python_code
stringlengths
0
290k
repo_name
stringclasses
30 values
file_path
stringlengths
6
125
from allennlp.common import Params from allennlp.data import Instance, Token from allennlp.data.batch import Batch from allennlp.data.fields import TextField from allennlp.data.samplers import MaxTokensBatchSampler from allennlp.data.dataset_readers.dataset_reader import AllennlpDataset from allennlp.data.dataloader import PyTorchDataLoader from .sampler_test import SamplerTest class TestMaxTokensSampler(SamplerTest): def test_create_batches_groups_correctly(self): dataset = AllennlpDataset(self.instances, vocab=self.vocab) sampler = MaxTokensBatchSampler( dataset, max_tokens=8, padding_noise=0, sorting_keys=["text"] ) grouped_instances = [] for indices in sampler: grouped_instances.append([self.instances[idx] for idx in indices]) expected_groups = [ [self.instances[4], self.instances[2]], [self.instances[0], self.instances[1]], [self.instances[3]], ] for group in grouped_instances: assert group in expected_groups expected_groups.remove(group) assert expected_groups == [] def test_guess_sorting_key_picks_the_longest_key(self): dataset = AllennlpDataset(self.instances, vocab=self.vocab) sampler = MaxTokensBatchSampler(dataset, max_tokens=8, padding_noise=0) instances = [] short_tokens = [Token(t) for t in ["what", "is", "this", "?"]] long_tokens = [Token(t) for t in ["this", "is", "a", "not", "very", "long", "passage"]] instances.append( Instance( { "question": TextField(short_tokens, self.token_indexers), "passage": TextField(long_tokens, self.token_indexers), } ) ) instances.append( Instance( { "question": TextField(short_tokens, self.token_indexers), "passage": TextField(long_tokens, self.token_indexers), } ) ) instances.append( Instance( { "question": TextField(short_tokens, self.token_indexers), "passage": TextField(long_tokens, self.token_indexers), } ) ) assert sampler.sorting_keys is None sampler._guess_sorting_keys(instances) assert sampler.sorting_keys == ["passage"] def test_from_params(self): dataset = AllennlpDataset(self.instances, self.vocab) params = Params({}) sorting_keys = ["s1", "s2"] params["sorting_keys"] = sorting_keys params["max_tokens"] = 32 sampler = MaxTokensBatchSampler.from_params(params=params, data_source=dataset) assert sampler.sorting_keys == sorting_keys assert sampler.padding_noise == 0.1 assert sampler.max_tokens == 32 params = Params({"sorting_keys": sorting_keys, "padding_noise": 0.5, "max_tokens": 100}) sampler = MaxTokensBatchSampler.from_params(params=params, data_source=dataset) assert sampler.sorting_keys == sorting_keys assert sampler.padding_noise == 0.5 assert sampler.max_tokens == 100 def test_batch_count(self): dataset = AllennlpDataset(self.instances, vocab=self.vocab) sampler = MaxTokensBatchSampler( dataset, max_tokens=8, padding_noise=0, sorting_keys=["text"] ) # We use a custom collate_fn for testing, which doesn't actually create tensors, # just the allennlp Batches. dataloader = PyTorchDataLoader( dataset, batch_sampler=sampler, collate_fn=lambda x: Batch(x) ) assert len(dataloader) == 3
allennlp-master
tests/data/samplers/max_tokens_batch_sampler_test.py
allennlp-master
tests/data/samplers/__init__.py
from typing import List, Iterable, Dict, Union from allennlp.common.testing import AllenNlpTestCase from allennlp.data import Vocabulary, Instance, Token, Batch from allennlp.data.fields import TextField from allennlp.data.token_indexers import SingleIdTokenIndexer class LazyIterable: def __init__(self, instances): self._instances = instances def __iter__(self): return (instance for instance in self._instances) class SamplerTest(AllenNlpTestCase): def setup_method(self): super().setup_method() self.token_indexers = {"tokens": SingleIdTokenIndexer()} self.vocab = Vocabulary() self.this_index = self.vocab.add_token_to_namespace("this") self.is_index = self.vocab.add_token_to_namespace("is") self.a_index = self.vocab.add_token_to_namespace("a") self.sentence_index = self.vocab.add_token_to_namespace("sentence") self.another_index = self.vocab.add_token_to_namespace("another") self.yet_index = self.vocab.add_token_to_namespace("yet") self.very_index = self.vocab.add_token_to_namespace("very") self.long_index = self.vocab.add_token_to_namespace("long") instances = [ self.create_instance(["this", "is", "a", "sentence"]), self.create_instance(["this", "is", "another", "sentence"]), self.create_instance(["yet", "another", "sentence"]), self.create_instance( ["this", "is", "a", "very", "very", "very", "very", "long", "sentence"] ), self.create_instance(["sentence"]), ] self.instances = instances self.lazy_instances = LazyIterable(instances) def create_instance(self, str_tokens: List[str]): tokens = [Token(t) for t in str_tokens] instance = Instance({"text": TextField(tokens, self.token_indexers)}) return instance def create_instances_from_token_counts(self, token_counts: List[int]) -> List[Instance]: return [self.create_instance(["word"] * count) for count in token_counts] def get_batches_stats(self, batches: Iterable[Batch]) -> Dict[str, Union[int, List[int]]]: grouped_instances = [batch.instances for batch in batches] group_lengths = [len(group) for group in grouped_instances] sample_sizes = [] for batch in batches: batch_sequence_length = max( instance.get_padding_lengths()["text"]["tokens___tokens"] for instance in batch.instances ) sample_sizes.append(batch_sequence_length * len(batch.instances)) return { "batch_lengths": group_lengths, "total_instances": sum(group_lengths), "sample_sizes": sample_sizes, } def assert_instances_are_correct(self, candidate_instances): # First we need to remove padding tokens from the candidates. candidate_instances = [ tuple(w for w in instance if w != 0) for instance in candidate_instances ] expected_instances = [ tuple(instance.fields["text"]._indexed_tokens["tokens"]["tokens"]) for instance in self.instances ] assert set(candidate_instances) == set(expected_instances)
allennlp-master
tests/data/samplers/sampler_test.py
from allennlp.common import Params from allennlp.data import Instance, Token from allennlp.data.batch import Batch from allennlp.data.fields import TextField from allennlp.data.samplers import BucketBatchSampler from allennlp.data.dataset_readers.dataset_reader import AllennlpDataset from allennlp.data.dataloader import PyTorchDataLoader from .sampler_test import SamplerTest class TestBucketSampler(SamplerTest): def test_create_batches_groups_correctly(self): dataset = AllennlpDataset(self.instances, vocab=self.vocab) sampler = BucketBatchSampler(dataset, batch_size=2, padding_noise=0, sorting_keys=["text"]) grouped_instances = [] for indices in sampler: grouped_instances.append([self.instances[idx] for idx in indices]) expected_groups = [ [self.instances[4], self.instances[2]], [self.instances[0], self.instances[1]], [self.instances[3]], ] for group in grouped_instances: assert group in expected_groups expected_groups.remove(group) assert expected_groups == [] def test_guess_sorting_key_picks_the_longest_key(self): dataset = AllennlpDataset(self.instances, vocab=self.vocab) sampler = BucketBatchSampler(dataset, batch_size=2, padding_noise=0) instances = [] short_tokens = [Token(t) for t in ["what", "is", "this", "?"]] long_tokens = [Token(t) for t in ["this", "is", "a", "not", "very", "long", "passage"]] instances.append( Instance( { "question": TextField(short_tokens, self.token_indexers), "passage": TextField(long_tokens, self.token_indexers), } ) ) instances.append( Instance( { "question": TextField(short_tokens, self.token_indexers), "passage": TextField(long_tokens, self.token_indexers), } ) ) instances.append( Instance( { "question": TextField(short_tokens, self.token_indexers), "passage": TextField(long_tokens, self.token_indexers), } ) ) assert sampler.sorting_keys is None sampler._guess_sorting_keys(instances) assert sampler.sorting_keys == ["passage"] def test_from_params(self): dataset = AllennlpDataset(self.instances, self.vocab) params = Params({}) sorting_keys = ["s1", "s2"] params["sorting_keys"] = sorting_keys params["batch_size"] = 32 sampler = BucketBatchSampler.from_params(params=params, data_source=dataset) assert sampler.sorting_keys == sorting_keys assert sampler.padding_noise == 0.1 assert sampler.batch_size == 32 params = Params( { "sorting_keys": sorting_keys, "padding_noise": 0.5, "batch_size": 100, "drop_last": True, } ) sampler = BucketBatchSampler.from_params(params=params, data_source=dataset) assert sampler.sorting_keys == sorting_keys assert sampler.padding_noise == 0.5 assert sampler.batch_size == 100 assert sampler.drop_last def test_drop_last_works(self): dataset = AllennlpDataset(self.instances, vocab=self.vocab) sampler = BucketBatchSampler( dataset, batch_size=2, padding_noise=0, sorting_keys=["text"], drop_last=True, ) # We use a custom collate_fn for testing, which doesn't actually create tensors, # just the allennlp Batches. dataloader = PyTorchDataLoader( dataset, batch_sampler=sampler, collate_fn=lambda x: Batch(x) ) batches = [batch for batch in iter(dataloader)] stats = self.get_batches_stats(batches) # all batches have length batch_size assert all(batch_len == 2 for batch_len in stats["batch_lengths"]) # we should have lost one instance by skipping the last batch assert stats["total_instances"] == len(self.instances) - 1 def test_batch_count(self): dataset = AllennlpDataset(self.instances, vocab=self.vocab) sampler = BucketBatchSampler(dataset, batch_size=2, padding_noise=0, sorting_keys=["text"]) # We use a custom collate_fn for testing, which doesn't actually create tensors, # just the allennlp Batches. dataloader = PyTorchDataLoader( dataset, batch_sampler=sampler, collate_fn=lambda x: Batch(x) ) assert len(dataloader) == 3 def test_batch_count_with_drop_last(self): dataset = AllennlpDataset(self.instances, vocab=self.vocab) sampler = BucketBatchSampler( dataset, batch_size=2, padding_noise=0, sorting_keys=["text"], drop_last=True, ) # We use a custom collate_fn for testing, which doesn't actually create tensors, # just the allennlp Batches. dataloader = PyTorchDataLoader( dataset, batch_sampler=sampler, collate_fn=lambda x: Batch(x) ) assert len(dataloader) == 2
allennlp-master
tests/data/samplers/bucket_batch_sampler_test.py
import numpy import pytest from allennlp.common.checks import ConfigurationError from allennlp.common.testing import AllenNlpTestCase from allennlp.data import Token from allennlp.data.fields import TextField, IndexField from allennlp.data.token_indexers import SingleIdTokenIndexer class TestIndexField(AllenNlpTestCase): def setup_method(self): super().setup_method() self.text = TextField( [Token(t) for t in ["here", "is", "a", "sentence", "."]], {"words": SingleIdTokenIndexer("words")}, ) def test_as_tensor_converts_field_correctly(self): index_field = IndexField(4, self.text) tensor = index_field.as_tensor(index_field.get_padding_lengths()).detach().cpu().numpy() numpy.testing.assert_array_equal(tensor, numpy.array([4])) def test_index_field_raises_on_incorrect_label_type(self): with pytest.raises(ConfigurationError): _ = IndexField("hello", self.text) def test_index_field_empty_field_works(self): index_field = IndexField(4, self.text) empty_index = index_field.empty_field() assert empty_index.sequence_index == -1 def test_printing_doesnt_crash(self): print(self.text) def test_equality(self): index_field1 = IndexField(4, self.text) index_field2 = IndexField(4, self.text) index_field3 = IndexField( 4, TextField( [Token(t) for t in ["AllenNLP", "is", "the", "bomb", "!"]], {"words": SingleIdTokenIndexer("words")}, ), ) assert index_field1 == 4 assert index_field1 == index_field1 assert index_field1 == index_field2 assert index_field1 != index_field3 assert index_field2 != index_field3 assert index_field3 == index_field3
allennlp-master
tests/data/fields/index_field_test.py
import numpy import torch from allennlp.common.testing.test_case import AllenNlpTestCase from allennlp.data.fields import ArrayField, ListField class TestArrayField(AllenNlpTestCase): def test_get_padding_lengths_correctly_returns_ordered_shape(self): shape = [3, 4, 5, 6] array = numpy.zeros(shape) array_field = ArrayField(array) lengths = array_field.get_padding_lengths() for i in range(len(lengths)): assert lengths["dimension_{}".format(i)] == shape[i] def test_as_tensor_handles_larger_padding_dimensions(self): shape = [3, 4] array = numpy.ones(shape) array_field = ArrayField(array) padded_tensor = ( array_field.as_tensor({"dimension_0": 5, "dimension_1": 6}).detach().cpu().numpy() ) numpy.testing.assert_array_equal(padded_tensor[:3, :4], array) numpy.testing.assert_array_equal(padded_tensor[3:, 4:], 0.0) def test_padding_handles_list_fields(self): array1 = ArrayField(numpy.ones([2, 3])) array2 = ArrayField(numpy.ones([1, 5])) empty_array = array1.empty_field() list_field = ListField([array1, array2, empty_array]) returned_tensor = ( list_field.as_tensor(list_field.get_padding_lengths()).detach().cpu().numpy() ) correct_tensor = numpy.array( [ [[1.0, 1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0, 0.0]], [[1.0, 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0]], ] ) numpy.testing.assert_array_equal(returned_tensor, correct_tensor) def test_padding_handles_list_fields_with_padding_values(self): array1 = ArrayField(numpy.ones([2, 3]), padding_value=-1) array2 = ArrayField(numpy.ones([1, 5]), padding_value=-1) empty_array = array1.empty_field() list_field = ListField([array1, array2, empty_array]) returned_tensor = ( list_field.as_tensor(list_field.get_padding_lengths()).detach().cpu().numpy() ) correct_tensor = numpy.array( [ [[1.0, 1.0, 1.0, -1.0, -1.0], [1.0, 1.0, 1.0, -1.0, -1.0]], [[1.0, 1.0, 1.0, 1.0, 1.0], [-1.0, -1.0, -1.0, -1.0, -1.0]], [[-1.0, -1.0, -1.0, -1.0, -1.0], [-1.0, -1.0, -1.0, -1.0, -1.0]], ] ) numpy.testing.assert_array_equal(returned_tensor, correct_tensor) def test_printing_doesnt_crash(self): array = ArrayField(numpy.ones([2, 3]), padding_value=-1) print(array) def test_as_tensor_works_with_scalar(self): array = ArrayField(numpy.asarray(42)) returned_tensor = array.as_tensor(array.get_padding_lengths()) current_tensor = numpy.asarray(42) numpy.testing.assert_array_equal(returned_tensor, current_tensor) def test_as_tensor_with_scalar_keeps_dtype(self): array = ArrayField(numpy.asarray(42, dtype=numpy.float32)) returned_tensor = array.as_tensor(array.get_padding_lengths()) assert returned_tensor.dtype == torch.float32 def test_alternative_dtypes(self): shape = [3, 4, 5, 6] array = numpy.zeros(shape) # Setting dtype to numpy.int64 should produce a torch.LongTensor when field is converted to # a tensor array_field1 = ArrayField(array, dtype=numpy.int64) returned_tensor1 = array_field1.as_tensor(array_field1.get_padding_lengths()) assert returned_tensor1.dtype == torch.int64 # Setting dtype to numpy.uint8 should produce a torch.ByteTensor when field is converted to # a tensor array_field2 = ArrayField(array, dtype=numpy.uint8) returned_tensor2 = array_field2.as_tensor(array_field2.get_padding_lengths()) assert returned_tensor2.dtype == torch.uint8 # Padding should not affect dtype padding_lengths = {"dimension_" + str(i): 10 for i, _ in enumerate(shape)} padded_tensor = array_field2.as_tensor(padding_lengths) assert padded_tensor.dtype == torch.uint8 # Empty fields should have the same dtype empty_field = array_field2.empty_field() assert empty_field.dtype == array_field2.dtype def test_len_works_with_scalar(self): array = ArrayField(numpy.asarray(42)) assert len(array) == 1 def test_eq(self): array1 = ArrayField(numpy.asarray([1, 1, 1])) array2 = ArrayField(numpy.asarray([[1, 1, 1], [1, 1, 1]])) array3 = ArrayField(numpy.asarray([1, 1, 2])) array4 = ArrayField(numpy.asarray([1, 1, 1])) assert array1 != array2 assert array1 != array3 assert array1 == array4
allennlp-master
tests/data/fields/array_field_test.py
from typing import Dict import numpy import torch from allennlp.common.testing import AllenNlpTestCase from allennlp.data import Token, Vocabulary, Instance from allennlp.data.fields import TextField, LabelField, ListField, IndexField, SequenceLabelField from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenCharactersIndexer from allennlp.data.dataloader import PyTorchDataLoader from allennlp.data.dataset_readers.dataset_reader import AllennlpDataset from allennlp.data.tokenizers import SpacyTokenizer from allennlp.models import Model from allennlp.modules import Embedding from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder class DummyModel(Model): """ Performs a common operation (embedding) that won't work on an empty tensor. Returns an arbitrary loss. """ def __init__(self, vocab: Vocabulary) -> None: super().__init__(vocab) weight = torch.ones(vocab.get_vocab_size(), 10) token_embedding = Embedding( num_embeddings=vocab.get_vocab_size(), embedding_dim=10, weight=weight, trainable=False ) self.embedder = BasicTextFieldEmbedder({"words": token_embedding}) def forward( # type: ignore self, list_tensor: Dict[str, torch.LongTensor] ) -> Dict[str, torch.Tensor]: self.embedder(list_tensor) return {"loss": 1.0} class TestListField(AllenNlpTestCase): def setup_method(self): self.vocab = Vocabulary() self.vocab.add_token_to_namespace("this", "words") self.vocab.add_token_to_namespace("is", "words") self.vocab.add_token_to_namespace("a", "words") self.vocab.add_token_to_namespace("sentence", "words") self.vocab.add_token_to_namespace("s", "characters") self.vocab.add_token_to_namespace("e", "characters") self.vocab.add_token_to_namespace("n", "characters") self.vocab.add_token_to_namespace("t", "characters") self.vocab.add_token_to_namespace("c", "characters") for label in ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"]: self.vocab.add_token_to_namespace(label, "labels") self.word_indexer = {"words": SingleIdTokenIndexer("words")} self.words_and_characters_indexers = { "words": SingleIdTokenIndexer("words"), "characters": TokenCharactersIndexer("characters", min_padding_length=1), } self.field1 = TextField( [Token(t) for t in ["this", "is", "a", "sentence"]], self.word_indexer ) self.field2 = TextField( [Token(t) for t in ["this", "is", "a", "different", "sentence"]], self.word_indexer ) self.field3 = TextField( [Token(t) for t in ["this", "is", "another", "sentence"]], self.word_indexer ) self.empty_text_field = self.field1.empty_field() self.index_field = IndexField(1, self.field1) self.empty_index_field = self.index_field.empty_field() self.sequence_label_field = SequenceLabelField([1, 1, 0, 1], self.field1) self.empty_sequence_label_field = self.sequence_label_field.empty_field() tokenizer = SpacyTokenizer() tokens = tokenizer.tokenize("Foo") text_field = TextField(tokens, self.word_indexer) empty_list_field = ListField([text_field.empty_field()]) empty_fields = {"list_tensor": empty_list_field} self.empty_instance = Instance(empty_fields) non_empty_list_field = ListField([text_field]) non_empty_fields = {"list_tensor": non_empty_list_field} self.non_empty_instance = Instance(non_empty_fields) super().setup_method() def test_get_padding_lengths(self): list_field = ListField([self.field1, self.field2, self.field3]) list_field.index(self.vocab) lengths = list_field.get_padding_lengths() assert lengths == {"num_fields": 3, "list_words___tokens": 5} def test_list_field_can_handle_empty_text_fields(self): list_field = ListField([self.field1, self.field2, self.empty_text_field]) list_field.index(self.vocab) tensor_dict = list_field.as_tensor(list_field.get_padding_lengths()) numpy.testing.assert_array_equal( tensor_dict["words"]["tokens"].detach().cpu().numpy(), numpy.array([[2, 3, 4, 5, 0], [2, 3, 4, 1, 5], [0, 0, 0, 0, 0]]), ) def test_list_field_can_handle_empty_index_fields(self): list_field = ListField([self.index_field, self.index_field, self.empty_index_field]) list_field.index(self.vocab) tensor = list_field.as_tensor(list_field.get_padding_lengths()) numpy.testing.assert_array_equal( tensor.detach().cpu().numpy(), numpy.array([[1], [1], [-1]]) ) def test_list_field_can_handle_empty_sequence_label_fields(self): list_field = ListField( [self.sequence_label_field, self.sequence_label_field, self.empty_sequence_label_field] ) list_field.index(self.vocab) tensor = list_field.as_tensor(list_field.get_padding_lengths()) numpy.testing.assert_array_equal( tensor.detach().cpu().numpy(), numpy.array([[1, 1, 0, 1], [1, 1, 0, 1], [0, 0, 0, 0]]) ) def test_all_fields_padded_to_max_length(self): list_field = ListField([self.field1, self.field2, self.field3]) list_field.index(self.vocab) tensor_dict = list_field.as_tensor(list_field.get_padding_lengths()) numpy.testing.assert_array_almost_equal( tensor_dict["words"]["tokens"][0].detach().cpu().numpy(), numpy.array([2, 3, 4, 5, 0]) ) numpy.testing.assert_array_almost_equal( tensor_dict["words"]["tokens"][1].detach().cpu().numpy(), numpy.array([2, 3, 4, 1, 5]) ) numpy.testing.assert_array_almost_equal( tensor_dict["words"]["tokens"][2].detach().cpu().numpy(), numpy.array([2, 3, 1, 5, 0]) ) def test_nested_list_fields_are_padded_correctly(self): nested_field1 = ListField([LabelField(c) for c in ["a", "b", "c", "d", "e"]]) nested_field2 = ListField([LabelField(c) for c in ["f", "g", "h", "i", "j", "k"]]) list_field = ListField([nested_field1.empty_field(), nested_field1, nested_field2]) list_field.index(self.vocab) padding_lengths = list_field.get_padding_lengths() assert padding_lengths == {"num_fields": 3, "list_num_fields": 6} tensor = list_field.as_tensor(padding_lengths).detach().cpu().numpy() numpy.testing.assert_almost_equal( tensor, [[-1, -1, -1, -1, -1, -1], [0, 1, 2, 3, 4, -1], [5, 6, 7, 8, 9, 10]] ) def test_fields_can_pad_to_greater_than_max_length(self): list_field = ListField([self.field1, self.field2, self.field3]) list_field.index(self.vocab) padding_lengths = list_field.get_padding_lengths() padding_lengths["list_words___tokens"] = 7 padding_lengths["num_fields"] = 5 tensor_dict = list_field.as_tensor(padding_lengths) numpy.testing.assert_array_almost_equal( tensor_dict["words"]["tokens"][0].detach().cpu().numpy(), numpy.array([2, 3, 4, 5, 0, 0, 0]), ) numpy.testing.assert_array_almost_equal( tensor_dict["words"]["tokens"][1].detach().cpu().numpy(), numpy.array([2, 3, 4, 1, 5, 0, 0]), ) numpy.testing.assert_array_almost_equal( tensor_dict["words"]["tokens"][2].detach().cpu().numpy(), numpy.array([2, 3, 1, 5, 0, 0, 0]), ) numpy.testing.assert_array_almost_equal( tensor_dict["words"]["tokens"][3].detach().cpu().numpy(), numpy.array([0, 0, 0, 0, 0, 0, 0]), ) numpy.testing.assert_array_almost_equal( tensor_dict["words"]["tokens"][4].detach().cpu().numpy(), numpy.array([0, 0, 0, 0, 0, 0, 0]), ) def test_as_tensor_can_handle_multiple_token_indexers(self): self.field1._token_indexers = self.words_and_characters_indexers self.field2._token_indexers = self.words_and_characters_indexers self.field3._token_indexers = self.words_and_characters_indexers list_field = ListField([self.field1, self.field2, self.field3]) list_field.index(self.vocab) padding_lengths = list_field.get_padding_lengths() tensor_dict = list_field.as_tensor(padding_lengths) words = tensor_dict["words"]["tokens"].detach().cpu().numpy() characters = tensor_dict["characters"]["token_characters"].detach().cpu().numpy() numpy.testing.assert_array_almost_equal( words, numpy.array([[2, 3, 4, 5, 0], [2, 3, 4, 1, 5], [2, 3, 1, 5, 0]]) ) numpy.testing.assert_array_almost_equal( characters[0], numpy.array( [ [5, 1, 1, 2, 0, 0, 0, 0, 0], [1, 2, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [2, 3, 4, 5, 3, 4, 6, 3, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], ] ), ) numpy.testing.assert_array_almost_equal( characters[1], numpy.array( [ [5, 1, 1, 2, 0, 0, 0, 0, 0], [1, 2, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 3, 1, 3, 4, 5], [2, 3, 4, 5, 3, 4, 6, 3, 0], ] ), ) numpy.testing.assert_array_almost_equal( characters[2], numpy.array( [ [5, 1, 1, 2, 0, 0, 0, 0, 0], [1, 2, 0, 0, 0, 0, 0, 0, 0], [1, 4, 1, 5, 1, 3, 1, 0, 0], [2, 3, 4, 5, 3, 4, 6, 3, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], ] ), ) def test_as_tensor_can_handle_multiple_token_indexers_and_empty_fields(self): self.field1._token_indexers = self.words_and_characters_indexers self.field2._token_indexers = self.words_and_characters_indexers self.field3._token_indexers = self.words_and_characters_indexers list_field = ListField([self.field1.empty_field(), self.field1, self.field2]) list_field.index(self.vocab) padding_lengths = list_field.get_padding_lengths() tensor_dict = list_field.as_tensor(padding_lengths) words = tensor_dict["words"]["tokens"].detach().cpu().numpy() characters = tensor_dict["characters"]["token_characters"].detach().cpu().numpy() numpy.testing.assert_array_almost_equal( words, numpy.array([[0, 0, 0, 0, 0], [2, 3, 4, 5, 0], [2, 3, 4, 1, 5]]) ) numpy.testing.assert_array_almost_equal(characters[0], numpy.zeros([5, 9])) numpy.testing.assert_array_almost_equal( characters[1], numpy.array( [ [5, 1, 1, 2, 0, 0, 0, 0, 0], [1, 2, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [2, 3, 4, 5, 3, 4, 6, 3, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], ] ), ) numpy.testing.assert_array_almost_equal( characters[2], numpy.array( [ [5, 1, 1, 2, 0, 0, 0, 0, 0], [1, 2, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 3, 1, 3, 4, 5], [2, 3, 4, 5, 3, 4, 6, 3, 0], ] ), ) def test_printing_doesnt_crash(self): list_field = ListField([self.field1, self.field2]) print(list_field) def test_sequence_methods(self): list_field = ListField([self.field1, self.field2, self.field3]) assert len(list_field) == 3 assert list_field[1] == self.field2 assert [f for f in list_field] == [self.field1, self.field2, self.field3] def test_empty_list_can_be_tensorized(self): tokenizer = SpacyTokenizer() tokens = tokenizer.tokenize("Foo") text_field = TextField(tokens, self.word_indexer) list_field = ListField([text_field.empty_field()]) fields = { "list": list_field, "bar": TextField(tokenizer.tokenize("BAR"), self.word_indexer), } instance = Instance(fields) instance.index_fields(self.vocab) instance.as_tensor_dict() def test_batch_with_some_empty_lists_works(self): dataset = AllennlpDataset([self.empty_instance, self.non_empty_instance], self.vocab) model = DummyModel(self.vocab) model.eval() loader = PyTorchDataLoader(dataset, batch_size=2) batch = next(iter(loader)) model.forward(**batch) # This use case may seem a bit peculiar. It's intended for situations where # you have sparse inputs that are used as additional features for some # prediction, and they are sparse enough that they can be empty for some # cases. It would be silly to try to handle these as None in your model; it # makes a whole lot more sense to just have a minimally-sized tensor that # gets entirely masked and has no effect on the rest of the model. def test_batch_of_entirely_empty_lists_works(self): dataset = AllennlpDataset([self.empty_instance, self.empty_instance], self.vocab) model = DummyModel(self.vocab) model.eval() loader = PyTorchDataLoader(dataset, batch_size=2) batch = next(iter(loader)) model.forward(**batch) def test_list_of_text_padding(self): from allennlp.data.token_indexers import PretrainedTransformerIndexer from allennlp.data.tokenizers import Token from allennlp.data.fields import ( TextField, ListField, ) from allennlp.data import Vocabulary word_indexer = {"tokens": PretrainedTransformerIndexer("albert-base-v2")} text_field = TextField( [ Token(t, text_id=2, type_id=1) for t in ["▁allen", "n", "lp", "▁has", "▁no", "▁bugs", "."] ], word_indexer, ) list_field = ListField([text_field]) vocab = Vocabulary() list_field.index(vocab) padding_lengths = { "list_tokens___mask": 10, "list_tokens___token_ids": 10, "list_tokens___type_ids": 10, "num_fields": 2, } tensors = list_field.as_tensor(padding_lengths)["tokens"] assert tensors["mask"].size() == (2, 10) assert tensors["mask"][0, 0] == True # noqa: E712 assert tensors["mask"][0, 9] == False # noqa: E712 assert (tensors["mask"][1, :] == False).all() # noqa: E712 assert tensors["token_ids"].size() == (2, 10) assert tensors["token_ids"][0, 0] == 2 assert tensors["token_ids"][0, 9] == 0 assert (tensors["token_ids"][1, :] == 0).all() assert tensors["type_ids"].size() == (2, 10) assert tensors["type_ids"][0, 0] == 1 assert tensors["type_ids"][0, 9] == 0 assert (tensors["type_ids"][1, :] == 0).all()
allennlp-master
tests/data/fields/list_field_test.py
from collections import defaultdict from typing import Dict, List import numpy import pytest from allennlp.common.checks import ConfigurationError from allennlp.common.testing import AllenNlpTestCase from allennlp.data import Token, Vocabulary from allennlp.data.fields import TextField from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenCharactersIndexer, TokenIndexer class DictReturningTokenIndexer(TokenIndexer): """ A stub TokenIndexer that returns multiple arrays of different lengths. """ def count_vocab_items(self, token: Token, counter: Dict[str, Dict[str, int]]): pass def tokens_to_indices( self, tokens: List[Token], vocabulary: Vocabulary ) -> Dict[str, List[int]]: return { "token_ids": ( [10, 15] + [vocabulary.get_token_index(token.text, "words") for token in tokens] + [25] ), "additional_key": [22, 29], } class TestTextField(AllenNlpTestCase): def setup_method(self): self.vocab = Vocabulary() self.vocab.add_token_to_namespace("sentence", namespace="words") self.vocab.add_token_to_namespace("A", namespace="words") self.vocab.add_token_to_namespace("A", namespace="characters") self.vocab.add_token_to_namespace("s", namespace="characters") self.vocab.add_token_to_namespace("e", namespace="characters") self.vocab.add_token_to_namespace("n", namespace="characters") self.vocab.add_token_to_namespace("t", namespace="characters") self.vocab.add_token_to_namespace("c", namespace="characters") super().setup_method() def test_field_counts_vocab_items_correctly(self): field = TextField( [Token(t) for t in ["This", "is", "a", "sentence", "."]], token_indexers={"words": SingleIdTokenIndexer("words")}, ) namespace_token_counts = defaultdict(lambda: defaultdict(int)) field.count_vocab_items(namespace_token_counts) assert namespace_token_counts["words"]["This"] == 1 assert namespace_token_counts["words"]["is"] == 1 assert namespace_token_counts["words"]["a"] == 1 assert namespace_token_counts["words"]["sentence"] == 1 assert namespace_token_counts["words"]["."] == 1 assert list(namespace_token_counts.keys()) == ["words"] field = TextField( [Token(t) for t in ["This", "is", "a", "sentence", "."]], token_indexers={ "characters": TokenCharactersIndexer("characters", min_padding_length=1) }, ) namespace_token_counts = defaultdict(lambda: defaultdict(int)) field.count_vocab_items(namespace_token_counts) assert namespace_token_counts["characters"]["T"] == 1 assert namespace_token_counts["characters"]["h"] == 1 assert namespace_token_counts["characters"]["i"] == 2 assert namespace_token_counts["characters"]["s"] == 3 assert namespace_token_counts["characters"]["a"] == 1 assert namespace_token_counts["characters"]["e"] == 3 assert namespace_token_counts["characters"]["n"] == 2 assert namespace_token_counts["characters"]["t"] == 1 assert namespace_token_counts["characters"]["c"] == 1 assert namespace_token_counts["characters"]["."] == 1 assert list(namespace_token_counts.keys()) == ["characters"] field = TextField( [Token(t) for t in ["This", "is", "a", "sentence", "."]], token_indexers={ "words": SingleIdTokenIndexer("words"), "characters": TokenCharactersIndexer("characters", min_padding_length=1), }, ) namespace_token_counts = defaultdict(lambda: defaultdict(int)) field.count_vocab_items(namespace_token_counts) assert namespace_token_counts["characters"]["T"] == 1 assert namespace_token_counts["characters"]["h"] == 1 assert namespace_token_counts["characters"]["i"] == 2 assert namespace_token_counts["characters"]["s"] == 3 assert namespace_token_counts["characters"]["a"] == 1 assert namespace_token_counts["characters"]["e"] == 3 assert namespace_token_counts["characters"]["n"] == 2 assert namespace_token_counts["characters"]["t"] == 1 assert namespace_token_counts["characters"]["c"] == 1 assert namespace_token_counts["characters"]["."] == 1 assert namespace_token_counts["words"]["This"] == 1 assert namespace_token_counts["words"]["is"] == 1 assert namespace_token_counts["words"]["a"] == 1 assert namespace_token_counts["words"]["sentence"] == 1 assert namespace_token_counts["words"]["."] == 1 assert set(namespace_token_counts.keys()) == {"words", "characters"} def test_index_converts_field_correctly(self): vocab = Vocabulary() sentence_index = vocab.add_token_to_namespace("sentence", namespace="words") capital_a_index = vocab.add_token_to_namespace("A", namespace="words") capital_a_char_index = vocab.add_token_to_namespace("A", namespace="characters") s_index = vocab.add_token_to_namespace("s", namespace="characters") e_index = vocab.add_token_to_namespace("e", namespace="characters") n_index = vocab.add_token_to_namespace("n", namespace="characters") t_index = vocab.add_token_to_namespace("t", namespace="characters") c_index = vocab.add_token_to_namespace("c", namespace="characters") field = TextField( [Token(t) for t in ["A", "sentence"]], {"words": SingleIdTokenIndexer(namespace="words")}, ) field.index(vocab) assert field._indexed_tokens["words"]["tokens"] == [capital_a_index, sentence_index] field1 = TextField( [Token(t) for t in ["A", "sentence"]], {"characters": TokenCharactersIndexer(namespace="characters", min_padding_length=1)}, ) field1.index(vocab) assert field1._indexed_tokens["characters"]["token_characters"] == [ [capital_a_char_index], [s_index, e_index, n_index, t_index, e_index, n_index, c_index, e_index], ] field2 = TextField( [Token(t) for t in ["A", "sentence"]], token_indexers={ "words": SingleIdTokenIndexer(namespace="words"), "characters": TokenCharactersIndexer(namespace="characters", min_padding_length=1), }, ) field2.index(vocab) assert field2._indexed_tokens["words"]["tokens"] == [capital_a_index, sentence_index] assert field2._indexed_tokens["characters"]["token_characters"] == [ [capital_a_char_index], [s_index, e_index, n_index, t_index, e_index, n_index, c_index, e_index], ] def test_get_padding_lengths_raises_if_no_indexed_tokens(self): field = TextField( [Token(t) for t in ["This", "is", "a", "sentence", "."]], token_indexers={"words": SingleIdTokenIndexer("words")}, ) with pytest.raises(ConfigurationError): field.get_padding_lengths() def test_padding_lengths_are_computed_correctly(self): field = TextField( [Token(t) for t in ["This", "is", "a", "sentence", "."]], token_indexers={"words": SingleIdTokenIndexer("words")}, ) field.index(self.vocab) padding_lengths = field.get_padding_lengths() assert padding_lengths == {"words___tokens": 5} field = TextField( [Token(t) for t in ["This", "is", "a", "sentence", "."]], token_indexers={ "characters": TokenCharactersIndexer("characters", min_padding_length=1) }, ) field.index(self.vocab) padding_lengths = field.get_padding_lengths() assert padding_lengths == { "characters___token_characters": 5, "characters___num_token_characters": 8, } field = TextField( [Token(t) for t in ["This", "is", "a", "sentence", "."]], token_indexers={ "characters": TokenCharactersIndexer("characters", min_padding_length=1), "words": SingleIdTokenIndexer("words"), }, ) field.index(self.vocab) padding_lengths = field.get_padding_lengths() assert padding_lengths == { "characters___token_characters": 5, "characters___num_token_characters": 8, "words___tokens": 5, } def test_as_tensor_handles_words(self): field = TextField( [Token(t) for t in ["This", "is", "a", "sentence", "."]], token_indexers={"words": SingleIdTokenIndexer("words")}, ) field.index(self.vocab) padding_lengths = field.get_padding_lengths() tensor_dict = field.as_tensor(padding_lengths) numpy.testing.assert_array_almost_equal( tensor_dict["words"]["tokens"].detach().cpu().numpy(), numpy.array([1, 1, 1, 2, 1]) ) def test_as_tensor_handles_longer_lengths(self): field = TextField( [Token(t) for t in ["This", "is", "a", "sentence", "."]], token_indexers={"words": SingleIdTokenIndexer("words")}, ) field.index(self.vocab) padding_lengths = field.get_padding_lengths() padding_lengths["words___tokens"] = 10 tensor_dict = field.as_tensor(padding_lengths) numpy.testing.assert_array_almost_equal( tensor_dict["words"]["tokens"].detach().cpu().numpy(), numpy.array([1, 1, 1, 2, 1, 0, 0, 0, 0, 0]), ) def test_as_tensor_handles_characters(self): field = TextField( [Token(t) for t in ["This", "is", "a", "sentence", "."]], token_indexers={ "characters": TokenCharactersIndexer("characters", min_padding_length=1) }, ) field.index(self.vocab) padding_lengths = field.get_padding_lengths() tensor_dict = field.as_tensor(padding_lengths) expected_character_array = numpy.array( [ [1, 1, 1, 3, 0, 0, 0, 0], [1, 3, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0], [3, 4, 5, 6, 4, 5, 7, 4], [1, 0, 0, 0, 0, 0, 0, 0], ] ) numpy.testing.assert_array_almost_equal( tensor_dict["characters"]["token_characters"].detach().cpu().numpy(), expected_character_array, ) def test_as_tensor_handles_characters_if_empty_field(self): field = TextField( [], token_indexers={ "characters": TokenCharactersIndexer("characters", min_padding_length=1) }, ) field.index(self.vocab) padding_lengths = field.get_padding_lengths() tensor_dict = field.as_tensor(padding_lengths) expected_character_array = numpy.array([]) numpy.testing.assert_array_almost_equal( tensor_dict["characters"]["token_characters"].detach().cpu().numpy(), expected_character_array, ) def test_as_tensor_handles_words_and_characters_with_longer_lengths(self): field = TextField( [Token(t) for t in ["a", "sentence", "."]], token_indexers={ "words": SingleIdTokenIndexer("words"), "characters": TokenCharactersIndexer("characters", min_padding_length=1), }, ) field.index(self.vocab) padding_lengths = field.get_padding_lengths() padding_lengths["words___tokens"] = 5 padding_lengths["characters___token_characters"] = 5 padding_lengths["characters___num_token_characters"] = 10 tensor_dict = field.as_tensor(padding_lengths) numpy.testing.assert_array_almost_equal( tensor_dict["words"]["tokens"].detach().cpu().numpy(), numpy.array([1, 2, 1, 0, 0]) ) numpy.testing.assert_array_almost_equal( tensor_dict["characters"]["token_characters"].detach().cpu().numpy(), numpy.array( [ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [3, 4, 5, 6, 4, 5, 7, 4, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] ), ) def test_printing_doesnt_crash(self): field = TextField( [Token(t) for t in ["A", "sentence"]], {"words": SingleIdTokenIndexer(namespace="words")}, ) print(field) def test_token_indexer_returns_dict(self): field = TextField( [Token(t) for t in ["A", "sentence"]], token_indexers={ "field_with_dict": DictReturningTokenIndexer(), "words": SingleIdTokenIndexer("words"), "characters": TokenCharactersIndexer("characters", min_padding_length=1), }, ) field.index(self.vocab) padding_lengths = field.get_padding_lengths() assert padding_lengths == { "field_with_dict___token_ids": 5, "field_with_dict___additional_key": 2, "words___tokens": 2, "characters___token_characters": 2, "characters___num_token_characters": 8, } padding_lengths["field_with_dict___token_ids"] = 7 padding_lengths["field_with_dict___additional_key"] = 3 padding_lengths["words___tokens"] = 4 padding_lengths["characters___token_characters"] = 4 tensors = field.as_tensor(padding_lengths) assert list(tensors["field_with_dict"]["token_ids"].shape) == [7] assert list(tensors["field_with_dict"]["additional_key"].shape) == [3] assert list(tensors["words"]["tokens"].shape) == [4] assert list(tensors["characters"]["token_characters"].shape) == [4, 8] def test_token_padding_lengths_are_computed_correctly(self): field = TextField( [Token(t) for t in ["A", "sentence"]], token_indexers={ "field_with_dict": DictReturningTokenIndexer(token_min_padding_length=3), "words": SingleIdTokenIndexer("words", token_min_padding_length=3), "characters": TokenCharactersIndexer( "characters", min_padding_length=1, token_min_padding_length=3 ), }, ) field.index(self.vocab) padding_lengths = field.get_padding_lengths() assert padding_lengths == { "field_with_dict___token_ids": 5, "field_with_dict___additional_key": 3, "words___tokens": 3, "characters___token_characters": 3, "characters___num_token_characters": 8, } tensors = field.as_tensor(padding_lengths) assert tensors["field_with_dict"]["additional_key"].tolist()[-1] == 0 assert tensors["words"]["tokens"].tolist()[-1] == 0 assert tensors["characters"]["token_characters"].tolist()[-1] == [0] * 8 def test_sequence_methods(self): field = TextField([Token(t) for t in ["This", "is", "a", "sentence", "."]], {}) assert len(field) == 5 assert field[1].text == "is" assert [token.text for token in field] == ["This", "is", "a", "sentence", "."]
allennlp-master
tests/data/fields/text_field_test.py
allennlp-master
tests/data/fields/__init__.py
import logging import numpy import pytest from allennlp.common.checks import ConfigurationError from allennlp.common.testing import AllenNlpTestCase from allennlp.data.fields import MultiLabelField from allennlp.data.vocabulary import Vocabulary class TestMultiLabelField(AllenNlpTestCase): def test_as_tensor_returns_integer_tensor(self): f = MultiLabelField([2, 3], skip_indexing=True, label_namespace="test1", num_labels=5) tensor = f.as_tensor(f.get_padding_lengths()).detach().cpu().tolist() assert tensor == [0, 0, 1, 1, 0] assert {type(item) for item in tensor} == {int} def test_multilabel_field_can_index_with_vocab(self): vocab = Vocabulary() vocab.add_token_to_namespace("rel0", namespace="rel_labels") vocab.add_token_to_namespace("rel1", namespace="rel_labels") vocab.add_token_to_namespace("rel2", namespace="rel_labels") f = MultiLabelField(["rel1", "rel0"], label_namespace="rel_labels") f.index(vocab) tensor = f.as_tensor(f.get_padding_lengths()).detach().cpu().numpy() numpy.testing.assert_array_almost_equal(tensor, numpy.array([1, 1, 0])) def test_multilabel_field_raises_with_non_integer_labels_and_no_indexing(self): with pytest.raises(ConfigurationError): _ = MultiLabelField(["non integer field"], skip_indexing=True) def test_multilabel_field_raises_with_no_indexing_and_missing_num_labels(self): with pytest.raises(ConfigurationError): _ = MultiLabelField([0, 2], skip_indexing=True, num_labels=None) def test_multilabel_field_raises_with_no_indexing_and_wrong_num_labels(self): with pytest.raises(ConfigurationError): _ = MultiLabelField([0, 2, 4], skip_indexing=True, num_labels=3) def test_multilabel_field_raises_with_incorrect_label_type(self): with pytest.raises(ConfigurationError): _ = MultiLabelField([1, 2], skip_indexing=False) def test_multilabel_field_raises_with_given_num_labels(self): with pytest.raises(ConfigurationError): _ = MultiLabelField([1, 2], skip_indexing=False, num_labels=4) def test_multilabel_field_empty_field_works(self): vocab = Vocabulary() vocab.add_token_to_namespace("label1", namespace="test_empty_labels") vocab.add_token_to_namespace("label2", namespace="test_empty_labels") f = MultiLabelField([], label_namespace="test_empty_labels") f.index(vocab) tensor = f.as_tensor(f.get_padding_lengths()).detach().cpu().numpy() numpy.testing.assert_array_almost_equal(tensor, numpy.array([0, 0])) g = f.empty_field() g.index(vocab) tensor = g.as_tensor(g.get_padding_lengths()).detach().cpu().numpy() numpy.testing.assert_array_almost_equal(tensor, numpy.array([0, 0])) h = MultiLabelField( [0, 0, 1], label_namespace="test_empty_labels", num_labels=3, skip_indexing=True ) tensor = h.empty_field().as_tensor(None).detach().cpu().numpy() numpy.testing.assert_array_almost_equal(tensor, numpy.array([0, 0, 0])) def test_class_variables_for_namespace_warnings_work_correctly(self, caplog): with caplog.at_level(logging.WARNING, logger="allennlp.data.fields.multilabel_field"): assert "text" not in MultiLabelField._already_warned_namespaces _ = MultiLabelField(["test"], label_namespace="text") assert caplog.records # We've warned once, so we should have set the class variable to False. assert "text" in MultiLabelField._already_warned_namespaces caplog.clear() _ = MultiLabelField(["test2"], label_namespace="text") assert not caplog.records # ... but a new namespace should still log a warning. assert "text2" not in MultiLabelField._already_warned_namespaces caplog.clear() _ = MultiLabelField(["test"], label_namespace="text2") assert caplog def test_printing_doesnt_crash(self): field = MultiLabelField(["label"], label_namespace="namespace") print(field)
allennlp-master
tests/data/fields/multilabel_field_test.py
import logging import pytest from allennlp.common.checks import ConfigurationError from allennlp.common.testing import AllenNlpTestCase from allennlp.data.fields import LabelField from allennlp.data import Vocabulary class TestLabelField(AllenNlpTestCase): def test_as_tensor_returns_integer_tensor(self): label = LabelField(5, skip_indexing=True) tensor = label.as_tensor(label.get_padding_lengths()) assert tensor.item() == 5 def test_label_field_can_index_with_vocab(self): vocab = Vocabulary() vocab.add_token_to_namespace("entailment", namespace="labels") vocab.add_token_to_namespace("contradiction", namespace="labels") vocab.add_token_to_namespace("neutral", namespace="labels") label = LabelField("entailment") label.index(vocab) tensor = label.as_tensor(label.get_padding_lengths()) assert tensor.item() == 0 def test_label_field_raises_with_non_integer_labels_and_no_indexing(self): with pytest.raises(ConfigurationError): _ = LabelField("non integer field", skip_indexing=True) def test_label_field_raises_with_incorrect_label_type(self): with pytest.raises(ConfigurationError): _ = LabelField([], skip_indexing=False) def test_label_field_empty_field_works(self): label = LabelField("test") empty_label = label.empty_field() assert empty_label.label == -1 def test_class_variables_for_namespace_warnings_work_correctly(self, caplog): with caplog.at_level(logging.WARNING, logger="allennlp.data.fields.label_field"): assert "text" not in LabelField._already_warned_namespaces _ = LabelField("test", label_namespace="text") assert caplog.records # We've warned once, so we should have set the class variable to False. assert "text" in LabelField._already_warned_namespaces caplog.clear() _ = LabelField("test2", label_namespace="text") assert not caplog.records # ... but a new namespace should still log a warning. assert "text2" not in LabelField._already_warned_namespaces caplog.clear() _ = LabelField("test", label_namespace="text2") assert caplog.records def test_printing_doesnt_crash(self): label = LabelField("label", label_namespace="namespace") print(label)
allennlp-master
tests/data/fields/label_field_test.py
import pytest import numpy from allennlp.common.checks import ConfigurationError from allennlp.common.testing import AllenNlpTestCase from allennlp.data.fields import AdjacencyField, TextField from allennlp.data.token_indexers import SingleIdTokenIndexer from allennlp.data import Vocabulary, Token class TestAdjacencyField(AllenNlpTestCase): def setup_method(self): super().setup_method() self.text = TextField( [Token(t) for t in ["here", "is", "a", "sentence", "."]], {"words": SingleIdTokenIndexer("words")}, ) def test_adjacency_field_can_index_with_vocab(self): vocab = Vocabulary() vocab.add_token_to_namespace("a", namespace="labels") vocab.add_token_to_namespace("b", namespace="labels") vocab.add_token_to_namespace("c", namespace="labels") labels = ["a", "b"] indices = [(0, 1), (2, 1)] adjacency_field = AdjacencyField(indices, self.text, labels) adjacency_field.index(vocab) tensor = adjacency_field.as_tensor(adjacency_field.get_padding_lengths()) numpy.testing.assert_equal( tensor.numpy(), numpy.array( [ [-1, 0, -1, -1, -1], [-1, -1, -1, -1, -1], [-1, 1, -1, -1, -1], [-1, -1, -1, -1, -1], [-1, -1, -1, -1, -1], ] ), ) def test_adjacency_field_raises_with_out_of_bounds_indices(self): with pytest.raises(ConfigurationError): _ = AdjacencyField([(0, 24)], self.text) def test_adjacency_field_raises_with_mismatching_labels_for_indices(self): with pytest.raises(ConfigurationError): _ = AdjacencyField([(0, 1), (0, 2)], self.text, ["label1"]) def test_adjacency_field_raises_with_duplicate_indices(self): with pytest.raises(ConfigurationError): _ = AdjacencyField([(0, 1), (0, 1)], self.text, ["label1"]) def test_adjacency_field_empty_field_works(self): field = AdjacencyField([(0, 1)], self.text) empty_field = field.empty_field() assert empty_field.indices == [] def test_printing_doesnt_crash(self): adjacency_field = AdjacencyField([(0, 1)], self.text, ["label1"]) print(adjacency_field)
allennlp-master
tests/data/fields/adjacency_field_test.py
import numpy import pytest from allennlp.common.testing import AllenNlpTestCase from allennlp.data import Token from allennlp.data.fields import TextField, SpanField from allennlp.data.token_indexers import SingleIdTokenIndexer class TestSpanField(AllenNlpTestCase): def setup_method(self): super().setup_method() self.indexers = {"words": SingleIdTokenIndexer("words")} self.text = TextField( [Token(t) for t in ["here", "is", "a", "sentence", "for", "spans", "."]], self.indexers ) def test_as_tensor_converts_span_field_correctly(self): span_field = SpanField(2, 3, self.text) tensor = span_field.as_tensor(span_field.get_padding_lengths()).detach().cpu().numpy() numpy.testing.assert_array_equal(tensor, numpy.array([2, 3])) def test_span_field_raises_on_incorrect_label_type(self): with pytest.raises(TypeError): _ = SpanField("hello", 3, self.text) def test_span_field_raises_on_ill_defined_span(self): with pytest.raises(ValueError): _ = SpanField(4, 1, self.text) def test_span_field_raises_if_span_end_is_greater_than_sentence_length(self): with pytest.raises(ValueError): _ = SpanField(1, 30, self.text) def test_empty_span_field_works(self): span_field = SpanField(1, 3, self.text) empty_span = span_field.empty_field() assert empty_span.span_start == -1 assert empty_span.span_end == -1 def test_printing_doesnt_crash(self): span_field = SpanField(2, 3, self.text) print(span_field) def test_equality(self): span_field1 = SpanField(2, 3, self.text) span_field2 = SpanField(2, 3, self.text) span_field3 = SpanField( 2, 3, TextField([Token(t) for t in ["not", "the", "same", "tokens"]], self.indexers) ) assert span_field1 == (2, 3) assert span_field1 == span_field1 assert span_field1 == span_field2 assert span_field1 != span_field3 assert span_field2 != span_field3
allennlp-master
tests/data/fields/span_field_test.py
from allennlp.data.fields import Field def test_eq_with_inheritance(): class SubField(Field): __slots__ = ["a"] def __init__(self, a): self.a = a class SubSubField(SubField): __slots__ = ["b"] def __init__(self, a, b): super().__init__(a) self.b = b class SubSubSubField(SubSubField): __slots__ = ["c"] def __init__(self, a, b, c): super().__init__(a, b) self.c = c assert SubField(1) == SubField(1) assert SubField(1) != SubField(2) assert SubSubField(1, 2) == SubSubField(1, 2) assert SubSubField(1, 2) != SubSubField(1, 1) assert SubSubField(1, 2) != SubSubField(2, 2) assert SubSubSubField(1, 2, 3) == SubSubSubField(1, 2, 3) assert SubSubSubField(1, 2, 3) != SubSubSubField(0, 2, 3) def test_eq_with_inheritance_for_non_slots_field(): class SubField(Field): def __init__(self, a): self.a = a assert SubField(1) == SubField(1) assert SubField(1) != SubField(2) def test_eq_with_inheritance_for_mixed_field(): class SubField(Field): __slots__ = ["a"] def __init__(self, a): self.a = a class SubSubField(SubField): def __init__(self, a, b): super().__init__(a) self.b = b assert SubField(1) == SubField(1) assert SubField(1) != SubField(2) assert SubSubField(1, 2) == SubSubField(1, 2) assert SubSubField(1, 2) != SubSubField(1, 1) assert SubSubField(1, 2) != SubSubField(2, 2)
allennlp-master
tests/data/fields/field_test.py
from collections import defaultdict import logging import pytest import numpy from allennlp.common.checks import ConfigurationError from allennlp.common.testing import AllenNlpTestCase from allennlp.data import Token, Vocabulary from allennlp.data.fields import TextField, SequenceLabelField from allennlp.data.token_indexers import SingleIdTokenIndexer class TestSequenceLabelField(AllenNlpTestCase): def setup_method(self): super().setup_method() self.text = TextField( [Token(t) for t in ["here", "are", "some", "words", "."]], {"words": SingleIdTokenIndexer("words")}, ) def test_tag_length_mismatch_raises(self): with pytest.raises(ConfigurationError): wrong_tags = ["B", "O", "O"] _ = SequenceLabelField(wrong_tags, self.text) def test_count_vocab_items_correctly_indexes_tags(self): tags = ["B", "I", "O", "O", "O"] sequence_label_field = SequenceLabelField(tags, self.text, label_namespace="labels") counter = defaultdict(lambda: defaultdict(int)) sequence_label_field.count_vocab_items(counter) assert counter["labels"]["B"] == 1 assert counter["labels"]["I"] == 1 assert counter["labels"]["O"] == 3 assert set(counter.keys()) == {"labels"} def test_index_converts_field_correctly(self): vocab = Vocabulary() b_index = vocab.add_token_to_namespace("B", namespace="*labels") i_index = vocab.add_token_to_namespace("I", namespace="*labels") o_index = vocab.add_token_to_namespace("O", namespace="*labels") tags = ["B", "I", "O", "O", "O"] sequence_label_field = SequenceLabelField(tags, self.text, label_namespace="*labels") sequence_label_field.index(vocab) assert sequence_label_field._indexed_labels == [b_index, i_index, o_index, o_index, o_index] def test_as_tensor_produces_integer_targets(self): vocab = Vocabulary() vocab.add_token_to_namespace("B", namespace="*labels") vocab.add_token_to_namespace("I", namespace="*labels") vocab.add_token_to_namespace("O", namespace="*labels") tags = ["B", "I", "O", "O", "O"] sequence_label_field = SequenceLabelField(tags, self.text, label_namespace="*labels") sequence_label_field.index(vocab) padding_lengths = sequence_label_field.get_padding_lengths() tensor = sequence_label_field.as_tensor(padding_lengths).detach().cpu().numpy() numpy.testing.assert_array_almost_equal(tensor, numpy.array([0, 1, 2, 2, 2])) def test_sequence_label_field_raises_on_incorrect_type(self): with pytest.raises(ConfigurationError): _ = SequenceLabelField([[], [], [], [], []], self.text) def test_class_variables_for_namespace_warnings_work_correctly(self, caplog): with caplog.at_level(logging.WARNING, logger="allennlp.data.fields.sequence_label_field"): tags = ["B", "I", "O", "O", "O"] assert "text" not in SequenceLabelField._already_warned_namespaces _ = SequenceLabelField(tags, self.text, label_namespace="text") assert caplog.records # We've warned once, so we should have set the class variable to False. assert "text" in SequenceLabelField._already_warned_namespaces caplog.clear() _ = SequenceLabelField(tags, self.text, label_namespace="text") assert not caplog.records # ... but a new namespace should still log a warning. assert "text2" not in SequenceLabelField._already_warned_namespaces caplog.clear() _ = SequenceLabelField(tags, self.text, label_namespace="text2") assert caplog.records def test_printing_doesnt_crash(self): tags = ["B", "I", "O", "O", "O"] sequence_label_field = SequenceLabelField(tags, self.text, label_namespace="labels") print(sequence_label_field) def test_sequence_methods(self): tags = ["B", "I", "O", "O", "O"] sequence_label_field = SequenceLabelField(tags, self.text, label_namespace="labels") assert len(sequence_label_field) == 5 assert sequence_label_field[1] == "I" assert [label for label in sequence_label_field] == tags
allennlp-master
tests/data/fields/sequence_label_field_test.py
import pytest from allennlp.common.testing.test_case import AllenNlpTestCase from allennlp.data.fields import MetadataField class TestMetadataField(AllenNlpTestCase): def test_mapping_works_with_dict(self): field = MetadataField({"a": 1, "b": [0]}) assert "a" in field assert field["a"] == 1 assert len(field) == 2 keys = {k for k in field} assert keys == {"a", "b"} values = [v for v in field.values()] assert len(values) == 2 assert 1 in values assert [0] in values def test_mapping_raises_with_non_dict(self): field = MetadataField(0) with pytest.raises(TypeError): _ = field[0] with pytest.raises(TypeError): _ = len(field) with pytest.raises(TypeError): _ = [x for x in field]
allennlp-master
tests/data/fields/metadata_field_test.py
import pytest from allennlp.common.testing.test_case import AllenNlpTestCase from allennlp.data.fields import FlagField class TestFlagField(AllenNlpTestCase): def test_get_padding_lengths_returns_nothing(self): flag_field = FlagField(True) assert flag_field.get_padding_lengths() == {} def test_as_tensor_just_returns_value(self): for value in [True, 3.234, "this is a string"]: assert FlagField(value).as_tensor({}) == value def test_printing_doesnt_crash(self): flag = FlagField(True) print(flag) def test_batch_tensors_returns_single_value(self): value = True fields = [FlagField(value) for _ in range(5)] values = [field.as_tensor({}) for field in fields] batched_value = fields[0].batch_tensors(values) assert batched_value == value def test_batch_tensors_crashes_with_non_uniform_values(self): field = FlagField(True) with pytest.raises(ValueError): field.batch_tensors([True, False, True]) with pytest.raises(ValueError): field.batch_tensors([1, 2, 3, 4]) with pytest.raises(ValueError): field.batch_tensors(["different", "string", "flags"])
allennlp-master
tests/data/fields/flag_field_test.py
allennlp-master
benchmarks/__init__.py
import torch from allennlp.nn import util from allennlp.common.testing import requires_gpu @requires_gpu def bench_add_sentence_boundary_token_ids(benchmark): device = torch.device("cuda") # shape: (32, 50) tensor = torch.tensor([[3] * 50] * 32, device=device) # shape: (32, 50) mask = torch.tensor([[True] * 50, [True] * 30 + [False] * 20] * 16, device=device) begin_token = 1 end_token = 2 benchmark(util.add_sentence_boundary_token_ids, tensor, mask, begin_token, end_token) @requires_gpu def bench_remove_sentence_boundaries(benchmark): device = torch.device("cuda") # shape: (32, 50, 1) tensor = torch.tensor([[3] * 50] * 32, device=device).unsqueeze(-1) # shape: (32, 50) mask = torch.tensor([[True] * 50, [True] * 30 + [False] * 20] * 16, device=device) benchmark(util.remove_sentence_boundaries, tensor, mask) @requires_gpu def bench_create_tensor_then_send_to_device(benchmark): device = torch.device("cuda:0") def create_tensor(): return torch.rand((32, 50)).to(device) benchmark(create_tensor) @requires_gpu def bench_create_tensor_directly_on_device(benchmark): device = torch.device("cuda:0") def create_tensor(): return torch.rand((32, 50), device=device) benchmark(create_tensor)
allennlp-master
benchmarks/nn/util_bench.py
allennlp-master
benchmarks/data/__init__.py
allennlp-master
benchmarks/data/tokenizers/__init__.py
from allennlp.data.tokenizers import CharacterTokenizer tokenizer = CharacterTokenizer() passage = ( "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor " "incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis " "nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. " "Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu " "fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in " "culpa qui officia deserunt mollit anim id est laborum." ) def bench_character_tokenizer(benchmark): benchmark(tokenizer.tokenize, passage)
allennlp-master
benchmarks/data/tokenizers/character_tokenizer_bench.py
# encoding: utf-8 """ Prepares markdown release notes for GitHub releases. """ import os from typing import List from allennlp.version import VERSION TAG = os.environ["TAG"] ADDED_HEADER = "### Added 🎉" CHANGED_HEADER = "### Changed ⚠️" FIXED_HEADER = "### Fixed ✅" REMOVED_HEADER = "### Removed 👋" def get_change_log_notes() -> str: in_current_section = False current_section_notes: List[str] = [] with open("CHANGELOG.md") as changelog: for line in changelog: if line.startswith("## "): if line.startswith("## Unreleased"): continue if line.startswith(f"## [{TAG}]"): in_current_section = True continue break if in_current_section: if line.startswith("### Added"): line = ADDED_HEADER + "\n" elif line.startswith("### Changed"): line = CHANGED_HEADER + "\n" elif line.startswith("### Fixed"): line = FIXED_HEADER + "\n" elif line.startswith("### Removed"): line = REMOVED_HEADER + "\n" current_section_notes.append(line) assert current_section_notes return "## What's new\n\n" + "".join(current_section_notes).strip() + "\n" def get_commit_history() -> str: stream = os.popen( f"git log $(git describe --always --tags --abbrev=0 {TAG}^^)..{TAG}^ --oneline" ) return "## Commits\n\n" + stream.read() def main(): assert TAG == f"v{VERSION}" print(get_change_log_notes()) print(get_commit_history()) if __name__ == "__main__": main()
allennlp-master
scripts/release_notes.py
#!/usr/bin/env python """ This script is used to populate the table of contents for the API in the mkdocs config file. """ import argparse from pathlib import Path from typing import Any, List from ruamel.yaml import YAML from allennlp.version import VERSION API_TOC_KEY = "API" def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("target_yaml", help="Path to the target mkdocs config file.") parser.add_argument("source_yaml", help="Path to the mkdocs skeleton config file.") parser.add_argument("docs_root", help="The root of the markdown docs folder.") parser.add_argument( "api_docs_path", help="The root of the API docs within the markdown docs root folder." ) parser.add_argument("--docs-version", type=str, default=f"v{VERSION}") return parser.parse_args() def build_api_toc(source_path: Path, docs_root: Path): nav_entries: List[Any] = [] for child in source_path.iterdir(): if child.is_dir(): nav_subsection = build_api_toc(child, docs_root) elif child.suffix == ".md": nav_subsection = str(child.relative_to(docs_root)) nav_entries.append({child.stem: nav_subsection}) nav_entries.sort(key=lambda x: list(x)[0], reverse=False) return nav_entries def main(): yaml = YAML() opts = parse_args() source_yaml = yaml.load(Path(opts.source_yaml)) nav_entries = build_api_toc(Path(opts.api_docs_path), Path(opts.docs_root)) # Add version to name. source_yaml["site_name"] = f"AllenNLP {opts.docs_version}" # Find the yaml sub-object corresponding to the API table of contents. site_nav = source_yaml["nav"] for nav_obj in site_nav: if API_TOC_KEY in nav_obj: break nav_obj[API_TOC_KEY] = nav_entries with open(opts.target_yaml, "w") as f: yaml.dump(source_yaml, f) print(f"{opts.target_yaml} created") if __name__ == "__main__": main()
allennlp-master
scripts/build_docs_config.py
#!/usr/bin/env python import glob import logging import os import re import shutil import sys import tempfile sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.join(__file__, os.pardir)))) from allennlp.commands.test_install import _get_module_root from allennlp.commands.train import train_model_from_file, train_model from allennlp.common import Params from allennlp.common.util import pushd logger = logging.getLogger(__name__) def train_fixture(config_prefix: str, config_filename: str = "experiment.json") -> None: config_file = config_prefix + config_filename serialization_dir = config_prefix + "serialization" # Train model doesn't like it if we have incomplete serialization # directories, so remove them if they exist. if os.path.exists(serialization_dir): shutil.rmtree(serialization_dir) # train the model train_model_from_file(config_file, serialization_dir) # remove unnecessary files shutil.rmtree(os.path.join(serialization_dir, "log")) for filename in glob.glob(os.path.join(serialization_dir, "*")): if ( filename.endswith(".log") or filename.endswith(".json") or re.search(r"epoch_[0-9]+\.th$", filename) ): os.remove(filename) def train_fixture_gpu(config_prefix: str) -> None: config_file = config_prefix + "experiment.json" serialization_dir = config_prefix + "serialization" params = Params.from_file(config_file) params["trainer"]["cuda_device"] = 0 # train this one to a tempdir tempdir = tempfile.gettempdir() train_model(params, tempdir) # now copy back the weights and and archived model shutil.copy(os.path.join(tempdir, "best.th"), os.path.join(serialization_dir, "best_gpu.th")) shutil.copy( os.path.join(tempdir, "model.tar.gz"), os.path.join(serialization_dir, "model_gpu.tar.gz") ) if __name__ == "__main__": module_root = _get_module_root().parent with pushd(module_root, verbose=True): models = [ ("basic_classifier", "experiment_seq2seq.jsonnet"), "simple_tagger", "simple_tagger_with_elmo", "simple_tagger_with_span_f1", ] for model in models: if isinstance(model, tuple): model, config_filename = model train_fixture(f"allennlp/tests/fixtures/{model}/", config_filename) else: train_fixture(f"allennlp/tests/fixtures/{model}/")
allennlp-master
scripts/train_fixtures.py
#!/usr/bin/env python # encoding: UTF-8 """ Goes through all the inline-links in markdown files and reports the breakages. """ import re import sys import pathlib import os from multiprocessing.dummy import Pool from typing import Tuple, NamedTuple, Optional import requests OK_STATUS_CODES = ( 200, 401, # the resource exists but may require some sort of login. 403, # ^ same 405, # HEAD method not allowed. 406, # the resource exists, but our default 'Accept-' header may not match what the server can provide. ) THREADS = 10 http_session = requests.Session() for resource_prefix in ("http://", "https://"): http_session.mount( resource_prefix, requests.adapters.HTTPAdapter(max_retries=5, pool_connections=20, pool_maxsize=THREADS), ) class MatchTuple(NamedTuple): source: str name: str link: str def url_ok(match_tuple: MatchTuple) -> Tuple[bool, str]: """Check if a URL is reachable.""" try: result = http_session.head(match_tuple.link, timeout=5, allow_redirects=True) return ( result.ok or result.status_code in OK_STATUS_CODES, f"status code = {result.status_code}", ) except (requests.ConnectionError, requests.Timeout): return False, "connection error" def path_ok(match_tuple: MatchTuple) -> bool: """Check if a file in this repository exists.""" relative_path = match_tuple.link.split("#")[0] full_path = os.path.join(os.path.dirname(str(match_tuple.source)), relative_path) return os.path.exists(full_path) def link_ok(match_tuple: MatchTuple) -> Tuple[MatchTuple, bool, Optional[str]]: reason: Optional[str] = None if match_tuple.link.startswith("http"): result_ok, reason = url_ok(match_tuple) else: result_ok = path_ok(match_tuple) print(f" {'✓' if result_ok else '✗'} {match_tuple.link}") return match_tuple, result_ok, reason def main(): print("Finding all markdown files in the current directory...") project_root = (pathlib.Path(__file__).parent / "..").resolve() markdown_files = project_root.glob("**/*.md") all_matches = set() url_regex = re.compile(r"\[([^!][^\]]+)\]\(([^)(]+)\)") for markdown_file in markdown_files: with open(markdown_file) as handle: for line in handle.readlines(): matches = url_regex.findall(line) for name, link in matches: if "localhost" not in link: all_matches.add(MatchTuple(source=str(markdown_file), name=name, link=link)) print(f" {len(all_matches)} markdown files found") print("Checking to make sure we can retrieve each link...") with Pool(processes=THREADS) as pool: results = pool.map(link_ok, [match for match in list(all_matches)]) unreachable_results = [ (match_tuple, reason) for match_tuple, success, reason in results if not success ] if unreachable_results: print(f"Unreachable links ({len(unreachable_results)}):") for match_tuple, reason in unreachable_results: print(" > Source: " + match_tuple.source) print(" Name: " + match_tuple.name) print(" Link: " + match_tuple.link) if reason is not None: print(" Reason: " + reason) sys.exit(1) print("No Unreachable link found.") if __name__ == "__main__": main()
allennlp-master
scripts/check_links.py
from datetime import datetime as dt import os from github import Github def main(): g = Github(os.environ["GITHUB_TOKEN"]) repo = g.get_repo("allenai/allennlp") open_issues = repo.get_issues(state="open") for issue in open_issues: if ( issue.milestone is None and issue.assignees and issue.pull_request is None and (dt.utcnow() - issue.updated_at).days >= 14 ): assignees = ", ".join([f"@{user.login}" for user in issue.assignees]) print(f"Pinging {assignees} for {issue}") issue.create_comment( f"{assignees} this is just a friendly ping to make sure you " "haven't forgotten about this issue 😜" ) if __name__ == "__main__": main()
allennlp-master
scripts/ping_issue_assignees.py
#!/usr/bin/env python import argparse from typing import Dict import requests def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("version_type", choices=["stable", "latest", "current"]) return parser.parse_args() def get_current_version() -> str: VERSION: Dict[str, str] = {} with open("allennlp/version.py", "r") as version_file: exec(version_file.read(), VERSION) return "v" + VERSION["VERSION"] def get_latest_version() -> str: resp = requests.get("https://api.github.com/repos/allenai/allennlp/tags") return resp.json()[0]["name"] def get_stable_version() -> str: resp = requests.get("https://api.github.com/repos/allenai/allennlp/releases/latest") return resp.json()["tag_name"] def main() -> None: opts = parse_args() if opts.version_type == "stable": print(get_stable_version()) elif opts.version_type == "latest": print(get_latest_version()) elif opts.version_type == "current": print(get_current_version()) else: raise NotImplementedError if __name__ == "__main__": main()
allennlp-master
scripts/get_version.py
from datetime import datetime as dt import os from github import Github LABELS_TO_EXEMPT = ["contributions welcome", "merge when ready", "under development", "help wanted"] def main(): g = Github(os.environ["GITHUB_TOKEN"]) repo = g.get_repo("allenai/allennlp") open_issues = repo.get_issues(state="open") for issue in open_issues: if ( issue.milestone is None and not issue.assignees and issue.pull_request is None and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 14 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): print("Closing", issue) issue.create_comment( "This issue is being closed due to lack of activity. " "If you think it still needs to be addressed, please comment on this thread 👇" ) issue.add_to_labels("stale") issue.edit(state="closed") if __name__ == "__main__": main()
allennlp-master
scripts/close_stale_issues.py
#!/usr/bin/env python """ Turn docstrings from a single module into a markdown file. We do this with PydocMarkdown, using custom processors and renderers defined here. """ import argparse from collections import OrderedDict from dataclasses import dataclass from enum import Enum import logging from multiprocessing import Pool, cpu_count import os from pathlib import Path import re import sys from typing import Optional, Tuple, List from nr.databind.core import Struct from nr.interface import implements, override from pydoc_markdown import PydocMarkdown from pydoc_markdown.contrib.loaders.python import PythonLoader from pydoc_markdown.contrib.renderers.markdown import MarkdownRenderer from pydoc_markdown.interfaces import Processor, Renderer from pydoc_markdown.reflection import Argument, Module, Function, Class, Data logging.basicConfig(level=logging.INFO) logger = logging.getLogger("py2md") BASE_MODULE = os.environ.get("BASE_MODULE", "allennlp") BASE_SOURCE_LINK = os.environ.get( "BASE_SOURCE_LINK", "https://github.com/allenai/allennlp/blob/master/allennlp/" ) class DocstringError(Exception): pass def emphasize(s: str) -> str: # Need to escape underscores. s = s.replace("_", "\\_") return f"__{s}__" class Section(Enum): ARGUMENTS = "ARGUMENTS" PARAMETERS = "PARAMETERS" ATTRIBUTES = "ATTRIBUTES" MEMBERS = "MEMBERS" RETURNS = "RETURNS" RAISES = "RAISES" EXAMPLES = "EXAMPLES" OTHER = "OTHER" @classmethod def from_str(cls, section: str) -> "Section": section = section.upper() for member in cls: if section == member.value: return member return cls.OTHER REQUIRED_PARAM_RE = re.compile(r"^`([^`]+)`(, required\.?)?$") OPTIONAL_PARAM_RE = re.compile( r"^`([^`]+)`,?\s+(optional,?\s)?\(\s?(optional,\s)?default\s?=\s?`([^`]+)`\s?\)\.?$" ) OPTIONAL_PARAM_NO_DEFAULT_RE = re.compile(r"^`([^`]+)`,?\s+optional\.?$") @dataclass class Param: ident: str ty: Optional[str] = None required: bool = False default: Optional[str] = None @classmethod def from_line(cls, line: str) -> Optional["Param"]: if ":" not in line: return None ident, description = line.split(":", 1) ident = ident.strip() description = description.strip() if " " in ident: return None maybe_match = REQUIRED_PARAM_RE.match(description) if maybe_match: ty = maybe_match.group(1) return cls(ident=ident, ty=ty, required=True) maybe_match = OPTIONAL_PARAM_RE.match(description) if maybe_match: ty = maybe_match.group(1) default = maybe_match.group(4) return cls(ident=ident, ty=ty, required=False, default=default) maybe_match = OPTIONAL_PARAM_NO_DEFAULT_RE.match(description) if maybe_match: ty = maybe_match.group(1) return cls(ident=ident, ty=ty, required=False) raise DocstringError( f"Invalid parameter / attribute description: '{line}'\n" "Make sure types are enclosed in backticks.\n" "Required parameters should be documented like: '{ident} : `{type}`'\n" "Optional parameters should be documented like: '{ident} : `{type}`, optional (default = `{expr}`)'\n" ) def to_line(self) -> str: line: str = f"- {emphasize(self.ident)} :" if self.ty: line += f" `{self.ty}`" if not self.required: line += ", optional" if self.default: line += f" (default = `{self.default}`)" line += " <br>" return line # For now we handle attributes / members in the same way as parameters / arguments. Attrib = Param @dataclass class RetVal: description: Optional[str] = None ident: Optional[str] = None ty: Optional[str] = None @classmethod def from_line(cls, line: str) -> "RetVal": if ": " not in line: return cls(description=line) ident, ty = line.split(":", 1) ident = ident.strip() ty = ty.strip() if ty and not ty.startswith("`"): raise DocstringError(f"Type should be enclosed in backticks: '{line}'") return cls(ident=ident, ty=ty) def to_line(self) -> str: if self.description: line = f"- {self.description} <br>" elif self.ident: line = f"- {emphasize(self.ident)}" if self.ty: line += f" : {self.ty} <br>" else: line += " <br>" else: raise DocstringError("RetVal must have either description or ident") return line @dataclass class ProcessorState: parameters: "OrderedDict[str, Param]" current_section: Optional[Section] = None codeblock_opened: bool = False consecutive_blank_line_count: int = 0 @implements(Processor) class AllenNlpDocstringProcessor(Struct): """ Use to turn our docstrings into Markdown. """ CROSS_REF_RE = re.compile("(:(class|func|mod):`~?([a-zA-Z0-9_.]+)`)") UNDERSCORE_HEADER_RE = re.compile(r"(.*)\n-{3,}\n") MULTI_LINE_LINK_RE = re.compile(r"(\[[^\]]+\])\n\s*(\([^\)]+\))") @override def process(self, graph, resolver): graph.visit(self.process_node) def process_node(self, node): if not getattr(node, "docstring", None): return lines: List[str] = [] state: ProcessorState = ProcessorState(parameters=OrderedDict()) docstring = node.docstring # Standardize header syntax to use '#' instead of underscores. docstring = self.UNDERSCORE_HEADER_RE.sub(r"# \g<1>", docstring) # It's common to break up markdown links into multiple lines in docstrings, but # they won't render as links in the doc HTML unless they are all on one line. docstring = self.MULTI_LINE_LINK_RE.sub(r"\g<1>\g<2>", docstring) for line in docstring.split("\n"): # Check if we're starting or ending a codeblock. if line.startswith("```"): state.codeblock_opened = not state.codeblock_opened if not state.codeblock_opened: # If we're not in a codeblock, we'll do some pre-processing. if not line.strip(): state.consecutive_blank_line_count += 1 if state.consecutive_blank_line_count >= 2: state.current_section = None else: state.consecutive_blank_line_count = 0 line = self._preprocess_line(line, state) lines.append(line) # Now set the docstring to our preprocessed version of it. node.docstring = "\n".join(lines) def _preprocess_line(self, line, state: ProcessorState) -> str: match = re.match(r"#+ (.*)$", line) if match: state.current_section = Section.from_str(match.group(1).strip()) line = re.sub(r"#+ (.*)$", r"<strong>\1</strong>\n", line) else: if line and not line.startswith(" ") and not line.startswith("!!! "): if state.current_section in ( Section.ARGUMENTS, Section.PARAMETERS, ): param = Param.from_line(line) if param: line = param.to_line() elif state.current_section in (Section.ATTRIBUTES, Section.MEMBERS): attrib = Attrib.from_line(line) if attrib: line = attrib.to_line() elif state.current_section in (Section.RETURNS, Section.RAISES): retval = RetVal.from_line(line) line = retval.to_line() line = self._transform_cross_references(line) return line def _transform_cross_references(self, line: str) -> str: """ Replace sphinx style crossreferences with markdown links. """ for match, ty, name in self.CROSS_REF_RE.findall(line): if name.startswith(f"{BASE_MODULE}."): path = name.split(".") if ty == "mod": href = "/api/" + "/".join(path[1:]) else: href = "/api/" + "/".join(path[1:-1]) + "#" + path[-1].lower() cross_ref = f"[`{path[-1]}`]({href})" elif "." not in name: cross_ref = f"[`{name}`](#{name.lower()})" else: cross_ref = f"`{name}`" line = line.replace(match, cross_ref) return line @implements(Processor) class AllenNlpFilterProcessor(Struct): """ Used to filter out nodes that we don't want to document. """ PRIVATE_METHODS_TO_KEEP = {"DatasetReader._read", "__call__"} def process(self, graph, _resolver): graph.visit(self._process_node) def _process_node(self, node): def _check(node): if node.name.startswith("_"): if node.name in self.PRIVATE_METHODS_TO_KEEP: return True if ( node.parent and f"{node.parent.name}.{node.name}" in self.PRIVATE_METHODS_TO_KEEP ): return True return False if node.parent and node.parent.name.startswith("_"): return False if node.name == "logger" and isinstance(node.parent, Module): return False return True if not _check(node): node.visible = False @implements(Renderer) class AllenNlpRenderer(MarkdownRenderer): def _format_function_signature( self, func: Function, override_name: str = None, add_method_bar: bool = True, include_parent_class: bool = True, ) -> str: parts = [] for dec in func.decorators: parts.append("@{}{}\n".format(dec.name, dec.args or "")) if self.signature_python_help_style and not func.is_method(): parts.append("{} = ".format(func.path())) if func.is_async: parts.append("async ") if self.signature_with_def: parts.append("def ") if self.signature_class_prefix and ( func.is_function() and func.parent and func.parent.is_class() ): parts.append(func.parent.name + ".") parts.append((override_name or func.name)) signature_args = Argument.format_arglist(func.args) if signature_args.endswith(","): signature_args = signature_args[:-1].strip() if ( len(parts[-1]) + len(signature_args) + (0 if not func.return_ else len(str(func.return_))) > 60 ): signature_args = ",\n ".join( filter(lambda s: s.strip() not in ("", ","), (str(arg) for arg in func.args)) ) parts.append("(\n " + signature_args + "\n)") else: parts.append("(" + signature_args + ")") if func.return_: parts.append(" -> {}".format(func.return_)) result = "".join(parts) if add_method_bar and func.is_method(): result = "\n".join(" | " + line for line in result.split("\n")) if include_parent_class: bases = ", ".join(map(str, func.parent.bases)) if func.parent.metaclass: bases += ", metaclass=" + str(func.parent.metaclass) if bases: class_signature = f"class {func.parent.name}({bases})" else: class_signature = f"class {func.parent.name}" result = f"{class_signature}:\n | ...\n{result}" return result def _format_data_signature(self, data: Data) -> str: expr = str(data.expr) if len(expr) > self.data_expression_maxlength: expr = expr[: self.data_expression_maxlength] + " ..." if data.annotation: signature = f"{data.name}: {data.annotation} = {expr}" else: signature = f"{data.name} = {expr}" if data.parent and data.parent.is_class(): bases = ", ".join(map(str, data.parent.bases)) if data.parent.metaclass: bases += ", metaclass=" + str(data.parent.metaclass) if bases: class_signature = f"class {data.parent.name}({bases})" else: class_signature = f"class {data.parent.name}" return f"{class_signature}:\n | ...\n | {signature}" else: return signature def _format_classdef_signature(self, cls: Class) -> str: code = "" if cls.decorators: for dec in cls.decorators: code += "@{}{}\n".format(dec.name, dec.args or "") bases = ", ".join(map(str, cls.bases)) if cls.metaclass: bases += ", metaclass=" + str(cls.metaclass) if bases: code += "class {}({})".format(cls.name, bases) else: code += "class {}".format(cls.name) if self.signature_python_help_style: code = cls.path() + " = " + code if self.classdef_render_init_signature_if_needed and ( "__init__" in cls.members and not cls.members["__init__"].visible ): code += ":\n" + self._format_function_signature( cls.members["__init__"], add_method_bar=True, include_parent_class=False, ) return code def _render_module_breadcrumbs(self, fp, mod: Module): submods = mod.name.split(".") breadcrumbs = [] for i, submod_name in enumerate(submods): if i == 0: title = f"<i>{submod_name}</i>" elif i == len(submods) - 1: title = f"<strong>.{submod_name}</strong>" else: title = f"<i>.{submod_name}</i>" breadcrumbs.append(title) "/".join(submods[1:]) source_link = BASE_SOURCE_LINK + "/".join(submods[1:]) + ".py" fp.write( "<div>\n" ' <p class="alignleft">' + "".join(breadcrumbs) + "</p>\n" f' <p class="alignright"><a class="sourcelink" href="{source_link}">[SOURCE]</a></p>\n' "</div>\n" '<div style="clear: both;"></div>\n\n---\n\n' ) def _render_object(self, fp, level, obj): if not isinstance(obj, Module) or self.render_module_header: self._render_header(fp, level, obj) if isinstance(obj, Module): self._render_module_breadcrumbs(fp, obj) self._render_signature_block(fp, obj) if obj.docstring: lines = obj.docstring.split("\n") if self.docstrings_as_blockquote: lines = ["> " + x for x in lines] fp.write("\n".join(lines)) fp.write("\n\n") def py2md(module: str, out: Optional[str] = None) -> bool: """ Returns `True` if module successfully processed, otherwise `False`. """ logger.debug("Processing %s", module) pydocmd = PydocMarkdown( loaders=[PythonLoader(modules=[module])], processors=[AllenNlpFilterProcessor(), AllenNlpDocstringProcessor()], renderer=AllenNlpRenderer( filename=out, add_method_class_prefix=False, add_member_class_prefix=False, data_code_block=True, signature_with_def=True, use_fixed_header_levels=False, render_module_header=False, descriptive_class_title=False, ), ) if out: out_path = Path(out) os.makedirs(out_path.parent, exist_ok=True) pydocmd.load_modules() try: pydocmd.process() except DocstringError as err: logger.exception("Failed to process %s.\n%s", module, err) return False pydocmd.render() return True def _py2md_wrapper(x: Tuple[str, str]) -> bool: """ Used to wrap py2md since we can't pickle a lambda (needed for multiprocessing). """ return py2md(x[0], x[1]) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("modules", nargs="+", type=str, help="""The Python modules to parse.""") parser.add_argument( "-o", "--out", nargs="+", type=str, help="""Output files. If given, must have the same number of items as 'modules'. If not given, stdout is used.""", ) return parser.parse_args() def main(): opts = parse_args() outputs = opts.out if opts.out else [None] * len(opts.modules) if len(outputs) != len(opts.modules): raise ValueError("Number inputs and outputs should be the same.") n_threads = cpu_count() errors: int = 0 if len(opts.modules) > n_threads and opts.out: # If writing to files, can process in parallel. chunk_size = max([1, int(len(outputs) / n_threads)]) logger.info("Using %d threads", n_threads) with Pool(n_threads) as p: for result in p.imap(_py2md_wrapper, zip(opts.modules, outputs), chunk_size): if not result: errors += 1 else: # If writing to stdout, need to process sequentially. Otherwise the output # could get intertwined. for module, out in zip(opts.modules, outputs): result = py2md(module, out) if not result: errors += 1 logger.info("Processed %d modules", len(opts.modules)) if errors: logger.error("Found %d errors", errors) sys.exit(1) if __name__ == "__main__": main()
allennlp-master
scripts/py2md.py
from typing import Optional import pytest from allennlp.common.testing import AllenNlpTestCase from scripts.py2md import py2md, Param, DocstringError class TestPy2md(AllenNlpTestCase): def test_basic_example(self, capsys): py2md("scripts.tests.py2md.basic_example") captured = capsys.readouterr() with open( self.PROJECT_ROOT / "scripts" / "tests" / "py2md" / "basic_example_expected_output.md" ) as f: expected = f.read() assert captured.out.split("\n") == expected.split("\n") @pytest.mark.parametrize( "line_in, line_out", [ ( "a : `int`, optional (default = `None`)", "- __a__ : `int`, optional (default = `None`) <br>", ), ( "foo : `Tuple[int, ...]`, optional (default = `()`)", "- __foo__ : `Tuple[int, ...]`, optional (default = `()`) <br>", ), ("a : `int`, required", "- __a__ : `int` <br>"), ("a : `int`", "- __a__ : `int` <br>"), ("_a : `int`", "- __\\_a__ : `int` <br>"), ("a_ : `int`", "- __a\\___ : `int` <br>"), ], ) def test_param_from_and_to_line(line_in: str, line_out: Optional[str]): param = Param.from_line(line_in) assert param is not None assert param.to_line() == line_out @pytest.mark.parametrize( "line", [ "a : `int`, optional (default = None)", "a : `int`, optional (default = `None)", "a : `int`, optional (default = None`)", "a : int", "a : `int", "a : int`", ], ) def test_param_from_bad_line_raises(line: str): with pytest.raises(DocstringError): Param.from_line(line)
allennlp-master
scripts/tests/py2md/py2md_test.py
""" This is a docstring. And this is a multi-line line: [http://example.com] (https://example.com/blah/blah/blah.html). """ from dataclasses import dataclass SOME_GLOBAL_VAR = "Ahhhh I'm a global var!!" """ This is a global var. """ def func_with_no_args(): """ This function has no args. """ return None def func_with_args(a: int, b: int, c: int = 3) -> int: """ This function has some args. # Parameters a : `int` A number. b : `int` Another number. c : `int`, optional (default = `3`) Yet another number. Notes ----- These are some notes. # Returns `int` The result of `a + b * c`. """ return a + b * c class SomeClass: """ I'm a class! # Parameters x : `float` This attribute is called `x`. """ some_class_level_variable = 1 """ This is how you document a class-level variable. """ some_class_level_var_with_type: int = 1 def __init__(self) -> None: self.x = 1.0 def _private_method(self) -> None: """ Private methods should not be included in documentation. """ pass def some_method(self) -> None: """ I'm a method! But I don't do anything. # Returns `None` """ return None def method_with_alternative_return_section(self) -> int: """ Another method. # Returns A completely arbitrary number. """ return 3 def method_with_alternative_return_section3(self) -> int: """ Another method. # Returns number : `int` A completely arbitrary number. """ return 3 class AnotherClassWithReallyLongConstructor: def __init__( self, a_really_long_argument_name: int = 0, another_long_name: float = 2, these_variable_names_are_terrible: str = "yea I know", **kwargs, ) -> None: self.a = a_really_long_argument_name self.b = another_long_name self.c = these_variable_names_are_terrible self.other = kwargs @dataclass class ClassWithDecorator: x: int class _PrivateClass: def public_method_on_private_class(self): """ This should not be documented since the class is private. """ pass
allennlp-master
scripts/tests/py2md/basic_example.py
import pytest import sqlite3 from unittest.mock import call, Mock from allennlp.common.testing import AllenNlpTestCase from scripts.ai2_internal.resume_daemon import ( BeakerStatus, create_table, handler, logger, resume, start_autoresume, ) # Don't spam the log in tests. logger.removeHandler(handler) class ResumeDaemonTest(AllenNlpTestCase): def setup_method(self): super().setup_method() self.connection = sqlite3.connect(":memory:") create_table(self.connection) def test_create_beaker_status_works(self): status = BeakerStatus("stopped") assert status.name == "stopped" def test_create_beaker_status_throws(self): with pytest.raises(ValueError): status = BeakerStatus("garbage") assert status.name == "garbage" def test_does_nothing_on_empty_db(self): beaker = Mock() resume(self.connection, beaker) assert not beaker.method_calls def test_does_not_resume_a_running_experiment(self): beaker = Mock() experiment_id = "foo" start_autoresume(self.connection, experiment_id, 5) beaker.get_status.return_value = BeakerStatus.running resume(self.connection, beaker) beaker.get_status.assert_called() assert len(beaker.method_calls) == 1 def test_does_not_resume_a_finished_experiment(self): beaker = Mock() experiment_id = "foo" start_autoresume(self.connection, experiment_id, 5) beaker.get_status.return_value = BeakerStatus.succeeded resume(self.connection, beaker) beaker.get_status.assert_called() assert len(beaker.method_calls) == 1 def test_does_resume_a_preempted_experiment(self): beaker = Mock() experiment_id = "foo" start_autoresume(self.connection, experiment_id, 5) beaker.get_status.return_value = BeakerStatus.preempted beaker.resume.return_value = "foo2" resume(self.connection, beaker) beaker.get_status.assert_called() beaker.resume.assert_called() assert len(beaker.method_calls) == 2 def test_respects_upper_bound_on_resumes(self): beaker = Mock() experiment_id = "foo" start_autoresume(self.connection, experiment_id, 5) beaker.get_status.return_value = BeakerStatus.preempted for i in range(10): beaker.resume.return_value = f"foo{i}" resume(self.connection, beaker) calls = [ call.get_status("foo"), call.resume("foo"), call.get_status("foo0"), call.resume("foo0"), call.get_status("foo1"), call.resume("foo1"), call.get_status("foo2"), call.resume("foo2"), call.get_status("foo3"), call.resume("foo3"), call.get_status("foo4"), ] beaker.assert_has_calls(calls) def test_handles_a_realistic_scenario(self): beaker = Mock() experiment_id = "foo" start_autoresume(self.connection, experiment_id, 5) beaker.get_status.return_value = BeakerStatus.preempted for i in range(10): beaker.resume.return_value = f"foo{i}" if i == 2: beaker.get_status.return_value = BeakerStatus.succeeded resume(self.connection, beaker) calls = [ call.get_status("foo"), call.resume("foo"), call.get_status("foo0"), call.resume("foo0"), call.get_status("foo1"), ] beaker.assert_has_calls(calls)
allennlp-master
scripts/tests/ai2_internal/resume_daemon_test.py
#! /usr/bin/env python3 # Tool to automatically resume preemptible beaker experiments created with run_with_beaker.py. # # Examples # -------- # # Ensure an experiment will be resumed: # resume_daemon.py --action=start --experiment-id=$YOUR_EXPERIMENT_ID # # Stop resuming an experiment: # resume_daemon.py --action=stop --experiment-id=$YOUR_EXPERIMENT_ID # # Details # ------- # # In order to operate, resume_daemon.py does the following: # # 1. Modifies the user's crontab. # 2. Maintains a SQLite DB in ~/.allennlp/resume.db. # 3. Keeps logs in ~/.allennlp/resume.log. # # The reliance on crontab means that resumes will only occur when the running # system is powered on. Longer term Beaker is planning on adding this # functionality to their service directly, which will obsolete this tool. import argparse import json import logging import os import random import sqlite3 import subprocess import time from enum import Enum from logging.handlers import RotatingFileHandler from sqlite3 import Connection from subprocess import PIPE logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) formatter = logging.Formatter( fmt="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%d %H:%M:%S" ) dot_allennlp_dir = f"{os.environ['HOME']}/.allennlp" # Special case for users that haven't run AllenNLP locally. if not os.path.exists(dot_allennlp_dir): os.mkdir(dot_allennlp_dir) handler = RotatingFileHandler( f"{dot_allennlp_dir}/resume.log", maxBytes=1024 * 1024, backupCount=10 ) handler.setFormatter(formatter) logger.addHandler(handler) BEAKER_QUERY_INTERVAL_SECONDS = 1.0 # See https://github.com/beaker/client/blob/master/api/task_status.go class BeakerStatus(Enum): submitted = "submitted" provisioning = "provisioning" initializing = "initializing" running = "running" terminating = "terminating" preempted = "preempted" succeeded = "succeeded" skipped = "skipped" stopped = "stopped" failed = "failed" def __str__(self): return self.name def is_end_state(self): if self is BeakerStatus.preempted: return True elif self is BeakerStatus.succeeded: return True elif self is BeakerStatus.skipped: return True elif self is BeakerStatus.stopped: return True elif self is BeakerStatus.failed: return True else: return False class BeakerWrapper: def get_status(self, experiment_id: str) -> BeakerStatus: command = ["beaker", "experiment", "inspect", experiment_id] experiment_json = subprocess.check_output(command) # Example output from beaker. # brendanr.local$ beaker experiment inspect ex_g7knlblsjxxk # [ # { # "id": "ex_g7knlblsjxxk", # "owner": { # "id": "us_a4hw8yvr3xut", # "name": "ai2", # "displayName": "AI2" # }, # "author": { # "id": "us_hl8x796649u9", # "name": "brendanr", # "displayName": "Brendan Roof" # }, # "workspace": "", # "user": { # "id": "", # "name": "", # "displayName": "" # }, # "nodes": [ # { # "name": "training", # "task_id": "", # "taskId": "tk_64wm85lc3f0m", # "result_id": "", # "resultId": "ds_du02un92r57b", # "status": "initializing", # "child_task_ids": null, # "childTaskIds": [], # "parent_task_ids": null, # "parentTaskIds": [] # } # ], # "created": "2019-09-25T02:03:30.820437Z", # "archived": false # } # ] experiment_data = json.loads(experiment_json) # Beaker lets there be multiple tasks in a single experiment. Here we # just try to handle the simple case of single task experiments like # those created by run_with_beaker.py. assert len(experiment_data) == 1, "Experiment not created with run_with_beaker.py" assert ( len(experiment_data[0]["nodes"]) == 1 ), "Experiment not created with run_with_beaker.py" status = BeakerStatus(experiment_data[0]["nodes"][0]["status"]) # Small delay to avoid thrashing Beaker. time.sleep(BEAKER_QUERY_INTERVAL_SECONDS) return status def resume(self, experiment_id: str) -> str: command = ["beaker", "experiment", "resume", f"--experiment-name={experiment_id}"] # Small delay to avoid thrashing Beaker. time.sleep(BEAKER_QUERY_INTERVAL_SECONDS) return subprocess.check_output(command, universal_newlines=True).strip() def create_table(connection: Connection) -> None: cursor = connection.cursor() create_table_statement = """ CREATE TABLE active_experiments (experiment_id TEXT PRIMARY KEY, original_id TEXT, max_resumes INTEGER, current_resume INTEGER) """ cursor.execute(create_table_statement) connection.commit() def start_autoresume(connection: Connection, experiment_id: str, max_resumes: int) -> None: cursor = connection.cursor() cursor.execute( "INSERT INTO active_experiments VALUES (?, ?, ?, ?)", (experiment_id, experiment_id, max_resumes, 0), ) connection.commit() def stop_autoresume(connection: Connection, experiment_id: str) -> None: cursor = connection.cursor() cursor.execute("SELECT * FROM active_experiments WHERE experiment_id = ?", (experiment_id,)) result = cursor.fetchall() assert result, f"Experiment {experiment_id} not found!" cursor.execute("DELETE FROM active_experiments WHERE experiment_id = ?", (experiment_id,)) connection.commit() def resume(connection: Connection, beaker: BeakerWrapper) -> None: logger.info("Checking if resumes are needed.") cursor = connection.cursor() cursor.execute("SELECT * FROM active_experiments") experiments = cursor.fetchall() for experiment_row in experiments: experiment_id, original_id, max_resumes, current_resume = experiment_row status = beaker.get_status(experiment_id) if status.is_end_state(): stop_autoresume(connection, experiment_id) if status is BeakerStatus.preempted: if current_resume >= max_resumes: logger.info( f"Experiment {experiment_id} preempted too many times " f"({max_resumes}). Original experiment: {original_id}" ) else: new_experiment_id = beaker.resume(experiment_id) logger.info( f"Experiment {experiment_id} preempted " f"({current_resume}/{max_resumes}). Resuming as: " f"{new_experiment_id} Original experiment: {original_id}" ) cursor.execute( "INSERT INTO active_experiments VALUES (?, ?, ?, ?)", (new_experiment_id, original_id, max_resumes, current_resume + 1), ) connection.commit() else: logger.info( f"Experiment {experiment_id} completed with status: " f"{status}. Original experiment: {original_id}" ) class Action(Enum): start = "start" stop = "stop" resume = "resume" def __str__(self): return self.name def main(args) -> None: # Smooth load from potentially many daemons on different machines. time.sleep(random.randint(0, args.random_delay_seconds)) db_path = f"{dot_allennlp_dir}/resume.db" connection = sqlite3.connect(db_path) # Create the DB if needed. cursor = connection.cursor() cursor.execute( "SELECT name FROM sqlite_master WHERE type='table' AND name='active_experiments'" ) tables = cursor.fetchall() if not tables: create_table(connection) # Modify the crontab if needed. crontab_l_result = subprocess.run( ["crontab", "-l"], universal_newlines=True, stdout=PIPE, stderr=PIPE ) if crontab_l_result.returncode == 0: current_crontab = crontab_l_result.stdout else: # `crontab -l` fails when a crontab hasn't been installed previously. # Sanity check the error message to guard against blowing away the # crontab in some obscure failure case. assert "no crontab" in crontab_l_result.stderr, f"crontab failed: {crontab_l_result.stderr}" current_crontab = "" full_path = os.path.abspath(__file__) if full_path not in current_crontab: # Execute this script every ten minutes. We set the PATH to that used # to run this install step to make sure that we have access to python3 # and beaker. cron_line = ( f"*/10 * * * * bash -c 'export PATH={os.environ['PATH']};" f" python3 {full_path} --action=resume --random-delay-seconds=60'\n" ) new_crontab = current_crontab + cron_line subprocess.run(["crontab", "-"], input=new_crontab, encoding="utf-8") if args.action is Action.start: assert args.experiment_id start_autoresume(connection, args.experiment_id, args.max_resumes) elif args.action is Action.stop: assert args.experiment_id stop_autoresume(connection, args.experiment_id) elif args.action is Action.resume: beaker = BeakerWrapper() resume(connection, beaker) else: raise Exception(f"Unaccounted for action {args.action}") connection.close() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--action", type=Action, choices=list(Action), required=True) parser.add_argument("--experiment-id", type=str) parser.add_argument("--max-resumes", type=int, default=10) parser.add_argument("--random-delay-seconds", type=int, default=0) args = parser.parse_args() try: main(args) except Exception: # Ensure traces are logged. # TODO(brendanr): Is there a better way to do this? logger.exception("Fatal error") raise
allennlp-master
scripts/ai2_internal/resume_daemon.py
#! /usr/bin/env python # Script to launch AllenNLP Beaker jobs. import argparse import os import json import random import tempfile import subprocess import sys # This has to happen before we import spacy (even indirectly), because for some crazy reason spacy # thought it was a good idea to set the random seed on import... random_int = random.randint(0, 2 ** 32) sys.path.insert( 0, os.path.dirname(os.path.abspath(os.path.join(os.path.join(__file__, os.pardir), os.pardir))) ) from allennlp.common.params import Params def main(param_file: str, args: argparse.Namespace): commit = subprocess.check_output(["git", "rev-parse", "HEAD"], universal_newlines=True).strip() docker_image = f"allennlp/allennlp:{commit}" overrides = args.overrides # Reads params and sets environment. ext_vars = {} for var in args.env: key, value = var.split("=") ext_vars[key] = value params = Params.from_file(param_file, overrides, ext_vars) # Write params as json. Otherwise Jsonnet's import feature breaks. params_dir = tempfile.mkdtemp(prefix="config") compiled_params_path = os.path.join(params_dir, "config.json") params.to_file(compiled_params_path) print(f"Compiled jsonnet config written to {compiled_params_path}.") flat_params = params.as_flat_dict() env = {} for k, v in flat_params.items(): k = str(k).replace(".", "_") env[k] = str(v) # If the git repository is dirty, add a random hash. result = subprocess.run("git diff-index --quiet HEAD --", shell=True) if result.returncode != 0: dirty_hash = "%x" % random_int docker_image += "-" + dirty_hash if args.image: image = args.image print(f"Using the specified image: {image}") else: print(f"Building the Docker image ({docker_image})...") subprocess.run(f"docker build -t {docker_image} .", shell=True, check=True) print("Create a Beaker image...") image = subprocess.check_output( f"beaker image create --quiet {docker_image}", shell=True, universal_newlines=True ).strip() print(f" Image created: {docker_image}") config_dataset_id = subprocess.check_output( f"beaker dataset create --quiet {params_dir}/*", shell=True, universal_newlines=True ).strip() # Arguments that differ between preemptible and regular machine execution. if args.preemptible: allennlp_prefix = ["/stage/allennlp/resumable_train.sh", "/output", "/config/config.json"] else: allennlp_prefix = [ "python", "-m", "allennlp.run", "train", "/config/config.json", "-s", "/output", ] # All other arguments allennlp_suffix = ["--file-friendly-logging"] for package_name in args.include_package: allennlp_suffix.append("--include-package") allennlp_suffix.append(package_name) allennlp_command = allennlp_prefix + allennlp_suffix dataset_mounts = [] for source in args.source + [f"{config_dataset_id}:/config"]: datasetId, containerPath = source.split(":") dataset_mounts.append({"datasetId": datasetId, "containerPath": containerPath}) for var in args.env: key, value = var.split("=") env[key] = value requirements = {} if args.cpu: requirements["cpu"] = float(args.cpu) if args.memory: requirements["memory"] = args.memory if args.gpu_count: requirements["gpuCount"] = int(args.gpu_count) if args.preemptible: requirements["preemptible"] = True config_spec = { "description": args.desc, "image": image, "resultPath": "/output", "args": allennlp_command, "datasetMounts": dataset_mounts, "requirements": requirements, "env": env, } config_task = {"spec": config_spec, "name": "training"} config = {"tasks": [config_task]} output_path = ( args.spec_output_path if args.spec_output_path else tempfile.mkstemp(".yaml", "beaker-config-")[1] ) with open(output_path, "w") as output: output.write(json.dumps(config, indent=4)) print(f"Beaker spec written to {output_path}.") experiment_command = ["beaker", "experiment", "create", "--quiet", "--file", output_path] if args.name: experiment_command.append("--name") experiment_command.append(args.name.replace(" ", "-")) def resume_command(experiment_id): resume_daemon_path = os.path.join(os.path.dirname(__file__), "resume_daemon.py") return [ # Run with python (instead of calling directly) in case the # executable bit wasn't preserved for some reason. "python3", resume_daemon_path, "--action=start", f"--max-resumes={args.max_resumes}", f"--experiment-id={experiment_id}", ] if args.dry_run: print("This is a dry run (--dry-run). Launch your job with the following command:") print(" " + " ".join(experiment_command)) if args.max_resumes > 0: print("Configure auto-resumes with the following command:") print(" " + " ".join(resume_command("$YOUR_EXPERIMENT_ID"))) else: print("Running the experiment:") print(" " + " ".join(experiment_command)) experiment_id = subprocess.check_output(experiment_command, universal_newlines=True).strip() print( f"Experiment {experiment_id} submitted. " f"See progress at https://beaker.org/ex/{experiment_id}" ) if args.max_resumes > 0: print("Configuring auto-resumes:") print(" " + " ".join(resume_command(experiment_id))) subprocess.run(resume_command(experiment_id)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("param_file", type=str, help="The model configuration file.") parser.add_argument("--name", type=str, help="A name for the experiment.") parser.add_argument( "--spec_output_path", type=str, help="The destination to write the experiment spec." ) parser.add_argument( "--dry-run", action="store_true", help="If specified, an experiment will not be created." ) parser.add_argument( "--image", type=str, help="The image to use (if unspecified one will be built)" ) parser.add_argument("--desc", type=str, help="A description for the experiment.") parser.add_argument( "--env", action="append", default=[], help="Set environment variables (e.g. NAME=value or NAME)", ) parser.add_argument( "--source", action="append", default=[], help="Bind a remote data source (e.g. source-id:/target/path)", ) parser.add_argument("--cpu", help="CPUs to reserve for this experiment (e.g., 0.5)") parser.add_argument( "--gpu-count", default=1, help="GPUs to use for this experiment (e.g., 1 (default))" ) parser.add_argument("--memory", help="Memory to reserve for this experiment (e.g., 1GB)") parser.add_argument( "--preemptible", action="store_true", help="Allow task to run on preemptible hardware" ) parser.add_argument( "--max-resumes", type=int, default=0, help="When running with --preemptible, use a cronjob to automatically resume this many times.", ) parser.add_argument( "--include-package", type=str, action="append", default=[], help="Additional packages to include", ) parser.add_argument( "-o", "--overrides", type=str, default="", help="a JSON structure used to override the experiment configuration", ) args = parser.parse_args() if args.max_resumes > 0: assert args.preemptible, "--max-resumes requires --preemptible!" main(args.param_file, args)
allennlp-master
scripts/ai2_internal/run_with_beaker.py
import argparse import json from dotenv import load_dotenv import plotly import shutil import smtplib import ssl import sys import textwrap from data_measurements import dataset_statistics from data_measurements.zipf import zipf from huggingface_hub import create_repo, Repository, hf_api from os import getenv from os.path import exists, join as pjoin from pathlib import Path import utils from utils import dataset_utils logs = utils.prepare_logging(__file__) def load_or_prepare_widgets(ds_args, show_embeddings=False, show_perplexities=False, use_cache=False): """ Loader specifically for the widgets used in the app. Args: ds_args: show_embeddings: show_perplexities: use_cache: Returns: """ dstats = dataset_statistics.DatasetStatisticsCacheClass(**ds_args, use_cache=use_cache) # Header widget dstats.load_or_prepare_dset_peek() # General stats widget dstats.load_or_prepare_general_stats() # Labels widget dstats.load_or_prepare_labels() # Text lengths widget dstats.load_or_prepare_text_lengths() if show_embeddings: # Embeddings widget dstats.load_or_prepare_embeddings() if show_perplexities: # Text perplexities widget dstats.load_or_prepare_text_perplexities() # Text duplicates widget dstats.load_or_prepare_text_duplicates() # nPMI widget dstats.load_or_prepare_npmi() # Zipf widget dstats.load_or_prepare_zipf() def load_or_prepare(dataset_args, calculation=False, use_cache=False): # TODO: Catch error exceptions for each measurement, so that an error # for one measurement doesn't break the calculation of all of them. do_all = False dstats = dataset_statistics.DatasetStatisticsCacheClass(**dataset_args, use_cache=use_cache) logs.info("Tokenizing dataset.") dstats.load_or_prepare_tokenized_df() logs.info("Calculating vocab.") dstats.load_or_prepare_vocab() if not calculation: do_all = True if do_all or calculation == "general": logs.info("\n* Calculating general statistics.") dstats.load_or_prepare_general_stats() logs.info("Done!") logs.info( "Basic text statistics now available at %s." % dstats.general_stats_json_fid) if do_all or calculation == "duplicates": logs.info("\n* Calculating text duplicates.") dstats.load_or_prepare_text_duplicates() duplicates_fid_dict = dstats.duplicates_files logs.info("If all went well, then results are in the following files:") for key, value in duplicates_fid_dict.items(): logs.info("%s: %s" % (key, value)) if do_all or calculation == "lengths": logs.info("\n* Calculating text lengths.") dstats.load_or_prepare_text_lengths() length_fid_dict = dstats.length_obj.get_filenames() print("If all went well, then results are in the following files:") for key, value in length_fid_dict.items(): print("%s: %s" % (key, value)) print() if do_all or calculation == "labels": logs.info("\n* Calculating label statistics.") if dstats.label_field not in dstats.dset.features: logs.warning("No label field found.") logs.info("No label statistics to calculate.") else: dstats.load_or_prepare_labels() npmi_fid_dict = dstats.label_files print("If all went well, then results are in the following files:") for key, value in npmi_fid_dict.items(): print("%s: %s" % (key, value)) print() if do_all or calculation == "npmi": print("\n* Preparing nPMI.") dstats.load_or_prepare_npmi() npmi_fid_dict = dstats.npmi_files print("If all went well, then results are in the following files:") for key, value in npmi_fid_dict.items(): if isinstance(value, dict): print(key + ":") for key2, value2 in value.items(): print("\t%s: %s" % (key2, value2)) else: print("%s: %s" % (key, value)) print() if do_all or calculation == "zipf": logs.info("\n* Preparing Zipf.") dstats.load_or_prepare_zipf() logs.info("Done!") zipf_json_fid, zipf_fig_json_fid, zipf_fig_html_fid = zipf.get_zipf_fids( dstats.dataset_cache_dir) logs.info("Zipf results now available at %s." % zipf_json_fid) logs.info( "Figure saved to %s, with corresponding json at %s." % (zipf_fig_html_fid, zipf_fig_json_fid) ) # Don't do this one until someone specifically asks for it -- takes awhile. if calculation == "embeddings": logs.info("\n* Preparing text embeddings.") dstats.load_or_prepare_embeddings() # Don't do this one until someone specifically asks for it -- takes awhile. if calculation == "perplexities": logs.info("\n* Preparing text perplexities.") dstats.load_or_prepare_text_perplexities() def pass_args_to_DMT(dset_name, dset_config, split_name, text_field, label_field, label_names, calculation, dataset_cache_dir, prepare_gui=False, use_cache=True): if not use_cache: logs.info("Not using any cache; starting afresh") dataset_args = { "dset_name": dset_name, "dset_config": dset_config, "split_name": split_name, "text_field": text_field, "label_field": label_field, "label_names": label_names, "dataset_cache_dir": dataset_cache_dir } if prepare_gui: load_or_prepare_widgets(dataset_args, use_cache=use_cache) else: load_or_prepare(dataset_args, calculation=calculation, use_cache=use_cache) def set_defaults(args): if not args.config: args.config = "default" logs.info("Config name not specified. Assuming it's 'default'.") if not args.split: args.split = "train" logs.info("Split name not specified. Assuming it's 'train'.") if not args.feature: args.feature = "text" logs.info("Text column name not given. Assuming it's 'text'.") if not args.label_field: args.label_field = "label" logs.info("Label column name not given. Assuming it's 'label'.") return args def main(): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent( """ Example for hate speech18 dataset: python3 run_data_measurements.py --dataset="hate_speech18" --config="default" --split="train" --feature="text" Example for IMDB dataset: python3 run_data_measurements.py --dataset="imdb" --config="plain_text" --split="train" --label_field="label" --feature="text" """ ), ) parser.add_argument( "-d", "--dataset", required=True, help="Name of dataset to prepare" ) parser.add_argument( "-c", "--config", required=False, default="", help="Dataset configuration to prepare" ) parser.add_argument( "-s", "--split", required=False, default="", type=str, help="Dataset split to prepare" ) parser.add_argument( "-f", "--feature", "-t", "--text-field", required=False, nargs="+", type=str, default="", help="Column to prepare (handled as text)", ) parser.add_argument( "-w", "--calculation", help="""What to calculate (defaults to everything except embeddings and perplexities).\n Options are:\n - `general` (for duplicate counts, missing values, length statistics.)\n - `duplicates` for duplicate counts\n - `lengths` for text length distribution\n - `labels` for label distribution\n - `embeddings` (Warning: Slow.)\n - `perplexities` (Warning: Slow.)\n - `npmi` for word associations\n - `zipf` for zipfian statistics """, ) parser.add_argument( "-l", "--label_field", type=str, required=False, default="", help="Field name for label column in dataset (Required if there is a label field that you want information about)", ) parser.add_argument('-n', '--label_names', nargs='+', default=[]) parser.add_argument( "--use_cache", default=False, required=False, action="store_true", help="Whether to use cached files (Optional)", ) parser.add_argument("--out_dir", default="cache_dir", help="Where to write out to.") parser.add_argument( "--overwrite_previous", default=False, required=False, action="store_true", help="Whether to overwrite a previous local cache for these same arguments (Optional)", ) parser.add_argument( "--email", default=None, help="An email that recieves a message about whether the computation was successful. If email is not None, then you must have EMAIL_PASSWORD=<your email password> for the sender email (data.measurements.tool@gmail.com) in a file named .env at the root of this repo.") parser.add_argument( "--push_cache_to_hub", default=False, required=False, action="store_true", help="Whether to push the cache to an organization on the hub. If you are using this option, you must have HUB_CACHE_ORGANIZATION=<the organization you've set up on the hub to store your cache> and HF_TOKEN=<your hf token> on separate lines in a file named .env at the root of this repo.", ) parser.add_argument("--prepare_GUI_data", default=False, required=False, action="store_true", help="Use this to process all of the stats used in the GUI.") parser.add_argument("--keep_local", default=True, required=False, action="store_true", help="Whether to save the data locally.") orig_args = parser.parse_args() args = set_defaults(orig_args) logs.info("Proceeding with the following arguments:") logs.info(args) # run_data_measurements.py -d hate_speech18 -c default -s train -f text -w npmi if args.email is not None: if Path(".env").is_file(): load_dotenv(".env") EMAIL_PASSWORD = getenv("EMAIL_PASSWORD") context = ssl.create_default_context() port = 465 server = smtplib.SMTP_SSL("smtp.gmail.com", port, context=context) server.login("data.measurements.tool@gmail.com", EMAIL_PASSWORD) dataset_cache_name, local_dataset_cache_dir = dataset_utils.get_cache_dir_naming(args.out_dir, args.dataset, args.config, args.split, args.feature) if not args.use_cache and exists(local_dataset_cache_dir): if args.overwrite_previous: shutil.rmtree(local_dataset_cache_dir) else: raise OSError("Cached results for this dataset already exist at %s. " "Delete it or use the --overwrite_previous argument." % local_dataset_cache_dir) # Initialize the local cache directory dataset_utils.make_path(local_dataset_cache_dir) # Initialize the repository # TODO: print out local or hub cache directory location. if args.push_cache_to_hub: repo = dataset_utils.initialize_cache_hub_repo(local_dataset_cache_dir, dataset_cache_name) # Run the measurements. try: pass_args_to_DMT( dset_name=args.dataset, dset_config=args.config, split_name=args.split, text_field=args.feature, label_field=args.label_field, label_names=args.label_names, calculation=args.calculation, dataset_cache_dir=local_dataset_cache_dir, prepare_gui=args.prepare_GUI_data, use_cache=args.use_cache, ) if args.push_cache_to_hub: repo.push_to_hub(commit_message="Added dataset cache.") computed_message = f"Data measurements have been computed for dataset" \ f" with these arguments: {args}." logs.info(computed_message) if args.email is not None: computed_message += "\nYou can return to the data measurements tool " \ "to view them." server.sendmail("data.measurements.tool@gmail.com", args.email, "Subject: Data Measurements Computed!\n\n" + computed_message) logs.info(computed_message) except Exception as e: logs.exception(e) error_message = f"An error occurred in computing data measurements " \ f"for dataset with arguments: {args}. " \ f"Feel free to make an issue here: " \ f"https://github.com/huggingface/data-measurements-tool/issues" if args.email is not None: server.sendmail("data.measurements.tool@gmail.com", args.email, "Subject: Data Measurements not Computed\n\n" + error_message) logs.warning("Data measurements not computed. ☹️") logs.warning(error_message) return if not args.keep_local: # Remove the dataset from local storage - we only want it stored on the hub. logs.warning("Deleting measurements data locally at %s" % local_dataset_cache_dir) shutil.rmtree(local_dataset_cache_dir) else: logs.info("Measurements made available locally at %s" % local_dataset_cache_dir) if __name__ == "__main__": main()
data-measurements-tool-main
run_data_measurements.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import ast import gradio as gr from os.path import isdir from data_measurements.dataset_statistics import DatasetStatisticsCacheClass as dmt_cls import utils from utils import dataset_utils from utils import gradio_utils as gr_utils import widgets logs = utils.prepare_logging(__file__) # Utility for sidebar description and selection of the dataset DATASET_NAME_TO_DICT = dataset_utils.get_dataset_info_dicts() def get_load_prepare_list(dstats): """ # Get load_or_prepare functions for the measurements we will display """ # Measurement calculation: # Add any additional modules and their load-prepare function here. load_prepare_list = [("general stats", dstats.load_or_prepare_general_stats), ("label distribution", dstats.load_or_prepare_labels), ("text_lengths", dstats.load_or_prepare_text_lengths), ("duplicates", dstats.load_or_prepare_text_duplicates), ("npmi", dstats.load_or_prepare_npmi), ("zipf", dstats.load_or_prepare_zipf)] return load_prepare_list def get_ui_widgets(): """Get the widgets that will be displayed in the UI.""" return [widgets.DatasetDescription(DATASET_NAME_TO_DICT), widgets.GeneralStats(), widgets.LabelDistribution(), widgets.TextLengths(), widgets.Duplicates(), widgets.Npmi(), widgets.Zipf()] def get_widgets(): """ # A measurement widget requires 2 things: # - A load or prepare function # - A display function # We define these in two separate functions get_load_prepare_list and get_ui_widgets; # any widget can be added by modifying both functions and the rest of the app logic will work. # get_load_prepare_list is a function since it requires a DatasetStatisticsCacheClass which will # not be created until dataset and config values are selected in the ui """ return get_load_prepare_list, get_ui_widgets() def get_title(dstats): title_str = f"### Showing: {dstats.dset_name} - {dstats.dset_config} - {dstats.split_name} - {'-'.join(dstats.text_field)}" logs.info("showing header") return title_str def display_initial_UI(): """Displays the header in the UI""" # Extract the selected arguments dataset_args = gr_utils.sidebar_selection(DATASET_NAME_TO_DICT) return dataset_args def load_or_prepare_widgets(dstats, load_prepare_list, show_perplexities, live=True, pull_cache_from_hub=False): """ Takes the dataset arguments from the GUI and uses them to load a dataset from the Hub or, if a cache for those arguments is available, to load it from the cache. Widget data is loaded only when the system is live (deployed for users). Otherwise, the data is prepared if it doesn't yet exist. Args: ds_args (dict): the dataset arguments defined via the streamlit app GUI load_prepare_list (list): List of (widget_name, widget_load_or_prepare_function) show_perplexities (Bool): whether perplexities should be loaded and displayed for this dataset live (Bool): Whether the system is deployed for live use by users. pull_cache_from_hub (Bool): Whether the cache should be pulled from the hub (vs locally) Returns: dstats: the computed dataset statistics (from the dataset_statistics class) """ # When we're "live" (tool is being used by users on our servers), # cache is used and the f'ns are instructed to only try to load cache, # not to prepare/compute anything anew. if live: # Only use what's cached; don't prepare anything load_only = True logs.info("Only using cache.") else: # Prepare things anew and cache them if we're not live. load_only = False logs.info("Making new calculations if cache is not there.") if pull_cache_from_hub: dataset_utils.pull_cache_from_hub(dstats.cache_path, dstats.dataset_cache_dir) # Data common across DMT: # Includes the dataset text/requested feature column, # the dataset tokenized, and the vocabulary dstats.load_or_prepare_text_dataset(load_only=load_only) # Just a snippet of the dataset dstats.load_or_prepare_dset_peek(load_only=load_only) # Tokenized dataset dstats.load_or_prepare_tokenized_df(load_only=load_only) # Vocabulary (uses tokenized dataset) dstats.load_or_prepare_vocab(load_only=load_only) # Custom widgets for widget_tuple in load_prepare_list: widget_name = widget_tuple[0] widget_fn = widget_tuple[1] try: widget_fn(load_only=load_only) except Exception as e: logs.warning("Issue with %s." % widget_name) logs.exception(e) # TODO: If these are cached, can't we just show them by default? # It won't take up computation time. if show_perplexities: try: dstats.load_or_prepare_text_perplexities(load_only=load_only) except Exception as e: logs.warning("Issue with %s." % "perplexities") logs.exception(e) return dstats def show_column(dstats, display_list, show_perplexities, column_id=""): """ Function for displaying the elements in the streamlit app. Args: dstats (class): The dataset_statistics.py DatasetStatisticsCacheClass display_list (list): List of tuples for (widget_name, widget_display_function) show_perplexities (Bool): Whether perplexities should be loaded and displayed for this dataset column_id (str): Which column of the dataset the analysis is done on [DEPRECATED for v1] """ # start showing stuff gr_utils.expander_header(dstats, DATASET_NAME_TO_DICT) for widget_tuple in display_list: widget_type = widget_tuple[0] widget_fn = widget_tuple[1] logs.info("showing %s." % widget_type) try: widget_fn(dstats, column_id) except Exception as e: logs.warning("Jk jk jk. There was an issue with %s:" % widget_type) logs.exception(e) # TODO: Fix how this is a weird outlier. if show_perplexities: gr_utils.expander_text_perplexities(dstats, column_id) logs.info("Have finished displaying the widgets.") def create_demo(live: bool, pull_cache_from_hub: bool): with gr.Blocks() as demo: state = gr.State() with gr.Row(): with gr.Column(scale=1): dataset_args = display_initial_UI() get_load_prepare_list_fn, widget_list = get_widgets() # # TODO: Make this less of a weird outlier. # Doesn't do anything right now show_perplexities = gr.Checkbox(label="Show text perplexities") with gr.Column(scale=4): gr.Markdown("# Data Measurements Tool") title = gr.Markdown() for widget in widget_list: widget.render() def update_ui(dataset: str, config: str, split: str, feature: str): feature = ast.literal_eval(feature) label_field, label_names = gr_utils.get_label_names(dataset, config, DATASET_NAME_TO_DICT) dstats = dmt_cls(dset_name=dataset, dset_config=config, split_name=split, text_field=feature, label_field=label_field, label_names=label_names, use_cache=True) load_prepare_list = get_load_prepare_list_fn(dstats) dstats = load_or_prepare_widgets(dstats, load_prepare_list, show_perplexities=False, live=live, pull_cache_from_hub=pull_cache_from_hub) output = {title: get_title(dstats), state: dstats} for widget in widget_list: output.update(widget.update(dstats)) return output def update_dataset(dataset: str): new_values = gr_utils.update_dataset(dataset, DATASET_NAME_TO_DICT) config = new_values[0][1] feature = new_values[1][1] split = new_values[2][1] new_dropdown = { dataset_args["dset_config"]: gr.Dropdown.update(choices=new_values[0][0], value=config), dataset_args["text_field"]: gr.Dropdown.update(choices=new_values[1][0], value=feature), dataset_args["split_name"]: gr.Dropdown.update(choices=new_values[2][0], value=split), } return new_dropdown def update_config(dataset: str, config: str): new_values = gr_utils.update_config(dataset, config, DATASET_NAME_TO_DICT) feature = new_values[0][1] split = new_values[1][1] new_dropdown = { dataset_args["text_field"]: gr.Dropdown.update(choices=new_values[0][0], value=feature), dataset_args["split_name"]: gr.Dropdown.update(choices=new_values[1][0], value=split) } return new_dropdown measurements = [comp for output in widget_list for comp in output.output_components] demo.load(update_ui, inputs=[dataset_args["dset_name"], dataset_args["dset_config"], dataset_args["split_name"], dataset_args["text_field"]], outputs=[title, state] + measurements) for widget in widget_list: widget.add_events(state) dataset_args["dset_name"].change(update_dataset, inputs=[dataset_args["dset_name"]], outputs=[dataset_args["dset_config"], dataset_args["split_name"], dataset_args["text_field"], title, state] + measurements) dataset_args["dset_config"].change(update_config, inputs=[dataset_args["dset_name"], dataset_args["dset_config"]], outputs=[dataset_args["split_name"], dataset_args["text_field"], title, state] + measurements) dataset_args["calculate_btn"].click(update_ui, inputs=[dataset_args["dset_name"], dataset_args["dset_config"], dataset_args["split_name"], dataset_args["text_field"]], outputs=[title, state] + measurements) return demo def main(): parser = argparse.ArgumentParser() parser.add_argument( "--live", default=False, required=False, action="store_true", help="Flag to specify that this is not running live.") parser.add_argument( "--pull_cache_from_hub", default=False, required=False, action="store_true", help="Flag to specify whether to look in the hub for measurements caches. If you are using this option, you must have HUB_CACHE_ORGANIZATION=<the organization you've set up on the hub to store your cache> and HF_TOKEN=<your hf token> on separate lines in a file named .env at the root of this repo.") arguments = parser.parse_args() live = arguments.live pull_cache_from_hub = arguments.pull_cache_from_hub # Create and initialize the demo demo = create_demo(live, pull_cache_from_hub) demo.launch() if __name__ == "__main__": main()
data-measurements-tool-main
app.py
data-measurements-tool-main
lengths/__init__.py
import evaluate from evaluate.utils import launch_gradio_widget module = evaluate.load("npmi", module_type= "measurement") launch_gradio_widget(module)
data-measurements-tool-main
npmi/app.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Change print statements to logging? # from evaluate import logging as logs import warnings import datasets import evaluate import numpy as np import pandas as pd from sklearn.preprocessing import MultiLabelBinarizer _CITATION = """\ Osman Aka, Ken Burke, Alex Bauerle, Christina Greer, and Margaret Mitchell. \ 2021. Measuring Model Biases in the Absence of Ground Truth. \ In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society \ (AIES '21). Association for Computing Machinery, New York, NY, USA, 327–335. \ https://doi.org/10.1145/3461702.3462557 """ _DESCRIPTION = """\ Normalized Pointwise Information (nPMI) is an entropy-based measurement of association, used here to measure the association between words. """ _KWARGS_DESCRIPTION = """\ Args: references (list of lists): List of tokenized sentences. vocab_counts (dict or dataframe): Vocab terms and their counts Returns: npmi_df: A dataframe with (1) nPMI association scores for each term; \ (2) the difference between them. """ # TODO: Is this necessary? warnings.filterwarnings(action="ignore", category=UserWarning) # When we divide by 0 in log np.seterr(divide="ignore") # treating inf values as NaN as well pd.set_option("use_inf_as_na", True) # This can be changed to whatever a person likes; # it is the number of batches to use when iterating through the vocabulary. _NUM_BATCHES = 500 PROP = "proportion" CNT = "count" class nPMI(evaluate.Measurement): def _info(self): return evaluate.MeasurementInfo( module_type="measurement", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "references": datasets.Sequence( datasets.Value("string", id="sequence"), id="references"), } ) # TODO: Create docs for this. # reference_urls=["https://huggingface.co/docs/..."], ) def _compute(self, references, vocab_counts, subgroup): if isinstance(vocab_counts, dict): vocab_counts_df = pd.DataFrame.from_dict(vocab_counts, orient='index', columns=[CNT]) elif isinstance(vocab_counts, pd.DataFrame): vocab_counts_df = vocab_counts else: print("Can't support the data structure for the vocab counts. =(") return # These are used throughout the rest of the functions self.references = references self.vocab_counts_df = vocab_counts_df self.vocab_counts_df[PROP] = vocab_counts_df[CNT] / sum( vocab_counts_df[CNT]) # self.mlb_list holds num batches x num_sentences self.mlb_list = [] # Index of the subgroup word in the sparse vector subgroup_idx = vocab_counts_df.index.get_loc(subgroup) print("Calculating co-occurrences...") df_coo = self.calc_cooccurrences(subgroup, subgroup_idx) vocab_cooc_df = self.set_idx_cols(df_coo, subgroup) print("Calculating PMI...") pmi_df = self.calc_PMI(vocab_cooc_df, subgroup) print("Calculating nPMI...") npmi_df = self.calc_nPMI(pmi_df, vocab_cooc_df, subgroup) npmi_bias = npmi_df.max(axis=0) + abs(npmi_df.min(axis=0)) return {"bias": npmi_bias, "co-occurrences": vocab_cooc_df, "pmi": pmi_df, "npmi": npmi_df} def _binarize_words_in_sentence(self): print("Creating co-occurrence matrix for PMI calculations.") batches = np.linspace(0, len(self.references), _NUM_BATCHES).astype(int) i = 0 # Creates list of size (# batches x # sentences) while i < len(batches) - 1: # Makes a sparse matrix (shape: # sentences x # words), # with the occurrence of each word per sentence. mlb = MultiLabelBinarizer(classes=self.vocab_counts_df.index) print( "%s of %s sentence binarize batches." % ( str(i), str(len(batches))) ) # Returns series: batch size x num_words mlb_series = mlb.fit_transform( self.references[batches[i]:batches[i + 1]] ) i += 1 self.mlb_list.append(mlb_series) def calc_cooccurrences(self, subgroup, subgroup_idx): initialize = True coo_df = None # Big computation here! Should only happen once. print( "Approaching big computation! Here, we binarize all words in the sentences, making a sparse matrix of sentences." ) if not self.mlb_list: self._binarize_words_in_sentence() for batch_id in range(len(self.mlb_list)): print( "%s of %s co-occurrence count batches" % (str(batch_id), str(len(self.mlb_list))) ) # List of all the sentences (list of vocab) in that batch batch_sentence_row = self.mlb_list[batch_id] # Dataframe of # sentences in batch x vocabulary size sent_batch_df = pd.DataFrame(batch_sentence_row) # Subgroup counts per-sentence for the given batch subgroup_df = sent_batch_df[subgroup_idx] subgroup_df.columns = [subgroup] # Remove the sentences where the count of the subgroup is 0. # This way we have less computation & resources needs. subgroup_df = subgroup_df[subgroup_df > 0] mlb_subgroup_only = sent_batch_df[sent_batch_df[subgroup_idx] > 0] # Create cooccurrence matrix for the given subgroup and all words. batch_coo_df = pd.DataFrame(mlb_subgroup_only.T.dot(subgroup_df)) # Creates a batch-sized dataframe of co-occurrence counts. # Note these could just be summed rather than be batch size. if initialize: coo_df = batch_coo_df else: coo_df = coo_df.add(batch_coo_df, fill_value=0) initialize = False print("Returning co-occurrence matrix") return pd.DataFrame(coo_df) def set_idx_cols(self, df_coo, subgroup): """ :param df_coo: Co-occurrence counts for subgroup, length is num_words :return: """ count_df = df_coo.set_index(self.vocab_counts_df.index) count_df.columns = [subgroup + "-count"] count_df[subgroup + "-count"] = count_df[subgroup + "-count"].astype( int) return count_df def calc_PMI(self, vocab_cooc_df, subgroup): """ # PMI(x;y) = h(y) - h(y|x) # = h(subgroup) - h(subgroup|word) # = log (p(subgroup|word) / p(subgroup)) # nPMI additionally divides by -log(p(x,y)) = -log(p(x|y)p(y)) """ # Calculation of p(subgroup) # TODO: Is this better? # subgroup_prob = vocab_counts_df.loc[subgroup][PROP] subgroup_prob = self.vocab_counts_df.loc[subgroup][CNT] / sum( self.vocab_counts_df[CNT]) # Calculation of p(subgroup|word) = count(subgroup,word) / count(word) # Because the indices match (the vocab words), # this division doesn't need to specify the index (I think?!) p_subgroup_g_word = ( vocab_cooc_df[subgroup + "-count"] / self.vocab_counts_df[ CNT] ) pmi_df = pd.DataFrame() pmi_df[subgroup + "-pmi"] = np.log(p_subgroup_g_word / subgroup_prob) # Note: A potentially faster solution for adding count, npmi, # can be based on this zip idea: # df_test['size_kb'], df_test['size_mb'], df_test['size_gb'] = # zip(*df_test['size'].apply(sizes)) return pmi_df.dropna() def calc_nPMI(self, pmi_df, vocab_cooc_df, subgroup): """ # nPMI additionally divides by -log(p(x,y)) = -log(p(x|y)p(y)) # = -log(p(word|subgroup)p(word)) """ p_word_g_subgroup = vocab_cooc_df[subgroup + "-count"] / sum( vocab_cooc_df[subgroup + "-count"] ) p_word = pmi_df.apply( lambda x: self.vocab_counts_df.loc[x.name][PROP], axis=1 ) normalize_pmi = -np.log(p_word_g_subgroup * p_word) npmi_df = pd.DataFrame() npmi_df[subgroup + "-npmi"] = pmi_df[subgroup + "-pmi"] / normalize_pmi return npmi_df.dropna()
data-measurements-tool-main
npmi/npmi.py
import logging import os from pathlib import Path def prepare_logging(fid): # Create the directory for log files (if it doesn't exist) Path('./log_files').mkdir(exist_ok=True) log_fid = Path(fid).stem logs = logging.getLogger(log_fid) logs.setLevel(logging.DEBUG) logs.propagate = False log_fid = Path(fid).stem if not logs.handlers: # Logging info to log file file_path = ("./log_files/%s.log" % log_fid) print("Logging output in %s " % file_path) file = logging.FileHandler(file_path) fileformat = logging.Formatter("%(asctime)s:%(pathname)s, %(module)s:%(lineno)s\n%(message)s") file.setLevel(logging.INFO) file.setFormatter(fileformat) # Logging debug messages to stream stream = logging.StreamHandler() streamformat = logging.Formatter("[data_measurements_tool] {%(pathname)s:%(lineno)d} %(module)s %(levelname)s - %(message)s") stream.setLevel(logging.DEBUG) stream.setFormatter(streamformat) logs.addHandler(file) logs.addHandler(stream) return logs
data-measurements-tool-main
utils/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import pandas as pd import plotly import pyarrow.feather as feather import utils from dataclasses import asdict from datasets import Dataset, get_dataset_infos, load_dataset, load_from_disk, \ NamedSplit from dotenv import load_dotenv from huggingface_hub import Repository, list_datasets from json2html import * from os import getenv from os.path import exists, isdir, join as pjoin from pathlib import Path # treating inf values as NaN as well pd.set_option("use_inf_as_na", True) ## String names used in Hugging Face dataset configs. HF_FEATURE_FIELD = "features" HF_LABEL_FIELD = "label" HF_DESC_FIELD = "description" CACHE_DIR = "cache_dir" ## String names we are using within this code. # These are not coming from the stored dataset nor HF config, # but rather used as identifiers in our dicts and dataframes. TEXT_FIELD = "text" PERPLEXITY_FIELD = "perplexity" TOKENIZED_FIELD = "tokenized_text" EMBEDDING_FIELD = "embedding" LENGTH_FIELD = "length" VOCAB = "vocab" WORD = "word" CNT = "count" PROP = "proportion" TEXT_NAN_CNT = "text_nan_count" TXT_LEN = "text lengths" TOT_WORDS = "total words" TOT_OPEN_WORDS = "total open words" _DATASET_LIST = [ "c4", "squad", "squad_v2", "hate_speech18", "hate_speech_offensive", "glue", "super_glue", "wikitext", "imdb", ] _STREAMABLE_DATASET_LIST = [ "c4", "wikitext", ] _MAX_ROWS = 200000 logs = utils.prepare_logging(__file__) def _load_dotenv_for_cache_on_hub(): """ This function loads and returns the organization name that you've set up on the hub for storing your data measurements cache on the hub. It also loads the associated access token. It expects you to have HUB_CACHE_ORGANIZATION=<the organization you've set up on the hub to store your cache> and HF_TOKEN=<your hf token> on separate lines in a file named .env at the root of this repo. Returns: tuple of strings: hub_cache_organization, hf_token """ if Path(".env").is_file(): load_dotenv(".env") hf_token = getenv("HF_TOKEN") hub_cache_organization = getenv("HUB_CACHE_ORGANIZATION") return hub_cache_organization, hf_token def get_cache_dir_naming(out_dir, dataset, config, split, feature): feature_text = hyphenated(feature) dataset_cache_name = f"{dataset}_{config}_{split}_{feature_text}" local_dataset_cache_dir = out_dir + "/" + dataset_cache_name return dataset_cache_name, local_dataset_cache_dir def initialize_cache_hub_repo(local_cache_dir, dataset_cache_name): """ This function tries to initialize a dataset cache on the huggingface hub. The function expects you to have HUB_CACHE_ORGANIZATION=<the organization you've set up on the hub to store your cache> and HF_TOKEN=<your hf token> on separate lines in a file named .env at the root of this repo. Args: local_cache_dir (string): The path to the local dataset cache. dataset_cache_name (string): The name of the dataset repo on the huggingface hub that you want. """ hub_cache_organization, hf_token = _load_dotenv_for_cache_on_hub() clone_source = pjoin(hub_cache_organization, dataset_cache_name) repo = Repository(local_dir=local_cache_dir, clone_from=clone_source, repo_type="dataset", use_auth_token=hf_token) repo.lfs_track(["*.feather"]) return repo def pull_cache_from_hub(cache_path, dataset_cache_dir): """ This function tries to pull a datasets cache from the huggingface hub if a cache for the dataset does not already exist locally. The function expects you to have you HUB_CACHE_ORGANIZATION=<the organization you've set up on the hub to store your cache> and HF_TOKEN=<your hf token> on separate lines in a file named .env at the root of this repo. Args: cache_path (string): The path to the local dataset cache that you want. dataset_cache_dir (string): The name of the dataset repo on the huggingface hub. """ hub_cache_organization, hf_token = _load_dotenv_for_cache_on_hub() clone_source = pjoin(hub_cache_organization, dataset_cache_dir) if isdir(cache_path): logs.warning("Already a local cache for the dataset, so not pulling from the hub.") else: # Here, dataset_info.id is of the form: <hub cache organization>/<dataset cache dir> if dataset_cache_dir in [ dataset_info.id.split("/")[-1] for dataset_info in list_datasets(author=hub_cache_organization, use_auth_token=hf_token)]: Repository(local_dir=cache_path, clone_from=clone_source, repo_type="dataset", use_auth_token=hf_token) logs.info("Pulled cache from hub!") else: logs.warning("Asking to pull cache from hub but cannot find cached repo on the hub.") def load_truncated_dataset( dataset_name, config_name, split_name, num_rows=_MAX_ROWS, use_cache=True, cache_dir=CACHE_DIR, use_streaming=True, save=True, ): """ This function loads the first `num_rows` items of a dataset for a given `config_name` and `split_name`. If `use_cache` and `cache_name` exists, the truncated dataset is loaded from `cache_name`. Otherwise, a new truncated dataset is created and immediately saved to `cache_name`. When the dataset is streamable, we iterate through the first `num_rows` examples in streaming mode, write them to a jsonl file, then create a new dataset from the json. This is the most direct way to make a Dataset from an IterableDataset as of datasets version 1.6.1. Otherwise, we download the full dataset and select the first `num_rows` items Args: dataset_name (string): dataset id in the dataset library config_name (string): dataset configuration split_name (string): split name num_rows (int) [optional]: number of rows to truncate the dataset to cache_dir (string): name of the cache directory use_cache (bool): whether to load from the cache if it exists use_streaming (bool): whether to use streaming when the dataset supports it save (bool): whether to save the dataset locally Returns: Dataset: the (truncated if specified) dataset as a Dataset object """ logs.info("Loading or preparing dataset saved in %s " % cache_dir) if use_cache and exists(cache_dir): dataset = load_from_disk(cache_dir) else: if use_streaming and dataset_name in _STREAMABLE_DATASET_LIST: iterable_dataset = load_dataset( dataset_name, name=config_name, split=split_name, streaming=True, ).take(num_rows) rows = list(iterable_dataset) f = open("temp.jsonl", "w", encoding="utf-8") for row in rows: _ = f.write(json.dumps(row) + "\n") f.close() dataset = Dataset.from_json( "temp.jsonl", features=iterable_dataset.features, split=NamedSplit(split_name) ) else: full_dataset = load_dataset( dataset_name, name=config_name, split=split_name, ) if len(full_dataset) >= num_rows: dataset = full_dataset.select(range(num_rows)) # Make the directory name clear that it's not the full dataset. cache_dir = pjoin(cache_dir, ("_%s" % num_rows)) else: dataset = full_dataset if save: dataset.save_to_disk(cache_dir) return dataset def hyphenated(features): """When multiple features are asked for, hyphenate them together when they're used for filenames or titles""" return '-'.join(features) def get_typed_features(features, ftype="string", parents=None): """ Recursively get a list of all features of a certain dtype :param features: :param ftype: :param parents: :return: a list of tuples > e.g. ('A', 'B', 'C') for feature example['A']['B']['C'] """ if parents is None: parents = [] typed_features = [] for name, feat in features.items(): if isinstance(feat, dict): if feat.get("dtype", None) == ftype or feat.get("feature", {}).get( ("dtype", None) == ftype ): typed_features += [tuple(parents + [name])] elif "feature" in feat: if feat["feature"].get("dtype", None) == ftype: typed_features += [tuple(parents + [name])] elif isinstance(feat["feature"], dict): typed_features += get_typed_features( feat["feature"], ftype, parents + [name] ) else: for k, v in feat.items(): if isinstance(v, dict): typed_features += get_typed_features( v, ftype, parents + [name, k] ) elif name == "dtype" and feat == ftype: typed_features += [tuple(parents)] return typed_features def get_label_features(features, parents=None): """ Recursively get a list of all features that are ClassLabels :param features: :param parents: :return: pairs of tuples as above and the list of class names """ if parents is None: parents = [] label_features = [] for name, feat in features.items(): if isinstance(feat, dict): if "names" in feat: label_features += [(tuple(parents + [name]), feat["names"])] elif "feature" in feat: if "names" in feat: label_features += [ (tuple(parents + [name]), feat["feature"]["names"]) ] elif isinstance(feat["feature"], dict): label_features += get_label_features( feat["feature"], parents + [name] ) else: for k, v in feat.items(): if isinstance(v, dict): label_features += get_label_features(v, parents + [name, k]) elif name == "names": label_features += [(tuple(parents), feat)] return label_features # get the info we need for the app sidebar in dict format def dictionarize_info(dset_info): info_dict = asdict(dset_info) res = { "config_name": info_dict["config_name"], "splits": { spl: spl_info["num_examples"] for spl, spl_info in info_dict["splits"].items() }, "features": { "string": get_typed_features(info_dict["features"], "string"), "int32": get_typed_features(info_dict["features"], "int32"), "float32": get_typed_features(info_dict["features"], "float32"), "label": get_label_features(info_dict["features"]), }, "description": dset_info.description, } return res def get_dataset_info_dicts(dataset_id=None): """ Creates a dict from dataset configs. Uses the datasets lib's get_dataset_infos :return: Dictionary mapping dataset names to their configurations """ if dataset_id is not None: ds_name_to_conf_dict = { dataset_id: { config_name: dictionarize_info(config_info) for config_name, config_info in get_dataset_infos(dataset_id).items() } } else: ds_name_to_conf_dict = { ds_id: { config_name: dictionarize_info(config_info) for config_name, config_info in get_dataset_infos(ds_id).items() } for ds_id in _DATASET_LIST } return ds_name_to_conf_dict # get all instances of a specific field in a dataset def extract_field(examples, field_path, new_field_name=None): if new_field_name is None: new_field_name = "_".join(field_path) field_list = [] # TODO: Breaks the CLI if this isn't checked. if isinstance(field_path, str): field_path = [field_path] item_list = examples[field_path[0]] for field_name in field_path[1:]: item_list = [ next_item for item in item_list for next_item in ( item[field_name] if isinstance(item[field_name], list) else [item[field_name]] ) ] field_list += [ field for item in item_list for field in (item if isinstance(item, list) else [item]) ] return {new_field_name: field_list} def make_path(path): os.makedirs(path, exist_ok=True) def counter_dict_to_df(dict_input, key_as_column=False): df_output = pd.DataFrame(dict_input, index=[0]).T if key_as_column: df_output.reset_index(inplace=True) df_output.columns = ["instance", "count"] else: df_output.columns = ["count"] return df_output.sort_values(by="count", ascending=False) def write_plotly(fig, fid): write_json(plotly.io.to_json(fig), fid) def read_plotly(fid): fig = plotly.io.from_json(json.load(open(fid, encoding="utf-8"))) return fig def write_json_as_html(input_json, html_fid): html_dict = json2html.convert(json=input_json) with open(html_fid, "w+") as f: f.write(html_dict) def df_to_write_html(input_df, html_fid): """Writes a dataframe to an HTML file""" input_df.to_HTML(html_fid) def read_df(df_fid): return pd.DataFrame.from_dict(read_json(df_fid), orient="index") def write_df(df, df_fid): """In order to preserve the index of our dataframes, we can't use the compressed pandas dataframe file format .feather. There's a preference for json amongst HF devs, so we use that here.""" df_dict = df.to_dict('index') write_json(df_dict, df_fid) def write_json(json_dict, json_fid): with open(json_fid, "w", encoding="utf-8") as f: json.dump(json_dict, f) def read_json(json_fid): json_dict = json.load(open(json_fid, encoding="utf-8")) return json_dict
data-measurements-tool-main
utils/dataset_utils.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import gradio as gr import numpy as np import pandas as pd from matplotlib.figure import Figure import seaborn as sns import statistics import streamlit as st import utils import utils.dataset_utils as ds_utils from st_aggrid import AgGrid, GridOptionsBuilder from utils.dataset_utils import HF_DESC_FIELD, HF_FEATURE_FIELD, HF_LABEL_FIELD logs = utils.prepare_logging(__file__) st.set_option('deprecation.showPyplotGlobalUse', False) # Note: Make sure to consider colorblind-friendly colors for your images! Ex: # ["#332288", "#117733", "#882255", "#AA4499", "#CC6677", "#44AA99", "#DDCC77", # "#88CCEE"] pd.options.display.float_format = "{:,.3f}".format # '{:20,.2f}'.format def subheader(): gr.Markdown("""This demo showcases the [dataset metrics as we develop them](https://huggingface.co/blog/data-measurements-tool). Right now this has: - dynamic loading of datasets in the lib - fetching config and info without downloading the dataset - propose the list of candidate text and label features to select. """) def get_label_names(dataset_name: str, config_name: str, ds_name_to_dict): label_field, label_names = ( ds_name_to_dict[dataset_name][config_name][HF_FEATURE_FIELD][ HF_LABEL_FIELD][0] if len( ds_name_to_dict[dataset_name][config_name][HF_FEATURE_FIELD][ HF_LABEL_FIELD] ) > 0 else ((), []) ) return label_field, label_names def update_dataset(dataset_name: str, ds_name_to_dict): # choose a config to analyze ds_configs = ds_name_to_dict[dataset_name] # special handling for the largest-by-far dataset, C4 if dataset_name == "c4": config_names = ['en', 'en.noblocklist', 'realnewslike'] else: config_names = list(ds_configs.keys()) config_name = config_names[0] ds_config = ds_configs[config_name] text_features = ds_config[HF_FEATURE_FIELD]["string"] text_features = [('text',)] if dataset_name == "c4" else [tp for tp in text_features if tp[0] != "id"] feature = str(text_features[0]) text_features = [str(f) for f in text_features] avail_splits = list(ds_config["splits"].keys()) split = avail_splits[0] return [(config_names, config_name), (text_features, feature), (avail_splits, split)] def update_config(dataset_name: str, config_name: str, ds_name_to_dict): ds_config = ds_name_to_dict[dataset_name][config_name] text_features = ds_config[HF_FEATURE_FIELD]["string"] text_features = [('text',)] if dataset_name == "c4" else [tp for tp in text_features if tp[0] != "id"] feature = str(text_features[0]) text_features = [str(f) for f in text_features] avail_splits = list(ds_config["splits"].keys()) split = avail_splits[0] return [(text_features, feature), (avail_splits, split)] def sidebar_selection(ds_name_to_dict, column_id=""): ds_names = list(ds_name_to_dict.keys()) with gr.Accordion(f"Choose dataset and field {column_id}", open=True): subheader() # choose a dataset to analyze ds_name = gr.Dropdown( label=f"Choose dataset to explore{column_id}:", choices=ds_names, value="hate_speech18", ) # choose a config to analyze ds_configs = ds_name_to_dict[ds_name.value] # special handling for the largest-by-far dataset, C4 if ds_name == "c4": config_names = ['en', 'en.noblocklist', 'realnewslike'] else: config_names = list(ds_configs.keys()) config_name = gr.Dropdown( label=f"Choose configuration{column_id}:", choices=config_names, value=config_names[0], ) # choose a subset of num_examples ds_config = ds_configs[config_name.value] text_features = ds_config[HF_FEATURE_FIELD]["string"] # TODO @yacine: Explain what this is doing and why eg tp[0] could = "id" text = f"Which text feature from the {column_id} dataset would you like to analyze?" choices = [('text',)] if ds_name == "c4" else [tp for tp in text_features if tp[0] != "id"] text_field = gr.Dropdown( label=text, choices=[str(f) for f in choices], value=str(choices[0]) ) # Choose a split and dataset size avail_splits = list(ds_config["splits"].keys()) # 12.Nov note: Removing "test" because those should not be examined # without discussion of pros and cons, which we haven't done yet. if "test" in avail_splits: avail_splits.remove("test") split = gr.Dropdown( label=f"Which split from the{column_id} dataset would you like to analyze?", choices=avail_splits, value=avail_splits[0], ) label_field, label_names = get_label_names(ds_name.value, config_name.value, ds_name_to_dict) calculate_btn = gr.Button(value="Calculate", variant="primary") return { "dset_name": ds_name, "dset_config": config_name, "split_name": split, "text_field": text_field, "label_field": label_field, "label_names": label_names, "calculate_btn": calculate_btn } def expander_header(dstats, ds_name_to_dict, column_id=""): with st.expander(f"Dataset Description{column_id}"): st.markdown( ds_name_to_dict[dstats.dset_name][dstats.dset_config][HF_DESC_FIELD] ) st.dataframe(dstats.dset_peek) def expander_general_stats(dstats, column_id=""): with gr.Accordion(f"General Text Statistics{column_id}"): st.caption( "Use this widget to check whether the terms you see most " "represented in the dataset make sense for the goals of the dataset." ) st.markdown("There are {0} total words".format(str(dstats.total_words))) st.markdown( "There are {0} words after removing closed " "class words".format(str(dstats.total_open_words)) ) st.markdown( "The most common " "[open class words](https://dictionary.apa.org/open-class-words) " "and their counts are: " ) st.dataframe(dstats.sorted_top_vocab_df) st.markdown( "There are {0} missing values in the dataset.".format( str(dstats.text_nan_count) ) ) if dstats.dups_frac > 0: st.markdown( "The dataset is {0}% duplicates. " "For more information about the duplicates, " "click the 'Duplicates' tab below.".format( str(round(dstats.dups_frac * 100, 2))) ) else: st.markdown("There are 0 duplicate items in the dataset. ") def expander_label_distribution(dstats, column_id=""): with st.expander(f"Label Distribution{column_id}", expanded=False): st.caption( "Use this widget to see how balanced the labels in your dataset are." ) if dstats.fig_labels: st.plotly_chart(dstats.fig_labels, use_container_width=True) else: st.markdown("No labels were found in the dataset") def expander_text_lengths(dstats, column_id=""): _TEXT_LENGTH_CAPTION = ( "Use this widget to identify outliers, particularly suspiciously long " "outliers." ) with st.expander(f"Text Lengths{column_id}", expanded=False): st.caption(_TEXT_LENGTH_CAPTION) st.markdown( "Below, you can see how the lengths of the text instances in your " "dataset are distributed." ) st.markdown( "Any unexpected peaks or valleys in the distribution may help to " "identify instances you want to remove or augment." ) st.markdown( "### Here is the count of different text lengths in " "your dataset:" ) # When matplotlib first creates this, it's a Figure. # Once it's saved, then read back in, # it's an ndarray that must be displayed using st.image # (I know, lame). if isinstance(dstats.length_obj.fig_lengths, Figure): st.pyplot(dstats.length_obj.fig_lengths, use_container_width=True) else: try: st.image(dstats.length_obj.fig_lengths) except Exception as e: logs.exception("Hit exception for lengths figure:") logs.exception(e) st.markdown( "The average length of text instances is **" + str(round(dstats.length_obj.avg_length, 2)) + " words**, with a standard deviation of **" + str(round(dstats.length_obj.std_length, 2)) + "**." ) if dstats.length_obj.lengths_df is not None: start_id_show_lengths = st.selectbox( "Show examples of length:", np.sort(dstats.length_obj.lengths_df["length"].unique())[::-1].tolist(), key=f"select_show_length_{column_id}", ) st.table( dstats.length_obj.lengths_df[ dstats.length_obj.lengths_df["length"] == start_id_show_lengths ].set_index("length") ) def expander_text_duplicates(dstats, column_id=""): with st.expander(f"Text Duplicates{column_id}", expanded=False): st.caption( "Use this widget to identify text strings that appear more than " "once." ) st.markdown( "A model's training and testing may be negatively affected by " "unwarranted duplicates " "([Lee et al., 2021](https://arxiv.org/abs/2107.06499))." ) st.markdown("------") st.write( "### Here is the list of all the duplicated items and their counts " "in the dataset." ) if not dstats.duplicates_results: st.write("There are no duplicates in this dataset! 🥳") else: st.write("The fraction of the data that is a duplicate is:") st.write(str(round(dstats.dups_frac, 4))) # TODO: Check if this is slow when the size is large -- # Should we store as dataframes? # Dataframes allow this to be interactive. st.dataframe(ds_utils.counter_dict_to_df(dstats.dups_dict)) def expander_text_perplexities(dstats, column_id=""): with st.expander(f"Text Perplexities{column_id}", expanded=False): st.caption( "Use this widget to identify text perplexities from GPT-2." ) st.markdown( """ Outlier perplexities, especially very high values, could highlight an issue with an example. Smaller variations should be interpreted with more care, as they indicate how similar to the GPT-2 training corpus the examples are rather than being reflective of general linguistic properties. For more information on GPT-2, see its [model card](https://hf.co/gpt2). """ ) st.markdown("------") st.write( "### Here is the list of the examples in the dataset, sorted by " "GPT-2 perplexity:" ) if dstats.perplexities_df is None or dstats.perplexities_df.empty: st.write( "Perplexities have not been computed yet for this dataset, or " "this dataset is too large for the UI (> 1,000,000 examples).") else: st.dataframe(dstats.perplexities_df.reset_index(drop=True)) def expander_npmi_description(min_vocab): _NPMI_CAPTION = ( "Use this widget to identify problematic biases and stereotypes in " "your data." ) _NPMI_CAPTION1 = """ nPMI scores for a word help to identify potentially problematic associations, ranked by how close the association is.""" _NPMI_CAPTION2 = """ nPMI bias scores for paired words help to identify how word associations are skewed between the selected selected words ([Aka et al., 2021](https://arxiv.org/abs/2103.03417)). """ st.caption(_NPMI_CAPTION) st.markdown(_NPMI_CAPTION1) st.markdown(_NPMI_CAPTION2) st.markdown(" ") st.markdown( "You can select from gender and sexual orientation " "identity terms that appear in the dataset at least %s " "times." % min_vocab ) st.markdown( "The resulting ranked words are those that co-occur with both " "identity terms. " ) st.markdown( "The more *positive* the score, the more associated the word is with " "the first identity term. " "The more *negative* the score, the more associated the word is with " "the second identity term." ) def expander_zipf(dstats, column_id=""): z = dstats.z zipf_fig = dstats.zipf_fig with st.expander( f"Vocabulary Distribution{column_id}: Zipf's Law Fit", expanded=False ): try: _ZIPF_CAPTION = """This shows how close the observed language is to an ideal natural language distribution following [Zipf's law](https://en.wikipedia.org/wiki/Zipf%27s_law), calculated by minimizing the [Kolmogorov-Smirnov (KS) statistic](https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test).""" powerlaw_eq = r"""p(x) \propto x^{- \alpha}""" zipf_summary = ( "The optimal alpha based on this dataset is: **" + str(round(z.alpha, 2)) + "**, with a KS distance of: **" + str(round(z.ks_distance, 2)) ) zipf_summary += ( "**. This was fit with a minimum rank value of: **" + str(int(z.xmin)) + "**, which is the optimal rank *beyond which* the scaling regime of the power law fits best." ) alpha_warning = "Your alpha value is a bit on the high side, which means that the distribution over words in this dataset is a bit unnatural. This could be due to non-language items throughout the dataset." xmin_warning = "The minimum rank for this fit is a bit on the high side, which means that the frequencies of your most common words aren't distributed as would be expected by Zipf's law." fit_results_table = pd.DataFrame.from_dict( { r"Alpha:": [str("%.2f" % z.alpha)], "KS distance:": [str("%.2f" % z.ks_distance)], "Min rank:": [str("%s" % int(z.xmin))], }, columns=["Results"], orient="index", ) fit_results_table.index.name = column_id st.caption( "Use this widget for the counts of different words in your dataset, measuring the difference between the observed count and the expected count under Zipf's law." ) st.markdown(_ZIPF_CAPTION) st.write( """ A Zipfian distribution follows the power law: $p(x) \propto x^{-α}$ with an ideal α value of 1.""" ) st.markdown( "In general, an alpha greater than 2 or a minimum rank greater than 10 (take with a grain of salt) means that your distribution is relativaly _unnatural_ for natural language. This can be a sign of mixed artefacts in the dataset, such as HTML markup." ) st.markdown( "Below, you can see the counts of each word in your dataset vs. the expected number of counts following a Zipfian distribution." ) st.markdown("-----") st.write("### Here is your dataset's Zipf results:") st.dataframe(fit_results_table) st.write(zipf_summary) # TODO: Nice UI version of the content in the comments. # st.markdown("\nThe KS test p-value is < %.2f" % z.ks_test.pvalue) # if z.ks_test.pvalue < 0.01: # st.markdown( # "\n Great news! Your data fits a powerlaw with a minimum KS " "distance of %.4f" % z.distance) # else: # st.markdown("\n Sadly, your data does not fit a powerlaw. =(") # st.markdown("Checking the goodness of fit of our observed distribution") # st.markdown("to the hypothesized power law distribution") # st.markdown("using a Kolmogorov–Smirnov (KS) test.") st.plotly_chart(zipf_fig, use_container_width=True) if z.alpha > 2: st.markdown(alpha_warning) if z.xmin > 5: st.markdown(xmin_warning) except: st.write("Under construction!") def npmi_widget(dstats, column_id=""): """ Part of the UI, but providing for interaction. :param column_id: :param dstats: :return: """ min_vocab = dstats.min_vocab_count npmi_stats = dstats.npmi_obj available_terms = npmi_stats.avail_identity_terms with st.expander(f"Word Association{column_id}: nPMI", expanded=False): if npmi_stats and len(available_terms) > 0: expander_npmi_description(min_vocab) st.markdown("-----") term1 = st.selectbox( f"What is the first term you want to select?{column_id}", available_terms, ) term2 = st.selectbox( f"What is the second term you want to select?{column_id}", reversed(available_terms), ) try: joint_npmi_df = npmi_stats.get_display(term1, term2) npmi_show(joint_npmi_df) except Exception as e: logs.exception(e) st.markdown( "**WARNING!** The nPMI for these terms has not been" " pre-computed, please re-run caching." ) else: st.markdown("No words found co-occurring with both of the selected identity" " terms.") def npmi_show(paired_results): if paired_results.empty: st.markdown( "No words that co-occur enough times for results! Or there's a 🐛." " Or we're still computing this one. 🤷") else: logs.debug("Results to be shown in streamlit are") logs.debug(paired_results) s = pd.DataFrame( paired_results.sort_values(paired_results.columns[0], ascending=True)) s.index.name = "word" bias_col = s.filter(like="bias").columns #count_cols = s.filter(like="count").columns # Keep the dataframe from being crazy big. if s.shape[0] > 10000: bias_thres = max(abs(s[s[0]][5000]), abs(s[s[0]][-5000])) logs.info(f"filtering with bias threshold: {bias_thres}") s_filtered = s[s[0].abs() > bias_thres] else: s_filtered = s cm = sns.palplot(sns.diverging_palette(270, 36, s=99, l=48, n=16)) out_df = s_filtered.style.background_gradient(subset=bias_col, cmap=cm).format(formatter="{:,.3f}").set_properties(**{"align": "center", "width":"100em"}).set_caption("nPMI scores between the selected identity terms and the words they both co-occur with") #set_properties(subset=count_cols, **{"width": "10em", "text-align": "center"}). # .format(subset=count_cols, formatter=int). #.format(subset=bias_col, formatter="{:,.3f}") st.write("### Here is your dataset's bias results:") st.dataframe(out_df)
data-measurements-tool-main
utils/gradio_utils.py
data-measurements-tool-main
data_measurements/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import matplotlib.image as mpimg import matplotlib.pyplot as plt import nltk import numpy as np import pandas as pd import plotly.graph_objects as go import seaborn as sns import statistics import utils import utils.dataset_utils as ds_utils from data_measurements.tokenize import Tokenize from data_measurements.labels import labels from data_measurements.perplexity import perplexity from data_measurements.lengths import lengths from data_measurements.text_duplicates import text_duplicates as td from data_measurements.npmi import npmi from data_measurements.zipf import zipf from datasets import load_from_disk from nltk.corpus import stopwords from os import mkdir, getenv from os.path import exists, isdir from os.path import join as pjoin from pathlib import Path from sklearn.feature_extraction.text import CountVectorizer from utils.dataset_utils import (CNT, LENGTH_FIELD, TEXT_FIELD, PERPLEXITY_FIELD, PROP, TEXT_NAN_CNT, TOKENIZED_FIELD, TOT_OPEN_WORDS, TOT_WORDS, VOCAB, WORD) logs = utils.prepare_logging(__file__) # TODO: Read this in depending on chosen language / expand beyond english nltk.download("stopwords", quiet=True) _CLOSED_CLASS = ( stopwords.words("english") + ["t", "n", "ll", "d", "s"] + ["wasn", "weren", "won", "aren", "wouldn", "shouldn", "didn", "don", "hasn", "ain", "couldn", "doesn", "hadn", "haven", "isn", "mightn", "mustn", "needn", "shan", "would", "could", "dont"] + [str(i) for i in range(0, 99)] ) IDENTITY_TERMS = [ "man", "woman", "non-binary", "gay", "lesbian", "queer", "trans", "straight", "cis", "she", "her", "hers", "he", "him", "his", "they", "them", "their", "theirs", "himself", "herself", ] # treating inf values as NaN as well pd.set_option("use_inf_as_na", True) MIN_VOCAB_COUNT = 10 _NUM_VOCAB_BATCHES = 2000 _TOP_N = 100 class DatasetStatisticsCacheClass: def __init__( self, dset_name, dset_config, split_name, text_field, label_field, label_names, cache_dir="cache_dir", dataset_cache_dir=None, use_cache=False, save=True, ): ### What are we analyzing? # name of the Hugging Face dataset self.dset_name = dset_name # name of the dataset config self.dset_config = dset_config # name of the split to analyze self.split_name = split_name # which text/feature fields are we analysing? self.text_field = text_field ## Label variables # which label fields are we analysing? self.label_field = label_field # what are the names of the classes? self.label_names = label_names # save label pie chart in the class so it doesn't ge re-computed self.fig_labels = None ## Hugging Face dataset objects self.dset = None # original dataset # HF dataset with all of the self.text_field instances in self.dset self.text_dset = None self.dset_peek = None # HF dataset with text embeddings in the same order as self.text_dset self.embeddings_dset = None # HF dataset with all of the self.label_field instances in self.dset # TODO: Not being used anymore; make sure & remove. self.label_dset = None self.length_obj = None ## Data frames # Tokenized text self.tokenized_df = None # Data Frame version of self.label_dset # TODO: Not being used anymore. Make sure and remove self.label_df = None # where are they being cached? self.label_files = {} # label pie chart used in the UI self.fig_labels = None # results self.label_results = None ## Caching if not dataset_cache_dir: _, self.dataset_cache_dir = ds_utils.get_cache_dir_naming(cache_dir, dset_name, dset_config, split_name, text_field) else: self.dataset_cache_dir = dataset_cache_dir # Use stored data if there; otherwise calculate afresh self.use_cache = use_cache # Save newly calculated results. self.save = save self.dset_peek = None # Tokenized text self.tokenized_df = None ## Zipf # Save zipf fig so it doesn't need to be recreated. self.zipf_fig = None # Zipf object self.z = None ## Vocabulary # Vocabulary with word counts in the dataset self.vocab_counts_df = None # Vocabulary filtered to remove stopwords self.vocab_counts_filtered_df = None self.sorted_top_vocab_df = None # Text Duplicates self.duplicates_results = None self.duplicates_files = {} self.dups_frac = 0 self.dups_dict = {} ## Perplexity self.perplexities_df = None ## Lengths self.avg_length = None self.std_length = None self.length_stats_dict = None self.length_df = None self.fig_tok_length = None self.num_uniq_lengths = 0 ## "General" stats self.general_stats_dict = {} self.total_words = 0 self.total_open_words = 0 # Number of NaN values (NOT empty strings) self.text_nan_count = 0 # nPMI self.npmi_obj = None # The minimum amount of times a word should occur to be included in # word-count-based calculations (currently just relevant to nPMI) self.min_vocab_count = MIN_VOCAB_COUNT self.hf_dset_cache_dir = pjoin(self.dataset_cache_dir, "base_dset") self.tokenized_df_fid = pjoin(self.dataset_cache_dir, "tokenized_df.json") self.text_dset_fid = pjoin(self.dataset_cache_dir, "text_dset") self.dset_peek_json_fid = pjoin(self.dataset_cache_dir, "dset_peek.json") ## Length cache files self.length_df_fid = pjoin(self.dataset_cache_dir, "length_df.json") self.length_stats_json_fid = pjoin(self.dataset_cache_dir, "length_stats.json") self.vocab_counts_df_fid = pjoin(self.dataset_cache_dir, "vocab_counts.json") self.dup_counts_df_fid = pjoin(self.dataset_cache_dir, "dup_counts_df.json") self.fig_tok_length_fid = pjoin(self.dataset_cache_dir, "fig_tok_length.png") ## General text stats self.general_stats_json_fid = pjoin(self.dataset_cache_dir, "general_stats_dict.json") # Needed for UI self.sorted_top_vocab_df_fid = pjoin( self.dataset_cache_dir, "sorted_top_vocab.json" ) # Set the HuggingFace dataset object with the given arguments. self.dset = self._get_dataset() self.text_dset = None # Defines self.text_dset, a HF Dataset with just the TEXT_FIELD instances in self.dset extracted self.load_or_prepare_text_dataset() def _get_dataset(self): """ Gets the HuggingFace Dataset object. First tries to use the given cache directory if specified; otherwise saves to the given cache directory if specified. """ dset = ds_utils.load_truncated_dataset(self.dset_name, self.dset_config, self.split_name, cache_dir=self.hf_dset_cache_dir, save=self.save) return dset def load_or_prepare_text_dataset(self, load_only=False): """ Prepares the HF dataset text/feature based on given config, split, etc. Args: load_only: Whether only a cached dataset can be used. """ logs.info("Doing text dset.") if self.use_cache and exists(self.text_dset_fid): # load extracted text self.text_dset = load_from_disk(self.text_dset_fid) logs.info("Loaded dataset from disk") logs.info(self.text_dset) # ...Or load it from the server and store it anew elif not load_only: # Defines self.text_dset self.prepare_text_dset() if self.save: # save extracted text instances logs.info("Saving dataset to disk") self.text_dset.save_to_disk(self.text_dset_fid) def prepare_text_dset(self): logs.info("Working with dataset:") logs.info(self.dset) # Extract all text instances from the user-specified self.text_field, # which is a dataset-specific text/feature field; # create a new feature called TEXT_FIELD, which is a constant shared # across DMT logic. self.text_dset = self.dset.map( lambda examples: ds_utils.extract_field( examples, self.text_field, TEXT_FIELD ), batched=True, remove_columns=list(self.dset.features), ) def load_or_prepare_general_stats(self, load_only=False): """ Content for expander_general_stats widget. Provides statistics for total words, total open words, the sorted top vocab, the NaN count, and the duplicate count. Args: Returns: """ # General statistics # For the general statistics, text duplicates are not saved in their # own files, but rather just the text duplicate fraction is saved in the # "general" file. We therefore set save=False for # the text duplicate files in this case. # Similarly, we don't get the full list of duplicates # in general stats, so set list_duplicates to False self.load_or_prepare_text_duplicates(load_only=load_only, save=False, list_duplicates=False) logs.info("Duplicates results:") logs.info(self.duplicates_results) self.general_stats_dict.update(self.duplicates_results) # TODO: Tighten the rest of this similar to text_duplicates. if ( self.use_cache and exists(self.general_stats_json_fid) and exists(self.sorted_top_vocab_df_fid) ): logs.info("Loading cached general stats") self.load_general_stats() elif not load_only: logs.info("Preparing general stats") self.prepare_general_stats() if self.save: ds_utils.write_df(self.sorted_top_vocab_df, self.sorted_top_vocab_df_fid) ds_utils.write_json(self.general_stats_dict, self.general_stats_json_fid) def load_or_prepare_text_lengths(self, load_only=False): """ The text length widget relies on this function, which provides a figure of the text lengths, some text length statistics, and a text length dataframe to peruse. Args: load_only (Bool): Whether we can compute anew, or just need to try to grab cache. Returns: """ # We work with the already tokenized dataset self.load_or_prepare_tokenized_df() self.length_obj = lengths.DMTHelper(self, load_only=load_only, save=self.save) self.length_obj.run_DMT_processing() ## Labels functions def load_or_prepare_labels(self, load_only=False): """Uses a generic Labels class, with attributes specific to this project as input. Computes results for each label column, or else uses what's available in the cache. Currently supports Datasets with just one label column. """ label_obj = labels.DMTHelper(self, load_only=load_only, save=self.save) self.label_files = label_obj.get_label_filenames() if self.use_cache and exists(self.label_files["figure json"]) and exists(self.label_files["statistics"]): self.fig_labels = ds_utils.read_plotly(self.label_files["figure json"]) self.label_results = ds_utils.read_json(self.label_files["statistics"]) elif not load_only: label_obj.run_DMT_processing() self.fig_labels = label_obj.fig_labels self.label_results = label_obj.label_results # Get vocab with word counts def load_or_prepare_vocab(self, load_only=False): """ Calculates the vocabulary count from the tokenized text. The resulting dataframes may be used in nPMI calculations, zipf, etc. :param :return: """ if self.use_cache and exists(self.vocab_counts_df_fid): logs.info("Reading vocab from cache") self.load_vocab() self.vocab_counts_filtered_df = filter_vocab(self.vocab_counts_df) elif not load_only: if self.tokenized_df is None: # Building the vocabulary starts with tokenizing. self.load_or_prepare_tokenized_df(load_only=False) logs.info("Calculating vocab afresh") word_count_df = count_vocab_frequencies(self.tokenized_df) logs.info("Making dfs with proportion.") self.vocab_counts_df = calc_p_word(word_count_df) self.vocab_counts_filtered_df = filter_vocab(self.vocab_counts_df) if self.save: logs.info("Writing out.") ds_utils.write_df(self.vocab_counts_df, self.vocab_counts_df_fid) logs.info("unfiltered vocab") logs.info(self.vocab_counts_df) logs.info("filtered vocab") logs.info(self.vocab_counts_filtered_df) def load_vocab(self): self.vocab_counts_df = ds_utils.read_df(self.vocab_counts_df_fid) def load_or_prepare_text_duplicates(self, load_only=False, save=True, list_duplicates=True): """Uses a text duplicates library, which returns strings with their counts, fraction of data that is duplicated, or else uses what's available in the cache. """ dups_obj = td.DMTHelper(self, load_only=load_only, save=save) dups_obj.run_DMT_processing(list_duplicates=list_duplicates) self.duplicates_results = dups_obj.duplicates_results self.dups_frac = self.duplicates_results[td.DUPS_FRAC] if list_duplicates and td.DUPS_DICT in self.duplicates_results: self.dups_dict = self.duplicates_results[td.DUPS_DICT] self.duplicates_files = dups_obj.get_duplicates_filenames() def load_or_prepare_text_perplexities(self, load_only=False): perplex_obj = perplexity.DMTHelper(self, load_only=load_only) perplex_obj.run_DMT_processing() self.perplexities_df = perplex_obj.df def load_general_stats(self): self.general_stats_dict = json.load( open(self.general_stats_json_fid, encoding="utf-8") ) self.sorted_top_vocab_df = ds_utils.read_df(self.sorted_top_vocab_df_fid) self.text_nan_count = self.general_stats_dict[TEXT_NAN_CNT] self.dups_frac = self.general_stats_dict[td.DUPS_FRAC] self.total_words = self.general_stats_dict[TOT_WORDS] self.total_open_words = self.general_stats_dict[TOT_OPEN_WORDS] def prepare_general_stats(self): if self.tokenized_df is None: logs.warning("Tokenized dataset not yet loaded; doing so.") self.load_or_prepare_tokenized_df() if self.vocab_counts_df is None: logs.warning("Vocab not yet loaded; doing so.") self.load_or_prepare_vocab() self.sorted_top_vocab_df = self.vocab_counts_filtered_df.sort_values( "count", ascending=False ).head(_TOP_N) self.total_words = len(self.vocab_counts_df) self.total_open_words = len(self.vocab_counts_filtered_df) self.text_nan_count = int(self.tokenized_df.isnull().sum().sum()) self.load_or_prepare_text_duplicates() self.general_stats_dict = { TOT_WORDS: self.total_words, TOT_OPEN_WORDS: self.total_open_words, TEXT_NAN_CNT: self.text_nan_count, td.DUPS_FRAC: self.dups_frac } def load_or_prepare_dataset(self, load_only=False): """ Prepares the HF dataset text/feature based on given config, split, etc. Args: load_only: Whether only a cached dataset can be used. """ logs.info("Doing text dset.") if self.use_cache and exists(self.text_dset_fid): # load extracted text self.text_dset = load_from_disk(self.text_dset_fid) logs.warning("Loaded dataset from disk") logs.warning(self.text_dset) # ...Or load it from the server and store it anew elif not load_only: self.prepare_text_dset() if self.save: # save extracted text instances logs.warning("Saving dataset to disk") self.text_dset.save_to_disk(self.text_dset_fid) # TODO: Are we not using this anymore? def load_or_prepare_dset_peek(self, load_only=False): if self.use_cache and exists(self.dset_peek_json_fid): with open(self.dset_peek_json_fid, "r") as f: self.dset_peek = json.load(f)["dset peek"] elif not load_only: self.dset_peek = self.dset[:100] if self.save: ds_utils.write_json({"dset peek": self.dset_peek}, self.dset_peek_json_fid) def load_or_prepare_tokenized_df(self, load_only=False): if self.use_cache and exists(self.tokenized_df_fid): self.tokenized_df = ds_utils.read_df(self.tokenized_df_fid) elif not load_only: # tokenize all text instances self.tokenized_df = Tokenize(self.text_dset, feature=TEXT_FIELD, tok_feature=TOKENIZED_FIELD).get_df() logs.info("tokenized df is") logs.info(self.tokenized_df) if self.save: logs.warning("Saving tokenized dataset to disk") # save tokenized text ds_utils.write_df(self.tokenized_df, self.tokenized_df_fid) def load_or_prepare_npmi(self, load_only=False): npmi_obj = npmi.DMTHelper(self, IDENTITY_TERMS, load_only=load_only, use_cache=self.use_cache, save=self.save) npmi_obj.run_DMT_processing() self.npmi_obj = npmi_obj self.npmi_results = npmi_obj.results_dict self.npmi_files = npmi_obj.get_filenames() def load_or_prepare_zipf(self, load_only=False): zipf_json_fid, zipf_fig_json_fid, zipf_fig_html_fid = zipf.get_zipf_fids( self.dataset_cache_dir) if self.use_cache and exists(zipf_json_fid): # Zipf statistics # Read Zipf statistics: Alpha, p-value, etc. with open(zipf_json_fid, "r") as f: zipf_dict = json.load(f) self.z = zipf.Zipf(self.vocab_counts_df) self.z.load(zipf_dict) # Zipf figure if exists(zipf_fig_json_fid): self.zipf_fig = ds_utils.read_plotly(zipf_fig_json_fid) elif not load_only: self.zipf_fig = zipf.make_zipf_fig(self.z) if self.save: ds_utils.write_plotly(self.zipf_fig) elif not load_only: self.prepare_zipf() if self.save: zipf_dict = self.z.get_zipf_dict() ds_utils.write_json(zipf_dict, zipf_json_fid) ds_utils.write_plotly(self.zipf_fig, zipf_fig_json_fid) self.zipf_fig.write_html(zipf_fig_html_fid) def prepare_zipf(self): # Calculate zipf from scratch # TODO: Does z even need to be self? self.z = zipf.Zipf(self.vocab_counts_df) self.z.calc_fit() self.zipf_fig = zipf.make_zipf_fig(self.z) def dummy(doc): return doc def count_vocab_frequencies(tokenized_df): """ Based on an input pandas DataFrame with a 'text' column, this function will count the occurrences of all words. :return: [num_words x num_sentences] DataFrame with the rows corresponding to the different vocabulary words and the column to the presence (0 or 1) of that word. """ cvec = CountVectorizer( tokenizer=dummy, preprocessor=dummy, ) # We do this to calculate per-word statistics # Fast calculation of single word counts logs.info( "Fitting dummy tokenization to make matrix using the previous tokenization" ) cvec.fit(tokenized_df[TOKENIZED_FIELD]) document_matrix = cvec.transform(tokenized_df[TOKENIZED_FIELD]) batches = np.linspace(0, tokenized_df.shape[0], _NUM_VOCAB_BATCHES).astype( int) i = 0 tf = [] while i < len(batches) - 1: if i % 100 == 0: logs.info("%s of %s vocab batches" % (str(i), str(len(batches)))) batch_result = np.sum( document_matrix[batches[i]: batches[i + 1]].toarray(), axis=0 ) tf.append(batch_result) i += 1 word_count_df = pd.DataFrame( [np.sum(tf, axis=0)], columns=cvec.get_feature_names_out() ).transpose() # Now organize everything into the dataframes word_count_df.columns = [CNT] word_count_df.index.name = WORD return word_count_df def calc_p_word(word_count_df): # p(word) word_count_df[PROP] = word_count_df[CNT] / float(sum(word_count_df[CNT])) vocab_counts_df = pd.DataFrame( word_count_df.sort_values(by=CNT, ascending=False)) vocab_counts_df[VOCAB] = vocab_counts_df.index return vocab_counts_df def filter_vocab(vocab_counts_df): # TODO: Add warnings (which words are missing) to log file? filtered_vocab_counts_df = vocab_counts_df.drop(_CLOSED_CLASS, errors="ignore") filtered_count = filtered_vocab_counts_df[CNT] filtered_count_denom = float(sum(filtered_vocab_counts_df[CNT])) filtered_vocab_counts_df[PROP] = filtered_count / filtered_count_denom return filtered_vocab_counts_df
data-measurements-tool-main
data_measurements/dataset_statistics.py
import pandas as pd import utils from sklearn.feature_extraction.text import CountVectorizer logs = utils.prepare_logging(__file__) TEXT = "text" TOKENIZED_TEXT = "tokenized_text" class Tokenize: def __init__(self, text_dset, feature=TEXT, tok_feature=TOKENIZED_TEXT, lowercase=True): self.text_dset = text_dset self.feature = feature self.tok_feature = tok_feature self.lowercase = lowercase # Pattern for tokenization self.cvec = CountVectorizer(token_pattern="(?u)\\b\\w+\\b", lowercase=lowercase) self.tokenized_dset = self.do_tokenization() def do_tokenization(self): """ Tokenizes a Hugging Face dataset in the self.feature field. :return: Hugging Face Dataset with tokenized text in self.tok_feature. """ sent_tokenizer = self.cvec.build_tokenizer() def tokenize_batch(examples): if self.lowercase: tok_sent = { self.tok_feature: [tuple(sent_tokenizer(text.lower())) for text in examples[self.feature]]} else: tok_sent = { self.tok_feature: [tuple(sent_tokenizer(text)) for text in examples[self.feature]]} return tok_sent tokenized_dset = self.text_dset.map( tokenize_batch, batched=True ) logs.info("Tokenized the dataset.") return tokenized_dset def get(self): return self.tokenized_dset def get_df(self): return pd.DataFrame(self.tokenized_dset)
data-measurements-tool-main
data_measurements/tokenize.py
data-measurements-tool-main
data_measurements/lengths/__init__.py
import logging import matplotlib.image as mpimg import matplotlib.pyplot as plt from matplotlib.figure import Figure from PIL import Image import seaborn as sns import statistics from os.path import join as pjoin import pandas as pd import utils from utils import dataset_utils as ds_utils from collections import Counter from os.path import exists, isdir from os.path import join as pjoin TEXT_FIELD = "text" TOKENIZED_FIELD = "tokenized_text" LENGTH_FIELD = "length" UNIQ = "num_instance_lengths" AVG = "average_instance_length" STD = "standard_dev_instance_length" logs = utils.prepare_logging(__file__) def make_fig_lengths(lengths_df): # How the hell is this working? plt transforms to sns ?! logs.info("Creating lengths figure.") plt.switch_backend('Agg') fig_tok_lengths, axs = plt.subplots(figsize=(15, 6), dpi=150) plt.xlabel("Number of tokens") plt.title("Binned counts of text lengths, with kernel density estimate and ticks for each instance.") sns.histplot(data=lengths_df, kde=True, ax=axs, x=LENGTH_FIELD, legend=False) sns.rugplot(data=lengths_df, ax=axs) return fig_tok_lengths class DMTHelper: def __init__(self, dstats, load_only=False, save=True): self.tokenized_df = dstats.tokenized_df # Whether to only use cache self.load_only = load_only # Whether to try using cache first. # Must be true when self.load_only = True; this function assures that. self.use_cache = dstats.use_cache self.cache_dir = dstats.dataset_cache_dir self.save = save # Lengths class object self.lengths_obj = None # Content shared in the DMT: # The figure, the table, and the sufficient statistics (measurements) self.fig_lengths = None self.lengths_df = None self.avg_length = None self.std_length = None self.uniq_counts = None # Dict for the measurements, used in caching self.length_stats_dict = {} # Filenames, used in caching self.lengths_dir = "lengths" length_meas_json = "length_measurements.json" lengths_fig_png = "lengths_fig.png" lengths_df_json = "lengths_table.json" self.length_stats_json_fid = pjoin(self.cache_dir, self.lengths_dir, length_meas_json) self.lengths_fig_png_fid = pjoin(self.cache_dir, self.lengths_dir, lengths_fig_png) self.lengths_df_json_fid = pjoin(self.cache_dir, self.lengths_dir, lengths_df_json) def run_DMT_processing(self): """ Gets data structures for the figure, table, and measurements. """ # First look to see what we can load from cache. if self.use_cache: logs.info("Trying to load from cache...") # Defines self.lengths_df, self.length_stats_dict, self.fig_lengths # This is the table, the dict of measurements, and the figure self.load_lengths_cache() # Sets the measurements as attributes of the DMT object self.set_attributes() # If we do not have measurements loaded from cache... if not self.length_stats_dict and not self.load_only: logs.info("Preparing length results") # Compute length statistics. Uses the Lengths class. self.lengths_obj = self._prepare_lengths() # Dict of measurements self.length_stats_dict = self.lengths_obj.length_stats_dict # Table of text and lengths self.lengths_df = self.lengths_obj.lengths_df # Sets the measurements in the length_stats_dict self.set_attributes() # Makes the figure self.fig_lengths = make_fig_lengths(self.lengths_df) # Finish if self.save: logs.info("Saving results.") self._write_lengths_cache() if exists(self.lengths_fig_png_fid): # As soon as we have a figure, we redefine it as an image. # This is a hack to handle a UI display error (TODO: file bug) self.fig_lengths = Image.open(self.lengths_fig_png_fid) def set_attributes(self): if self.length_stats_dict: self.avg_length = self.length_stats_dict[AVG] self.std_length = self.length_stats_dict[STD] self.uniq_counts = self.length_stats_dict[UNIQ] else: logs.info("No lengths stats found. =(") def load_lengths_cache(self): # Dataframe with <sentence, length> exists. Load it. if exists(self.lengths_df_json_fid): self.lengths_df = ds_utils.read_df(self.lengths_df_json_fid) # Image exists. Load it. if exists(self.lengths_fig_png_fid): self.fig_lengths = Image.open(self.lengths_fig_png_fid) # mpimg.imread(self.lengths_fig_png_fid) # Measurements exist. Load them. if exists(self.length_stats_json_fid): # Loads the length measurements self.length_stats_dict = ds_utils.read_json(self.length_stats_json_fid) def _write_lengths_cache(self): # Writes the data structures using the corresponding filetypes. ds_utils.make_path(pjoin(self.cache_dir, self.lengths_dir)) if self.length_stats_dict != {}: ds_utils.write_json(self.length_stats_dict, self.length_stats_json_fid) if isinstance(self.fig_lengths, Figure): self.fig_lengths.savefig(self.lengths_fig_png_fid) if isinstance(self.lengths_df, pd.DataFrame): ds_utils.write_df(self.lengths_df, self.lengths_df_json_fid) def _prepare_lengths(self): """Loads a Lengths object and computes length statistics""" # Length object for the dataset lengths_obj = Lengths(dataset=self.tokenized_df) lengths_obj.prepare_lengths() return lengths_obj def get_filenames(self): lengths_fid_dict = {"statistics": self.length_stats_json_fid, "figure png": self.lengths_fig_png_fid, "table": self.lengths_df_json_fid} return lengths_fid_dict class Lengths: """Generic class for text length processing. Uses DataFrames for faster processing. Given a dataframe with tokenized words in a column called TOKENIZED_TEXT, and the text instances in a column called TEXT, compute statistics. """ def __init__(self, dataset): self.dset_df = dataset # Dict of measurements self.length_stats_dict = {} # Measurements self.avg_length = None self.std_length = None self.num_uniq_lengths = None # Table of lengths and sentences self.lengths_df = None def prepare_lengths(self): self.lengths_df = pd.DataFrame(self.dset_df[TEXT_FIELD]) self.lengths_df[LENGTH_FIELD] = self.dset_df[TOKENIZED_FIELD].apply(len) lengths_array = self.lengths_df[LENGTH_FIELD] self.avg_length = statistics.mean(lengths_array) self.std_length = statistics.stdev(lengths_array) self.num_uniq_lengths = len(lengths_array.unique()) self.length_stats_dict = { "average_instance_length": self.avg_length, "standard_dev_instance_length": self.std_length, "num_instance_lengths": self.num_uniq_lengths, }
data-measurements-tool-main
data_measurements/lengths/lengths.py
data-measurements-tool-main
data_measurements/text_duplicates/__init__.py
import evaluate import logging import os import pandas as pd import plotly.express as px import utils import utils.dataset_utils as ds_utils from collections import Counter from os.path import exists, isdir from os.path import join as pjoin TEXT = "text" # These are string constants defined in the evaluate library. # They may need to be updated if the evaluate library changes these strings DUPS_FRAC = "duplicate_fraction" # Evaluate calls the dictionary a "list" DUPS_DICT = "duplicates_dict" # This isn't in the evaluate measurement, but TODO to add that... # DUPS_SUM = "duplicate_sum" logs = utils.prepare_logging(__file__) class DMTHelper: """Helper class for the Data Measurements Tool. This allows us to keep all variables and functions related to labels in one file. Does caching and using the evaluate library for computation. """ def __init__(self, dstats, load_only, save): # Input HuggingFace Dataset. self.dset = dstats.text_dset[TEXT] if self.dset is None: dstats.load_or_prepare_text_dset() self.dset = dstats.text_dset self.use_cache = dstats.use_cache # Note: This is None as it can be called different times with different # settings, and so we want fresh results each time. With the evaluate # integration, results are different depending on whether # list_duplicates is set. self.duplicates_results = None self.cache_dir = dstats.dataset_cache_dir self.save = save self.load_only = load_only # Filenames self.dups_dir = "text_duplicates" dups_json = "text_duplicates.json" dups_html = "text_duplicates.html" self.dups_result_json_fid = pjoin(self.cache_dir, self.dups_dir, dups_json) self.dups_result_html_fid = pjoin(self.cache_dir, self.dups_dir, dups_html) def run_DMT_processing(self, list_duplicates=True): """Calls functions to do the main work. DMT uses the full duplicates list in a widget, so it is set to default True. """ # First look to see what we can load from cache. if self.use_cache: self.duplicates_results = self._load_duplicates_cache() if self.duplicates_results: logs.info("Loaded cached text duplicate results.") if not self.duplicates_results and not self.load_only: self.duplicates_results = self._prepare_duplicates(list_duplicates=list_duplicates) logs.info("Prepared duplicates.") if self.save: self._write_duplicates_cache() def _prepare_duplicates(self, list_duplicates=True): """Wraps the evaluate library.""" duplicates = evaluate.load("text_duplicates") results = duplicates.compute(data=self.dset, list_duplicates=list_duplicates) return results def _load_duplicates_cache(self): """Loads previously computed results from cache.""" results = {} if exists(self.dups_result_json_fid): results = ds_utils.read_json(self.dups_result_json_fid) return results def _write_duplicates_cache(self): """Writes newly computed results to cache.""" ds_utils.make_path(pjoin(self.cache_dir, self.dups_dir)) if self.duplicates_results: ds_utils.write_json(self.duplicates_results, self.dups_result_json_fid) # TODO: Use df_to_html rather than write_json_as_html; # this will make it possible to order the results. # But they must first be turned into a dataframe. ds_utils.write_json_as_html(self.duplicates_results, self.dups_result_html_fid) def get_duplicates_filenames(self): dups_fid_dict = {"statistics": self.dups_result_json_fid, "html":self.dups_result_html_fid} return dups_fid_dict
data-measurements-tool-main
data_measurements/text_duplicates/text_duplicates.py
data-measurements-tool-main
data_measurements/embeddings/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from os.path import exists from os.path import join as pjoin import plotly.graph_objects as go import torch import transformers from datasets import load_from_disk from plotly.io import read_json from tqdm import tqdm from utils.dataset_utils import EMBEDDING_FIELD def sentence_mean_pooling(model_output, attention_mask): """Mean pooling of token embeddings for a sentence.""" token_embeddings = model_output[ 0 ] # First element of model_output contains all token embeddings input_mask_expanded = ( attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() ) return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp( input_mask_expanded.sum(1), min=1e-9 ) class Embeddings: def __init__( self, dstats=None, text_dset=None, text_field_name="text", cache_path="", use_cache=False, ): """Item embeddings and clustering""" self.device = "cuda:0" if torch.cuda.is_available() else "cpu" self.model_name = "sentence-transformers/all-mpnet-base-v2" self.tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name) self.model = transformers.AutoModel.from_pretrained(self.model_name).to( self.device ) self.text_dset = text_dset if dstats is None else dstats.text_dset self.text_field_name = ( text_field_name if dstats is None else dstats.our_text_field ) self.cache_path = cache_path if dstats is None else dstats.cache_path self.embeddings_dset_fid = pjoin(self.cache_path, "embeddings_dset") self.embeddings_dset = None self.node_list_fid = pjoin(self.cache_path, "node_list.th") self.node_list = None self.nid_map = None self.fig_tree_fid = pjoin(self.cache_path, "node_figure.json") self.fig_tree = None self.cached_clusters = {} self.use_cache = use_cache def compute_sentence_embeddings(self, sentences): """ Takes a list of sentences and computes their embeddings using self.tokenizer and self.model (with output dimension D) followed by mean pooling of the token representations and normalization Args: sentences ([string]): list of N input sentences Returns: torch.Tensor: sentence embeddings, dimension NxD """ batch = self.tokenizer( sentences, padding=True, truncation=True, return_tensors="pt" ) batch = {k: v.to(self.device) for k, v in batch.items()} with torch.no_grad(): model_output = self.model(**batch) sentence_embeds = sentence_mean_pooling( model_output, batch["attention_mask"] ) sentence_embeds /= sentence_embeds.norm(dim=-1, keepdim=True) return sentence_embeds def make_embeddings(self): """ Batch computes the embeddings of the Dataset self.text_dset, using the field self.text_field_name as input. Returns: Dataset: HF dataset object with a single EMBEDDING_FIELD field corresponding to the embeddings (list of floats) """ def batch_embed_sentences(sentences): return { EMBEDDING_FIELD: [ embed.tolist() for embed in self.compute_sentence_embeddings( sentences[self.text_field_name] ) ] } self.embeddings_dset = self.text_dset.map( batch_embed_sentences, batched=True, batch_size=32, remove_columns=[self.text_field_name], ) return self.embeddings_dset def make_text_embeddings(self): """Load embeddings dataset from cache or compute it.""" if self.use_cache and exists(self.embeddings_dset_fid): self.embeddings_dset = load_from_disk(self.embeddings_dset_fid) else: self.embeddings_dset = self.make_embeddings() self.embeddings_dset.save_to_disk(self.embeddings_dset_fid) def make_hierarchical_clustering( self, batch_size=1000, approx_neighbors=1000, min_cluster_size=10, ): if self.use_cache and exists(self.node_list_fid): self.node_list, self.nid_map = torch.load(self.node_list_fid) else: self.make_text_embeddings() embeddings = torch.Tensor(self.embeddings_dset[EMBEDDING_FIELD]) self.node_list = fast_cluster( embeddings, batch_size, approx_neighbors, min_cluster_size ) self.nid_map = dict( [(node["nid"], nid) for nid, node in enumerate(self.node_list)] ) torch.save((self.node_list, self.nid_map), self.node_list_fid) print(exists(self.fig_tree_fid), self.fig_tree_fid) if self.use_cache and exists(self.fig_tree_fid): self.fig_tree = read_json(self.fig_tree_fid) else: self.fig_tree = make_tree_plot( self.node_list, self.nid_map, self.text_dset, self.text_field_name ) self.fig_tree.write_json(self.fig_tree_fid) def find_cluster_beam(self, sentence, beam_size=20): """ This function finds the `beam_size` leaf clusters that are closest to the proposed sentence and returns the full path from the root to the cluster along with the dot product between the sentence embedding and the cluster centroid Args: sentence (string): input sentence for which to find clusters beam_size (int): this is a beam size algorithm to explore the tree Returns: [([int], float)]: list of (path_from_root, score) sorted by score """ embed = self.compute_sentence_embeddings([sentence])[0].to("cpu") active_paths = [([0], torch.dot(embed, self.node_list[0]["centroid"]).item())] finished_paths = [] children_ids_list = [ [ self.nid_map[nid] for nid in self.node_list[path[-1]]["children_ids"] if nid in self.nid_map ] for path, score in active_paths ] while len(active_paths) > 0: next_ids = sorted( [ ( beam_id, nid, torch.dot(embed, self.node_list[nid]["centroid"]).item(), ) for beam_id, children_ids in enumerate(children_ids_list) for nid in children_ids ], key=lambda x: x[2], reverse=True, )[:beam_size] paths = [ (active_paths[beam_id][0] + [next_id], score) for beam_id, next_id, score in next_ids ] active_paths = [] for path, score in paths: if ( len( [ nid for nid in self.node_list[path[-1]]["children_ids"] if nid in self.nid_map ] ) > 0 ): active_paths += [(path, score)] else: finished_paths += [(path, score)] children_ids_list = [ [ self.nid_map[nid] for nid in self.node_list[path[-1]]["children_ids"] if nid in self.nid_map ] for path, score in active_paths ] return sorted( finished_paths, key=lambda x: x[-1], reverse=True, )[:beam_size] def prepare_merges(embeddings, batch_size=1000, approx_neighbors=1000, low_thres=0.5): """ Prepares an initial list of merges for hierarchical clustering. First compute the `approx_neighbors` nearest neighbors, then propose a merge for any two points that are closer than `low_thres` Note that if a point has more than `approx_neighbors` neighbors closer than `low_thres`, this approach will miss some of those merges Args: embeddings (toch.Tensor): Tensor of sentence embeddings - dimension NxD batch_size (int): compute nearest neighbors of `batch_size` points at a time approx_neighbors (int): only keep `approx_neighbors` nearest neighbors of a point low_thres (float): only return merges where the dot product is greater than `low_thres` Returns: torch.LongTensor: proposed merges ([i, j] with i>j) - dimension: Mx2 torch.Tensor: merge scores - dimension M """ top_idx_pre = torch.cat( [torch.LongTensor(range(embeddings.shape[0]))[:, None]] * batch_size, dim=1 ) top_val_all = torch.Tensor(0, approx_neighbors) top_idx_all = torch.LongTensor(0, approx_neighbors) n_batches = math.ceil(len(embeddings) / batch_size) for b in tqdm(range(n_batches)): # TODO: batch across second dimension cos_scores = torch.mm( embeddings[b * batch_size : (b + 1) * batch_size], embeddings.t() ) for i in range(cos_scores.shape[0]): cos_scores[i, (b * batch_size) + i :] = -1 top_val_large, top_idx_large = cos_scores.topk( k=approx_neighbors, dim=-1, largest=True ) top_val_all = torch.cat([top_val_all, top_val_large], dim=0) top_idx_all = torch.cat([top_idx_all, top_idx_large], dim=0) max_neighbor_dist = top_val_large[:, -1].max().item() if max_neighbor_dist > low_thres: print( f"WARNING: with the current set of neireast neighbor, the farthest is {max_neighbor_dist}" ) all_merges = torch.cat( [ top_idx_pre[top_val_all > low_thres][:, None], top_idx_all[top_val_all > low_thres][:, None], ], dim=1, ) all_merge_scores = top_val_all[top_val_all > low_thres] return (all_merges, all_merge_scores) def merge_nodes(nodes, current_thres, previous_thres, all_merges, all_merge_scores): """ Merge all nodes if the max dot product between any of their descendants is greater than current_thres. Args: nodes ([dict]): list of dicts representing the current set of nodes current_thres (float): merge all nodes closer than current_thres previous_thres (float): nodes closer than previous_thres are already merged all_merges (torch.LongTensor): proposed merges ([i, j] with i>j) - dimension: Mx2 all_merge_scores (torch.Tensor): merge scores - dimension M Returns: [dict]: extended list with the newly created internal nodes """ merge_ids = (all_merge_scores <= previous_thres) * ( all_merge_scores > current_thres ) if merge_ids.sum().item() > 0: merges = all_merges[merge_ids] for a, b in merges.tolist(): node_a = nodes[a] while node_a["parent_id"] != -1: node_a = nodes[node_a["parent_id"]] node_b = nodes[b] while node_b["parent_id"] != -1: node_b = nodes[node_b["parent_id"]] if node_a["nid"] == node_b["nid"]: continue else: # merge if threshold allows if (node_a["depth"] + node_b["depth"]) > 0 and min( node_a["merge_threshold"], node_b["merge_threshold"] ) == current_thres: merge_to = None merge_from = None if node_a["nid"] < node_b["nid"]: merge_from = node_a merge_to = node_b if node_a["nid"] > node_b["nid"]: merge_from = node_b merge_to = node_a merge_to["depth"] = max(merge_to["depth"], merge_from["depth"]) merge_to["weight"] += merge_from["weight"] merge_to["children_ids"] += ( merge_from["children_ids"] if merge_from["depth"] > 0 else [merge_from["nid"]] ) for cid in merge_from["children_ids"]: nodes[cid]["parent_id"] = merge_to["nid"] merge_from["parent_id"] = merge_to["nid"] # else new node else: new_nid = len(nodes) new_node = { "nid": new_nid, "parent_id": -1, "depth": max(node_a["depth"], node_b["depth"]) + 1, "weight": node_a["weight"] + node_b["weight"], "children": [], "children_ids": [node_a["nid"], node_b["nid"]], "example_ids": [], "merge_threshold": current_thres, } node_a["parent_id"] = new_nid node_b["parent_id"] = new_nid nodes += [new_node] return nodes def finalize_node(node, nodes, min_cluster_size): """Post-process nodes to sort children by descending weight, get full list of leaves in the sub-tree, and direct links to the cildren nodes, then recurses to all children. Nodes with fewer than `min_cluster_size` descendants are collapsed into a single leaf. """ node["children"] = sorted( [ finalize_node(nodes[cid], nodes, min_cluster_size) for cid in node["children_ids"] ], key=lambda x: x["weight"], reverse=True, ) if node["depth"] > 0: node["example_ids"] = [ eid for child in node["children"] for eid in child["example_ids"] ] node["children"] = [ child for child in node["children"] if child["weight"] >= min_cluster_size ] assert node["weight"] == len(node["example_ids"]), print(node) return node def fast_cluster( embeddings, batch_size=1000, approx_neighbors=1000, min_cluster_size=10, low_thres=0.5, ): """ Computes an approximate hierarchical clustering based on example embeddings. The join criterion is min clustering, i.e. two clusters are joined if any pair of their descendants are closer than a threshold The approximate comes from the fact that only the `approx_neighbors` nearest neighbors of an example are considered for merges """ batch_size = min(embeddings.shape[0], batch_size) all_merges, all_merge_scores = prepare_merges( embeddings, batch_size, approx_neighbors, low_thres ) # prepare leaves nodes = [ { "nid": nid, "parent_id": -1, "depth": 0, "weight": 1, "children": [], "children_ids": [], "example_ids": [nid], "merge_threshold": 1.0, } for nid in range(embeddings.shape[0]) ] # one level per threshold range for i in range(10): p_thres = 1 - i * 0.05 c_thres = 0.95 - i * 0.05 nodes = merge_nodes(nodes, c_thres, p_thres, all_merges, all_merge_scores) # make root root_children = [ node for node in nodes if node["parent_id"] == -1 and node["weight"] >= min_cluster_size ] root = { "nid": len(nodes), "parent_id": -1, "depth": max([node["depth"] for node in root_children]) + 1, "weight": sum([node["weight"] for node in root_children]), "children": [], "children_ids": [node["nid"] for node in root_children], "example_ids": [], "merge_threshold": -1.0, } nodes += [root] for node in root_children: node["parent_id"] = root["nid"] # finalize tree tree = finalize_node(root, nodes, min_cluster_size) node_list = [] def rec_map_nodes(node, node_list): node_list += [node] for child in node["children"]: rec_map_nodes(child, node_list) rec_map_nodes(tree, node_list) # get centroids and distances for node in node_list: node_embeds = embeddings[node["example_ids"]] node["centroid"] = node_embeds.sum(dim=0) node["centroid"] /= node["centroid"].norm() node["centroid_dot_prods"] = torch.mv(node_embeds, node["centroid"]) node["sorted_examples_centroid"] = sorted( [ (eid, edp.item()) for eid, edp in zip(node["example_ids"], node["centroid_dot_prods"]) ], key=lambda x: x[1], reverse=True, ) return node_list def make_tree_plot(node_list, nid_map, text_dset, text_field_name): """ Makes a graphical representation of the tree encoded in node-list. The hover label for each node shows the number of descendants and the 5 examples that are closest to the centroid """ for nid, node in enumerate(node_list): # get list of node_examples = {} for sid, score in node["sorted_examples_centroid"]: node_examples[text_dset[sid][text_field_name]] = score if len(node_examples) >= 5: break node["label"] = node.get( "label", f"{nid:2d} - {node['weight']:5d} items <br>" + "<br>".join( [ f" {score:.2f} > {txt[:64]}" + ("..." if len(txt) >= 63 else "") for txt, score in node_examples.items() ] ), ) # make plot nodes labels = [node["label"] for node in node_list] root = node_list[0] root["X"] = 0 root["Y"] = 0 def rec_make_coordinates(node): total_weight = 0 add_weight = len(node["example_ids"]) - sum( [child["weight"] for child in node["children"]] ) for child in node["children"]: child["X"] = node["X"] + total_weight child["Y"] = node["Y"] - 1 total_weight += child["weight"] + add_weight / len(node["children"]) rec_make_coordinates(child) rec_make_coordinates(root) E = [] # list of edges Xn = [] Yn = [] Xe = [] Ye = [] for nid, node in enumerate(node_list): Xn += [node["X"]] Yn += [node["Y"]] for child in node["children"]: E += [(nid, nid_map[child["nid"]])] Xe += [node["X"], child["X"], None] Ye += [node["Y"], child["Y"], None] # make figure fig = go.Figure() fig.add_trace( go.Scatter( x=Xe, y=Ye, mode="lines", line=dict(color="rgb(210,210,210)", width=1), hoverinfo="none", ) ) fig.add_trace( go.Scatter( x=Xn, y=Yn, mode="markers", name="nodes", marker=dict( symbol="circle-dot", size=18, color="#6175c1", line=dict(color="rgb(50,50,50)", width=1) # '#DB4551', ), text=labels, hoverinfo="text", opacity=0.8, ) ) return fig
data-measurements-tool-main
data_measurements/embeddings/embeddings.py
data-measurements-tool-main
data_measurements/npmi/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd import sys import utils import utils.dataset_utils as ds_utils import warnings from collections import defaultdict from os.path import exists from os.path import join as pjoin from sklearn.preprocessing import MultiLabelBinarizer from utils.dataset_utils import (CNT, TOKENIZED_FIELD) # Might be nice to print to log instead? Happens when we drop closed class. warnings.filterwarnings(action="ignore", category=UserWarning) # When we divide by 0 in log np.seterr(divide="ignore") # treating inf values as NaN as well pd.set_option("use_inf_as_na", True) logs = utils.prepare_logging(__file__) # TODO: Should be possible for a user to specify this. NUM_BATCHES = 500 # For the associations of an identity term SING = "associations" # For the difference between the associations of identity terms DIFF = "biases" # Used in the figures we show in DMT DMT = "combined" def pair_terms(id_terms): """Creates alphabetically ordered paired terms based on the given terms.""" pairs = [] for i in range(len(id_terms)): term1 = id_terms[i] for j in range(i + 1, len(id_terms)): term2 = id_terms[j] # Use one ordering for a pair. pair = tuple(sorted([term1, term2])) pairs += [pair] return pairs class DMTHelper: """Helper class for the Data Measurements Tool. This allows us to keep all variables and functions related to labels in one file. """ def __init__(self, dstats, identity_terms, load_only=False, use_cache=False, save=True): # The data measurements tool settings (dataset, config, etc.) self.dstats = dstats # Whether we can use caching (when live, no). self.load_only = load_only # Whether to first try using cache before calculating self.use_cache = use_cache # Whether to save results self.save = save # Tokenized dataset tokenized_df = dstats.tokenized_df self.tokenized_sentence_df = tokenized_df[TOKENIZED_FIELD] # Dataframe of shape #vocab x 1 (count) self.vocab_counts_df = dstats.vocab_counts_df # Cutoff for the number of times something must occur to be included self.min_count = dstats.min_vocab_count self.cache_path = pjoin(dstats.dataset_cache_dir, SING) self.avail_terms_json_fid = pjoin(self.cache_path, "identity_terms.json") # TODO: Users ideally can type in whatever words they want. # This is the full list of terms. self.identity_terms = identity_terms logs.info("Using term list:") logs.info(self.identity_terms) # identity_terms terms that are available more than MIN_VOCAB_COUNT self.avail_identity_terms = [] # TODO: Let users specify self.open_class_only = True # Single-word associations self.assoc_results_dict = defaultdict(dict) # Paired term association bias self.bias_results_dict = defaultdict(dict) # Dataframes used in displays. self.bias_dfs_dict = defaultdict(dict) # Results of the single word associations and their paired bias values. # Formatted as: # {(s1,s2)): {pd.DataFrame({s1-s2:diffs, s1:assoc, s2:assoc})}} self.results_dict = defaultdict(lambda: defaultdict(dict)) # Filenames for cache, based on the results self.filenames_dict = defaultdict(dict) def run_DMT_processing(self): # The identity terms that can be used self.load_or_prepare_avail_identity_terms() # Association measurements & pair-wise differences for identity terms. self.load_or_prepare_dmt_results() def load_or_prepare_avail_identity_terms(self): """ Figures out what identity terms the user can select, based on whether they occur more than self.min_vocab_count times Provides identity terms -- uniquely and in pairs -- occurring at least self.min_vocab_count times. """ # If we're trying to use the cache of available terms if self.use_cache: self.avail_identity_terms = self._load_identity_cache() if self.avail_identity_terms: logs.info( "Loaded identity terms occuring >%s times" % self.min_count) # Figure out the identity terms if we're not just loading from cache if not self.load_only: if not self.avail_identity_terms: self.avail_identity_terms = self._prepare_identity_terms() # Finish if self.save: self._write_term_cache() def _load_identity_cache(self): if exists(self.avail_terms_json_fid): avail_identity_terms = ds_utils.read_json(self.avail_terms_json_fid) return avail_identity_terms return [] def _prepare_identity_terms(self): """Uses DataFrame magic to return those terms that appear greater than min_vocab times.""" # Mask to get the identity terms true_false = [term in self.vocab_counts_df.index for term in self.identity_terms] # List of identity terms word_list_tmp = [x for x, y in zip(self.identity_terms, true_false) if y] # Whether said identity terms have a count > min_count true_false_counts = [ self.vocab_counts_df.loc[word, CNT] >= self.min_count for word in word_list_tmp] # List of identity terms with a count higher than min_count avail_identity_terms = [word for word, y in zip(word_list_tmp, true_false_counts) if y] logs.debug("Identity terms that occur > %s times are:" % self.min_count) logs.debug(avail_identity_terms) return avail_identity_terms def load_or_prepare_dmt_results(self): # Initialize with no results (reset). self.results_dict = {} # Filenames for caching and saving self._make_fids() # If we're trying to use the cache of already computed results if self.use_cache: # Loads the association results and dataframes used in the display. logs.debug("Trying to load...") self.results_dict = self._load_dmt_cache() # Compute results if we can if not self.load_only: # If there isn't a solution using cache if not self.results_dict: # Does the actual computations self.prepare_results() # Finish if self.save: # Writes the paired & singleton dataframe out. self._write_dmt_cache() def _load_dmt_cache(self): """ Loads dataframe with paired differences and individual item scores. """ results_dict = defaultdict(lambda: defaultdict(dict)) pairs = pair_terms(self.avail_identity_terms) for pair in pairs: combined_fid = self.filenames_dict[DMT][pair] if exists(combined_fid): results_dict[pair] = ds_utils.read_df(combined_fid) return results_dict def prepare_results(self): assoc_obj = nPMI(self.dstats.vocab_counts_df, self.tokenized_sentence_df, self.avail_identity_terms) self.assoc_results_dict = assoc_obj.assoc_results_dict self.results_dict = assoc_obj.bias_results_dict def _prepare_dmt_dfs(self, measure="npmi"): """ Create the main dataframe that is used in the DMT, which lists the npmi scores for each paired identity term and the difference between them. The difference between them is the "bias". """ # Paired identity terms, associations and differences, in one dataframe. bias_dfs_dict = defaultdict(dict) logs.debug("bias results dict is") logs.debug(self.bias_results_dict) for pair in sorted(self.bias_results_dict): combined_df = pd.DataFrame() # Paired identity terms, values are the the difference between them. combined_df[pair] = pd.DataFrame(self.bias_results_dict[pair]) s1 = pair[0] s2 = pair[1] # Single identity term 1, values combined_df[s1] = pd.DataFrame(self.assoc_results_dict[s1][measure]) # Single identity term 2, values combined_df[s2] = pd.DataFrame(self.assoc_results_dict[s2][measure]) # Full dataframe with scores per-term, # as well as the difference between. bias_dfs_dict[pair] = combined_df # {pair: {pd.DataFrame({(s1,s2)):diffs, s1:assocs, s2:assocs})}} logs.debug("combined df is") logs.debug(bias_dfs_dict) return bias_dfs_dict def _write_term_cache(self): ds_utils.make_path(self.cache_path) if self.avail_identity_terms: ds_utils.write_json(self.avail_identity_terms, self.avail_terms_json_fid) def _write_dmt_cache(self, measure="npmi"): ds_utils.make_path(pjoin(self.cache_path, measure)) for pair, bias_df in self.results_dict.items(): logs.debug("Results for pair is:") logs.debug(bias_df) fid = self.filenames_dict[DMT][pair] logs.debug("Writing to %s" % fid) ds_utils.write_df(bias_df, fid) def _make_fids(self, measure="npmi"): """ Utility function to create filename/path strings for the different result caches. This include single identity term results as well as the difference between them. Also includes the datastructure used in the DMT, which is a dataframe that has: (term1, term2) difference, term1 (scores), term2 (scores) """ self.filenames_dict = {SING: {}, DIFF: {}, DMT: {}} # When we have the available identity terms, # we can make cache filenames for them. for id_term in self.avail_identity_terms: filename = SING + "-" + id_term + ".json" json_fid = pjoin(self.cache_path, measure, filename) self.filenames_dict[SING][id_term] = json_fid paired_terms = pair_terms(self.avail_identity_terms) for id_term_tuple in paired_terms: # The paired association results (bias) are stored with these files. id_term_str = '-'.join(id_term_tuple) filename = DIFF + "-" + id_term_str + ".json" json_fid = pjoin(self.cache_path, measure, filename) self.filenames_dict[DIFF][id_term_tuple] = json_fid # The display dataframes in the DMT are stored with these files. filename = DMT + "-" + id_term_str + ".json" json_fid = pjoin(self.cache_path, measure, filename) self.filenames_dict[DMT][id_term_tuple] = json_fid def get_display(self, s1, s2): pair = tuple(sorted([s1, s2])) display_df = self.results_dict[pair] logs.debug(self.results_dict) display_df.columns = ["bias", s1, s2] return display_df def get_filenames(self): filenames = {"available terms": self.avail_terms_json_fid, "results": self.filenames_dict} return filenames class nPMI: """ Uses the vocabulary dataframe and tokenized sentences to calculate co-occurrence statistics, PMI, and nPMI """ def __init__(self, vocab_counts_df, tokenized_sentence_df, given_id_terms): logs.debug("Initiating assoc class.") self.vocab_counts_df = vocab_counts_df # TODO: Change this logic so just the vocabulary is given. self.vocabulary = list(vocab_counts_df.index) self.vocab_counts = pd.DataFrame([0] * len(self.vocabulary)) logs.debug("vocabulary is is") logs.debug(self.vocab_counts_df) self.tokenized_sentence_df = tokenized_sentence_df logs.debug("tokenized sentences are") logs.debug(self.tokenized_sentence_df) self.given_id_terms = given_id_terms logs.info("identity terms are") logs.info(self.given_id_terms) # Terms we calculate the difference between self.paired_terms = pair_terms(given_id_terms) # Matrix of # sentences x vocabulary size self.word_cnts_per_sentence = self.count_words_per_sentence() logs.info("Calculating results...") # Formatted as {subgroup:{"count":{...},"npmi":{...}}} self.assoc_results_dict = self.calc_measures() # Dictionary keyed by pair tuples. Each value is a dataframe with # vocab terms as the index, and columns of paired difference and # individual scores for the two identity terms. self.bias_results_dict = self.calc_bias(self.assoc_results_dict) def count_words_per_sentence(self): # Counts the number of each vocabulary item per-sentence in batches. logs.info("Creating co-occurrence matrix for nPMI calculations.") word_cnts_per_sentence = [] logs.info(self.tokenized_sentence_df) batches = np.linspace(0, self.tokenized_sentence_df.shape[0], NUM_BATCHES).astype(int) # Creates matrix of size # batches x # sentences for batch_num in range(len(batches) - 1): # Makes matrix shape: batch size (# sentences) x # words, # with the occurrence of each word per sentence. # vocab_counts_df.index is the vocabulary. mlb = MultiLabelBinarizer(classes=self.vocabulary) if batch_num % 100 == 0: logs.debug( "%s of %s sentence binarize batches." % ( str(batch_num), str(len(batches))) ) # Per-sentence word counts sentence_batch = self.tokenized_sentence_df[ batches[batch_num]:batches[batch_num + 1]] mlb_series = mlb.fit_transform(sentence_batch) word_cnts_per_sentence.append(mlb_series) return word_cnts_per_sentence def calc_measures(self): id_results = {} for subgroup in self.given_id_terms: logs.info("Calculating for %s " % subgroup) # Index of the identity term in the vocabulary subgroup_idx = self.vocabulary.index(subgroup) print("idx is %s" % subgroup_idx) logs.debug("Calculating co-occurrences...") vocab_cooc_df = self.calc_cooccurrences(subgroup, subgroup_idx) logs.debug("Calculating PMI...") pmi_df = self.calc_PMI(vocab_cooc_df, subgroup) logs.debug("PMI dataframe is:") logs.debug(pmi_df) logs.debug("Calculating nPMI...") npmi_df = self.calc_nPMI(pmi_df, vocab_cooc_df, subgroup) logs.debug("npmi df is") logs.debug(npmi_df) # Create a data structure for the identity term associations id_results[subgroup] = {"count": vocab_cooc_df, "pmi": pmi_df, "npmi": npmi_df} logs.debug("results_dict is:") print(id_results) return id_results def calc_cooccurrences(self, subgroup, subgroup_idx): initialize = True coo_df = None # Big computation here! Should only happen once. logs.debug( "Approaching big computation! Here, we binarize all words in the " "sentences, making a sparse matrix of sentences." ) for batch_id in range(len(self.word_cnts_per_sentence)): # Every 100 batches, print out the progress. if not batch_id % 100: logs.debug( "%s of %s co-occurrence count batches" % (str(batch_id), str(len(self.word_cnts_per_sentence))) ) # List of all the sentences (list of vocab) in that batch batch_sentence_row = self.word_cnts_per_sentence[batch_id] # Dataframe of # sentences in batch x vocabulary size sent_batch_df = pd.DataFrame(batch_sentence_row) # Subgroup counts per-sentence for the given batch subgroup_df = sent_batch_df[subgroup_idx] subgroup_df.columns = [subgroup] # Remove the sentences where the count of the subgroup is 0. # This way we have less computation & resources needs. subgroup_df = subgroup_df[subgroup_df > 0] mlb_subgroup_only = sent_batch_df[sent_batch_df[subgroup_idx] > 0] # Create cooccurrence matrix for the given subgroup and all words. batch_coo_df = pd.DataFrame(mlb_subgroup_only.T.dot(subgroup_df)) # Creates a batch-sized dataframe of co-occurrence counts. # Note these could just be summed rather than be batch size. if initialize: coo_df = batch_coo_df else: coo_df = coo_df.add(batch_coo_df, fill_value=0) initialize = False logs.debug("Made co-occurrence matrix") logs.debug(coo_df) count_df = coo_df.set_index(self.vocab_counts_df.index) count_df.columns = ["count"] count_df["count"] = count_df["count"].astype(int) return count_df def calc_PMI(self, vocab_cooc_df, subgroup): """A # PMI(x;y) = h(y) - h(y|x) # = h(subgroup) - h(subgroup|word)az # = log (p(subgroup|word) / p(subgroup)) # nPMI additionally divides by -log(p(x,y)) = -log(p(x|y)p(y)) """ print("vocab cooc df") print(vocab_cooc_df) print("vocab counts") print(self.vocab_counts_df["count"]) # Calculation of p(subgroup) subgroup_prob = self.vocab_counts_df.loc[subgroup]["proportion"] # Calculation of p(subgroup|word) = count(subgroup,word) / count(word) # Because the indices match (the vocab words), # this division doesn't need to specify the index (I think?!) vocab_cooc_df.columns = ["cooc"] p_subgroup_g_word = ( vocab_cooc_df["cooc"] / self.vocab_counts_df["count"]) logs.info("p_subgroup_g_word is") logs.info(p_subgroup_g_word) pmi_df = pd.DataFrame() pmi_df[subgroup] = np.log(p_subgroup_g_word / subgroup_prob).dropna() # Note: A potentially faster solution for adding count, npmi, # can be based on this zip idea: # df_test['size_kb'], df_test['size_mb'], df_test['size_gb'] = # zip(*df_test['size'].apply(sizes)) return pmi_df def calc_nPMI(self, pmi_df, vocab_cooc_df, subgroup): """ # nPMI additionally divides by -log(p(x,y)) = -log(p(x|y)p(y)) # = -log(p(word|subgroup)p(word)) """ p_word_g_subgroup = vocab_cooc_df["cooc"] / sum(vocab_cooc_df["cooc"]) logs.debug("p_word_g_subgroup") logs.debug(p_word_g_subgroup) p_word = pmi_df.apply( lambda x: self.vocab_counts_df.loc[x.name]["proportion"], axis=1 ) logs.debug("p word is") logs.debug(p_word) normalize_pmi = -np.log(p_word_g_subgroup * p_word) npmi_df = pd.DataFrame() npmi_df[subgroup] = pmi_df[subgroup] / normalize_pmi return npmi_df.dropna() def calc_bias(self, measurements_dict, measure="npmi"): """Uses the subgroup dictionaries to compute the differences across pairs. Uses dictionaries rather than dataframes due to the fact that dicts seem to be preferred amongst evaluate users so far. :return: Dict of (id_term1, id_term2):{term1:diff, term2:diff ...}""" paired_results_dict = {} for pair in self.paired_terms: paired_results = pd.DataFrame() s1 = pair[0] s2 = pair[1] s1_results = measurements_dict[s1][measure] s2_results = measurements_dict[s2][measure] # !!! This is the final result of all the work !!! word_diffs = s1_results[s1] - s2_results[s2] paired_results[("%s - %s" % (s1, s2))] = word_diffs paired_results[s1] = s1_results paired_results[s2] = s2_results paired_results_dict[pair] = paired_results.dropna() logs.debug("Paired bias results from the main nPMI class are ") logs.debug(paired_results_dict) return paired_results_dict def _write_debug_msg(self, batch_id, subgroup_df=None, subgroup_sentences=None, msg_type="batching"): if msg_type == "batching": if not batch_id % 100: logs.debug( "%s of %s co-occurrence count batches" % (str(batch_id), str(len(self.word_cnts_per_sentence))) ) elif msg_type == "transpose": if not batch_id % 100: logs.debug("Removing 0 counts, subgroup_df is") logs.debug(subgroup_df) logs.debug("subgroup_sentences is") logs.debug(subgroup_sentences) logs.debug( "Now we do the transpose approach for co-occurrences")
data-measurements-tool-main
data_measurements/npmi/npmi.py
import evaluate import logging import os import pandas as pd import plotly.express as px import utils import utils.dataset_utils as ds_utils from collections import Counter from os.path import exists, isdir from os.path import join as pjoin LABEL_FIELD = "labels" LABEL_NAMES = "label_names" LABEL_LIST = "label_list" LABEL_MEASUREMENT = "label_measurement" # Specific to the evaluate library EVAL_LABEL_MEASURE = "label_distribution" EVAL_LABEL_ID = "labels" EVAL_LABEL_FRAC = "fractions" # TODO: This should ideally be in what's returned from the evaluate library EVAL_LABEL_SUM = "sums" logs = utils.prepare_logging(__file__) def map_labels(label_field, ds_name_to_dict, ds_name, config_name): try: label_field, label_names = ( ds_name_to_dict[ds_name][config_name]["features"][label_field][0] if len( ds_name_to_dict[ds_name][config_name]["features"][label_field]) > 0 else ((), []) ) except KeyError as e: logs.exception(e) logs.warning("Not returning a label-name mapping") return [] return label_names def make_label_results_dict(label_measurement, label_names): label_dict = {LABEL_MEASUREMENT: label_measurement, LABEL_NAMES: label_names} return label_dict def make_label_fig(label_results, chart_type="pie"): try: label_names = label_results[LABEL_NAMES] label_measurement = label_results[LABEL_MEASUREMENT] label_sums = label_measurement[EVAL_LABEL_SUM] if chart_type == "bar": fig_labels = plt.bar( label_measurement[EVAL_LABEL_MEASURE][EVAL_LABEL_ID], label_measurement[EVAL_LABEL_MEASURE][EVAL_LABEL_FRAC]) else: if chart_type != "pie": logs.info("Oops! Don't have that chart-type implemented.") logs.info("Making the default pie chart") # IMDB - unsupervised has a labels column where all values are -1, # which breaks the assumption that # the number of label_names == the number of label_sums. # This handles that case, assuming it will happen in other datasets. if len(label_names) != len(label_sums): logs.warning("Can't make a figure with the given label names: " "We don't have the right amount of label types " "to apply them to!") return False fig_labels = px.pie(names=label_names, values=label_sums) except KeyError: logs.info("Input label data missing required key(s).") logs.info("We require %s, %s" % (LABEL_NAMES, LABEL_MEASUREMENT)) logs.info("We found: %s" % ",".join(label_results.keys())) return False return fig_labels def extract_label_names(label_field, ds_name, config_name): ds_name_to_dict = ds_utils.get_dataset_info_dicts(ds_name) label_names = map_labels(label_field, ds_name_to_dict, ds_name, config_name) return label_names class DMTHelper: """Helper class for the Data Measurements Tool. This allows us to keep all variables and functions related to labels in one file. """ def __init__(self, dstats, load_only, save): logs.info("Initializing labels.") # -- Data Measurements Tool variables self.label_results = dstats.label_results self.fig_labels = dstats.fig_labels self.use_cache = dstats.use_cache self.cache_dir = dstats.dataset_cache_dir self.load_only = load_only self.save = save # -- Hugging Face Dataset variables self.label_field = dstats.label_field # Input HuggingFace dataset self.dset = dstats.dset self.dset_name = dstats.dset_name self.dset_config = dstats.dset_config self.label_names = dstats.label_names # -- Filenames self.label_dir = "labels" label_json = "labels.json" label_fig_json = "labels_fig.json" label_fig_html = "labels_fig.html" self.labels_json_fid = pjoin(self.cache_dir, self.label_dir, label_json) self.labels_fig_json_fid = pjoin(self.cache_dir, self.label_dir, label_fig_json) self.labels_fig_html_fid = pjoin(self.cache_dir, self.label_dir, label_fig_html) def run_DMT_processing(self): """ Loads or prepares the Labels measurements and figure as specified by the DMT options. """ # First look to see what we can load from cache. if self.use_cache: logs.info("Trying to load labels.") self.fig_labels, self.label_results = self._load_label_cache() if self.fig_labels: logs.info("Loaded cached label figure.") if self.label_results: logs.info("Loaded cached label results.") # If we can prepare the results afresh... if not self.load_only: # If we didn't load them already, compute label statistics. if not self.label_results: logs.info("Preparing labels.") self.label_results = self._prepare_labels() # If we didn't load it already, create figure. if not self.fig_labels: logs.info("Creating label figure.") self.fig_labels = \ make_label_fig(self.label_results) # Finish if self.save: self._write_label_cache() def _load_label_cache(self): fig_labels = {} label_results = {} # Measurements exist. Load them. if exists(self.labels_json_fid): # Loads the label list, names, and results label_results = ds_utils.read_json(self.labels_json_fid) # Image exists. Load it. if exists(self.labels_fig_json_fid): fig_labels = ds_utils.read_plotly(self.labels_fig_json_fid) return fig_labels, label_results def _prepare_labels(self): """Loads a Labels object and computes label statistics""" # Label object for the dataset label_obj = Labels(dataset=self.dset, dataset_name=self.dset_name, config_name=self.dset_config) # TODO: Handle the case where there are multiple label columns. # The logic throughout the code assumes only one. if type(self.label_field) == tuple: label_field = self.label_field[0] elif type(self.label_field) == str: label_field = self.label_field else: logs.warning("Unexpected format %s for label column name(s). " "Not computing label statistics." % type(self.label_field)) return {} label_results = label_obj.prepare_labels(label_field, self.label_names) return label_results def _write_label_cache(self): ds_utils.make_path(pjoin(self.cache_dir, self.label_dir)) if self.label_results: ds_utils.write_json(self.label_results, self.labels_json_fid) if self.fig_labels: ds_utils.write_plotly(self.fig_labels, self.labels_fig_json_fid) self.fig_labels.write_html(self.labels_fig_html_fid) def get_label_filenames(self): label_fid_dict = {"statistics": self.labels_json_fid, "figure json": self.labels_fig_json_fid, "figure html": self.labels_fig_html_fid} return label_fid_dict class Labels: """Generic class for label processing. Uses the Dataset to extract the label column and compute label measurements. """ def __init__(self, dataset, dataset_name=None, config_name=None): # Input HuggingFace Dataset. self.dset = dataset # These are used to extract label names, when the label names # are stored in the Dataset object but not in the "label" column # we are working with, which may instead just be ints corresponding to # the names self.ds_name = dataset_name self.config_name = config_name # For measurement data and additional metadata. self.label_results_dict = {} def prepare_labels(self, label_field, label_names=[]): """ Uses the evaluate library to return the label distribution. """ logs.info("Inside main label calculation function.") logs.debug("Looking for label field called '%s'" % label_field) # The input Dataset object # When the label field is not found, an error will be thrown. if label_field in self.dset.features: label_list = self.dset[label_field] else: logs.warning("No label column found -- nothing to do. Returning.") logs.debug(self.dset.features) return {} # Get the evaluate library's measurement for label distro. label_distribution = evaluate.load(EVAL_LABEL_MEASURE) # Measure the label distro. label_measurement = label_distribution.compute(data=label_list) # TODO: Incorporate this summation into what the evaluate library returns. label_sum_dict = Counter(label_list) label_sums = [label_sum_dict[key] for key in sorted(label_sum_dict)] label_measurement["sums"] = label_sums if not label_names: # Have to extract the label names from the Dataset object when the # actual dataset columns are just ints representing the label names. label_names = extract_label_names(label_field, self.ds_name, self.config_name) label_results = make_label_results_dict(label_measurement, label_names) return label_results
data-measurements-tool-main
data_measurements/labels/labels.py
data-measurements-tool-main
data_measurements/labels/__init__.py
import logging import pandas as pd from datasets import load_metric from os.path import exists from os.path import join as pjoin import utils from utils import dataset_utils as ds_utils logs = utils.prepare_logging(__file__) TOK_MODEL = "gpt2" PERPLEXITY = load_metric("perplexity") PERPLEXITY_FIELD = "perplexity" class DMTHelper: def __init__(self, dstats, load_only=False): self.dstats = dstats self.load_only = load_only self.results_dict = {} # Where in the Dataset object to find the text for the calculation self.text_field = ds_utils.OUR_TEXT_FIELD # Results in dataframe form self.df = None # Cache file self.perplexities_df_fid = pjoin(self.dstats.dataset_cache_dir, "perplexities_df.json") def run_DMT_processing(self): if self.dstats.use_cache and exists(self.perplexities_df_fid): self.df = ds_utils.read_df(self.perplexities_df_fid) elif not self.load_only: self.prepare_text_perplexities() if self.dstats.save: ds_utils.write_df(self.df, self.perplexities_df_fid) def prepare_text_perplexities(self): texts = self.dstats.text_dset[self.text_field] eval_results = PERPLEXITY.compute(input_texts=texts, model_id=TOK_MODEL) # TODO: What other stuff might be useful to grab? self.results_dict = {PERPLEXITY_FIELD: eval_results["perplexities"], self.text_field: self.dstats.text_dset[self.text_field]} self.df = pd.DataFrame(self.results_dict).sort_values( by=PERPLEXITY_FIELD, ascending=False) def get_df(self): return self.df
data-measurements-tool-main
data_measurements/perplexity/perplexity.py
data-measurements-tool-main
data_measurements/perplexity/__init__.py
data-measurements-tool-main
data_measurements/zipf/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import numpy as np import os import pandas as pd import plotly.graph_objects as go import powerlaw from os.path import join as pjoin import utils from scipy.stats import ks_2samp from scipy.stats import zipf as zipf_lib # treating inf values as NaN as well pd.set_option("use_inf_as_na", True) logs = utils.prepare_logging(__file__) class Zipf: def __init__(self, vocab_counts_df, count_str="count", proportion_str="prop"): self.vocab_counts_df = vocab_counts_df # Strings used in the input dictionary self.cnt_str = count_str self.prop_str = proportion_str self.alpha = None self.xmin = None self.xmax = None self.p = None self.ks_distance = None self.observed_counts = None self.word_counts_unique = None self.word_ranks_unique = None if self.vocab_counts_df is not None: self.observed_counts = self.vocab_counts_df[self.cnt_str].values self.word_counts_unique = list(set(self.observed_counts)) self.word_ranks_unique = list( np.arange(1, len(self.word_counts_unique) + 1)) self.zipf_dict = {"xmin": None, "xmax": None, "alpha": None, "ks_distance": None, "p-value": None, "word_ranks_unique": self.word_ranks_unique, "word_counts_unique": self.word_counts_unique} self.fit = None self.predicted_counts = None def load(self, zipf_dict): self.zipf_dict = zipf_dict self.xmin = zipf_dict["xmin"] self.xmax = zipf_dict["xmax"] self.alpha = zipf_dict["alpha"] self.ks_distance = zipf_dict["ks_distance"] self.p = zipf_dict["p-value"] self.word_ranks_unique = zipf_dict["word_ranks_unique"] self.word_counts_unique = zipf_dict["word_counts_unique"] def get_zipf_dict(self): zipf_dict = {"xmin": int(self.xmin), "xmax": int(self.xmax), "alpha": float(self.alpha), "ks_distance": float(self.ks_distance), "p-value": float(self.ks_test.pvalue), "word_counts_unique": [int(count) for count in self.word_counts_unique], "word_ranks_unique": [int(rank) for rank in self.word_ranks_unique]} return zipf_dict def calc_fit(self): """ Uses the powerlaw package to fit the observed frequencies to a zipfian distribution. We use the KS-distance to fit, as that seems more appropriate that MLE. """ logs.info("Fitting based on input vocab counts.") self._make_rank_column() # Note another method for determining alpha might be defined by # (Newman, 2005): alpha = 1 + n * sum(ln( xi / xmin )) ^ -1 self.fit = powerlaw.Fit(self.observed_counts, fit_method="KS", discrete=True) # This should probably be a pmf (not pdf); using discrete=True above. # original_data=False uses only the fitted data (within xmin and xmax). # pdf_bin_edges: The portion of the data within the bin. # observed_pdf: The probability density function (normalized histogram) # of the data. pdf_bin_edges, observed_pdf = self.fit.pdf(original_data=False) # See the 'Distribution' class described here for info: # https://pythonhosted.org/powerlaw/#powerlaw.Fit.pdf theoretical_distro = self.fit.power_law # The probability density function (normalized histogram) of the # theoretical distribution. predicted_pdf = theoretical_distro.pdf() self._set_fit_vars(observed_pdf, predicted_pdf, theoretical_distro) def _set_fit_vars(self, observed_pdf, predicted_pdf, theoretical_distro): # !!!! CRITICAL VALUE FOR ZIPF !!!! self.alpha = theoretical_distro.alpha # Exclusive xmin: The optimal xmin *beyond which* the scaling regime of # the power law fits best. self.xmin = int(theoretical_distro.xmin) self.xmax = theoretical_distro.xmax # Can be None if there isn't an xmax returned; # this handles that. self._set_xmax() self.ks_distance = theoretical_distro.KS() self.ks_test = ks_2samp(observed_pdf, predicted_pdf) self.p = self.ks_test[1] logs.info("KS test:") logs.info(self.ks_test) self.predicted_counts = self._calc_zipf_counts() def _make_rank_column(self): # TODO: These proportions may have already been calculated. prop_denom = float(sum(self.vocab_counts_df[self.cnt_str])) count_prop = self.vocab_counts_df[self.cnt_str] / prop_denom self.vocab_counts_df[self.prop_str] = count_prop rank_column = self.vocab_counts_df[self.cnt_str].rank( method="dense", numeric_only=True, ascending=False ) self.vocab_counts_df["rank"] = rank_column.astype("int64") def _calc_zipf_counts(self): """ The fit is based on an optimal xmin (minimum rank) Let's use this to make count estimates for the zipf fit, by multiplying the fitted pmf value by the sum of counts above xmin. :return: array of count values following the fitted pmf. """ logs.info("Getting predicted counts.") if not self.alpha: logs.warning("Have not yet fit -- need the alpha value.") logs.warning("Fitting now...") self.calc_fit() logs.info(self.word_counts_unique) logs.info(self.xmin) logs.info(self.xmax) # The subset of words that fit word_counts_fit_unique = self.word_counts_unique[ self.xmin + 1: self.xmax] pmf_mass = float(sum(word_counts_fit_unique)) zipf_counts = np.array( [self._estimate_count(rank, pmf_mass) for rank in self.word_ranks_unique] ) return zipf_counts def _estimate_count(self, rank, pmf_mass): return int(round(zipf_lib.pmf(rank, self.alpha) * pmf_mass)) def _set_xmax(self): """ xmax is usually None, so we add some handling to set it as the maximum rank in the dataset. :param xmax: :return: """ if self.xmax is not None: self.xmax = int(xmax) elif self.word_counts_unique: self.xmax = int(len(self.word_counts_unique)) elif self.word_ranks_unique: self.xmax = int(len(self.word_ranks_unique)) # TODO: This might fit better in its own file handling class? def get_zipf_fids(cache_path): zipf_cache_dir = pjoin(cache_path, "zipf") os.makedirs(zipf_cache_dir, exist_ok=True) # Zipf cache files zipf_fid = pjoin(zipf_cache_dir, "zipf_basic_stats.json") zipf_fig_fid = pjoin(zipf_cache_dir, "zipf_fig.json") zipf_fig_html_fid = pjoin(zipf_cache_dir, "zipf_fig.html") return zipf_fid, zipf_fig_fid, zipf_fig_html_fid def make_unique_rank_word_list(z): """ Function to help with the figure, creating strings for the hovertext. """ ranked_words = {} word_counts = z.word_counts_unique word_ranks = z.word_ranks_unique for count, rank in zip(word_counts, word_ranks): z.vocab_counts_df[z.vocab_counts_df[z.cnt_str] == count]["rank"] = rank ranked_words[rank] = ",".join( z.vocab_counts_df[ z.vocab_counts_df[z.cnt_str] == count].index.astype(str) ) # Use the hovertext kw argument for hover text ranked_words_list = [wrds for rank, wrds in sorted(ranked_words.items())] return ranked_words_list def make_zipf_fig(z): xmin = z.xmin word_ranks_unique = z.word_ranks_unique observed_counts = z.observed_counts zipf_counts = z.predicted_counts # "] #self.calc_zipf_counts() ranked_words_list = make_unique_rank_word_list(z) layout = go.Layout(xaxis=dict(range=[0, 100])) fig = go.Figure( data=[ go.Bar( x=word_ranks_unique, y=observed_counts, hovertext=ranked_words_list, name="Word Rank Frequency", ) ], layout=layout, ) fig.add_trace( go.Scatter( x=word_ranks_unique[xmin: len(word_ranks_unique)], y=zipf_counts[xmin: len(word_ranks_unique)], hovertext=ranked_words_list[xmin: len(word_ranks_unique)], line=go.scatter.Line(color="crimson", width=3), name="Zipf Predicted Frequency", ) ) # Customize aspect # fig.update_traces(marker_color='limegreen', # marker_line_width=1.5, opacity=0.6) fig.update_layout( title_text="Word Counts, Observed and Predicted by Zipf") fig.update_layout(xaxis_title="Word Rank") fig.update_layout(yaxis_title="Frequency") fig.update_layout( legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.10)) return fig
data-measurements-tool-main
data_measurements/zipf/zipf.py
import gradio as gr from widgets.widget_base import Widget from data_measurements.dataset_statistics import DatasetStatisticsCacheClass as dmt_cls import utils import utils.dataset_utils as ds_utils logs = utils.prepare_logging(__file__) class Duplicates(Widget): def __init__(self): duplicates_text = f""" Use this widget to identify text strings that appear more than once. A model's training and testing may be negatively affected by unwarranted duplicates ([Lee et al., 2021](https://arxiv.org/abs/2107.06499)) ------ ### Here is the list of all the duplicated items and their counts in the dataset. """ self.duplicates_intro = gr.Markdown(render=False, value=duplicates_text) self.duplicates_df = gr.DataFrame(render=False) self.duplicates_text = gr.Markdown(render=False) def render(self): with gr.TabItem(f"Duplicates"): self.duplicates_intro.render() self.duplicates_text.render() self.duplicates_df.render() def update(self, dstats: dmt_cls): output = {} if not dstats.duplicates_results: output[self.duplicates_df] = gr.DataFrame.update(visible=False) output[self.duplicates_text] = gr.Markdown.update(visible=True, value="There are no duplicates in this dataset! 🥳") else: dupes_df_tmp = ds_utils.counter_dict_to_df(dstats.dups_dict, key_as_column=True) dupes_df_tmp.columns = ["instance", "count"] # Nice to have the counts show up first, because the instances # can be quite long (and run off the page) dupes_df = dupes_df_tmp[["count", "instance"]] output[self.duplicates_df] = gr.DataFrame.update(visible=True, value=dupes_df) duplicates_text = f"The fraction of data that is duplicate is {str(round(dstats.dups_frac, 4))}" output[self.duplicates_text] = gr.Markdown.update(value=duplicates_text, visible=True) return output @property def output_components(self): return [ self.duplicates_text, self.duplicates_df, ] def add_events(self, state: gr.State): pass
data-measurements-tool-main
widgets/duplicates.py
import gradio as gr import pandas as pd from widgets.widget_base import Widget from data_measurements.dataset_statistics import DatasetStatisticsCacheClass as dmt_cls import utils logs = utils.prepare_logging(__file__) class GeneralStats(Widget): def __init__(self): self.general_stats = gr.Markdown(render=False) self.general_stats_top_vocab = gr.DataFrame(render=False) self.general_stats_missing = gr.Markdown(render=False) self.general_stats_duplicates = gr.Markdown(render=False) def render(self): with gr.TabItem(f"General Text Statistics"): self.general_stats.render() self.general_stats_missing.render() self.general_stats_duplicates.render() self.general_stats_top_vocab.render() def update(self, dstats: dmt_cls): general_stats_text = f""" Use this widget to check whether the terms you see most represented in the dataset make sense for the goals of the dataset. There are {str(dstats.total_words)} total words. There are {dstats.total_open_words} after removing closed class words. The most common [open class words](https://dictionary.apa.org/open-class-words) and their counts are: """ top_vocab = pd.DataFrame(dstats.sorted_top_vocab_df).round(4) missing_text = ( f"There are {dstats.text_nan_count} missing values in the dataset" ) if dstats.dups_frac > 0: dupes_text = f"The dataset is {round(dstats.dups_frac * 100, 2)}% duplicates, For more information about the duplicates, click the 'Duplicates' tab." else: dupes_text = "There are 0 duplicate items in the dataset" return { self.general_stats: general_stats_text, self.general_stats_top_vocab: top_vocab, self.general_stats_missing: missing_text, self.general_stats_duplicates: dupes_text, } @property def output_components(self): return [ self.general_stats, self.general_stats_top_vocab, self.general_stats_missing, self.general_stats_duplicates, ] def add_events(self, state: gr.State): pass
data-measurements-tool-main
widgets/general_stats.py
import gradio as gr from widgets.widget_base import Widget from data_measurements.dataset_statistics import DatasetStatisticsCacheClass as dmt_cls import utils logs = utils.prepare_logging(__file__) class TextLengths(Widget): def __init__(self): self.text_length_distribution_plot = gr.Image(render=False) self.text_length_explainer = gr.Markdown(render=False) self.text_length_drop_down = gr.Dropdown(render=False) self.text_length_df = gr.DataFrame(render=False) def update_text_length_df(self, length, dstats): return dstats.length_obj.lengths_df[ dstats.length_obj.lengths_df["length"] == length ].set_index("length") def render(self): with gr.TabItem("Text Lengths"): gr.Markdown( "Use this widget to identify outliers, particularly suspiciously long outliers." ) gr.Markdown( "Below, you can see how the lengths of the text instances in your " "dataset are distributed." ) gr.Markdown( "Any unexpected peaks or valleys in the distribution may help to " "identify instances you want to remove or augment." ) gr.Markdown( "### Here is the count of different text lengths in " "your dataset:" ) # When matplotlib first creates this, it's a Figure. # Once it's saved, then read back in, # it's an ndarray that must be displayed using st.image # (I know, lame). self.text_length_distribution_plot.render() self.text_length_explainer.render() self.text_length_drop_down.render() self.text_length_df.render() def update(self, dstats: dmt_cls): explainer_text = ( "The average length of text instances is **" + str(round(dstats.length_obj.avg_length, 2)) + " words**, with a standard deviation of **" + str(round(dstats.length_obj.std_length, 2)) + "**." ) # TODO: Add text on choosing the length you want to the dropdown. output = { self.text_length_distribution_plot: dstats.length_obj.fig_lengths, self.text_length_explainer: explainer_text, } if dstats.length_obj.lengths_df is not None: import numpy as np choices = np.sort(dstats.length_obj.lengths_df["length"].unique())[ ::-1 ].tolist() output[self.text_length_drop_down] = gr.Dropdown.update( choices=choices, value=choices[0] ) output[self.text_length_df] = self.update_text_length_df(choices[0], dstats) else: output[self.text_length_df] = gr.update(visible=False) output[self.text_length_drop_down] = gr.update(visible=False) return output @property def output_components(self): return [ self.text_length_distribution_plot, self.text_length_explainer, self.text_length_drop_down, self.text_length_df, ] def add_events(self, state: gr.State): self.text_length_drop_down.change( self.update_text_length_df, inputs=[self.text_length_drop_down, state], outputs=[self.text_length_df], )
data-measurements-tool-main
widgets/text_lengths.py
from widgets.widget_base import Widget from widgets.dataset_description import DatasetDescription from widgets.general_stats import GeneralStats from widgets.label_distribution import LabelDistribution from widgets.npmi import Npmi from widgets.text_lengths import TextLengths from widgets.zipf import Zipf from widgets.duplicates import Duplicates
data-measurements-tool-main
widgets/__init__.py
from abc import ABC, abstractmethod import gradio as gr from data_measurements.dataset_statistics import DatasetStatisticsCacheClass as dmt_cls class Widget(ABC): @abstractmethod def render(self): pass @abstractmethod def update(self, dstats: dmt_cls): pass @property @abstractmethod def output_components(self): pass @abstractmethod def add_events(self, state: gr.State): pass
data-measurements-tool-main
widgets/widget_base.py
import gradio as gr import pandas as pd from widgets.widget_base import Widget from data_measurements.dataset_statistics import DatasetStatisticsCacheClass as dmt_cls from utils.dataset_utils import HF_DESC_FIELD import utils logs = utils.prepare_logging(__file__) class DatasetDescription(Widget): def __init__(self, dataset_name_to_dict): self.dataset_name_to_dict = dataset_name_to_dict self.description_markdown = gr.Markdown(render=False) self.description_df = gr.DataFrame(render=False, wrap=True) def render(self): with gr.TabItem("Dataset Description",): self.description_markdown.render() self.description_df.render() def update(self, dstats: dmt_cls): return { self.description_markdown: self.dataset_name_to_dict[dstats.dset_name][ dstats.dset_config ][HF_DESC_FIELD], self.description_df: pd.DataFrame(dstats.dset_peek), } def add_events(self, state: gr.State): pass @property def output_components(self): return [self.description_markdown, self.description_df]
data-measurements-tool-main
widgets/dataset_description.py
import gradio as gr import pandas as pd from widgets.widget_base import Widget from data_measurements.dataset_statistics import DatasetStatisticsCacheClass as dmt_cls import utils logs = utils.prepare_logging(__file__) class Npmi(Widget): def __init__(self): self.npmi_first_word = gr.Dropdown( render=False, label="What is the first word you want to select?" ) self.npmi_second_word = gr.Dropdown( render=False, label="What is the second word you want to select?" ) self.npmi_error_text = gr.Markdown(render=False) self.npmi_df = gr.HTML(render=False) self.sort = gr.Dropdown(label="Sort By Column", render=False) self.npmi_empty_text = gr.Markdown(render=False) self.npmi_description = gr.Markdown(render=False) @property def output_components(self): return [ self.npmi_first_word, self.npmi_second_word, self.sort, self.npmi_error_text, self.npmi_df, self.npmi_description, self.npmi_empty_text, ] def render(self): with gr.TabItem("Word Association: nPMI"): self.npmi_description.render() self.npmi_first_word.render() self.npmi_second_word.render() self.sort.render() self.npmi_df.render() self.npmi_empty_text.render() self.npmi_error_text.render() def update(self, dstats: dmt_cls): min_vocab = dstats.min_vocab_count npmi_stats = dstats.npmi_obj available_terms = npmi_stats.avail_identity_terms output = {comp: gr.update(visible=False) for comp in self.output_components} if npmi_stats and len(available_terms) > 0: output[self.npmi_description] = gr.Markdown.update( value=self.expander_npmi_description(min_vocab), visible=True ) output[self.npmi_first_word] = gr.Dropdown.update( choices=available_terms, value=available_terms[0], visible=True ) output[self.npmi_second_word] = gr.Dropdown.update( choices=available_terms[::-1], value=available_terms[-1], visible=True ) output[self.sort] = gr.Dropdown.update(choices=['bias', available_terms[0], available_terms[-1]], value='bias') output.update( self.npmi_show(available_terms[0], available_terms[-1], 'bias', dstats) ) else: output[self.npmi_error_text] = gr.Markdown.update( visible=True, value="No words found co-occurring with both of the selected identity terms.", ) return output def npmi_show(self, term1, term2, sort_col, dstats): npmi_stats = dstats.npmi_obj paired_results = npmi_stats.get_display(term1, term2) output = {} if paired_results.empty: output[self.npmi_empty_text] = gr.Markdown.update( value="""No words that co-occur enough times for results! Or there's a 🐛. Or we're still computing this one. 🤷""", visible=True, ) output[self.npmi_df] = gr.DataFrame.update(visible=False) else: output[self.npmi_empty_text] = gr.Markdown.update(visible=False) logs.debug("Results to be shown in streamlit are") logs.debug(paired_results) s = pd.DataFrame( paired_results.sort_values(sort_col, ascending=False) ) s.index.name = "word" s = s.reset_index().round(4) bias_col = [col for col in s.columns if col != "word"] # Keep the dataframe from being crazy big. if s.shape[0] > 10000: bias_thres = max(abs(s[s[0]][5000]), abs(s[s[0]][-5000])) logs.info(f"filtering with bias threshold: {bias_thres}") s_filtered = s[s[0].abs() > bias_thres] else: s_filtered = s out_df = ( s_filtered.style.background_gradient(subset=bias_col) .format(formatter="{:,.3f}", subset=bias_col) .set_properties(**{"text-align": "center", "width": "100em"}) .set_caption( "nPMI scores between the selected identity terms and the words they both co-occur with" ) ) output[self.npmi_df] = out_df.to_html() return output @staticmethod def expander_npmi_description(min_vocab): return f""" Use this widget to identify problematic biases and stereotypes in your data. nPMI scores for a word help to identify potentially problematic associations, ranked by how close the association is. nPMI bias scores for paired words help to identify how word associations are skewed between the selected selected words ([Aka et al., 2021](https://arxiv.org/abs/2103.03417)). You can select from gender and sexual orientation identity terms that appear in the dataset at least {min_vocab} times. The resulting ranked words are those that co-occur with both identity terms. The more *positive* the score, the more associated the word is with the first identity term. The more *negative* the score, the more associated the word is with the second identity term. ----- """ def update_sort_and_npmi(self, first_word, second_word, sort_col, dstats): output = {self.sort: gr.Dropdown.update(choices=['bias', first_word, second_word], value='bias')} new_df = self.npmi_show(first_word, second_word, sort_col, dstats) output.update(new_df) return output def add_events(self, state: gr.State): self.npmi_first_word.change( self.update_sort_and_npmi, inputs=[self.npmi_first_word, self.npmi_second_word, self.sort, state], outputs=[self.npmi_df, self.npmi_empty_text, self.sort], ) self.npmi_second_word.change( self.update_sort_and_npmi, inputs=[self.npmi_first_word, self.npmi_second_word, self.sort, state], outputs=[self.npmi_df, self.npmi_empty_text, self.sort], ) self.sort.change( self.npmi_show, inputs=[self.npmi_first_word, self.npmi_second_word, self.sort, state], outputs=[self.npmi_df, self.npmi_empty_text], )
data-measurements-tool-main
widgets/npmi.py
import gradio as gr import pandas as pd from widgets.widget_base import Widget from data_measurements.dataset_statistics import DatasetStatisticsCacheClass as dmt_cls import utils logs = utils.prepare_logging(__file__) class Zipf(Widget): def __init__(self): self.zipf_table = gr.DataFrame(render=False) self.alpha_warning = gr.Markdown( value="Your alpha value is a bit on the high side, which means that the distribution over words in this dataset is a bit unnatural. This could be due to non-language items throughout the dataset.", render=False, visible=False, ) self.xmin_warning = gr.Markdown( value="The minimum rank for this fit is a bit on the high side, which means that the frequencies of your most common words aren't distributed as would be expected by Zipf's law.", render=False, visible=False, ) self.zipf_summary = gr.Markdown(render=False) self.zipf_plot = gr.Plot(render=False) def render(self): with gr.TabItem("Vocabulary Distribution: Zipf's Law Fit"): gr.Markdown( "Use this widget for the counts of different words in your dataset, measuring the difference between the observed count and the expected count under Zipf's law." ) gr.Markdown( """This shows how close the observed language is to an ideal natural language distribution following [Zipf's law](https://en.wikipedia.org/wiki/Zipf%27s_law), calculated by minimizing the [Kolmogorov-Smirnov (KS) statistic](https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test).""" ) gr.Markdown( """ A Zipfian distribution follows the power law: $p(x) \propto x^{-α}$ with an ideal α value of 1. In general, an alpha greater than 2 or a minimum rank greater than 10 (take with a grain of salt) means that your distribution is relativaly _unnatural_ for natural language. This can be a sign of mixed artefacts in the dataset, such as HTML markup. Below, you can see the counts of each word in your dataset vs. the expected number of counts following a Zipfian distribution. ----- ### Here is your dataset's Zipf results: """ ) self.zipf_table.render() self.zipf_summary.render() self.zipf_plot.render() self.alpha_warning.render() self.xmin_warning.render() def update(self, dstats: dmt_cls): z = dstats.z zipf_fig = dstats.zipf_fig zipf_summary = ( "The optimal alpha based on this dataset is: **" + str(round(z.alpha, 2)) + "**, with a KS distance of: **" + str(round(z.ks_distance, 2)) ) zipf_summary += ( "**. This was fit with a minimum rank value of: **" + str(int(z.xmin)) + "**, which is the optimal rank *beyond which* the scaling regime of the power law fits best." ) fit_results_table = pd.DataFrame.from_dict( { r"Alpha:": [str("%.2f" % z.alpha)], "KS distance:": [str("%.2f" % z.ks_distance)], "Min rank:": [str("%s" % int(z.xmin))], }, columns=["Results"], orient="index", ) fit_results_table.index.name = "" output = { self.zipf_table: fit_results_table, self.zipf_summary: zipf_summary, self.zipf_plot: zipf_fig, self.alpha_warning: gr.Markdown.update(visible=False), self.xmin_warning: gr.Markdown.update(visible=False), } if z.alpha > 2: output[self.alpha_warning] = gr.Markdown.update(visible=True) if z.xmin > 5: output[self.xmin_warning] = gr.Markdown.update(visible=True) return output @property def output_components(self): return [ self.zipf_table, self.zipf_plot, self.zipf_summary, self.alpha_warning, self.xmin_warning, ] def add_events(self, state: gr.State): pass
data-measurements-tool-main
widgets/zipf.py
import gradio as gr from widgets.widget_base import Widget from data_measurements.dataset_statistics import DatasetStatisticsCacheClass as dmt_cls import utils logs = utils.prepare_logging(__file__) class LabelDistribution(Widget): def __init__(self): self.label_dist_plot = gr.Plot(render=False, visible=False) self.label_dist_no_label_text = gr.Markdown( value="No labels were found in the dataset", render=False, visible=False ) self.label_dist_accordion = gr.Accordion(render=False, label="", open=False) def render(self): with gr.TabItem(label="Label Distribution"): gr.Markdown( "Use this widget to see how balanced the labels in your dataset are." ) self.label_dist_plot.render() self.label_dist_no_label_text.render() def update(self, dstats: dmt_cls): logs.info(f"FIGS labels: {bool(dstats.fig_labels)}") if dstats.fig_labels: output = { self.label_dist_plot: gr.Plot.update( value=dstats.fig_labels, visible=True ), self.label_dist_no_label_text: gr.Markdown.update(visible=False), } else: output = { self.label_dist_plot: gr.Plot.update(visible=False), self.label_dist_no_label_text: gr.Markdown.update(visible=True), } return output @property def output_components(self): return [self.label_dist_plot, self.label_dist_no_label_text] def add_events(self, state: gr.State): pass
data-measurements-tool-main
widgets/label_distribution.py
import argparse import os import re import nbformat import shutil import yaml from pathlib import Path re_framework_test = re.compile(r"^{#if\s+fw\s+===\s+'([^']+)'}\s*$") re_framework_else = re.compile(r"^{:else}\s*$") re_framework_end = re.compile(r"^{/if}\s*$") re_html_line = re.compile(r"^<[^>]*/>\s*$") re_html_tag = re.compile(r"<([^/>]*)>\s*$") re_python_code = re.compile(r"^```(?:py|python|py no\-format|python no\-format)\s*$") re_output_code = re.compile(r"^```(?:py|python)\s+out\s*$") re_end_code = re.compile(r"^```\s*$") frameworks = {"pt": "PyTorch", "tf": "TensorFlow"} PATH_TO_COURSE = Path("chapters/") # Languages to exlude from the notebook generation because the notebooks were # created manually LANGS_TO_EXCLUDE = ["fr"] def read_and_split_frameworks(fname): """ Read the MDX in fname and creates two versions (if necessary) for each framework. """ with open(fname, "r") as f: content = f.readlines() contents = {"pt": [], "tf": []} differences = False current_content = [] line_idx = 0 for line in content: if re_framework_test.search(line) is not None: differences = True framework = re_framework_test.search(line).groups()[0] for key in contents: contents[key].extend(current_content) current_content = [] elif re_framework_else.search(line) is not None: contents[framework].extend(current_content) current_content = [] framework = "pt" if framework == "tf" else "tf" elif re_framework_end.search(line) is not None: contents[framework].extend(current_content) current_content = [] else: current_content.append(line) if len(current_content) > 0: for key in contents: contents[key].extend(current_content) if differences: return {k: "".join(content) for k, content in contents.items()} else: return "".join(content) def extract_cells(content): """ Extract the code/output cells from content. """ cells = [] current_cell = None is_output = False for line in content.split("\n"): if re_python_code.search(line) is not None: is_output = False current_cell = [] elif re_output_code.search(line) is not None: is_output = True current_cell = [] elif re_end_code.search(line) is not None and current_cell is not None: cell = "\n".join(current_cell) if is_output: if not isinstance(cells[-1], tuple): cells[-1] = (cells[-1], cell) else: cells.append(cell) current_cell = None current_md = [] elif current_cell is not None: current_cell.append(line) return cells def convert_to_nb_cell(cell): """ Convert some cell (either just code or tuple (code, output)) to a proper notebook cell. """ nb_cell = {"cell_type": "code", "execution_count": None, "metadata": {}} if isinstance(cell, tuple): nb_cell["source"] = cell[0] nb_cell["outputs"] = [ nbformat.notebooknode.NotebookNode( { "data": {"text/plain": cell[1]}, "execution_count": None, "metadata": {}, "output_type": "execute_result", } ) ] else: nb_cell["source"] = cell nb_cell["outputs"] = [] return nbformat.notebooknode.NotebookNode(nb_cell) def nb_cell(source, code=True): if not code: return nbformat.notebooknode.NotebookNode({"cell_type": "markdown", "source": source, "metadata": {}}) return nbformat.notebooknode.NotebookNode( {"cell_type": "code", "metadata": {}, "source": source, "execution_count": None, "outputs": []} ) def build_notebook(fname, title, output_dir="."): """ Build the notebook for fname with a given title in output_dir. """ sections = read_and_split_frameworks(fname) sections_with_accelerate = [ "chapter3/4", # "A full training", "chapter7/2_pt", # "Token classification (PyTorch)", "chapter7/3_pt", # "Fine-tuning a masked language model (PyTorch)" "chapter7/4_pt", # "Translation (PyTorch)" "chapter7/5_pt", # "Summarization (PyTorch)", "chapter7/6_pt", # "Training a causal language model from scratch (PyTorch)" "chapter7/7_pt", # "Question answering (PyTorch)" ] sections_with_hf_hub = [ "chapter4/3_pt", # "Sharing pretrained models (PyTorch)" "chapter4/3_tf", # "Sharing pretrained models (TensorFlow)" "chapter5/5", # "Creating your own dataset" "chapter7/2_pt", # "Token classification (PyTorch)" "chapter7/2_tf", # "Token classification (TensorFlow)" "chapter6/2", # "Training a new tokenizer from an old one" "chapter7/3_pt", # "Fine-tuning a masked language model (PyTorch)" "chapter7/3_tf", # "Fine-tuning a masked language model (TensorFlow)" "chapter7/4_pt", # "Translation (PyTorch)" "chapter7/4_tf", # "Translation (TensorFlow)" "chapter7/5_pt", # "Summarization (PyTorch)" "chapter7/5_tf", # "Summarization (TensorFlow)" "chapter7/6_pt", # "Training a causal language model from scratch (PyTorch)" "chapter7/6_tf", # "Training a causal language model from scratch (TensorFlow)" "chapter7/7_pt", # "Question answering (PyTorch)" "chapter7/7_tf", # "Question answering (TensorFlow)" "chapter8/2", # "What to do when you get an error" ] sections_with_faiss = [ "chapter5/6_pt", # "Semantic search with FAISS (PyTorch)" "chapter5/6_tf", # "Semantic search with FAISS (TensorFlow)" ] sections_with_gradio = [ "chapter9/2", # "Building your first demo" "chapter9/3", # "Understanding the Interface class" "chapter9/4", # "Sharing demos with others" "chapter9/5", # "Integrations with the Hugging Face Hub" "chapter9/6", # "Advanced Interface features" "chapter9/7", # "Introduction to Blocks" ] stem = Path(fname).stem if not isinstance(sections, dict): contents = [sections] titles = [title] fnames = [f"section{stem}.ipynb"] section_names = [f"{Path(fname).parent.stem}/{stem}"] else: contents = [] titles = [] fnames = [] section_names = [] for key, section in sections.items(): contents.append(section) titles.append(f"{title} ({frameworks[key]})") fnames.append(f"section{stem}_{key}.ipynb") section_names.append(f"{Path(fname).parent.stem}/{stem}_{key}") for title, content, fname, section_name in zip(titles, contents, fnames, section_names): cells = extract_cells(content) if len(cells) == 0: continue nb_cells = [ nb_cell(f"# {title}", code=False), nb_cell("Install the Transformers, Datasets, and Evaluate libraries to run this notebook.", code=False), ] # Install cell installs = ["!pip install datasets evaluate transformers[sentencepiece]"] if section_name in sections_with_accelerate: installs.append("!pip install accelerate") installs.append("# To run the training on TPU, you will need to uncomment the following line:") installs.append( "# !pip install cloud-tpu-client==0.10 torch==1.9.0 https://storage.googleapis.com/tpu-pytorch/wheels/torch_xla-1.9-cp37-cp37m-linux_x86_64.whl" ) if section_name in sections_with_hf_hub: installs.append("!apt install git-lfs") if section_name in sections_with_faiss: installs.append("!pip install faiss-gpu") if section_name in sections_with_gradio: installs.append("!pip install gradio") nb_cells.append(nb_cell("\n".join(installs))) if section_name in sections_with_hf_hub: nb_cells.extend( [ nb_cell( "You will need to setup git, adapt your email and name in the following cell.", code=False ), nb_cell( '!git config --global user.email "you@example.com"\n!git config --global user.name "Your Name"' ), nb_cell( "You will also need to be logged in to the Hugging Face Hub. Execute the following and enter your credentials.", code=False, ), nb_cell("from huggingface_hub import notebook_login\n\nnotebook_login()"), ] ) nb_cells += [convert_to_nb_cell(cell) for cell in cells] metadata = {"colab": {"name": title, "provenance": []}} nb_dict = {"cells": nb_cells, "metadata": metadata, "nbformat": 4, "nbformat_minor": 4} notebook = nbformat.notebooknode.NotebookNode(nb_dict) os.makedirs(output_dir, exist_ok=True) nbformat.write(notebook, os.path.join(output_dir, fname), version=4) def get_titles(language): """ Parse the _toctree.yml file to get the correspondence filename to title """ table = yaml.safe_load(open(os.path.join(f"chapters/{language}", "_toctree.yml"), "r")) result = {} for entry in table: for section in entry["sections"]: section_title = section["title"] if "local_fw" in section: section_names = section["local_fw"] result[section_names["pt"]] = section_title result[section_names["tf"]] = section_title else: section_name = section["local"] result[section_name] = section_title return {k: v for k, v in result.items() if "quiz" not in v} def create_notebooks(language, output_dir): if not os.path.exists(output_dir): os.makedirs(output_dir) for folder in os.listdir(output_dir): if folder.startswith("chapter"): shutil.rmtree(os.path.join(output_dir, folder)) titles = get_titles(language) for fname, title in titles.items(): build_notebook( os.path.join(f"chapters/{language}", f"{fname}.mdx"), title, os.path.join(output_dir, Path(fname).parent), ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--output_dir", type=str, help="Where to output the notebooks") args = parser.parse_args() languages = [f.stem for f in PATH_TO_COURSE.iterdir() if f.is_dir()] for language in languages: if language in LANGS_TO_EXCLUDE: continue language_output_dir = f"{args.output_dir}/{language}" create_notebooks(language, language_output_dir) # Remove empty notebook folders if not any(Path(language_output_dir).iterdir()): shutil.rmtree(language_output_dir)
course-main
utils/generate_notebooks.py
import re import argparse from pathlib import Path PATTERN_TIMESTAMP = re.compile( "^[0-9][0-9]:[0-9][0-9]:[0-9][0-9],[0-9][0-9][0-9] --> [0-9][0-9]:[0-9][0-9]:[0-9][0-9],[0-9][0-9][0-9]" ) PATTERN_NUM = re.compile("\\d+") def convert(input_file, output_file): """ Convert bilingual caption file to monolingual caption. Supported caption file type is SRT. """ line_count = 0 with open(input_file) as file: with open(output_file, "w") as output_file: for line in file: if line_count == 0: line_count += 1 output_file.write(line) elif PATTERN_TIMESTAMP.match(line): line_count += 1 output_file.write(line) elif line == "\n": line_count = 0 output_file.write(line) else: if line_count == 2: output_file.write(line) line_count += 1 output_file.close() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--input_language_folder", type=str, help="Folder with input bilingual SRT files to be converted" ) parser.add_argument( "--output_language_folder", type=str, default="tmp-subtitles", help="Folder to store converted monolingual SRT files", ) args = parser.parse_args() output_path = Path(args.output_language_folder) output_path.mkdir(parents=True, exist_ok=True) input_files = Path(args.input_language_folder).glob("*.srt") for input_file in input_files: convert(input_file, output_path / input_file.name) print(f"Succesfully converted {len(list(input_files))} files to {args.output_language_folder} folder")
course-main
utils/convert_bilingual_monolingual.py
import argparse import black import os import re from pathlib import Path def blackify(filename, check_only=False): # Read the content of the file with open(filename, "r", encoding="utf-8") as f: content = f.read() lines = content.split("\n") # Split the content into code samples in py or python blocks. code_samples = [] line_index = 0 while line_index < len(lines): line = lines[line_index] if line.strip() in ["```py", "```python"]: line_index += 1 start_index = line_index while line_index < len(lines) and lines[line_index].strip() != "```": line_index += 1 code = "\n".join(lines[start_index:line_index]) # Deal with ! instructions code = re.sub(r"^!", r"## !", code, flags=re.MULTILINE) code_samples.append({"start_index": start_index, "end_index": line_index - 1, "code": code}) line_index += 1 else: line_index += 1 # Let's blackify the code! We put everything in one big text to go faster. delimiter = "\n\n### New cell ###\n" full_code = delimiter.join([sample["code"] for sample in code_samples]) formatted_code = full_code.replace("\t", " ") formatted_code = black.format_str(formatted_code, mode=black.FileMode({black.TargetVersion.PY37}, line_length=90)) # Black adds last new lines we don't want, so we strip individual code samples. cells = formatted_code.split(delimiter) cells = [cell.strip() for cell in cells] formatted_code = delimiter.join(cells) if check_only: return full_code == formatted_code elif full_code == formatted_code: # Nothing to do, all is good return formatted_code = re.sub(r"^## !", r"!", formatted_code, flags=re.MULTILINE) print(f"Formatting {filename}") # Re-build the content with formatted code new_lines = [] start_index = 0 for sample, code in zip(code_samples, formatted_code.split(delimiter)): new_lines.extend(lines[start_index : sample["start_index"]]) new_lines.append(code) start_index = sample["end_index"] + 1 new_lines.extend(lines[start_index:]) with open(filename, "w", encoding="utf-8") as f: f.write("\n".join(new_lines)) def format_all_files(check_only=False): failures = [] for filename in Path("chapters").glob("**/*.mdx"): try: same = blackify(filename, check_only=check_only) if check_only and not same: failures.append(filename) except Exception: print(f"Failed to format {filename}.") raise if check_only and len(failures) > 0: raise ValueError(f"{len(failures)} files need to be formatted, run `make style`.") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--check_only", action="store_true", help="Just check files are properly formatted.", ) args = parser.parse_args() format_all_files(check_only=args.check_only)
course-main
utils/code_formatter.py
import pandas as pd from youtube_transcript_api import YouTubeTranscriptApi from youtube_transcript_api.formatters import SRTFormatter from youtubesearchpython import Playlist from pathlib import Path import argparse COURSE_VIDEOS_PLAYLIST = "https://youtube.com/playlist?list=PLo2EIpI_JMQvWfQndUesu0nPBAtZ9gP1o" TASK_VIDEOS_PLAYLIST = "https://youtube.com/playlist?list=PLo2EIpI_JMQtyEr-sLJSy5_SnLCb4vtQf" # These videos are not part of the course, but are part of the task playlist TASK_VIDEOS_TO_SKIP = ["tjAIM7BOYhw", "WdAeKSOpxhw", "KWwzcmG98Ds", "TksaY_FDgnk", "leNG9fN9FQU", "dKE8SIt9C-w"] def generate_subtitles(language: str, youtube_language_code: str = None, is_task_playlist: bool = False): metadata = [] formatter = SRTFormatter() path = Path(f"subtitles/{language}") path.mkdir(parents=True, exist_ok=True) if is_task_playlist: playlist_videos = Playlist.getVideos(TASK_VIDEOS_PLAYLIST) else: playlist_videos = Playlist.getVideos(COURSE_VIDEOS_PLAYLIST) for idx, video in enumerate(playlist_videos["videos"]): video_id = video["id"] title = video["title"] title_formatted = title.lower().replace(" ", "-").replace(":", "").replace("?", "") id_str = f"{idx}".zfill(2) if is_task_playlist: srt_filename = f"{path}/tasks_{id_str}_{title_formatted}.srt" else: srt_filename = f"{path}/{id_str}_{title_formatted}.srt" # Skip course events if "Event Day" in title: continue # Skip task videos that don't belong to the course if video_id in TASK_VIDEOS_TO_SKIP: continue # Get transcript transcript_list = YouTubeTranscriptApi.list_transcripts(video_id) english_transcript = transcript_list.find_transcript(language_codes=["en", "en-US"]) languages = pd.DataFrame(english_transcript.translation_languages)["language_code"].tolist() # Map mismatched language codes if language not in languages: if youtube_language_code is None: raise ValueError( f"Language code {language} not found in YouTube's list of supported language: {languages}. Please provide a value for `youtube_language_code` and try again." ) language_code = youtube_language_code else: language_code = language try: translated_transcript = english_transcript.translate(language_code) translated_transcript = translated_transcript.fetch() srt_formatted = formatter.format_transcript(translated_transcript) with open(srt_filename, "w", encoding="utf-8") as f: f.write(srt_formatted) except: print(f"Problem generating transcript for {title} with ID {video_id} at {video['link']}.") with open(srt_filename, "w", encoding="utf-8") as f: f.write("No transcript found for this video!") metadata.append({"id": video_id, "title": title, "link": video["link"], "srt_filename": srt_filename}) df = pd.DataFrame(metadata) if is_task_playlist: df.to_csv(f"{path}/metadata_tasks.csv", index=False) else: df.to_csv(f"{path}/metadata.csv", index=False) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--language", type=str, help="Language to generate subtitles for") parser.add_argument("--youtube_language_code", type=str, help="YouTube language code") args = parser.parse_args() generate_subtitles(args.language, args.youtube_language_code, is_task_playlist=False) generate_subtitles(args.language, args.youtube_language_code, is_task_playlist=True) print(f"All done! Subtitles stored at subtitles/{args.language}")
course-main
utils/generate_subtitles.py
import argparse import os import yaml from pathlib import Path PATH_TO_COURSE = Path("chapters/") def load_sections(language: str): toc = yaml.safe_load(open(os.path.join(PATH_TO_COURSE / language, "_toctree.yml"), "r")) sections = [] for chapter in toc: for section in chapter["sections"]: sections.append(section["local"]) return set(sections) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--language", type=str, help="Translation language to validate") args = parser.parse_args() english_sections = load_sections("en") translation_sections = load_sections(args.language) missing_sections = sorted(english_sections.difference(translation_sections)) if len(missing_sections) > 0: print("Completed sesions:\n") for section in sorted(translation_sections): print(section) print("\nMissing sections:\n") for section in missing_sections: print(section) else: print("✅ No missing sections - translation complete!")
course-main
utils/validate_translation.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors, the AllenNLP library authors. # All rights reserved. """ Script to close stale issue. Taken in part from the AllenNLP repository. https://github.com/allenai/allennlp. Copied from https://github.com/huggingface/transformers """ from datetime import datetime as dt import os from github import Github # ^ PyGithub - https://pygithub.readthedocs.io/en/stable/introduction.html LABELS_TO_EXEMPT_IN_LOWERCASE = [label.lower() for label in [ "P0", "P1", "P2" ]] def main(): g = Github(os.environ["GITHUB_TOKEN"]) repo = g.get_repo("huggingface/datasets-server") open_issues = repo.get_issues(state="open") for issue in open_issues: now = dt.utcnow() if ( (now - issue.created_at).days < 30 or any(label.name.lower() in LABELS_TO_EXEMPT_IN_LOWERCASE for label in issue.get_labels()) ): continue comments = sorted(list(issue.get_comments()), key=lambda i: i.created_at, reverse=True) last_comment = comments[0] if len(comments) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (now - issue.updated_at).days > 7 ): # close issue since it has been 7 days of inactivity since bot mention issue.edit(state="closed") elif ( (now - issue.updated_at).days > 23 ): #add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/datasets-server/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
datasets-server-main
tools/stale.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from typing import Optional import pytest from mongoengine import Document from mongoengine.fields import StringField from pymongo.errors import ServerSelectionTimeoutError from libcommon.resources import ( CacheMongoResource, MetricsMongoResource, MongoConnectionFailure, MongoResource, QueueMongoResource, ) def test_database_resource(queue_mongo_host: str) -> None: database_1 = "datasets_server_1" database_2 = "datasets_server_2" host = queue_mongo_host mongoengine_alias = "datasets_server_mongo_alias" server_selection_timeout_ms = 5_000 resource_1 = MongoResource( database=database_1, host=host, mongoengine_alias=mongoengine_alias, server_selection_timeout_ms=server_selection_timeout_ms, ) assert resource_1.is_available() with pytest.raises(MongoConnectionFailure): MongoResource( database=database_2, host=host, mongoengine_alias=mongoengine_alias, server_selection_timeout_ms=server_selection_timeout_ms, ) resource_1.release() resource_2 = MongoResource( database=database_2, host=host, mongoengine_alias=mongoengine_alias, server_selection_timeout_ms=server_selection_timeout_ms, ) assert resource_2.is_available() resource_2.release() @pytest.mark.parametrize( "host,mongoengine_alias,server_selection_timeout_ms,raises", [ (None, "test_timeout_error", 5_000, False), ("mongodb://doesnotexist:123", "test_host_error", 5_000, True), ], ) def test_database_resource_errors( queue_mongo_host: str, host: Optional[str], mongoengine_alias: str, server_selection_timeout_ms: int, raises: bool, ) -> None: if not host: host = queue_mongo_host database = "datasets_server_test" resource = MongoResource( database=database, host=host, mongoengine_alias=mongoengine_alias, server_selection_timeout_ms=server_selection_timeout_ms, ) # ^ this does not raise any issue, as it "only" registers the connection class User(Document): name = StringField() meta = {"db_alias": mongoengine_alias} if raises: assert not resource.is_available() with pytest.raises(ServerSelectionTimeoutError): len(User.objects()) # type: ignore else: assert resource.is_available() assert len(User.objects()) == 0 # type: ignore # clean User.drop_collection() # type: ignore resource.release() def test_cache_database(cache_mongo_host: str) -> None: resource = CacheMongoResource(database="test_cache_database", host=cache_mongo_host) class User(Document): name = StringField() meta = {"db_alias": resource.mongoengine_alias} assert len(User.objects()) == 0 # type: ignore # clean User.drop_collection() # type: ignore assert resource.is_available() resource.release() def test_queue_database(queue_mongo_host: str) -> None: resource = QueueMongoResource(database="test_queue_database", host=queue_mongo_host) class User(Document): name = StringField() meta = {"db_alias": resource.mongoengine_alias} assert len(User.objects()) == 0 # type: ignore # clean User.drop_collection() # type: ignore assert resource.is_available() resource.release() def test_metrics_database(metrics_mongo_host: str) -> None: resource = MetricsMongoResource(database="test_metrics_database", host=metrics_mongo_host) class User(Document): name = StringField() meta = {"db_alias": resource.mongoengine_alias} assert len(User.objects()) == 0 # type: ignore # clean User.drop_collection() # type: ignore assert resource.is_available() resource.release()
datasets-server-main
libs/libcommon/tests/test_resources.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import pytest from libcommon.utils import inputs_to_string, is_image_url @pytest.mark.parametrize( "dataset,revision,config,split,prefix,expected", [ ("dataset", None, None, None, None, "dataset"), ("dataset", "revision", None, None, None, "dataset,revision"), ("dataset", "revision", "config", None, None, "dataset,revision,config"), ("dataset", "revision", None, "split", None, "dataset,revision"), ("dataset", "revision", "config", "split", None, "dataset,revision,config,split"), ("dataset", None, "config", "split", None, "dataset,config,split"), ("dataset", None, None, None, "prefix", "prefix,dataset"), ("dataset", "revision", "config", "split", "prefix", "prefix,dataset,revision,config,split"), ], ) def test_inputs_to_string(dataset: str, revision: str, config: str, split: str, prefix: str, expected: str) -> None: result = inputs_to_string(dataset=dataset, revision=revision, config=config, split=split, prefix=prefix) assert result == expected @pytest.mark.parametrize( "text,expected", [ ("Some text", False), ("http://test", False), ("http://test/file.png", True), ("https://test/file.jpg", True), ], ) def test_is_image_url(text: str, expected: bool) -> None: assert is_image_url(text=text) == expected
datasets-server-main
libs/libcommon/tests/test_utils.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Iterator from pathlib import Path from environs import Env from pytest import fixture from libcommon.queue import _clean_queue_database from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import _clean_cache_database from libcommon.storage import StrPath, init_cached_assets_dir # Import fixture modules as plugins pytest_plugins = ["tests.fixtures.datasets"] @fixture(scope="session") def env() -> Env: return Env(expand_vars=True) @fixture(scope="session") def cache_mongo_host(env: Env) -> str: try: url = env.str(name="CACHE_MONGO_URL") if type(url) is not str: raise ValueError("CACHE_MONGO_URL is not set") return url except Exception as e: raise ValueError("CACHE_MONGO_URL is not set") from e @fixture(scope="session") def queue_mongo_host(env: Env) -> str: try: url = env.str(name="QUEUE_MONGO_URL") if type(url) is not str: raise ValueError("QUEUE_MONGO_URL is not set") return url except Exception as e: raise ValueError("QUEUE_MONGO_URL is not set") from e @fixture(scope="session") def metrics_mongo_host(env: Env) -> str: try: url = env.str(name="METRICS_MONGO_URL") if type(url) is not str: raise ValueError("METRICS_MONGO_URL is not set") return url except Exception as e: raise ValueError("METRICS_MONGO_URL is not set") from e @fixture def cached_assets_directory(tmp_path: Path) -> StrPath: cached_assets_directory = tmp_path / "cached-assets" return init_cached_assets_dir(cached_assets_directory) @fixture def queue_mongo_resource(queue_mongo_host: str) -> Iterator[QueueMongoResource]: database = "datasets_server_queue_test" host = queue_mongo_host if "test" not in database: raise ValueError("Test must be launched on a test mongo database") with QueueMongoResource(database=database, host=host, server_selection_timeout_ms=3_000) as queue_mongo_resource: if not queue_mongo_resource.is_available(): raise RuntimeError("Mongo resource is not available") yield queue_mongo_resource _clean_queue_database() queue_mongo_resource.release() @fixture def cache_mongo_resource(cache_mongo_host: str) -> Iterator[CacheMongoResource]: database = "datasets_server_cache_test" host = cache_mongo_host if "test" not in database: raise ValueError("Test must be launched on a test mongo database") with CacheMongoResource(database=database, host=host) as cache_mongo_resource: yield cache_mongo_resource _clean_cache_database() cache_mongo_resource.release()
datasets-server-main
libs/libcommon/tests/conftest.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Mapping from datetime import datetime from http import HTTPStatus from time import process_time from typing import Any, Optional, TypedDict import pytest from pymongo.errors import DocumentTooLarge from libcommon.resources import CacheMongoResource from libcommon.simple_cache import ( CachedArtifactError, CachedResponseDocument, CacheEntryDoesNotExistError, CacheReportsPage, CacheReportsWithContentPage, CacheTotalMetricDocument, InvalidCursor, InvalidLimit, delete_dataset_responses, delete_response, fetch_names, get_best_response, get_cache_reports, get_cache_reports_with_content, get_contents_page, get_dataset_responses_without_content_for_kind, get_outdated_split_full_names_for_step, get_response, get_response_with_details, get_response_without_content, get_responses_count_by_kind_status_and_error_code, get_valid_datasets, has_any_successful_response, upsert_response, ) from .utils import CONFIG_NAME_1, CONTENT_ERROR, DATASET_NAME @pytest.fixture(autouse=True) def cache_mongo_resource_autouse(cache_mongo_resource: CacheMongoResource) -> CacheMongoResource: return cache_mongo_resource def test_insert_null_values() -> None: kind = "test_kind" dataset_a = "test_dataset_a" dataset_b = "test_dataset_b" dataset_c = "test_dataset_c" config = None split = None content = {"some": "content"} http_status = HTTPStatus.OK CachedResponseDocument.objects(kind=kind, dataset=dataset_a, config=config, split=split).upsert_one( content=content, http_status=http_status, ) assert CachedResponseDocument.objects.count() == 1 cached_response = CachedResponseDocument.objects.get() assert cached_response is not None assert cached_response.config is None assert "config" not in cached_response.to_json() cached_response.validate() CachedResponseDocument( kind=kind, dataset=dataset_b, config=config, split=split, content=content, http_status=http_status ).save() assert CachedResponseDocument.objects.count() == 2 cached_response = CachedResponseDocument.objects(dataset=dataset_b).get() assert cached_response is not None assert cached_response.config is None assert "config" not in cached_response.to_json() coll = CachedResponseDocument._get_collection() coll.insert_one( { "kind": kind, "dataset": dataset_c, "config": None, "split": None, "content": content, "http_status": http_status, } ) assert CachedResponseDocument.objects.count() == 3 cached_response = CachedResponseDocument.objects(dataset=dataset_c).get() assert cached_response is not None assert cached_response.config is None assert "config" not in cached_response.to_json() def assert_metric(http_status: HTTPStatus, error_code: Optional[str], kind: str, total: int) -> None: metric = CacheTotalMetricDocument.objects(http_status=http_status, error_code=error_code, kind=kind).first() assert metric is not None assert metric.total == total @pytest.mark.parametrize( "config,split", [ (None, None), ("test_config", None), ("test_config", "test_split"), ], ) def test_upsert_response(config: Optional[str], split: Optional[str]) -> None: kind = "test_kind" dataset = "test_dataset" config = None split = None content = {"some": "content"} assert CacheTotalMetricDocument.objects().count() == 0 upsert_response(kind=kind, dataset=dataset, config=config, split=split, content=content, http_status=HTTPStatus.OK) cached_response = get_response(kind=kind, dataset=dataset, config=config, split=split) assert cached_response == { "http_status": HTTPStatus.OK, "content": content, "error_code": None, "job_runner_version": None, "dataset_git_revision": None, "progress": None, } cached_response_without_content = get_response_without_content( kind=kind, dataset=dataset, config=config, split=split ) assert cached_response_without_content == { "http_status": HTTPStatus.OK, "error_code": None, "job_runner_version": None, "dataset_git_revision": None, "progress": None, } assert_metric(http_status=HTTPStatus.OK, error_code=None, kind=kind, total=1) # ensure it's idempotent upsert_response(kind=kind, dataset=dataset, config=config, split=split, content=content, http_status=HTTPStatus.OK) cached_response2 = get_response(kind=kind, dataset=dataset, config=config, split=split) assert cached_response2 == cached_response assert_metric(http_status=HTTPStatus.OK, error_code=None, kind=kind, total=1) another_config = "another_config" upsert_response( kind=kind, dataset=dataset, config=another_config, split=split, content=content, http_status=HTTPStatus.OK ) get_response(kind=kind, dataset=dataset, config=config, split=split) assert_metric(http_status=HTTPStatus.OK, error_code=None, kind=kind, total=2) delete_dataset_responses(dataset=dataset) assert_metric(http_status=HTTPStatus.OK, error_code=None, kind=kind, total=0) with pytest.raises(CacheEntryDoesNotExistError): get_response(kind=kind, dataset=dataset, config=config, split=split) error_code = "error_code" job_runner_version = 0 dataset_git_revision = "123456" upsert_response( kind=kind, dataset=dataset, config=config, split=split, content=content, http_status=HTTPStatus.BAD_REQUEST, error_code=error_code, job_runner_version=job_runner_version, dataset_git_revision=dataset_git_revision, ) assert_metric(http_status=HTTPStatus.OK, error_code=None, kind=kind, total=0) assert_metric(http_status=HTTPStatus.BAD_REQUEST, error_code=error_code, kind=kind, total=1) cached_response3 = get_response(kind=kind, dataset=dataset, config=config, split=split) assert cached_response3 == { "http_status": HTTPStatus.BAD_REQUEST, "content": content, "error_code": error_code, "job_runner_version": job_runner_version, "dataset_git_revision": dataset_git_revision, "progress": None, } def test_delete_response() -> None: kind = "test_kind" dataset_a = "test_dataset_a" dataset_b = "test_dataset_b" config = None split = "test_split" upsert_response(kind=kind, dataset=dataset_a, config=config, split=split, content={}, http_status=HTTPStatus.OK) upsert_response(kind=kind, dataset=dataset_b, config=config, split=split, content={}, http_status=HTTPStatus.OK) assert_metric(http_status=HTTPStatus.OK, error_code=None, kind=kind, total=2) get_response(kind=kind, dataset=dataset_a, config=config, split=split) get_response(kind=kind, dataset=dataset_b, config=config, split=split) delete_response(kind=kind, dataset=dataset_a, config=config, split=split) assert_metric(http_status=HTTPStatus.OK, error_code=None, kind=kind, total=1) with pytest.raises(CacheEntryDoesNotExistError): get_response(kind=kind, dataset=dataset_a, config=config, split=split) get_response(kind=kind, dataset=dataset_b, config=config, split=split) def test_delete_dataset_responses() -> None: kind_a = "test_kind_a" kind_b = "test_kind_b" dataset_a = "test_dataset_a" dataset_b = "test_dataset_b" config = "test_config" split = "test_split" upsert_response(kind=kind_a, dataset=dataset_a, content={}, http_status=HTTPStatus.OK) upsert_response(kind=kind_b, dataset=dataset_a, config=config, split=split, content={}, http_status=HTTPStatus.OK) upsert_response(kind=kind_a, dataset=dataset_b, content={}, http_status=HTTPStatus.OK) assert_metric(http_status=HTTPStatus.OK, error_code=None, kind=kind_a, total=2) assert_metric(http_status=HTTPStatus.OK, error_code=None, kind=kind_b, total=1) get_response(kind=kind_a, dataset=dataset_a) get_response(kind=kind_b, dataset=dataset_a, config=config, split=split) get_response(kind=kind_a, dataset=dataset_b) delete_dataset_responses(dataset=dataset_a) assert_metric(http_status=HTTPStatus.OK, error_code=None, kind=kind_a, total=1) assert_metric(http_status=HTTPStatus.OK, error_code=None, kind=kind_b, total=0) with pytest.raises(CacheEntryDoesNotExistError): get_response(kind=kind_a, dataset=dataset_a) with pytest.raises(CacheEntryDoesNotExistError): get_response(kind=kind_b, dataset=dataset_a, config=config, split=split) get_response(kind=kind_a, dataset=dataset_b) def test_big_row() -> None: # https://github.com/huggingface/datasets-server/issues/197 kind = "test_kind" dataset = "test_dataset" config = "test_config" split = "test_split" big_content = {"big": "a" * 100_000_000} with pytest.raises(DocumentTooLarge): upsert_response( kind=kind, dataset=dataset, config=config, split=split, content=big_content, http_status=HTTPStatus.OK ) def test_get_valid_dataset_names_empty() -> None: assert not get_valid_datasets(kind="test_kind") def test_get_valid_dataset_names_two_valid_datasets() -> None: kind = "test_kind" dataset_a = "test_dataset_a" dataset_b = "test_dataset_b" upsert_response(kind=kind, dataset=dataset_a, content={}, http_status=HTTPStatus.OK) upsert_response(kind=kind, dataset=dataset_b, content={}, http_status=HTTPStatus.OK) assert get_valid_datasets(kind=kind) == {dataset_a, dataset_b} def test_get_valid_dataset_names_filtered_by_kind() -> None: kind_a = "test_kind_a" kind_b = "test_kind_b" dataset_a = "test_dataset_a" dataset_b = "test_dataset_b" upsert_response(kind=kind_a, dataset=dataset_a, content={}, http_status=HTTPStatus.OK) upsert_response(kind=kind_b, dataset=dataset_b, content={}, http_status=HTTPStatus.OK) assert get_valid_datasets(kind=kind_a) == {dataset_a} assert get_valid_datasets(kind=kind_b) == {dataset_b} def test_get_valid_dataset_names_at_least_one_valid_response() -> None: kind = "test_kind" dataset = "test_dataset" config_a = "test_config_a" config_b = "test_config_b" upsert_response(kind=kind, dataset=dataset, config=config_a, content={}, http_status=HTTPStatus.OK) upsert_response( kind=kind, dataset=dataset, config=config_b, content={}, http_status=HTTPStatus.INTERNAL_SERVER_ERROR ) assert get_valid_datasets(kind=kind) == {dataset} def test_get_valid_dataset_names_only_invalid_responses() -> None: kind = "test_kind" dataset = "test_dataset" config_a = "test_config_a" config_b = "test_config_b" upsert_response( kind=kind, dataset=dataset, config=config_a, content={}, http_status=HTTPStatus.INTERNAL_SERVER_ERROR ) upsert_response( kind=kind, dataset=dataset, config=config_b, content={}, http_status=HTTPStatus.INTERNAL_SERVER_ERROR ) assert not get_valid_datasets(kind=kind) def test_has_any_successful_response_empty() -> None: assert not has_any_successful_response(dataset="dataset", kinds=[]) def test_has_any_successful_response_two_valid_datasets() -> None: kind = "test_kind" other_kind = "other_kind" dataset_a = "test_dataset_a" dataset_b = "test_dataset_b" upsert_response(kind=kind, dataset=dataset_a, content={}, http_status=HTTPStatus.OK) upsert_response(kind=kind, dataset=dataset_b, content={}, http_status=HTTPStatus.OK) assert has_any_successful_response(dataset=dataset_a, kinds=[kind]) assert has_any_successful_response(dataset=dataset_b, kinds=[kind]) assert not has_any_successful_response(dataset=dataset_b, kinds=[other_kind]) assert has_any_successful_response(dataset=dataset_b, kinds=[kind, other_kind]) def test_has_any_successful_response_two_valid_kinds() -> None: kind_a = "test_kind_a" kind_b = "test_kind_b" dataset = "test_dataset" upsert_response(kind=kind_a, dataset=dataset, content={}, http_status=HTTPStatus.OK) upsert_response(kind=kind_b, dataset=dataset, content={}, http_status=HTTPStatus.OK) assert has_any_successful_response(dataset=dataset, kinds=[kind_a, kind_b]) def test_has_any_successful_response_at_least_one_valid_response() -> None: kind_a = "test_kind_a" kind_b = "test_kind_b" dataset = "test_dataset" config = "test_config" upsert_response(kind=kind_a, dataset=dataset, config=config, content={}, http_status=HTTPStatus.OK) upsert_response( kind=kind_b, dataset=dataset, config=config, content={}, http_status=HTTPStatus.INTERNAL_SERVER_ERROR ) assert has_any_successful_response(dataset=dataset, config=config, kinds=[kind_a, kind_b]) def test_has_any_successful_response_only_invalid_responses() -> None: kind = "test_kind" dataset = "test_dataset" config_a = "test_config_a" config_b = "test_config_b" upsert_response( kind=kind, dataset=dataset, config=config_a, content={}, http_status=HTTPStatus.INTERNAL_SERVER_ERROR ) upsert_response( kind=kind, dataset=dataset, config=config_b, content={}, http_status=HTTPStatus.INTERNAL_SERVER_ERROR ) assert not has_any_successful_response(dataset=dataset, kinds=[kind]) def test_get_contents_page() -> None: kind = "test_kind" assert get_contents_page(kind=kind, limit=2) == {"contents": [], "cursor": None} dataset_a = "test_dataset_a" content_a = {"key": "a"} expected_content_a = {"key": "a", "dataset": dataset_a} upsert_response( kind=kind, dataset=dataset_a, content=content_a, http_status=HTTPStatus.OK, ) content_b = {"key": "b"} upsert_response( kind=kind, dataset="test_dataset_b", content=content_b, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, ) dataset_c = "test_dataset_c" content_c = {"key": "c"} expected_content_c = {"key": "c", "dataset": dataset_c} upsert_response( kind=kind, dataset=dataset_c, content=content_c, http_status=HTTPStatus.OK, ) content_d = {"key": "d"} upsert_response( kind="another_kind", dataset="test_dataset_d", content=content_d, http_status=HTTPStatus.OK, ) dataset_e = "test_dataset_e" content_e = {"key": "e"} expected_content_e = {"key": "e", "dataset": dataset_e} upsert_response( kind=kind, dataset=dataset_e, content=content_e, http_status=HTTPStatus.OK, ) response = get_contents_page(kind=kind, limit=2) assert response["contents"] == [expected_content_a, expected_content_c] assert response["cursor"] is not None next_cursor = response["cursor"] response = get_contents_page(kind=kind, limit=2, cursor=next_cursor) assert response["contents"] == [expected_content_e] assert response["cursor"] is None with pytest.raises(InvalidCursor): get_cache_reports(kind=kind, cursor="not an objectid", limit=2) with pytest.raises(InvalidLimit): get_cache_reports(kind=kind, cursor=next_cursor, limit=-1) with pytest.raises(InvalidLimit): get_cache_reports(kind=kind, cursor=next_cursor, limit=0) def test_count_by_status_and_error_code() -> None: assert not get_responses_count_by_kind_status_and_error_code() upsert_response( kind="test_kind", dataset="test_dataset", content={"key": "value"}, http_status=HTTPStatus.OK, ) assert get_responses_count_by_kind_status_and_error_code() == [ {"kind": "test_kind", "http_status": 200, "error_code": None, "count": 1} ] upsert_response( kind="test_kind2", dataset="test_dataset", config="test_config", split="test_split", content={ "key": "value", }, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, error_code="error_code", ) metrics = get_responses_count_by_kind_status_and_error_code() assert len(metrics) == 2 assert {"kind": "test_kind", "http_status": 200, "error_code": None, "count": 1} in metrics assert {"kind": "test_kind2", "http_status": 500, "error_code": "error_code", "count": 1} in metrics def test_get_cache_reports() -> None: kind = "test_kind" kind_2 = "test_kind_2" expected_cache_reports: CacheReportsPage = {"cache_reports": [], "next_cursor": ""} assert get_cache_reports(kind=kind, cursor="", limit=2) == expected_cache_reports expected_cache_reports_with_content: CacheReportsWithContentPage = { "cache_reports_with_content": [], "next_cursor": "", } assert get_cache_reports_with_content(kind=kind, cursor="", limit=2) == expected_cache_reports_with_content dataset_a = "test_dataset_a" content_a = {"key": "a"} http_status_a = HTTPStatus.OK updated_at_a = datetime(2020, 1, 1, 0, 0, 0) upsert_response( kind=kind, dataset=dataset_a, content=content_a, http_status=http_status_a, updated_at=updated_at_a, ) dataset_b = "test_dataset_b" config_b = "test_config_b" content_b = {"key": "b"} http_status_b = HTTPStatus.INTERNAL_SERVER_ERROR error_code_b = "error_code_b" details_b = { "error": "error b", } job_runner_version_b = 0 dataset_git_revision_b = "123456" updated_at_b = datetime(2020, 1, 1, 0, 0, 1) upsert_response( kind=kind, dataset=dataset_b, config=config_b, content=content_b, details=details_b, http_status=http_status_b, error_code=error_code_b, job_runner_version=job_runner_version_b, dataset_git_revision=dataset_git_revision_b, updated_at=updated_at_b, ) dataset_c = "test_dataset_c" config_c = "test_config_c" split_c = "test_split_c" content_c = {"key": "c"} http_status_c = HTTPStatus.INTERNAL_SERVER_ERROR error_code_c = "error_code_c" details_c = { "error": "error c", } updated_at_c = datetime(2020, 1, 1, 0, 0, 2) upsert_response( kind=kind, dataset=dataset_c, config=config_c, split=split_c, content=content_c, details=details_c, http_status=http_status_c, error_code=error_code_c, updated_at=updated_at_c, ) upsert_response( kind=kind_2, dataset=dataset_c, content=content_c, details=details_c, http_status=http_status_c, error_code=error_code_c, updated_at=updated_at_c, ) upsert_response( kind=kind_2, dataset=dataset_c, config=config_c, split=split_c, content=content_c, details=details_c, http_status=http_status_c, error_code=error_code_c, updated_at=updated_at_c, ) response = get_cache_reports(kind=kind, cursor="", limit=2) assert response["cache_reports"] == [ { "kind": kind, "dataset": dataset_a, "config": None, "split": None, "http_status": http_status_a.value, "error_code": None, "details": {}, "updated_at": updated_at_a, "job_runner_version": None, "dataset_git_revision": None, "progress": None, }, { "kind": kind, "dataset": dataset_b, "config": config_b, "split": None, "http_status": http_status_b.value, "error_code": error_code_b, "details": details_b, "updated_at": updated_at_b, "job_runner_version": job_runner_version_b, "dataset_git_revision": dataset_git_revision_b, "progress": None, }, ] assert response["next_cursor"] != "" next_cursor = response["next_cursor"] response = get_cache_reports(kind=kind, cursor=next_cursor, limit=2) assert response == { "cache_reports": [ { "kind": kind, "dataset": dataset_c, "config": config_c, "split": split_c, "http_status": http_status_c.value, "error_code": error_code_c, "details": details_c, "updated_at": updated_at_c, "job_runner_version": None, "dataset_git_revision": None, "progress": None, }, ], "next_cursor": "", } response_with_content = get_cache_reports_with_content(kind=kind, cursor="", limit=2) # redact the response to make it simpler to compare with the expected assert response_with_content["cache_reports_with_content"] == [ { "kind": kind, "dataset": dataset_a, "config": None, "split": None, "http_status": http_status_a.value, "error_code": None, "content": content_a, "job_runner_version": None, "dataset_git_revision": None, "details": {}, "updated_at": updated_at_a, "progress": None, }, { "kind": kind, "dataset": dataset_b, "config": config_b, "split": None, "http_status": http_status_b.value, "error_code": error_code_b, "content": content_b, "job_runner_version": job_runner_version_b, "dataset_git_revision": dataset_git_revision_b, "details": details_b, "updated_at": updated_at_b, "progress": None, }, ] assert response_with_content["next_cursor"] != "" next_cursor = response_with_content["next_cursor"] response_with_content = get_cache_reports_with_content(kind=kind, cursor=next_cursor, limit=2) assert response_with_content == { "cache_reports_with_content": [ { "kind": kind, "dataset": dataset_c, "config": config_c, "split": split_c, "http_status": http_status_c.value, "error_code": error_code_c, "content": content_c, "job_runner_version": None, "dataset_git_revision": None, "details": details_c, "updated_at": updated_at_c, "progress": None, }, ], "next_cursor": "", } with pytest.raises(InvalidCursor): get_cache_reports(kind=kind, cursor="not an objectid", limit=2) with pytest.raises(InvalidLimit): get_cache_reports(kind=kind, cursor=next_cursor, limit=-1) with pytest.raises(InvalidLimit): get_cache_reports(kind=kind, cursor=next_cursor, limit=0) result_a = get_dataset_responses_without_content_for_kind(kind=kind, dataset=dataset_a) assert len(result_a) == 1 assert result_a[0]["http_status"] == HTTPStatus.OK.value assert result_a[0]["error_code"] is None assert result_a[0]["details"] == {} assert not get_dataset_responses_without_content_for_kind(kind=kind_2, dataset=dataset_a) result_c = get_dataset_responses_without_content_for_kind(kind=kind_2, dataset=dataset_c) assert len(result_c) == 2 for result in result_c: assert result["http_status"] == http_status_c.value assert result["error_code"] == error_code_c assert result["details"] == details_c assert result["updated_at"] == updated_at_c @pytest.mark.parametrize("num_entries", [1, 10, 100, 1_000]) def test_stress_get_cache_reports(num_entries: int) -> None: MAX_SECONDS = 0.1 kind = "test_kind" content = {"key": "value"} http_status = HTTPStatus.OK splits = [f"split{i}" for i in range(num_entries)] for split in splits: upsert_response( kind=kind, dataset="dataset", config="config", split=split, content=content, http_status=http_status, ) next_cursor = "" is_first: bool = True while next_cursor != "" or is_first: start = process_time() is_first = False response = get_cache_reports(kind=kind, cursor=next_cursor, limit=100) next_cursor = response["next_cursor"] assert process_time() - start < MAX_SECONDS def test_get_outdated_split_full_names_for_step() -> None: kind = "kind" current_version = 2 minor_version = 1 result = get_outdated_split_full_names_for_step(kind=kind, current_version=current_version) upsert_response( kind=kind, dataset="dataset_with_current_version", content={}, http_status=HTTPStatus.OK, job_runner_version=current_version, ) assert not result upsert_response( kind=kind, dataset="dataset_with_minor_version", content={}, http_status=HTTPStatus.OK, job_runner_version=minor_version, ) result = get_outdated_split_full_names_for_step(kind=kind, current_version=current_version) assert result assert len(result) == 1 class EntrySpec(TypedDict): kind: str dataset: str config: Optional[str] http_status: HTTPStatus progress: Optional[float] @pytest.mark.parametrize( "selected_entries,kinds,dataset,config,best_entry", [ # Best means: # - the first success response with progress=1.0 is returned (["ok1"], ["kind1"], "dataset", None, "ok1"), (["ok_config1"], ["kind1"], "dataset", "config", "ok_config1"), (["ok1", "ok2"], ["kind1", "kind2"], "dataset", None, "ok1"), (["ok1", "ok2"], ["kind2", "kind1"], "dataset", None, "ok2"), (["partial1", "ok2"], ["kind1", "kind2"], "dataset", None, "ok2"), (["error1", "ok2"], ["kind1", "kind2"], "dataset", None, "ok2"), # - if no success response with progress=1.0 is found, the success response with the highest progress is # returned (["partial1", "partial2"], ["kind1", "kind2"], "dataset", None, "partial2"), (["partial1", "error2"], ["kind1", "kind2"], "dataset", None, "partial1"), # - if no success response is found, the first error response is returned (["error1", "error2"], ["kind1", "kind2"], "dataset", None, "error1"), (["error1", "error2"], ["kind2", "kind1"], "dataset", None, "error2"), # - if no response is found, an error response is returned ([], ["kind1"], "dataset", None, "cache_miss"), (["ok_config1"], ["kind1"], "dataset", None, "cache_miss"), (["ok1"], ["kind1"], "dataset", "config", "cache_miss"), ], ) def test_get_best_response( selected_entries: list[str], kinds: list[str], dataset: str, config: Optional[str], best_entry: str ) -> None: # arrange entries: dict[str, EntrySpec] = { "ok1": { "kind": "kind1", "dataset": "dataset", "config": None, "http_status": HTTPStatus.OK, "progress": 1.0, }, "ok2": { "kind": "kind2", "dataset": "dataset", "config": None, "http_status": HTTPStatus.OK, "progress": 1.0, }, "partial1": { "kind": "kind1", "dataset": "dataset", "config": None, "http_status": HTTPStatus.OK, "progress": 0, }, "partial2": { "kind": "kind2", "dataset": "dataset", "config": None, "http_status": HTTPStatus.OK, "progress": 0.5, }, "ok_config1": { "kind": "kind1", "dataset": "dataset", "config": "config", "http_status": HTTPStatus.OK, "progress": 1.0, }, "error1": { "kind": "kind1", "dataset": "dataset", "config": None, "http_status": HTTPStatus.INTERNAL_SERVER_ERROR, "progress": 1.0, }, "error2": { "kind": "kind2", "dataset": "dataset", "config": None, "http_status": HTTPStatus.NOT_FOUND, "progress": 1.0, }, "cache_miss": { "kind": "kind1", "dataset": "dataset", "config": None, "http_status": HTTPStatus.NOT_FOUND, "progress": None, }, } for entry in selected_entries: upsert_response( kind=entries[entry]["kind"], dataset=entries[entry]["dataset"], config=entries[entry]["config"], http_status=entries[entry]["http_status"], progress=entries[entry]["progress"], content={"error": "some_error"} if (entries[entry]["http_status"] >= HTTPStatus.BAD_REQUEST.value) else {}, ) # act best_response = get_best_response(kinds, dataset, config) # assert assert best_response.kind == entries[best_entry]["kind"] assert ("error" in best_response.response["content"]) is ( entries[best_entry]["http_status"] >= HTTPStatus.BAD_REQUEST.value ) assert best_response.response["http_status"] == entries[best_entry]["http_status"].value assert best_response.response["progress"] == entries[best_entry]["progress"] def test_cached_artifact_error() -> None: dataset = "dataset" config = "config" split = "split" kind = "cache_kind" error_code = "ErrorCode" error_message = "error message" cause_exception = "CauseException" cause_message = "cause message" cause_traceback = ["traceback1", "traceback2"] details = { "error": error_message, "cause_exception": cause_exception, "cause_message": cause_message, "cause_traceback": cause_traceback, } content = {"error": error_message} job_runner_version = 1 dataset_git_revision = "dataset_git_revision" progress = 1.0 upsert_response( kind=kind, dataset=dataset, config=config, split=split, content=content, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, error_code=error_code, details=details, job_runner_version=job_runner_version, dataset_git_revision=dataset_git_revision, progress=progress, ) response = get_response_with_details(kind=kind, dataset=dataset, config=config, split=split) error = CachedArtifactError( message="Previous step error", kind=kind, dataset=dataset, config=config, split=split, cache_entry_with_details=response, ) assert error.cache_entry_with_details["content"] == content assert error.cache_entry_with_details["http_status"] == HTTPStatus.INTERNAL_SERVER_ERROR assert error.cache_entry_with_details["error_code"] == error_code assert error.enhanced_details == { "error": error_message, "cause_exception": cause_exception, "cause_message": cause_message, "cause_traceback": cause_traceback, "copied_from_artifact": { "kind": kind, "dataset": dataset, "config": config, "split": split, }, } class ResponseSpec(TypedDict): content: Mapping[str, Any] http_status: HTTPStatus CACHE_KIND_A = "cache_kind_a" CACHE_KIND_B = "cache_kind_b" NAMES = ["name_1", "name_2", "name_3"] NAME_FIELD = "name" NAMES_FIELD = "names" NAMES_RESPONSE_OK = ResponseSpec( content={NAMES_FIELD: [{NAME_FIELD: name} for name in NAMES]}, http_status=HTTPStatus.OK ) RESPONSE_ERROR = ResponseSpec(content=CONTENT_ERROR, http_status=HTTPStatus.INTERNAL_SERVER_ERROR) @pytest.mark.parametrize( "cache_kinds,response_spec_by_kind,expected_names", [ ([], {}, []), ([CACHE_KIND_A], {}, []), ([CACHE_KIND_A], {CACHE_KIND_A: RESPONSE_ERROR}, []), ([CACHE_KIND_A], {CACHE_KIND_A: NAMES_RESPONSE_OK}, NAMES), ([CACHE_KIND_A, CACHE_KIND_B], {CACHE_KIND_A: NAMES_RESPONSE_OK}, NAMES), ([CACHE_KIND_A, CACHE_KIND_B], {CACHE_KIND_A: NAMES_RESPONSE_OK, CACHE_KIND_B: RESPONSE_ERROR}, NAMES), ([CACHE_KIND_A, CACHE_KIND_B], {CACHE_KIND_A: NAMES_RESPONSE_OK, CACHE_KIND_B: NAMES_RESPONSE_OK}, NAMES), ([CACHE_KIND_A, CACHE_KIND_B], {CACHE_KIND_A: RESPONSE_ERROR, CACHE_KIND_B: RESPONSE_ERROR}, []), ], ) def test_fetch_names( cache_kinds: list[str], response_spec_by_kind: Mapping[str, Mapping[str, Any]], expected_names: list[str], ) -> None: for kind, response_spec in response_spec_by_kind.items(): upsert_response( kind=kind, dataset=DATASET_NAME, config=CONFIG_NAME_1, split=None, content=response_spec["content"], http_status=response_spec["http_status"], ) assert ( fetch_names( dataset=DATASET_NAME, config=CONFIG_NAME_1, cache_kinds=cache_kinds, names_field=NAMES_FIELD, name_field=NAME_FIELD, ) == expected_names )
datasets-server-main
libs/libcommon/tests/test_simple_cache.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import pytest from libcommon.config import ProcessingGraphConfig from libcommon.processing_graph import ( ProcessingGraph, ProcessingGraphSpecification, ProcessingStep, ) def assert_lists_are_equal(a: list[ProcessingStep], b: list[str]) -> None: assert sorted(processing_step.name for processing_step in a) == sorted(b) def assert_step( graph: ProcessingGraph, processing_step_name: str, children: list[str], parents: list[str], ancestors: list[str], ) -> None: assert_lists_are_equal(graph.get_children(processing_step_name), children) assert_lists_are_equal(graph.get_parents(processing_step_name), parents) assert_lists_are_equal(graph.get_ancestors(processing_step_name), ancestors) def test_graph() -> None: a = "step_a" b = "step_b" c = "step_c" d = "step_d" e = "step_e" f = "step_f" specification: ProcessingGraphSpecification = { a: {"input_type": "dataset", "job_runner_version": 1}, b: {"input_type": "dataset", "job_runner_version": 1}, c: {"input_type": "dataset", "triggered_by": a, "job_runner_version": 1}, d: {"input_type": "dataset", "triggered_by": [a, c], "job_runner_version": 1}, e: {"input_type": "dataset", "triggered_by": [c], "job_runner_version": 1}, f: {"input_type": "dataset", "triggered_by": [a, b], "job_runner_version": 1}, } graph = ProcessingGraph(ProcessingGraphConfig(specification).specification) assert_step(graph, a, children=[c, d, f], parents=[], ancestors=[]) assert_step(graph, b, children=[f], parents=[], ancestors=[]) assert_step(graph, c, children=[d, e], parents=[a], ancestors=[a]) assert_step(graph, d, children=[], parents=[a, c], ancestors=[a, c]) assert_step(graph, e, children=[], parents=[c], ancestors=[a, c]) assert_step(graph, f, children=[], parents=[a, b], ancestors=[a, b]) @pytest.fixture(scope="module") def graph() -> ProcessingGraph: config = ProcessingGraphConfig() return ProcessingGraph(config.specification) @pytest.mark.parametrize( "processing_step_name,children,parents,ancestors", [ ( "dataset-config-names", [ "config-split-names-from-streaming", "config-parquet-and-info", "dataset-opt-in-out-urls-count", "dataset-split-names", "dataset-parquet", "dataset-info", "dataset-size", "dataset-is-valid", ], [], [], ), ( "config-parquet-and-info", [ "config-parquet", "config-info", "config-size", "split-duckdb-index", ], ["dataset-config-names"], ["dataset-config-names"], ), ( "config-split-names-from-info", [ "config-opt-in-out-urls-count", "split-first-rows-from-streaming", "dataset-split-names", "split-duckdb-index", "split-descriptive-statistics", "config-is-valid", ], ["config-info"], ["dataset-config-names", "config-parquet-and-info", "config-info"], ), ( "config-split-names-from-streaming", [ "split-first-rows-from-streaming", "dataset-split-names", "config-opt-in-out-urls-count", "split-duckdb-index", "split-descriptive-statistics", "config-is-valid", ], ["dataset-config-names"], ["dataset-config-names"], ), ( "dataset-split-names", [], [ "dataset-config-names", "config-split-names-from-info", "config-split-names-from-streaming", ], [ "dataset-config-names", "config-parquet-and-info", "config-info", "config-split-names-from-info", "config-split-names-from-streaming", ], ), ( "split-first-rows-from-parquet", ["split-is-valid", "split-image-url-columns"], ["config-parquet-metadata"], ["config-parquet", "dataset-config-names", "config-parquet-and-info", "config-parquet-metadata"], ), ( "split-first-rows-from-streaming", ["split-is-valid", "split-image-url-columns"], [ "config-split-names-from-streaming", "config-split-names-from-info", ], [ "dataset-config-names", "config-split-names-from-streaming", "config-split-names-from-info", "config-parquet-and-info", "config-info", ], ), ( "config-parquet", ["config-parquet-metadata", "dataset-parquet"], ["config-parquet-and-info"], ["dataset-config-names", "config-parquet-and-info"], ), ( "config-parquet-metadata", ["split-first-rows-from-parquet"], ["config-parquet"], ["dataset-config-names", "config-parquet-and-info", "config-parquet"], ), ( "dataset-parquet", [], ["dataset-config-names", "config-parquet"], ["dataset-config-names", "config-parquet-and-info", "config-parquet"], ), ( "config-info", ["dataset-info", "config-split-names-from-info"], ["config-parquet-and-info"], ["dataset-config-names", "config-parquet-and-info"], ), ( "dataset-info", [], ["dataset-config-names", "config-info"], ["dataset-config-names", "config-parquet-and-info", "config-info"], ), ( "config-size", ["split-is-valid", "dataset-size"], ["config-parquet-and-info"], ["dataset-config-names", "config-parquet-and-info"], ), ( "dataset-size", ["dataset-hub-cache"], ["dataset-config-names", "config-size"], ["dataset-config-names", "config-parquet-and-info", "config-size"], ), ( "dataset-is-valid", ["dataset-hub-cache"], [ "config-is-valid", "dataset-config-names", ], [ "dataset-config-names", "config-parquet-and-info", "config-info", "config-parquet", "config-size", "config-split-names-from-info", "config-parquet-metadata", "config-split-names-from-streaming", "split-first-rows-from-parquet", "split-first-rows-from-streaming", "config-is-valid", "split-is-valid", "split-duckdb-index", ], ), ( "split-image-url-columns", ["split-opt-in-out-urls-scan"], ["split-first-rows-from-streaming", "split-first-rows-from-parquet"], [ "dataset-config-names", "config-split-names-from-streaming", "config-split-names-from-info", "config-info", "config-parquet-and-info", "config-parquet-metadata", "split-first-rows-from-streaming", "config-parquet", "split-first-rows-from-parquet", ], ), ( "split-opt-in-out-urls-scan", ["split-opt-in-out-urls-count"], ["split-image-url-columns"], [ "dataset-config-names", "config-split-names-from-streaming", "config-split-names-from-info", "config-info", "config-parquet-and-info", "config-parquet-metadata", "split-first-rows-from-streaming", "config-parquet", "split-first-rows-from-parquet", "split-image-url-columns", ], ), ( "split-opt-in-out-urls-count", ["config-opt-in-out-urls-count"], ["split-opt-in-out-urls-scan"], [ "dataset-config-names", "config-split-names-from-streaming", "split-first-rows-from-streaming", "config-split-names-from-info", "config-info", "config-parquet-and-info", "config-parquet-metadata", "split-opt-in-out-urls-scan", "config-parquet", "split-first-rows-from-parquet", "split-image-url-columns", ], ), ( "config-opt-in-out-urls-count", ["dataset-opt-in-out-urls-count"], ["split-opt-in-out-urls-count", "config-split-names-from-info", "config-split-names-from-streaming"], [ "dataset-config-names", "config-split-names-from-streaming", "split-first-rows-from-streaming", "config-split-names-from-info", "config-info", "config-parquet-and-info", "config-parquet-metadata", "split-opt-in-out-urls-count", "split-opt-in-out-urls-scan", "config-parquet", "split-first-rows-from-parquet", "split-image-url-columns", ], ), ( "dataset-opt-in-out-urls-count", [], ["config-opt-in-out-urls-count", "dataset-config-names"], [ "dataset-config-names", "config-split-names-from-streaming", "split-first-rows-from-streaming", "config-split-names-from-info", "config-info", "config-parquet-and-info", "config-parquet-metadata", "config-opt-in-out-urls-count", "split-opt-in-out-urls-count", "split-opt-in-out-urls-scan", "config-parquet", "split-first-rows-from-parquet", "split-image-url-columns", ], ), ( "split-duckdb-index", ["split-is-valid"], ["config-split-names-from-info", "config-split-names-from-streaming", "config-parquet-and-info"], [ "config-split-names-from-info", "config-split-names-from-streaming", "config-parquet-and-info", "config-info", "dataset-config-names", ], ), ( "split-descriptive-statistics", [], ["config-split-names-from-info", "config-split-names-from-streaming"], [ "dataset-config-names", "config-parquet-and-info", "config-info", "config-split-names-from-info", "config-split-names-from-streaming", ], ), ( "dataset-hub-cache", [], ["dataset-is-valid", "dataset-size"], [ "config-info", "config-is-valid", "config-parquet", "config-parquet-and-info", "config-parquet-metadata", "config-size", "config-split-names-from-info", "config-split-names-from-streaming", "dataset-config-names", "dataset-is-valid", "dataset-size", "split-duckdb-index", "split-first-rows-from-parquet", "split-first-rows-from-streaming", "split-is-valid", ], ), ], ) def test_default_graph_steps( graph: ProcessingGraph, processing_step_name: str, children: list[str], parents: list[str], ancestors: list[str] ) -> None: assert_step(graph, processing_step_name, children=children, parents=parents, ancestors=ancestors) def test_default_graph_first_steps(graph: ProcessingGraph) -> None: roots = ["dataset-config-names"] assert_lists_are_equal(graph.get_first_processing_steps(), roots) def test_default_graph_enables_preview(graph: ProcessingGraph) -> None: enables_preview = ["split-first-rows-from-streaming", "split-first-rows-from-parquet"] assert_lists_are_equal(graph.get_processing_steps_enables_preview(), enables_preview) def test_default_graph_enables_viewer(graph: ProcessingGraph) -> None: enables_viewer = ["config-size"] assert_lists_are_equal(graph.get_processing_steps_enables_viewer(), enables_viewer) def test_default_graph_enables_search(graph: ProcessingGraph) -> None: enables_search = ["split-duckdb-index"] assert_lists_are_equal(graph.get_processing_steps_enables_search(), enables_search) def test_default_graph_provide_dataset_config_names(graph: ProcessingGraph) -> None: assert_lists_are_equal(graph.get_dataset_config_names_processing_steps(), ["dataset-config-names"]) def test_default_graph_provide_config_split_names(graph: ProcessingGraph) -> None: assert_lists_are_equal( graph.get_config_split_names_processing_steps(), ["config-split-names-from-streaming", "config-split-names-from-info"], )
datasets-server-main
libs/libcommon/tests/test_processing_graph.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
libs/libcommon/tests/__init__.py
import os import time from dataclasses import dataclass from http import HTTPStatus from pathlib import Path from typing import Optional import pytest from libcommon.prometheus import ( ASSETS_DISK_USAGE, QUEUE_JOBS_TOTAL, RESPONSES_IN_CACHE_TOTAL, Prometheus, StepProfiler, update_assets_disk_usage, update_queue_jobs_total, update_responses_in_cache_total, ) from libcommon.queue import JobTotalMetricDocument from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import CacheTotalMetricDocument def parse_metrics(content: str) -> dict[str, float]: # examples: # starlette_requests_total{method="GET",path_template="/metrics"} 1.0 # method_steps_processing_time_seconds_sum{method="healthcheck_endpoint",step="all"} 1.6772013623267412e-05 return { parts[0]: float(parts[1]) for line in content.split("\n") if line and line[0] != "#" and (parts := line.rsplit(" ", 1)) } def test_prometheus() -> None: is_multiprocess = "PROMETHEUS_MULTIPROC_DIR" in os.environ prometheus = Prometheus() registry = prometheus.getRegistry() assert registry is not None content = prometheus.getLatestContent() metrics = parse_metrics(content) name = "process_start_time_seconds" if not is_multiprocess: assert name in metrics, metrics assert metrics[name] > 0, metrics[name] else: assert name not in metrics, metrics def create_key(suffix: str, labels: dict[str, str], le: Optional[str] = None) -> str: items = list(labels.items()) if le: items.append(("le", le)) labels_string = ",".join([f'{key}="{value}"' for key, value in sorted(items)]) return f"method_steps_processing_time_seconds_{suffix}{{{labels_string}}}" def check_histogram_metric( metrics: dict[str, float], method: str, step: str, context: str, events: int, duration: float ) -> None: labels = {"context": context, "method": method, "step": step} assert metrics[create_key("count", labels)] == events, metrics assert metrics[create_key("bucket", labels, le="+Inf")] == events, metrics assert metrics[create_key("bucket", labels, le="1.0")] == events, metrics assert metrics[create_key("bucket", labels, le="0.05")] == 0, metrics assert metrics[create_key("sum", labels)] >= duration, metrics assert metrics[create_key("sum", labels)] <= duration * 1.1, metrics def test_step_profiler() -> None: duration = 0.1 method = "test_step_profiler" step_all = "all" context = "None" with StepProfiler(method=method, step=step_all): time.sleep(duration) metrics = parse_metrics(Prometheus().getLatestContent()) check_histogram_metric(metrics=metrics, method=method, step=step_all, context=context, events=1, duration=duration) def test_nested_step_profiler() -> None: method = "test_nested_step_profiler" step_all = "all" context = "None" step_1 = "step_1" duration_1a = 0.1 duration_1b = 0.3 context_1 = "None" step_2 = "step_2" duration_2 = 0.5 context_2 = "endpoint: /splits" with StepProfiler(method=method, step=step_all): with StepProfiler(method, step_1): time.sleep(duration_1a) with StepProfiler(method, step_1, context_1): time.sleep(duration_1b) with StepProfiler(method, step_2, context_2): time.sleep(duration_2) metrics = parse_metrics(Prometheus().getLatestContent()) check_histogram_metric( metrics=metrics, method=method, step=step_all, context=context, events=1, duration=duration_1a + duration_1b + duration_2, ) check_histogram_metric( metrics=metrics, method=method, step=step_1, context=context_1, events=2, duration=duration_1a + duration_1b ) check_histogram_metric( metrics=metrics, method=method, step=step_2, context=context_2, events=1, duration=duration_2 ) @dataclass class Metrics: metrics: dict[str, float] def forge_metric_key(self, name: str, content: dict[str, str]) -> str: local_content: dict[str, str] = dict(content) if "PROMETHEUS_MULTIPROC_DIR" in os.environ: local_content["pid"] = str(os.getpid()) inner = ",".join([f'{key}="{value}"' for key, value in sorted(local_content.items())]) return f"{name}{{{inner}}}" def get_metrics() -> Metrics: prometheus = Prometheus() registry = prometheus.getRegistry() assert registry is not None content = prometheus.getLatestContent() lines = content.split("\n") metrics = {" ".join(line.split(" ")[:-1]): float(line.split(" ")[-1]) for line in lines if line and line[0] != "#"} return Metrics(metrics=metrics) def test_cache_metrics(cache_mongo_resource: CacheMongoResource) -> None: RESPONSES_IN_CACHE_TOTAL.clear() cache_metric = { "kind": "dummy", "http_status": HTTPStatus.OK, "error_code": None, "total": 1, } collection = CacheTotalMetricDocument._get_collection() collection.insert_one(cache_metric) metrics = get_metrics() assert ( metrics.forge_metric_key( name="responses_in_cache_total", content={"error_code": "None", "http_status": "200", "kind": "dummy"}, ) not in metrics.metrics ) update_responses_in_cache_total() metrics = get_metrics() assert ( metrics.forge_metric_key( name="responses_in_cache_total", content={"error_code": "None", "http_status": "200", "kind": "dummy"}, ) in metrics.metrics ) def test_queue_metrics(queue_mongo_resource: QueueMongoResource) -> None: QUEUE_JOBS_TOTAL.clear() job_metric = { "job_type": "dummy", "status": "waiting", "total": 1, } collection = JobTotalMetricDocument._get_collection() collection.insert_one(job_metric) metrics = get_metrics() assert ( metrics.forge_metric_key( name="queue_jobs_total", content={"queue": "dummy", "status": "waiting"}, ) not in metrics.metrics ) update_queue_jobs_total() metrics = get_metrics() assert ( metrics.forge_metric_key( name="queue_jobs_total", content={"queue": "dummy", "status": "waiting"}, ) in metrics.metrics ) @pytest.mark.parametrize("usage_type", ["total", "used", "free", "percent"]) def test_assets_metrics(usage_type: str, tmp_path: Path) -> None: ASSETS_DISK_USAGE.clear() metrics = get_metrics() name = metrics.forge_metric_key(name="assets_disk_usage", content={"type": usage_type}) assert name not in metrics.metrics update_assets_disk_usage(directory=tmp_path) metrics = get_metrics() name = metrics.forge_metric_key(name="assets_disk_usage", content={"type": usage_type}) assert name in metrics.metrics assert metrics.metrics[name] >= 0 if usage_type == "percent": assert metrics.metrics[name] <= 100 def test_process_metrics() -> None: metrics = get_metrics() name = "process_start_time_seconds" if "PROMETHEUS_MULTIPROC_DIR" in os.environ: assert name not in metrics.metrics else: assert name in metrics.metrics assert metrics.metrics[name] > 0
datasets-server-main
libs/libcommon/tests/test_prometheus.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from http import HTTPStatus from typing import Optional import pytest from libcommon.queue import Queue from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import ( delete_response, get_cache_entries_df, upsert_response, ) from libcommon.state import ( ArtifactState, CacheState, ConfigState, DatasetState, SplitState, ) from .utils import ( CACHE_KIND, CONFIG_NAME_1, CONFIG_NAMES, CONFIG_NAMES_CONTENT, DATASET_NAME, JOB_RUNNER_VERSION, PROCESSING_GRAPH, REVISION_NAME, SPLIT_NAME_1, SPLIT_NAMES, SPLIT_NAMES_CONTENT, ) @pytest.fixture(autouse=True) def queue_mongo_resource_autouse(queue_mongo_resource: QueueMongoResource) -> QueueMongoResource: return queue_mongo_resource @pytest.fixture(autouse=True) def cache_mongo_resource_autouse(cache_mongo_resource: CacheMongoResource) -> CacheMongoResource: return cache_mongo_resource @pytest.mark.parametrize( "dataset,config,split,cache_kind", [ (DATASET_NAME, None, None, CACHE_KIND), (DATASET_NAME, CONFIG_NAME_1, None, CACHE_KIND), (DATASET_NAME, CONFIG_NAME_1, SPLIT_NAME_1, CACHE_KIND), ], ) def test_cache_state_exists(dataset: str, config: Optional[str], split: Optional[str], cache_kind: str) -> None: assert not CacheState( dataset=dataset, config=config, split=split, cache_kind=cache_kind, cache_entries_df=get_cache_entries_df(dataset=dataset), job_runner_version=JOB_RUNNER_VERSION, ).exists upsert_response( kind=cache_kind, dataset=dataset, config=config, split=split, content={}, http_status=HTTPStatus.OK ) assert CacheState( dataset=dataset, config=config, split=split, cache_kind=cache_kind, cache_entries_df=get_cache_entries_df(dataset=dataset), job_runner_version=JOB_RUNNER_VERSION, ).exists delete_response(kind=cache_kind, dataset=dataset, config=config, split=split) assert not CacheState( dataset=dataset, config=config, split=split, cache_kind=cache_kind, cache_entries_df=get_cache_entries_df(dataset=dataset), job_runner_version=JOB_RUNNER_VERSION, ).exists @pytest.mark.parametrize( "dataset,config,split,cache_kind", [ (DATASET_NAME, None, None, CACHE_KIND), (DATASET_NAME, CONFIG_NAME_1, None, CACHE_KIND), (DATASET_NAME, CONFIG_NAME_1, SPLIT_NAME_1, CACHE_KIND), ], ) def test_cache_state_is_success(dataset: str, config: Optional[str], split: Optional[str], cache_kind: str) -> None: assert not CacheState( dataset=dataset, config=config, split=split, cache_kind=cache_kind, cache_entries_df=get_cache_entries_df(dataset=dataset), job_runner_version=JOB_RUNNER_VERSION, ).is_success upsert_response( kind=cache_kind, dataset=dataset, config=config, split=split, content={}, http_status=HTTPStatus.OK ) assert CacheState( dataset=dataset, config=config, split=split, cache_kind=cache_kind, cache_entries_df=get_cache_entries_df(dataset=dataset), job_runner_version=JOB_RUNNER_VERSION, ).is_success upsert_response( kind=cache_kind, dataset=dataset, config=config, split=split, content={}, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, ) assert not CacheState( dataset=dataset, config=config, split=split, cache_kind=cache_kind, cache_entries_df=get_cache_entries_df(dataset=dataset), job_runner_version=JOB_RUNNER_VERSION, ).is_success delete_response(kind=cache_kind, dataset=dataset, config=config, split=split) assert not CacheState( dataset=dataset, config=config, split=split, cache_kind=cache_kind, cache_entries_df=get_cache_entries_df(dataset=dataset), job_runner_version=JOB_RUNNER_VERSION, ).is_success def test_artifact_state() -> None: dataset = DATASET_NAME revision = REVISION_NAME config = None split = None processing_step_name = "dataset-a" processing_step = PROCESSING_GRAPH.get_processing_step(processing_step_name) artifact_state = ArtifactState( dataset=dataset, revision=revision, config=config, split=split, processing_step=processing_step, pending_jobs_df=Queue().get_pending_jobs_df(dataset=dataset), cache_entries_df=get_cache_entries_df(dataset=dataset), ) assert artifact_state.id == f"{processing_step_name},{dataset},{revision}" assert not artifact_state.cache_state.exists assert not artifact_state.cache_state.is_success assert not artifact_state.job_state.is_in_process def test_split_state() -> None: dataset = DATASET_NAME revision = REVISION_NAME config = CONFIG_NAME_1 split = SPLIT_NAME_1 expected_split_processing_step_name = "split-c" split_state = SplitState( dataset=dataset, revision=revision, config=config, split=split, processing_graph=PROCESSING_GRAPH, pending_jobs_df=Queue()._get_df(jobs=[]), cache_entries_df=get_cache_entries_df(dataset=dataset), ) assert split_state.dataset == dataset assert split_state.revision == revision assert split_state.config == config assert split_state.split == split assert len(split_state.artifact_state_by_step) == 1 assert expected_split_processing_step_name in split_state.artifact_state_by_step artifact_state = split_state.artifact_state_by_step[expected_split_processing_step_name] assert artifact_state.id == f"{expected_split_processing_step_name},{dataset},{revision},{config},{split}" assert not artifact_state.cache_state.exists assert not artifact_state.cache_state.is_success assert not artifact_state.job_state.is_in_process def test_config_state_as_dict() -> None: dataset = DATASET_NAME revision = REVISION_NAME config = CONFIG_NAME_1 expected_config_processing_step_name = "config-b" processing_step = PROCESSING_GRAPH.get_processing_step(expected_config_processing_step_name) upsert_response( kind=processing_step.cache_kind, dataset=dataset, config=config, split=None, content=SPLIT_NAMES_CONTENT, http_status=HTTPStatus.OK, ) config_state = ConfigState( dataset=dataset, revision=revision, config=config, processing_graph=PROCESSING_GRAPH, pending_jobs_df=Queue()._get_df(jobs=[]), cache_entries_df=get_cache_entries_df(dataset=dataset), ) assert config_state.dataset == dataset assert config_state.revision == revision assert config_state.config == config assert len(config_state.artifact_state_by_step) == 1 assert expected_config_processing_step_name in config_state.artifact_state_by_step artifact_state = config_state.artifact_state_by_step[expected_config_processing_step_name] assert artifact_state.id == f"{expected_config_processing_step_name},{dataset},{revision},{config}" assert artifact_state.cache_state.exists # <- in the cache assert artifact_state.cache_state.is_success # <- is a success assert not artifact_state.job_state.is_in_process assert config_state.split_names == SPLIT_NAMES assert len(config_state.split_states) == len(SPLIT_NAMES) assert config_state.split_states[0].split == SPLIT_NAMES[0] assert config_state.split_states[1].split == SPLIT_NAMES[1] def test_dataset_state_as_dict() -> None: dataset = DATASET_NAME revision = REVISION_NAME expected_dataset_processing_step_name = "dataset-a" dataset_step = PROCESSING_GRAPH.get_processing_step(expected_dataset_processing_step_name) expected_config_processing_step_name = "config-b" config_step = PROCESSING_GRAPH.get_processing_step(expected_config_processing_step_name) upsert_response( kind=dataset_step.cache_kind, dataset=dataset, config=None, split=None, content=CONFIG_NAMES_CONTENT, http_status=HTTPStatus.OK, ) upsert_response( kind=config_step.cache_kind, dataset=dataset, config=CONFIG_NAME_1, split=None, content=SPLIT_NAMES_CONTENT, http_status=HTTPStatus.OK, ) dataset_state = DatasetState( dataset=dataset, revision=revision, processing_graph=PROCESSING_GRAPH, pending_jobs_df=Queue()._get_df(jobs=[]), cache_entries_df=get_cache_entries_df(dataset=dataset), ) assert dataset_state.dataset == dataset assert dataset_state.revision == revision assert len(dataset_state.artifact_state_by_step) == 1 assert expected_dataset_processing_step_name in dataset_state.artifact_state_by_step artifact_state = dataset_state.artifact_state_by_step[expected_dataset_processing_step_name] assert artifact_state.id == f"{expected_dataset_processing_step_name},{dataset},{revision}" assert artifact_state.cache_state.exists # <- in the cache assert artifact_state.cache_state.is_success # <- is a success assert not artifact_state.job_state.is_in_process assert dataset_state.config_names == CONFIG_NAMES assert len(dataset_state.config_states) == len(CONFIG_NAMES) assert dataset_state.config_states[0].config == CONFIG_NAMES[0] assert dataset_state.config_states[1].config == CONFIG_NAMES[1]
datasets-server-main
libs/libcommon/tests/test_state.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from http import HTTPStatus import pytest from libcommon.orchestrator import AfterJobPlan, DatasetOrchestrator from libcommon.processing_graph import Artifact, ProcessingGraph from libcommon.queue import JobDocument, Queue from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import CachedResponseDocument, upsert_response_params from libcommon.utils import JobOutput, JobResult, Priority, Status from .utils import ( ARTIFACT_CA_1, ARTIFACT_CA_2, ARTIFACT_DA, ARTIFACT_DB, ARTIFACT_DC, ARTIFACT_DD, ARTIFACT_DE, ARTIFACT_DG, ARTIFACT_DH, CONFIG_NAMES_CONTENT, DATASET_NAME, DIFFICULTY, JOB_RUNNER_VERSION, PROCESSING_GRAPH_FAN_IN_OUT, PROCESSING_GRAPH_GENEALOGY, PROCESSING_GRAPH_ONE_STEP, PROCESSING_GRAPH_PARALLEL, REVISION_NAME, STEP_CB, STEP_DA, STEP_DC, STEP_DD, artifact_id_to_job_info, ) CACHE_MAX_DAYS = 90 @pytest.fixture(autouse=True) def queue_mongo_resource_autouse(queue_mongo_resource: QueueMongoResource) -> QueueMongoResource: return queue_mongo_resource @pytest.fixture(autouse=True) def cache_mongo_resource_autouse(cache_mongo_resource: CacheMongoResource) -> CacheMongoResource: return cache_mongo_resource @pytest.mark.parametrize( "processing_graph,artifacts_to_create", [ (PROCESSING_GRAPH_ONE_STEP, []), (PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DC]), (PROCESSING_GRAPH_FAN_IN_OUT, [ARTIFACT_CA_1, ARTIFACT_CA_2]), (PROCESSING_GRAPH_PARALLEL, [ARTIFACT_DG, ARTIFACT_DH]), ], ) def test_after_job_plan( processing_graph: ProcessingGraph, artifacts_to_create: list[str], ) -> None: job_info = artifact_id_to_job_info(ARTIFACT_DA) # put the cache (to be able to get the config names - case PROCESSING_GRAPH_FAN_IN_OUT) upsert_response_params( # inputs kind=STEP_DA, job_params=job_info["params"], job_runner_version=JOB_RUNNER_VERSION, # output content=CONFIG_NAMES_CONTENT, http_status=HTTPStatus.OK, error_code=None, details=None, progress=1.0, ) after_job_plan = AfterJobPlan( processing_graph=processing_graph, job_info=job_info, ) if len(artifacts_to_create): assert after_job_plan.as_response() == [f"CreateJobs,{len(artifacts_to_create)}"] else: assert after_job_plan.as_response() == [] after_job_plan.run() pending_jobs_df = Queue().get_pending_jobs_df(dataset=DATASET_NAME) assert len(pending_jobs_df) == len(artifacts_to_create) artifact_ids = [ Artifact.get_id( dataset=row["dataset"], revision=row["revision"], config=row["config"], split=row["split"], processing_step_name=row["type"], ) for _, row in pending_jobs_df.iterrows() ] assert set(artifact_ids) == set(artifacts_to_create) def test_after_job_plan_delete() -> None: job_info = artifact_id_to_job_info(ARTIFACT_DA) # create two jobs for DG, and none for DH # one job should be deleted for DG, and one should be created for DH Queue().create_jobs([artifact_id_to_job_info(ARTIFACT_DG)] * 2) after_job_plan = AfterJobPlan( processing_graph=PROCESSING_GRAPH_PARALLEL, job_info=job_info, ) assert after_job_plan.as_response() == ["CreateJobs,1", "DeleteJobs,1"] after_job_plan.run() pending_jobs_df = Queue().get_pending_jobs_df(dataset=DATASET_NAME) assert len(pending_jobs_df) == 2 artifact_ids = [ Artifact.get_id( dataset=row["dataset"], revision=row["revision"], config=row["config"], split=row["split"], processing_step_name=row["type"], ) for _, row in pending_jobs_df.iterrows() ] assert artifact_ids == [ARTIFACT_DG, ARTIFACT_DH] @pytest.mark.parametrize( "processing_graph,artifacts_to_create", [ (PROCESSING_GRAPH_ONE_STEP, []), (PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DC]), (PROCESSING_GRAPH_FAN_IN_OUT, [ARTIFACT_CA_1, ARTIFACT_CA_2]), (PROCESSING_GRAPH_PARALLEL, [ARTIFACT_DG, ARTIFACT_DH]), ], ) def test_finish_job( processing_graph: ProcessingGraph, artifacts_to_create: list[str], ) -> None: Queue().add_job( dataset=DATASET_NAME, revision=REVISION_NAME, config=None, split=None, job_type=STEP_DA, priority=Priority.NORMAL, difficulty=DIFFICULTY, ) job_info = Queue().start_job() job_result = JobResult( job_info=job_info, job_runner_version=JOB_RUNNER_VERSION, is_success=True, output=JobOutput( content=CONFIG_NAMES_CONTENT, http_status=HTTPStatus.OK, error_code=None, details=None, progress=1.0, ), ) dataset_orchestrator = DatasetOrchestrator(dataset=DATASET_NAME, processing_graph=processing_graph) dataset_orchestrator.finish_job(job_result=job_result) assert JobDocument.objects(dataset=DATASET_NAME).count() == 1 + len(artifacts_to_create) done_job = JobDocument.objects(dataset=DATASET_NAME, status=Status.SUCCESS) assert done_job.count() == 1 waiting_jobs = JobDocument.objects(dataset=DATASET_NAME, status=Status.WAITING) assert waiting_jobs.count() == len(artifacts_to_create) assert {job.type for job in waiting_jobs} == {Artifact.parse_id(artifact)[4] for artifact in artifacts_to_create} assert CachedResponseDocument.objects(dataset=DATASET_NAME).count() == 1 cached_response = CachedResponseDocument.objects(dataset=DATASET_NAME).first() assert cached_response assert cached_response.content == CONFIG_NAMES_CONTENT assert cached_response.http_status == HTTPStatus.OK assert cached_response.error_code is None assert cached_response.details == {} assert cached_response.progress == 1.0 assert cached_response.job_runner_version == JOB_RUNNER_VERSION assert cached_response.dataset_git_revision == REVISION_NAME @pytest.mark.parametrize( "processing_graph,first_artifacts", [ (PROCESSING_GRAPH_ONE_STEP, [ARTIFACT_DA]), (PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DA, ARTIFACT_DB]), (PROCESSING_GRAPH_FAN_IN_OUT, [ARTIFACT_DA]), (PROCESSING_GRAPH_PARALLEL, [ARTIFACT_DA]), ], ) def test_set_revision( processing_graph: ProcessingGraph, first_artifacts: list[str], ) -> None: dataset_orchestrator = DatasetOrchestrator(dataset=DATASET_NAME, processing_graph=processing_graph) dataset_orchestrator.set_revision( revision=REVISION_NAME, priority=Priority.NORMAL, error_codes_to_retry=[], cache_max_days=CACHE_MAX_DAYS ) pending_jobs_df = Queue().get_pending_jobs_df(dataset=DATASET_NAME) assert len(pending_jobs_df) == len(first_artifacts) artifact_ids = [ Artifact.get_id( dataset=row["dataset"], revision=row["revision"], config=row["config"], split=row["split"], processing_step_name=row["type"], ) for _, row in pending_jobs_df.iterrows() ] assert set(artifact_ids) == set(first_artifacts) @pytest.mark.parametrize( "processing_graph,first_artifacts", [ (PROCESSING_GRAPH_ONE_STEP, [ARTIFACT_DA]), (PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DA, ARTIFACT_DB]), (PROCESSING_GRAPH_FAN_IN_OUT, [ARTIFACT_DA]), (PROCESSING_GRAPH_PARALLEL, [ARTIFACT_DA]), ], ) def test_set_revision_handle_existing_jobs( processing_graph: ProcessingGraph, first_artifacts: list[str], ) -> None: # create two pending jobs for DA Queue().create_jobs([artifact_id_to_job_info(ARTIFACT_DA)] * 2) dataset_orchestrator = DatasetOrchestrator(dataset=DATASET_NAME, processing_graph=processing_graph) dataset_orchestrator.set_revision( revision=REVISION_NAME, priority=Priority.NORMAL, error_codes_to_retry=[], cache_max_days=CACHE_MAX_DAYS ) pending_jobs_df = Queue().get_pending_jobs_df(dataset=DATASET_NAME) assert len(pending_jobs_df) == len(first_artifacts) artifact_ids = [ Artifact.get_id( dataset=row["dataset"], revision=row["revision"], config=row["config"], split=row["split"], processing_step_name=row["type"], ) for _, row in pending_jobs_df.iterrows() ] assert set(artifact_ids) == set(first_artifacts) @pytest.mark.parametrize( "processing_graph,pending_artifacts,processing_step_names,expected_has_pending_ancestor_jobs", [ (PROCESSING_GRAPH_ONE_STEP, [ARTIFACT_DA], [STEP_DA], True), (PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DA, ARTIFACT_DB], [STEP_DA], True), (PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DB], [STEP_DD], True), (PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DD], [STEP_DC], False), (PROCESSING_GRAPH_FAN_IN_OUT, [ARTIFACT_DA], [STEP_CB], True), (PROCESSING_GRAPH_FAN_IN_OUT, [ARTIFACT_DE], [STEP_CB], False), ], ) def test_has_pending_ancestor_jobs( processing_graph: ProcessingGraph, pending_artifacts: list[str], processing_step_names: list[str], expected_has_pending_ancestor_jobs: bool, ) -> None: Queue().create_jobs([artifact_id_to_job_info(artifact) for artifact in pending_artifacts]) dataset_orchestrator = DatasetOrchestrator(dataset=DATASET_NAME, processing_graph=processing_graph) assert dataset_orchestrator.has_pending_ancestor_jobs(processing_step_names) == expected_has_pending_ancestor_jobs
datasets-server-main
libs/libcommon/tests/test_orchestrator.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from pathlib import Path from typing import Optional import pytest from libcommon.constants import ASSETS_CACHE_APPNAME from libcommon.storage import StrPath, init_assets_dir, init_dir, remove_dir @pytest.mark.parametrize( "has_directory,is_directory_string,has_appname", [ (False, False, False), (False, False, True), (False, True, False), (False, True, True), (True, False, False), (True, False, True), (True, True, False), (True, True, True), ], ) def test_init_dir( tmp_path_factory: pytest.TempPathFactory, has_directory: bool, is_directory_string: bool, has_appname: bool ) -> None: subdirectory = "subdirectory" tmp_path = tmp_path_factory.mktemp("test") / subdirectory appname = "appname" if has_appname else None directory: Optional[StrPath] if has_directory: directory = str(tmp_path) if is_directory_string else tmp_path result = init_dir(directory=directory, appname=appname) assert result == directory assert subdirectory in str(result), result if appname is not None: assert appname not in str(result), result else: directory = None result = init_dir(directory=directory, appname=appname) assert result != directory, result assert subdirectory not in str(result), result assert type(result) is str, result if appname: assert appname in str(result), result Path(result).exists() Path(result).is_dir() @pytest.mark.parametrize( "has_directory,is_directory_string", [ (False, False), (False, False), (False, True), (False, True), (True, False), (True, False), (True, True), (True, True), ], ) def test_init_assets_dir( tmp_path_factory: pytest.TempPathFactory, has_directory: bool, is_directory_string: bool ) -> None: subdirectory = "subdirectory" tmp_path = tmp_path_factory.mktemp("test") / subdirectory directory: Optional[StrPath] if has_directory: directory = str(tmp_path) if is_directory_string else tmp_path result = init_assets_dir(directory=directory) assert result == directory assert subdirectory in str(result), result assert ASSETS_CACHE_APPNAME not in str(result), result else: directory = None result = init_assets_dir(directory=directory) assert result != directory, result assert subdirectory not in str(result), result assert type(result) is str, result assert ASSETS_CACHE_APPNAME in str(result), result Path(result).exists() Path(result).is_dir() @pytest.mark.parametrize( "exists,is_string", [ (False, False), (True, False), (False, True), (True, True), ], ) def test_remove_dir(tmp_path_factory: pytest.TempPathFactory, exists: bool, is_string: bool) -> None: subdirectory = "subdirectory" tmp_path = tmp_path_factory.mktemp("test") / subdirectory tmp_file = tmp_path / "file.txt" if exists: tmp_path.mkdir(parents=True, exist_ok=True) tmp_file.touch() assert tmp_path.exists() is exists assert tmp_path.is_dir() is exists assert tmp_file.exists() is exists assert tmp_file.is_file() is exists directory: StrPath = str(tmp_path) if is_string else tmp_path remove_dir(directory) assert not tmp_path.exists() assert not tmp_path.is_dir() assert not tmp_file.exists() assert not tmp_file.is_file()
datasets-server-main
libs/libcommon/tests/test_storage.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import json import os import random import time from datetime import datetime, timedelta from multiprocessing import Pool from pathlib import Path from typing import Optional from unittest.mock import patch import pytest import pytz from libcommon.constants import QUEUE_TTL_SECONDS from libcommon.queue import ( EmptyQueueError, JobDocument, JobTotalMetricDocument, Lock, Queue, lock, ) from libcommon.resources import QueueMongoResource from libcommon.utils import Priority, Status, get_datetime from .utils import assert_metric def get_old_datetime() -> datetime: # Beware: the TTL index is set to 10 minutes. So it will delete the finished jobs after 10 minutes. # We have to use a datetime that is not older than 10 minutes. return get_datetime() - timedelta(seconds=(QUEUE_TTL_SECONDS / 2)) @pytest.fixture(autouse=True) def queue_mongo_resource_autouse(queue_mongo_resource: QueueMongoResource) -> QueueMongoResource: return queue_mongo_resource def test_add_job() -> None: test_type = "test_type" test_dataset = "test_dataset" test_revision = "test_revision" test_difficulty = 50 # get the queue queue = Queue() assert JobTotalMetricDocument.objects().count() == 0 # add a job job1 = queue.add_job(job_type=test_type, dataset=test_dataset, revision=test_revision, difficulty=test_difficulty) assert_metric(job_type=test_type, status=Status.WAITING, total=1) # a second call adds a second waiting job job2 = queue.add_job(job_type=test_type, dataset=test_dataset, revision=test_revision, difficulty=test_difficulty) assert queue.is_job_in_process(job_type=test_type, dataset=test_dataset, revision=test_revision) assert_metric(job_type=test_type, status=Status.WAITING, total=2) # get and start a job the second one should have been picked job_info = queue.start_job() assert job2.reload().status == Status.STARTED assert job_info["type"] == test_type assert job_info["params"]["dataset"] == test_dataset assert job_info["params"]["revision"] == test_revision assert job_info["params"]["config"] is None assert job_info["params"]["split"] is None assert_metric(job_type=test_type, status=Status.WAITING, total=1) assert_metric(job_type=test_type, status=Status.STARTED, total=1) # and the first job should have been cancelled assert job1.reload().status == Status.CANCELLED assert queue.is_job_in_process(job_type=test_type, dataset=test_dataset, revision=test_revision) # adding the job while the first one has not finished yet adds another waiting job # (there are no limits to the number of waiting jobs) job3 = queue.add_job(job_type=test_type, dataset=test_dataset, revision=test_revision, difficulty=test_difficulty) assert job3.status == Status.WAITING assert_metric(job_type=test_type, status=Status.WAITING, total=2) assert_metric(job_type=test_type, status=Status.STARTED, total=1) with pytest.raises(EmptyQueueError): # but: it's not possible to start two jobs with the same arguments queue.start_job() # finish the first job queue.finish_job(job_id=job_info["job_id"], is_success=True) # the queue is not empty assert queue.is_job_in_process(job_type=test_type, dataset=test_dataset, revision=test_revision) assert_metric(job_type=test_type, status=Status.WAITING, total=2) assert_metric(job_type=test_type, status=Status.STARTED, total=0) assert_metric(job_type=test_type, status=Status.SUCCESS, total=1) # process the third job job_info = queue.start_job() other_job_id = ("1" if job_info["job_id"][0] == "0" else "0") + job_info["job_id"][1:] assert_metric(job_type=test_type, status=Status.WAITING, total=1) assert_metric(job_type=test_type, status=Status.STARTED, total=1) assert_metric(job_type=test_type, status=Status.SUCCESS, total=1) # trying to finish another job fails silently (with a log) queue.finish_job(job_id=other_job_id, is_success=True) assert_metric(job_type=test_type, status=Status.WAITING, total=1) assert_metric(job_type=test_type, status=Status.STARTED, total=1) assert_metric(job_type=test_type, status=Status.SUCCESS, total=1) # finish it queue.finish_job(job_id=job_info["job_id"], is_success=True) assert_metric(job_type=test_type, status=Status.WAITING, total=1) assert_metric(job_type=test_type, status=Status.STARTED, total=0) assert_metric(job_type=test_type, status=Status.SUCCESS, total=2) # the queue is empty assert not queue.is_job_in_process(job_type=test_type, dataset=test_dataset, revision=test_revision) with pytest.raises(EmptyQueueError): # an error is raised if we try to start a job queue.start_job() @pytest.mark.parametrize( "jobs_ids,job_ids_to_cancel,expected_canceled_number", [ (["a", "b"], ["a", "b"], 2), (["a", "b"], ["a"], 1), (["a"], ["a", "b"], 1), ], ) def test_cancel_jobs_by_job_id( jobs_ids: list[str], job_ids_to_cancel: list[str], expected_canceled_number: int ) -> None: test_type = "test_type" test_difficulty = 50 queue = Queue() # we cannot really set job_id, so, we create jobs and get their job id, using dataset as a proxy real_job_ids_to_cancel = [] waiting_jobs = 0 for job_id in list(set(jobs_ids + job_ids_to_cancel)): job = queue.add_job(job_type=test_type, dataset=job_id, revision="test_revision", difficulty=test_difficulty) waiting_jobs += 1 assert_metric(job_type=test_type, status=Status.WAITING, total=waiting_jobs) if job_id in job_ids_to_cancel: real_job_id = job.info()["job_id"] real_job_ids_to_cancel.append(real_job_id) if job_id not in jobs_ids: # delete the job, in order to simulate that it did never exist (we just wanted a valid job_id) job.delete() queue.start_job() assert_metric(job_type=test_type, status=Status.WAITING, total=1) assert_metric(job_type=test_type, status=Status.STARTED, total=1) canceled_number = queue.cancel_jobs_by_job_id(job_ids=real_job_ids_to_cancel) assert canceled_number == expected_canceled_number assert_metric(job_type=test_type, status=Status.CANCELLED, total=expected_canceled_number) def test_cancel_jobs_by_job_id_wrong_format() -> None: queue = Queue() assert queue.cancel_jobs_by_job_id(job_ids=["not_a_valid_job_id"]) == 0 assert JobTotalMetricDocument.objects().count() == 0 def check_job(queue: Queue, expected_dataset: str, expected_split: str, expected_priority: Priority) -> None: job_info = queue.start_job() assert job_info["params"]["dataset"] == expected_dataset assert job_info["params"]["split"] == expected_split assert job_info["priority"] == expected_priority def test_priority_logic_creation_order() -> None: test_type = "test_type" test_revision = "test_revision" test_difficulty = 50 queue = Queue() queue.add_job( job_type=test_type, dataset="dataset1", revision=test_revision, config="config", split="split1", difficulty=test_difficulty, ) queue.add_job( job_type=test_type, dataset="dataset1", revision=test_revision, config="config", split="split2", difficulty=test_difficulty, ) check_job(queue=queue, expected_dataset="dataset1", expected_split="split1", expected_priority=Priority.LOW) check_job(queue=queue, expected_dataset="dataset1", expected_split="split2", expected_priority=Priority.LOW) with pytest.raises(EmptyQueueError): queue.start_job() def test_priority_logic_started_jobs_per_dataset_order() -> None: test_type = "test_type" test_revision = "test_revision" test_difficulty = 50 queue = Queue() queue.add_job( job_type=test_type, dataset="dataset1", revision=test_revision, config="config", split="split1", difficulty=test_difficulty, ) queue.add_job( job_type=test_type, dataset="dataset1", revision=test_revision, config="config", split="split2", difficulty=test_difficulty, ) queue.add_job( job_type=test_type, dataset="dataset2", revision=test_revision, config="config", split="split1", difficulty=test_difficulty, ) check_job(queue=queue, expected_dataset="dataset1", expected_split="split1", expected_priority=Priority.LOW) check_job(queue=queue, expected_dataset="dataset2", expected_split="split1", expected_priority=Priority.LOW) # ^ before, even if the creation date is after, because the dataset is different and has no started job check_job(queue=queue, expected_dataset="dataset1", expected_split="split2", expected_priority=Priority.LOW) with pytest.raises(EmptyQueueError): queue.start_job() def test_priority_logic_started_jobs_per_namespace_order() -> None: test_type = "test_type" test_revision = "test_revision" test_difficulty = 50 queue = Queue() queue.add_job( job_type=test_type, dataset="org1/dataset1", revision=test_revision, config="config", split="split1", difficulty=test_difficulty, ) queue.add_job( job_type=test_type, dataset="org1/dataset2", revision=test_revision, config="config", split="split1", difficulty=test_difficulty, ) queue.add_job( job_type=test_type, dataset="org2/dataset2", revision=test_revision, config="config", split="split1", difficulty=test_difficulty, ) queue.add_job( job_type=test_type, dataset="no_org_dataset3", revision=test_revision, config="config", split="split1", difficulty=test_difficulty, ) check_job(queue=queue, expected_dataset="org1/dataset1", expected_split="split1", expected_priority=Priority.LOW) check_job(queue=queue, expected_dataset="org2/dataset2", expected_split="split1", expected_priority=Priority.LOW) # ^ before, even if the creation date is after, because the namespace is different and has no started job check_job(queue=queue, expected_dataset="no_org_dataset3", expected_split="split1", expected_priority=Priority.LOW) check_job(queue=queue, expected_dataset="org1/dataset2", expected_split="split1", expected_priority=Priority.LOW) with pytest.raises(EmptyQueueError): queue.start_job() def test_priority_logic_priority_order() -> None: test_type = "test_type" test_revision = "test_revision" test_difficulty = 50 queue = Queue() queue.add_job( job_type=test_type, dataset="dataset1", revision=test_revision, config="config", split="split1", difficulty=test_difficulty, ) queue.add_job( job_type=test_type, dataset="dataset2", revision=test_revision, config="config", split="split1", priority=Priority.NORMAL, difficulty=test_difficulty, ) check_job(queue=queue, expected_dataset="dataset2", expected_split="split1", expected_priority=Priority.NORMAL) # ^ before, even if the creation date is after, because the priority is higher check_job(queue=queue, expected_dataset="dataset1", expected_split="split1", expected_priority=Priority.LOW) with pytest.raises(EmptyQueueError): queue.start_job() @pytest.mark.parametrize( "job_types_blocked,job_types_only,should_raise", [ (None, None, False), (None, ["test_type"], False), (["other_type"], None, False), (["other_type"], ["test_type"], False), (None, ["other_type"], True), (["test_type"], None, True), (["test_type"], ["test_type"], True), (["other_type", "test_type"], None, True), (["other_type"], ["other_type"], True), (["other_type", "test_type"], ["other_type", "test_type"], True), ], ) def test_job_types_only( job_types_blocked: Optional[list[str]], job_types_only: Optional[list[str]], should_raise: bool ) -> None: job_type = "test_type" test_dataset = "test_dataset" test_revision = "test_revision" test_difficulty = 50 queue = Queue() queue.add_job( job_type=job_type, dataset=test_dataset, revision=test_revision, config=None, split=None, difficulty=test_difficulty, ) assert queue.is_job_in_process( job_type=job_type, dataset=test_dataset, revision=test_revision, config=None, split=None ) if should_raise: with pytest.raises(EmptyQueueError): queue.start_job(job_types_blocked=job_types_blocked, job_types_only=job_types_only) else: job_info = queue.start_job(job_types_blocked=job_types_blocked, job_types_only=job_types_only) assert job_info["params"]["dataset"] == test_dataset @pytest.mark.parametrize( "difficulty_min,difficulty_max,should_raise", [ (None, None, False), (None, 60, False), (40, None, False), (40, 60, False), (50, 50, False), (None, 40, True), (60, None, True), (60, 60, True), (40, 40, True), (55, 60, True), (40, 45, True), ], ) def test_difficulty(difficulty_min: Optional[int], difficulty_max: Optional[int], should_raise: bool) -> None: job_type = "test_type" test_dataset = "test_dataset" test_revision = "test_revision" test_difficulty = 50 queue = Queue() queue.add_job( job_type=job_type, dataset=test_dataset, revision=test_revision, config=None, split=None, difficulty=test_difficulty, ) assert queue.is_job_in_process( job_type=job_type, dataset=test_dataset, revision=test_revision, config=None, split=None ) if should_raise: with pytest.raises(EmptyQueueError): queue.start_job(difficulty_max=difficulty_max, difficulty_min=difficulty_min) else: job_info = queue.start_job(difficulty_max=difficulty_max, difficulty_min=difficulty_min) assert job_info["params"]["dataset"] == test_dataset def test_count_by_status() -> None: test_type = "test_type" test_other_type = "test_other_type" test_dataset = "test_dataset" test_revision = "test_revision" test_difficulty = 50 queue = Queue() expected_empty = {"waiting": 0, "started": 0, "success": 0, "error": 0, "cancelled": 0} expected_one_waiting = {"waiting": 1, "started": 0, "success": 0, "error": 0, "cancelled": 0} assert queue.get_jobs_count_by_status(job_type=test_type) == expected_empty assert queue.get_jobs_count_by_status(job_type=test_other_type) == expected_empty queue.add_job(job_type=test_type, dataset=test_dataset, revision=test_revision, difficulty=test_difficulty) assert queue.get_jobs_count_by_status(job_type=test_type) == expected_one_waiting assert queue.get_jobs_count_by_status(job_type=test_other_type) == expected_empty queue.add_job(job_type=test_other_type, dataset=test_dataset, revision=test_revision, difficulty=test_difficulty) assert queue.get_jobs_count_by_status(job_type=test_type) == expected_one_waiting assert queue.get_jobs_count_by_status(job_type=test_other_type) == expected_one_waiting def test_get_dataset_pending_jobs_for_type() -> None: queue = Queue() test_type = "test_type" test_difficulty = 50 test_another_type = "test_another_type" test_dataset = "test_dataset" test_another_dataset = "test_another_dataset" test_revision = "test_revision" test_configs_waiting = ["test_config_waiting_1", "test_config_waiting_2"] test_configs_started = ["test_config_started_1", "test_config_started_2"] test_configs_finished = ["test_config_finished_1", "test_config_finished_2"] for config in test_configs_finished: for dataset in [test_dataset, test_another_dataset]: for job_type in [test_type, test_another_type]: queue.add_job( job_type=job_type, dataset=dataset, revision=test_revision, config=config, split=None, difficulty=test_difficulty, ) job_info = queue.start_job() queue.finish_job(job_info["job_id"], is_success=True) for config in test_configs_started: for dataset in [test_dataset, test_another_dataset]: for job_type in [test_type, test_another_type]: queue.add_job( job_type=job_type, dataset=dataset, revision=test_revision, config=config, split=None, difficulty=test_difficulty, ) job_info = queue.start_job() for config in test_configs_waiting: for dataset in [test_dataset, test_another_dataset]: for job_type in [test_type, test_another_type]: queue.add_job( job_type=job_type, dataset=dataset, revision=test_revision, config=config, split=None, difficulty=test_difficulty, ) result = queue.get_dataset_pending_jobs_for_type(dataset=test_dataset, job_type=test_type) assert len(result) == len(test_configs_waiting) + len(test_configs_started) for r in result: assert r["dataset"] == test_dataset assert r["type"] == test_type assert r["status"] in [Status.WAITING.value, Status.STARTED.value] def test_queue_heartbeat() -> None: job_type = "test_type" test_difficulty = 50 queue = Queue() job = queue.add_job( job_type=job_type, dataset="dataset1", revision="revision", config="config", split="split1", difficulty=test_difficulty, ) queue.start_job(job_types_only=[job_type]) assert job.last_heartbeat is None queue.heartbeat(job.pk) job.reload() assert job.last_heartbeat is not None last_heartbeat_datetime = pytz.UTC.localize(job.last_heartbeat) assert last_heartbeat_datetime >= get_datetime() - timedelta(seconds=1) def test_queue_get_zombies() -> None: job_type = "test_type" test_difficulty = 50 queue = Queue() with patch("libcommon.queue.get_datetime", get_old_datetime): zombie = queue.add_job( job_type=job_type, dataset="dataset1", revision="revision", config="config", split="split1", difficulty=test_difficulty, ) queue.start_job(job_types_only=[job_type]) queue.add_job( job_type=job_type, dataset="dataset1", revision="revision", config="config", split="split2", difficulty=test_difficulty, ) queue.start_job(job_types_only=[job_type]) assert queue.get_zombies(max_seconds_without_heartbeat=10) == [zombie.info()] assert queue.get_zombies(max_seconds_without_heartbeat=-1) == [] assert queue.get_zombies(max_seconds_without_heartbeat=0) == [] assert queue.get_zombies(max_seconds_without_heartbeat=9999999) == [] def test_has_ttl_index_on_finished_at_field() -> None: ttl_index_names = [ name for name, value in JobDocument._get_collection().index_information().items() if "expireAfterSeconds" in value and "key" in value and value["key"] == [("finished_at", 1)] ] assert len(ttl_index_names) == 1 ttl_index_name = ttl_index_names[0] assert ttl_index_name == "finished_at_1" assert JobDocument._get_collection().index_information()[ttl_index_name]["expireAfterSeconds"] == QUEUE_TTL_SECONDS def random_sleep() -> None: MAX_SLEEP_MS = 40 time.sleep(MAX_SLEEP_MS / 1000 * random.random()) def increment(tmp_file: Path) -> None: random_sleep() with open(tmp_file, "r") as f: current = int(f.read() or 0) random_sleep() with open(tmp_file, "w") as f: f.write(str(current + 1)) random_sleep() def locked_increment(tmp_file: Path) -> None: sleeps = [0.05, 0.05, 0.05, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5] with lock(key="test_lock", owner=str(os.getpid()), sleeps=sleeps): increment(tmp_file) def test_lock(tmp_path_factory: pytest.TempPathFactory, queue_mongo_resource: QueueMongoResource) -> None: tmp_file = Path(tmp_path_factory.mktemp("test_lock") / "tmp.txt") tmp_file.touch() max_parallel_jobs = 4 num_jobs = 42 with Pool(max_parallel_jobs, initializer=queue_mongo_resource.allocate) as pool: pool.map(locked_increment, [tmp_file] * num_jobs) expected = num_jobs with open(tmp_file, "r") as f: assert int(f.read()) == expected Lock.objects(key="test_lock").delete() def git_branch_locked_increment(tmp_file: Path) -> None: sleeps = [0.05, 0.05, 0.05, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5] dataset = "dataset" branch = "refs/convert/parquet" with lock.git_branch(dataset=dataset, branch=branch, owner=str(os.getpid()), sleeps=sleeps): increment(tmp_file) def test_lock_git_branch(tmp_path_factory: pytest.TempPathFactory, queue_mongo_resource: QueueMongoResource) -> None: tmp_file = Path(tmp_path_factory.mktemp("test_lock") / "tmp.txt") tmp_file.touch() max_parallel_jobs = 5 num_jobs = 43 with Pool(max_parallel_jobs, initializer=queue_mongo_resource.allocate) as pool: pool.map(git_branch_locked_increment, [tmp_file] * num_jobs) expected = num_jobs with open(tmp_file, "r") as f: assert int(f.read()) == expected assert Lock.objects().count() == 1 assert Lock.objects().get().key == json.dumps({"dataset": "dataset", "branch": "refs/convert/parquet"}) assert Lock.objects().get().owner is None Lock.objects().delete()
datasets-server-main
libs/libcommon/tests/test_queue.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from datetime import datetime from http import HTTPStatus from typing import Any, Optional from libcommon.orchestrator import DatasetBackfillPlan from libcommon.processing_graph import Artifact, ProcessingGraph from libcommon.queue import JobTotalMetricDocument, Queue from libcommon.simple_cache import upsert_response from libcommon.utils import JobInfo, Priority DATASET_NAME = "dataset" REVISION_NAME = "revision" CONFIG_NAME_1 = "config1" CONFIG_NAME_2 = "config2" CONFIG_NAMES = [CONFIG_NAME_1, CONFIG_NAME_2] CONFIG_NAMES_CONTENT = {"config_names": [{"config": config_name} for config_name in CONFIG_NAMES]} SPLIT_NAME_1 = "split1" SPLIT_NAME_2 = "split2" SPLIT_NAMES = [SPLIT_NAME_1, SPLIT_NAME_2] SPLIT_NAMES_CONTENT = { "splits": [{"dataset": DATASET_NAME, "config": CONFIG_NAME_1, "split": split_name} for split_name in SPLIT_NAMES] } CACHE_MAX_DAYS = 90 CACHE_KIND = "cache_kind" CONTENT_ERROR = {"error": "error"} JOB_TYPE = "job_type" DIFFICULTY = 50 STEP_DATASET_A = "dataset-a" STEP_CONFIG_B = "config-b" STEP_SPLIT_C = "split-c" PROCESSING_GRAPH = ProcessingGraph( processing_graph_specification={ STEP_DATASET_A: {"input_type": "dataset", "provides_dataset_config_names": True}, STEP_CONFIG_B: {"input_type": "config", "provides_config_split_names": True, "triggered_by": STEP_DATASET_A}, STEP_SPLIT_C: {"input_type": "split", "triggered_by": STEP_CONFIG_B}, } ) OTHER_REVISION_NAME = f"other_{REVISION_NAME}" CONFIG_NAME_1 = "config1" CONFIG_NAME_2 = "config2" CONFIG_NAMES = [CONFIG_NAME_1, CONFIG_NAME_2] CONFIG_NAMES_CONTENT = {"config_names": [{"config": config_name} for config_name in CONFIG_NAMES]} SPLIT_NAME_1 = "split1" SPLIT_NAME_2 = "split2" SPLIT_NAMES = [SPLIT_NAME_1, SPLIT_NAME_2] SPLIT_NAMES_CONTENT = { "splits": [{"dataset": DATASET_NAME, "config": CONFIG_NAME_1, "split": split_name} for split_name in SPLIT_NAMES] } STEP_DA = "dataset-a" STEP_DB = "dataset-b" STEP_DC = "dataset-c" STEP_DD = "dataset-d" STEP_DE = "dataset-e" STEP_DF = "dataset-f" STEP_DG = "dataset-g" STEP_DH = "dataset-h" STEP_DI = "dataset-i" ARTIFACT_DA = f"{STEP_DA},{DATASET_NAME},{REVISION_NAME}" ARTIFACT_DA_OTHER_REVISION = f"{STEP_DA},{DATASET_NAME},{OTHER_REVISION_NAME}" ARTIFACT_DB = f"{STEP_DB},{DATASET_NAME},{REVISION_NAME}" ARTIFACT_DC = f"{STEP_DC},{DATASET_NAME},{REVISION_NAME}" ARTIFACT_DD = f"{STEP_DD},{DATASET_NAME},{REVISION_NAME}" ARTIFACT_DE = f"{STEP_DE},{DATASET_NAME},{REVISION_NAME}" ARTIFACT_DF = f"{STEP_DF},{DATASET_NAME},{REVISION_NAME}" ARTIFACT_DG = f"{STEP_DG},{DATASET_NAME},{REVISION_NAME}" ARTIFACT_DH = f"{STEP_DH},{DATASET_NAME},{REVISION_NAME}" ARTIFACT_DI = f"{STEP_DI},{DATASET_NAME},{REVISION_NAME}" STEP_CA = "config-a" STEP_CB = "config-b" ARTIFACT_CA_1 = f"{STEP_CA},{DATASET_NAME},{REVISION_NAME},{CONFIG_NAME_1}" ARTIFACT_CA_2 = f"{STEP_CA},{DATASET_NAME},{REVISION_NAME},{CONFIG_NAME_2}" ARTIFACT_CB_1 = f"{STEP_CB},{DATASET_NAME},{REVISION_NAME},{CONFIG_NAME_1}" ARTIFACT_CB_2 = f"{STEP_CB},{DATASET_NAME},{REVISION_NAME},{CONFIG_NAME_2}" STEP_SA = "split-a" ARTIFACT_SA_1_1 = f"{STEP_SA},{DATASET_NAME},{REVISION_NAME},{CONFIG_NAME_1},{SPLIT_NAME_1}" ARTIFACT_SA_1_2 = f"{STEP_SA},{DATASET_NAME},{REVISION_NAME},{CONFIG_NAME_1},{SPLIT_NAME_2}" ARTIFACT_SA_2_1 = f"{STEP_SA},{DATASET_NAME},{REVISION_NAME},{CONFIG_NAME_2},{SPLIT_NAME_1}" ARTIFACT_SA_2_2 = f"{STEP_SA},{DATASET_NAME},{REVISION_NAME},{CONFIG_NAME_2},{SPLIT_NAME_2}" # Graph to test only one step # # +-------+ # | DA | # +-------+ # PROCESSING_GRAPH_ONE_STEP = ProcessingGraph( processing_graph_specification={ STEP_DA: {"input_type": "dataset"}, } ) # Graph to test siblings, children, grand-children, multiple parents # # +-------+ +-------+ # | DA | | DB | # +-------+ +-------+ # | | # | +----+ # | | | # +-------+ | # | DC | | # +-------+ | # | | # | +----+ # | | # +-------+ # | DD | # +-------+ # PROCESSING_GRAPH_GENEALOGY = ProcessingGraph( processing_graph_specification={ STEP_DA: {"input_type": "dataset", "provides_dataset_config_names": True}, STEP_DB: {"input_type": "dataset"}, # sibling STEP_DC: {"input_type": "dataset", "triggered_by": [STEP_DA, STEP_DB]}, # child STEP_DD: {"input_type": "dataset", "triggered_by": [STEP_DB, STEP_DC]}, # grandchild } ) # Graph to test fan-in, fan-out # # +-------+ # | DA | # +-------+ # | # ⩚ # +-------+ # | CA | # +-------+ # | ⩛ # | +-----+ # ⩚ | # +-------+ +-------+ # | SA | | DE | # +-------+ +-------+ # ⩛ ⩛ # | +-----+ # | | # +-------+ +-------+ # | CB | | DF | # +-------+ +-------+ # PROCESSING_GRAPH_FAN_IN_OUT = ProcessingGraph( processing_graph_specification={ STEP_DA: {"input_type": "dataset", "provides_dataset_config_names": True}, STEP_CA: { "input_type": "config", "triggered_by": STEP_DA, "provides_config_split_names": True, }, # fan-out (D->C) STEP_SA: {"input_type": "split", "triggered_by": STEP_CA}, # fan-out (C -> S) # is fan-out (D -> S) possible? (we need the list of split names anyway) STEP_DE: {"input_type": "dataset", "triggered_by": STEP_CA}, # fan-in (C -> D) STEP_CB: {"input_type": "config", "triggered_by": STEP_SA}, # fan-in (S -> C) STEP_DF: {"input_type": "dataset", "triggered_by": STEP_SA}, # fan-in (S -> D) } ) # Graph to test parallel steps (ie. two steps that compute the same thing, and abort if the other already exists) # # +-------+ # | DA | # +-------+ # | # +---------+ # | | # +-------+ +-------+ # | DG | | DH | # +-------+ +-------+ # | | # +---------+ # | # +-------+ # | DI | # +-------+ # PROCESSING_GRAPH_PARALLEL = ProcessingGraph( processing_graph_specification={ STEP_DA: {"input_type": "dataset", "provides_dataset_config_names": True}, STEP_DG: {"input_type": "dataset", "triggered_by": STEP_DA}, STEP_DH: {"input_type": "dataset", "triggered_by": STEP_DA}, STEP_DI: {"input_type": "dataset", "triggered_by": [STEP_DG, STEP_DH]}, } ) JOB_RUNNER_VERSION = 1 def get_dataset_backfill_plan( processing_graph: ProcessingGraph, dataset: str = DATASET_NAME, revision: str = REVISION_NAME, error_codes_to_retry: Optional[list[str]] = None, cache_max_days: Optional[int] = None, ) -> DatasetBackfillPlan: return DatasetBackfillPlan( dataset=dataset, revision=revision, processing_graph=processing_graph, error_codes_to_retry=error_codes_to_retry, cache_max_days=CACHE_MAX_DAYS if cache_max_days is None else cache_max_days, ) def assert_equality(value: Any, expected: Any, context: Optional[str] = None) -> None: report = {"expected": expected, "got": value} if context is not None: report["additional"] = context assert value == expected, report def assert_dataset_backfill_plan( dataset_backfill_plan: DatasetBackfillPlan, cache_status: dict[str, list[str]], queue_status: dict[str, list[str]], tasks: list[str], config_names: Optional[list[str]] = None, split_names_in_first_config: Optional[list[str]] = None, ) -> None: if config_names is not None: assert_equality(dataset_backfill_plan.dataset_state.config_names, config_names, context="config_names") assert_equality( len(dataset_backfill_plan.dataset_state.config_states), len(config_names), context="config_states" ) if len(config_names) and split_names_in_first_config is not None: assert_equality( dataset_backfill_plan.dataset_state.config_states[0].split_names, split_names_in_first_config, context="split_names", ) computed_cache_status = dataset_backfill_plan.cache_status.as_response() for key, value in cache_status.items(): assert_equality(computed_cache_status[key], sorted(value), key) assert_equality( dataset_backfill_plan.get_queue_status().as_response(), {key: sorted(value) for key, value in queue_status.items()}, context="queue_status", ) assert_equality(dataset_backfill_plan.as_response(), sorted(tasks), context="tasks") def put_cache( step: str, dataset: str, revision: str, config: Optional[str] = None, split: Optional[str] = None, error_code: Optional[str] = None, use_old_job_runner_version: Optional[bool] = False, updated_at: Optional[datetime] = None, ) -> None: if not config: if not step.startswith("dataset-"): raise ValueError("Unexpected artifact: should start with dataset-") content = CONFIG_NAMES_CONTENT config = None split = None elif not split: if not step.startswith("config-"): raise ValueError("Unexpected artifact: should start with config-") content = SPLIT_NAMES_CONTENT split = None else: if not step.startswith("split-"): raise ValueError("Unexpected artifact: should start with split-") content = {} if error_code: http_status = HTTPStatus.INTERNAL_SERVER_ERROR content = {} else: http_status = HTTPStatus.OK upsert_response( kind=step, dataset=dataset, config=config, split=split, content=content, http_status=http_status, job_runner_version=JOB_RUNNER_VERSION - 1 if use_old_job_runner_version else JOB_RUNNER_VERSION, dataset_git_revision=revision, error_code=error_code, updated_at=updated_at, ) def process_next_job() -> None: job_info = Queue().start_job() put_cache( step=job_info["type"], dataset=job_info["params"]["dataset"], revision=job_info["params"]["revision"], config=job_info["params"]["config"], split=job_info["params"]["split"], ) Queue().finish_job(job_id=job_info["job_id"], is_success=True) def process_all_jobs() -> None: runs = 100 try: while runs > 0: runs -= 1 process_next_job() except Exception: return def compute_all( processing_graph: ProcessingGraph, dataset: str = DATASET_NAME, revision: str = REVISION_NAME, error_codes_to_retry: Optional[list[str]] = None, ) -> None: dataset_backfill_plan = get_dataset_backfill_plan(processing_graph, dataset, revision, error_codes_to_retry) max_runs = 100 while len(dataset_backfill_plan.tasks) > 0 and max_runs >= 0: if max_runs == 0: raise ValueError("Too many runs") max_runs -= 1 dataset_backfill_plan.run() for task in dataset_backfill_plan.tasks: task_type, sep, num = task.id.partition(",") if sep is None: raise ValueError(f"Unexpected task id {task.id}: should contain a comma") if task_type == "CreateJobs": process_all_jobs() dataset_backfill_plan = get_dataset_backfill_plan(processing_graph, dataset, revision, error_codes_to_retry) def artifact_id_to_job_info(artifact_id: str) -> JobInfo: dataset, revision, config, split, processing_step_name = Artifact.parse_id(artifact_id) return JobInfo( job_id="job_id", params={ "dataset": dataset, "config": config, "split": split, "revision": revision, }, type=processing_step_name, priority=Priority.NORMAL, difficulty=DIFFICULTY, ) def assert_metric(job_type: str, status: str, total: int) -> None: metric = JobTotalMetricDocument.objects(job_type=job_type, status=status).first() assert metric is not None assert metric.total == total
datasets-server-main
libs/libcommon/tests/utils.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import pytest from libcommon.dataset import get_dataset_git_revision from libcommon.exceptions import DatasetInfoHubRequestError @pytest.mark.real_dataset def test_get_dataset_git_revision() -> None: dataset = "glue" hf_endpoint = "https://huggingface.co" hf_token = None get_dataset_git_revision(dataset, hf_endpoint, hf_token) @pytest.mark.real_dataset def test_get_dataset_git_revision_timeout() -> None: dataset = "glue" hf_endpoint = "https://huggingface.co" hf_token = None with pytest.raises(DatasetInfoHubRequestError): get_dataset_git_revision(dataset, hf_endpoint, hf_token, hf_timeout_seconds=0.01)
datasets-server-main
libs/libcommon/tests/test_dataset.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from libcommon.config import LogConfig def test_log_config() -> None: log_config = LogConfig() assert log_config.level == 20
datasets-server-main
libs/libcommon/tests/test_config.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from datetime import datetime from typing import Optional import pytest from libcommon.processing_graph import ProcessingGraph from libcommon.queue import Queue from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.utils import Priority, Status, get_datetime from .utils import ( ARTIFACT_CA_1, ARTIFACT_CA_2, ARTIFACT_CB_1, ARTIFACT_CB_2, ARTIFACT_DA, ARTIFACT_DA_OTHER_REVISION, ARTIFACT_DB, ARTIFACT_DC, ARTIFACT_DD, ARTIFACT_DE, ARTIFACT_DF, ARTIFACT_DG, ARTIFACT_DH, ARTIFACT_DI, ARTIFACT_SA_1_1, ARTIFACT_SA_1_2, ARTIFACT_SA_2_1, ARTIFACT_SA_2_2, CONFIG_NAME_1, CONFIG_NAMES, DATASET_NAME, DIFFICULTY, OTHER_REVISION_NAME, PROCESSING_GRAPH_FAN_IN_OUT, PROCESSING_GRAPH_GENEALOGY, PROCESSING_GRAPH_ONE_STEP, PROCESSING_GRAPH_PARALLEL, REVISION_NAME, SPLIT_NAME_1, SPLIT_NAMES, STEP_CA, STEP_DA, STEP_DD, STEP_DI, STEP_SA, assert_dataset_backfill_plan, compute_all, get_dataset_backfill_plan, process_all_jobs, process_next_job, put_cache, ) @pytest.fixture(autouse=True) def queue_mongo_resource_autouse(queue_mongo_resource: QueueMongoResource) -> QueueMongoResource: return queue_mongo_resource @pytest.fixture(autouse=True) def cache_mongo_resource_autouse(cache_mongo_resource: CacheMongoResource) -> CacheMongoResource: return cache_mongo_resource @pytest.mark.parametrize( "processing_graph,cache_is_empty", [ (PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DA, ARTIFACT_DB, ARTIFACT_DC, ARTIFACT_DD]), (PROCESSING_GRAPH_FAN_IN_OUT, [ARTIFACT_DA, ARTIFACT_DE, ARTIFACT_DF]), (PROCESSING_GRAPH_PARALLEL, [ARTIFACT_DA, ARTIFACT_DG, ARTIFACT_DH, ARTIFACT_DI]), ], ) def test_initial_state( processing_graph: ProcessingGraph, cache_is_empty: list[str], ) -> None: dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, config_names=[], split_names_in_first_config=[], cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": cache_is_empty, "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": [], }, queue_status={"in_process": []}, tasks=[f"CreateJobs,{len(cache_is_empty)}"], ) @pytest.mark.parametrize( "processing_graph,cache_is_empty", [ (PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DB, ARTIFACT_DC, ARTIFACT_DD]), ( PROCESSING_GRAPH_FAN_IN_OUT, [ARTIFACT_CA_1, ARTIFACT_CA_2, ARTIFACT_CB_1, ARTIFACT_CB_2, ARTIFACT_DE, ARTIFACT_DF], ), (PROCESSING_GRAPH_PARALLEL, [ARTIFACT_DG, ARTIFACT_DH, ARTIFACT_DI]), ], ) def test_da_is_computed( processing_graph: ProcessingGraph, cache_is_empty: list[str], ) -> None: put_cache(step=STEP_DA, dataset=DATASET_NAME, revision=REVISION_NAME) dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, config_names=CONFIG_NAMES, split_names_in_first_config=[], cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": cache_is_empty, "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": [ARTIFACT_DA], }, queue_status={"in_process": []}, tasks=[f"CreateJobs,{len(cache_is_empty)}"], ) @pytest.mark.parametrize( "processing_graph,cache_is_empty", [ ( PROCESSING_GRAPH_FAN_IN_OUT, [ARTIFACT_CA_2, ARTIFACT_CB_1, ARTIFACT_CB_2, ARTIFACT_DE, ARTIFACT_DF, ARTIFACT_SA_1_1, ARTIFACT_SA_1_2], ), ], ) def test_ca_1_is_computed( processing_graph: ProcessingGraph, cache_is_empty: list[str], ) -> None: put_cache(step=STEP_DA, dataset=DATASET_NAME, revision=REVISION_NAME) put_cache(step=STEP_CA, dataset=DATASET_NAME, revision=REVISION_NAME, config=CONFIG_NAME_1) dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, config_names=CONFIG_NAMES, split_names_in_first_config=SPLIT_NAMES, cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": cache_is_empty, "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": [ARTIFACT_CA_1, ARTIFACT_DA], }, queue_status={"in_process": []}, tasks=[f"CreateJobs,{len(cache_is_empty)}"], ) @pytest.mark.parametrize( "processing_graph,new_1,in_process_2,new_2", [ ( PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DA, ARTIFACT_DB, ARTIFACT_DC, ARTIFACT_DD], [ARTIFACT_DB, ARTIFACT_DC, ARTIFACT_DD], [], ), ( PROCESSING_GRAPH_FAN_IN_OUT, [ARTIFACT_DA, ARTIFACT_DE, ARTIFACT_DF], [ARTIFACT_DE, ARTIFACT_DF], [ARTIFACT_CA_1, ARTIFACT_CA_2, ARTIFACT_CB_1, ARTIFACT_CB_2], ), ( PROCESSING_GRAPH_PARALLEL, [ARTIFACT_DA, ARTIFACT_DG, ARTIFACT_DH, ARTIFACT_DI], [ARTIFACT_DG, ARTIFACT_DH, ARTIFACT_DI], [], ), ], ) def test_plan_one_job_creation_and_termination( processing_graph: ProcessingGraph, new_1: list[str], in_process_2: list[str], new_2: list[str] ) -> None: dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, config_names=[], split_names_in_first_config=[], cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": new_1, "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": [], }, queue_status={"in_process": []}, tasks=[f"CreateJobs,{len(new_1)}"], ) dataset_backfill_plan.run() dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, config_names=[], split_names_in_first_config=[], cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": new_1, "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": [], }, queue_status={"in_process": new_1}, tasks=[], ) process_next_job() dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, config_names=CONFIG_NAMES, split_names_in_first_config=[], cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": sorted(in_process_2 + new_2), "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": [ARTIFACT_DA], }, queue_status={"in_process": in_process_2}, tasks=[f"CreateJobs,{len(new_2)}"] if new_2 else [], ) @pytest.mark.parametrize( "processing_graph,to_backfill", [ ( PROCESSING_GRAPH_GENEALOGY, [{ARTIFACT_DA, ARTIFACT_DB, ARTIFACT_DC, ARTIFACT_DD}, set()], ), ( PROCESSING_GRAPH_FAN_IN_OUT, [ {ARTIFACT_DA, ARTIFACT_DE, ARTIFACT_DF}, {ARTIFACT_CA_1, ARTIFACT_CA_2, ARTIFACT_CB_1, ARTIFACT_CB_2}, {ARTIFACT_SA_1_1, ARTIFACT_SA_1_2, ARTIFACT_SA_2_1, ARTIFACT_SA_2_2, ARTIFACT_DE}, {ARTIFACT_CB_1, ARTIFACT_CB_2, ARTIFACT_DF}, set(), ], ), (PROCESSING_GRAPH_PARALLEL, [{ARTIFACT_DA, ARTIFACT_DG, ARTIFACT_DH, ARTIFACT_DI}, set()]), ], ) def test_plan_all_job_creation_and_termination(processing_graph: ProcessingGraph, to_backfill: list[set[str]]) -> None: previous_artifacts: set[str] = set() for artifacts_to_backfill in to_backfill: is_empty = sorted(artifacts_to_backfill - previous_artifacts) is_outdated_by_parent = sorted(artifacts_to_backfill.intersection(previous_artifacts)) in_process = sorted(is_empty + is_outdated_by_parent) up_to_date = sorted(previous_artifacts - artifacts_to_backfill) previous_artifacts = artifacts_to_backfill.union(previous_artifacts) dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": is_outdated_by_parent, "cache_is_empty": is_empty, "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": up_to_date, }, queue_status={"in_process": []}, tasks=[f"CreateJobs,{len(in_process)}"] if in_process else [], ) dataset_backfill_plan.run() dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": is_outdated_by_parent, "cache_is_empty": is_empty, "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": up_to_date, }, queue_status={"in_process": in_process}, tasks=[], ) process_all_jobs() @pytest.mark.parametrize( "processing_graph,up_to_date", [ (PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DA, ARTIFACT_DB, ARTIFACT_DC, ARTIFACT_DD]), ( PROCESSING_GRAPH_FAN_IN_OUT, [ ARTIFACT_CA_1, ARTIFACT_CA_2, ARTIFACT_CB_1, ARTIFACT_CB_2, ARTIFACT_DA, ARTIFACT_DE, ARTIFACT_DF, ARTIFACT_SA_1_1, ARTIFACT_SA_1_2, ARTIFACT_SA_2_1, ARTIFACT_SA_2_2, ], ), (PROCESSING_GRAPH_PARALLEL, [ARTIFACT_DA, ARTIFACT_DG, ARTIFACT_DH, ARTIFACT_DI]), ], ) def test_plan_compute_all(processing_graph: ProcessingGraph, up_to_date: list[str]) -> None: compute_all(processing_graph=processing_graph) dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": [], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": up_to_date, }, queue_status={"in_process": []}, tasks=[], ) @pytest.mark.parametrize( "processing_graph,up_to_date,is_outdated_by_parent", [ (PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DB, ARTIFACT_DD], [ARTIFACT_DC]), (PROCESSING_GRAPH_FAN_IN_OUT, [ARTIFACT_DE, ARTIFACT_DF], []), (PROCESSING_GRAPH_PARALLEL, [ARTIFACT_DI], [ARTIFACT_DG, ARTIFACT_DH]), ], ) def test_plan_retry_error_and_outdated_by_parent( processing_graph: ProcessingGraph, up_to_date: list[str], is_outdated_by_parent: list[str] ) -> None: error_code = "ERROR_CODE_TO_RETRY" error_codes_to_retry = [error_code] compute_all(processing_graph=processing_graph, error_codes_to_retry=error_codes_to_retry) put_cache(step=STEP_DA, dataset=DATASET_NAME, revision=REVISION_NAME, error_code=error_code) # in the case of PROCESSING_GRAPH_FAN_IN_OUT: the config names do not exist anymore: # the cache entries (also the jobs, if any - not here) should be deleted. # they are still here, and haunting the database # TODO: Not supported yet dataset_backfill_plan = get_dataset_backfill_plan( processing_graph=processing_graph, error_codes_to_retry=error_codes_to_retry ) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, config_names=[], cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": is_outdated_by_parent, "cache_is_empty": [], "cache_is_error_to_retry": [ARTIFACT_DA], "cache_is_job_runner_obsolete": [], "up_to_date": up_to_date, }, queue_status={"in_process": []}, tasks=[f"CreateJobs,{len(is_outdated_by_parent) + 1}"], ) @pytest.mark.parametrize( "days_ago,is_old", [(10, False), (30, True)], ) def test_plan_old(days_ago: int, is_old: bool) -> None: compute_all(processing_graph=PROCESSING_GRAPH_ONE_STEP) CACHE_MAX_DAYS = 20 put_cache(step=STEP_DA, dataset=DATASET_NAME, revision=REVISION_NAME, updated_at=get_datetime(days_ago)) dataset_backfill_plan = get_dataset_backfill_plan( processing_graph=PROCESSING_GRAPH_ONE_STEP, cache_max_days=CACHE_MAX_DAYS ) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [ARTIFACT_DA] if is_old else [], "cache_is_outdated_by_parent": [], "cache_is_empty": [], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": [] if is_old else [ARTIFACT_DA], }, queue_status={"in_process": []}, tasks=["CreateJobs,1"] if is_old else [], ) @pytest.mark.parametrize( "processing_graph,up_to_date,is_outdated_by_parent", [ (PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DA, ARTIFACT_DB, ARTIFACT_DD], [ARTIFACT_DC]), ( PROCESSING_GRAPH_FAN_IN_OUT, [ ARTIFACT_CB_1, ARTIFACT_CB_2, ARTIFACT_DA, ARTIFACT_DE, ARTIFACT_DF, ARTIFACT_SA_1_1, ARTIFACT_SA_1_2, ARTIFACT_SA_2_1, ARTIFACT_SA_2_2, ], [ARTIFACT_CA_1, ARTIFACT_CA_2], ), (PROCESSING_GRAPH_PARALLEL, [ARTIFACT_DA, ARTIFACT_DI], [ARTIFACT_DG, ARTIFACT_DH]), ], ) def test_plan_outdated_by_parent( processing_graph: ProcessingGraph, up_to_date: list[str], is_outdated_by_parent: list[str] ) -> None: compute_all(processing_graph=processing_graph) put_cache(step=STEP_DA, dataset=DATASET_NAME, revision=REVISION_NAME) dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": is_outdated_by_parent, "cache_is_empty": [], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": up_to_date, }, queue_status={"in_process": []}, tasks=[f"CreateJobs,{len(is_outdated_by_parent)}"], ) @pytest.mark.parametrize( "processing_graph,up_to_date,is_outdated_by_parent", [ (PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DB, ARTIFACT_DD], [ARTIFACT_DC]), ( PROCESSING_GRAPH_FAN_IN_OUT, [ ARTIFACT_CB_1, ARTIFACT_CB_2, ARTIFACT_DE, ARTIFACT_DF, ARTIFACT_SA_1_1, ARTIFACT_SA_1_2, ARTIFACT_SA_2_1, ARTIFACT_SA_2_2, ], [ARTIFACT_CA_1, ARTIFACT_CA_2], ), (PROCESSING_GRAPH_PARALLEL, [ARTIFACT_DI], [ARTIFACT_DG, ARTIFACT_DH]), ], ) def test_plan_job_runner_version_and_outdated_by_parent( processing_graph: ProcessingGraph, up_to_date: list[str], is_outdated_by_parent: list[str] ) -> None: compute_all(processing_graph=processing_graph) put_cache(step=STEP_DA, dataset=DATASET_NAME, revision=REVISION_NAME, use_old_job_runner_version=True) dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": is_outdated_by_parent, "cache_is_empty": [], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [ARTIFACT_DA], "up_to_date": up_to_date, }, queue_status={"in_process": []}, tasks=[f"CreateJobs,{len(is_outdated_by_parent) + 1}"], ) @pytest.mark.parametrize( "processing_graph,up_to_date,is_outdated_by_parent", [ (PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DB, ARTIFACT_DD], [ARTIFACT_DC]), ( PROCESSING_GRAPH_FAN_IN_OUT, [ ARTIFACT_CB_1, ARTIFACT_CB_2, ARTIFACT_DE, ARTIFACT_DF, ARTIFACT_SA_1_1, ARTIFACT_SA_1_2, ARTIFACT_SA_2_1, ARTIFACT_SA_2_2, ], [ARTIFACT_CA_1, ARTIFACT_CA_2], ), (PROCESSING_GRAPH_PARALLEL, [ARTIFACT_DI], [ARTIFACT_DG, ARTIFACT_DH]), ], ) def test_plan_git_revision_and_outdated_by_parent( processing_graph: ProcessingGraph, up_to_date: list[str], is_outdated_by_parent: list[str] ) -> None: compute_all(processing_graph=processing_graph) put_cache(step=STEP_DA, dataset=DATASET_NAME, revision=OTHER_REVISION_NAME) dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, cache_status={ "cache_has_different_git_revision": [ARTIFACT_DA], "cache_is_old": [], "cache_is_outdated_by_parent": is_outdated_by_parent, "cache_is_empty": [], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": up_to_date, }, queue_status={"in_process": []}, tasks=[f"CreateJobs,{len(is_outdated_by_parent) + 1}"], ) @pytest.mark.parametrize( "processing_graph,up_to_date,is_outdated_by_parent", [ ( PROCESSING_GRAPH_FAN_IN_OUT, [ ARTIFACT_CA_1, ARTIFACT_CA_2, ARTIFACT_CB_2, ARTIFACT_DA, ARTIFACT_DE, ARTIFACT_SA_1_1, ARTIFACT_SA_1_2, ARTIFACT_SA_2_1, ARTIFACT_SA_2_2, ], [ ARTIFACT_CB_1, ARTIFACT_DF, ], ), ], ) def test_plan_fan_in_updated( processing_graph: ProcessingGraph, up_to_date: list[str], is_outdated_by_parent: list[str] ) -> None: compute_all(processing_graph=processing_graph) put_cache(step=STEP_SA, dataset=DATASET_NAME, revision=REVISION_NAME, config=CONFIG_NAME_1, split=SPLIT_NAME_1) dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": is_outdated_by_parent, "cache_is_empty": [], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": up_to_date, }, queue_status={"in_process": []}, tasks=[f"CreateJobs,{len(is_outdated_by_parent)}"], ) @pytest.mark.parametrize( "processing_graph,initial,up_to_date,is_empty,unknown", [ ( PROCESSING_GRAPH_GENEALOGY, [ARTIFACT_DA, ARTIFACT_DD], [ARTIFACT_DA, ARTIFACT_DD], [ARTIFACT_DB, ARTIFACT_DC], [], ), ( PROCESSING_GRAPH_FAN_IN_OUT, [ARTIFACT_CA_1], [], [ARTIFACT_DA, ARTIFACT_DE, ARTIFACT_DF], [ ARTIFACT_CA_1, ARTIFACT_CA_2, ARTIFACT_CB_1, ARTIFACT_CB_2, ARTIFACT_SA_1_1, ARTIFACT_SA_1_2, ARTIFACT_SA_2_1, ARTIFACT_SA_2_2, ], ), ( PROCESSING_GRAPH_FAN_IN_OUT, [ARTIFACT_SA_1_1], [], [ARTIFACT_DA, ARTIFACT_DE, ARTIFACT_DF], [ ARTIFACT_CA_1, ARTIFACT_CA_2, ARTIFACT_CB_1, ARTIFACT_CB_2, ARTIFACT_SA_1_1, ARTIFACT_SA_1_2, ARTIFACT_SA_2_1, ARTIFACT_SA_2_2, ], ), ( PROCESSING_GRAPH_PARALLEL, [ARTIFACT_DA, ARTIFACT_DI], [ARTIFACT_DA, ARTIFACT_DI], [ARTIFACT_DG, ARTIFACT_DH], [], ), ], ) def test_plan_incoherent_state( processing_graph: ProcessingGraph, initial: list[str], up_to_date: list[str], is_empty: list[str], unknown: list[str], ) -> None: for artifact in initial: if artifact == ARTIFACT_SA_1_1: put_cache( step=STEP_SA, dataset=DATASET_NAME, revision=REVISION_NAME, config=CONFIG_NAME_1, split=SPLIT_NAME_1 ) elif artifact == ARTIFACT_CA_1: put_cache(step=STEP_CA, dataset=DATASET_NAME, revision=REVISION_NAME, config=CONFIG_NAME_1) elif artifact == ARTIFACT_DA: put_cache(step=STEP_DA, dataset=DATASET_NAME, revision=REVISION_NAME) elif artifact == ARTIFACT_DD: put_cache(step=STEP_DD, dataset=DATASET_NAME, revision=REVISION_NAME) elif artifact == ARTIFACT_DI: put_cache(step=STEP_DI, dataset=DATASET_NAME, revision=REVISION_NAME) else: raise NotImplementedError() dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": is_empty, "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": up_to_date, }, queue_status={"in_process": []}, tasks=[f"CreateJobs,{len(is_empty)}"], ) compute_all(processing_graph=processing_graph) dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": [], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": sorted(up_to_date + is_empty + unknown), }, queue_status={"in_process": []}, tasks=[], ) JobSpec = tuple[Priority, Status, Optional[datetime]] OLD = datetime.strptime("20000101", "%Y%m%d") NEW = datetime.strptime("20000102", "%Y%m%d") LOW_WAITING_OLD = (Priority.LOW, Status.WAITING, OLD) LOW_WAITING_NEW = (Priority.LOW, Status.WAITING, NEW) LOW_STARTED_OLD = (Priority.LOW, Status.STARTED, OLD) LOW_STARTED_NEW = (Priority.LOW, Status.STARTED, NEW) NORMAL_WAITING_OLD = (Priority.NORMAL, Status.WAITING, OLD) NORMAL_WAITING_NEW = (Priority.NORMAL, Status.WAITING, NEW) NORMAL_STARTED_OLD = (Priority.NORMAL, Status.STARTED, OLD) NORMAL_STARTED_NEW = (Priority.NORMAL, Status.STARTED, NEW) @pytest.mark.parametrize( "existing_jobs,expected_create_job,expected_delete_jobs,expected_jobs_after_backfill", [ ([], True, False, [(Priority.LOW, Status.WAITING, None)]), ( [ LOW_WAITING_OLD, LOW_WAITING_NEW, LOW_STARTED_OLD, LOW_STARTED_NEW, NORMAL_WAITING_OLD, NORMAL_WAITING_NEW, NORMAL_STARTED_OLD, NORMAL_STARTED_NEW, ], False, True, [NORMAL_STARTED_OLD], ), ( [ LOW_WAITING_OLD, LOW_WAITING_NEW, LOW_STARTED_OLD, LOW_STARTED_NEW, NORMAL_WAITING_OLD, NORMAL_WAITING_NEW, NORMAL_STARTED_NEW, ], False, True, [NORMAL_STARTED_NEW], ), ( [ LOW_WAITING_OLD, LOW_WAITING_NEW, LOW_STARTED_OLD, LOW_STARTED_NEW, NORMAL_WAITING_OLD, NORMAL_WAITING_NEW, ], False, True, [LOW_STARTED_OLD], ), ( [LOW_WAITING_OLD, LOW_WAITING_NEW, LOW_STARTED_NEW, NORMAL_WAITING_OLD, NORMAL_WAITING_NEW], False, True, [LOW_STARTED_NEW], ), ( [LOW_WAITING_OLD, LOW_WAITING_NEW, NORMAL_WAITING_OLD, NORMAL_WAITING_NEW], False, True, [NORMAL_WAITING_OLD], ), ([LOW_WAITING_OLD, LOW_WAITING_NEW, NORMAL_WAITING_NEW], False, True, [NORMAL_WAITING_NEW]), ([LOW_WAITING_OLD, LOW_WAITING_NEW], False, True, [LOW_WAITING_OLD]), ([LOW_WAITING_NEW], False, False, [LOW_WAITING_NEW]), ([LOW_WAITING_NEW] * 5, False, True, [LOW_WAITING_NEW]), ], ) def test_delete_jobs( existing_jobs: list[JobSpec], expected_create_job: bool, expected_delete_jobs: bool, expected_jobs_after_backfill: list[JobSpec], ) -> None: processing_graph = PROCESSING_GRAPH_ONE_STEP queue = Queue() for job_spec in existing_jobs: (priority, status, created_at) = job_spec job = queue.add_job( job_type=STEP_DA, dataset="dataset", revision="revision", priority=priority, difficulty=DIFFICULTY ) if created_at is not None: job.created_at = created_at job.save() if status is Status.STARTED: job.status = Status.STARTED job.started_at = datetime.now() job.save() dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph) expected_in_process = [ARTIFACT_DA] if existing_jobs else [] if expected_create_job: if expected_delete_jobs: raise NotImplementedError() expected_tasks = ["CreateJobs,1"] elif expected_delete_jobs: expected_tasks = [f"DeleteJobs,{len(existing_jobs) - 1}"] else: expected_tasks = [] assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, config_names=[], split_names_in_first_config=[], cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": [ARTIFACT_DA], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": [], }, queue_status={"in_process": expected_in_process}, tasks=expected_tasks, ) dataset_backfill_plan.run() job_dicts = queue.get_dataset_pending_jobs_for_type(dataset=DATASET_NAME, job_type=STEP_DA) assert len(job_dicts) == len(expected_jobs_after_backfill) for job_dict, expected_job_spec in zip(job_dicts, expected_jobs_after_backfill): (priority, status, created_at) = expected_job_spec assert job_dict["priority"] == priority.value assert job_dict["status"] == status.value if created_at is not None: assert job_dict["created_at"] == created_at def test_multiple_revisions() -> None: processing_graph = PROCESSING_GRAPH_ONE_STEP dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph, revision=REVISION_NAME) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, config_names=[], split_names_in_first_config=[], cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": [ARTIFACT_DA], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": [], }, queue_status={"in_process": []}, tasks=["CreateJobs,1"], ) # create the job for the first revision dataset_backfill_plan.run() # the job is in process, no other job is created for the same revision dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph, revision=REVISION_NAME) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, config_names=[], split_names_in_first_config=[], cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": [ARTIFACT_DA], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": [], }, queue_status={"in_process": [ARTIFACT_DA]}, tasks=[], ) # create the job for the second revision: the first job is deleted dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph, revision=OTHER_REVISION_NAME) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, config_names=[], split_names_in_first_config=[], cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": [ARTIFACT_DA_OTHER_REVISION], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": [], }, queue_status={"in_process": []}, tasks=["DeleteJobs,1", "CreateJobs,1"], ) dataset_backfill_plan.run() dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=processing_graph, revision=OTHER_REVISION_NAME) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, config_names=[], split_names_in_first_config=[], cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": [ARTIFACT_DA_OTHER_REVISION], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": [], }, queue_status={"in_process": [ARTIFACT_DA_OTHER_REVISION]}, tasks=[], ) pending_jobs_df = Queue().get_pending_jobs_df(dataset=DATASET_NAME) assert len(pending_jobs_df) == 1 assert not (pending_jobs_df["revision"] == REVISION_NAME).any() assert (pending_jobs_df["revision"] == OTHER_REVISION_NAME).all()
datasets-server-main
libs/libcommon/tests/test_backfill.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from http import HTTPStatus import pytest from libcommon.config import ProcessingGraphConfig from libcommon.constants import PROCESSING_STEP_DATASET_CONFIG_NAMES_VERSION from libcommon.processing_graph import ProcessingGraph from libcommon.queue import Queue from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import upsert_response from .utils import ( CONFIG_NAMES, CONFIG_NAMES_CONTENT, REVISION_NAME, assert_dataset_backfill_plan, get_dataset_backfill_plan, ) PROCESSING_GRAPH = ProcessingGraph(processing_graph_specification=ProcessingGraphConfig().specification) @pytest.fixture(autouse=True) def queue_mongo_resource_autouse(queue_mongo_resource: QueueMongoResource) -> QueueMongoResource: return queue_mongo_resource @pytest.fixture(autouse=True) def cache_mongo_resource_autouse(cache_mongo_resource: CacheMongoResource) -> CacheMongoResource: return cache_mongo_resource def test_plan_job_creation_and_termination() -> None: # we launch all the backfill tasks dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=PROCESSING_GRAPH) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, # The config names are not yet known config_names=[], # The split names are not yet known split_names_in_first_config=[], # All the dataset-level cache entries are empty # No config-level and split-level cache entries is listed, because the config names and splits # names are not yet known. cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": [ "dataset-config-names,dataset,revision", "dataset-hub-cache,dataset,revision", "dataset-info,dataset,revision", "dataset-is-valid,dataset,revision", "dataset-opt-in-out-urls-count,dataset,revision", "dataset-parquet,dataset,revision", "dataset-size,dataset,revision", "dataset-split-names,dataset,revision", ], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": [], }, # The queue is empty, so no step is in process. queue_status={"in_process": []}, # The root dataset-level steps, as well as the "fan-in" steps, are ready to be backfilled. tasks=["CreateJobs,8"], ) dataset_backfill_plan.run() dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=PROCESSING_GRAPH) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, # The config names are not yet known config_names=[], # The split names are not yet known split_names_in_first_config=[], # the cache has not changed cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": [ "dataset-config-names,dataset,revision", "dataset-hub-cache,dataset,revision", "dataset-info,dataset,revision", "dataset-is-valid,dataset,revision", "dataset-opt-in-out-urls-count,dataset,revision", "dataset-parquet,dataset,revision", "dataset-size,dataset,revision", "dataset-split-names,dataset,revision", ], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": [], }, # the jobs have been created and are in process queue_status={ "in_process": [ "dataset-config-names,dataset,revision", "dataset-hub-cache,dataset,revision", "dataset-info,dataset,revision", "dataset-is-valid,dataset,revision", "dataset-opt-in-out-urls-count,dataset,revision", "dataset-parquet,dataset,revision", "dataset-size,dataset,revision", "dataset-split-names,dataset,revision", ] }, # thus: no new task tasks=[], ) # we simulate the job for "dataset-config-names,dataset,revision" has finished job_info = Queue().start_job(job_types_only=["dataset-config-names"]) upsert_response( kind=job_info["type"], dataset=job_info["params"]["dataset"], config=job_info["params"]["config"], split=job_info["params"]["split"], content=CONFIG_NAMES_CONTENT, http_status=HTTPStatus.OK, job_runner_version=PROCESSING_STEP_DATASET_CONFIG_NAMES_VERSION, dataset_git_revision=REVISION_NAME, ) Queue().finish_job(job_id=job_info["job_id"], is_success=True) dataset_backfill_plan = get_dataset_backfill_plan(processing_graph=PROCESSING_GRAPH) assert_dataset_backfill_plan( dataset_backfill_plan=dataset_backfill_plan, # The config names are now known config_names=CONFIG_NAMES, # The split names are not yet known split_names_in_first_config=[], # The "dataset-config-names" step is up-to-date # Config-level artifacts are empty and ready to be filled (even if some of their parents are still missing) # The split-level artifacts are still missing, because the splits names are not yet known, for any config. cache_status={ "cache_has_different_git_revision": [], "cache_is_old": [], "cache_is_outdated_by_parent": [], "cache_is_empty": [ "config-split-names-from-info,dataset,revision,config1", "config-split-names-from-info,dataset,revision,config2", "config-split-names-from-streaming,dataset,revision,config1", "config-split-names-from-streaming,dataset,revision,config2", "config-info,dataset,revision,config1", "config-info,dataset,revision,config2", "config-opt-in-out-urls-count,dataset,revision,config1", "config-opt-in-out-urls-count,dataset,revision,config2", "config-parquet,dataset,revision,config1", "config-parquet,dataset,revision,config2", "config-parquet-and-info,dataset,revision,config1", "config-parquet-and-info,dataset,revision,config2", "config-parquet-metadata,dataset,revision,config1", "config-parquet-metadata,dataset,revision,config2", "config-size,dataset,revision,config1", "config-size,dataset,revision,config2", "config-is-valid,dataset,revision,config1", "config-is-valid,dataset,revision,config2", "dataset-hub-cache,dataset,revision", "dataset-info,dataset,revision", "dataset-is-valid,dataset,revision", "dataset-opt-in-out-urls-count,dataset,revision", "dataset-parquet,dataset,revision", "dataset-size,dataset,revision", "dataset-split-names,dataset,revision", ], "cache_is_error_to_retry": [], "cache_is_job_runner_obsolete": [], "up_to_date": ["dataset-config-names,dataset,revision"], }, # the job "dataset-config-names,dataset,revision" is no more in process queue_status={ "in_process": [ "dataset-hub-cache,dataset,revision", "dataset-info,dataset,revision", "dataset-is-valid,dataset,revision", "dataset-opt-in-out-urls-count,dataset,revision", "dataset-parquet,dataset,revision", "dataset-size,dataset,revision", "dataset-split-names,dataset,revision", ] }, tasks=["CreateJobs,18"], )
datasets-server-main
libs/libcommon/tests/test_backfill_on_real_graph.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import datetime from collections.abc import Mapping from pathlib import Path from typing import Any, Optional import numpy as np import pandas as pd import pytest from datasets import ( Array2D, Array3D, Array4D, Array5D, Audio, ClassLabel, Dataset, Features, Image, Sequence, Translation, TranslationVariableLanguages, Value, ) from datasets.features.features import FeatureType def value(content: Any, dtype: Any) -> Dataset: return Dataset.from_pandas(pd.DataFrame({"col": [content]}, dtype=dtype)) def other(content: Any, feature_type: Optional[FeatureType] = None) -> Dataset: if feature_type: features = Features({"col": feature_type}) return Dataset.from_dict({"col": [content]}, features=features) else: return Dataset.from_dict({"col": [content]}) @pytest.fixture(scope="session") def datasets() -> Mapping[str, Dataset]: sampling_rate = 16_000 return { # Value feature "null": value(None, None), "bool": value(False, pd.BooleanDtype()), "int8": value(-7, pd.Int8Dtype()), "int16": value(-7, pd.Int16Dtype()), "int32": value(-7, pd.Int32Dtype()), "int64": value(-7, pd.Int64Dtype()), "uint8": value(7, pd.UInt8Dtype()), "uint16": value(7, pd.UInt16Dtype()), "uint32": value(7, pd.UInt32Dtype()), "uint64": value(7, pd.UInt64Dtype()), "float16": value(-3.14, np.float16), "float32": value(-3.14, np.float32), "float64": value(-3.14, np.float64), "time": value(datetime.time(1, 1, 1), None), "timestamp_1": value(pd.Timestamp(2020, 1, 1), None), "timestamp_2": value(pd.Timestamp(1513393355.5, unit="s"), None), "timestamp_3": value(pd.Timestamp(1513393355500, unit="ms"), None), "timestamp_tz": value(pd.Timestamp(year=2020, month=1, day=1, tz="US/Pacific"), None), "string": value("a string", pd.StringDtype(storage="python")), # other types of features "class_label": other("positive", ClassLabel(names=["negative", "positive"])), "dict": other({"a": 0}, None), "list": other([{"a": 0}], None), "sequence_simple": other([0], None), "sequence": other([{"a": 0}], Sequence(feature={"a": Value(dtype="int64")})), "array2d": other(np.zeros((2, 2), dtype="float32"), Array2D(shape=(2, 2), dtype="float32")), "array3d": other(np.zeros((2, 2, 2), dtype="float32"), Array3D(shape=(2, 2, 2), dtype="float32")), "array4d": other(np.zeros((2, 2, 2, 2), dtype="float32"), Array4D(shape=(2, 2, 2, 2), dtype="float32")), "array5d": other(np.zeros((2, 2, 2, 2, 2), dtype="float32"), Array5D(shape=(2, 2, 2, 2, 2), dtype="float32")), "audio": other({"array": [0.1, 0.2, 0.3], "sampling_rate": sampling_rate}, Audio(sampling_rate=sampling_rate)), "audio_ogg": other( str(Path(__file__).resolve().parent / "data" / "test_audio_vorbis.ogg"), Audio(sampling_rate=sampling_rate) ), "image": other(str(Path(__file__).resolve().parent / "data" / "test_image_rgb.jpg"), Image()), "translation": other({"en": "the cat", "fr": "le chat"}, Translation(languages=["en", "fr"])), "translation_variable_languages": other( {"en": "the cat", "fr": ["le chat", "la chatte"]}, TranslationVariableLanguages(languages=["en", "fr"]), ), "images_list": other( [ str(Path(__file__).resolve().parent / "data" / "test_image_rgb.jpg"), str(Path(__file__).resolve().parent / "data" / "test_image_rgb.jpg"), ], [Image()], ), "audios_list": other( [ {"array": [0.1, 0.2, 0.3], "sampling_rate": 16_000}, {"array": [0.1, 0.2, 0.3], "sampling_rate": 16_000}, ], [Audio()], ), "images_sequence": other( [ str(Path(__file__).resolve().parent / "data" / "test_image_rgb.jpg"), str(Path(__file__).resolve().parent / "data" / "test_image_rgb.jpg"), ], Sequence(feature=Image()), ), "audios_sequence": other( [ {"array": [0.1, 0.2, 0.3], "sampling_rate": 16_000}, {"array": [0.1, 0.2, 0.3], "sampling_rate": 16_000}, ], Sequence(feature=Audio()), ), "dict_of_audios_and_images": other( { "a": 0, "b": [ str(Path(__file__).resolve().parent / "data" / "test_image_rgb.jpg"), str(Path(__file__).resolve().parent / "data" / "test_image_rgb.jpg"), ], "c": { "ca": [ {"array": [0.1, 0.2, 0.3], "sampling_rate": 16_000}, {"array": [0.1, 0.2, 0.3], "sampling_rate": 16_000}, ] }, }, {"a": Value(dtype="int64"), "b": [Image()], "c": {"ca": [Audio()]}}, ), "sequence_of_dicts": other( [{"a": {"b": 0}}, {"a": {"b": 1}}], Sequence(feature={"a": {"b": Value(dtype="int64")}}) ), "none_value": other({"a": None}, {"a": Value(dtype="int64")}), "big": Dataset.from_pandas( pd.DataFrame({"col": ["a" * 1_234 for _ in range(4_567)]}, dtype=pd.StringDtype(storage="python")) ), }
datasets-server-main
libs/libcommon/tests/fixtures/datasets.py
datasets-server-main
libs/libcommon/tests/fixtures/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import datetime from collections.abc import Mapping from typing import Any from zoneinfo import ZoneInfo import numpy as np import pytest from datasets import Audio, Dataset, Features, Image, Value from libcommon.storage import StrPath from libcommon.viewer_utils.features import ( get_cell_value, get_supported_unsupported_columns, ) # we need to know the correspondence between the feature type and the cell value, in order to: # - document the API # - implement the client on the Hub (dataset viewer) # see https://github.com/huggingface/datasets/blob/a5192964dc4b76ee5c03593c11ee56f29bbd688d/... # src/datasets/features/features.py#L1469 # ``FieldType`` can be one of the following: # - a :class:`datasets.Value` feature specifies a single typed value, e.g. ``int64`` or ``string`` @pytest.mark.parametrize( "dataset_type,output_value,output_dtype", [ ("null", None, "null"), ("bool", False, "bool"), ("int8", -7, "int8"), ("int16", -7, "int16"), ("int32", -7, "int32"), ("int64", -7, "int64"), ("uint8", 7, "uint8"), ("uint16", 7, "uint16"), ("uint32", 7, "uint32"), ("uint64", 7, "uint64"), ("float16", np.float16(-3.14), "float16"), # (alias float) ("float32", np.float32(-3.14), "float32"), # (alias double) ("float64", -3.14, "float64"), ("time", datetime.time(1, 1, 1), "time64[us]"), ("timestamp_1", datetime.datetime(2020, 1, 1, 0, 0), "timestamp[ns]"), ("timestamp_2", datetime.datetime(2017, 12, 16, 3, 2, 35, 500000), "timestamp[ns]"), ("timestamp_3", datetime.datetime(2017, 12, 16, 3, 2, 35, 500000), "timestamp[ns]"), ( "timestamp_tz", datetime.datetime(2020, 1, 1, 0, 0, tzinfo=ZoneInfo("US/Pacific")), "timestamp[ns, tz=US/Pacific]", ), ("string", "a string", "string"), ], ) def test_value( dataset_type: str, output_value: Any, output_dtype: str, datasets: Mapping[str, Dataset], cached_assets_directory: StrPath, ) -> None: dataset = datasets[dataset_type] feature = dataset.features["col"] assert feature._type == "Value" assert feature.dtype == output_dtype value = get_cell_value( dataset="dataset", config="config", split="split", row_idx=7, cell=dataset[0]["col"], featureName="col", fieldType=feature, assets_base_url="http://localhost/assets", assets_directory=cached_assets_directory, ) assert value == output_value @pytest.mark.parametrize( "dataset_type,output_value,output_type", [ # - a :class:`datasets.ClassLabel` feature specifies a field with a predefined set of classes # which can have labels associated to them and will be stored as integers in the dataset ("class_label", 1, "ClassLabel"), # - a python :obj:`dict` which specifies that the field is a nested field containing a mapping of sub-fields # to sub-fields features. It's possible to have nested fields of nested fields in an arbitrary manner ("dict", {"a": 0}, {"a": Value(dtype="int64", id=None)}), # - a python :obj:`list` or a :class:`datasets.Sequence` specifies that the field contains a list of objects. # The python :obj:`list` or :class:`datasets.Sequence` should be provided with a single sub-feature as an # example of the feature type hosted in this list # <Tip> # A :class:`datasets.Sequence` with a internal dictionary feature will be automatically converted into a # dictionary of lists. This behavior is implemented to have a compatilbity layer with the TensorFlow Datasets # library but may be un-wanted in some cases. If you don't want this behavior, you can use a python # :obj:`list` instead of the :class:`datasets.Sequence`. # </Tip> ("list", [{"a": 0}], [{"a": Value(dtype="int64", id=None)}]), ("sequence_simple", [0], "Sequence"), ("sequence", {"a": [0]}, "Sequence"), # - a :class:`Array2D`, :class:`Array3D`, :class:`Array4D` or :class:`Array5D` feature for multidimensional # arrays ("array2d", [[0.0, 0.0], [0.0, 0.0]], "Array2D"), ("array3d", [[[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]]], "Array3D"), ( "array4d", [ [[[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]]], [[[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]]], ], "Array4D", ), ( "array5d", [ [ [[[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]]], [[[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]]], ], [ [[[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]]], [[[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]]], ], ], "Array5D", ), # - an :class:`Audio` feature to store the absolute path to an audio file or a dictionary with the relative # path to an audio file ("path" key) and its bytes content ("bytes" key). This feature extracts the audio # data. ( "audio", [ { "src": "http://localhost/assets/dataset/--/config/split/7/col/audio.wav", "type": "audio/wav", } ], "Audio", ), ( "audio_ogg", [ { "src": "http://localhost/assets/dataset/--/config/split/7/col/audio.wav", "type": "audio/wav", } ], "Audio", ), # - an :class:`Image` feature to store the absolute path to an image file, an :obj:`np.ndarray` object, a # :obj:`PIL.Image.Image` object or a dictionary with the relative path to an image file ("path" key) and # its bytes content ("bytes" key). This feature extracts the image data. ( "image", { "src": "http://localhost/assets/dataset/--/config/split/7/col/image.jpg", "height": 480, "width": 640, }, "Image", ), # - :class:`datasets.Translation` and :class:`datasets.TranslationVariableLanguages`, the two features # specific to Machine Translation ("translation", {"en": "the cat", "fr": "le chat"}, "Translation"), ( "translation_variable_languages", {"language": ["en", "fr", "fr"], "translation": ["the cat", "la chatte", "le chat"]}, "TranslationVariableLanguages", ), # special cases ( "images_list", [ { "src": "http://localhost/assets/dataset/--/config/split/7/col/image-1d100e9.jpg", "height": 480, "width": 640, }, { "src": "http://localhost/assets/dataset/--/config/split/7/col/image-1d300ea.jpg", "height": 480, "width": 640, }, ], [Image(decode=True, id=None)], ), ( "audios_list", [ [ { "src": "http://localhost/assets/dataset/--/config/split/7/col/audio-1d100e9.wav", "type": "audio/wav", }, ], [ { "src": "http://localhost/assets/dataset/--/config/split/7/col/audio-1d300ea.wav", "type": "audio/wav", }, ], ], [Audio()], ), ( "images_sequence", [ { "src": "http://localhost/assets/dataset/--/config/split/7/col/image-1d100e9.jpg", "height": 480, "width": 640, }, { "src": "http://localhost/assets/dataset/--/config/split/7/col/image-1d300ea.jpg", "height": 480, "width": 640, }, ], "Sequence", ), ( "audios_sequence", [ [ { "src": "http://localhost/assets/dataset/--/config/split/7/col/audio-1d100e9.wav", "type": "audio/wav", }, ], [ { "src": "http://localhost/assets/dataset/--/config/split/7/col/audio-1d300ea.wav", "type": "audio/wav", }, ], ], "Sequence", ), ( "dict_of_audios_and_images", { "a": 0, "b": [ { "src": "http://localhost/assets/dataset/--/config/split/7/col/image-89101db.jpg", "height": 480, "width": 640, }, { "src": "http://localhost/assets/dataset/--/config/split/7/col/image-89301dc.jpg", "height": 480, "width": 640, }, ], "c": { "ca": [ [ { "src": "http://localhost/assets/dataset/--/config/split/7/col/audio-18360330.wav", "type": "audio/wav", }, ], [ { "src": "http://localhost/assets/dataset/--/config/split/7/col/audio-18380331.wav", "type": "audio/wav", }, ], ] }, }, {"a": Value(dtype="int64"), "b": [Image(decode=True, id=None)], "c": {"ca": [Audio()]}}, ), ("sequence_of_dicts", {"a": [{"b": 0}, {"b": 1}]}, "Sequence"), ("none_value", {"a": None}, {"a": Value(dtype="int64", id=None)}), ], ) def test_others( dataset_type: str, output_value: Any, output_type: Any, datasets: Mapping[str, Dataset], cached_assets_directory: StrPath, ) -> None: dataset = datasets[dataset_type] feature = dataset.features["col"] if type(output_type) in [list, dict]: assert feature == output_type else: assert feature._type == output_type value = get_cell_value( dataset="dataset", config="config", split="split", row_idx=7, cell=dataset[0]["col"], featureName="col", fieldType=feature, assets_base_url="http://localhost/assets", assets_directory=cached_assets_directory, ) assert value == output_value def test_get_supported_unsupported_columns() -> None: features = Features( { "audio1": Audio(), "audio2": Audio(sampling_rate=16_000), "audio3": [Audio()], "image1": Image(), "image2": Image(decode=False), "image3": [Image()], "string": Value("string"), "binary": Value("binary"), } ) unsupported_features = [Value("binary"), Audio()] supported_columns, unsupported_columns = get_supported_unsupported_columns(features, unsupported_features) assert supported_columns == ["image1", "image2", "image3", "string"] assert unsupported_columns == ["audio1", "audio2", "audio3", "binary"]
datasets-server-main
libs/libcommon/tests/viewer_utils/test_features.py
datasets-server-main
libs/libcommon/tests/viewer_utils/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import contextlib import json import logging import time import types from collections import Counter from collections.abc import Sequence from datetime import datetime, timedelta from itertools import groupby from operator import itemgetter from types import TracebackType from typing import Generic, Literal, Optional, TypedDict, TypeVar from uuid import uuid4 import pandas as pd import pytz from bson import ObjectId from mongoengine import Document from mongoengine.errors import DoesNotExist, NotUniqueError from mongoengine.fields import ( DateTimeField, EnumField, IntField, ObjectIdField, StringField, ) from mongoengine.queryset.queryset import QuerySet from libcommon.constants import ( DEFAULT_DIFFICULTY_MAX, DEFAULT_DIFFICULTY_MIN, LOCK_TTL_SECONDS, QUEUE_COLLECTION_JOBS, QUEUE_COLLECTION_LOCKS, QUEUE_METRICS_COLLECTION, QUEUE_MONGOENGINE_ALIAS, QUEUE_TTL_SECONDS, ) from libcommon.utils import ( FlatJobInfo, JobInfo, Priority, Status, get_datetime, inputs_to_string, ) # START monkey patching ### hack ### # see https://github.com/sbdchd/mongo-types#install U = TypeVar("U", bound=Document) def no_op(self, x): # type: ignore return self QuerySet.__class_getitem__ = types.MethodType(no_op, QuerySet) class QuerySetManager(Generic[U]): def __get__(self, instance: object, cls: type[U]) -> QuerySet[U]: return QuerySet(cls, cls._get_collection()) class StartedJobError(Exception): pass # END monkey patching ### hack ### class JobDict(TypedDict): type: str dataset: str revision: str config: Optional[str] split: Optional[str] unicity_id: str namespace: str priority: str status: str difficulty: int created_at: datetime started_at: Optional[datetime] finished_at: Optional[datetime] last_heartbeat: Optional[datetime] class CountByStatus(TypedDict): waiting: int started: int success: int error: int cancelled: int class DumpByPendingStatus(TypedDict): waiting: list[JobDict] started: list[JobDict] class EmptyQueueError(Exception): pass class JobDoesNotExistError(DoesNotExist): pass class AlreadyStartedJobError(Exception): pass class LockTimeoutError(Exception): pass class NoWaitingJobError(Exception): pass class JobQueryFilters(TypedDict, total=False): type__nin: list[str] type__in: list[str] difficulty__gte: int difficulty__lte: int # States: # - waiting: started_at is None and finished_at is None: waiting jobs # - started: started_at is not None and finished_at is None: started jobs # - finished: started_at is not None and finished_at is not None: finished jobs # For a given set of arguments, only one job is allowed in the started state. No # restriction for the other states class JobDocument(Document): """A job in the mongoDB database Args: type (`str`): The type of the job, identifies the queue dataset (`str`): The dataset on which to apply the job. revision (`str`): The git revision of the dataset. config (`str`, optional): The config on which to apply the job. split (`str`, optional): The split on which to apply the job. unicity_id (`str`): A string that identifies the job uniquely. Only one job with the same unicity_id can be in the started state. The revision is not part of the unicity_id. namespace (`str`): The dataset namespace (user or organization) if any, else the dataset name (canonical name). priority (`Priority`, optional): The priority of the job. Defaults to Priority.LOW. status (`Status`, optional): The status of the job. Defaults to Status.WAITING. difficulty (`int`): The difficulty of the job: 0=easy, 100=hard as a convention. created_at (`datetime`): The creation date of the job. started_at (`datetime`, optional): When the job has started. finished_at (`datetime`, optional): When the job has finished. last_heartbeat (`datetime`, optional): Last time the running job got a heartbeat from the worker. """ meta = { "collection": QUEUE_COLLECTION_JOBS, "db_alias": QUEUE_MONGOENGINE_ALIAS, "indexes": [ ("type", "dataset", "status"), ("type", "dataset", "revision", "config", "split", "status", "priority"), ("priority", "status", "created_at", "namespace"), ("priority", "status", "type", "namespace", "unicity_id", "created_at", "-difficulty"), ("status", "type"), ("unicity_id", "-created_at", "status"), { "fields": ["finished_at"], "expireAfterSeconds": QUEUE_TTL_SECONDS, "partialFilterExpression": {"status": {"$in": [Status.SUCCESS, Status.ERROR, Status.CANCELLED]}}, }, ], } type = StringField(required=True) dataset = StringField(required=True) revision = StringField(required=True) config = StringField() split = StringField() unicity_id = StringField(required=True) namespace = StringField(required=True) priority = EnumField(Priority, default=Priority.LOW) status = EnumField(Status, default=Status.WAITING) difficulty = IntField(required=True) created_at = DateTimeField(required=True) started_at = DateTimeField() finished_at = DateTimeField() last_heartbeat = DateTimeField() def to_dict(self) -> JobDict: return { "type": self.type, "dataset": self.dataset, "revision": self.revision, "config": self.config, "split": self.split, "unicity_id": self.unicity_id, "namespace": self.namespace, "priority": self.priority.value, "status": self.status.value, "difficulty": self.difficulty, "created_at": self.created_at, "started_at": self.started_at, "finished_at": self.finished_at, "last_heartbeat": self.last_heartbeat, } objects = QuerySetManager["JobDocument"]() def info(self) -> JobInfo: return JobInfo( { "job_id": str(self.pk), # job.pk is the id. job.id is not recognized by mypy "type": self.type, "params": { "dataset": self.dataset, "revision": self.revision, "config": self.config, "split": self.split, }, "priority": self.priority, "difficulty": self.difficulty, } ) @classmethod def get(cls, job_id: str) -> "JobDocument": try: return cls.objects(pk=job_id).get() except DoesNotExist as e: raise JobDoesNotExistError(f"Job does not exist: {job_id=}") from e def flat_info(self) -> FlatJobInfo: return FlatJobInfo( { "job_id": str(self.pk), # job.pk is the id. job.id is not recognized by mypy "type": self.type, "dataset": self.dataset, "revision": self.revision, "config": self.config, "split": self.split, "priority": self.priority.value, "status": self.status.value, "difficulty": self.difficulty, "created_at": self.created_at, } ) DEFAULT_INCREASE_AMOUNT = 1 DEFAULT_DECREASE_AMOUNT = -1 class JobTotalMetricDocument(Document): """Jobs total metric in mongoDB database, used to compute prometheus metrics. Args: job_type (`str`): job type status (`str`): job status see libcommon.queue.Status total (`int`): total of jobs created_at (`datetime`): when the metric has been created. """ id = ObjectIdField(db_field="_id", primary_key=True, default=ObjectId) job_type = StringField(required=True, unique_with="status") status = StringField(required=True) total = IntField(required=True, default=0) created_at = DateTimeField(default=get_datetime) meta = { "collection": QUEUE_METRICS_COLLECTION, "db_alias": QUEUE_MONGOENGINE_ALIAS, "indexes": [("job_type", "status")], } objects = QuerySetManager["JobTotalMetricDocument"]() def _update_metrics(job_type: str, status: str, increase_by: int) -> None: JobTotalMetricDocument.objects(job_type=job_type, status=status).update( upsert=True, write_concern={"w": "majority", "fsync": True}, read_concern={"level": "majority"}, inc__total=increase_by, ) def increase_metric(job_type: str, status: str) -> None: _update_metrics(job_type=job_type, status=status, increase_by=DEFAULT_INCREASE_AMOUNT) def decrease_metric(job_type: str, status: str) -> None: _update_metrics(job_type=job_type, status=status, increase_by=DEFAULT_DECREASE_AMOUNT) def update_metrics_for_type(job_type: str, previous_status: str, new_status: str) -> None: if job_type is not None: decrease_metric(job_type=job_type, status=previous_status) increase_metric(job_type=job_type, status=new_status) class Lock(Document): meta = { "collection": QUEUE_COLLECTION_LOCKS, "db_alias": QUEUE_MONGOENGINE_ALIAS, "indexes": [ ("key", "owner"), { "fields": ["updated_at"], "expireAfterSeconds": LOCK_TTL_SECONDS, "partialFilterExpression": {"$or": [{"owner": None}, {"ttl": LOCK_TTL_SECONDS}]}, }, ], } key = StringField(primary_key=True) owner = StringField() ttl = IntField() job_id = StringField() # deprecated created_at = DateTimeField() updated_at = DateTimeField() objects = QuerySetManager["Lock"]() class lock(contextlib.AbstractContextManager["lock"]): """ Provides a simple way of inter-applications communication using a MongoDB lock. An example usage is to another worker of your application that a resource or working directory is currently used in a job. Example of usage: ```python key = json.dumps({"type": job.type, "dataset": job.dataset}) with lock(key=key, owner=job.pk): ... ``` Or using a try/except: ```python try: key = json.dumps({"type": job.type, "dataset": job.dataset}) lock(key=key, owner=job.pk).acquire() except TimeoutError: ... ``` """ _default_sleeps = (0.05, 0.05, 0.05, 1, 1, 1, 5) def __init__( self, key: str, owner: str, sleeps: Sequence[float] = _default_sleeps, ttl: Optional[int] = None ) -> None: self.key = key self.owner = owner self.sleeps = sleeps self.ttl = ttl if ttl is not None and ttl != LOCK_TTL_SECONDS: raise ValueError(f"Only TTL of LOCK_TTL_SECONDS={LOCK_TTL_SECONDS} is supported by the TTL index.") def acquire(self) -> None: for sleep in self.sleeps: try: Lock.objects(key=self.key, owner__in=[None, self.owner]).update( upsert=True, write_concern={"w": "majority", "fsync": True}, read_concern={"level": "majority"}, owner=self.owner, updated_at=get_datetime(), ttl=self.ttl, ) return except NotUniqueError: logging.debug(f"Sleep {sleep}s to acquire lock '{self.key}' for owner='{self.owner}'") time.sleep(sleep) raise TimeoutError("lock couldn't be acquired") def release(self) -> None: Lock.objects(key=self.key, owner=self.owner).update( write_concern={"w": "majority", "fsync": True}, read_concern={"level": "majority"}, owner=None, updated_at=get_datetime(), ) def __enter__(self) -> "lock": self.acquire() return self def __exit__( self, exctype: Optional[type[BaseException]], excinst: Optional[BaseException], exctb: Optional[TracebackType] ) -> Literal[False]: self.release() return False @classmethod def git_branch(cls, dataset: str, branch: str, owner: str, sleeps: Sequence[float] = _default_sleeps) -> "lock": """ Lock a git branch of a dataset on the hub for read/write Args: dataset (`str`): the dataset repository branch (`str`): the branch to lock owner (`str`): the current job id that holds the lock sleeps (`Sequence[float]`): the time in seconds to sleep between each attempt to acquire the lock """ key = json.dumps({"dataset": dataset, "branch": branch}) return cls(key=key, owner=owner, sleeps=sleeps) def release_locks(owner: str) -> None: """ Release all locks owned by the given owner Args: owner (`str`): the current owner that holds the locks """ Lock.objects(owner=owner).update( write_concern={"w": "majority", "fsync": True}, read_concern={"level": "majority"}, owner=None, updated_at=get_datetime(), ) class Queue: """A queue manages jobs. Note that creating a Queue object does not create the queue in the database. It's a view that allows to manipulate the jobs. You can create multiple Queue objects, it has no effect on the database. It's a FIFO queue, with the following properties: - a job is identified by its input arguments: unicity_id (type, dataset, config and split, NOT revision) - a job can be in one of the following states: waiting, started, success, error, cancelled - a job can be in the queue only once (unicity_id) in the "started" state - a job can be in the queue multiple times in the other states - a job has a priority (two levels: NORMAL and LOW) - a job has a difficulty (from 0: easy to 100: hard, as a convention) - the queue is ordered by priority then by the creation date of the jobs - datasets and users that already have started jobs are de-prioritized (using namespace) """ def add_job( self, job_type: str, dataset: str, revision: str, difficulty: int, config: Optional[str] = None, split: Optional[str] = None, priority: Priority = Priority.LOW, ) -> JobDocument: """Add a job to the queue in the waiting state. Note that the same "unicity_id" can have multiple jobs in the waiting state, with the same or different revisions and or priorities. Args: job_type (`str`): The type of the job dataset (`str`): The dataset on which to apply the job. revision (`str`): The git revision of the dataset. difficulty (`int`): The difficulty of the job. config (`str`, optional): The config on which to apply the job. split (`str`, optional): The config on which to apply the job. priority (`Priority`, optional): The priority of the job. Defaults to Priority.LOW. Returns: the job """ increase_metric(job_type=job_type, status=Status.WAITING) return JobDocument( type=job_type, dataset=dataset, revision=revision, config=config, split=split, unicity_id=inputs_to_string(dataset=dataset, config=config, split=split, prefix=job_type), namespace=dataset.split("/")[0], priority=priority, created_at=get_datetime(), status=Status.WAITING, difficulty=difficulty, ).save() def create_jobs(self, job_infos: list[JobInfo]) -> int: """Creates jobs in the queue. They are created in the waiting state. Args: job_infos (`list[JobInfo]`): The jobs to be created. Returns: `int`: The number of created jobs. 0 if we had an exception. """ try: jobs = [ JobDocument( type=job_info["type"], dataset=job_info["params"]["dataset"], revision=job_info["params"]["revision"], config=job_info["params"]["config"], split=job_info["params"]["split"], unicity_id=inputs_to_string( dataset=job_info["params"]["dataset"], config=job_info["params"]["config"], split=job_info["params"]["split"], prefix=job_info["type"], ), namespace=job_info["params"]["dataset"].split("/")[0], priority=job_info["priority"], created_at=get_datetime(), status=Status.WAITING, difficulty=job_info["difficulty"], ) for job_info in job_infos ] for job in jobs: increase_metric(job_type=job.type, status=Status.WAITING) job_ids = JobDocument.objects.insert(jobs, load_bulk=False) return len(job_ids) except Exception: return 0 def cancel_jobs_by_job_id(self, job_ids: list[str]) -> int: """Cancel jobs from the queue. If the job ids are not valid, they are ignored. Args: job_ids (`list[str]`): The list of job ids to cancel. Returns: `int`: The number of canceled jobs """ try: existing = JobDocument.objects(pk__in=job_ids) previous_status = [(job.type, job.status) for job in existing.all()] existing.update(finished_at=get_datetime(), status=Status.CANCELLED) for job_type, status in previous_status: update_metrics_for_type(job_type=job_type, previous_status=status, new_status=Status.CANCELLED) return existing.count() except Exception: return 0 def _get_next_waiting_job_for_priority( self, priority: Priority, difficulty_min: Optional[int] = None, difficulty_max: Optional[int] = None, job_types_blocked: Optional[list[str]] = None, job_types_only: Optional[list[str]] = None, ) -> JobDocument: """Get the next job in the queue for a given priority. For a given priority, get the waiting job with the oldest creation date: - among the datasets that still have no started job. - if none, among the datasets that have the least started jobs: - ensuring that the unicity_id field is unique among the started jobs. Args: priority (`Priority`): The priority of the job. difficulty_min: if not None, only jobs with a difficulty greater or equal to this value are considered. difficulty_max: if not None, only jobs with a difficulty lower or equal to this value are considered. job_types_blocked: if not None, jobs of the given types are not considered. job_types_only: if not None, only jobs of the given types are considered. Raises: EmptyQueueError: if there is no waiting job in the queue that satisfies the restrictions above. Returns: the job """ logging.debug( f"Getting next waiting job for priority {priority}, blocked types: {job_types_blocked}, only types:" f" {job_types_only}" ) filters: JobQueryFilters = {} if job_types_blocked: filters["type__nin"] = job_types_blocked if job_types_only: filters["type__in"] = job_types_only if difficulty_min is not None and difficulty_min > DEFAULT_DIFFICULTY_MIN: filters["difficulty__gte"] = difficulty_min if difficulty_max is not None and difficulty_max < DEFAULT_DIFFICULTY_MAX: filters["difficulty__lte"] = difficulty_max started_jobs = JobDocument.objects(status=Status.STARTED, **filters) logging.debug(f"Number of started jobs: {started_jobs.count()}") started_job_namespaces = [job.namespace for job in started_jobs.only("namespace")] logging.debug(f"Started job namespaces: {started_job_namespaces}") next_waiting_job = ( JobDocument.objects( status=Status.WAITING, namespace__nin=set(started_job_namespaces), priority=priority, **filters ) .order_by("+created_at") .only("type", "dataset", "revision", "config", "split", "priority", "unicity_id") .no_cache() .first() ) # ^ no_cache should generate a query on every iteration, which should solve concurrency issues between workers if next_waiting_job is not None: return next_waiting_job logging.debug("No waiting job for namespace without started job") # all the waiting jobs, if any, are for namespaces that already have started jobs. # # Let's: # - exclude the waiting jobs which unicity_id is already in a started job # and, among the remaining waiting jobs, let's: # - select the oldest waiting job for the namespace with the least number of started jobs started_unicity_ids = {job.unicity_id for job in started_jobs.only("unicity_id")} descending_frequency_namespace_counts = [ [namespace, count] for namespace, count in Counter(started_job_namespaces).most_common() ] logging.debug(f"Descending frequency namespace counts: {descending_frequency_namespace_counts}") descending_frequency_namespace_groups = [ [item[0] for item in data] for (_, data) in groupby(descending_frequency_namespace_counts, itemgetter(1)) ] # maybe we could get rid of this loop while descending_frequency_namespace_groups: least_common_namespaces_group = descending_frequency_namespace_groups.pop() logging.debug(f"Least common namespaces group: {least_common_namespaces_group}") next_waiting_job = ( JobDocument.objects( status=Status.WAITING, namespace__in=least_common_namespaces_group, unicity_id__nin=started_unicity_ids, priority=priority, **filters, ) .order_by("+created_at") .only("type", "dataset", "revision", "config", "split", "priority", "unicity_id") .no_cache() .first() ) if next_waiting_job is not None: return next_waiting_job raise EmptyQueueError("no job available with the priority") def get_next_waiting_job( self, difficulty_min: Optional[int] = None, difficulty_max: Optional[int] = None, job_types_blocked: Optional[list[str]] = None, job_types_only: Optional[list[str]] = None, ) -> JobDocument: """Get the next job in the queue. Get the waiting job with the oldest creation date with the following criteria: - among the highest priority jobs, - among the datasets that still have no started job. - if none, among the datasets that have the least started jobs: - ensuring that the unicity_id field is unique among the started jobs. Args: difficulty_min: if not None, only jobs with a difficulty greater or equal to this value are considered. difficulty_max: if not None, only jobs with a difficulty lower or equal to this value are considered. job_types_blocked: if not None, jobs of the given types are not considered. job_types_only: if not None, only jobs of the given types are considered. Raises: EmptyQueueError: if there is no waiting job in the queue that satisfies the restrictions above. Returns: the job """ for priority in [Priority.NORMAL, Priority.LOW]: with contextlib.suppress(EmptyQueueError): return self._get_next_waiting_job_for_priority( priority=priority, job_types_blocked=job_types_blocked, job_types_only=job_types_only, difficulty_min=difficulty_min, difficulty_max=difficulty_max, ) raise EmptyQueueError("no job available") def _start_newest_job_and_cancel_others(self, job: JobDocument) -> JobDocument: """Start a job (the newest one for unicity_id) and cancel the other ones. A lock is used to ensure that the job is not started by another worker. Args: job: the job to start Returns: the started job Raises: AlreadyStartedJobError: if a started job already exist for the same unicity_id. LockTimeoutError: if the lock could not be acquired after 20 retries. """ # could be a method of Job RETRIES = 20 # uuid is used to differentiate between workers # otherwise another worker might acquire the lock lock_owner = str(uuid4()) try: # retry for 2 seconds with lock(key=job.unicity_id, owner=lock_owner, sleeps=[0.1] * RETRIES, ttl=LOCK_TTL_SECONDS): # get all the pending jobs for the same unicity_id waiting_jobs = JobDocument.objects( unicity_id=job.unicity_id, status__in=[Status.WAITING, Status.STARTED] ).order_by("-created_at") datetime = get_datetime() # raise if any job has already been started for unicity_id num_started_jobs = waiting_jobs(status=Status.STARTED).count() if num_started_jobs > 0: if num_started_jobs > 1: logging.critical(f"job {job.unicity_id} has been started {num_started_jobs} times. Max is 1.") raise AlreadyStartedJobError(f"job {job.unicity_id} has been started by another worker") # get the most recent one first_job = waiting_jobs.first() if not first_job: raise NoWaitingJobError(f"no waiting job could be found for {job.unicity_id}") # start it if not JobDocument.objects(pk=str(first_job.pk), status=Status.WAITING).update( started_at=datetime, status=Status.STARTED, write_concern={"w": "majority", "fsync": True}, read_concern={"level": "majority"}, ): raise AlreadyStartedJobError(f"job {job.unicity_id} has been started by another worker") update_metrics_for_type( job_type=first_job.type, previous_status=Status.WAITING, new_status=Status.STARTED ) # and cancel the other ones, if any waiting_jobs(status=Status.WAITING).update( finished_at=datetime, status=Status.CANCELLED, write_concern={"w": "majority", "fsync": True}, read_concern={"level": "majority"}, ) for waiting_job in waiting_jobs(status=Status.WAITING): update_metrics_for_type( job_type=waiting_job.type, previous_status=Status.WAITING, new_status=Status.CANCELLED ) return first_job.reload() except TimeoutError as err: raise LockTimeoutError( f"could not acquire the lock for job {job.unicity_id} after {RETRIES} retries." ) from err def start_job( self, difficulty_min: Optional[int] = None, difficulty_max: Optional[int] = None, job_types_blocked: Optional[list[str]] = None, job_types_only: Optional[list[str]] = None, ) -> JobInfo: """Start the next job in the queue. The job is moved from the waiting state to the started state. A lock is used to ensure that only one worker can start a job at a time. Args: difficulty_min: if not None, only jobs with a difficulty greater or equal to this value are considered. difficulty_max: if not None, only jobs with a difficulty lower or equal to this value are considered. job_types_blocked: if not None, jobs of the given types are not considered. job_types_only: if not None, only jobs of the given types are considered. Raises: EmptyQueueError: if there is no job in the queue, within the limit of the maximum number of started jobs for a dataset AlreadyStartedJobError: if a started job already exist for the same unicity_id LockTimeoutError: if the lock cannot be acquired Returns: the job id, the type, the input arguments: dataset, revision, config and split """ logging.debug(f"looking for a job to start, blocked types: {job_types_blocked}, only types: {job_types_only}") next_waiting_job = self.get_next_waiting_job( job_types_blocked=job_types_blocked, job_types_only=job_types_only, difficulty_min=difficulty_min, difficulty_max=difficulty_max, ) logging.debug(f"job found: {next_waiting_job}") # ^ can raise EmptyQueueError if job_types_blocked and next_waiting_job.type in job_types_blocked: raise RuntimeError( f"The job type {next_waiting_job.type} is in the list of blocked job types {job_types_only}" ) if job_types_only and next_waiting_job.type not in job_types_only: raise RuntimeError( f"The job type {next_waiting_job.type} is not in the list of allowed job types {job_types_only}" ) started_job = self._start_newest_job_and_cancel_others(job=next_waiting_job) return started_job.info() def get_job_with_id(self, job_id: str) -> JobDocument: """Get the job for a given job id. Args: job_id (`str`, required): id of the job Returns: the requested job Raises: DoesNotExist: if the job does not exist """ return JobDocument.objects(pk=job_id).get() def get_job_type(self, job_id: str) -> str: """Get the job type for a given job id. Args: job_id (`str`, required): id of the job Returns: the job type Raises: DoesNotExist: if the job does not exist """ job = self.get_job_with_id(job_id=job_id) return job.type def _get_started_job(self, job_id: str) -> JobDocument: """Get a started job, and raise if it's not in the correct format (does not exist, not started, incorrect values for finished_at or started_at). Args: job_id (`str`, required): id of the job Returns: `Job`: the started job """ job = JobDocument.objects(pk=job_id).get() if job.status is not Status.STARTED: raise StartedJobError(f"job {job.unicity_id} has a not the STARTED status ({job.status.value}).") if job.finished_at is not None: raise StartedJobError(f"job {job.unicity_id} has a non-empty finished_at field.") if job.started_at is None: raise StartedJobError(f"job {job.unicity_id} has an empty started_at field.") return job def is_job_started(self, job_id: str) -> bool: """Check if a job is started, with the correct values for finished_at and started_at. Args: job_id (`str`, required): id of the job Returns: `bool`: whether the job exists, is started, and had the expected format (STARTED status, non-empty started_at, empty finished_at) """ try: self._get_started_job(job_id=job_id) except DoesNotExist: logging.error(f"job {job_id} does not exist.") return False except StartedJobError as e: logging.debug(f"job {job_id} has not the expected format for a started job: {e}") return False return True def finish_job(self, job_id: str, is_success: bool) -> bool: """Finish a job in the queue. The job is moved from the started state to the success or error state. The existing locks are released. Args: job_id (`str`, required): id of the job is_success (`bool`, required): whether the job succeeded or not Returns: `bool`: whether the job existed, and had the expected format (STARTED status, non-empty started_at, empty finished_at) before finishing """ try: job = self._get_started_job(job_id=job_id) except DoesNotExist: logging.error(f"job {job_id} does not exist. Aborting.") return False except StartedJobError as e: logging.error(f"job {job_id} has not the expected format for a started job. Aborting: {e}") return False finished_status = Status.SUCCESS if is_success else Status.ERROR previous_status = job.status job.update(finished_at=get_datetime(), status=finished_status) update_metrics_for_type(job_type=job.type, previous_status=previous_status, new_status=finished_status) release_locks(owner=job_id) return True def is_job_in_process( self, job_type: str, dataset: str, revision: str, config: Optional[str] = None, split: Optional[str] = None ) -> bool: """Check if a job is in process (waiting or started). Args: job_type (`str`, required): job type dataset (`str`, required): dataset name revision (`str`, required): dataset git revision config (`str`, optional): config name. Defaults to None. split (`str`, optional): split name. Defaults to None. Returns: `bool`: whether the job is in process (waiting or started) """ return ( JobDocument.objects( type=job_type, dataset=dataset, revision=revision, config=config, split=split, status__in=[Status.WAITING, Status.STARTED], ).count() > 0 ) def _get_df(self, jobs: list[FlatJobInfo]) -> pd.DataFrame: return pd.DataFrame( { "job_id": pd.Series([job["job_id"] for job in jobs], dtype="str"), "type": pd.Series([job["type"] for job in jobs], dtype="category"), "dataset": pd.Series([job["dataset"] for job in jobs], dtype="str"), "revision": pd.Series([job["revision"] for job in jobs], dtype="str"), "config": pd.Series([job["config"] for job in jobs], dtype="str"), "split": pd.Series([job["split"] for job in jobs], dtype="str"), "priority": pd.Categorical( [job["priority"] for job in jobs], ordered=True, categories=[Priority.LOW.value, Priority.NORMAL.value], ), "status": pd.Categorical( [job["status"] for job in jobs], ordered=True, categories=[ Status.WAITING.value, Status.STARTED.value, Status.SUCCESS.value, Status.ERROR.value, Status.CANCELLED.value, ], ), "created_at": pd.Series([job["created_at"] for job in jobs], dtype="datetime64[ns]"), } ) # ^ does not seem optimal at all, but I get the types right def get_pending_jobs_df(self, dataset: str, job_types: Optional[list[str]] = None) -> pd.DataFrame: filters = {} if job_types: filters["type__in"] = job_types return self._get_df( [ job.flat_info() for job in JobDocument.objects(status__in=[Status.WAITING, Status.STARTED], **filters, dataset=dataset) ] ) def has_pending_jobs(self, dataset: str, job_types: Optional[list[str]] = None) -> bool: filters = {} if job_types: filters["type__in"] = job_types return JobDocument.objects(status__in=[Status.WAITING, Status.STARTED], **filters, dataset=dataset).count() > 0 # special reports def count_jobs(self, status: Status, job_type: str) -> int: """Count the number of jobs with a given status and the given type. Args: status (`Status`, required): status of the jobs job_type (`str`, required): job type Returns: the number of jobs with the given status and the given type. """ return JobDocument.objects(type=job_type, status=status.value).count() def get_jobs_count_by_status(self, job_type: str) -> CountByStatus: """Count the number of jobs by status for a given job type. Returns: a dictionary with the number of jobs for each status """ # ensure that all the statuses are present, even if equal to zero # note: we repeat the values instead of looping on Status because we don't know how to get the types right # in mypy # result: CountByStatus = {s.value: jobs(status=s.value).count() for s in Status} # <- doesn't work in mypy # see https://stackoverflow.com/a/67292548/7351594 return { "waiting": self.count_jobs(status=Status.WAITING, job_type=job_type), "started": self.count_jobs(status=Status.STARTED, job_type=job_type), "success": self.count_jobs(status=Status.SUCCESS, job_type=job_type), "error": self.count_jobs(status=Status.ERROR, job_type=job_type), "cancelled": self.count_jobs(status=Status.CANCELLED, job_type=job_type), } def get_dump_with_status(self, status: Status, job_type: str) -> list[JobDict]: """Get the dump of the jobs with a given status and a given type. Args: status (`Status`, required): status of the jobs job_type (`str`, required): job type Returns: a list of jobs with the given status and the given type """ return [d.to_dict() for d in JobDocument.objects(status=status.value, type=job_type)] def get_dump_by_pending_status(self, job_type: str) -> DumpByPendingStatus: """Get the dump of the jobs by pending status for a given job type. Returns: a dictionary with the dump of the jobs for each pending status """ return { "waiting": self.get_dump_with_status(job_type=job_type, status=Status.WAITING), "started": self.get_dump_with_status(job_type=job_type, status=Status.STARTED), } def get_dataset_pending_jobs_for_type(self, dataset: str, job_type: str) -> list[JobDict]: """Get the pending jobs of a dataset for a given job type. Returns: an array of the pending jobs for the dataset and the given job type """ return [ d.to_dict() for d in JobDocument.objects( status__in=[Status.WAITING.value, Status.STARTED.value], type=job_type, dataset=dataset ) ] def heartbeat(self, job_id: str) -> None: """Update the job `last_heartbeat` field with the current date. This is used to keep track of running jobs. If a job doesn't have recent heartbeats, it means it crashed at one point and is considered a zombie. """ try: job = self.get_job_with_id(job_id) except DoesNotExist: logging.warning(f"Heartbeat skipped because job {job_id} doesn't exist in the queue.") return # no need to update metrics since it is just the last_heartbeat job.update(last_heartbeat=get_datetime()) def get_zombies(self, max_seconds_without_heartbeat: float) -> list[JobInfo]: """Get the zombie jobs. It returns jobs without recent heartbeats, which means they crashed at one point and became zombies. Usually `max_seconds_without_heartbeat` is a factor of the time between two heartbeats. Returns: an array of the zombie job infos. """ started_jobs = JobDocument.objects(status=Status.STARTED) if max_seconds_without_heartbeat <= 0: return [] zombies = [ job for job in started_jobs if ( job.last_heartbeat is not None and get_datetime() >= pytz.UTC.localize(job.last_heartbeat) + timedelta(seconds=max_seconds_without_heartbeat) ) or ( job.last_heartbeat is None and job.started_at is not None and get_datetime() >= pytz.UTC.localize(job.started_at) + timedelta(seconds=max_seconds_without_heartbeat) ) ] return [zombie.info() for zombie in zombies] # only for the tests def _clean_queue_database() -> None: """Delete all the jobs in the database""" JobDocument.drop_collection() # type: ignore JobTotalMetricDocument.drop_collection() # type: ignore Lock.drop_collection() # type: ignore
datasets-server-main
libs/libcommon/src/libcommon/queue.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from dataclasses import dataclass, field from typing import Optional from environs import Env from libcommon.constants import ( PROCESSING_STEP_CONFIG_INFO_VERSION, PROCESSING_STEP_CONFIG_IS_VALID_VERSION, PROCESSING_STEP_CONFIG_OPT_IN_OUT_URLS_COUNT_VERSION, PROCESSING_STEP_CONFIG_PARQUET_AND_INFO_VERSION, PROCESSING_STEP_CONFIG_PARQUET_METADATA_VERSION, PROCESSING_STEP_CONFIG_PARQUET_VERSION, PROCESSING_STEP_CONFIG_SIZE_VERSION, PROCESSING_STEP_CONFIG_SPLIT_NAMES_FROM_INFO_VERSION, PROCESSING_STEP_CONFIG_SPLIT_NAMES_FROM_STREAMING_VERSION, PROCESSING_STEP_DATASET_CONFIG_NAMES_VERSION, PROCESSING_STEP_DATASET_HUB_CACHE_VERSION, PROCESSING_STEP_DATASET_INFO_VERSION, PROCESSING_STEP_DATASET_IS_VALID_VERSION, PROCESSING_STEP_DATASET_OPT_IN_OUT_URLS_COUNT_VERSION, PROCESSING_STEP_DATASET_PARQUET_VERSION, PROCESSING_STEP_DATASET_SIZE_VERSION, PROCESSING_STEP_DATASET_SPLIT_NAMES_VERSION, PROCESSING_STEP_SPLIT_DESCRIPTIVE_STATISTICS_VERSION, PROCESSING_STEP_SPLIT_DUCKDB_INDEX_VERSION, PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_PARQUET_VERSION, PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_STREAMING_VERSION, PROCESSING_STEP_SPLIT_IMAGE_URL_COLUMNS_VERSION, PROCESSING_STEP_SPLIT_IS_VALID_VERSION, PROCESSING_STEP_SPLIT_OPT_IN_OUT_URLS_COUNT_VERSION, PROCESSING_STEP_SPLIT_OPT_IN_OUT_URLS_SCAN_VERSION, ) from libcommon.processing_graph import ProcessingGraphSpecification ASSETS_BASE_URL = "assets" ASSETS_STORAGE_DIRECTORY = None @dataclass(frozen=True) class AssetsConfig: base_url: str = ASSETS_BASE_URL storage_directory: Optional[str] = ASSETS_STORAGE_DIRECTORY @classmethod def from_env(cls) -> "AssetsConfig": env = Env(expand_vars=True) with env.prefixed("ASSETS_"): return cls( base_url=env.str(name="BASE_URL", default=ASSETS_BASE_URL), storage_directory=env.str(name="STORAGE_DIRECTORY", default=ASSETS_STORAGE_DIRECTORY), ) CACHED_ASSETS_BASE_URL = "cached-assets" CACHED_ASSETS_STORAGE_DIRECTORY = None CACHED_ASSETS_CLEAN_CACHE_PROBA = 0.05 CACHED_ASSETS_KEEP_FIRST_ROWS_NUMBER = 100 CACHED_ASSETS_KEEP_MOST_RECENT_ROWS_NUMBER = 200 CACHED_ASSETS_MAX_CLEANED_ROWS_NUMBER = 10_000 @dataclass(frozen=True) class CachedAssetsConfig: base_url: str = ASSETS_BASE_URL storage_directory: Optional[str] = CACHED_ASSETS_STORAGE_DIRECTORY clean_cache_proba: float = CACHED_ASSETS_CLEAN_CACHE_PROBA keep_first_rows_number: int = CACHED_ASSETS_KEEP_FIRST_ROWS_NUMBER keep_most_recent_rows_number: int = CACHED_ASSETS_KEEP_MOST_RECENT_ROWS_NUMBER max_cleaned_rows_number: int = CACHED_ASSETS_MAX_CLEANED_ROWS_NUMBER @classmethod def from_env(cls) -> "CachedAssetsConfig": env = Env(expand_vars=True) with env.prefixed("CACHED_ASSETS_"): return cls( base_url=env.str(name="BASE_URL", default=CACHED_ASSETS_BASE_URL), storage_directory=env.str(name="STORAGE_DIRECTORY", default=CACHED_ASSETS_STORAGE_DIRECTORY), clean_cache_proba=env.float(name="CLEAN_CACHE_PROBA", default=CACHED_ASSETS_CLEAN_CACHE_PROBA), keep_first_rows_number=env.float( name="KEEP_FIRST_ROWS_NUMBER", default=CACHED_ASSETS_KEEP_FIRST_ROWS_NUMBER ), keep_most_recent_rows_number=env.float( name="KEEP_MOST_RECENT_ROWS_NUMBER", default=CACHED_ASSETS_KEEP_MOST_RECENT_ROWS_NUMBER ), max_cleaned_rows_number=env.float( name="MAX_CLEAN_SAMPLE_SIZE", default=CACHED_ASSETS_MAX_CLEANED_ROWS_NUMBER ), ) PARQUET_METADATA_STORAGE_DIRECTORY = None @dataclass(frozen=True) class ParquetMetadataConfig: storage_directory: Optional[str] = PARQUET_METADATA_STORAGE_DIRECTORY @classmethod def from_env(cls) -> "ParquetMetadataConfig": env = Env(expand_vars=True) with env.prefixed("PARQUET_METADATA_"): return cls( storage_directory=env.str(name="STORAGE_DIRECTORY", default=PARQUET_METADATA_STORAGE_DIRECTORY), ) ROWS_INDEX_MAX_ARROW_DATA_IN_MEMORY = 300_000_000 @dataclass(frozen=True) class RowsIndexConfig: max_arrow_data_in_memory: int = ROWS_INDEX_MAX_ARROW_DATA_IN_MEMORY @classmethod def from_env(cls) -> "RowsIndexConfig": env = Env(expand_vars=True) with env.prefixed("ROWS_INDEX_"): return cls( max_arrow_data_in_memory=env.int( name="MAX_ARROW_DATA_IN_MEMORY", default=ROWS_INDEX_MAX_ARROW_DATA_IN_MEMORY ), ) COMMON_HF_ENDPOINT = "https://huggingface.co" COMMON_HF_TOKEN = None @dataclass(frozen=True) class CommonConfig: hf_endpoint: str = COMMON_HF_ENDPOINT hf_token: Optional[str] = COMMON_HF_TOKEN @classmethod def from_env(cls) -> "CommonConfig": env = Env(expand_vars=True) with env.prefixed("COMMON_"): return cls( hf_endpoint=env.str(name="HF_ENDPOINT", default=COMMON_HF_ENDPOINT), hf_token=env.str(name="HF_TOKEN", default=COMMON_HF_TOKEN), # nosec ) LOG_LEVEL = logging.INFO @dataclass(frozen=True) class LogConfig: level: int = LOG_LEVEL @classmethod def from_env(cls) -> "LogConfig": env = Env(expand_vars=True) with env.prefixed("LOG_"): return cls( level=env.log_level(name="LEVEL", default=LOG_LEVEL), ) CACHE_MAX_DAYS = 90 # 3 months CACHE_MONGO_DATABASE = "datasets_server_cache" CACHE_MONGO_URL = "mongodb://localhost:27017" @dataclass(frozen=True) class CacheConfig: max_days: int = CACHE_MAX_DAYS mongo_database: str = CACHE_MONGO_DATABASE mongo_url: str = CACHE_MONGO_URL @classmethod def from_env(cls) -> "CacheConfig": env = Env(expand_vars=True) with env.prefixed("CACHE_"): return cls( max_days=env.int(name="MAX_DAYS", default=CACHE_MAX_DAYS), mongo_database=env.str(name="MONGO_DATABASE", default=CACHE_MONGO_DATABASE), mongo_url=env.str(name="MONGO_URL", default=CACHE_MONGO_URL), ) QUEUE_MONGO_DATABASE = "datasets_server_queue" QUEUE_MONGO_URL = "mongodb://localhost:27017" @dataclass(frozen=True) class QueueConfig: mongo_database: str = QUEUE_MONGO_DATABASE mongo_url: str = QUEUE_MONGO_URL @classmethod def from_env(cls) -> "QueueConfig": env = Env(expand_vars=True) with env.prefixed("QUEUE_"): return cls( mongo_database=env.str(name="MONGO_DATABASE", default=QUEUE_MONGO_DATABASE), mongo_url=env.str(name="MONGO_URL", default=QUEUE_MONGO_URL), ) @dataclass(frozen=True) class ProcessingGraphConfig: specification: ProcessingGraphSpecification = field( default_factory=lambda: { "dataset-config-names": { "input_type": "dataset", "provides_dataset_config_names": True, "job_runner_version": PROCESSING_STEP_DATASET_CONFIG_NAMES_VERSION, "difficulty": 50, }, "config-split-names-from-streaming": { "input_type": "config", "triggered_by": "dataset-config-names", "provides_config_split_names": True, "job_runner_version": PROCESSING_STEP_CONFIG_SPLIT_NAMES_FROM_STREAMING_VERSION, "difficulty": 60, }, "split-first-rows-from-streaming": { "input_type": "split", "triggered_by": ["config-split-names-from-streaming", "config-split-names-from-info"], "enables_preview": True, "job_runner_version": PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_STREAMING_VERSION, "difficulty": 70, }, "config-parquet-and-info": { "input_type": "config", "triggered_by": "dataset-config-names", "job_runner_version": PROCESSING_STEP_CONFIG_PARQUET_AND_INFO_VERSION, "difficulty": 70, }, "config-parquet": { "input_type": "config", "triggered_by": "config-parquet-and-info", "job_runner_version": PROCESSING_STEP_CONFIG_PARQUET_VERSION, "provides_config_parquet": True, "difficulty": 20, }, "config-parquet-metadata": { "input_type": "config", "triggered_by": "config-parquet", "job_runner_version": PROCESSING_STEP_CONFIG_PARQUET_METADATA_VERSION, "provides_config_parquet_metadata": True, "difficulty": 50, }, "split-first-rows-from-parquet": { "input_type": "split", "triggered_by": "config-parquet-metadata", "enables_preview": True, "job_runner_version": PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_PARQUET_VERSION, "difficulty": 40, }, "dataset-parquet": { "input_type": "dataset", "triggered_by": ["config-parquet", "dataset-config-names"], "job_runner_version": PROCESSING_STEP_DATASET_PARQUET_VERSION, "difficulty": 20, }, "config-info": { "input_type": "config", "triggered_by": "config-parquet-and-info", "job_runner_version": PROCESSING_STEP_CONFIG_INFO_VERSION, "difficulty": 20, }, "dataset-info": { "input_type": "dataset", "triggered_by": ["config-info", "dataset-config-names"], "job_runner_version": PROCESSING_STEP_DATASET_INFO_VERSION, "difficulty": 20, }, "config-split-names-from-info": { "input_type": "config", "triggered_by": "config-info", "provides_config_split_names": True, "job_runner_version": PROCESSING_STEP_CONFIG_SPLIT_NAMES_FROM_INFO_VERSION, "difficulty": 20, }, "config-size": { "input_type": "config", "triggered_by": "config-parquet-and-info", "enables_viewer": True, "job_runner_version": PROCESSING_STEP_CONFIG_SIZE_VERSION, "difficulty": 20, }, "dataset-size": { "input_type": "dataset", "triggered_by": ["config-size", "dataset-config-names"], "job_runner_version": PROCESSING_STEP_DATASET_SIZE_VERSION, "difficulty": 20, }, "dataset-split-names": { "input_type": "dataset", "triggered_by": [ "config-split-names-from-info", "config-split-names-from-streaming", "dataset-config-names", ], "job_runner_version": PROCESSING_STEP_DATASET_SPLIT_NAMES_VERSION, "difficulty": 20, }, "split-descriptive-statistics": { "input_type": "split", "triggered_by": [ "config-split-names-from-info", "config-split-names-from-streaming", ], "job_runner_version": PROCESSING_STEP_SPLIT_DESCRIPTIVE_STATISTICS_VERSION, "difficulty": 70, }, "split-is-valid": { "input_type": "split", # special case: triggered by all the steps that have enables_preview/enables_viewer/enables_search "triggered_by": [ "config-size", "split-first-rows-from-parquet", "split-first-rows-from-streaming", "split-duckdb-index", ], "job_runner_version": PROCESSING_STEP_SPLIT_IS_VALID_VERSION, "difficulty": 20, }, "config-is-valid": { "input_type": "config", "triggered_by": [ "config-split-names-from-streaming", "config-split-names-from-info", "split-is-valid", ], "job_runner_version": PROCESSING_STEP_CONFIG_IS_VALID_VERSION, "difficulty": 20, }, "dataset-is-valid": { "input_type": "dataset", "triggered_by": [ "dataset-config-names", "config-is-valid", ], "job_runner_version": PROCESSING_STEP_DATASET_IS_VALID_VERSION, "difficulty": 20, }, "split-image-url-columns": { "input_type": "split", "triggered_by": ["split-first-rows-from-streaming", "split-first-rows-from-parquet"], "job_runner_version": PROCESSING_STEP_SPLIT_IMAGE_URL_COLUMNS_VERSION, "difficulty": 40, }, "split-opt-in-out-urls-scan": { "input_type": "split", "triggered_by": ["split-image-url-columns"], "job_runner_version": PROCESSING_STEP_SPLIT_OPT_IN_OUT_URLS_SCAN_VERSION, "difficulty": 70, }, "split-opt-in-out-urls-count": { "input_type": "split", "triggered_by": ["split-opt-in-out-urls-scan"], "job_runner_version": PROCESSING_STEP_SPLIT_OPT_IN_OUT_URLS_COUNT_VERSION, "difficulty": 20, }, "config-opt-in-out-urls-count": { "input_type": "config", "triggered_by": [ "config-split-names-from-streaming", "config-split-names-from-info", "split-opt-in-out-urls-count", ], "job_runner_version": PROCESSING_STEP_CONFIG_OPT_IN_OUT_URLS_COUNT_VERSION, "difficulty": 20, }, "dataset-opt-in-out-urls-count": { "input_type": "dataset", "triggered_by": ["dataset-config-names", "config-opt-in-out-urls-count"], "job_runner_version": PROCESSING_STEP_DATASET_OPT_IN_OUT_URLS_COUNT_VERSION, "difficulty": 20, }, "split-duckdb-index": { "input_type": "split", "triggered_by": [ "config-split-names-from-info", "config-split-names-from-streaming", "config-parquet-and-info", ], "enables_search": True, "job_runner_version": PROCESSING_STEP_SPLIT_DUCKDB_INDEX_VERSION, "difficulty": 70, }, "dataset-hub-cache": { "input_type": "dataset", "triggered_by": ["dataset-is-valid", "dataset-size"], "job_runner_version": PROCESSING_STEP_DATASET_HUB_CACHE_VERSION, "difficulty": 20, }, } ) @classmethod def from_env(cls) -> "ProcessingGraphConfig": # TODO: allow passing the graph via env vars return cls()
datasets-server-main
libs/libcommon/src/libcommon/config.py
import asyncio import logging import os from dataclasses import dataclass, field from functools import lru_cache from typing import Literal, Optional, TypedDict, Union import numpy as np import pyarrow as pa import pyarrow.parquet as pq from datasets import Features from datasets.features.features import FeatureType from datasets.utils.py_utils import size_str from fsspec.implementations.http import HTTPFile, HTTPFileSystem from huggingface_hub import HfFileSystem from libcommon.processing_graph import ProcessingGraph from libcommon.prometheus import StepProfiler from libcommon.simple_cache import get_previous_step_or_raise from libcommon.storage import StrPath from libcommon.viewer_utils.features import get_supported_unsupported_columns class ParquetResponseEmptyError(Exception): pass class ParquetResponseFormatError(Exception): pass class FileSystemError(Exception): pass class TooBigRows(Exception): pass class ParquetFileMetadataItem(TypedDict): dataset: str config: str split: str url: str filename: str size: int num_rows: int parquet_metadata_subpath: str @dataclass class RowGroupReader: parquet_file: pq.ParquetFile group_id: int def read(self, columns: list[str]) -> pa.Table: return self.parquet_file.read_row_group(i=self.group_id, columns=columns) def read_size(self) -> int: return self.parquet_file.metadata.row_group(self.group_id).total_byte_size # type: ignore @dataclass class ParquetIndexWithMetadata: features: Features supported_columns: list[str] unsupported_columns: list[str] parquet_files_urls: list[str] metadata_paths: list[str] num_bytes: list[int] num_rows: list[int] httpfs: HTTPFileSystem hf_token: Optional[str] max_arrow_data_in_memory: int num_rows_total: int = field(init=False) def __post_init__(self) -> None: if self.httpfs._session is None: self.httpfs_session = asyncio.run(self.httpfs.set_session()) else: self.httpfs_session = self.httpfs._session self.num_rows_total = sum(self.num_rows) def query(self, offset: int, length: int) -> pa.Table: """Query the parquet files Note that this implementation will always read at least one row group, to get the list of columns and always have the same schema, even if the requested rows are invalid (out of range). Args: offset (int): The first row to read. length (int): The number of rows to read. Returns: pa.Table: The requested rows. Raises: TooBigRows: if the arrow data from the parquet row groups is bigger than max_arrow_data_in_memory """ with StepProfiler( method="parquet_index_with_metadata.query", step="get the parquet files than contain the requested rows" ): parquet_file_offsets = np.cumsum(self.num_rows) last_row_in_parquet = parquet_file_offsets[-1] - 1 first_row = min(offset, last_row_in_parquet) last_row = min(offset + length - 1, last_row_in_parquet) first_parquet_file_id, last_parquet_file_id = np.searchsorted( parquet_file_offsets, [first_row, last_row], side="right" ) parquet_offset = ( offset - parquet_file_offsets[first_parquet_file_id - 1] if first_parquet_file_id > 0 else offset ) urls = self.parquet_files_urls[first_parquet_file_id : last_parquet_file_id + 1] # noqa: E203 metadata_paths = self.metadata_paths[first_parquet_file_id : last_parquet_file_id + 1] # noqa: E203 num_bytes = self.num_bytes[first_parquet_file_id : last_parquet_file_id + 1] # noqa: E203 with StepProfiler( method="parquet_index_with_metadata.query", step="load the remote parquet files using metadata from disk" ): parquet_files = [ pq.ParquetFile( HTTPFile( self.httpfs, url, session=self.httpfs_session, size=size, loop=self.httpfs.loop, cache_type=None, **self.httpfs.kwargs, ), metadata=pq.read_metadata(metadata_path), pre_buffer=True, ) for url, metadata_path, size in zip(urls, metadata_paths, num_bytes) ] with StepProfiler( method="parquet_index_with_metadata.query", step="get the row groups than contain the requested rows" ): row_group_offsets = np.cumsum( [ parquet_file.metadata.row_group(group_id).num_rows for parquet_file in parquet_files for group_id in range(parquet_file.metadata.num_row_groups) ] ) row_group_readers = [ RowGroupReader(parquet_file=parquet_file, group_id=group_id) for parquet_file in parquet_files for group_id in range(parquet_file.metadata.num_row_groups) ] last_row_in_parquet = row_group_offsets[-1] - 1 first_row = min(parquet_offset, last_row_in_parquet) last_row = min(parquet_offset + length - 1, last_row_in_parquet) first_row_group_id, last_row_group_id = np.searchsorted( row_group_offsets, [first_row, last_row], side="right" ) with StepProfiler( method="parquet_index_with_metadata.row_groups_size_check", step="check if the rows can fit in memory" ): row_groups_size = sum( [row_group_readers[i].read_size() for i in range(first_row_group_id, last_row_group_id + 1)] ) if row_groups_size > self.max_arrow_data_in_memory: raise TooBigRows( "Rows from parquet row groups are too big to be read:" f" {size_str(row_groups_size)} (max={size_str(self.max_arrow_data_in_memory)})" ) with StepProfiler(method="parquet_index_with_metadata.query", step="read the row groups"): pa_table = pa.concat_tables( [ row_group_readers[i].read(self.supported_columns) for i in range(first_row_group_id, last_row_group_id + 1) ] ) first_row_in_pa_table = row_group_offsets[first_row_group_id - 1] if first_row_group_id > 0 else 0 return pa_table.slice(parquet_offset - first_row_in_pa_table, length) @staticmethod def from_parquet_metadata_items( parquet_file_metadata_items: list[ParquetFileMetadataItem], features: Optional[Features], parquet_metadata_directory: StrPath, httpfs: HTTPFileSystem, hf_token: Optional[str], max_arrow_data_in_memory: int, unsupported_features: list[FeatureType] = [], ) -> "ParquetIndexWithMetadata": if not parquet_file_metadata_items: raise ParquetResponseEmptyError("No parquet files found.") with StepProfiler( method="parquet_index_with_metadata.from_parquet_metadata_items", step="get the index from parquet metadata", ): try: parquet_files_metadata = sorted( parquet_file_metadata_items, key=lambda parquet_file_metadata: parquet_file_metadata["filename"] ) parquet_files_urls = [parquet_file_metadata["url"] for parquet_file_metadata in parquet_files_metadata] metadata_paths = [ os.path.join(parquet_metadata_directory, parquet_file_metadata["parquet_metadata_subpath"]) for parquet_file_metadata in parquet_files_metadata ] num_bytes = [parquet_file_metadata["size"] for parquet_file_metadata in parquet_files_metadata] num_rows = [parquet_file_metadata["num_rows"] for parquet_file_metadata in parquet_files_metadata] except Exception as e: raise ParquetResponseFormatError(f"Could not parse the list of parquet files: {e}") from e with StepProfiler( method="parquet_index_with_metadata.from_parquet_metadata_items", step="get the dataset's features" ): if features is None: # config-parquet version<6 didn't have features features = Features.from_arrow_schema(pq.read_schema(metadata_paths[0])) supported_columns, unsupported_columns = get_supported_unsupported_columns( features, unsupported_features=unsupported_features, ) return ParquetIndexWithMetadata( features=features, supported_columns=supported_columns, unsupported_columns=unsupported_columns, parquet_files_urls=parquet_files_urls, metadata_paths=metadata_paths, num_bytes=num_bytes, num_rows=num_rows, httpfs=httpfs, hf_token=hf_token, max_arrow_data_in_memory=max_arrow_data_in_memory, ) class RowsIndex: def __init__( self, dataset: str, config: str, split: str, processing_graph: ProcessingGraph, httpfs: HfFileSystem, hf_token: Optional[str], parquet_metadata_directory: StrPath, max_arrow_data_in_memory: int, unsupported_features: list[FeatureType] = [], ): self.dataset = dataset self.revision: Optional[str] = None self.config = config self.split = split self.processing_graph = processing_graph self.httpfs = httpfs self.parquet_index = self._init_parquet_index( hf_token=hf_token, parquet_metadata_directory=parquet_metadata_directory, max_arrow_data_in_memory=max_arrow_data_in_memory, unsupported_features=unsupported_features, ) def _init_parquet_index( self, hf_token: Optional[str], parquet_metadata_directory: StrPath, max_arrow_data_in_memory: int, unsupported_features: list[FeatureType] = [], ) -> ParquetIndexWithMetadata: with StepProfiler(method="rows_index._init_parquet_index", step="all"): # get the list of parquet files with StepProfiler(method="rows_index._init_parquet_index", step="get list of parquet files for split"): config_parquet_metadata_processing_steps = ( self.processing_graph.get_config_parquet_metadata_processing_steps() ) cache_kinds = [step.cache_kind for step in config_parquet_metadata_processing_steps] result = get_previous_step_or_raise( kinds=cache_kinds, dataset=self.dataset, config=self.config, split=None, ) self.revision = result.response["dataset_git_revision"] content = result.response["content"] if content.get("features"): # config-parquet-metadata version<2 didn't have features features = Features.from_dict(content["features"]) else: features = None logging.info( f"Create ParquetIndexWithMetadata for dataset={self.dataset}, config={self.config}, split={self.split}" ) return ParquetIndexWithMetadata.from_parquet_metadata_items( [ parquet_item for parquet_item in content["parquet_files_metadata"] if parquet_item["split"] == self.split and parquet_item["config"] == self.config ], features=features, parquet_metadata_directory=parquet_metadata_directory, httpfs=self.httpfs, hf_token=hf_token, max_arrow_data_in_memory=max_arrow_data_in_memory, unsupported_features=unsupported_features, ) # note that this cache size is global for the class, not per instance @lru_cache(maxsize=8) def query(self, offset: int, length: int) -> pa.Table: """Query the parquet files Note that this implementation will always read at least one row group, to get the list of columns and always have the same schema, even if the requested rows are invalid (out of range). Args: offset (int): The first row to read. length (int): The number of rows to read. Returns: pa.Table: The requested rows. """ logging.info( f"Query {type(self.parquet_index).__name__} for dataset={self.dataset}, config={self.config}," f" split={self.split}, offset={offset}, length={length}" ) return self.parquet_index.query(offset=offset, length=length) class Indexer: def __init__( self, processing_graph: ProcessingGraph, parquet_metadata_directory: StrPath, httpfs: HTTPFileSystem, max_arrow_data_in_memory: int, unsupported_features: list[FeatureType] = [], all_columns_supported_datasets_allow_list: Union[Literal["all"], list[str]] = "all", hf_token: Optional[str] = None, ): self.processing_graph = processing_graph self.parquet_metadata_directory = parquet_metadata_directory self.httpfs = httpfs self.hf_token = hf_token self.max_arrow_data_in_memory = max_arrow_data_in_memory self.unsupported_features = unsupported_features self.all_columns_supported_datasets_allow_list = all_columns_supported_datasets_allow_list @lru_cache(maxsize=8) def get_rows_index( self, dataset: str, config: str, split: str, ) -> RowsIndex: filter_features = ( self.all_columns_supported_datasets_allow_list != "all" and dataset not in self.all_columns_supported_datasets_allow_list ) unsupported_features = self.unsupported_features if filter_features else [] return RowsIndex( dataset=dataset, config=config, split=split, processing_graph=self.processing_graph, httpfs=self.httpfs, hf_token=self.hf_token, parquet_metadata_directory=self.parquet_metadata_directory, max_arrow_data_in_memory=self.max_arrow_data_in_memory, unsupported_features=unsupported_features, )
datasets-server-main
libs/libcommon/src/libcommon/parquet_utils.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging def init_logging(level: int = logging.INFO) -> None: logging.basicConfig(level=level, format="%(levelname)s: %(asctime)s - %(name)s - %(message)s") logging.debug(f"Log level set to: {logging.getLevelName(logging.getLogger().getEffectiveLevel())}")
datasets-server-main
libs/libcommon/src/libcommon/log.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. ASSETS_CACHE_APPNAME = "datasets_server_assets" CACHE_COLLECTION_RESPONSES = "cachedResponsesBlue" CACHE_MONGOENGINE_ALIAS = "cache" CACHED_ASSETS_CACHE_APPNAME = "datasets_server_cached_assets" HF_DATASETS_CACHE_APPNAME = "hf_datasets_cache" PARQUET_METADATA_CACHE_APPNAME = "datasets_server_parquet_metadata" DESCRIPTIVE_STATISTICS_CACHE_APPNAME = "datasets_server_descriptive_statistics" DUCKDB_INDEX_CACHE_APPNAME = "datasets_server_duckdb_index" CACHE_METRICS_COLLECTION = "cacheTotalMetric" QUEUE_METRICS_COLLECTION = "jobTotalMetric" METRICS_MONGOENGINE_ALIAS = "metrics" QUEUE_COLLECTION_JOBS = "jobsBlue" QUEUE_COLLECTION_LOCKS = "locks" QUEUE_MONGOENGINE_ALIAS = "queue" QUEUE_TTL_SECONDS = 600 # 10 minutes LOCK_TTL_SECONDS = 600 # 10 minutes DEFAULT_DIFFICULTY = 50 DEFAULT_DIFFICULTY_MAX = 100 DEFAULT_DIFFICULTY_MIN = 0 DEFAULT_INPUT_TYPE = "dataset" DEFAULT_JOB_RUNNER_VERSION = 1 PROCESSING_STEP_CONFIG_INFO_VERSION = 2 PROCESSING_STEP_CONFIG_IS_VALID_VERSION = 1 PROCESSING_STEP_CONFIG_OPT_IN_OUT_URLS_COUNT_VERSION = 3 PROCESSING_STEP_CONFIG_PARQUET_AND_INFO_VERSION = 4 PROCESSING_STEP_CONFIG_PARQUET_METADATA_VERSION = 2 PROCESSING_STEP_CONFIG_PARQUET_VERSION = 6 PROCESSING_STEP_CONFIG_SIZE_VERSION = 2 PROCESSING_STEP_CONFIG_SPLIT_NAMES_FROM_INFO_VERSION = 3 PROCESSING_STEP_CONFIG_SPLIT_NAMES_FROM_STREAMING_VERSION = 3 PROCESSING_STEP_DATASET_CONFIG_NAMES_VERSION = 1 PROCESSING_STEP_DATASET_HUB_CACHE_VERSION = 1 PROCESSING_STEP_DATASET_INFO_VERSION = 2 PROCESSING_STEP_DATASET_IS_VALID_VERSION = 5 PROCESSING_STEP_DATASET_OPT_IN_OUT_URLS_COUNT_VERSION = 2 PROCESSING_STEP_DATASET_PARQUET_VERSION = 2 PROCESSING_STEP_DATASET_SIZE_VERSION = 2 PROCESSING_STEP_DATASET_SPLIT_NAMES_VERSION = 3 PROCESSING_STEP_SPLIT_DUCKDB_INDEX_VERSION = 2 PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_PARQUET_VERSION = 2 PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_STREAMING_VERSION = 3 PROCESSING_STEP_SPLIT_IMAGE_URL_COLUMNS_VERSION = 1 PROCESSING_STEP_SPLIT_IS_VALID_VERSION = 1 PROCESSING_STEP_SPLIT_OPT_IN_OUT_URLS_COUNT_VERSION = 2 PROCESSING_STEP_SPLIT_DESCRIPTIVE_STATISTICS_VERSION = 1 PROCESSING_STEP_SPLIT_OPT_IN_OUT_URLS_SCAN_VERSION = 4 PROCESSING_STEP_CONFIG_PARQUET_AND_INFO_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS = 100 PROCESSING_STEP_CONFIG_PARQUET_AND_INFO_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS = 100 PROCESSING_STEP_CONFIG_PARQUET_AND_INFO_ROW_GROUP_SIZE_FOR_BINARY_DATASETS = 100 PARQUET_REVISION = "refs/convert/parquet" ERROR_CODES_TO_RETRY = "CreateCommitError,LockedDatasetTimeoutError,StreamingRowsError"
datasets-server-main
libs/libcommon/src/libcommon/constants.py