$$4$$,$$2$$,$$1$$)($$\\times$$) ($$78$$,$$39$$,$$26$$,$$13$$,$$6$$,$$3$$,$$2$$,$$1$$) ($$92$$,$$46$$,$$23$$,$$4$$,$$2$$,$$1$$)($$\\times$$) ($$98$$,$$49$$,$$14$$,$$7$$,$$2$$,$$1$$) 对于第一轮通过的数,用红色标注,所以$$N$$不能是$$68$$、$$76$$、$$92$$中的任意一个. 之后在考虑第二轮需要通过的两个数. 用紫色标注的$$6$$、$$3$$、$$2$$、$$1$$,因为重复使用,如果出现了也不能判断$$N$$是多少,所以不能作为第二轮通过的数. 用绿色标注的$$14$$和$$7$$也不能作为第二轮通过的数,这样$$N$$也不是$$98$$. 那么通过第二轮的数只有黑色的数. 所以$$N$$ 只能是$$54$$、$$70$$、$$78$$中的一个. 再来观察可能满足$$E$$和$$F$$所说的内容: ($$54$$,$$27$$,$$18$$,$$9$$,$$6$$,$$3$$,$$2$$,$$1$$) ($$70$$,$$35$$,$$14$$,$$10$$,$$7$$,$$5$$,$$2$$,$$1$$) ($$78$$,$$39$$,$$26$$,$$13$$,$$6$$,$$3$$,$$2$$,$$1$$) 因为$$F$$说他的数在$$C$$和$$D$$之间,发现上面的数据只有当$$N=70$$的时候,$$F=7$$,在$$CD$$$$(10$$和$$5)$$之间,是唯一满足条件的一种情况. 又因为$$E$$ 确定自己比$$F$$的大,那么他拿到的数一定是该组中剩余数里最大的.所以$$E$$拿到的是$$14$$($$N=70$$~). 所以$$N=70$$,六个人拿的数之和为:$$70+35+14+10+7+5=141$$. " ]
A
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
541
f543a9b7d68348fa906a0f795317ac0b
[ "2016年IMAS小学高年级竞赛第一轮检测试题第13题4分" ]
3
single_choice
已知袋子中装有$$n$$颗小球,依次编号为$$1$$、$$2$$、$$3$$、$$\cdots$$、$$n$$,每次都从袋子中取出两颗球,把它们的编号相加并记下结果,然后把它们放回袋子内.重复抽取直到袋子中每一对小球都被取到为止,记录中恰好有$$215$$种不同的数值,请问$$n$$的值是多少?
[ [ { "aoVal": "A", "content": "$$100$$ " } ], [ { "aoVal": "B", "content": "$$105$$ " } ], [ { "aoVal": "C", "content": "$$108$$ " } ], [ { "aoVal": "D", "content": "$$109$$ " } ], [ { "aoVal": "E", "content": "$$215$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->操作与策略->归纳递推->汉诺塔递推" ]
[ "每两个数相加,和最小为$$1+2=3$$,最大为$$n+(n-1)=2n-1$$,现在共有$$215$$种不同的数值,即最大的数值为$$215+3-1=217$$,$$217=2n-1$$,$$n=109$$. 最大值和最小值之间有多少数字就是多少种可能性.$$2n -1-3=215$$. " ]
E
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1661
848d23e3fc414895ae1381c20f883406
[ "2019年第23届广东世界少年奥林匹克数学竞赛四年级竞赛决赛第3题5分" ]
1
single_choice
大李和小李比赛吃葡萄,两人一共吃$$68$$个葡萄,大李比小李的$$4$$倍少$$2$$个,大李吃了个.
[ [ { "aoVal": "A", "content": "$$50$$ " } ], [ { "aoVal": "B", "content": "$$52$$ " } ], [ { "aoVal": "C", "content": "$$54$$ " } ], [ { "aoVal": "D", "content": "$$56$$ " } ] ]
[ "拓展思维->思想->对应思想" ]
[ "解:设小李吃$$x$$个葡萄,则大李吃($$68-x$$)个葡萄, $$68-x=4x-2$$, $$68+2=4x+x$$, $$70=5x$$, $$\\textasciitilde\\textasciitilde x=14$$, ∴$$68-x=68-14=54$$(个). 故选$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1412
3ac90452c59d43279b45ea86208d245a
[ "2018年第22届广东世界少年奥林匹克数学竞赛一年级竞赛初赛第5题6分" ]
1
single_choice
小白兔有$$15$$个萝卜,小灰兔给了它$$5$$个萝卜后,它俩的萝卜就一样多了,小灰兔原来有个萝卜.
[ [ { "aoVal": "A", "content": "$$15$$ " } ], [ { "aoVal": "B", "content": "$$20$$ " } ], [ { "aoVal": "C", "content": "$$25$$ " } ] ]
[ "拓展思维->拓展思维->应用题模块->平均数问题->移多补少->不等变相等(无图)" ]
[ "小灰兔给了小白兔$$5$$个萝卜后, 此时小白兔和小灰兔都有$$15+5=20$$(个)萝卜, 则小灰兔原来有萝卜:$$20+5=25$$(个). 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1107
1ce39922d78d4651a44ad09b30465ec9
[ "2016年全国小学生数学学习能力测评四年级竞赛复赛第10题3分" ]
1
single_choice
爸爸以均匀的速度在马路边散步,他从第一根电线杆到第$$12$$根电线杆,用了$$8$$分钟,照这样的速度,再走$$8$$分钟,他会走到第根电线杆.
[ [ { "aoVal": "A", "content": "$$8$$ " } ], [ { "aoVal": "B", "content": "$$9$$ " } ], [ { "aoVal": "C", "content": "$$23$$ " } ] ]
[ "拓展思维->能力->运算求解" ]
[ "$$(12-1)\\div 8\\times (8+8)+1$$ $$=11\\times 2+1$$ $$=23$$(根). 答:他会走到第$$23$$根电线杆. 故选:$$\\text{C}$$. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
281
ff8080814502fa24014507544dd409f6
[ "2014年全国迎春杯四年级竞赛初赛第11题" ]
2
single_choice
你能根据以下的线索找出百宝箱的密码吗? (1)密码是一个八位数; (2)密码既是$$3$$的倍数又是$$25$$的倍数; (3)这个密码在$$20000000$$到$$30000000$$之间; (4)百万位与十万位上的数字相同; (5)百位数字比万位数字小$$2$$; (6)十万位、万位、千位上数字组成的三位数除以千万位、百万位上数字组成的两位数,商是$$25$$. 依据上面的条件,推理出这个密码应该是(~~~~~~~ ).
[ [ { "aoVal": "A", "content": "$$25526250$$ " } ], [ { "aoVal": "B", "content": "$$26650350$$ " } ], [ { "aoVal": "C", "content": "$$27775250$$ " } ], [ { "aoVal": "D", "content": "$$28870350$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->逻辑推理->假设型逻辑推理->答案(数字)正误问题" ]
[ "将A、B、C、D 逐一代入检验.只有B 满足$$(1)$$、$$(2)$$、$$(3)$$、$$(4)$$、$$(5)$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
1113
1cf79a066fdb45f39e4ce13e873d94fc
[ "2019年第23届广东世界少年奥林匹克数学竞赛四年级竞赛决赛第4题5分" ]
1
single_choice
毛毛用围棋子摆成一个三层空心方阵,最内一层有围棋子$$28$$个.毛毛摆这个方阵共用围棋子~\uline{~~~~~~~~~~}~个。
[ [ { "aoVal": "A", "content": "$$96$$ " } ], [ { "aoVal": "B", "content": "$$108$$ " } ], [ { "aoVal": "C", "content": "$$120$$ " } ], [ { "aoVal": "D", "content": "$$132$$ " } ] ]
[ "拓展思维->能力->图形认知" ]
[ "由于相邻两层数量相差$$8$$,已知最内层有$$28$$个棋子 则 第二层棋子有:$$28+8=36$$(个), 第三层棋子有:$$36+8=44$$(个), 所以三层一共有$$28+36+44=108$$(个). 故选:$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3350
5c663aa25d114aa4b2b4a7933ba359be
[ "2006年五年级竞赛创新杯" ]
2
single_choice
一根长木棍上刻有三种刻度,第一种刻度将木棍十等分,第二种刻度将木棍十二等分,第三种刻度将木棍十五等分。如果沿刻度线将木棍锯开,木棍总共被锯成( )。
[ [ { "aoVal": "A", "content": "$$20$$段 " } ], [ { "aoVal": "B", "content": "$$24$$段 " } ], [ { "aoVal": "C", "content": "$$28$$段 " } ], [ { "aoVal": "D", "content": "$$30$$段 " } ] ]
[ "拓展思维->拓展思维->数论模块->因数与倍数->公因数与公倍数->公倍数与最小公倍数->两数的最小公倍数" ]
[ "在没有重合点时,内点数为$$\\left( 10-1 \\right)+\\left( 12-1 \\right)+\\left( 15-1 \\right)=34$$,$$\\left[ 10,12,15 \\right]=60$$,不妨设木棍长$$60$$厘米; 则第一种刻度线分割的长度为$$6$$厘米; 则第二种刻度线分割的长度为$$5$$厘米; 则第三种刻度线分割的长度为$$4$$厘米; 第一种与第二种刻度线重合处为$$\\left[ 6,5 \\right]=30$$厘米,全棍重合$$1$$次; 第二种与第三种刻度线重合处为$$\\left[ 5,4 \\right]=20$$厘米,全棍重合$$2$$次; 第三种与第一种刻度线重合处为$$\\left[ 4,6 \\right]=12$$厘米,全棍重合$$4$$次; 则总内点数为$$34-7=27$$,于是总段数为$$27+1=28$$(段)。 " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
3416
d74812de0b844828a63e8ed964881583
[ "2011年北京五年级竞赛" ]
1
single_choice
芳草地小学四年级有$$58$$人学钢琴,$$43$$人学画画,$$37$$人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?
[ [ { "aoVal": "A", "content": "6,15 " } ], [ { "aoVal": "B", "content": "6,21 " } ], [ { "aoVal": "C", "content": "15,6 " } ], [ { "aoVal": "D", "content": "24,8 " } ] ]
[ "拓展思维->思想->逆向思想" ]
[ "解包含与排除题,画图是一种很直观、简捷的方法,可以帮助解决问题,画图时注意把不同的对象与不同的区域对应清楚.建议教师帮助学生画图分析,清楚的分析每一部分的含义. 如图,$$A$$圆表示学画画的人,$$B$$圆表示学钢琴的人,$$C$$表示既学钢琴又学画画的人,图中$$A$$圆不含阴影的部分表示只学画画的人,有:$$43-37=6$$人,图中$$B$$圆不含阴影的部分表示只学钢琴的人,有:$$58-37=21$$人. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
412
8a8db137f6414480a47fb82bdf35093f
[ "2017年第15届全国希望杯六年级竞赛" ]
2
single_choice
$$a$$,$$b$$,$$c$$是三个不同的自然数,且$$a\times b\times c=210$$ .求$$a+b+c$$的最大值和最小值..
[ [ { "aoVal": "A", "content": "$$108$$;$$27$$ " } ], [ { "aoVal": "B", "content": "$$108$$;$$18$$ " } ], [ { "aoVal": "C", "content": "$$120$$;$$12$$ " } ], [ { "aoVal": "D", "content": "$$120$$;$$18$$ " } ] ]
[ "拓展思维->能力->构造模型->模型思想" ]
[ "三个不同的自然数$$a$$,$$b$$,$$c$$的乘积是$$210$$,当三个数越接近,它们的和越小;反之,它们的和越大.因为$$210=1\\times 2\\times 3\\times 5\\times 7$$,所以当$$a$$,$$b$$,$$c$$分别取$$1$$,$$2$$,$$105$$时,它们的和最大,为$$1+2+105=108$$;当$$a$$,$$b$$,$$c$$分别取$$5$$,$$6$$,$$7$$时,它们的和最小,为$$5+6+7=18$$. 故选$$\\text{B}$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2230
be9a530f3ac74833b63764c655e17299
[ "2011年北京五年级竞赛", "2019年广东广州海珠区中山大学附属中学小升初第42题10分" ]
2
single_choice
甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快$$12$$公里,比丙快$$15$$公里,甲行$$3.5$$小时到达西村后立刻返回.在距西村$$30$$公里处和乙相聚,问:丙行了多长时间和甲相遇?
[ [ { "aoVal": "A", "content": "2.8小时 " } ], [ { "aoVal": "B", "content": "5.6小时 " } ], [ { "aoVal": "C", "content": "3.6小时 " } ], [ { "aoVal": "D", "content": "1.5小时 " } ] ]
[ "知识标签->学习能力->七大能力->实践应用" ]
[ "在距西村$$30$$公里处和乙相聚,则甲比乙多走$$60$$公里,而甲骑自行车每小时比乙快$$12$$公里,所以,甲乙相聚时所用时间是$$60 \\div 12 = 5$$(小时),所以甲从西村到和乙相聚用了$$5 - 3.5 = 1.5$$(小时),所以,甲速是$$30 \\div 1.5 = 20$$(公里/小时),所以,丙速是$$20 - 15 = 5$$(公里/小时),东村到西村的距离是:$$20 \\times 3.5 = 70$$(公里),所以,甲丙相遇时间是:$$\\left( {2 \\times 70} \\right) \\div \\left( {20 + 5} \\right) = 5.6$$$$($$小时$$)$$. " ]
B
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
336
d1a6712272ad400cae4b766ebe14da2b
[ "2017年第17届世奥赛六年级竞赛决赛第13题" ]
1
single_choice
地球因为自转的关系,所以每个国家都有时差.例:纽约比韩国晚$$13$$个小时,韩国$$4$$月$$28$$日晚$$6$$点时纽约是$$4$$月$$28$$日凌晨$$5$$点.思思暑假的时候要去纽约找杰克,在纽约的时候每周星期一、三、五早上$$10$$点给父母打电话,思思是$$7$$月$$15$$日星期一早上$$7$$点(韩国时间)出发去纽约.$$8$$月$$2$$日星期五早上$$10$$点(韩国时间)回到韩国.思思在纽约跟父母一共打了(~ )个电话.(注:到纽约的飞机要坐$$14$$个小时)
[ [ { "aoVal": "A", "content": "$$6$$ " } ], [ { "aoVal": "B", "content": "$$7$$ " } ], [ { "aoVal": "C", "content": "$$8$$ " } ], [ { "aoVal": "D", "content": "$$9$$ " } ] ]
[ "拓展思维->拓展思维->组合模块->时间问题->时间计算" ]
[ "到达纽约时间,韩国时间是$$7$$月$$15$$日$$21:00$$,纽约时间是$$7$$月$$15$$日$$8:00$$;纽约出发时间,韩国时间是$$8$$月$$1$$日$$20:00$$,纽约时间是$$8$$月$$1$$日$$7:00$$.依次可知思思在纽约一共给父母打了$$8$$个电话. " ]
C
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
2458
fa456e30fd3540ff82619de4326d3093
[ "五年级竞赛创新杯", "六年级竞赛创新杯" ]
1
single_choice
在下面四个算式中,得数最大的是( ).
[ [ { "aoVal": "A", "content": "$$(\\frac{1}{17}-\\frac{1}{19})\\div 20$$ " } ], [ { "aoVal": "B", "content": "$$(\\frac{1}{15}-\\frac{1}{21})\\div 60$$ " } ], [ { "aoVal": "C", "content": "$$(\\frac{1}{13}-\\frac{1}{23})\\div 100$$ " } ], [ { "aoVal": "D", "content": "$$(\\frac{1}{11}-\\frac{1}{25})\\div 140$$ " } ] ]
[ "拓展思维->拓展思维->计算模块->比较与估算->比较大小综合->整数比较大小" ]
[ "A,B,C,D依次为$$\\frac{1}{17\\times 19\\times 10},\\frac{1}{15\\times 21\\times 10},\\frac{1}{13\\times 23\\times 10},\\frac{1}{11\\times 25\\times 10}$$,和同近积大,$$11\\times 25\\times 10$$最小,所以$$\\frac{1}{11\\times 25\\times 10}$$最大. " ]
D
prime_math_competition_ch_single_choice_3.2K_dev
2023-07-07T00:00:00
602
0cada157fbed469fa6fdba1eff33e882
[ "2013年美国数学大联盟杯小学高年级竞赛初赛第4题5分" ]
2
single_choice
$$\sqrt{4\times 9\times 16}=$$.(请换算成$$2$$进制数)
[ [ { "aoVal": "A", "content": "$$111$$ " } ], [ { "aoVal": "B", "content": "$$1101$$ " } ], [ { "aoVal": "C", "content": "$$1110$$ " } ], [ { "aoVal": "D", "content": "$$11000$$ " } ] ]
[ "拓展思维->能力->逻辑分析" ]
[ "$$\\sqrt{4\\times 9\\times 16}$$,可以看成$$\\sqrt{{{2}^{2}}\\times {{3}^{2}}\\times {{4}^{2}}}$$,也就是$$2\\times 3\\times 4=24$$, 所以答案应该是$$24$$. 但是答案都是$$2$$进制表示,$$24$$的$$2$$进制为$$11000$$. " ]
D