id
stringlengths
14
16
text
stringlengths
29
2.73k
source
stringlengths
49
115
5e1db2134523-0
Source code for langchain.agents.react.base """Chain that implements the ReAct paper from https://arxiv.org/pdf/2210.03629.pdf.""" from typing import Any, List, Optional, Sequence from pydantic import Field from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.react.output_parser import ReActOutputParser from langchain.agents.react.textworld_prompt import TEXTWORLD_PROMPT from langchain.agents.react.wiki_prompt import WIKI_PROMPT from langchain.agents.tools import Tool from langchain.agents.utils import validate_tools_single_input from langchain.docstore.base import Docstore from langchain.docstore.document import Document from langchain.llms.base import BaseLLM from langchain.prompts.base import BasePromptTemplate from langchain.tools.base import BaseTool class ReActDocstoreAgent(Agent): """Agent for the ReAct chain.""" output_parser: AgentOutputParser = Field(default_factory=ReActOutputParser) @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return ReActOutputParser() @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.REACT_DOCSTORE @classmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Return default prompt.""" return WIKI_PROMPT @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) super()._validate_tools(tools) if len(tools) != 2:
https://python.langchain.com/en/latest/_modules/langchain/agents/react/base.html
5e1db2134523-1
super()._validate_tools(tools) if len(tools) != 2: raise ValueError(f"Exactly two tools must be specified, but got {tools}") tool_names = {tool.name for tool in tools} if tool_names != {"Lookup", "Search"}: raise ValueError( f"Tool names should be Lookup and Search, got {tool_names}" ) @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def _stop(self) -> List[str]: return ["\nObservation:"] @property def llm_prefix(self) -> str: """Prefix to append the LLM call with.""" return "Thought:" class DocstoreExplorer: """Class to assist with exploration of a document store.""" def __init__(self, docstore: Docstore): """Initialize with a docstore, and set initial document to None.""" self.docstore = docstore self.document: Optional[Document] = None self.lookup_str = "" self.lookup_index = 0 def search(self, term: str) -> str: """Search for a term in the docstore, and if found save.""" result = self.docstore.search(term) if isinstance(result, Document): self.document = result return self._summary else: self.document = None return result def lookup(self, term: str) -> str: """Lookup a term in document (if saved).""" if self.document is None: raise ValueError("Cannot lookup without a successful search first") if term.lower() != self.lookup_str:
https://python.langchain.com/en/latest/_modules/langchain/agents/react/base.html
5e1db2134523-2
if term.lower() != self.lookup_str: self.lookup_str = term.lower() self.lookup_index = 0 else: self.lookup_index += 1 lookups = [p for p in self._paragraphs if self.lookup_str in p.lower()] if len(lookups) == 0: return "No Results" elif self.lookup_index >= len(lookups): return "No More Results" else: result_prefix = f"(Result {self.lookup_index + 1}/{len(lookups)})" return f"{result_prefix} {lookups[self.lookup_index]}" @property def _summary(self) -> str: return self._paragraphs[0] @property def _paragraphs(self) -> List[str]: if self.document is None: raise ValueError("Cannot get paragraphs without a document") return self.document.page_content.split("\n\n") [docs]class ReActTextWorldAgent(ReActDocstoreAgent): """Agent for the ReAct TextWorld chain.""" [docs] @classmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Return default prompt.""" return TEXTWORLD_PROMPT @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) super()._validate_tools(tools) if len(tools) != 1: raise ValueError(f"Exactly one tool must be specified, but got {tools}") tool_names = {tool.name for tool in tools} if tool_names != {"Play"}: raise ValueError(f"Tool name should be Play, got {tool_names}")
https://python.langchain.com/en/latest/_modules/langchain/agents/react/base.html
5e1db2134523-3
raise ValueError(f"Tool name should be Play, got {tool_names}") [docs]class ReActChain(AgentExecutor): """Chain that implements the ReAct paper. Example: .. code-block:: python from langchain import ReActChain, OpenAI react = ReAct(llm=OpenAI()) """ def __init__(self, llm: BaseLLM, docstore: Docstore, **kwargs: Any): """Initialize with the LLM and a docstore.""" docstore_explorer = DocstoreExplorer(docstore) tools = [ Tool( name="Search", func=docstore_explorer.search, description="Search for a term in the docstore.", ), Tool( name="Lookup", func=docstore_explorer.lookup, description="Lookup a term in the docstore.", ), ] agent = ReActDocstoreAgent.from_llm_and_tools(llm, tools) super().__init__(agent=agent, tools=tools, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/react/base.html
a977ae82d2bf-0
Source code for langchain.agents.self_ask_with_search.base """Chain that does self ask with search.""" from typing import Any, Sequence, Union from pydantic import Field from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.self_ask_with_search.output_parser import SelfAskOutputParser from langchain.agents.self_ask_with_search.prompt import PROMPT from langchain.agents.tools import Tool from langchain.agents.utils import validate_tools_single_input from langchain.llms.base import BaseLLM from langchain.prompts.base import BasePromptTemplate from langchain.tools.base import BaseTool from langchain.utilities.google_serper import GoogleSerperAPIWrapper from langchain.utilities.serpapi import SerpAPIWrapper class SelfAskWithSearchAgent(Agent): """Agent for the self-ask-with-search paper.""" output_parser: AgentOutputParser = Field(default_factory=SelfAskOutputParser) @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return SelfAskOutputParser() @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.SELF_ASK_WITH_SEARCH @classmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Prompt does not depend on tools.""" return PROMPT @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) super()._validate_tools(tools) if len(tools) != 1: raise ValueError(f"Exactly one tool must be specified, but got {tools}")
https://python.langchain.com/en/latest/_modules/langchain/agents/self_ask_with_search/base.html
a977ae82d2bf-1
raise ValueError(f"Exactly one tool must be specified, but got {tools}") tool_names = {tool.name for tool in tools} if tool_names != {"Intermediate Answer"}: raise ValueError( f"Tool name should be Intermediate Answer, got {tool_names}" ) @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Intermediate answer: " @property def llm_prefix(self) -> str: """Prefix to append the LLM call with.""" return "" [docs]class SelfAskWithSearchChain(AgentExecutor): """Chain that does self ask with search. Example: .. code-block:: python from langchain import SelfAskWithSearchChain, OpenAI, GoogleSerperAPIWrapper search_chain = GoogleSerperAPIWrapper() self_ask = SelfAskWithSearchChain(llm=OpenAI(), search_chain=search_chain) """ def __init__( self, llm: BaseLLM, search_chain: Union[GoogleSerperAPIWrapper, SerpAPIWrapper], **kwargs: Any, ): """Initialize with just an LLM and a search chain.""" search_tool = Tool( name="Intermediate Answer", func=search_chain.run, description="Search" ) agent = SelfAskWithSearchAgent.from_llm_and_tools(llm, [search_tool]) super().__init__(agent=agent, tools=[search_tool], **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/self_ask_with_search/base.html
f604bd5077d7-0
Source code for langchain.agents.conversational.base """An agent designed to hold a conversation in addition to using tools.""" from __future__ import annotations from typing import Any, List, Optional, Sequence from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.conversational.output_parser import ConvoOutputParser from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.tools.base import BaseTool [docs]class ConversationalAgent(Agent): """An agent designed to hold a conversation in addition to using tools.""" ai_prefix: str = "AI" output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser) @classmethod def _get_default_output_parser( cls, ai_prefix: str = "AI", **kwargs: Any ) -> AgentOutputParser: return ConvoOutputParser(ai_prefix=ai_prefix) @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.CONVERSATIONAL_REACT_DESCRIPTION @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" [docs] @classmethod def create_prompt( cls,
https://python.langchain.com/en/latest/_modules/langchain/agents/conversational/base.html
f604bd5077d7-1
[docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, ai_prefix: str = "AI", human_prefix: str = "Human", input_variables: Optional[List[str]] = None, ) -> PromptTemplate: """Create prompt in the style of the zero shot agent. Args: tools: List of tools the agent will have access to, used to format the prompt. prefix: String to put before the list of tools. suffix: String to put after the list of tools. ai_prefix: String to use before AI output. human_prefix: String to use before human output. input_variables: List of input variables the final prompt will expect. Returns: A PromptTemplate with the template assembled from the pieces here. """ tool_strings = "\n".join( [f"> {tool.name}: {tool.description}" for tool in tools] ) tool_names = ", ".join([tool.name for tool in tools]) format_instructions = format_instructions.format( tool_names=tool_names, ai_prefix=ai_prefix, human_prefix=human_prefix ) template = "\n\n".join([prefix, tool_strings, format_instructions, suffix]) if input_variables is None: input_variables = ["input", "chat_history", "agent_scratchpad"] return PromptTemplate(template=template, input_variables=input_variables) @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: super()._validate_tools(tools) validate_tools_single_input(cls.__name__, tools)
https://python.langchain.com/en/latest/_modules/langchain/agents/conversational/base.html
f604bd5077d7-2
super()._validate_tools(tools) validate_tools_single_input(cls.__name__, tools) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, ai_prefix: str = "AI", human_prefix: str = "Human", input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) prompt = cls.create_prompt( tools, ai_prefix=ai_prefix, human_prefix=human_prefix, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser( ai_prefix=ai_prefix ) return cls( llm_chain=llm_chain, allowed_tools=tool_names, ai_prefix=ai_prefix, output_parser=_output_parser, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/conversational/base.html
093301a5cf6a-0
Source code for langchain.agents.conversational_chat.base """An agent designed to hold a conversation in addition to using tools.""" from __future__ import annotations from typing import Any, List, Optional, Sequence, Tuple from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.conversational_chat.output_parser import ConvoOutputParser from langchain.agents.conversational_chat.prompt import ( PREFIX, SUFFIX, TEMPLATE_TOOL_RESPONSE, ) from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains import LLMChain from langchain.prompts.base import BasePromptTemplate from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain.schema import ( AgentAction, AIMessage, BaseMessage, BaseOutputParser, HumanMessage, ) from langchain.tools.base import BaseTool [docs]class ConversationalChatAgent(Agent): """An agent designed to hold a conversation in addition to using tools.""" output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser) @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return ConvoOutputParser() @property def _agent_type(self) -> str: raise NotImplementedError @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str:
https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html
093301a5cf6a-1
@property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: super()._validate_tools(tools) validate_tools_single_input(cls.__name__, tools) [docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, output_parser: Optional[BaseOutputParser] = None, ) -> BasePromptTemplate: tool_strings = "\n".join( [f"> {tool.name}: {tool.description}" for tool in tools] ) tool_names = ", ".join([tool.name for tool in tools]) _output_parser = output_parser or cls._get_default_output_parser() format_instructions = human_message.format( format_instructions=_output_parser.get_format_instructions() ) final_prompt = format_instructions.format( tool_names=tool_names, tools=tool_strings ) if input_variables is None: input_variables = ["input", "chat_history", "agent_scratchpad"] messages = [ SystemMessagePromptTemplate.from_template(system_message), MessagesPlaceholder(variable_name="chat_history"), HumanMessagePromptTemplate.from_template(final_prompt), MessagesPlaceholder(variable_name="agent_scratchpad"), ] return ChatPromptTemplate(input_variables=input_variables, messages=messages) def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> List[BaseMessage]:
https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html
093301a5cf6a-2
) -> List[BaseMessage]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts: List[BaseMessage] = [] for action, observation in intermediate_steps: thoughts.append(AIMessage(content=action.log)) human_message = HumanMessage( content=TEMPLATE_TOOL_RESPONSE.format(observation=observation) ) thoughts.append(human_message) return thoughts [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) _output_parser = output_parser or cls._get_default_output_parser() prompt = cls.create_prompt( tools, system_message=system_message, human_message=human_message, input_variables=input_variables, output_parser=_output_parser, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html
093301a5cf6a-3
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html
ca2c90fa267d-0
Source code for langchain.agents.mrkl.base """Attempt to implement MRKL systems as described in arxiv.org/pdf/2205.00445.pdf.""" from __future__ import annotations from typing import Any, Callable, List, NamedTuple, Optional, Sequence from pydantic import Field from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.mrkl.output_parser import MRKLOutputParser from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.agents.tools import Tool from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.tools.base import BaseTool class ChainConfig(NamedTuple): """Configuration for chain to use in MRKL system. Args: action_name: Name of the action. action: Action function to call. action_description: Description of the action. """ action_name: str action: Callable action_description: str [docs]class ZeroShotAgent(Agent): """Agent for the MRKL chain.""" output_parser: AgentOutputParser = Field(default_factory=MRKLOutputParser) @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return MRKLOutputParser() @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.ZERO_SHOT_REACT_DESCRIPTION @property def observation_prefix(self) -> str:
https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
ca2c90fa267d-1
@property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" [docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, ) -> PromptTemplate: """Create prompt in the style of the zero shot agent. Args: tools: List of tools the agent will have access to, used to format the prompt. prefix: String to put before the list of tools. suffix: String to put after the list of tools. input_variables: List of input variables the final prompt will expect. Returns: A PromptTemplate with the template assembled from the pieces here. """ tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools]) tool_names = ", ".join([tool.name for tool in tools]) format_instructions = format_instructions.format(tool_names=tool_names) template = "\n\n".join([prefix, tool_strings, format_instructions, suffix]) if input_variables is None: input_variables = ["input", "agent_scratchpad"] return PromptTemplate(template=template, input_variables=input_variables) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool],
https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
ca2c90fa267d-2
llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) prompt = cls.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser() return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) for tool in tools: if tool.description is None: raise ValueError( f"Got a tool {tool.name} without a description. For this agent, " f"a description must always be provided." ) super()._validate_tools(tools) [docs]class MRKLChain(AgentExecutor): """Chain that implements the MRKL system. Example: .. code-block:: python
https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
ca2c90fa267d-3
Example: .. code-block:: python from langchain import OpenAI, MRKLChain from langchain.chains.mrkl.base import ChainConfig llm = OpenAI(temperature=0) prompt = PromptTemplate(...) chains = [...] mrkl = MRKLChain.from_chains(llm=llm, prompt=prompt) """ [docs] @classmethod def from_chains( cls, llm: BaseLanguageModel, chains: List[ChainConfig], **kwargs: Any ) -> AgentExecutor: """User friendly way to initialize the MRKL chain. This is intended to be an easy way to get up and running with the MRKL chain. Args: llm: The LLM to use as the agent LLM. chains: The chains the MRKL system has access to. **kwargs: parameters to be passed to initialization. Returns: An initialized MRKL chain. Example: .. code-block:: python from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain from langchain.chains.mrkl.base import ChainConfig llm = OpenAI(temperature=0) search = SerpAPIWrapper() llm_math_chain = LLMMathChain(llm=llm) chains = [ ChainConfig( action_name = "Search", action=search.search, action_description="useful for searching" ), ChainConfig( action_name="Calculator", action=llm_math_chain.run, action_description="useful for doing math" ) ] mrkl = MRKLChain.from_chains(llm, chains)
https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
ca2c90fa267d-4
] mrkl = MRKLChain.from_chains(llm, chains) """ tools = [ Tool( name=c.action_name, func=c.action, description=c.action_description, ) for c in chains ] agent = ZeroShotAgent.from_llm_and_tools(llm, tools) return cls(agent=agent, tools=tools, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
78d554efa774-0
Source code for langchain.agents.agent_toolkits.json.toolkit """Toolkit for interacting with a JSON spec.""" from __future__ import annotations from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.json.tool import JsonGetValueTool, JsonListKeysTool, JsonSpec [docs]class JsonToolkit(BaseToolkit): """Toolkit for interacting with a JSON spec.""" spec: JsonSpec [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return [ JsonListKeysTool(spec=self.spec), JsonGetValueTool(spec=self.spec), ] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/json/toolkit.html
df013cb5d65a-0
Source code for langchain.agents.agent_toolkits.json.base """Json agent.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.json.prompt import JSON_PREFIX, JSON_SUFFIX from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM [docs]def create_json_agent( llm: BaseLLM, toolkit: JsonToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = JSON_PREFIX, suffix: str = JSON_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a json agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools(
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/json/base.html
df013cb5d65a-1
return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/json/base.html
e8a708718cf4-0
Source code for langchain.agents.agent_toolkits.nla.toolkit """Toolkit for interacting with API's using natural language.""" from __future__ import annotations from typing import Any, List, Optional, Sequence from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.agents.agent_toolkits.nla.tool import NLATool from langchain.llms.base import BaseLLM from langchain.requests import Requests from langchain.tools.base import BaseTool from langchain.tools.openapi.utils.openapi_utils import OpenAPISpec from langchain.tools.plugin import AIPlugin [docs]class NLAToolkit(BaseToolkit): """Natural Language API Toolkit Definition.""" nla_tools: Sequence[NLATool] = Field(...) """List of API Endpoint Tools.""" [docs] def get_tools(self) -> List[BaseTool]: """Get the tools for all the API operations.""" return list(self.nla_tools) @staticmethod def _get_http_operation_tools( llm: BaseLLM, spec: OpenAPISpec, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> List[NLATool]: """Get the tools for all the API operations.""" if not spec.paths: return [] http_operation_tools = [] for path in spec.paths: for method in spec.get_methods_for_path(path): endpoint_tool = NLATool.from_llm_and_method( llm=llm, path=path, method=method, spec=spec, requests=requests, verbose=verbose, **kwargs, ) http_operation_tools.append(endpoint_tool)
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/nla/toolkit.html
e8a708718cf4-1
**kwargs, ) http_operation_tools.append(endpoint_tool) return http_operation_tools [docs] @classmethod def from_llm_and_spec( cls, llm: BaseLLM, spec: OpenAPISpec, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit by creating tools for each operation.""" http_operation_tools = cls._get_http_operation_tools( llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs ) return cls(nla_tools=http_operation_tools) [docs] @classmethod def from_llm_and_url( cls, llm: BaseLLM, open_api_url: str, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit from an OpenAPI Spec URL""" spec = OpenAPISpec.from_url(open_api_url) return cls.from_llm_and_spec( llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs ) [docs] @classmethod def from_llm_and_ai_plugin( cls, llm: BaseLLM, ai_plugin: AIPlugin, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit from an OpenAPI Spec URL""" spec = OpenAPISpec.from_url(ai_plugin.api.url)
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/nla/toolkit.html
e8a708718cf4-2
spec = OpenAPISpec.from_url(ai_plugin.api.url) # TODO: Merge optional Auth information with the `requests` argument return cls.from_llm_and_spec( llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs, ) [docs] @classmethod def from_llm_and_ai_plugin_url( cls, llm: BaseLLM, ai_plugin_url: str, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit from an OpenAPI Spec URL""" plugin = AIPlugin.from_url(ai_plugin_url) return cls.from_llm_and_ai_plugin( llm=llm, ai_plugin=plugin, requests=requests, verbose=verbose, **kwargs ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/nla/toolkit.html
57a1cdf01586-0
Source code for langchain.agents.agent_toolkits.playwright.toolkit """Playwright web browser toolkit.""" from __future__ import annotations from typing import TYPE_CHECKING, List, Optional, Type, cast from pydantic import Extra, root_validator from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools.base import BaseTool from langchain.tools.playwright.base import ( BaseBrowserTool, lazy_import_playwright_browsers, ) from langchain.tools.playwright.click import ClickTool from langchain.tools.playwright.current_page import CurrentWebPageTool from langchain.tools.playwright.extract_hyperlinks import ExtractHyperlinksTool from langchain.tools.playwright.extract_text import ExtractTextTool from langchain.tools.playwright.get_elements import GetElementsTool from langchain.tools.playwright.navigate import NavigateTool from langchain.tools.playwright.navigate_back import NavigateBackTool if TYPE_CHECKING: from playwright.async_api import Browser as AsyncBrowser from playwright.sync_api import Browser as SyncBrowser else: try: # We do this so pydantic can resolve the types when instantiating from playwright.async_api import Browser as AsyncBrowser from playwright.sync_api import Browser as SyncBrowser except ImportError: pass [docs]class PlayWrightBrowserToolkit(BaseToolkit): """Toolkit for web browser tools.""" sync_browser: Optional["SyncBrowser"] = None async_browser: Optional["AsyncBrowser"] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator def validate_imports_and_browser_provided(cls, values: dict) -> dict: """Check that the arguments are valid.""" lazy_import_playwright_browsers()
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/playwright/toolkit.html
57a1cdf01586-1
"""Check that the arguments are valid.""" lazy_import_playwright_browsers() if values.get("async_browser") is None and values.get("sync_browser") is None: raise ValueError("Either async_browser or sync_browser must be specified.") return values [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" tool_classes: List[Type[BaseBrowserTool]] = [ ClickTool, NavigateTool, NavigateBackTool, ExtractTextTool, ExtractHyperlinksTool, GetElementsTool, CurrentWebPageTool, ] tools = [ tool_cls.from_browser( sync_browser=self.sync_browser, async_browser=self.async_browser ) for tool_cls in tool_classes ] return cast(List[BaseTool], tools) [docs] @classmethod def from_browser( cls, sync_browser: Optional[SyncBrowser] = None, async_browser: Optional[AsyncBrowser] = None, ) -> PlayWrightBrowserToolkit: """Instantiate the toolkit.""" # This is to raise a better error than the forward ref ones Pydantic would have lazy_import_playwright_browsers() return cls(sync_browser=sync_browser, async_browser=async_browser) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/playwright/toolkit.html
032612829cad-0
Source code for langchain.agents.agent_toolkits.zapier.toolkit """Zapier Toolkit.""" from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.zapier.tool import ZapierNLARunAction from langchain.utilities.zapier import ZapierNLAWrapper [docs]class ZapierToolkit(BaseToolkit): """Zapier Toolkit.""" tools: List[BaseTool] = [] [docs] @classmethod def from_zapier_nla_wrapper( cls, zapier_nla_wrapper: ZapierNLAWrapper ) -> "ZapierToolkit": """Create a toolkit from a ZapierNLAWrapper.""" actions = zapier_nla_wrapper.list() tools = [ ZapierNLARunAction( action_id=action["id"], zapier_description=action["description"], params_schema=action["params"], api_wrapper=zapier_nla_wrapper, ) for action in actions ] return cls(tools=tools) [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return self.tools By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/zapier/toolkit.html
027623cf64c1-0
Source code for langchain.agents.agent_toolkits.file_management.toolkit """Toolkit for interacting with the local filesystem.""" from __future__ import annotations from typing import List, Optional from pydantic import root_validator from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.file_management.copy import CopyFileTool from langchain.tools.file_management.delete import DeleteFileTool from langchain.tools.file_management.file_search import FileSearchTool from langchain.tools.file_management.list_dir import ListDirectoryTool from langchain.tools.file_management.move import MoveFileTool from langchain.tools.file_management.read import ReadFileTool from langchain.tools.file_management.write import WriteFileTool _FILE_TOOLS = { tool_cls.__fields__["name"].default: tool_cls for tool_cls in [ CopyFileTool, DeleteFileTool, FileSearchTool, MoveFileTool, ReadFileTool, WriteFileTool, ListDirectoryTool, ] } [docs]class FileManagementToolkit(BaseToolkit): """Toolkit for interacting with a Local Files.""" root_dir: Optional[str] = None """If specified, all file operations are made relative to root_dir.""" selected_tools: Optional[List[str]] = None """If provided, only provide the selected tools. Defaults to all.""" @root_validator def validate_tools(cls, values: dict) -> dict: selected_tools = values.get("selected_tools") or [] for tool_name in selected_tools: if tool_name not in _FILE_TOOLS: raise ValueError( f"File Tool of name {tool_name} not supported." f" Permitted tools: {list(_FILE_TOOLS)}" ) return values
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/file_management/toolkit.html
027623cf64c1-1
) return values [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" allowed_tools = self.selected_tools or _FILE_TOOLS.keys() tools: List[BaseTool] = [] for tool in allowed_tools: tool_cls = _FILE_TOOLS[tool] tools.append(tool_cls(root_dir=self.root_dir)) # type: ignore return tools __all__ = ["FileManagementToolkit"] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/file_management/toolkit.html
4350b6220e3e-0
Source code for langchain.agents.agent_toolkits.openapi.toolkit """Requests toolkit.""" from __future__ import annotations from typing import Any, List from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.agents.agent_toolkits.json.base import create_json_agent from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit from langchain.agents.agent_toolkits.openapi.prompt import DESCRIPTION from langchain.agents.tools import Tool from langchain.llms.base import BaseLLM from langchain.requests import TextRequestsWrapper from langchain.tools import BaseTool from langchain.tools.json.tool import JsonSpec from langchain.tools.requests.tool import ( RequestsDeleteTool, RequestsGetTool, RequestsPatchTool, RequestsPostTool, RequestsPutTool, ) class RequestsToolkit(BaseToolkit): """Toolkit for making requests.""" requests_wrapper: TextRequestsWrapper def get_tools(self) -> List[BaseTool]: """Return a list of tools.""" return [ RequestsGetTool(requests_wrapper=self.requests_wrapper), RequestsPostTool(requests_wrapper=self.requests_wrapper), RequestsPatchTool(requests_wrapper=self.requests_wrapper), RequestsPutTool(requests_wrapper=self.requests_wrapper), RequestsDeleteTool(requests_wrapper=self.requests_wrapper), ] [docs]class OpenAPIToolkit(BaseToolkit): """Toolkit for interacting with a OpenAPI api.""" json_agent: AgentExecutor requests_wrapper: TextRequestsWrapper [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" json_agent_tool = Tool( name="json_explorer", func=self.json_agent.run, description=DESCRIPTION, )
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/toolkit.html
4350b6220e3e-1
func=self.json_agent.run, description=DESCRIPTION, ) request_toolkit = RequestsToolkit(requests_wrapper=self.requests_wrapper) return [*request_toolkit.get_tools(), json_agent_tool] [docs] @classmethod def from_llm( cls, llm: BaseLLM, json_spec: JsonSpec, requests_wrapper: TextRequestsWrapper, **kwargs: Any, ) -> OpenAPIToolkit: """Create json agent from llm, then initialize.""" json_agent = create_json_agent(llm, JsonToolkit(spec=json_spec), **kwargs) return cls(json_agent=json_agent, requests_wrapper=requests_wrapper) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/toolkit.html
2466fab07445-0
Source code for langchain.agents.agent_toolkits.openapi.base """OpenAPI spec agent.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.openapi.prompt import ( OPENAPI_PREFIX, OPENAPI_SUFFIX, ) from langchain.agents.agent_toolkits.openapi.toolkit import OpenAPIToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM [docs]def create_openapi_agent( llm: BaseLLM, toolkit: OpenAPIToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = OPENAPI_PREFIX, suffix: str = OPENAPI_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", verbose: bool = False, return_intermediate_steps: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a json agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain(
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/base.html
2466fab07445-1
input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, return_intermediate_steps=return_intermediate_steps, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/base.html
3d7ecd6370fa-0
Source code for langchain.agents.agent_toolkits.sql.toolkit """Toolkit for interacting with a SQL database.""" from typing import List from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.sql_database import SQLDatabase from langchain.tools import BaseTool from langchain.tools.sql_database.tool import ( InfoSQLDatabaseTool, ListSQLDatabaseTool, QueryCheckerTool, QuerySQLDataBaseTool, ) [docs]class SQLDatabaseToolkit(BaseToolkit): """Toolkit for interacting with SQL databases.""" db: SQLDatabase = Field(exclude=True) llm: BaseLanguageModel = Field(exclude=True) @property def dialect(self) -> str: """Return string representation of dialect to use.""" return self.db.dialect class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return [ QuerySQLDataBaseTool(db=self.db), InfoSQLDatabaseTool(db=self.db), ListSQLDatabaseTool(db=self.db), QueryCheckerTool(db=self.db, llm=self.llm), ] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/toolkit.html
2bda85ca7fc6-0
Source code for langchain.agents.agent_toolkits.sql.base """SQL agent.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.sql.prompt import SQL_PREFIX, SQL_SUFFIX from langchain.agents.agent_toolkits.sql.toolkit import SQLDatabaseToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM [docs]def create_sql_agent( llm: BaseLLM, toolkit: SQLDatabaseToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = SQL_PREFIX, suffix: str = SQL_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, top_k: int = 10, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a sql agent from an LLM and tools.""" tools = toolkit.get_tools() prefix = prefix.format(dialect=toolkit.dialect, top_k=top_k) prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain(
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/base.html
2bda85ca7fc6-1
input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/base.html
7eb564594908-0
Source code for langchain.agents.agent_toolkits.pandas.base """Agent for working with pandas objects.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.pandas.prompt import PREFIX, SUFFIX from langchain.agents.mrkl.base import ZeroShotAgent from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM from langchain.tools.python.tool import PythonAstREPLTool [docs]def create_pandas_dataframe_agent( llm: BaseLLM, df: Any, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = PREFIX, suffix: str = SUFFIX, input_variables: Optional[List[str]] = None, verbose: bool = False, return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a pandas agent from an LLM and dataframe.""" try: import pandas as pd except ImportError: raise ValueError( "pandas package not found, please install with `pip install pandas`" ) if not isinstance(df, pd.DataFrame): raise ValueError(f"Expected pandas object, got {type(df)}") if input_variables is None: input_variables = ["df", "input", "agent_scratchpad"] tools = [PythonAstREPLTool(locals={"df": df})]
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
7eb564594908-1
tools = [PythonAstREPLTool(locals={"df": df})] prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=input_variables ) partial_prompt = prompt.partial(df=str(df.head().to_markdown())) llm_chain = LLMChain( llm=llm, prompt=partial_prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent( llm_chain=llm_chain, allowed_tools=tool_names, callback_manager=callback_manager, **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, return_intermediate_steps=return_intermediate_steps, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
7fa42d60cf47-0
Source code for langchain.agents.agent_toolkits.python.base """Python agent.""" from typing import Any, Dict, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.python.prompt import PREFIX from langchain.agents.mrkl.base import ZeroShotAgent from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM from langchain.tools.python.tool import PythonREPLTool [docs]def create_python_agent( llm: BaseLLM, tool: PythonREPLTool, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = False, prefix: str = PREFIX, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a python agent from an LLM and tool.""" tools = [tool] prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/python/base.html
e9c5a5846436-0
Source code for langchain.agents.agent_toolkits.powerbi.chat_base """Power BI agent.""" from typing import Any, Dict, List, Optional from langchain.agents import AgentExecutor from langchain.agents.agent import AgentOutputParser from langchain.agents.agent_toolkits.powerbi.prompt import ( POWERBI_CHAT_PREFIX, POWERBI_CHAT_SUFFIX, ) from langchain.agents.agent_toolkits.powerbi.toolkit import PowerBIToolkit from langchain.agents.conversational_chat.base import ConversationalChatAgent from langchain.callbacks.base import BaseCallbackManager from langchain.chat_models.base import BaseChatModel from langchain.memory import ConversationBufferMemory from langchain.memory.chat_memory import BaseChatMemory from langchain.utilities.powerbi import PowerBIDataset [docs]def create_pbi_chat_agent( llm: BaseChatModel, toolkit: Optional[PowerBIToolkit], powerbi: Optional[PowerBIDataset] = None, callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = POWERBI_CHAT_PREFIX, suffix: str = POWERBI_CHAT_SUFFIX, examples: Optional[str] = None, input_variables: Optional[List[str]] = None, memory: Optional[BaseChatMemory] = None, top_k: int = 10, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a pbi agent from an Chat LLM and tools. If you supply only a toolkit and no powerbi dataset, the same LLM is used for both. """ if toolkit is None:
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/chat_base.html
e9c5a5846436-1
""" if toolkit is None: if powerbi is None: raise ValueError("Must provide either a toolkit or powerbi dataset") toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples) tools = toolkit.get_tools() agent = ConversationalChatAgent.from_llm_and_tools( llm=llm, tools=tools, system_message=prefix.format(top_k=top_k), human_message=suffix, input_variables=input_variables, callback_manager=callback_manager, output_parser=output_parser, verbose=verbose, **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, memory=memory or ConversationBufferMemory(memory_key="chat_history", return_messages=True), verbose=verbose, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/chat_base.html
d07cbee99b0b-0
Source code for langchain.agents.agent_toolkits.powerbi.toolkit """Toolkit for interacting with a Power BI dataset.""" from typing import List, Optional from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.prompts import PromptTemplate from langchain.tools import BaseTool from langchain.tools.powerbi.prompt import QUESTION_TO_QUERY from langchain.tools.powerbi.tool import ( InfoPowerBITool, InputToQueryTool, ListPowerBITool, QueryPowerBITool, ) from langchain.utilities.powerbi import PowerBIDataset [docs]class PowerBIToolkit(BaseToolkit): """Toolkit for interacting with PowerBI dataset.""" powerbi: PowerBIDataset = Field(exclude=True) llm: BaseLanguageModel = Field(exclude=True) examples: Optional[str] = None callback_manager: Optional[BaseCallbackManager] = None class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" if self.callback_manager: chain = LLMChain( llm=self.llm, callback_manager=self.callback_manager, prompt=PromptTemplate( template=QUESTION_TO_QUERY, input_variables=["tool_input", "tables", "schemas", "examples"], ), ) else: chain = LLMChain( llm=self.llm, prompt=PromptTemplate( template=QUESTION_TO_QUERY,
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/toolkit.html
d07cbee99b0b-1
prompt=PromptTemplate( template=QUESTION_TO_QUERY, input_variables=["tool_input", "tables", "schemas", "examples"], ), ) return [ QueryPowerBITool(powerbi=self.powerbi), InfoPowerBITool(powerbi=self.powerbi), ListPowerBITool(powerbi=self.powerbi), InputToQueryTool( llm_chain=chain, powerbi=self.powerbi, examples=self.examples, ), ] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/toolkit.html
36b2773a288c-0
Source code for langchain.agents.agent_toolkits.powerbi.base """Power BI agent.""" from typing import Any, Dict, List, Optional from langchain.agents import AgentExecutor from langchain.agents.agent_toolkits.powerbi.prompt import ( POWERBI_PREFIX, POWERBI_SUFFIX, ) from langchain.agents.agent_toolkits.powerbi.toolkit import PowerBIToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM from langchain.utilities.powerbi import PowerBIDataset [docs]def create_pbi_agent( llm: BaseLLM, toolkit: Optional[PowerBIToolkit], powerbi: Optional[PowerBIDataset] = None, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = POWERBI_PREFIX, suffix: str = POWERBI_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, examples: Optional[str] = None, input_variables: Optional[List[str]] = None, top_k: int = 10, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a pbi agent from an LLM and tools.""" if toolkit is None: if powerbi is None: raise ValueError("Must provide either a toolkit or powerbi dataset") toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples) tools = toolkit.get_tools()
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/base.html
36b2773a288c-1
tools = toolkit.get_tools() agent = ZeroShotAgent( llm_chain=LLMChain( llm=llm, prompt=ZeroShotAgent.create_prompt( tools, prefix=prefix.format(top_k=top_k), suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ), callback_manager=callback_manager, # type: ignore verbose=verbose, ), allowed_tools=[tool.name for tool in tools], **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/base.html
ab3f0ba93b79-0
Source code for langchain.agents.agent_toolkits.jira.toolkit """Jira Toolkit.""" from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.jira.tool import JiraAction from langchain.utilities.jira import JiraAPIWrapper [docs]class JiraToolkit(BaseToolkit): """Jira Toolkit.""" tools: List[BaseTool] = [] [docs] @classmethod def from_jira_api_wrapper(cls, jira_api_wrapper: JiraAPIWrapper) -> "JiraToolkit": actions = jira_api_wrapper.list() tools = [ JiraAction( name=action["name"], description=action["description"], mode=action["mode"], api_wrapper=jira_api_wrapper, ) for action in actions ] return cls(tools=tools) [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return self.tools By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/jira/toolkit.html
7ce439eacec4-0
Source code for langchain.agents.agent_toolkits.csv.base """Agent for working with csvs.""" from typing import Any, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent from langchain.llms.base import BaseLLM [docs]def create_csv_agent( llm: BaseLLM, path: str, pandas_kwargs: Optional[dict] = None, **kwargs: Any ) -> AgentExecutor: """Create csv agent by loading to a dataframe and using pandas agent.""" import pandas as pd _kwargs = pandas_kwargs or {} df = pd.read_csv(path, **_kwargs) return create_pandas_dataframe_agent(llm, df, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/csv/base.html
c5ba8019db80-0
Source code for langchain.agents.agent_toolkits.vectorstore.toolkit """Toolkit for interacting with a vector store.""" from typing import List from pydantic import BaseModel, Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.llms.openai import OpenAI from langchain.tools import BaseTool from langchain.tools.vectorstore.tool import ( VectorStoreQATool, VectorStoreQAWithSourcesTool, ) from langchain.vectorstores.base import VectorStore [docs]class VectorStoreInfo(BaseModel): """Information about a vectorstore.""" vectorstore: VectorStore = Field(exclude=True) name: str description: str class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs]class VectorStoreToolkit(BaseToolkit): """Toolkit for interacting with a vector store.""" vectorstore_info: VectorStoreInfo = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" description = VectorStoreQATool.get_description( self.vectorstore_info.name, self.vectorstore_info.description ) qa_tool = VectorStoreQATool( name=self.vectorstore_info.name, description=description, vectorstore=self.vectorstore_info.vectorstore, llm=self.llm, ) description = VectorStoreQAWithSourcesTool.get_description( self.vectorstore_info.name, self.vectorstore_info.description )
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/toolkit.html
c5ba8019db80-1
self.vectorstore_info.name, self.vectorstore_info.description ) qa_with_sources_tool = VectorStoreQAWithSourcesTool( name=f"{self.vectorstore_info.name}_with_sources", description=description, vectorstore=self.vectorstore_info.vectorstore, llm=self.llm, ) return [qa_tool, qa_with_sources_tool] [docs]class VectorStoreRouterToolkit(BaseToolkit): """Toolkit for routing between vectorstores.""" vectorstores: List[VectorStoreInfo] = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" tools: List[BaseTool] = [] for vectorstore_info in self.vectorstores: description = VectorStoreQATool.get_description( vectorstore_info.name, vectorstore_info.description ) qa_tool = VectorStoreQATool( name=vectorstore_info.name, description=description, vectorstore=vectorstore_info.vectorstore, llm=self.llm, ) tools.append(qa_tool) return tools By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/toolkit.html
06c16bb69227-0
Source code for langchain.agents.agent_toolkits.vectorstore.base """VectorStore agent.""" from typing import Any, Dict, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.vectorstore.prompt import PREFIX, ROUTER_PREFIX from langchain.agents.agent_toolkits.vectorstore.toolkit import ( VectorStoreRouterToolkit, VectorStoreToolkit, ) from langchain.agents.mrkl.base import ZeroShotAgent from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM [docs]def create_vectorstore_agent( llm: BaseLLM, toolkit: VectorStoreToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = PREFIX, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a vectorstore agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), ) [docs]def create_vectorstore_router_agent(
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/base.html
06c16bb69227-1
) [docs]def create_vectorstore_router_agent( llm: BaseLLM, toolkit: VectorStoreRouterToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = ROUTER_PREFIX, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a vectorstore router agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/base.html
6941a515c213-0
Source code for langchain.agents.structured_chat.base import re from typing import Any, List, Optional, Sequence, Tuple from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.structured_chat.output_parser import ( StructuredChatOutputParser, StructuredChatOutputParserWithRetries, ) from langchain.agents.structured_chat.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.prompts.base import BasePromptTemplate from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.schema import AgentAction from langchain.tools import BaseTool [docs]class StructuredChatAgent(Agent): output_parser: AgentOutputParser = Field(default_factory=StructuredChatOutputParser) @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> str: agent_scratchpad = super()._construct_scratchpad(intermediate_steps) if not isinstance(agent_scratchpad, str): raise ValueError("agent_scratchpad should be of type string.") if agent_scratchpad: return ( f"This was your previous work " f"(but I haven't seen any of it! I only see what "
https://python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html
6941a515c213-1
f"(but I haven't seen any of it! I only see what " f"you return as final answer):\n{agent_scratchpad}" ) else: return agent_scratchpad @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: pass @classmethod def _get_default_output_parser( cls, llm: Optional[BaseLanguageModel] = None, **kwargs: Any ) -> AgentOutputParser: return StructuredChatOutputParserWithRetries.from_llm(llm=llm) @property def _stop(self) -> List[str]: return ["Observation:"] [docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, ) -> BasePromptTemplate: tool_strings = [] for tool in tools: args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args))) tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}") formatted_tools = "\n".join(tool_strings) tool_names = ", ".join([tool.name for tool in tools]) format_instructions = format_instructions.format(tool_names=tool_names) template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix]) messages = [ SystemMessagePromptTemplate.from_template(template), HumanMessagePromptTemplate.from_template("{input}\n\n{agent_scratchpad}"), ] if input_variables is None:
https://python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html
6941a515c213-2
] if input_variables is None: input_variables = ["input", "agent_scratchpad"] return ChatPromptTemplate(input_variables=input_variables, messages=messages) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) prompt = cls.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser(llm=llm) return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) @property def _agent_type(self) -> str: raise ValueError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html
0bcfeeb4e9ca-0
Source code for langchain.tools.ifttt """From https://github.com/SidU/teams-langchain-js/wiki/Connecting-IFTTT-Services. # Creating a webhook - Go to https://ifttt.com/create # Configuring the "If This" - Click on the "If This" button in the IFTTT interface. - Search for "Webhooks" in the search bar. - Choose the first option for "Receive a web request with a JSON payload." - Choose an Event Name that is specific to the service you plan to connect to. This will make it easier for you to manage the webhook URL. For example, if you're connecting to Spotify, you could use "Spotify" as your Event Name. - Click the "Create Trigger" button to save your settings and create your webhook. # Configuring the "Then That" - Tap on the "Then That" button in the IFTTT interface. - Search for the service you want to connect, such as Spotify. - Choose an action from the service, such as "Add track to a playlist". - Configure the action by specifying the necessary details, such as the playlist name, e.g., "Songs from AI". - Reference the JSON Payload received by the Webhook in your action. For the Spotify scenario, choose "{{JsonPayload}}" as your search query. - Tap the "Create Action" button to save your action settings. - Once you have finished configuring your action, click the "Finish" button to complete the setup. - Congratulations! You have successfully connected the Webhook to the desired service, and you're ready to start receiving data and triggering actions 🎉 # Finishing up - To get your webhook URL go to https://ifttt.com/maker_webhooks/settings
https://python.langchain.com/en/latest/_modules/langchain/tools/ifttt.html
0bcfeeb4e9ca-1
- To get your webhook URL go to https://ifttt.com/maker_webhooks/settings - Copy the IFTTT key value from there. The URL is of the form https://maker.ifttt.com/use/YOUR_IFTTT_KEY. Grab the YOUR_IFTTT_KEY value. """ from typing import Optional import requests from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool [docs]class IFTTTWebhook(BaseTool): """IFTTT Webhook. Args: name: name of the tool description: description of the tool url: url to hit with the json event. """ url: str def _run( self, tool_input: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: body = {"this": tool_input} response = requests.post(self.url, data=body) return response.text async def _arun( self, tool_input: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: raise NotImplementedError("Not implemented.") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/ifttt.html
0d829dfac05e-0
Source code for langchain.tools.base """Base implementation for tools or skills.""" from __future__ import annotations import warnings from abc import ABC, abstractmethod from functools import partial from inspect import signature from typing import Any, Awaitable, Callable, Dict, Optional, Tuple, Type, Union from pydantic import ( BaseModel, Extra, Field, create_model, root_validator, validate_arguments, validator, ) from pydantic.main import ModelMetaclass from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForToolRun, CallbackManager, CallbackManagerForToolRun, Callbacks, ) class SchemaAnnotationError(TypeError): """Raised when 'args_schema' is missing or has an incorrect type annotation.""" class ToolMetaclass(ModelMetaclass): """Metaclass for BaseTool to ensure the provided args_schema doesn't silently ignored.""" def __new__( cls: Type[ToolMetaclass], name: str, bases: Tuple[Type, ...], dct: dict ) -> ToolMetaclass: """Create the definition of the new tool class.""" schema_type: Optional[Type[BaseModel]] = dct.get("args_schema") if schema_type is not None: schema_annotations = dct.get("__annotations__", {}) args_schema_type = schema_annotations.get("args_schema", None) if args_schema_type is None or args_schema_type == BaseModel: # Throw errors for common mis-annotations. # TODO: Use get_args / get_origin and fully # specify valid annotations. typehint_mandate = """ class ChildTool(BaseTool): ...
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
0d829dfac05e-1
typehint_mandate = """ class ChildTool(BaseTool): ... args_schema: Type[BaseModel] = SchemaClass ...""" raise SchemaAnnotationError( f"Tool definition for {name} must include valid type annotations" f" for argument 'args_schema' to behave as expected.\n" f"Expected annotation of 'Type[BaseModel]'" f" but got '{args_schema_type}'.\n" f"Expected class looks like:\n" f"{typehint_mandate}" ) # Pass through to Pydantic's metaclass return super().__new__(cls, name, bases, dct) def _create_subset_model( name: str, model: BaseModel, field_names: list ) -> Type[BaseModel]: """Create a pydantic model with only a subset of model's fields.""" fields = { field_name: ( model.__fields__[field_name].type_, model.__fields__[field_name].default, ) for field_name in field_names if field_name in model.__fields__ } return create_model(name, **fields) # type: ignore def get_filtered_args( inferred_model: Type[BaseModel], func: Callable, ) -> dict: """Get the arguments from a function's signature.""" schema = inferred_model.schema()["properties"] valid_keys = signature(func).parameters return {k: schema[k] for k in valid_keys if k != "run_manager"} class _SchemaConfig: """Configuration for the pydantic model.""" extra = Extra.forbid arbitrary_types_allowed = True def create_schema_from_function( model_name: str,
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
0d829dfac05e-2
arbitrary_types_allowed = True def create_schema_from_function( model_name: str, func: Callable, ) -> Type[BaseModel]: """Create a pydantic schema from a function's signature.""" validated = validate_arguments(func, config=_SchemaConfig) # type: ignore inferred_model = validated.model # type: ignore if "run_manager" in inferred_model.__fields__: del inferred_model.__fields__["run_manager"] # Pydantic adds placeholder virtual fields we need to strip filtered_args = get_filtered_args(inferred_model, func) return _create_subset_model( f"{model_name}Schema", inferred_model, list(filtered_args) ) [docs]class BaseTool(ABC, BaseModel, metaclass=ToolMetaclass): """Interface LangChain tools must implement.""" name: str """The unique name of the tool that clearly communicates its purpose.""" description: str """Used to tell the model how/when/why to use the tool. You can provide few-shot examples as a part of the description. """ args_schema: Optional[Type[BaseModel]] = None """Pydantic model class to validate and parse the tool's input arguments.""" return_direct: bool = False """Whether to return the tool's output directly. Setting this to True means that after the tool is called, the AgentExecutor will stop looping. """ verbose: bool = False """Whether to log the tool's progress.""" callbacks: Callbacks = None """Callbacks to be called during tool execution.""" callback_manager: Optional[BaseCallbackManager] = None """Deprecated. Please use callbacks instead.""" class Config:
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
0d829dfac05e-3
"""Deprecated. Please use callbacks instead.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def is_single_input(self) -> bool: """Whether the tool only accepts a single input.""" return len(self.args) == 1 @property def args(self) -> dict: if self.args_schema is not None: return self.args_schema.schema()["properties"] else: schema = create_schema_from_function(self.name, self._run) return schema.schema()["properties"] def _parse_input( self, tool_input: Union[str, Dict], ) -> None: """Convert tool input to pydantic model.""" input_args = self.args_schema if isinstance(tool_input, str): if input_args is not None: key_ = next(iter(input_args.__fields__.keys())) input_args.validate({key_: tool_input}) else: if input_args is not None: input_args.validate(tool_input) @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: """Raise deprecation warning if callback_manager is used.""" if values.get("callback_manager") is not None: warnings.warn( "callback_manager is deprecated. Please use callbacks instead.", DeprecationWarning, ) values["callbacks"] = values.pop("callback_manager", None) return values @abstractmethod def _run( self, *args: Any, **kwargs: Any, ) -> Any: """Use the tool. Add run_manager: Optional[CallbackManagerForToolRun] = None
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
0d829dfac05e-4
Add run_manager: Optional[CallbackManagerForToolRun] = None to child implementations to enable tracing, """ @abstractmethod async def _arun( self, *args: Any, **kwargs: Any, ) -> Any: """Use the tool asynchronously. Add run_manager: Optional[AsyncCallbackManagerForToolRun] = None to child implementations to enable tracing, """ def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]: # For backwards compatibility, if run_input is a string, # pass as a positional argument. if isinstance(tool_input, str): return (tool_input,), {} else: return (), tool_input [docs] def run( self, tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = "green", color: Optional[str] = "green", callbacks: Callbacks = None, **kwargs: Any, ) -> Any: """Run the tool.""" self._parse_input(tool_input) if not self.verbose and verbose is not None: verbose_ = verbose else: verbose_ = self.verbose callback_manager = CallbackManager.configure( callbacks, self.callbacks, verbose=verbose_ ) # TODO: maybe also pass through run_manager is _run supports kwargs new_arg_supported = signature(self._run).parameters.get("run_manager") run_manager = callback_manager.on_tool_start( {"name": self.name, "description": self.description}, tool_input if isinstance(tool_input, str) else str(tool_input),
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
0d829dfac05e-5
tool_input if isinstance(tool_input, str) else str(tool_input), color=start_color, **kwargs, ) try: tool_args, tool_kwargs = self._to_args_and_kwargs(tool_input) observation = ( self._run(*tool_args, run_manager=run_manager, **tool_kwargs) if new_arg_supported else self._run(*tool_args, **tool_kwargs) ) except (Exception, KeyboardInterrupt) as e: run_manager.on_tool_error(e) raise e run_manager.on_tool_end(str(observation), color=color, name=self.name, **kwargs) return observation [docs] async def arun( self, tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = "green", color: Optional[str] = "green", callbacks: Callbacks = None, **kwargs: Any, ) -> Any: """Run the tool asynchronously.""" self._parse_input(tool_input) if not self.verbose and verbose is not None: verbose_ = verbose else: verbose_ = self.verbose callback_manager = AsyncCallbackManager.configure( callbacks, self.callbacks, verbose=verbose_ ) new_arg_supported = signature(self._arun).parameters.get("run_manager") run_manager = await callback_manager.on_tool_start( {"name": self.name, "description": self.description}, tool_input if isinstance(tool_input, str) else str(tool_input), color=start_color, **kwargs, ) try: # We then call the tool on the tool input to get an observation
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
0d829dfac05e-6
try: # We then call the tool on the tool input to get an observation tool_args, tool_kwargs = self._to_args_and_kwargs(tool_input) observation = ( await self._arun(*tool_args, run_manager=run_manager, **tool_kwargs) if new_arg_supported else await self._arun(*tool_args, **tool_kwargs) ) except (Exception, KeyboardInterrupt) as e: await run_manager.on_tool_error(e) raise e await run_manager.on_tool_end( str(observation), color=color, name=self.name, **kwargs ) return observation def __call__(self, tool_input: str, callbacks: Callbacks = None) -> str: """Make tool callable.""" return self.run(tool_input, callbacks=callbacks) [docs]class Tool(BaseTool): """Tool that takes in function or coroutine directly.""" description: str = "" func: Callable[..., str] """The function to run when the tool is called.""" coroutine: Optional[Callable[..., Awaitable[str]]] = None """The asynchronous version of the function.""" @validator("func", pre=True, always=True) def validate_func_not_partial(cls, func: Callable) -> Callable: """Check that the function is not a partial.""" if isinstance(func, partial): raise ValueError("Partial functions not yet supported in tools.") return func @property def args(self) -> dict: """The tool's input arguments.""" if self.args_schema is not None: return self.args_schema.schema()["properties"] # For backwards compatibility, if the function signature is ambiguous, # assume it takes a single string input.
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
0d829dfac05e-7
# assume it takes a single string input. return {"tool_input": {"type": "string"}} def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]: """Convert tool input to pydantic model.""" args, kwargs = super()._to_args_and_kwargs(tool_input) # For backwards compatibility. The tool must be run with a single input all_args = list(args) + list(kwargs.values()) if len(all_args) != 1: raise ValueError( f"Too many arguments to single-input tool {self.name}." f" Args: {all_args}" ) return tuple(all_args), {} def _run( self, *args: Any, run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> Any: """Use the tool.""" new_argument_supported = signature(self.func).parameters.get("callbacks") return ( self.func( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else self.func(*args, **kwargs) ) async def _arun( self, *args: Any, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, **kwargs: Any, ) -> Any: """Use the tool asynchronously.""" if self.coroutine: new_argument_supported = signature(self.coroutine).parameters.get( "callbacks" ) return ( await self.coroutine( *args, callbacks=run_manager.get_child() if run_manager else None,
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
0d829dfac05e-8
*args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else await self.coroutine(*args, **kwargs) ) raise NotImplementedError("Tool does not support async") # TODO: this is for backwards compatibility, remove in future def __init__( self, name: str, func: Callable, description: str, **kwargs: Any ) -> None: """Initialize tool.""" super(Tool, self).__init__( name=name, func=func, description=description, **kwargs ) [docs] @classmethod def from_function( cls, func: Callable, name: str, # We keep these required to support backwards compatibility description: str, return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, **kwargs: Any, ) -> Tool: """Initialize tool from a function.""" return cls( name=name, func=func, description=description, return_direct=return_direct, args_schema=args_schema, **kwargs, ) [docs]class StructuredTool(BaseTool): """Tool that can operate on any number of inputs.""" description: str = "" args_schema: Type[BaseModel] = Field(..., description="The tool schema.") """The input arguments' schema.""" func: Callable[..., Any] """The function to run when the tool is called.""" coroutine: Optional[Callable[..., Awaitable[Any]]] = None """The asynchronous version of the function.""" @property def args(self) -> dict:
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
0d829dfac05e-9
@property def args(self) -> dict: """The tool's input arguments.""" return self.args_schema.schema()["properties"] def _run( self, *args: Any, run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> Any: """Use the tool.""" new_argument_supported = signature(self.func).parameters.get("callbacks") return ( self.func( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else self.func(*args, **kwargs) ) async def _arun( self, *args: Any, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: """Use the tool asynchronously.""" if self.coroutine: new_argument_supported = signature(self.coroutine).parameters.get( "callbacks" ) return ( await self.coroutine( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else await self.coroutine(*args, **kwargs) ) raise NotImplementedError("Tool does not support async") [docs] @classmethod def from_function( cls, func: Callable, name: Optional[str] = None, description: Optional[str] = None, return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, infer_schema: bool = True, **kwargs: Any,
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
0d829dfac05e-10
infer_schema: bool = True, **kwargs: Any, ) -> StructuredTool: name = name or func.__name__ description = description or func.__doc__ assert ( description is not None ), "Function must have a docstring if description not provided." # Description example: # search_api(query: str) - Searches the API for the query. description = f"{name}{signature(func)} - {description.strip()}" _args_schema = args_schema if _args_schema is None and infer_schema: _args_schema = create_schema_from_function(f"{name}Schema", func) return cls( name=name, func=func, args_schema=_args_schema, description=description, return_direct=return_direct, **kwargs, ) [docs]def tool( *args: Union[str, Callable], return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, infer_schema: bool = True, ) -> Callable: """Make tools out of functions, can be used with or without arguments. Args: *args: The arguments to the tool. return_direct: Whether to return directly from the tool rather than continuing the agent loop. args_schema: optional argument schema for user to specify infer_schema: Whether to infer the schema of the arguments from the function's signature. This also makes the resultant tool accept a dictionary input to its `run()` function. Requires: - Function must be of type (str) -> str - Function must have a docstring Examples: .. code-block:: python @tool
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
0d829dfac05e-11
Examples: .. code-block:: python @tool def search_api(query: str) -> str: # Searches the API for the query. return @tool("search", return_direct=True) def search_api(query: str) -> str: # Searches the API for the query. return """ def _make_with_name(tool_name: str) -> Callable: def _make_tool(func: Callable) -> BaseTool: if infer_schema or args_schema is not None: return StructuredTool.from_function( func, name=tool_name, return_direct=return_direct, args_schema=args_schema, infer_schema=infer_schema, ) # If someone doesn't want a schema applied, we must treat it as # a simple string->string function assert func.__doc__ is not None, "Function must have a docstring" return Tool( name=tool_name, func=func, description=f"{tool_name} tool", return_direct=return_direct, ) return _make_tool if len(args) == 1 and isinstance(args[0], str): # if the argument is a string, then we use the string as the tool name # Example usage: @tool("search", return_direct=True) return _make_with_name(args[0]) elif len(args) == 1 and callable(args[0]): # if the argument is a function, then we use the function name as the tool name # Example usage: @tool return _make_with_name(args[0].__name__)(args[0]) elif len(args) == 0:
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
0d829dfac05e-12
elif len(args) == 0: # if there are no arguments, then we use the function name as the tool name # Example usage: @tool(return_direct=True) def _partial(func: Callable[[str], str]) -> BaseTool: return _make_with_name(func.__name__)(func) return _partial else: raise ValueError("Too many arguments for tool decorator") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
440578b714ac-0
Source code for langchain.tools.plugin from __future__ import annotations import json from typing import Optional, Type import requests import yaml from pydantic import BaseModel from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool class ApiConfig(BaseModel): type: str url: str has_user_authentication: Optional[bool] = False class AIPlugin(BaseModel): """AI Plugin Definition.""" schema_version: str name_for_model: str name_for_human: str description_for_model: str description_for_human: str auth: Optional[dict] = None api: ApiConfig logo_url: Optional[str] contact_email: Optional[str] legal_info_url: Optional[str] @classmethod def from_url(cls, url: str) -> AIPlugin: """Instantiate AIPlugin from a URL.""" response = requests.get(url).json() return cls(**response) def marshal_spec(txt: str) -> dict: """Convert the yaml or json serialized spec to a dict.""" try: return json.loads(txt) except json.JSONDecodeError: return yaml.safe_load(txt) class AIPluginToolSchema(BaseModel): """AIPLuginToolSchema.""" tool_input: Optional[str] = "" [docs]class AIPluginTool(BaseTool): plugin: AIPlugin api_spec: str args_schema: Type[AIPluginToolSchema] = AIPluginToolSchema [docs] @classmethod def from_plugin_url(cls, url: str) -> AIPluginTool: plugin = AIPlugin.from_url(url) description = (
https://python.langchain.com/en/latest/_modules/langchain/tools/plugin.html
440578b714ac-1
plugin = AIPlugin.from_url(url) description = ( f"Call this tool to get the OpenAPI spec (and usage guide) " f"for interacting with the {plugin.name_for_human} API. " f"You should only call this ONCE! What is the " f"{plugin.name_for_human} API useful for? " ) + plugin.description_for_human open_api_spec_str = requests.get(plugin.api.url).text open_api_spec = marshal_spec(open_api_spec_str) api_spec = ( f"Usage Guide: {plugin.description_for_model}\n\n" f"OpenAPI Spec: {open_api_spec}" ) return cls( name=plugin.name_for_model, description=description, plugin=plugin, api_spec=api_spec, ) def _run( self, tool_input: Optional[str] = "", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_spec async def _arun( self, tool_input: Optional[str] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" return self.api_spec By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/plugin.html
f78a28a84b4f-0
Source code for langchain.tools.playwright.navigate from __future__ import annotations from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import ( aget_current_page, get_current_page, ) class NavigateToolInput(BaseModel): """Input for NavigateToolInput.""" url: str = Field(..., description="url to navigate to") [docs]class NavigateTool(BaseBrowserTool): name: str = "navigate_browser" description: str = "Navigate a browser to the specified URL" args_schema: Type[BaseModel] = NavigateToolInput def _run( self, url: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) response = page.goto(url) status = response.status if response else "unknown" return f"Navigating to {url} returned status code {status}" async def _arun( self, url: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) response = await page.goto(url)
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/navigate.html
f78a28a84b4f-1
response = await page.goto(url) status = response.status if response else "unknown" return f"Navigating to {url} returned status code {status}" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/navigate.html
f1ab11d37949-0
Source code for langchain.tools.playwright.current_page from __future__ import annotations from typing import Optional, Type from pydantic import BaseModel from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import aget_current_page, get_current_page [docs]class CurrentWebPageTool(BaseBrowserTool): name: str = "current_webpage" description: str = "Returns the URL of the current page" args_schema: Type[BaseModel] = BaseModel def _run( self, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) return str(page.url) async def _arun( self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) return str(page.url) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/current_page.html
93cad7dec4b7-0
Source code for langchain.tools.playwright.navigate_back from __future__ import annotations from typing import Optional, Type from pydantic import BaseModel from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import ( aget_current_page, get_current_page, ) [docs]class NavigateBackTool(BaseBrowserTool): """Navigate back to the previous page in the browser history.""" name: str = "previous_webpage" description: str = "Navigate back to the previous page in the browser history" args_schema: Type[BaseModel] = BaseModel def _run(self, run_manager: Optional[CallbackManagerForToolRun] = None) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) response = page.go_back() if response: return ( f"Navigated back to the previous page with URL '{response.url}'." f" Status code {response.status}" ) else: return "Unable to navigate back; no previous page in the history" async def _arun( self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) response = await page.go_back() if response: return (
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/navigate_back.html
93cad7dec4b7-1
response = await page.go_back() if response: return ( f"Navigated back to the previous page with URL '{response.url}'." f" Status code {response.status}" ) else: return "Unable to navigate back; no previous page in the history" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/navigate_back.html
b5166bac4b08-0
Source code for langchain.tools.playwright.extract_hyperlinks from __future__ import annotations import json from typing import TYPE_CHECKING, Any, Optional, Type from pydantic import BaseModel, Field, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import aget_current_page, get_current_page if TYPE_CHECKING: pass class ExtractHyperlinksToolInput(BaseModel): """Input for ExtractHyperlinksTool.""" absolute_urls: bool = Field( default=False, description="Return absolute URLs instead of relative URLs", ) [docs]class ExtractHyperlinksTool(BaseBrowserTool): """Extract all hyperlinks on the page.""" name: str = "extract_hyperlinks" description: str = "Extract all hyperlinks on the current webpage" args_schema: Type[BaseModel] = ExtractHyperlinksToolInput @root_validator def check_bs_import(cls, values: dict) -> dict: """Check that the arguments are valid.""" try: from bs4 import BeautifulSoup # noqa: F401 except ImportError: raise ValueError( "The 'beautifulsoup4' package is required to use this tool." " Please install it with 'pip install beautifulsoup4'." ) return values [docs] @staticmethod def scrape_page(page: Any, html_content: str, absolute_urls: bool) -> str: from urllib.parse import urljoin from bs4 import BeautifulSoup # Parse the HTML content with BeautifulSoup soup = BeautifulSoup(html_content, "lxml") # Find all the anchor elements and extract their href attributes
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/extract_hyperlinks.html
b5166bac4b08-1
# Find all the anchor elements and extract their href attributes anchors = soup.find_all("a") if absolute_urls: base_url = page.url links = [urljoin(base_url, anchor.get("href", "")) for anchor in anchors] else: links = [anchor.get("href", "") for anchor in anchors] # Return the list of links as a JSON string return json.dumps(links) def _run( self, absolute_urls: bool = False, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) html_content = page.content() return self.scrape_page(page, html_content, absolute_urls) async def _arun( self, absolute_urls: bool = False, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) html_content = await page.content() return self.scrape_page(page, html_content, absolute_urls) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/extract_hyperlinks.html
053e47b9030f-0
Source code for langchain.tools.playwright.click from __future__ import annotations from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import ( aget_current_page, get_current_page, ) class ClickToolInput(BaseModel): """Input for ClickTool.""" selector: str = Field(..., description="CSS selector for the element to click") [docs]class ClickTool(BaseBrowserTool): name: str = "click_element" description: str = "Click on an element with the given CSS selector" args_schema: Type[BaseModel] = ClickToolInput def _run( self, selector: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) # Navigate to the desired webpage before using this tool page.click(selector) return f"Clicked element '{selector}'" async def _arun( self, selector: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) # Navigate to the desired webpage before using this tool await page.click(selector)
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/click.html
053e47b9030f-1
# Navigate to the desired webpage before using this tool await page.click(selector) return f"Clicked element '{selector}'" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/click.html
6eddd24cccff-0
Source code for langchain.tools.playwright.extract_text from __future__ import annotations from typing import Optional, Type from pydantic import BaseModel, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import aget_current_page, get_current_page [docs]class ExtractTextTool(BaseBrowserTool): name: str = "extract_text" description: str = "Extract all the text on the current webpage" args_schema: Type[BaseModel] = BaseModel @root_validator def check_acheck_bs_importrgs(cls, values: dict) -> dict: """Check that the arguments are valid.""" try: from bs4 import BeautifulSoup # noqa: F401 except ImportError: raise ValueError( "The 'beautifulsoup4' package is required to use this tool." " Please install it with 'pip install beautifulsoup4'." ) return values def _run(self, run_manager: Optional[CallbackManagerForToolRun] = None) -> str: """Use the tool.""" # Use Beautiful Soup since it's faster than looping through the elements from bs4 import BeautifulSoup if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) html_content = page.content() # Parse the HTML content with BeautifulSoup soup = BeautifulSoup(html_content, "lxml") return " ".join(text for text in soup.stripped_strings) async def _arun( self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/extract_text.html
6eddd24cccff-1
self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") # Use Beautiful Soup since it's faster than looping through the elements from bs4 import BeautifulSoup page = await aget_current_page(self.async_browser) html_content = await page.content() # Parse the HTML content with BeautifulSoup soup = BeautifulSoup(html_content, "lxml") return " ".join(text for text in soup.stripped_strings) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/extract_text.html
0df32c1f6227-0
Source code for langchain.tools.playwright.get_elements from __future__ import annotations import json from typing import TYPE_CHECKING, List, Optional, Sequence, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import aget_current_page, get_current_page if TYPE_CHECKING: from playwright.async_api import Page as AsyncPage from playwright.sync_api import Page as SyncPage class GetElementsToolInput(BaseModel): """Input for GetElementsTool.""" selector: str = Field( ..., description="CSS selector, such as '*', 'div', 'p', 'a', #id, .classname", ) attributes: List[str] = Field( default_factory=lambda: ["innerText"], description="Set of attributes to retrieve for each element", ) async def _aget_elements( page: AsyncPage, selector: str, attributes: Sequence[str] ) -> List[dict]: """Get elements matching the given CSS selector.""" elements = await page.query_selector_all(selector) results = [] for element in elements: result = {} for attribute in attributes: if attribute == "innerText": val: Optional[str] = await element.inner_text() else: val = await element.get_attribute(attribute) if val is not None and val.strip() != "": result[attribute] = val if result: results.append(result) return results def _get_elements( page: SyncPage, selector: str, attributes: Sequence[str] ) -> List[dict]:
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/get_elements.html
0df32c1f6227-1
) -> List[dict]: """Get elements matching the given CSS selector.""" elements = page.query_selector_all(selector) results = [] for element in elements: result = {} for attribute in attributes: if attribute == "innerText": val: Optional[str] = element.inner_text() else: val = element.get_attribute(attribute) if val is not None and val.strip() != "": result[attribute] = val if result: results.append(result) return results [docs]class GetElementsTool(BaseBrowserTool): name: str = "get_elements" description: str = ( "Retrieve elements in the current web page matching the given CSS selector" ) args_schema: Type[BaseModel] = GetElementsToolInput def _run( self, selector: str, attributes: Sequence[str] = ["innerText"], run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) # Navigate to the desired webpage before using this tool results = _get_elements(page, selector, attributes) return json.dumps(results) async def _arun( self, selector: str, attributes: Sequence[str] = ["innerText"], run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}")
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/get_elements.html
0df32c1f6227-2
raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) # Navigate to the desired webpage before using this tool results = await _aget_elements(page, selector, attributes) return json.dumps(results) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/get_elements.html
f5ba15f22c83-0
Source code for langchain.tools.zapier.tool """## Zapier Natural Language Actions API \ Full docs here: https://nla.zapier.com/api/v1/docs **Zapier Natural Language Actions** gives you access to the 5k+ apps, 20k+ actions on Zapier's platform through a natural language API interface. NLA supports apps like Gmail, Salesforce, Trello, Slack, Asana, HubSpot, Google Sheets, Microsoft Teams, and thousands more apps: https://zapier.com/apps Zapier NLA handles ALL the underlying API auth and translation from natural language --> underlying API call --> return simplified output for LLMs The key idea is you, or your users, expose a set of actions via an oauth-like setup window, which you can then query and execute via a REST API. NLA offers both API Key and OAuth for signing NLA API requests. 1. Server-side (API Key): for quickly getting started, testing, and production scenarios where LangChain will only use actions exposed in the developer's Zapier account (and will use the developer's connected accounts on Zapier.com) 2. User-facing (Oauth): for production scenarios where you are deploying an end-user facing application and LangChain needs access to end-user's exposed actions and connected accounts on Zapier.com This quick start will focus on the server-side use case for brevity. Review [full docs](https://nla.zapier.com/api/v1/docs) or reach out to nla@zapier.com for user-facing oauth developer support. Typically you'd use SequentialChain, here's a basic example: 1. Use NLA to find an email in Gmail 2. Use LLMChain to generate a draft reply to (1)
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
f5ba15f22c83-1
2. Use LLMChain to generate a draft reply to (1) 3. Use NLA to send the draft reply (2) to someone in Slack via direct message In code, below: ```python import os # get from https://platform.openai.com/ os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY", "") # get from https://nla.zapier.com/demo/provider/debug # (under User Information, after logging in): os.environ["ZAPIER_NLA_API_KEY"] = os.environ.get("ZAPIER_NLA_API_KEY", "") from langchain.llms import OpenAI from langchain.agents import initialize_agent from langchain.agents.agent_toolkits import ZapierToolkit from langchain.utilities.zapier import ZapierNLAWrapper ## step 0. expose gmail 'find email' and slack 'send channel message' actions # first go here, log in, expose (enable) the two actions: # https://nla.zapier.com/demo/start # -- for this example, can leave all fields "Have AI guess" # in an oauth scenario, you'd get your own <provider> id (instead of 'demo') # which you route your users through first llm = OpenAI(temperature=0) zapier = ZapierNLAWrapper() ## To leverage a nla_oauth_access_token you may pass the value to the ZapierNLAWrapper ## If you do this there is no need to initialize the ZAPIER_NLA_API_KEY env variable # zapier = ZapierNLAWrapper(zapier_nla_oauth_access_token="TOKEN_HERE") toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier) agent = initialize_agent( toolkit.get_tools(), llm,
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
f5ba15f22c83-2
agent = initialize_agent( toolkit.get_tools(), llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run(("Summarize the last email I received regarding Silicon Valley Bank. " "Send the summary to the #test-zapier channel in slack.")) ``` """ from typing import Any, Dict, Optional from pydantic import Field, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.zapier.prompt import BASE_ZAPIER_TOOL_PROMPT from langchain.utilities.zapier import ZapierNLAWrapper [docs]class ZapierNLARunAction(BaseTool): """ Args: action_id: a specific action ID (from list actions) of the action to execute (the set api_key must be associated with the action owner) instructions: a natural language instruction string for using the action (eg. "get the latest email from Mike Knoop" for "Gmail: find email" action) params: a dict, optional. Any params provided will *override* AI guesses from `instructions` (see "understanding the AI guessing flow" here: https://nla.zapier.com/api/v1/docs) """ api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper) action_id: str params: Optional[dict] = None zapier_description: str params_schema: Dict[str, str] = Field(default_factory=dict) name = "" description = "" @root_validator
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
f5ba15f22c83-3
name = "" description = "" @root_validator def set_name_description(cls, values: Dict[str, Any]) -> Dict[str, Any]: zapier_description = values["zapier_description"] params_schema = values["params_schema"] if "instructions" in params_schema: del params_schema["instructions"] values["name"] = zapier_description values["description"] = BASE_ZAPIER_TOOL_PROMPT.format( zapier_description=zapier_description, params=str(list(params_schema.keys())), ) return values def _run( self, instructions: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" return self.api_wrapper.run_as_str(self.action_id, instructions, self.params) async def _arun( self, _: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" raise NotImplementedError("ZapierNLAListActions does not support async") ZapierNLARunAction.__doc__ = ( ZapierNLAWrapper.run.__doc__ + ZapierNLARunAction.__doc__ # type: ignore ) # other useful actions [docs]class ZapierNLAListActions(BaseTool): """ Args: None """ name = "Zapier NLA: List Actions" description = BASE_ZAPIER_TOOL_PROMPT + ( "This tool returns a list of the user's exposed actions." )
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
f5ba15f22c83-4
"This tool returns a list of the user's exposed actions." ) api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper) def _run( self, _: str = "", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" return self.api_wrapper.list_as_str() async def _arun( self, _: str = "", run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" raise NotImplementedError("ZapierNLAListActions does not support async") ZapierNLAListActions.__doc__ = ( ZapierNLAWrapper.list.__doc__ + ZapierNLAListActions.__doc__ # type: ignore ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
9e41705e07a8-0
Source code for langchain.tools.google_search.tool """Tool for the Google search API.""" from typing import Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.google_search import GoogleSearchAPIWrapper [docs]class GoogleSearchRun(BaseTool): """Tool that adds the capability to query the Google search API.""" name = "Google Search" description = ( "A wrapper around Google Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query." ) api_wrapper: GoogleSearchAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("GoogleSearchRun does not support async") [docs]class GoogleSearchResults(BaseTool): """Tool that has capability to query the Google Search API and get back json.""" name = "Google Search Results JSON" description = ( "A wrapper around Google Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query. Output is a JSON array of the query results" ) num_results: int = 4 api_wrapper: GoogleSearchAPIWrapper def _run( self,
https://python.langchain.com/en/latest/_modules/langchain/tools/google_search/tool.html
9e41705e07a8-1
api_wrapper: GoogleSearchAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return str(self.api_wrapper.results(query, self.num_results)) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("GoogleSearchRun does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/google_search/tool.html
9f896549fca7-0
Source code for langchain.tools.file_management.file_search import fnmatch import os from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class FileSearchInput(BaseModel): """Input for FileSearchTool.""" dir_path: str = Field( default=".", description="Subdirectory to search in.", ) pattern: str = Field( ..., description="Unix shell regex, where * matches everything.", ) [docs]class FileSearchTool(BaseFileToolMixin, BaseTool): name: str = "file_search" args_schema: Type[BaseModel] = FileSearchInput description: str = ( "Recursively search for files in a subdirectory that match the regex pattern" ) def _run( self, pattern: str, dir_path: str = ".", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: dir_path_ = self.get_relative_path(dir_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="dir_path", value=dir_path) matches = [] try: for root, _, filenames in os.walk(dir_path_): for filename in fnmatch.filter(filenames, pattern): absolute_path = os.path.join(root, filename) relative_path = os.path.relpath(absolute_path, dir_path_) matches.append(relative_path) if matches:
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/file_search.html
9f896549fca7-1
matches.append(relative_path) if matches: return "\n".join(matches) else: return f"No files found for pattern {pattern} in directory {dir_path}" except Exception as e: return "Error: " + str(e) async def _arun( self, dir_path: str, pattern: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/file_search.html
af10e50c8182-0
Source code for langchain.tools.file_management.write from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class WriteFileInput(BaseModel): """Input for WriteFileTool.""" file_path: str = Field(..., description="name of file") text: str = Field(..., description="text to write to file") append: bool = Field( default=False, description="Whether to append to an existing file." ) [docs]class WriteFileTool(BaseFileToolMixin, BaseTool): name: str = "write_file" args_schema: Type[BaseModel] = WriteFileInput description: str = "Write file to disk" def _run( self, file_path: str, text: str, append: bool = False, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: write_path = self.get_relative_path(file_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="file_path", value=file_path) try: write_path.parent.mkdir(exist_ok=True, parents=False) mode = "a" if append else "w" with write_path.open(mode, encoding="utf-8") as f: f.write(text) return f"File written successfully to {file_path}." except Exception as e: return "Error: " + str(e)
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/write.html
af10e50c8182-1
except Exception as e: return "Error: " + str(e) async def _arun( self, file_path: str, text: str, append: bool = False, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/write.html
5842a2182418-0
Source code for langchain.tools.file_management.copy import shutil from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class FileCopyInput(BaseModel): """Input for CopyFileTool.""" source_path: str = Field(..., description="Path of the file to copy") destination_path: str = Field(..., description="Path to save the copied file") [docs]class CopyFileTool(BaseFileToolMixin, BaseTool): name: str = "copy_file" args_schema: Type[BaseModel] = FileCopyInput description: str = "Create a copy of a file in a specified location" def _run( self, source_path: str, destination_path: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: source_path_ = self.get_relative_path(source_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format( arg_name="source_path", value=source_path ) try: destination_path_ = self.get_relative_path(destination_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format( arg_name="destination_path", value=destination_path ) try: shutil.copy2(source_path_, destination_path_, follow_symlinks=False) return f"File copied successfully from {source_path} to {destination_path}." except Exception as e:
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/copy.html
5842a2182418-1
except Exception as e: return "Error: " + str(e) async def _arun( self, source_path: str, destination_path: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/copy.html
b662a6dfc464-0
Source code for langchain.tools.file_management.list_dir import os from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class DirectoryListingInput(BaseModel): """Input for ListDirectoryTool.""" dir_path: str = Field(default=".", description="Subdirectory to list.") [docs]class ListDirectoryTool(BaseFileToolMixin, BaseTool): name: str = "list_directory" args_schema: Type[BaseModel] = DirectoryListingInput description: str = "List files and directories in a specified folder" def _run( self, dir_path: str = ".", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: dir_path_ = self.get_relative_path(dir_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="dir_path", value=dir_path) try: entries = os.listdir(dir_path_) if entries: return "\n".join(entries) else: return f"No files found in directory {dir_path}" except Exception as e: return "Error: " + str(e) async def _arun( self, dir_path: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/list_dir.html
b662a6dfc464-1
raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 02, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/list_dir.html