INSTRUCTION
stringlengths 1
46.3k
| RESPONSE
stringlengths 75
80.2k
|
---|---|
Reserve a set of values for this execution.
No other process can reserve the same set of values while the set is
reserved. Acquired value set needs to be released after use to allow
other processes to access it.
Add tags to limit the possible value sets that this returns. | def acquire_value_set(self, *tags):
"""
Reserve a set of values for this execution.
No other process can reserve the same set of values while the set is
reserved. Acquired value set needs to be released after use to allow
other processes to access it.
Add tags to limit the possible value sets that this returns.
"""
setname = self._acquire_value_set(*tags)
if setname is None:
raise ValueError("Could not aquire a value set")
return setname |
Get a value from previously reserved value set. | def get_value_from_set(self, key):
"""
Get a value from previously reserved value set.
"""
#TODO: This should be done locally.
# We do not really need to call centralised server if the set is already
# reserved as the data there is immutable during execution
key = key.lower()
if self._remotelib:
while True:
value = self._remotelib.run_keyword('get_value_from_set',
[key, self._my_id], {})
if value:
return value
time.sleep(0.1)
logger.debug('waiting for a value')
else:
return _PabotLib.get_value_from_set(self, key, self._my_id) |
Release a reserved value set so that other executions can use it also. | def release_value_set(self):
"""
Release a reserved value set so that other executions can use it also.
"""
if self._remotelib:
self._remotelib.run_keyword('release_value_set', [self._my_id], {})
else:
_PabotLib.release_value_set(self, self._my_id) |
A convenience method that installs all available hooks.
If a specific module is not available on the path, it is ignored. | def install_all_patches():
"""
A convenience method that installs all available hooks.
If a specific module is not available on the path, it is ignored.
"""
from . import mysqldb
from . import psycopg2
from . import strict_redis
from . import sqlalchemy
from . import tornado_http
from . import urllib
from . import urllib2
from . import requests
mysqldb.install_patches()
psycopg2.install_patches()
strict_redis.install_patches()
sqlalchemy.install_patches()
tornado_http.install_patches()
urllib.install_patches()
urllib2.install_patches()
requests.install_patches() |
Usually called from middleware to install client hooks
specified in the client_hooks section of the configuration.
:param patchers: a list of patchers to run. Acceptable values include:
* None - installs all client patches
* 'all' - installs all client patches
* empty list - does not install any patches
* list of function names - executes the functions | def install_patches(patchers='all'):
"""
Usually called from middleware to install client hooks
specified in the client_hooks section of the configuration.
:param patchers: a list of patchers to run. Acceptable values include:
* None - installs all client patches
* 'all' - installs all client patches
* empty list - does not install any patches
* list of function names - executes the functions
"""
if patchers is None or patchers == 'all':
install_all_patches()
return
if not _valid_args(patchers):
raise ValueError('patchers argument must be None, "all", or a list')
for patch_func_name in patchers:
logging.info('Loading client hook %s', patch_func_name)
patch_func = _load_symbol(patch_func_name)
logging.info('Applying client hook %s', patch_func_name)
patch_func() |
Install client interceptors for the patchers.
:param client_interceptors: a list of client interceptors to install.
Should be a list of classes | def install_client_interceptors(client_interceptors=()):
"""
Install client interceptors for the patchers.
:param client_interceptors: a list of client interceptors to install.
Should be a list of classes
"""
if not _valid_args(client_interceptors):
raise ValueError('client_interceptors argument must be a list')
from ..http_client import ClientInterceptors
for client_interceptor in client_interceptors:
logging.info('Loading client interceptor %s', client_interceptor)
interceptor_class = _load_symbol(client_interceptor)
logging.info('Adding client interceptor %s', client_interceptor)
ClientInterceptors.append(interceptor_class()) |
Load a symbol by name.
:param str name: The name to load, specified by `module.attr`.
:returns: The attribute value. If the specified module does not contain
the requested attribute then `None` is returned. | def _load_symbol(name):
"""Load a symbol by name.
:param str name: The name to load, specified by `module.attr`.
:returns: The attribute value. If the specified module does not contain
the requested attribute then `None` is returned.
"""
module_name, key = name.rsplit('.', 1)
try:
module = importlib.import_module(module_name)
except ImportError as err:
# it's possible the symbol is a class method
module_name, class_name = module_name.rsplit('.', 1)
module = importlib.import_module(module_name)
cls = getattr(module, class_name, None)
if cls:
attr = getattr(cls, key, None)
else:
raise err
else:
attr = getattr(module, key, None)
if not callable(attr):
raise ValueError('%s is not callable (was %r)' % (name, attr))
return attr |
Access current request context and extract current Span from it.
:return:
Return current span associated with the current request context.
If no request context is present in thread local, or the context
has no span, return None. | def get_current_span():
"""
Access current request context and extract current Span from it.
:return:
Return current span associated with the current request context.
If no request context is present in thread local, or the context
has no span, return None.
"""
# Check against the old, ScopeManager-less implementation,
# for backwards compatibility.
context = RequestContextManager.current_context()
if context is not None:
return context.span
active = opentracing.tracer.scope_manager.active
return active.span if active else None |
Create a context manager that stores the given span in the thread-local
request context. This function should only be used in single-threaded
applications like Flask / uWSGI.
## Usage example in WSGI middleware:
.. code-block:: python
from opentracing_instrumentation.http_server import WSGIRequestWrapper
from opentracing_instrumentation.http_server import before_request
from opentracing_instrumentation import request_context
def create_wsgi_tracing_middleware(other_wsgi):
def wsgi_tracing_middleware(environ, start_response):
request = WSGIRequestWrapper.from_wsgi_environ(environ)
span = before_request(request=request, tracer=tracer)
# Wrapper around the real start_response object to log
# additional information to opentracing Span
def start_response_wrapper(status, response_headers,
exc_info=None):
if exc_info is not None:
span.log(event='exception', payload=exc_info)
span.finish()
return start_response(status, response_headers)
with request_context.span_in_context(span):
return other_wsgi(environ, start_response_wrapper)
return wsgi_tracing_middleware
:param span: OpenTracing Span
:return:
Return context manager that wraps the request context. | def span_in_context(span):
"""
Create a context manager that stores the given span in the thread-local
request context. This function should only be used in single-threaded
applications like Flask / uWSGI.
## Usage example in WSGI middleware:
.. code-block:: python
from opentracing_instrumentation.http_server import WSGIRequestWrapper
from opentracing_instrumentation.http_server import before_request
from opentracing_instrumentation import request_context
def create_wsgi_tracing_middleware(other_wsgi):
def wsgi_tracing_middleware(environ, start_response):
request = WSGIRequestWrapper.from_wsgi_environ(environ)
span = before_request(request=request, tracer=tracer)
# Wrapper around the real start_response object to log
# additional information to opentracing Span
def start_response_wrapper(status, response_headers,
exc_info=None):
if exc_info is not None:
span.log(event='exception', payload=exc_info)
span.finish()
return start_response(status, response_headers)
with request_context.span_in_context(span):
return other_wsgi(environ, start_response_wrapper)
return wsgi_tracing_middleware
:param span: OpenTracing Span
:return:
Return context manager that wraps the request context.
"""
# Return a no-op Scope if None was specified.
if span is None:
return opentracing.Scope(None, None)
return opentracing.tracer.scope_manager.activate(span, False) |
Create Tornado's StackContext that stores the given span in the
thread-local request context. This function is intended for use
in Tornado applications based on IOLoop, although will work fine
in single-threaded apps like Flask, albeit with more overhead.
## Usage example in Tornado application
Suppose you have a method `handle_request(request)` in the http server.
Instead of calling it directly, use a wrapper:
.. code-block:: python
from opentracing_instrumentation import request_context
@tornado.gen.coroutine
def handle_request_wrapper(request, actual_handler, *args, **kwargs)
request_wrapper = TornadoRequestWrapper(request=request)
span = http_server.before_request(request=request_wrapper)
with request_context.span_in_stack_context(span):
return actual_handler(*args, **kwargs)
:param span:
:return:
Return StackContext that wraps the request context. | def span_in_stack_context(span):
"""
Create Tornado's StackContext that stores the given span in the
thread-local request context. This function is intended for use
in Tornado applications based on IOLoop, although will work fine
in single-threaded apps like Flask, albeit with more overhead.
## Usage example in Tornado application
Suppose you have a method `handle_request(request)` in the http server.
Instead of calling it directly, use a wrapper:
.. code-block:: python
from opentracing_instrumentation import request_context
@tornado.gen.coroutine
def handle_request_wrapper(request, actual_handler, *args, **kwargs)
request_wrapper = TornadoRequestWrapper(request=request)
span = http_server.before_request(request=request_wrapper)
with request_context.span_in_stack_context(span):
return actual_handler(*args, **kwargs)
:param span:
:return:
Return StackContext that wraps the request context.
"""
if not isinstance(opentracing.tracer.scope_manager, TornadoScopeManager):
raise RuntimeError('scope_manager is not TornadoScopeManager')
# Enter the newly created stack context so we have
# storage available for Span activation.
context = tracer_stack_context()
entered_context = _TracerEnteredStackContext(context)
if span is None:
return entered_context
opentracing.tracer.scope_manager.activate(span, False)
assert opentracing.tracer.active_span is not None
assert opentracing.tracer.active_span is span
return entered_context |
Creates a new local span for execution of the given `func`.
The returned span is best used as a context manager, e.g.
.. code-block:: python
with func_span('my_function'):
return my_function(...)
At this time the func should be a string name. In the future this code
can be enhanced to accept a real function and derive its qualified name.
:param func: name of the function or method
:param tags: optional tags to add to the child span
:param require_active_trace: controls what to do when there is no active
trace. If require_active_trace=True, then no span is created.
If require_active_trace=False, a new trace is started.
:return: new child span, or a dummy context manager if there is no
active/current parent span | def func_span(func, tags=None, require_active_trace=False):
"""
Creates a new local span for execution of the given `func`.
The returned span is best used as a context manager, e.g.
.. code-block:: python
with func_span('my_function'):
return my_function(...)
At this time the func should be a string name. In the future this code
can be enhanced to accept a real function and derive its qualified name.
:param func: name of the function or method
:param tags: optional tags to add to the child span
:param require_active_trace: controls what to do when there is no active
trace. If require_active_trace=True, then no span is created.
If require_active_trace=False, a new trace is started.
:return: new child span, or a dummy context manager if there is no
active/current parent span
"""
current_span = get_current_span()
if current_span is None and require_active_trace:
@contextlib2.contextmanager
def empty_ctx_mgr():
yield None
return empty_ctx_mgr()
# TODO convert func to a proper name: module:class.func
operation_name = str(func)
return utils.start_child_span(
operation_name=operation_name, parent=current_span, tags=tags) |
A decorator that enables tracing of the wrapped function or
Tornado co-routine provided there is a parent span already established.
.. code-block:: python
@traced_function
def my_function1(arg1, arg2=None)
...
:param func: decorated function or Tornado co-routine
:param name: optional name to use as the Span.operation_name.
If not provided, func.__name__ will be used.
:param on_start: an optional callback to be executed once the child span
is started, but before the decorated function is called. It can be
used to set any additional tags on the span, perhaps by inspecting
the decorated function arguments. The callback must have a signature
`(span, *args, *kwargs)`, where the last two collections are the
arguments passed to the actual decorated function.
.. code-block:: python
def extract_call_site_tag(span, *args, *kwargs)
if 'call_site_tag' in kwargs:
span.set_tag('call_site_tag', kwargs['call_site_tag'])
@traced_function(on_start=extract_call_site_tag)
@tornado.get.coroutine
def my_function(arg1, arg2=None, call_site_tag=None)
...
:param require_active_trace: controls what to do when there is no active
trace. If require_active_trace=True, then no span is created.
If require_active_trace=False, a new trace is started.
:return: returns a tracing decorator | def traced_function(func=None, name=None, on_start=None,
require_active_trace=False):
"""
A decorator that enables tracing of the wrapped function or
Tornado co-routine provided there is a parent span already established.
.. code-block:: python
@traced_function
def my_function1(arg1, arg2=None)
...
:param func: decorated function or Tornado co-routine
:param name: optional name to use as the Span.operation_name.
If not provided, func.__name__ will be used.
:param on_start: an optional callback to be executed once the child span
is started, but before the decorated function is called. It can be
used to set any additional tags on the span, perhaps by inspecting
the decorated function arguments. The callback must have a signature
`(span, *args, *kwargs)`, where the last two collections are the
arguments passed to the actual decorated function.
.. code-block:: python
def extract_call_site_tag(span, *args, *kwargs)
if 'call_site_tag' in kwargs:
span.set_tag('call_site_tag', kwargs['call_site_tag'])
@traced_function(on_start=extract_call_site_tag)
@tornado.get.coroutine
def my_function(arg1, arg2=None, call_site_tag=None)
...
:param require_active_trace: controls what to do when there is no active
trace. If require_active_trace=True, then no span is created.
If require_active_trace=False, a new trace is started.
:return: returns a tracing decorator
"""
if func is None:
return functools.partial(traced_function, name=name,
on_start=on_start,
require_active_trace=require_active_trace)
if name:
operation_name = name
else:
operation_name = func.__name__
@functools.wraps(func)
def decorator(*args, **kwargs):
parent_span = get_current_span()
if parent_span is None and require_active_trace:
return func(*args, **kwargs)
span = utils.start_child_span(
operation_name=operation_name, parent=parent_span)
if callable(on_start):
on_start(span, *args, **kwargs)
# We explicitly invoke deactivation callback for the StackContext,
# because there are scenarios when it gets retained forever, for
# example when a Periodic Callback is scheduled lazily while in the
# scope of a tracing StackContext.
with span_in_stack_context(span) as deactivate_cb:
try:
res = func(*args, **kwargs)
# Tornado co-routines usually return futures, so we must wait
# until the future is completed, in order to accurately
# capture the function's execution time.
if tornado.concurrent.is_future(res):
def done_callback(future):
deactivate_cb()
exception = future.exception()
if exception is not None:
span.log(event='exception', payload=exception)
span.set_tag('error', 'true')
span.finish()
res.add_done_callback(done_callback)
else:
deactivate_cb()
span.finish()
return res
except Exception as e:
deactivate_cb()
span.log(event='exception', payload=e)
span.set_tag('error', 'true')
span.finish()
raise
return decorator |
Start a new span as a child of parent_span. If parent_span is None,
start a new root span.
:param operation_name: operation name
:param tracer: Tracer or None (defaults to opentracing.tracer)
:param parent: parent Span or None
:param tags: optional tags
:return: new span | def start_child_span(operation_name, tracer=None, parent=None, tags=None):
"""
Start a new span as a child of parent_span. If parent_span is None,
start a new root span.
:param operation_name: operation name
:param tracer: Tracer or None (defaults to opentracing.tracer)
:param parent: parent Span or None
:param tags: optional tags
:return: new span
"""
tracer = tracer or opentracing.tracer
return tracer.start_span(
operation_name=operation_name,
child_of=parent.context if parent else None,
tags=tags
) |
Attempts to extract a tracing span from incoming request.
If no tracing context is passed in the headers, or the data
cannot be parsed, a new root span is started.
:param request: HTTP request with `.headers` property exposed
that satisfies a regular dictionary interface
:param tracer: optional tracer instance to use. If not specified
the global opentracing.tracer will be used.
:return: returns a new, already started span. | def before_request(request, tracer=None):
"""
Attempts to extract a tracing span from incoming request.
If no tracing context is passed in the headers, or the data
cannot be parsed, a new root span is started.
:param request: HTTP request with `.headers` property exposed
that satisfies a regular dictionary interface
:param tracer: optional tracer instance to use. If not specified
the global opentracing.tracer will be used.
:return: returns a new, already started span.
"""
if tracer is None: # pragma: no cover
tracer = opentracing.tracer
# we need to prepare tags upfront, mainly because RPC_SERVER tag must be
# set when starting the span, to support Zipkin's one-span-per-RPC model
tags_dict = {
tags.SPAN_KIND: tags.SPAN_KIND_RPC_SERVER,
tags.HTTP_URL: request.full_url,
}
remote_ip = request.remote_ip
if remote_ip:
tags_dict[tags.PEER_HOST_IPV4] = remote_ip
caller_name = request.caller_name
if caller_name:
tags_dict[tags.PEER_SERVICE] = caller_name
remote_port = request.remote_port
if remote_port:
tags_dict[tags.PEER_PORT] = remote_port
operation = request.operation
try:
carrier = {}
for key, value in six.iteritems(request.headers):
carrier[key] = value
parent_ctx = tracer.extract(
format=Format.HTTP_HEADERS, carrier=carrier
)
except Exception as e:
logging.exception('trace extract failed: %s' % e)
parent_ctx = None
span = tracer.start_span(
operation_name=operation,
child_of=parent_ctx,
tags=tags_dict)
return span |
HTTP headers are presented in WSGI environment with 'HTTP_' prefix.
This method finds those headers, removes the prefix, converts
underscores to dashes, and converts to lower case.
:param wsgi_environ:
:return: returns a dictionary of headers | def _parse_wsgi_headers(wsgi_environ):
"""
HTTP headers are presented in WSGI environment with 'HTTP_' prefix.
This method finds those headers, removes the prefix, converts
underscores to dashes, and converts to lower case.
:param wsgi_environ:
:return: returns a dictionary of headers
"""
prefix = 'HTTP_'
p_len = len(prefix)
# use .items() despite suspected memory pressure bc GC occasionally
# collects wsgi_environ.iteritems() during iteration.
headers = {
key[p_len:].replace('_', '-').lower():
val for (key, val) in wsgi_environ.items()
if key.startswith(prefix)}
return headers |
Taken from
http://legacy.python.org/dev/peps/pep-3333/#url-reconstruction
:return: Reconstructed URL from WSGI environment. | def full_url(self):
"""
Taken from
http://legacy.python.org/dev/peps/pep-3333/#url-reconstruction
:return: Reconstructed URL from WSGI environment.
"""
environ = self.wsgi_environ
url = environ['wsgi.url_scheme'] + '://'
if environ.get('HTTP_HOST'):
url += environ['HTTP_HOST']
else:
url += environ['SERVER_NAME']
if environ['wsgi.url_scheme'] == 'https':
if environ['SERVER_PORT'] != '443':
url += ':' + environ['SERVER_PORT']
else:
if environ['SERVER_PORT'] != '80':
url += ':' + environ['SERVER_PORT']
url += urllib.parse.quote(environ.get('SCRIPT_NAME', ''))
url += urllib.parse.quote(environ.get('PATH_INFO', ''))
if environ.get('QUERY_STRING'):
url += '?' + environ['QUERY_STRING']
return url |
Add interceptor to the end of the internal list.
Note: Raises ``ValueError`` if interceptor
does not extend ``OpenTracingInterceptor`` | def append(cls, interceptor):
"""
Add interceptor to the end of the internal list.
Note: Raises ``ValueError`` if interceptor
does not extend ``OpenTracingInterceptor``
"""
cls._check(interceptor)
cls._interceptors.append(interceptor) |
Add interceptor to the given index in the internal list.
Note: Raises ``ValueError`` if interceptor
does not extend ``OpenTracingInterceptor`` | def insert(cls, index, interceptor):
"""
Add interceptor to the given index in the internal list.
Note: Raises ``ValueError`` if interceptor
does not extend ``OpenTracingInterceptor``
"""
cls._check(interceptor)
cls._interceptors.insert(index, interceptor) |
This decorator allows you to make sure that a function is called once and
only once. Note that recursive functions will still work.
WARNING: Not thread-safe!!! | def singleton(func):
"""
This decorator allows you to make sure that a function is called once and
only once. Note that recursive functions will still work.
WARNING: Not thread-safe!!!
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
if wrapper.__call_state__ == CALLED:
return
ret = func(*args, **kwargs)
wrapper.__call_state__ = CALLED
return ret
def reset():
wrapper.__call_state__ = NOT_CALLED
wrapper.reset = reset
reset()
# save original func to be able to patch and restore multiple times from
# unit tests
wrapper.__original_func = func
return wrapper |
A hook to be executed before HTTP request is executed.
It returns a Span object that can be used as a context manager around
the actual HTTP call implementation, or in case of async callback,
it needs its `finish()` method to be called explicitly.
:param request: request must match API defined by AbstractRequestWrapper
:param current_span_extractor: function that extracts current span
from some context
:return: returns child tracing span encapsulating this request | def before_http_request(request, current_span_extractor):
"""
A hook to be executed before HTTP request is executed.
It returns a Span object that can be used as a context manager around
the actual HTTP call implementation, or in case of async callback,
it needs its `finish()` method to be called explicitly.
:param request: request must match API defined by AbstractRequestWrapper
:param current_span_extractor: function that extracts current span
from some context
:return: returns child tracing span encapsulating this request
"""
span = utils.start_child_span(
operation_name=request.operation,
parent=current_span_extractor()
)
span.set_tag(tags.SPAN_KIND, tags.SPAN_KIND_RPC_CLIENT)
span.set_tag(tags.HTTP_URL, request.full_url)
service_name = request.service_name
host, port = request.host_port
if service_name:
span.set_tag(tags.PEER_SERVICE, service_name)
if host:
span.set_tag(tags.PEER_HOST_IPV4, host)
if port:
span.set_tag(tags.PEER_PORT, port)
# fire interceptors
for interceptor in ClientInterceptors.get_interceptors():
interceptor.process(request=request, span=span)
try:
carrier = {}
opentracing.tracer.inject(span_context=span.context,
format=Format.HTTP_HEADERS,
carrier=carrier)
for key, value in six.iteritems(carrier):
request.add_header(key, value)
except opentracing.UnsupportedFormatException:
pass
return span |
Smooth an image
ANTsR function: `smoothImage`
Arguments
---------
image
Image to smooth
sigma
Smoothing factor. Can be scalar, in which case the same sigma is applied to each dimension, or a vector of length dim(inimage) to specify a unique smoothness for each dimension.
sigma_in_physical_coordinates : boolean
If true, the smoothing factor is in millimeters; if false, it is in pixels.
FWHM : boolean
If true, sigma is interpreted as the full-width-half-max (FWHM) of the filter, not the sigma of a Gaussian kernel.
max_kernel_width : scalar
Maximum kernel width
Returns
-------
ANTsImage
Example
-------
>>> import ants
>>> image = ants.image_read( ants.get_ants_data('r16'))
>>> simage = ants.smooth_image(image, (1.2,1.5)) | def smooth_image(image, sigma, sigma_in_physical_coordinates=True, FWHM=False, max_kernel_width=32):
"""
Smooth an image
ANTsR function: `smoothImage`
Arguments
---------
image
Image to smooth
sigma
Smoothing factor. Can be scalar, in which case the same sigma is applied to each dimension, or a vector of length dim(inimage) to specify a unique smoothness for each dimension.
sigma_in_physical_coordinates : boolean
If true, the smoothing factor is in millimeters; if false, it is in pixels.
FWHM : boolean
If true, sigma is interpreted as the full-width-half-max (FWHM) of the filter, not the sigma of a Gaussian kernel.
max_kernel_width : scalar
Maximum kernel width
Returns
-------
ANTsImage
Example
-------
>>> import ants
>>> image = ants.image_read( ants.get_ants_data('r16'))
>>> simage = ants.smooth_image(image, (1.2,1.5))
"""
if image.components == 1:
return _smooth_image_helper(image, sigma, sigma_in_physical_coordinates, FWHM, max_kernel_width)
else:
imagelist = utils.split_channels(image)
newimages = []
for image in imagelist:
newimage = _smooth_image_helper(image, sigma, sigma_in_physical_coordinates, FWHM, max_kernel_width)
newimages.append(newimage)
return utils.merge_channels(newimages) |
Estimate an optimal template from an input image_list
ANTsR function: N/A
Arguments
---------
initial_template : ANTsImage
initialization for the template building
image_list : ANTsImages
images from which to estimate template
iterations : integer
number of template building iterations
gradient_step : scalar
for shape update gradient
kwargs : keyword args
extra arguments passed to ants registration
Returns
-------
ANTsImage
Example
-------
>>> import ants
>>> image = ants.image_read( ants.get_ants_data('r16') , 'float')
>>> image2 = ants.image_read( ants.get_ants_data('r27') , 'float')
>>> image3 = ants.image_read( ants.get_ants_data('r85') , 'float')
>>> timage = ants.build_template( image_list = ( image, image2, image3 ) ) | def build_template(
initial_template=None,
image_list=None,
iterations = 3,
gradient_step = 0.2,
**kwargs ):
"""
Estimate an optimal template from an input image_list
ANTsR function: N/A
Arguments
---------
initial_template : ANTsImage
initialization for the template building
image_list : ANTsImages
images from which to estimate template
iterations : integer
number of template building iterations
gradient_step : scalar
for shape update gradient
kwargs : keyword args
extra arguments passed to ants registration
Returns
-------
ANTsImage
Example
-------
>>> import ants
>>> image = ants.image_read( ants.get_ants_data('r16') , 'float')
>>> image2 = ants.image_read( ants.get_ants_data('r27') , 'float')
>>> image3 = ants.image_read( ants.get_ants_data('r85') , 'float')
>>> timage = ants.build_template( image_list = ( image, image2, image3 ) )
"""
wt = 1.0 / len( image_list )
if initial_template is None:
initial_template = image_list[ 0 ] * 0
for i in range( len( image_list ) ):
initial_template = initial_template + image_list[ i ] * wt
xavg = initial_template.clone()
for i in range( iterations ):
for k in range( len( image_list ) ):
w1 = registration( xavg, image_list[k],
type_of_transform='SyN', **kwargs )
if k == 0:
wavg = iio.image_read( w1['fwdtransforms'][0] ) * wt
xavgNew = w1['warpedmovout'] * wt
else:
wavg = wavg + iio.image_read( w1['fwdtransforms'][0] ) * wt
xavgNew = xavgNew + w1['warpedmovout'] * wt
print( wavg.abs().mean() )
wscl = (-1.0) * gradient_step
wavg = wavg * wscl
wavgfn = mktemp(suffix='.nii.gz')
iio.image_write(wavg, wavgfn)
xavg = apply_transforms( xavg, xavg, wavgfn )
return xavg |
X : ANTsImage | string | list of ANTsImage types | list of strings
images to register to fixed image
y : string | list of strings
labels for images | def fit(self, X, y=None):
"""
X : ANTsImage | string | list of ANTsImage types | list of strings
images to register to fixed image
y : string | list of strings
labels for images
"""
moving_images = X if isinstance(X, (list,tuple)) else [X]
moving_labels = y if y is not None else [i for i in range(len(moving_images))]
fixed_image = self.fixed_image
self.fwdtransforms_ = {}
self.invtransforms_ = {}
self.warpedmovout_ = {}
self.warpedfixout_ = {}
for moving_image, moving_label in zip(moving_images, moving_labels):
fit_result = interface.registration(fixed_image,
moving_image,
type_of_transform=self.type_of_transform,
initial_transform=None,
outprefix='',
mask=None,
grad_step=0.2,
flow_sigma=3,
total_sigma=0,
aff_metric='mattes',
aff_sampling=32,
syn_metric='mattes',
syn_sampling=32,
reg_iterations=(40,20,0),
verbose=False)
self.fwdtransforms_[moving_label] = fit_result['fwdtransforms']
self.invtransforms_[moving_label] = fit_result['invtransforms']
self.warpedmovout_[moving_label] = fit_result['warpedmovout']
self.warpedfixout_[moving_label] = fit_result['warpedfixout']
return self |
A multiple atlas voting scheme to customize labels for a new subject.
This function will also perform intensity fusion. It almost directly
calls the C++ in the ANTs executable so is much faster than other
variants in ANTsR.
One may want to normalize image intensities for each input image before
passing to this function. If no labels are passed, we do intensity fusion.
Note on computation time: the underlying C++ is multithreaded.
You can control the number of threads by setting the environment
variable ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS e.g. to use all or some
of your CPUs. This will improve performance substantially.
For instance, on a macbook pro from 2015, 8 cores improves speed by about 4x.
ANTsR function: `jointLabelFusion`
Arguments
---------
target_image : ANTsImage
image to be approximated
target_image_mask : ANTsImage
mask with value 1
atlas_list : list of ANTsImage types
list containing intensity images
beta : scalar
weight sharpness, default to 2
rad : scalar
neighborhood radius, default to 2
label_list : list of ANTsImage types (optional)
list containing images with segmentation labels
rho : scalar
ridge penalty increases robustness to outliers but also makes image converge to average
usecor : boolean
employ correlation as local similarity
r_search : scalar
radius of search, default is 3
nonnegative : boolean
constrain weights to be non-negative
verbose : boolean
whether to show status updates
Returns
-------
dictionary w/ following key/value pairs:
`segmentation` : ANTsImage
segmentation image
`intensity` : ANTsImage
intensity image
`probabilityimages` : list of ANTsImage types
probability map image for each label
Example
-------
>>> import ants
>>> ref = ants.image_read( ants.get_ants_data('r16'))
>>> ref = ants.resample_image(ref, (50,50),1,0)
>>> ref = ants.iMath(ref,'Normalize')
>>> mi = ants.image_read( ants.get_ants_data('r27'))
>>> mi2 = ants.image_read( ants.get_ants_data('r30'))
>>> mi3 = ants.image_read( ants.get_ants_data('r62'))
>>> mi4 = ants.image_read( ants.get_ants_data('r64'))
>>> mi5 = ants.image_read( ants.get_ants_data('r85'))
>>> refmask = ants.get_mask(ref)
>>> refmask = ants.iMath(refmask,'ME',2) # just to speed things up
>>> ilist = [mi,mi2,mi3,mi4,mi5]
>>> seglist = [None]*len(ilist)
>>> for i in range(len(ilist)):
>>> ilist[i] = ants.iMath(ilist[i],'Normalize')
>>> mytx = ants.registration(fixed=ref , moving=ilist[i] ,
>>> typeofTransform = ('Affine') )
>>> mywarpedimage = ants.apply_transforms(fixed=ref,moving=ilist[i],
>>> transformlist=mytx['fwdtransforms'])
>>> ilist[i] = mywarpedimage
>>> seg = ants.threshold_image(ilist[i],'Otsu', 3)
>>> seglist[i] = ( seg ) + ants.threshold_image( seg, 1, 3 ).morphology( operation='dilate', radius=3 )
>>> r = 2
>>> pp = ants.joint_label_fusion(ref, refmask, ilist, r_search=2,
>>> label_list=seglist, rad=[r]*ref.dimension )
>>> pp = ants.joint_label_fusion(ref,refmask,ilist, r_search=2, rad=[r]*ref.dimension) | def joint_label_fusion(target_image, target_image_mask, atlas_list, beta=4, rad=2,
label_list=None, rho=0.01, usecor=False, r_search=3,
nonnegative=False, verbose=False):
"""
A multiple atlas voting scheme to customize labels for a new subject.
This function will also perform intensity fusion. It almost directly
calls the C++ in the ANTs executable so is much faster than other
variants in ANTsR.
One may want to normalize image intensities for each input image before
passing to this function. If no labels are passed, we do intensity fusion.
Note on computation time: the underlying C++ is multithreaded.
You can control the number of threads by setting the environment
variable ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS e.g. to use all or some
of your CPUs. This will improve performance substantially.
For instance, on a macbook pro from 2015, 8 cores improves speed by about 4x.
ANTsR function: `jointLabelFusion`
Arguments
---------
target_image : ANTsImage
image to be approximated
target_image_mask : ANTsImage
mask with value 1
atlas_list : list of ANTsImage types
list containing intensity images
beta : scalar
weight sharpness, default to 2
rad : scalar
neighborhood radius, default to 2
label_list : list of ANTsImage types (optional)
list containing images with segmentation labels
rho : scalar
ridge penalty increases robustness to outliers but also makes image converge to average
usecor : boolean
employ correlation as local similarity
r_search : scalar
radius of search, default is 3
nonnegative : boolean
constrain weights to be non-negative
verbose : boolean
whether to show status updates
Returns
-------
dictionary w/ following key/value pairs:
`segmentation` : ANTsImage
segmentation image
`intensity` : ANTsImage
intensity image
`probabilityimages` : list of ANTsImage types
probability map image for each label
Example
-------
>>> import ants
>>> ref = ants.image_read( ants.get_ants_data('r16'))
>>> ref = ants.resample_image(ref, (50,50),1,0)
>>> ref = ants.iMath(ref,'Normalize')
>>> mi = ants.image_read( ants.get_ants_data('r27'))
>>> mi2 = ants.image_read( ants.get_ants_data('r30'))
>>> mi3 = ants.image_read( ants.get_ants_data('r62'))
>>> mi4 = ants.image_read( ants.get_ants_data('r64'))
>>> mi5 = ants.image_read( ants.get_ants_data('r85'))
>>> refmask = ants.get_mask(ref)
>>> refmask = ants.iMath(refmask,'ME',2) # just to speed things up
>>> ilist = [mi,mi2,mi3,mi4,mi5]
>>> seglist = [None]*len(ilist)
>>> for i in range(len(ilist)):
>>> ilist[i] = ants.iMath(ilist[i],'Normalize')
>>> mytx = ants.registration(fixed=ref , moving=ilist[i] ,
>>> typeofTransform = ('Affine') )
>>> mywarpedimage = ants.apply_transforms(fixed=ref,moving=ilist[i],
>>> transformlist=mytx['fwdtransforms'])
>>> ilist[i] = mywarpedimage
>>> seg = ants.threshold_image(ilist[i],'Otsu', 3)
>>> seglist[i] = ( seg ) + ants.threshold_image( seg, 1, 3 ).morphology( operation='dilate', radius=3 )
>>> r = 2
>>> pp = ants.joint_label_fusion(ref, refmask, ilist, r_search=2,
>>> label_list=seglist, rad=[r]*ref.dimension )
>>> pp = ants.joint_label_fusion(ref,refmask,ilist, r_search=2, rad=[r]*ref.dimension)
"""
segpixtype = 'unsigned int'
if (label_list is None) or (np.any([l is None for l in label_list])):
doJif = True
else:
doJif = False
if not doJif:
if len(label_list) != len(atlas_list):
raise ValueError('len(label_list) != len(atlas_list)')
inlabs = np.sort(np.unique(label_list[0][target_image_mask != 0 ]))
mymask = target_image_mask.clone()
else:
mymask = target_image_mask
osegfn = mktemp(prefix='antsr', suffix='myseg.nii.gz')
#segdir = osegfn.replace(os.path.basename(osegfn),'')
if os.path.exists(osegfn):
os.remove(osegfn)
probs = mktemp(prefix='antsr', suffix='prob%02d.nii.gz')
probsbase = os.path.basename(probs)
tdir = probs.replace(probsbase,'')
searchpattern = probsbase.replace('%02d', '*')
mydim = target_image_mask.dimension
if not doJif:
# not sure if these should be allocated or what their size should be
outimg = label_list[1].clone(segpixtype)
outimgi = target_image * 0
outimg_ptr = utils.get_pointer_string(outimg)
outimgi_ptr = utils.get_pointer_string(outimgi)
outs = '[%s,%s,%s]' % (outimg_ptr, outimgi_ptr, probs)
else:
outimgi = target_image * 0
outs = utils.get_pointer_string(outimgi)
mymask = mymask.clone(segpixtype)
if (not isinstance(rad, (tuple,list))) or (len(rad)==1):
myrad = [rad] * mydim
else:
myrad = rad
if len(myrad) != mydim:
raise ValueError('path radius dimensionality must equal image dimensionality')
myrad = 'x'.join([str(mr) for mr in myrad])
vnum = 1 if verbose else 0
nnum = 1 if nonnegative else 0
myargs = {
'd': mydim,
't': target_image,
'a': rho,
'b': beta,
'c': nnum,
'p': myrad,
'm': 'PC',
's': r_search,
'x': mymask,
'o': outs,
'v': vnum
}
kct = len(myargs.keys())
for k in range(len(atlas_list)):
kct += 1
myargs['g-MULTINAME-%i' % kct] = atlas_list[k]
if not doJif:
kct += 1
castseg = label_list[k].clone(segpixtype)
myargs['l-MULTINAME-%i' % kct] = castseg
myprocessedargs = utils._int_antsProcessArguments(myargs)
libfn = utils.get_lib_fn('antsJointFusion')
rval = libfn(myprocessedargs)
if rval != 0:
print('Warning: Non-zero return from antsJointFusion')
if doJif:
return outimgi
probsout = glob.glob(os.path.join(tdir,'*'+searchpattern ) )
probsout.sort()
probimgs = [iio2.image_read(probsout[0])]
for idx in range(1, len(probsout)):
probimgs.append(iio2.image_read(probsout[idx]))
segmat = iio2.images_to_matrix( probimgs, target_image_mask )
finalsegvec = segmat.argmax( axis = 0 )
finalsegvec2 = finalsegvec.copy()
# mapfinalsegvec to original labels
for i in range(finalsegvec.max()+1):
finalsegvec2[finalsegvec==i] = inlabs[i]
outimg = iio2.make_image( target_image_mask, finalsegvec2 )
return {
'segmentation': outimg,
'intensity': outimgi,
'probabilityimages': probimgs
} |
Create a tiled mosaic of 2D slice images from a 3D ANTsImage.
ANTsR function : N/A
ANTs function : `createTiledMosaic`
Arguments
---------
image : ANTsImage
base image to visualize
rgb : ANTsImage
optional overlay image to display on top of base image
mask : ANTsImage
optional mask image
alpha : float
alpha value for rgb/overlay image
direction : integer or string
which axis to visualize
options: 0, 1, 2, 'x', 'y', 'z'
pad_or_crop : list of 2-tuples
padding or cropping values for each dimension and each side.
- to crop the X dimension, use the following:
pad_or_crop = [(10,10), 0, 0]
- to pad the X dimension, use the following:
pad_or_crop = [(-10,-10), 0, 0]
slices : list/numpy.ndarray or integer or 3-tuple
if list or numpy.ndarray:
slices to use
if integer:
number of slices to incremenet
if 3-tuple:
(# slices to increment, min slice, max slice)
flip_slice : 2-tuple of boolean
(whether to flip X direction, whether to flip Y direction)
permute_axes : boolean
whether to permute axes
output : string
output filename where mosaic image will be saved.
If not given, this function will save to a temp file,
then return the image as a PIL.Image object
ANTs
----
-i, --input-image inputImageFilename
-r, --rgb-image rgbImageFilename
-x, --mask-image maskImageFilename
-a, --alpha value
-e, --functional-overlay [rgbImageFileName,maskImageFileName,<alpha=1>]
-o, --output tiledMosaicImage
-t, --tile-geometry RxC
-d, --direction 0/1/2/x/y/(z)
-p, --pad-or-crop padVoxelWidth
[padVoxelWidth,<constantValue=0>]
[lowerPadding[0]xlowerPadding[1],upperPadding[0]xupperPadding[1],constantValue]
-s, --slices Slice1xSlice2xSlice3...
numberOfSlicesToIncrement
[numberOfSlicesToIncrement,<minSlice=0>,<maxSlice=lastSlice>]
-f, --flip-slice flipXxflipY
-g, --permute-axes doPermute
-h
CreateTiledMosaic -i OAS1_0457_MR1_mpr_n3_anon_sbj_111BrainSegmentation0N4 . nii . gz \
-r OAS1_0457_MR1_mpr_n3_anon_sbj_111CorticalThickness_hot . nii . gz \
-x OAS1_0457_MR1_mpr_n3_anon_sbj_111CorticalThickness_mask . nii . gz \
-o OAS1_0457_MR1_mpr_n3_anon_sbj_111_tiledMosaic . png \
-a 1.0 -t -1 x8 -d 2 -p [ -15x -50 , -15x -30 ,0] -s [2 ,100 ,160]
Example
-------
>>> import ants
>>> image = ants.image_read(ants.get_ants_data('ch2'))
>>> plt = ants.create_tiled_mosaic(image) | def create_tiled_mosaic(image, rgb=None, mask=None, overlay=None,
output=None, alpha=1., direction=0,
pad_or_crop=None, slices=None,
flip_slice=None, permute_axes=False):
"""
Create a tiled mosaic of 2D slice images from a 3D ANTsImage.
ANTsR function : N/A
ANTs function : `createTiledMosaic`
Arguments
---------
image : ANTsImage
base image to visualize
rgb : ANTsImage
optional overlay image to display on top of base image
mask : ANTsImage
optional mask image
alpha : float
alpha value for rgb/overlay image
direction : integer or string
which axis to visualize
options: 0, 1, 2, 'x', 'y', 'z'
pad_or_crop : list of 2-tuples
padding or cropping values for each dimension and each side.
- to crop the X dimension, use the following:
pad_or_crop = [(10,10), 0, 0]
- to pad the X dimension, use the following:
pad_or_crop = [(-10,-10), 0, 0]
slices : list/numpy.ndarray or integer or 3-tuple
if list or numpy.ndarray:
slices to use
if integer:
number of slices to incremenet
if 3-tuple:
(# slices to increment, min slice, max slice)
flip_slice : 2-tuple of boolean
(whether to flip X direction, whether to flip Y direction)
permute_axes : boolean
whether to permute axes
output : string
output filename where mosaic image will be saved.
If not given, this function will save to a temp file,
then return the image as a PIL.Image object
ANTs
----
-i, --input-image inputImageFilename
-r, --rgb-image rgbImageFilename
-x, --mask-image maskImageFilename
-a, --alpha value
-e, --functional-overlay [rgbImageFileName,maskImageFileName,<alpha=1>]
-o, --output tiledMosaicImage
-t, --tile-geometry RxC
-d, --direction 0/1/2/x/y/(z)
-p, --pad-or-crop padVoxelWidth
[padVoxelWidth,<constantValue=0>]
[lowerPadding[0]xlowerPadding[1],upperPadding[0]xupperPadding[1],constantValue]
-s, --slices Slice1xSlice2xSlice3...
numberOfSlicesToIncrement
[numberOfSlicesToIncrement,<minSlice=0>,<maxSlice=lastSlice>]
-f, --flip-slice flipXxflipY
-g, --permute-axes doPermute
-h
CreateTiledMosaic -i OAS1_0457_MR1_mpr_n3_anon_sbj_111BrainSegmentation0N4 . nii . gz \
-r OAS1_0457_MR1_mpr_n3_anon_sbj_111CorticalThickness_hot . nii . gz \
-x OAS1_0457_MR1_mpr_n3_anon_sbj_111CorticalThickness_mask . nii . gz \
-o OAS1_0457_MR1_mpr_n3_anon_sbj_111_tiledMosaic . png \
-a 1.0 -t -1 x8 -d 2 -p [ -15x -50 , -15x -30 ,0] -s [2 ,100 ,160]
Example
-------
>>> import ants
>>> image = ants.image_read(ants.get_ants_data('ch2'))
>>> plt = ants.create_tiled_mosaic(image)
"""
# image needs to be unsigned char
if image.pixeltype != 'unsigned char':
# transform between 0 and 255.
image = (image - image.max()) / (image.max() - image.min())
image = image * 255.
image = image.clone('unsigned char')
output_is_temp = False
if output is None:
output_is_temp = True
output = mktemp(suffix='.jpg')
if rgb is None:
rgb = image.clone()
imagepath = mktemp(suffix='.nii.gz')
iio2.image_write(image, imagepath)
rgbpath = mktemp(suffix='.nii.gz')
iio2.image_write(rgb, rgbpath)
args = {
'i': imagepath,
'r': rgbpath,
'o': output
}
processed_args = utils._int_antsProcessArguments(args)
libfn = utils.get_lib_fn('CreateTiledMosaic')
libfn(processed_args)
outimage = Image.open(output)
if output_is_temp:
os.remove(output)
return outimage |
Impute missing values on a numpy ndarray in a column-wise manner.
ANTsR function: `antsrimpute`
Arguments
---------
data : numpy.ndarray
data to impute
method : string or float
type of imputation method to use
Options:
mean
median
constant
KNN
BiScaler
NuclearNormMinimization
SoftImpute
IterativeSVD
value : scalar (optional)
optional arguments for different methods
if method == 'constant'
constant value
if method == 'KNN'
number of nearest neighbors to use
nan_value : scalar
value which is interpreted as a missing value
Returns
-------
ndarray if ndarray was given
OR
pd.DataFrame if pd.DataFrame was given
Example
-------
>>> import ants
>>> import numpy as np
>>> data = np.random.randn(4,10)
>>> data[2,3] = np.nan
>>> data[3,5] = np.nan
>>> data_imputed = ants.impute(data, 'mean')
Details
-------
KNN: Nearest neighbor imputations which weights samples using the mean squared
difference on features for which two rows both have observed data.
SoftImpute: Matrix completion by iterative soft thresholding of SVD
decompositions. Inspired by the softImpute package for R, which
is based on Spectral Regularization Algorithms for Learning
Large Incomplete Matrices by Mazumder et. al.
IterativeSVD: Matrix completion by iterative low-rank SVD decomposition.
Should be similar to SVDimpute from Missing value estimation
methods for DNA microarrays by Troyanskaya et. al.
MICE: Reimplementation of Multiple Imputation by Chained Equations.
MatrixFactorization: Direct factorization of the incomplete matrix into
low-rank U and V, with an L1 sparsity penalty on the elements
of U and an L2 penalty on the elements of V.
Solved by gradient descent.
NuclearNormMinimization: Simple implementation of Exact Matrix Completion
via Convex Optimization by Emmanuel Candes and Benjamin
Recht using cvxpy. Too slow for large matrices.
BiScaler: Iterative estimation of row/column means and standard deviations
to get doubly normalized matrix. Not guaranteed to converge but
works well in practice. Taken from Matrix Completion and
Low-Rank SVD via Fast Alternating Least Squares. | def impute(data, method='mean', value=None, nan_value=np.nan):
"""
Impute missing values on a numpy ndarray in a column-wise manner.
ANTsR function: `antsrimpute`
Arguments
---------
data : numpy.ndarray
data to impute
method : string or float
type of imputation method to use
Options:
mean
median
constant
KNN
BiScaler
NuclearNormMinimization
SoftImpute
IterativeSVD
value : scalar (optional)
optional arguments for different methods
if method == 'constant'
constant value
if method == 'KNN'
number of nearest neighbors to use
nan_value : scalar
value which is interpreted as a missing value
Returns
-------
ndarray if ndarray was given
OR
pd.DataFrame if pd.DataFrame was given
Example
-------
>>> import ants
>>> import numpy as np
>>> data = np.random.randn(4,10)
>>> data[2,3] = np.nan
>>> data[3,5] = np.nan
>>> data_imputed = ants.impute(data, 'mean')
Details
-------
KNN: Nearest neighbor imputations which weights samples using the mean squared
difference on features for which two rows both have observed data.
SoftImpute: Matrix completion by iterative soft thresholding of SVD
decompositions. Inspired by the softImpute package for R, which
is based on Spectral Regularization Algorithms for Learning
Large Incomplete Matrices by Mazumder et. al.
IterativeSVD: Matrix completion by iterative low-rank SVD decomposition.
Should be similar to SVDimpute from Missing value estimation
methods for DNA microarrays by Troyanskaya et. al.
MICE: Reimplementation of Multiple Imputation by Chained Equations.
MatrixFactorization: Direct factorization of the incomplete matrix into
low-rank U and V, with an L1 sparsity penalty on the elements
of U and an L2 penalty on the elements of V.
Solved by gradient descent.
NuclearNormMinimization: Simple implementation of Exact Matrix Completion
via Convex Optimization by Emmanuel Candes and Benjamin
Recht using cvxpy. Too slow for large matrices.
BiScaler: Iterative estimation of row/column means and standard deviations
to get doubly normalized matrix. Not guaranteed to converge but
works well in practice. Taken from Matrix Completion and
Low-Rank SVD via Fast Alternating Least Squares.
"""
_fancyimpute_options = {'KNN', 'BiScaler', 'NuclearNormMinimization', 'SoftImpute', 'IterativeSVD'}
if (not has_fancyimpute) and (method in _fancyimpute_options):
raise ValueError('You must install `fancyimpute` (pip install fancyimpute) to use this method')
_base_options = {'mean', 'median', 'constant'}
if (method not in _base_options) and (method not in _fancyimpute_options) and (not isinstance(method, (int,float))):
raise ValueError('method not understood.. Use `mean`, `median`, a scalar, or an option from `fancyimpute`')
X_incomplete = data.copy()
if method == 'KNN':
if value is None:
value = 3
X_filled = KNN(k=value, verbose=False).complete(X_incomplete)
elif method == 'BiScaler':
X_filled = BiScaler(verbose=False).fit_transform(X_incomplete)
elif method == 'SoftImpute':
X_filled = SoftImpute(verbose=False).complete(X_incomplete)
elif method == 'IterativeSVD':
if value is None:
rank = min(10, X_incomplete.shape[0]-2)
else:
rank = value
X_filled = IterativeSVD(rank=rank, verbose=False).complete(X_incomplete)
elif method == 'mean':
col_means = np.nanmean(X_incomplete, axis=0)
for i in range(X_incomplete.shape[1]):
X_incomplete[:,i][np.isnan(X_incomplete[:,i])] = col_means[i]
X_filled = X_incomplete
elif method == 'median':
col_means = np.nanmean(X_incomplete, axis=0)
for i in range(X_incomplete.shape[1]):
X_incomplete[:,i][np.isnan(X_incomplete[:,i])] = col_means[i]
X_filled = X_incomplete
elif method == 'constant':
if value is None:
raise ValueError('Must give `value` argument if method == constant')
X_incomplete[np.isnan(X_incomplete)] = value
X_filled = X_incomplete
return X_filled |
Resample image by spacing or number of voxels with
various interpolators. Works with multi-channel images.
ANTsR function: `resampleImage`
Arguments
---------
image : ANTsImage
input image
resample_params : tuple/list
vector of size dimension with numeric values
use_voxels : boolean
True means interpret resample params as voxel counts
interp_type : integer
one of 0 (linear), 1 (nearest neighbor), 2 (gaussian), 3 (windowed sinc), 4 (bspline)
Returns
-------
ANTsImage
Example
-------
>>> import ants
>>> fi = ants.image_read( ants.get_ants_data("r16"))
>>> finn = ants.resample_image(fi,(50,60),True,0)
>>> filin = ants.resample_image(fi,(1.5,1.5),False,1) | def resample_image(image, resample_params, use_voxels=False, interp_type=1):
"""
Resample image by spacing or number of voxels with
various interpolators. Works with multi-channel images.
ANTsR function: `resampleImage`
Arguments
---------
image : ANTsImage
input image
resample_params : tuple/list
vector of size dimension with numeric values
use_voxels : boolean
True means interpret resample params as voxel counts
interp_type : integer
one of 0 (linear), 1 (nearest neighbor), 2 (gaussian), 3 (windowed sinc), 4 (bspline)
Returns
-------
ANTsImage
Example
-------
>>> import ants
>>> fi = ants.image_read( ants.get_ants_data("r16"))
>>> finn = ants.resample_image(fi,(50,60),True,0)
>>> filin = ants.resample_image(fi,(1.5,1.5),False,1)
"""
if image.components == 1:
inimage = image.clone('float')
outimage = image.clone('float')
rsampar = 'x'.join([str(rp) for rp in resample_params])
args = [image.dimension, inimage, outimage, rsampar, int(use_voxels), interp_type]
processed_args = utils._int_antsProcessArguments(args)
libfn = utils.get_lib_fn('ResampleImage')
libfn(processed_args)
outimage = outimage.clone(image.pixeltype)
return outimage
else:
raise ValueError('images with more than 1 component not currently supported') |
Resample image by using another image as target reference.
This function uses ants.apply_transform with an identity matrix
to achieve proper resampling.
ANTsR function: `resampleImageToTarget`
Arguments
---------
image : ANTsImage
image to resample
target : ANTsImage
image of reference, the output will be in this space
interp_type : string
Choice of interpolator. Supports partial matching.
linear
nearestNeighbor
multiLabel for label images but genericlabel is preferred
gaussian
bSpline
cosineWindowedSinc
welchWindowedSinc
hammingWindowedSinc
lanczosWindowedSinc
genericLabel use this for label images
imagetype : integer
choose 0/1/2/3 mapping to scalar/vector/tensor/time-series
verbose : boolean
print command and run verbose application of transform.
kwargs : keyword arguments
additional arugment passed to antsApplyTransforms C code
Returns
-------
ANTsImage
Example
-------
>>> import ants
>>> fi = ants.image_read(ants.get_ants_data('r16'))
>>> fi2mm = ants.resample_image(fi, (2,2), use_voxels=0, interp_type='linear')
>>> resampled = ants.resample_image_to_target(fi2mm, fi, verbose=True) | def resample_image_to_target(image, target, interp_type='linear', imagetype=0, verbose=False, **kwargs):
"""
Resample image by using another image as target reference.
This function uses ants.apply_transform with an identity matrix
to achieve proper resampling.
ANTsR function: `resampleImageToTarget`
Arguments
---------
image : ANTsImage
image to resample
target : ANTsImage
image of reference, the output will be in this space
interp_type : string
Choice of interpolator. Supports partial matching.
linear
nearestNeighbor
multiLabel for label images but genericlabel is preferred
gaussian
bSpline
cosineWindowedSinc
welchWindowedSinc
hammingWindowedSinc
lanczosWindowedSinc
genericLabel use this for label images
imagetype : integer
choose 0/1/2/3 mapping to scalar/vector/tensor/time-series
verbose : boolean
print command and run verbose application of transform.
kwargs : keyword arguments
additional arugment passed to antsApplyTransforms C code
Returns
-------
ANTsImage
Example
-------
>>> import ants
>>> fi = ants.image_read(ants.get_ants_data('r16'))
>>> fi2mm = ants.resample_image(fi, (2,2), use_voxels=0, interp_type='linear')
>>> resampled = ants.resample_image_to_target(fi2mm, fi, verbose=True)
"""
fixed = target
moving = image
compose = None
transformlist = 'identity'
interpolator = interp_type
interpolator_oldoptions = ("linear", "nearestNeighbor", "gaussian", "cosineWindowedSinc", "bSpline")
if isinstance(interp_type, int):
interpolator = interpolator_oldoptions[interp_type]
accepted_interpolators = {"linear", "nearestNeighbor", "multiLabel", "gaussian",
"bSpline", "cosineWindowedSinc", "welchWindowedSinc",
"hammingWindowedSinc", "lanczosWindowedSinc", "genericLabel"}
if interpolator not in accepted_interpolators:
raise ValueError('interpolator not supported - see %s' % accepted_interpolators)
args = [fixed, moving, transformlist, interpolator]
if not isinstance(fixed, str):
if isinstance(fixed, iio.ANTsImage) and isinstance(moving, iio.ANTsImage):
inpixeltype = fixed.pixeltype
warpedmovout = moving.clone()
f = fixed
m = moving
if (moving.dimension == 4) and (fixed.dimension==3) and (imagetype==0):
raise ValueError('Set imagetype 3 to transform time series images.')
wmo = warpedmovout
mytx = ['-t', 'identity']
if compose is None:
args = ['-d', fixed.dimension, '-i', m, '-o', wmo, '-r', f, '-n', interpolator] + mytx
tfn = '%scomptx.nii.gz' % compose if compose is not None else 'NA'
if compose is not None:
mycompo = '[%s,1]' % tfn
args = ['-d', fixed.dimension, '-i', m, '-o', mycompo, '-r', f, '-n', interpolator] + mytx
myargs = utils._int_antsProcessArguments(args)
# NO CLUE WHAT THIS DOES OR WHY IT'S NEEDED
for jj in range(len(myargs)):
if myargs[jj] is not None:
if myargs[jj] == '-':
myargs2 = [None]*(len(myargs)-1)
myargs2[:(jj-1)] = myargs[:(jj-1)]
myargs2[jj:(len(myargs)-1)] = myargs[(jj+1):(len(myargs))]
myargs = myargs2
myverb = int(verbose)
processed_args = myargs + ['-z', str(1), '-v', str(myverb), '--float', str(1), '-e', str(imagetype)]
libfn = utils.get_lib_fn('antsApplyTransforms')
libfn(processed_args)
if compose is None:
return warpedmovout.clone(inpixeltype)
else:
if os.path.exists(tfn):
return tfn
else:
return None
else:
return 1
else:
processed_args = myargs + ['-z', str(1), '--float', str(1), '-e', str(imagetype)]
libfn = utils.get_lib_fn('antsApplyTransforms')
libfn(processed_args) |
Apply ANTsTransform to data
ANTsR function: `applyAntsrTransform`
Arguments
---------
transform : ANTsTransform
transform to apply to image
data : ndarray/list/tuple
data to which transform will be applied
data_type : string
type of data
Options :
'point'
'vector'
'image'
reference : ANTsImage
target space for transforming image
kwargs : kwargs
additional options passed to `apply_ants_transform_to_image`
Returns
-------
ANTsImage if data_type == 'point'
OR
tuple if data_type == 'point' or data_type == 'vector' | def apply_ants_transform(transform, data, data_type="point", reference=None, **kwargs):
"""
Apply ANTsTransform to data
ANTsR function: `applyAntsrTransform`
Arguments
---------
transform : ANTsTransform
transform to apply to image
data : ndarray/list/tuple
data to which transform will be applied
data_type : string
type of data
Options :
'point'
'vector'
'image'
reference : ANTsImage
target space for transforming image
kwargs : kwargs
additional options passed to `apply_ants_transform_to_image`
Returns
-------
ANTsImage if data_type == 'point'
OR
tuple if data_type == 'point' or data_type == 'vector'
"""
return transform.apply(data, data_type, reference, **kwargs) |