state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
⊢ r ∈ annihilator (span R s) ↔ ∀ (n : ↑s), r • ↑n = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
| rw [Submodule.mem_annihilator] | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
| Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
⊢ (∀ n ∈ span R s, r • n = 0) ↔ ∀ (n : ↑s), r • ↑n = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
| constructor | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
| Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mp
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
⊢ (∀ n ∈ span R s, r • n = 0) → ∀ (n : ↑s), r • ↑n = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· | intro h n | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· | Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mp
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ n ∈ span R s, r • n = 0
n : ↑s
⊢ r • ↑n = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
| exact h _ (Submodule.subset_span n.prop) | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
| Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
⊢ (∀ (n : ↑s), r • ↑n = 0) → ∀ n ∈ span R s, r • n = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· | intro h n hn | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· | Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
⊢ r • n = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
| refine Submodule.span_induction hn ?_ ?_ ?_ ?_ | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
| Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr.refine_1
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
⊢ ∀ x ∈ s, r • x = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· | intro x hx | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· | Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr.refine_1
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
x : M
hx : x ∈ s
⊢ r • x = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
| exact h ⟨x, hx⟩ | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
| Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr.refine_2
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
⊢ r • 0 = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· | exact smul_zero _ | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· | Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr.refine_3
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
⊢ ∀ (x y : M), r • x = 0 → r • y = 0 → r • (x + y) = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· | intro x y hx hy | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· | Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr.refine_3
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
x y : M
hx : r • x = 0
hy : r • y = 0
⊢ r • (x + y) = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
| rw [smul_add, hx, hy, zero_add] | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
| Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr.refine_4
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
⊢ ∀ (a : R) (x : M), r • x = 0 → r • a • x = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· | intro a x hx | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· | Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
case mpr.refine_4
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
s : Set M
r : R
h : ∀ (n : ↑s), r • ↑n = 0
n : M
hn : n ∈ span R s
a : R
x : M
hx : r • x = 0
⊢ r • a • x = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
| rw [smul_comm, hx, smul_zero] | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
| Mathlib.RingTheory.Ideal.Operations.60_0.5qK551sG47yBciY | theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
g : M
r : R
⊢ r ∈ annihilator (span R {g}) ↔ r • g = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by | simp [mem_annihilator_span] | theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by | Mathlib.RingTheory.Ideal.Operations.77_0.5qK551sG47yBciY | theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
p : M → Prop
x : M
H : x ∈ I • N
Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n)
H1 : ∀ (x y : M), p x → p y → p (x + y)
⊢ p x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
| have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
| Mathlib.RingTheory.Ideal.Operations.113_0.5qK551sG47yBciY | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
p : M → Prop
x : M
H : x ∈ I • N
Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n)
H1 : ∀ (x y : M), p x → p y → p (x + y)
⊢ p 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by | simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by | Mathlib.RingTheory.Ideal.Operations.113_0.5qK551sG47yBciY | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
p : M → Prop
x : M
H : x ∈ I • N
Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n)
H1 : ∀ (x y : M), p x → p y → p (x + y)
H0 : p 0
⊢ p x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
| refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1 | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
| Mathlib.RingTheory.Ideal.Operations.113_0.5qK551sG47yBciY | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
p : M → Prop
x : M
H : x ∈ I • N
Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n)
H1 : ∀ (x y : M), p x → p y → p (x + y)
H0 : p 0
⊢ ∀ (i : ↥I), ∀ x ∈ map ((LinearMap.lsmul R M) ↑i) N, p x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
| rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩ | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
| Mathlib.RingTheory.Ideal.Operations.113_0.5qK551sG47yBciY | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x | Mathlib_RingTheory_Ideal_Operations |
case mk.intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
p : M → Prop
x : M
H : x ∈ I • N
Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n)
H1 : ∀ (x y : M), p x → p y → p (x + y)
H0 : p 0
i : R
hi : i ∈ I
m j : M
hj : j ∈ ↑N
hj' : ((LinearMap.lsmul R M) ↑{ val := i, property := hi }) j = m
⊢ p m | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
| rw [← hj'] | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
| Mathlib.RingTheory.Ideal.Operations.113_0.5qK551sG47yBciY | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x | Mathlib_RingTheory_Ideal_Operations |
case mk.intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
p : M → Prop
x : M
H : x ∈ I • N
Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n)
H1 : ∀ (x y : M), p x → p y → p (x + y)
H0 : p 0
i : R
hi : i ∈ I
m j : M
hj : j ∈ ↑N
hj' : ((LinearMap.lsmul R M) ↑{ val := i, property := hi }) j = m
⊢ p (((LinearMap.lsmul R M) ↑{ val := i, property := hi }) j) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
| exact Hb _ hi _ hj | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
| Mathlib.RingTheory.Ideal.Operations.113_0.5qK551sG47yBciY | @[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
x : M
hx : x ∈ I • N
p : (x : M) → x ∈ I • N → Prop
Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (_ : r • n ∈ I • N)
H1 : ∀ (x : M) (hx : x ∈ I • N) (y : M) (hy : y ∈ I • N), p x hx → p y hy → p (x + y) (_ : x + y ∈ I • N)
⊢ p x hx | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
| refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H | /-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
| Mathlib.RingTheory.Ideal.Operations.123_0.5qK551sG47yBciY | /-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
x : M
hx : x ∈ I • N
p : (x : M) → x ∈ I • N → Prop
Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (_ : r • n ∈ I • N)
H1 : ∀ (x : M) (hx : x ∈ I • N) (y : M) (hy : y ∈ I • N), p x hx → p y hy → p (x + y) (_ : x + y ∈ I • N)
⊢ ∃ (x_1 : x ∈ I • N), p x x_1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
| exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩ | /-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
| Mathlib.RingTheory.Ideal.Operations.123_0.5qK551sG47yBciY | /-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I✝ J : Ideal R
N P : Submodule R M
I : Ideal R
m x : M
hx : x ∈ I • span R {m}
m1 m2 : M
x✝¹ : ∃ y ∈ I, y • m = m1
x✝ : ∃ y ∈ I, y • m = m2
y1 : R
hyi1 : y1 ∈ I
hy1 : y1 • m = m1
y2 : R
hyi2 : y2 ∈ I
hy2 : y2 • m = m2
⊢ (y1 + y2) • m = m1 + m2 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by | rw [add_smul, hy1, hy2] | theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by | Mathlib.RingTheory.Ideal.Operations.134_0.5qK551sG47yBciY | theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I✝ J : Ideal R
N P : Submodule R M
I : Ideal R
f : R →ₗ[R] M
⊢ map f I ≤ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
| rintro _ ⟨y, hy, rfl⟩ | theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
| Mathlib.RingTheory.Ideal.Operations.162_0.5qK551sG47yBciY | theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) | Mathlib_RingTheory_Ideal_Operations |
case intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I✝ J : Ideal R
N P : Submodule R M
I : Ideal R
f : R →ₗ[R] M
y : R
hy : y ∈ ↑I
⊢ f y ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
| rw [← mul_one y, ← smul_eq_mul, f.map_smul] | theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
| Mathlib.RingTheory.Ideal.Operations.162_0.5qK551sG47yBciY | theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) | Mathlib_RingTheory_Ideal_Operations |
case intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I✝ J : Ideal R
N P : Submodule R M
I : Ideal R
f : R →ₗ[R] M
y : R
hy : y ∈ ↑I
⊢ y • f 1 ∈ I • ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
| exact smul_mem_smul hy mem_top | theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
| Mathlib.RingTheory.Ideal.Operations.162_0.5qK551sG47yBciY | theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I✝ J : Ideal R
N P : Submodule R M
I : Ideal R
⊢ I * annihilator I = ⊥ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by | rw [mul_comm, annihilator_mul] | @[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by | Mathlib.RingTheory.Ideal.Operations.179_0.5qK551sG47yBciY | @[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
r : R
N : Submodule R M
⊢ Ideal.span {r} • N = r • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
| have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
| Mathlib.RingTheory.Ideal.Operations.240_0.5qK551sG47yBciY | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
r : R
N : Submodule R M
⊢ span R (⋃ t ∈ N, {r • t}) = r • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
| convert span_eq (r • N) | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
| Mathlib.RingTheory.Ideal.Operations.240_0.5qK551sG47yBciY | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N | Mathlib_RingTheory_Ideal_Operations |
case h.e'_2.h.e'_6
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
r : R
N : Submodule R M
⊢ ⋃ t ∈ N, {r • t} = ↑(r • N) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
| exact (Set.image_eq_iUnion _ (N : Set M)).symm | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
| Mathlib.RingTheory.Ideal.Operations.240_0.5qK551sG47yBciY | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
r : R
N : Submodule R M
this : span R (⋃ t ∈ N, {r • t}) = r • N
⊢ Ideal.span {r} • N = r • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
| conv_lhs => rw [← span_eq N, span_smul_span] | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
| Mathlib.RingTheory.Ideal.Operations.240_0.5qK551sG47yBciY | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
r : R
N : Submodule R M
this : span R (⋃ t ∈ N, {r • t}) = r • N
| Ideal.span {r} • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => | rw [← span_eq N, span_smul_span] | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => | Mathlib.RingTheory.Ideal.Operations.240_0.5qK551sG47yBciY | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
r : R
N : Submodule R M
this : span R (⋃ t ∈ N, {r • t}) = r • N
| Ideal.span {r} • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => | rw [← span_eq N, span_smul_span] | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => | Mathlib.RingTheory.Ideal.Operations.240_0.5qK551sG47yBciY | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
r : R
N : Submodule R M
this : span R (⋃ t ∈ N, {r • t}) = r • N
| Ideal.span {r} • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => | rw [← span_eq N, span_smul_span] | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => | Mathlib.RingTheory.Ideal.Operations.240_0.5qK551sG47yBciY | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
r : R
N : Submodule R M
this : span R (⋃ t ∈ N, {r • t}) = r • N
⊢ span R (⋃ s ∈ {r}, ⋃ t ∈ ↑N, {s • t}) = r • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
| simpa | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
| Mathlib.RingTheory.Ideal.Operations.240_0.5qK551sG47yBciY | theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
H : ∀ (r : ↑s), ↑r • x ∈ M'
⊢ x ∈ M' | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
| suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x)) | theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
| Mathlib.RingTheory.Ideal.Operations.249_0.5qK551sG47yBciY | theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
H : ∀ (r : ↑s), ↑r • x ∈ M'
this : ⊤ • span R {x} ≤ M'
⊢ x ∈ M' | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
| rw [top_smul] at this | theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
| Mathlib.RingTheory.Ideal.Operations.249_0.5qK551sG47yBciY | theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
H : ∀ (r : ↑s), ↑r • x ∈ M'
this : span R {x} ≤ M'
⊢ x ∈ M' | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
| exact this (subset_span (Set.mem_singleton x)) | theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
| Mathlib.RingTheory.Ideal.Operations.249_0.5qK551sG47yBciY | theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
H : ∀ (r : ↑s), ↑r • x ∈ M'
⊢ ⊤ • span R {x} ≤ M' | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
| rw [← hs, span_smul_span, span_le] | theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
| Mathlib.RingTheory.Ideal.Operations.249_0.5qK551sG47yBciY | theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
H : ∀ (r : ↑s), ↑r • x ∈ M'
⊢ ⋃ s_1 ∈ s, ⋃ t ∈ {x}, {s_1 • t} ⊆ ↑M' | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
| simpa using H | theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
| Mathlib.RingTheory.Ideal.Operations.249_0.5qK551sG47yBciY | theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
H : ∀ (r : ↑s), ∃ n, ↑r ^ n • x ∈ M'
⊢ x ∈ M' | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
| obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
| Mathlib.RingTheory.Ideal.Operations.258_0.5qK551sG47yBciY | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
case intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
H : ∀ (r : ↑s), ∃ n, ↑r ^ n • x ∈ M'
s' : Finset R
hs₁ : ↑s' ⊆ s
hs₂ : Ideal.span ↑s' = ⊤
⊢ x ∈ M' | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
| replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩ | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
| Mathlib.RingTheory.Ideal.Operations.258_0.5qK551sG47yBciY | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
case intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
s' : Finset R
hs₁ : ↑s' ⊆ s
hs₂ : Ideal.span ↑s' = ⊤
H : ∀ (r : { x // x ∈ s' }), ∃ n, ↑r ^ n • x ∈ M'
⊢ x ∈ M' | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
| choose n₁ n₂ using H | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
| Mathlib.RingTheory.Ideal.Operations.258_0.5qK551sG47yBciY | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
case intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
s' : Finset R
hs₁ : ↑s' ⊆ s
hs₂ : Ideal.span ↑s' = ⊤
n₁ : { x // x ∈ s' } → ℕ
n₂ : ∀ (r : { x // x ∈ s' }), ↑r ^ n₁ r • x ∈ M'
⊢ x ∈ M' | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
| let N := s'.attach.sup n₁ | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
| Mathlib.RingTheory.Ideal.Operations.258_0.5qK551sG47yBciY | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
case intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
s' : Finset R
hs₁ : ↑s' ⊆ s
hs₂ : Ideal.span ↑s' = ⊤
n₁ : { x // x ∈ s' } → ℕ
n₂ : ∀ (r : { x // x ∈ s' }), ↑r ^ n₁ r • x ∈ M'
N : ℕ := Finset.sup (Finset.attach s') n₁
⊢ x ∈ M' | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
| have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
| Mathlib.RingTheory.Ideal.Operations.258_0.5qK551sG47yBciY | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
case intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
s' : Finset R
hs₁ : ↑s' ⊆ s
hs₂ : Ideal.span ↑s' = ⊤
n₁ : { x // x ∈ s' } → ℕ
n₂ : ∀ (r : { x // x ∈ s' }), ↑r ^ n₁ r • x ∈ M'
N : ℕ := Finset.sup (Finset.attach s') n₁
hs' : Ideal.span ((fun x => x ^ N) '' ↑s') = ⊤
⊢ x ∈ M' | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
| apply M'.mem_of_span_top_of_smul_mem _ hs' | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
| Mathlib.RingTheory.Ideal.Operations.258_0.5qK551sG47yBciY | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
case intro.intro.H
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
s' : Finset R
hs₁ : ↑s' ⊆ s
hs₂ : Ideal.span ↑s' = ⊤
n₁ : { x // x ∈ s' } → ℕ
n₂ : ∀ (r : { x // x ∈ s' }), ↑r ^ n₁ r • x ∈ M'
N : ℕ := Finset.sup (Finset.attach s') n₁
hs' : Ideal.span ((fun x => x ^ N) '' ↑s') = ⊤
⊢ ∀ (r : ↑((fun x => x ^ N) '' ↑s')), ↑r • x ∈ M' | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
| rintro ⟨_, r, hr, rfl⟩ | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
| Mathlib.RingTheory.Ideal.Operations.258_0.5qK551sG47yBciY | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
case intro.intro.H.mk.intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
s' : Finset R
hs₁ : ↑s' ⊆ s
hs₂ : Ideal.span ↑s' = ⊤
n₁ : { x // x ∈ s' } → ℕ
n₂ : ∀ (r : { x // x ∈ s' }), ↑r ^ n₁ r • x ∈ M'
N : ℕ := Finset.sup (Finset.attach s') n₁
hs' : Ideal.span ((fun x => x ^ N) '' ↑s') = ⊤
r : R
hr : r ∈ ↑s'
⊢ ↑{ val := (fun x => x ^ N) r, property := (_ : ∃ a ∈ ↑s', (fun x => x ^ N) a = (fun x => x ^ N) r) } • x ∈ M' | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
| convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1 | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
| Mathlib.RingTheory.Ideal.Operations.258_0.5qK551sG47yBciY | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
case h.e'_4
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
s' : Finset R
hs₁ : ↑s' ⊆ s
hs₂ : Ideal.span ↑s' = ⊤
n₁ : { x // x ∈ s' } → ℕ
n₂ : ∀ (r : { x // x ∈ s' }), ↑r ^ n₁ r • x ∈ M'
N : ℕ := Finset.sup (Finset.attach s') n₁
hs' : Ideal.span ((fun x => x ^ N) '' ↑s') = ⊤
r : R
hr : r ∈ ↑s'
⊢ ↑{ val := (fun x => x ^ N) r, property := (_ : ∃ a ∈ ↑s', (fun x => x ^ N) a = (fun x => x ^ N) r) } • x =
r ^ (N - n₁ { val := r, property := hr }) • ↑{ val := r, property := hr } ^ n₁ { val := r, property := hr } • x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
| simp only [Subtype.coe_mk, smul_smul, ← pow_add] | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
| Mathlib.RingTheory.Ideal.Operations.258_0.5qK551sG47yBciY | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
case h.e'_4
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommSemiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
M' : Submodule R M
s : Set R
hs : Ideal.span s = ⊤
x : M
s' : Finset R
hs₁ : ↑s' ⊆ s
hs₂ : Ideal.span ↑s' = ⊤
n₁ : { x // x ∈ s' } → ℕ
n₂ : ∀ (r : { x // x ∈ s' }), ↑r ^ n₁ r • x ∈ M'
N : ℕ := Finset.sup (Finset.attach s') n₁
hs' : Ideal.span ((fun x => x ^ N) '' ↑s') = ⊤
r : R
hr : r ∈ ↑s'
⊢ r ^ Finset.sup (Finset.attach s') n₁ • x =
r ^ (Finset.sup (Finset.attach s') n₁ - n₁ { val := r, property := hr } + n₁ { val := r, property := hr }) • x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
| rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)] | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
| Mathlib.RingTheory.Ideal.Operations.258_0.5qK551sG47yBciY | /-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
s : Set M
x : M
⊢ x ∈ I • span R s ↔ x ∈ span R (⋃ a ∈ I, ⋃ b ∈ s, {a • b}) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
| rw [← I.span_eq, Submodule.span_smul_span, I.span_eq] | theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
| Mathlib.RingTheory.Ideal.Operations.289_0.5qK551sG47yBciY | theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
s : Set M
x : M
⊢ x ∈ span R (⋃ s_1 ∈ ↑I, ⋃ t ∈ s, {s_1 • t}) ↔ x ∈ span R (⋃ a ∈ I, ⋃ b ∈ s, {a • b}) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
| rfl | theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
| Mathlib.RingTheory.Ideal.Operations.289_0.5qK551sG47yBciY | theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
⊢ x ∈ I • span R (Set.range f) ↔ ∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • f i) = x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
| constructor | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
| Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
⊢ x ∈ I • span R (Set.range f) → ∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • f i) = x
case mpr
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
⊢ (∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • f i) = x) → x ∈ I • span R (Set.range f) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; | swap | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mpr
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
⊢ (∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • f i) = x) → x ∈ I • span R (Set.range f) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· | rintro ⟨a, ha, rfl⟩ | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mpr.intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
⊢ (Finsupp.sum a fun i c => c • f i) ∈ I • span R (Set.range f) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
| exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _ | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
| Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
⊢ x ∈ I • span R (Set.range f) → ∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • f i) = x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
| refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _ | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
| Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_1
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
⊢ ∀ x ∈ ⋃ a ∈ I, ⋃ b ∈ Set.range f, {a • b}, ∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • f i) = x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· | simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff] | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_1
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
⊢ ∀ (x : M),
(∃ i, ∃ (_ : i ∈ I), ∃ i_1, ∃ (_ : ∃ y, f y = i_1), x = i • i_1) →
∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • f i) = x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
| rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩ | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
| Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_1.intro.intro.intro.intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
y : R
hy : y ∈ I
i : ι
⊢ ∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • f i) = y • f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
| refine' ⟨Finsupp.single i y, fun j => _, _⟩ | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
| Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_1.intro.intro.intro.intro.intro.refine'_1
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
y : R
hy : y ∈ I
i j : ι
⊢ (fun₀ | i => y) j ∈ I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· | letI := Classical.decEq ι | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_1.intro.intro.intro.intro.intro.refine'_1
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
y : R
hy : y ∈ I
i j : ι
this : DecidableEq ι := Classical.decEq ι
⊢ (fun₀ | i => y) j ∈ I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
| rw [Finsupp.single_apply] | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
| Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_1.intro.intro.intro.intro.intro.refine'_1
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
y : R
hy : y ∈ I
i j : ι
this : DecidableEq ι := Classical.decEq ι
⊢ (if i = j then y else 0) ∈ I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
| split_ifs | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
| Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case pos
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
y : R
hy : y ∈ I
i j : ι
this : DecidableEq ι := Classical.decEq ι
h✝ : i = j
⊢ y ∈ I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· | assumption | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case neg
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
y : R
hy : y ∈ I
i j : ι
this : DecidableEq ι := Classical.decEq ι
h✝ : ¬i = j
⊢ 0 ∈ I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· | exact I.zero_mem | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_1.intro.intro.intro.intro.intro.refine'_2
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
y : R
hy : y ∈ I
i : ι
⊢ (Finsupp.sum (fun₀ | i => y) fun i c => c • f i) = y • f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
| refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _ | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
| Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_1.intro.intro.intro.intro.intro.refine'_2
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
y : R
hy : y ∈ I
i : ι
⊢ (fun i y => y • f i) i 0 = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
| simp | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
| Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_2
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
⊢ ∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • f i) = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· | exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩ | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_3
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
⊢ ∀ (x y : M),
(∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • f i) = x) →
(∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • f i) = y) →
∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • f i) = x + y | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· | rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩ | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_3.intro.intro.intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
ax : ι →₀ R
hax : ∀ (i : ι), ax i ∈ I
ay : ι →₀ R
hay : ∀ (i : ι), ay i ∈ I
⊢ ∃ a,
∃ (_ : ∀ (i : ι), a i ∈ I),
(Finsupp.sum a fun i c => c • f i) = (Finsupp.sum ax fun i c => c • f i) + Finsupp.sum ay fun i c => c • f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
| refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
| Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_3.intro.intro.intro.intro.refine'_1
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
ax : ι →₀ R
hax : ∀ (i : ι), ax i ∈ I
ay : ι →₀ R
hay : ∀ (i : ι), ay i ∈ I
⊢ ∀ (a : ι), 0 • f a = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> | intros | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_3.intro.intro.intro.intro.refine'_2
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
ax : ι →₀ R
hax : ∀ (i : ι), ax i ∈ I
ay : ι →₀ R
hay : ∀ (i : ι), ay i ∈ I
⊢ ∀ (a : ι) (b₁ b₂ : R), (b₁ + b₂) • f a = b₁ • f a + b₂ • f a | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> | intros | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_3.intro.intro.intro.intro.refine'_1
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
ax : ι →₀ R
hax : ∀ (i : ι), ax i ∈ I
ay : ι →₀ R
hay : ∀ (i : ι), ay i ∈ I
a✝ : ι
⊢ 0 • f a✝ = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
| simp only [zero_smul, add_smul] | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
| Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_3.intro.intro.intro.intro.refine'_2
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
ax : ι →₀ R
hax : ∀ (i : ι), ax i ∈ I
ay : ι →₀ R
hay : ∀ (i : ι), ay i ∈ I
a✝ : ι
b₁✝ b₂✝ : R
⊢ (b₁✝ + b₂✝) • f a✝ = b₁✝ • f a✝ + b₂✝ • f a✝ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
| simp only [zero_smul, add_smul] | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
| Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_4
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
⊢ ∀ (a : R) (x : M),
(∃ a, ∃ (_ : ∀ (i : ι), a i ∈ I), (Finsupp.sum a fun i c => c • f i) = x) →
∃ a_2, ∃ (_ : ∀ (i : ι), a_2 i ∈ I), (Finsupp.sum a_2 fun i c => c • f i) = a • x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· | rintro c x ⟨a, ha, rfl⟩ | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_4.intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
c : R
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
⊢ ∃ a_1, ∃ (_ : ∀ (i : ι), a_1 i ∈ I), (Finsupp.sum a_1 fun i c => c • f i) = c • Finsupp.sum a fun i c => c • f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
| refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩ | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
| Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_4.intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
c : R
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
⊢ (Finsupp.sum (c • a) fun i c => c • f i) = c • Finsupp.sum a fun i c => c • f i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
| rw [Finsupp.sum_smul_index, Finsupp.smul_sum] | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
| Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_4.intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
c : R
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
⊢ (Finsupp.sum a fun i a => (c * a) • f i) = Finsupp.sum a fun a b => c • b • f a | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> | intros | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_4.intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
c : R
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
⊢ ∀ (i : ι), 0 • f i = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> | intros | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_4.intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
c : R
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
⊢ (Finsupp.sum a fun i a => (c * a) • f i) = Finsupp.sum a fun a b => c • b • f a | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> | simp only [zero_smul, mul_smul] | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
case mp.refine'_4.intro.intro
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
f : ι → M
x : M
hx : x ∈ I • span R (Set.range f)
c : R
a : ι →₀ R
ha : ∀ (i : ι), a i ∈ I
i✝ : ι
⊢ 0 • f i✝ = 0 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> | simp only [zero_smul, mul_smul] | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> | Mathlib.RingTheory.Ideal.Operations.297_0.5qK551sG47yBciY | /-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
ι : Type u_3
s : Set ι
f : ι → M
x : M
⊢ x ∈ I • span R (f '' s) ↔ ∃ a, ∃ (_ : ∀ (i : ↑s), a i ∈ I), (Finsupp.sum a fun i c => c • f ↑i) = x | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by | rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range] | theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by | Mathlib.RingTheory.Ideal.Operations.325_0.5qK551sG47yBciY | theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
N : Submodule R M
x : ↥N
⊢ x ∈ I • ⊤ ↔ ↑x ∈ I • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
| change _ ↔ N.subtype x ∈ I • N | theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
| Mathlib.RingTheory.Ideal.Operations.330_0.5qK551sG47yBciY | theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
N : Submodule R M
x : ↥N
⊢ x ∈ I • ⊤ ↔ (Submodule.subtype N) x ∈ I • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
| have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype] | theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
| Mathlib.RingTheory.Ideal.Operations.330_0.5qK551sG47yBciY | theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
N : Submodule R M
x : ↥N
⊢ map (Submodule.subtype N) (I • ⊤) = I • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
| rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype] | theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
| Mathlib.RingTheory.Ideal.Operations.330_0.5qK551sG47yBciY | theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
N : Submodule R M
x : ↥N
this : map (Submodule.subtype N) (I • ⊤) = I • N
⊢ x ∈ I • ⊤ ↔ (Submodule.subtype N) x ∈ I • N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
| rw [← this] | theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
| Mathlib.RingTheory.Ideal.Operations.330_0.5qK551sG47yBciY | theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I J : Ideal R
N✝ P : Submodule R M
S : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
N : Submodule R M
x : ↥N
this : map (Submodule.subtype N) (I • ⊤) = I • N
⊢ x ∈ I • ⊤ ↔ (Submodule.subtype N) x ∈ map (Submodule.subtype N) (I • ⊤) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
| exact (Function.Injective.mem_set_image N.injective_subtype).symm | theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
| Mathlib.RingTheory.Ideal.Operations.330_0.5qK551sG47yBciY | theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I✝ J : Ideal R
N P : Submodule R M
S✝ : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
f : M →ₗ[R] M'
S : Submodule R M'
I : Ideal R
⊢ I • comap f S ≤ comap f (I • S) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
| refine' Submodule.smul_le.mpr fun r hr x hx => _ | @[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
| Mathlib.RingTheory.Ideal.Operations.339_0.5qK551sG47yBciY | @[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I✝ J : Ideal R
N P : Submodule R M
S✝ : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
f : M →ₗ[R] M'
S : Submodule R M'
I : Ideal R
r : R
hr : r ∈ I
x : M
hx : x ∈ comap f S
⊢ r • x ∈ comap f (I • S) | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
| rw [Submodule.mem_comap] at hx ⊢ | @[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
| Mathlib.RingTheory.Ideal.Operations.339_0.5qK551sG47yBciY | @[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I✝ J : Ideal R
N P : Submodule R M
S✝ : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
f : M →ₗ[R] M'
S : Submodule R M'
I : Ideal R
r : R
hr : r ∈ I
x : M
hx : f x ∈ S
⊢ f (r • x) ∈ I • S | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
| rw [f.map_smul] | @[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
| Mathlib.RingTheory.Ideal.Operations.339_0.5qK551sG47yBciY | @[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : AddCommMonoid M
inst✝² : Module R M
I✝ J : Ideal R
N P : Submodule R M
S✝ : Set R
T : Set M
M' : Type w
inst✝¹ : AddCommMonoid M'
inst✝ : Module R M'
f : M →ₗ[R] M'
S : Submodule R M'
I : Ideal R
r : R
hr : r ∈ I
x : M
hx : f x ∈ S
⊢ r • f x ∈ I • S | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
| exact Submodule.smul_mem_smul hr hx | @[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
| Mathlib.RingTheory.Ideal.Operations.339_0.5qK551sG47yBciY | @[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
N✝ N₁ N₂ P P₁ P₂ N : Submodule R M
x : M
r : R
⊢ r ∈ colon N (span R {x}) ↔ ∀ (a : R), r • a • x ∈ N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
| simp [Submodule.mem_colon, Submodule.mem_span_singleton] | @[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
| Mathlib.RingTheory.Ideal.Operations.389_0.5qK551sG47yBciY | @[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
N✝ N₁ N₂ P P₁ P₂ N : Submodule R M
x : M
r : R
⊢ (∀ (a : R), r • a • x ∈ N) ↔ r • x ∈ N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by | simp_rw [fun (a : R) ↦ smul_comm r a x] | @[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by | Mathlib.RingTheory.Ideal.Operations.389_0.5qK551sG47yBciY | @[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
N✝ N₁ N₂ P P₁ P₂ N : Submodule R M
x : M
r : R
⊢ (∀ (a : R), a • r • x ∈ N) ↔ r • x ∈ N | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; | exact SetLike.forall_smul_mem_iff | @[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; | Mathlib.RingTheory.Ideal.Operations.389_0.5qK551sG47yBciY | @[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N | Mathlib_RingTheory_Ideal_Operations |
R : Type u
M : Type v
F : Type u_1
G : Type u_2
inst✝² : CommRing R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
N N₁ N₂ P P₁ P₂ : Submodule R M
I : Ideal R
x r : R
⊢ r ∈ colon I (Ideal.span {x}) ↔ r * x ∈ I | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
| simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul] | @[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
| Mathlib.RingTheory.Ideal.Operations.398_0.5qK551sG47yBciY | @[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
⊢ 1 = ⊤ | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by | erw [Submodule.one_eq_range, LinearMap.range_id] | @[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by | Mathlib.RingTheory.Ideal.Operations.440_0.5qK551sG47yBciY | @[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι : Type u_1
inst✝ : CommSemiring R
I J K L : Ideal R
⊢ I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
| rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup] | theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
| Mathlib.RingTheory.Ideal.Operations.444_0.5qK551sG47yBciY | theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι✝ : Type u_1
inst✝ : CommSemiring R
I✝ J K L : Ideal R
ι : Type u_2
s : Finset ι
I : ι → Ideal R
x : ι → R
⊢ (∀ i ∈ s, x i ∈ I i) → ∏ i in s, x i ∈ ∏ i in s, I i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
| classical
refine Finset.induction_on s ?_ ?_
· intro
rw [Finset.prod_empty, Finset.prod_empty, one_eq_top]
exact Submodule.mem_top
· intro a s ha IH h
rw [Finset.prod_insert ha, Finset.prod_insert ha]
exact
mul_mem_mul (h a <| Finset.mem_insert_self a s)
(IH fun i hi => h i <| Finset.mem_insert_of_mem hi) | theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
| Mathlib.RingTheory.Ideal.Operations.459_0.5qK551sG47yBciY | theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i | Mathlib_RingTheory_Ideal_Operations |
R : Type u
ι✝ : Type u_1
inst✝ : CommSemiring R
I✝ J K L : Ideal R
ι : Type u_2
s : Finset ι
I : ι → Ideal R
x : ι → R
⊢ (∀ i ∈ s, x i ∈ I i) → ∏ i in s, x i ∈ ∏ i in s, I i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
| refine Finset.induction_on s ?_ ?_ | theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
| Mathlib.RingTheory.Ideal.Operations.459_0.5qK551sG47yBciY | theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i | Mathlib_RingTheory_Ideal_Operations |
case refine_1
R : Type u
ι✝ : Type u_1
inst✝ : CommSemiring R
I✝ J K L : Ideal R
ι : Type u_2
s : Finset ι
I : ι → Ideal R
x : ι → R
⊢ (∀ i ∈ ∅, x i ∈ I i) → ∏ i in ∅, x i ∈ ∏ i in ∅, I i | /-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import Mathlib.Algebra.Algebra.Operations
import Mathlib.Algebra.Ring.Equiv
import Mathlib.Data.Nat.Choose.Sum
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.RingTheory.Coprime.Lemmas
import Mathlib.RingTheory.Ideal.Basic
import Mathlib.Algebra.GroupWithZero.NonZeroDivisors
#align_import ring_theory.ideal.operations from "leanprover-community/mathlib"@"e7f0ddbf65bd7181a85edb74b64bdc35ba4bdc74"
/-!
# More operations on modules and ideals
-/
universe u v w x
open BigOperators Pointwise
namespace Submodule
variable {R : Type u} {M : Type v} {F : Type*} {G : Type*}
section CommSemiring
variable [CommSemiring R] [AddCommMonoid M] [Module R M]
open Pointwise
instance hasSMul' : SMul (Ideal R) (Submodule R M) :=
⟨Submodule.map₂ (LinearMap.lsmul R M)⟩
#align submodule.has_smul' Submodule.hasSMul'
/-- This duplicates the global `smul_eq_mul`, but doesn't have to unfold anywhere near as much to
apply. -/
protected theorem _root_.Ideal.smul_eq_mul (I J : Ideal R) : I • J = I * J :=
rfl
#align ideal.smul_eq_mul Ideal.smul_eq_mul
/-- `N.annihilator` is the ideal of all elements `r : R` such that `r • N = 0`. -/
def annihilator (N : Submodule R M) : Ideal R :=
LinearMap.ker (LinearMap.lsmul R N)
#align submodule.annihilator Submodule.annihilator
variable {I J : Ideal R} {N P : Submodule R M}
theorem mem_annihilator {r} : r ∈ N.annihilator ↔ ∀ n ∈ N, r • n = (0 : M) :=
⟨fun hr n hn => congr_arg Subtype.val (LinearMap.ext_iff.1 (LinearMap.mem_ker.1 hr) ⟨n, hn⟩),
fun h => LinearMap.mem_ker.2 <| LinearMap.ext fun n => Subtype.eq <| h n.1 n.2⟩
#align submodule.mem_annihilator Submodule.mem_annihilator
theorem mem_annihilator' {r} : r ∈ N.annihilator ↔ N ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) ⊥ :=
mem_annihilator.trans ⟨fun H n hn => (mem_bot R).2 <| H n hn, fun H _ hn => (mem_bot R).1 <| H hn⟩
#align submodule.mem_annihilator' Submodule.mem_annihilator'
theorem mem_annihilator_span (s : Set M) (r : R) :
r ∈ (Submodule.span R s).annihilator ↔ ∀ n : s, r • (n : M) = 0 := by
rw [Submodule.mem_annihilator]
constructor
· intro h n
exact h _ (Submodule.subset_span n.prop)
· intro h n hn
refine Submodule.span_induction hn ?_ ?_ ?_ ?_
· intro x hx
exact h ⟨x, hx⟩
· exact smul_zero _
· intro x y hx hy
rw [smul_add, hx, hy, zero_add]
· intro a x hx
rw [smul_comm, hx, smul_zero]
#align submodule.mem_annihilator_span Submodule.mem_annihilator_span
theorem mem_annihilator_span_singleton (g : M) (r : R) :
r ∈ (Submodule.span R ({g} : Set M)).annihilator ↔ r • g = 0 := by simp [mem_annihilator_span]
#align submodule.mem_annihilator_span_singleton Submodule.mem_annihilator_span_singleton
theorem annihilator_bot : (⊥ : Submodule R M).annihilator = ⊤ :=
(Ideal.eq_top_iff_one _).2 <| mem_annihilator'.2 bot_le
#align submodule.annihilator_bot Submodule.annihilator_bot
theorem annihilator_eq_top_iff : N.annihilator = ⊤ ↔ N = ⊥ :=
⟨fun H =>
eq_bot_iff.2 fun (n : M) hn =>
(mem_bot R).2 <| one_smul R n ▸ mem_annihilator.1 ((Ideal.eq_top_iff_one _).1 H) n hn,
fun H => H.symm ▸ annihilator_bot⟩
#align submodule.annihilator_eq_top_iff Submodule.annihilator_eq_top_iff
theorem annihilator_mono (h : N ≤ P) : P.annihilator ≤ N.annihilator := fun _ hrp =>
mem_annihilator.2 fun n hn => mem_annihilator.1 hrp n <| h hn
#align submodule.annihilator_mono Submodule.annihilator_mono
theorem annihilator_iSup (ι : Sort w) (f : ι → Submodule R M) :
annihilator (⨆ i, f i) = ⨅ i, annihilator (f i) :=
le_antisymm (le_iInf fun _ => annihilator_mono <| le_iSup _ _) fun _ H =>
mem_annihilator'.2 <|
iSup_le fun i =>
have := (mem_iInf _).1 H i
mem_annihilator'.1 this
#align submodule.annihilator_supr Submodule.annihilator_iSup
theorem smul_mem_smul {r} {n} (hr : r ∈ I) (hn : n ∈ N) : r • n ∈ I • N :=
apply_mem_map₂ _ hr hn
#align submodule.smul_mem_smul Submodule.smul_mem_smul
theorem smul_le {P : Submodule R M} : I • N ≤ P ↔ ∀ r ∈ I, ∀ n ∈ N, r • n ∈ P :=
map₂_le
#align submodule.smul_le Submodule.smul_le
@[elab_as_elim]
theorem smul_induction_on {p : M → Prop} {x} (H : x ∈ I • N) (Hb : ∀ r ∈ I, ∀ n ∈ N, p (r • n))
(H1 : ∀ x y, p x → p y → p (x + y)) : p x := by
have H0 : p 0 := by simpa only [zero_smul] using Hb 0 I.zero_mem 0 N.zero_mem
refine Submodule.iSup_induction (x := x) _ H ?_ H0 H1
rintro ⟨i, hi⟩ m ⟨j, hj, hj'⟩
rw [← hj']
exact Hb _ hi _ hj
#align submodule.smul_induction_on Submodule.smul_induction_on
/-- Dependent version of `Submodule.smul_induction_on`. -/
@[elab_as_elim]
theorem smul_induction_on' {x : M} (hx : x ∈ I • N) {p : ∀ x, x ∈ I • N → Prop}
(Hb : ∀ (r : R) (hr : r ∈ I) (n : M) (hn : n ∈ N), p (r • n) (smul_mem_smul hr hn))
(H1 : ∀ x hx y hy, p x hx → p y hy → p (x + y) (Submodule.add_mem _ ‹_› ‹_›)) : p x hx := by
refine' Exists.elim _ fun (h : x ∈ I • N) (H : p x h) => H
exact
smul_induction_on hx (fun a ha x hx => ⟨_, Hb _ ha _ hx⟩) fun x y ⟨_, hx⟩ ⟨_, hy⟩ =>
⟨_, H1 _ _ _ _ hx hy⟩
#align submodule.smul_induction_on' Submodule.smul_induction_on'
theorem mem_smul_span_singleton {I : Ideal R} {m : M} {x : M} :
x ∈ I • span R ({m} : Set M) ↔ ∃ y ∈ I, y • m = x :=
⟨fun hx =>
smul_induction_on hx
(fun r hri n hnm =>
let ⟨s, hs⟩ := mem_span_singleton.1 hnm
⟨r * s, I.mul_mem_right _ hri, hs ▸ mul_smul r s m⟩)
fun m1 m2 ⟨y1, hyi1, hy1⟩ ⟨y2, hyi2, hy2⟩ =>
⟨y1 + y2, I.add_mem hyi1 hyi2, by rw [add_smul, hy1, hy2]⟩,
fun ⟨y, hyi, hy⟩ => hy ▸ smul_mem_smul hyi (subset_span <| Set.mem_singleton m)⟩
#align submodule.mem_smul_span_singleton Submodule.mem_smul_span_singleton
theorem smul_le_right : I • N ≤ N :=
smul_le.2 fun r _ _ => N.smul_mem r
#align submodule.smul_le_right Submodule.smul_le_right
theorem smul_mono (hij : I ≤ J) (hnp : N ≤ P) : I • N ≤ J • P :=
map₂_le_map₂ hij hnp
#align submodule.smul_mono Submodule.smul_mono
theorem smul_mono_left (h : I ≤ J) : I • N ≤ J • N :=
map₂_le_map₂_left h
#align submodule.smul_mono_left Submodule.smul_mono_left
theorem smul_mono_right (h : N ≤ P) : I • N ≤ I • P :=
map₂_le_map₂_right h
#align submodule.smul_mono_right Submodule.smul_mono_right
theorem map_le_smul_top (I : Ideal R) (f : R →ₗ[R] M) :
Submodule.map f I ≤ I • (⊤ : Submodule R M) := by
rintro _ ⟨y, hy, rfl⟩
rw [← mul_one y, ← smul_eq_mul, f.map_smul]
exact smul_mem_smul hy mem_top
#align submodule.map_le_smul_top Submodule.map_le_smul_top
@[simp]
theorem annihilator_smul (N : Submodule R M) : annihilator N • N = ⊥ :=
eq_bot_iff.2 (smul_le.2 fun _ => mem_annihilator.1)
#align submodule.annihilator_smul Submodule.annihilator_smul
@[simp]
theorem annihilator_mul (I : Ideal R) : annihilator I * I = ⊥ :=
annihilator_smul I
#align submodule.annihilator_mul Submodule.annihilator_mul
@[simp]
theorem mul_annihilator (I : Ideal R) : I * annihilator I = ⊥ := by rw [mul_comm, annihilator_mul]
#align submodule.mul_annihilator Submodule.mul_annihilator
variable (I J N P)
@[simp]
theorem smul_bot : I • (⊥ : Submodule R M) = ⊥ :=
map₂_bot_right _ _
#align submodule.smul_bot Submodule.smul_bot
@[simp]
theorem bot_smul : (⊥ : Ideal R) • N = ⊥ :=
map₂_bot_left _ _
#align submodule.bot_smul Submodule.bot_smul
@[simp]
theorem top_smul : (⊤ : Ideal R) • N = N :=
le_antisymm smul_le_right fun r hri => one_smul R r ▸ smul_mem_smul mem_top hri
#align submodule.top_smul Submodule.top_smul
theorem smul_sup : I • (N ⊔ P) = I • N ⊔ I • P :=
map₂_sup_right _ _ _ _
#align submodule.smul_sup Submodule.smul_sup
theorem sup_smul : (I ⊔ J) • N = I • N ⊔ J • N :=
map₂_sup_left _ _ _ _
#align submodule.sup_smul Submodule.sup_smul
protected theorem smul_assoc : (I • J) • N = I • J • N :=
le_antisymm
(smul_le.2 fun _ hrsij t htn =>
smul_induction_on hrsij
(fun r hr s hs =>
(@smul_eq_mul R _ r s).symm ▸ smul_smul r s t ▸ smul_mem_smul hr (smul_mem_smul hs htn))
fun x y => (add_smul x y t).symm ▸ Submodule.add_mem _)
(smul_le.2 fun r hr _ hsn =>
suffices J • N ≤ Submodule.comap (r • (LinearMap.id : M →ₗ[R] M)) ((I • J) • N) from this hsn
smul_le.2 fun s hs n hn =>
show r • s • n ∈ (I • J) • N from mul_smul r s n ▸ smul_mem_smul (smul_mem_smul hr hs) hn)
#align submodule.smul_assoc Submodule.smul_assoc
theorem smul_inf_le (M₁ M₂ : Submodule R M) : I • (M₁ ⊓ M₂) ≤ I • M₁ ⊓ I • M₂ :=
le_inf (Submodule.smul_mono_right inf_le_left) (Submodule.smul_mono_right inf_le_right)
#align submodule.smul_inf_le Submodule.smul_inf_le
theorem smul_iSup {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} : I • iSup t = ⨆ i, I • t i :=
map₂_iSup_right _ _ _
#align submodule.smul_supr Submodule.smul_iSup
theorem smul_iInf_le {ι : Sort*} {I : Ideal R} {t : ι → Submodule R M} :
I • iInf t ≤ ⨅ i, I • t i :=
le_iInf fun _ => smul_mono_right (iInf_le _ _)
#align submodule.smul_infi_le Submodule.smul_iInf_le
variable (S : Set R) (T : Set M)
theorem span_smul_span : Ideal.span S • span R T = span R (⋃ (s ∈ S) (t ∈ T), {s • t}) :=
(map₂_span_span _ _ _ _).trans <| congr_arg _ <| Set.image2_eq_iUnion _ _ _
#align submodule.span_smul_span Submodule.span_smul_span
theorem ideal_span_singleton_smul (r : R) (N : Submodule R M) :
(Ideal.span {r} : Ideal R) • N = r • N := by
have : span R (⋃ (t : M) (_ : t ∈ N), {r • t}) = r • N := by
convert span_eq (r • N)
exact (Set.image_eq_iUnion _ (N : Set M)).symm
conv_lhs => rw [← span_eq N, span_smul_span]
simpa
#align submodule.ideal_span_singleton_smul Submodule.ideal_span_singleton_smul
theorem mem_of_span_top_of_smul_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤) (x : M)
(H : ∀ r : s, (r : R) • x ∈ M') : x ∈ M' := by
suffices (⊤ : Ideal R) • span R ({x} : Set M) ≤ M' by
rw [top_smul] at this
exact this (subset_span (Set.mem_singleton x))
rw [← hs, span_smul_span, span_le]
simpa using H
#align submodule.mem_of_span_top_of_smul_mem Submodule.mem_of_span_top_of_smul_mem
/-- Given `s`, a generating set of `R`, to check that an `x : M` falls in a
submodule `M'` of `x`, we only need to show that `r ^ n • x ∈ M'` for some `n` for each `r : s`. -/
theorem mem_of_span_eq_top_of_smul_pow_mem (M' : Submodule R M) (s : Set R) (hs : Ideal.span s = ⊤)
(x : M) (H : ∀ r : s, ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M') : x ∈ M' := by
obtain ⟨s', hs₁, hs₂⟩ := (Ideal.span_eq_top_iff_finite _).mp hs
replace H : ∀ r : s', ∃ n : ℕ, ((r : R) ^ n : R) • x ∈ M' := fun r => H ⟨_, hs₁ r.2⟩
choose n₁ n₂ using H
let N := s'.attach.sup n₁
have hs' := Ideal.span_pow_eq_top (s' : Set R) hs₂ N
apply M'.mem_of_span_top_of_smul_mem _ hs'
rintro ⟨_, r, hr, rfl⟩
convert M'.smul_mem (r ^ (N - n₁ ⟨r, hr⟩)) (n₂ ⟨r, hr⟩) using 1
simp only [Subtype.coe_mk, smul_smul, ← pow_add]
rw [tsub_add_cancel_of_le (Finset.le_sup (s'.mem_attach _) : n₁ ⟨r, hr⟩ ≤ N)]
#align submodule.mem_of_span_eq_top_of_smul_pow_mem Submodule.mem_of_span_eq_top_of_smul_pow_mem
variable {M' : Type w} [AddCommMonoid M'] [Module R M']
theorem map_smul'' (f : M →ₗ[R] M') : (I • N).map f = I • N.map f :=
le_antisymm
(map_le_iff_le_comap.2 <|
smul_le.2 fun r hr n hn =>
show f (r • n) ∈ I • N.map f from
(f.map_smul r n).symm ▸ smul_mem_smul hr (mem_map_of_mem hn)) <|
smul_le.2 fun r hr _ hn =>
let ⟨p, hp, hfp⟩ := mem_map.1 hn
hfp ▸ f.map_smul r p ▸ mem_map_of_mem (smul_mem_smul hr hp)
#align submodule.map_smul'' Submodule.map_smul''
variable {I}
theorem mem_smul_span {s : Set M} {x : M} :
x ∈ I • Submodule.span R s ↔ x ∈ Submodule.span R (⋃ (a ∈ I) (b ∈ s), ({a • b} : Set M)) := by
rw [← I.span_eq, Submodule.span_smul_span, I.span_eq]
rfl
#align submodule.mem_smul_span Submodule.mem_smul_span
variable (I)
/-- If `x` is an `I`-multiple of the submodule spanned by `f '' s`,
then we can write `x` as an `I`-linear combination of the elements of `f '' s`. -/
theorem mem_ideal_smul_span_iff_exists_sum {ι : Type*} (f : ι → M) (x : M) :
x ∈ I • span R (Set.range f) ↔
∃ (a : ι →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x := by
constructor; swap
· rintro ⟨a, ha, rfl⟩
exact Submodule.sum_mem _ fun c _ => smul_mem_smul (ha c) <| subset_span <| Set.mem_range_self _
refine' fun hx => span_induction (mem_smul_span.mp hx) _ _ _ _
· simp only [Set.mem_iUnion, Set.mem_range, Set.mem_singleton_iff]
rintro x ⟨y, hy, x, ⟨i, rfl⟩, rfl⟩
refine' ⟨Finsupp.single i y, fun j => _, _⟩
· letI := Classical.decEq ι
rw [Finsupp.single_apply]
split_ifs
· assumption
· exact I.zero_mem
refine' @Finsupp.sum_single_index ι R M _ _ i _ (fun i y => y • f i) _
simp
· exact ⟨0, fun _ => I.zero_mem, Finsupp.sum_zero_index⟩
· rintro x y ⟨ax, hax, rfl⟩ ⟨ay, hay, rfl⟩
refine' ⟨ax + ay, fun i => I.add_mem (hax i) (hay i), Finsupp.sum_add_index' _ _⟩ <;> intros <;>
simp only [zero_smul, add_smul]
· rintro c x ⟨a, ha, rfl⟩
refine' ⟨c • a, fun i => I.mul_mem_left c (ha i), _⟩
rw [Finsupp.sum_smul_index, Finsupp.smul_sum] <;> intros <;> simp only [zero_smul, mul_smul]
#align submodule.mem_ideal_smul_span_iff_exists_sum Submodule.mem_ideal_smul_span_iff_exists_sum
theorem mem_ideal_smul_span_iff_exists_sum' {ι : Type*} (s : Set ι) (f : ι → M) (x : M) :
x ∈ I • span R (f '' s) ↔ ∃ (a : s →₀ R) (_ : ∀ i, a i ∈ I), (a.sum fun i c => c • f i) = x :=
by rw [← Submodule.mem_ideal_smul_span_iff_exists_sum, ← Set.image_eq_range]
#align submodule.mem_ideal_smul_span_iff_exists_sum' Submodule.mem_ideal_smul_span_iff_exists_sum'
theorem mem_smul_top_iff (N : Submodule R M) (x : N) :
x ∈ I • (⊤ : Submodule R N) ↔ (x : M) ∈ I • N := by
change _ ↔ N.subtype x ∈ I • N
have : Submodule.map N.subtype (I • ⊤) = I • N := by
rw [Submodule.map_smul'', Submodule.map_top, Submodule.range_subtype]
rw [← this]
exact (Function.Injective.mem_set_image N.injective_subtype).symm
#align submodule.mem_smul_top_iff Submodule.mem_smul_top_iff
@[simp]
theorem smul_comap_le_comap_smul (f : M →ₗ[R] M') (S : Submodule R M') (I : Ideal R) :
I • S.comap f ≤ (I • S).comap f := by
refine' Submodule.smul_le.mpr fun r hr x hx => _
rw [Submodule.mem_comap] at hx ⊢
rw [f.map_smul]
exact Submodule.smul_mem_smul hr hx
#align submodule.smul_comap_le_comap_smul Submodule.smul_comap_le_comap_smul
end CommSemiring
section CommRing
variable [CommRing R] [AddCommGroup M] [Module R M]
variable {N N₁ N₂ P P₁ P₂ : Submodule R M}
/-- `N.colon P` is the ideal of all elements `r : R` such that `r • P ⊆ N`. -/
def colon (N P : Submodule R M) : Ideal R :=
annihilator (P.map N.mkQ)
#align submodule.colon Submodule.colon
theorem mem_colon {r} : r ∈ N.colon P ↔ ∀ p ∈ P, r • p ∈ N :=
mem_annihilator.trans
⟨fun H p hp => (Quotient.mk_eq_zero N).1 (H (Quotient.mk p) (mem_map_of_mem hp)),
fun H _ ⟨p, hp, hpm⟩ => hpm ▸ (N.mkQ.map_smul r p ▸ (Quotient.mk_eq_zero N).2 <| H p hp)⟩
#align submodule.mem_colon Submodule.mem_colon
theorem mem_colon' {r} : r ∈ N.colon P ↔ P ≤ comap (r • (LinearMap.id : M →ₗ[R] M)) N :=
mem_colon
#align submodule.mem_colon' Submodule.mem_colon'
theorem colon_mono (hn : N₁ ≤ N₂) (hp : P₁ ≤ P₂) : N₁.colon P₂ ≤ N₂.colon P₁ := fun _ hrnp =>
mem_colon.2 fun p₁ hp₁ => hn <| mem_colon.1 hrnp p₁ <| hp hp₁
#align submodule.colon_mono Submodule.colon_mono
theorem iInf_colon_iSup (ι₁ : Sort w) (f : ι₁ → Submodule R M) (ι₂ : Sort x)
(g : ι₂ → Submodule R M) : (⨅ i, f i).colon (⨆ j, g j) = ⨅ (i) (j), (f i).colon (g j) :=
le_antisymm (le_iInf fun _ => le_iInf fun _ => colon_mono (iInf_le _ _) (le_iSup _ _)) fun _ H =>
mem_colon'.2 <|
iSup_le fun j =>
map_le_iff_le_comap.1 <|
le_iInf fun i =>
map_le_iff_le_comap.2 <|
mem_colon'.1 <|
have := (mem_iInf _).1 H i
have := (mem_iInf _).1 this j
this
#align submodule.infi_colon_supr Submodule.iInf_colon_iSup
@[simp]
theorem mem_colon_singleton {N : Submodule R M} {x : M} {r : R} :
r ∈ N.colon (Submodule.span R {x}) ↔ r • x ∈ N :=
calc
r ∈ N.colon (Submodule.span R {x}) ↔ ∀ a : R, r • a • x ∈ N := by
simp [Submodule.mem_colon, Submodule.mem_span_singleton]
_ ↔ r • x ∈ N := by simp_rw [fun (a : R) ↦ smul_comm r a x]; exact SetLike.forall_smul_mem_iff
#align submodule.mem_colon_singleton Submodule.mem_colon_singleton
@[simp]
theorem _root_.Ideal.mem_colon_singleton {I : Ideal R} {x r : R} :
r ∈ I.colon (Ideal.span {x}) ↔ r * x ∈ I := by
simp only [← Ideal.submodule_span_eq, Submodule.mem_colon_singleton, smul_eq_mul]
#align ideal.mem_colon_singleton Ideal.mem_colon_singleton
end CommRing
end Submodule
namespace Ideal
section Add
variable {R : Type u} [Semiring R]
@[simp]
theorem add_eq_sup {I J : Ideal R} : I + J = I ⊔ J :=
rfl
#align ideal.add_eq_sup Ideal.add_eq_sup
@[simp]
theorem zero_eq_bot : (0 : Ideal R) = ⊥ :=
rfl
#align ideal.zero_eq_bot Ideal.zero_eq_bot
@[simp]
theorem sum_eq_sup {ι : Type*} (s : Finset ι) (f : ι → Ideal R) : s.sum f = s.sup f :=
rfl
#align ideal.sum_eq_sup Ideal.sum_eq_sup
end Add
section MulAndRadical
variable {R : Type u} {ι : Type*} [CommSemiring R]
variable {I J K L : Ideal R}
instance : Mul (Ideal R) :=
⟨(· • ·)⟩
@[simp]
theorem one_eq_top : (1 : Ideal R) = ⊤ := by erw [Submodule.one_eq_range, LinearMap.range_id]
#align ideal.one_eq_top Ideal.one_eq_top
theorem add_eq_one_iff : I + J = 1 ↔ ∃ i ∈ I, ∃ j ∈ J, i + j = 1 := by
rw [one_eq_top, eq_top_iff_one, add_eq_sup, Submodule.mem_sup]
theorem mul_mem_mul {r s} (hr : r ∈ I) (hs : s ∈ J) : r * s ∈ I * J :=
Submodule.smul_mem_smul hr hs
#align ideal.mul_mem_mul Ideal.mul_mem_mul
theorem mul_mem_mul_rev {r s} (hr : r ∈ I) (hs : s ∈ J) : s * r ∈ I * J :=
mul_comm r s ▸ mul_mem_mul hr hs
#align ideal.mul_mem_mul_rev Ideal.mul_mem_mul_rev
theorem pow_mem_pow {x : R} (hx : x ∈ I) (n : ℕ) : x ^ n ∈ I ^ n :=
Submodule.pow_mem_pow _ hx _
#align ideal.pow_mem_pow Ideal.pow_mem_pow
theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· | intro | theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i := by
classical
refine Finset.induction_on s ?_ ?_
· | Mathlib.RingTheory.Ideal.Operations.459_0.5qK551sG47yBciY | theorem prod_mem_prod {ι : Type*} {s : Finset ι} {I : ι → Ideal R} {x : ι → R} :
(∀ i ∈ s, x i ∈ I i) → (∏ i in s, x i) ∈ ∏ i in s, I i | Mathlib_RingTheory_Ideal_Operations |