repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
kmike/scikit-learn
sklearn/utils/__init__.py
3
10094
""" The :mod:`sklearn.utils` module includes various utilites. """ from collections import Sequence import numpy as np from scipy.sparse import issparse import warnings from .murmurhash import murmurhash3_32 from .validation import (as_float_array, check_arrays, safe_asarray, assert_all_finite, array2d, atleast2d_or_csc, atleast2d_or_csr, warn_if_not_float, check_random_state) from .class_weight import compute_class_weight __all__ = ["murmurhash3_32", "as_float_array", "check_arrays", "safe_asarray", "assert_all_finite", "array2d", "atleast2d_or_csc", "atleast2d_or_csr", "warn_if_not_float", "check_random_state", "compute_class_weight"] # Make sure that DeprecationWarning get printed warnings.simplefilter("always", DeprecationWarning) class deprecated(object): """Decorator to mark a function or class as deprecated. Issue a warning when the function is called/the class is instantiated and adds a warning to the docstring. The optional extra argument will be appended to the deprecation message and the docstring. Note: to use this with the default value for extra, put in an empty of parentheses: >>> from sklearn.utils import deprecated >>> deprecated() # doctest: +ELLIPSIS <sklearn.utils.deprecated object at ...> >>> @deprecated() ... def some_function(): pass """ # Adapted from http://wiki.python.org/moin/PythonDecoratorLibrary, # but with many changes. def __init__(self, extra=''): """ Parameters ---------- extra: string to be added to the deprecation messages """ self.extra = extra def __call__(self, obj): if isinstance(obj, type): return self._decorate_class(obj) else: return self._decorate_fun(obj) def _decorate_class(self, cls): msg = "Class %s is deprecated" % cls.__name__ if self.extra: msg += "; %s" % self.extra # FIXME: we should probably reset __new__ for full generality init = cls.__init__ def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return init(*args, **kwargs) cls.__init__ = wrapped wrapped.__name__ = '__init__' wrapped.__doc__ = self._update_doc(init.__doc__) wrapped.deprecated_original = init return cls def _decorate_fun(self, fun): """Decorate function fun""" msg = "Function %s is deprecated" % fun.__name__ if self.extra: msg += "; %s" % self.extra def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return fun(*args, **kwargs) wrapped.__name__ = fun.__name__ wrapped.__dict__ = fun.__dict__ wrapped.__doc__ = self._update_doc(fun.__doc__) return wrapped def _update_doc(self, olddoc): newdoc = "DEPRECATED" if self.extra: newdoc = "%s: %s" % (newdoc, self.extra) if olddoc: newdoc = "%s\n\n%s" % (newdoc, olddoc) return newdoc def safe_mask(X, mask): """Return a mask which is safe to use on X. Parameters ---------- X : {array-like, sparse matrix} Data on which to apply mask. mask: array Mask to be used on X. Returns ------- mask """ mask = np.asanyarray(mask) if np.issubdtype(mask.dtype, np.int): return mask if hasattr(X, "toarray"): ind = np.arange(mask.shape[0]) mask = ind[mask] return mask def resample(*arrays, **options): """Resample arrays or sparse matrices in a consistent way The default strategy implements one step of the bootstrapping procedure. Parameters ---------- `*arrays` : sequence of arrays or scipy.sparse matrices with same shape[0] replace : boolean, True by default Implements resampling with replacement. If False, this will implement (sliced) random permutations. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. random_state : int or RandomState instance Control the shuffling for reproducible behavior. Returns ------- Sequence of resampled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = [[1., 0.], [2., 1.], [0., 0.]] >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import resample >>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0) >>> X array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([0, 1, 0]) >>> resample(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :class:`sklearn.cross_validation.Bootstrap` :func:`sklearn.utils.shuffle` """ random_state = check_random_state(options.pop('random_state', None)) replace = options.pop('replace', True) max_n_samples = options.pop('n_samples', None) if options: raise ValueError("Unexpected kw arguments: %r" % options.keys()) if len(arrays) == 0: return None first = arrays[0] n_samples = first.shape[0] if hasattr(first, 'shape') else len(first) if max_n_samples is None: max_n_samples = n_samples if max_n_samples > n_samples: raise ValueError("Cannot sample %d out of arrays with dim %d" % ( max_n_samples, n_samples)) arrays = check_arrays(*arrays, sparse_format='csr') if replace: indices = random_state.randint(0, n_samples, size=(max_n_samples,)) else: indices = np.arange(n_samples) random_state.shuffle(indices) indices = indices[:max_n_samples] resampled_arrays = [] for array in arrays: array = array[indices] resampled_arrays.append(array) if len(resampled_arrays) == 1: # syntactic sugar for the unit argument case return resampled_arrays[0] else: return resampled_arrays def shuffle(*arrays, **options): """Shuffle arrays or sparse matrices in a consistent way This is a convenience alias to ``resample(*arrays, replace=False)`` to do random permutations of the collections. Parameters ---------- `*arrays` : sequence of arrays or scipy.sparse matrices with same shape[0] random_state : int or RandomState instance Control the shuffling for reproducible behavior. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. Returns ------- Sequence of shuffled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = [[1., 0.], [2., 1.], [0., 0.]] >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import shuffle >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0) >>> X array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 3 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([2, 1, 0]) >>> shuffle(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.resample` """ options['replace'] = False return resample(*arrays, **options) def safe_sqr(X, copy=True): """Element wise squaring of array-likes and sparse matrices. Parameters ---------- X : array like, matrix, sparse matrix Returns ------- X ** 2 : element wise square """ X = safe_asarray(X) if issparse(X): if copy: X = X.copy() X.data **= 2 else: if copy: X = X ** 2 else: X **= 2 return X def gen_even_slices(n, n_packs): """Generator to create n_packs slices going up to n. Examples -------- >>> from sklearn.utils import gen_even_slices >>> list(gen_even_slices(10, 1)) [slice(0, 10, None)] >>> list(gen_even_slices(10, 10)) #doctest: +ELLIPSIS [slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)] >>> list(gen_even_slices(10, 5)) #doctest: +ELLIPSIS [slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)] >>> list(gen_even_slices(10, 3)) [slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)] """ start = 0 for pack_num in range(n_packs): this_n = n // n_packs if pack_num < n % n_packs: this_n += 1 if this_n > 0: end = start + this_n yield slice(start, end, None) start = end def tosequence(x): """Cast iterable x to a Sequence, avoiding a copy if possible.""" if isinstance(x, np.ndarray): return np.asarray(x) elif isinstance(x, Sequence): return x else: return list(x) class ConvergenceWarning(Warning): "Custom warning to capture convergence problems"
bsd-3-clause
mne-tools/mne-tools.github.io
0.20/_downloads/76822bb92a8465181ec2a7ee96ca8cf4/plot_decoding_csp_timefreq.py
1
6457
""" ============================================================================ Decoding in time-frequency space data using the Common Spatial Pattern (CSP) ============================================================================ The time-frequency decomposition is estimated by iterating over raw data that has been band-passed at different frequencies. This is used to compute a covariance matrix over each epoch or a rolling time-window and extract the CSP filtered signals. A linear discriminant classifier is then applied to these signals. """ # Authors: Laura Gwilliams <laura.gwilliams@nyu.edu> # Jean-Remi King <jeanremi.king@gmail.com> # Alex Barachant <alexandre.barachant@gmail.com> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt from mne import Epochs, create_info, events_from_annotations from mne.io import concatenate_raws, read_raw_edf from mne.datasets import eegbci from mne.decoding import CSP from mne.time_frequency import AverageTFR from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.model_selection import StratifiedKFold, cross_val_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import LabelEncoder ############################################################################### # Set parameters and read data event_id = dict(hands=2, feet=3) # motor imagery: hands vs feet subject = 1 runs = [6, 10, 14] raw_fnames = eegbci.load_data(subject, runs) raw = concatenate_raws([read_raw_edf(f, preload=True) for f in raw_fnames]) # Extract information from the raw file sfreq = raw.info['sfreq'] events, _ = events_from_annotations(raw, event_id=dict(T1=2, T2=3)) raw.pick_types(meg=False, eeg=True, stim=False, eog=False, exclude='bads') # Assemble the classifier using scikit-learn pipeline clf = make_pipeline(CSP(n_components=4, reg=None, log=True, norm_trace=False), LinearDiscriminantAnalysis()) n_splits = 5 # how many folds to use for cross-validation cv = StratifiedKFold(n_splits=n_splits, shuffle=True) # Classification & Time-frequency parameters tmin, tmax = -.200, 2.000 n_cycles = 10. # how many complete cycles: used to define window size min_freq = 5. max_freq = 25. n_freqs = 8 # how many frequency bins to use # Assemble list of frequency range tuples freqs = np.linspace(min_freq, max_freq, n_freqs) # assemble frequencies freq_ranges = list(zip(freqs[:-1], freqs[1:])) # make freqs list of tuples # Infer window spacing from the max freq and number of cycles to avoid gaps window_spacing = (n_cycles / np.max(freqs) / 2.) centered_w_times = np.arange(tmin, tmax, window_spacing)[1:] n_windows = len(centered_w_times) # Instantiate label encoder le = LabelEncoder() ############################################################################### # Loop through frequencies, apply classifier and save scores # init scores freq_scores = np.zeros((n_freqs - 1,)) # Loop through each frequency range of interest for freq, (fmin, fmax) in enumerate(freq_ranges): # Infer window size based on the frequency being used w_size = n_cycles / ((fmax + fmin) / 2.) # in seconds # Apply band-pass filter to isolate the specified frequencies raw_filter = raw.copy().filter(fmin, fmax, n_jobs=1, fir_design='firwin', skip_by_annotation='edge') # Extract epochs from filtered data, padded by window size epochs = Epochs(raw_filter, events, event_id, tmin - w_size, tmax + w_size, proj=False, baseline=None, preload=True) epochs.drop_bad() y = le.fit_transform(epochs.events[:, 2]) X = epochs.get_data() # Save mean scores over folds for each frequency and time window freq_scores[freq] = np.mean(cross_val_score(estimator=clf, X=X, y=y, scoring='roc_auc', cv=cv, n_jobs=1), axis=0) ############################################################################### # Plot frequency results plt.bar(freqs[:-1], freq_scores, width=np.diff(freqs)[0], align='edge', edgecolor='black') plt.xticks(freqs) plt.ylim([0, 1]) plt.axhline(len(epochs['feet']) / len(epochs), color='k', linestyle='--', label='chance level') plt.legend() plt.xlabel('Frequency (Hz)') plt.ylabel('Decoding Scores') plt.title('Frequency Decoding Scores') ############################################################################### # Loop through frequencies and time, apply classifier and save scores # init scores tf_scores = np.zeros((n_freqs - 1, n_windows)) # Loop through each frequency range of interest for freq, (fmin, fmax) in enumerate(freq_ranges): # Infer window size based on the frequency being used w_size = n_cycles / ((fmax + fmin) / 2.) # in seconds # Apply band-pass filter to isolate the specified frequencies raw_filter = raw.copy().filter(fmin, fmax, n_jobs=1, fir_design='firwin', skip_by_annotation='edge') # Extract epochs from filtered data, padded by window size epochs = Epochs(raw_filter, events, event_id, tmin - w_size, tmax + w_size, proj=False, baseline=None, preload=True) epochs.drop_bad() y = le.fit_transform(epochs.events[:, 2]) # Roll covariance, csp and lda over time for t, w_time in enumerate(centered_w_times): # Center the min and max of the window w_tmin = w_time - w_size / 2. w_tmax = w_time + w_size / 2. # Crop data into time-window of interest X = epochs.copy().crop(w_tmin, w_tmax).get_data() # Save mean scores over folds for each frequency and time window tf_scores[freq, t] = np.mean(cross_val_score(estimator=clf, X=X, y=y, scoring='roc_auc', cv=cv, n_jobs=1), axis=0) ############################################################################### # Plot time-frequency results # Set up time frequency object av_tfr = AverageTFR(create_info(['freq'], sfreq), tf_scores[np.newaxis, :], centered_w_times, freqs[1:], 1) chance = np.mean(y) # set chance level to white in the plot av_tfr.plot([0], vmin=chance, title="Time-Frequency Decoding Scores", cmap=plt.cm.Reds)
bsd-3-clause
bijanfallah/OI_CCLM
src/RMSE_MAPS_INGO.py
1
2007
# Program to show the maps of RMSE averaged over time import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error import os from netCDF4 import Dataset as NetCDFFile import numpy as np from CCLM_OUTS import Plot_CCLM # option == 1 -> shift 4 with default cclm domain and nboundlines = 3 # option == 2 -> shift 4 with smaller cclm domain and nboundlines = 3 # option == 3 -> shift 4 with smaller cclm domain and nboundlines = 6 # option == 4 -> shift 4 with corrected smaller cclm domain and nboundlines = 3 # option == 5 -> shift 4 with corrected smaller cclm domain and nboundlines = 4 # option == 6 -> shift 4 with corrected smaller cclm domain and nboundlines = 6 # option == 7 -> shift 4 with corrected smaller cclm domain and nboundlines = 9 # option == 8 -> shift 4 with corrected bigger cclm domain and nboundlines = 3 from CCLM_OUTS import Plot_CCLM #def f(x): # if x==-9999: # return float('NaN') # else: # return x def read_data_from_mistral(dir='/work/bb1029/b324045/work1/work/member/post/',name='member_T_2M_ts_seasmean.nc',var='T_2M'): # type: (object, object, object) -> object #a function to read the data from mistral work """ :rtype: object """ #CMD = 'scp $mistral:' + dir + name + ' ./' CMD = 'wget users.met.fu-berlin.de/~BijanFallah/' + dir + name os.system(CMD) nc = NetCDFFile(name) # for name2, variable in nc.variables.items(): # for attrname in variable.ncattrs(): # print(name2, variable, '-----------------',attrname) # #print("{} -- {}".format(attrname, getattr(variable, attrname))) os.remove(name) lats = nc.variables['lat'][:] lons = nc.variables['lon'][:] t = nc.variables[var][:].squeeze() rlats = nc.variables['rlat'][:] # extract/copy the data rlons = nc.variables['rlon'][:] #f2 = np.vectorize(f) #t= f2(t) #t=t.data t=t.squeeze() #print() nc.close() return(t, lats, lons, rlats, rlons)
mit
hsu/chrono
src/demos/trackVehicle/validationPlots_test_M113.py
5
4229
# -*- coding: utf-8 -*- """ Created on Wed May 06 11:00:53 2015 @author: newJustin """ import ChronoTrack_pandas as CT import pylab as py if __name__ == '__main__': # logger import logging as lg lg.basicConfig(fileName = 'logFile.log', level=lg.WARN, format='%(message)s') # default font size import matplotlib font = {'size' : 14} matplotlib.rc('font', **font) # ********************************************************************** # =============== USER INPUT ======================================= # data dir, end w/ '/' # data_dir = 'D:/Chrono_github_Build/bin/outdata_M113/' data_dir = 'E:/Chrono_github_Build/bin/outdata_M113/' ''' # list of data files to plot chassis = 'M113_chassis.csv' gearSubsys = 'M113_Side0_gear.csv' idlerSubsys = 'M113_Side0_idler.csv' # ptrainSubsys = 'test_driveChain_ptrain.csv' shoe0 = 'M113_Side0_shoe0.csv' ''' chassis = 'M113_400_200__chassis.csv' gearSubsys = 'M113_400_200__Side0_gear.csv' idlerSubsys = 'M113_400_200__Side0_idler.csv' # ptrainSubsys = 'test_driveChain_ptrain.csv' shoe0 = 'M113_400_200__Side0_shoe0.csv' data_files = [data_dir + chassis, data_dir + gearSubsys, data_dir + idlerSubsys, data_dir + shoe0] handle_list = ['chassis','gear','idler','shoe0'] # handle_list = ['Gear','idler','ptrain','shoe0','gearCV','idlerCV','rollerCV','gearContact','shoeGearContact'] ''' gearCV = 'test_driveChain_GearCV.csv' idlerCV = 'test_driveChain_idler0CV.csv' rollerCV = 'test_driveChain_roller0CV.csv' gearContact = 'test_driveChain_gearContact.csv' shoeGearContact = 'test_driveChain_shoe0GearContact.csv' ''' # data_files = [data_dir + gearSubsys, data_dir + idlerSubsys, data_dir + ptrainSubsys, data_dir + shoe0, data_dir + gearCV, data_dir + idlerCV, data_dir + rollerCV, data_dir + gearContact, data_dir+shoeGearContact] # handle_list = ['Gear','idler','ptrain','shoe0','gearCV','idlerCV','rollerCV','gearContact','shoeGearContact'] # list of data files for gear/pin comparison plots # Primitive gear geometry ''' gear = 'driveChain_P_gear.csv' gearContact = 'driveChain_P_gearContact.csv' shoe = 'driveChain_P_shoe0.csv' shoeContact = 'driveChain_P_shoe0GearContact.csv' ptrain = 'driveChain_P_ptrain.csv' # Collision Callback gear geometry gear = 'driveChain_CC_gear.csv' gearContact = 'driveChain_CC_gearContact.csv' shoe = 'driveChain_CC_shoe0.csv' shoeContact = 'driveChain_CC_shoe0GearContact.csv' ptrain = 'driveChain_CC_ptrain.csv' data_files = [data_dir+gear, data_dir+gearContact, data_dir+shoe, data_dir+shoeContact, data_dir+ptrain] handle_list = ['Gear','gearContact','shoe0','shoeGearContact','ptrain'] ''' # construct the panda class for the DriveChain, file list and list of legend M113_Chain0 = CT.ChronoTrack_pandas(data_files, handle_list) # set the time limits. tmin = -1 will plot the entire time range tmin = 1.0 tmax = 8.0 #0) plot the chassis M113_Chain0.plot_chassis(tmin, tmax) # 1) plot the gear body info M113_Chain0.plot_gear(tmin, tmax) # 2) plot idler body info, tensioner force M113_Chain0.plot_idler(tmin,tmax) ''' # 3) plot powertrain info M113_Chain0.plot_ptrain() ''' # 4) plot shoe 0 body info, and pin 0 force/torque M113_Chain0.plot_shoe(tmin,tmax) ''' # 5) plot gear Constraint Violations M113_Chain0.plot_gearCV(tmin,tmax) # 6) plot idler Constraint Violations M113_Chain0.plot_idlerCV(tmin,tmax) # 7) plot roller Constraint Violations M113_Chain0.plot_rollerCV(tmin,tmax) # 8) from the contact report callback function, gear contact info M113_Chain0.plot_gearContactInfo(tmin,tmax) # 9) from shoe-gear report callback function, contact info M113_Chain0.plot_shoeGearContactInfo(tmin,tmax) ''' # 10) track shoe trajectory: rel-X vs. rel-Y M113_Chain0.plot_trajectory(tmin,tmax) py.show()
bsd-3-clause
lancezlin/ml_template_py
lib/python2.7/site-packages/sklearn/metrics/tests/test_score_objects.py
15
17443
import pickle import tempfile import shutil import os import numbers import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.base import BaseEstimator from sklearn.metrics import (f1_score, r2_score, roc_auc_score, fbeta_score, log_loss, precision_score, recall_score) from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.scorer import (check_scoring, _PredictScorer, _passthrough_scorer) from sklearn.metrics import make_scorer, get_scorer, SCORERS from sklearn.svm import LinearSVC from sklearn.pipeline import make_pipeline from sklearn.cluster import KMeans from sklearn.dummy import DummyRegressor from sklearn.linear_model import Ridge, LogisticRegression from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.datasets import make_blobs from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import load_diabetes from sklearn.model_selection import train_test_split, cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.multiclass import OneVsRestClassifier from sklearn.externals import joblib REGRESSION_SCORERS = ['r2', 'neg_mean_absolute_error', 'neg_mean_squared_error', 'neg_median_absolute_error', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error'] CLF_SCORERS = ['accuracy', 'f1', 'f1_weighted', 'f1_macro', 'f1_micro', 'roc_auc', 'average_precision', 'precision', 'precision_weighted', 'precision_macro', 'precision_micro', 'recall', 'recall_weighted', 'recall_macro', 'recall_micro', 'neg_log_loss', 'log_loss', 'adjusted_rand_score' # not really, but works ] MULTILABEL_ONLY_SCORERS = ['precision_samples', 'recall_samples', 'f1_samples'] def _make_estimators(X_train, y_train, y_ml_train): # Make estimators that make sense to test various scoring methods sensible_regr = DummyRegressor(strategy='median') sensible_regr.fit(X_train, y_train) sensible_clf = DecisionTreeClassifier(random_state=0) sensible_clf.fit(X_train, y_train) sensible_ml_clf = DecisionTreeClassifier(random_state=0) sensible_ml_clf.fit(X_train, y_ml_train) return dict( [(name, sensible_regr) for name in REGRESSION_SCORERS] + [(name, sensible_clf) for name in CLF_SCORERS] + [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS] ) X_mm, y_mm, y_ml_mm = None, None, None ESTIMATORS = None TEMP_FOLDER = None def setup_module(): # Create some memory mapped data global X_mm, y_mm, y_ml_mm, TEMP_FOLDER, ESTIMATORS TEMP_FOLDER = tempfile.mkdtemp(prefix='sklearn_test_score_objects_') X, y = make_classification(n_samples=30, n_features=5, random_state=0) _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0) filename = os.path.join(TEMP_FOLDER, 'test_data.pkl') joblib.dump((X, y, y_ml), filename) X_mm, y_mm, y_ml_mm = joblib.load(filename, mmap_mode='r') ESTIMATORS = _make_estimators(X_mm, y_mm, y_ml_mm) def teardown_module(): global X_mm, y_mm, y_ml_mm, TEMP_FOLDER, ESTIMATORS # GC closes the mmap file descriptors X_mm, y_mm, y_ml_mm, ESTIMATORS = None, None, None, None shutil.rmtree(TEMP_FOLDER) class EstimatorWithoutFit(object): """Dummy estimator to test check_scoring""" pass class EstimatorWithFit(BaseEstimator): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self class EstimatorWithFitAndScore(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self def score(self, X, y): return 1.0 class EstimatorWithFitAndPredict(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): self.y = y return self def predict(self, X): return self.y class DummyScorer(object): """Dummy scorer that always returns 1.""" def __call__(self, est, X, y): return 1 def test_all_scorers_repr(): # Test that all scorers have a working repr for name, scorer in SCORERS.items(): repr(scorer) def test_check_scoring(): # Test all branches of check_scoring estimator = EstimatorWithoutFit() pattern = (r"estimator should be an estimator implementing 'fit' method," r" .* was passed") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) estimator = EstimatorWithFitAndScore() estimator.fit([[1]], [1]) scorer = check_scoring(estimator) assert_true(scorer is _passthrough_scorer) assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFitAndPredict() estimator.fit([[1]], [1]) pattern = (r"If no scoring is specified, the estimator passed should have" r" a 'score' method\. The estimator .* does not\.") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) scorer = check_scoring(estimator, "accuracy") assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFit() scorer = check_scoring(estimator, "accuracy") assert_true(isinstance(scorer, _PredictScorer)) estimator = EstimatorWithFit() scorer = check_scoring(estimator, allow_none=True) assert_true(scorer is None) def test_check_scoring_gridsearchcv(): # test that check_scoring works on GridSearchCV and pipeline. # slightly redundant non-regression test. grid = GridSearchCV(LinearSVC(), param_grid={'C': [.1, 1]}) scorer = check_scoring(grid, "f1") assert_true(isinstance(scorer, _PredictScorer)) pipe = make_pipeline(LinearSVC()) scorer = check_scoring(pipe, "f1") assert_true(isinstance(scorer, _PredictScorer)) # check that cross_val_score definitely calls the scorer # and doesn't make any assumptions about the estimator apart from having a # fit. scores = cross_val_score(EstimatorWithFit(), [[1], [2], [3]], [1, 0, 1], scoring=DummyScorer()) assert_array_equal(scores, 1) def test_make_scorer(): # Sanity check on the make_scorer factory function. f = lambda *args: 0 assert_raises(ValueError, make_scorer, f, needs_threshold=True, needs_proba=True) def test_classification_scores(): # Test classification scorers. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LinearSVC(random_state=0) clf.fit(X_train, y_train) for prefix, metric in [('f1', f1_score), ('precision', precision_score), ('recall', recall_score)]: score1 = get_scorer('%s_weighted' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='weighted') assert_almost_equal(score1, score2) score1 = get_scorer('%s_macro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='macro') assert_almost_equal(score1, score2) score1 = get_scorer('%s_micro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='micro') assert_almost_equal(score1, score2) score1 = get_scorer('%s' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=1) assert_almost_equal(score1, score2) # test fbeta score that takes an argument scorer = make_scorer(fbeta_score, beta=2) score1 = scorer(clf, X_test, y_test) score2 = fbeta_score(y_test, clf.predict(X_test), beta=2) assert_almost_equal(score1, score2) # test that custom scorer can be pickled unpickled_scorer = pickle.loads(pickle.dumps(scorer)) score3 = unpickled_scorer(clf, X_test, y_test) assert_almost_equal(score1, score3) # smoke test the repr: repr(fbeta_score) def test_regression_scorers(): # Test regression scorers. diabetes = load_diabetes() X, y = diabetes.data, diabetes.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = Ridge() clf.fit(X_train, y_train) score1 = get_scorer('r2')(clf, X_test, y_test) score2 = r2_score(y_test, clf.predict(X_test)) assert_almost_equal(score1, score2) def test_thresholded_scorers(): # Test scorers that take thresholds. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression(random_state=0) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) assert_almost_equal(score1, score3) logscore = get_scorer('neg_log_loss')(clf, X_test, y_test) logloss = log_loss(y_test, clf.predict_proba(X_test)) assert_almost_equal(-logscore, logloss) # same for an estimator without decision_function clf = DecisionTreeClassifier() clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) # test with a regressor (no decision_function) reg = DecisionTreeRegressor() reg.fit(X_train, y_train) score1 = get_scorer('roc_auc')(reg, X_test, y_test) score2 = roc_auc_score(y_test, reg.predict(X_test)) assert_almost_equal(score1, score2) # Test that an exception is raised on more than two classes X, y = make_blobs(random_state=0, centers=3) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf.fit(X_train, y_train) assert_raises(ValueError, get_scorer('roc_auc'), clf, X_test, y_test) def test_thresholded_scorers_multilabel_indicator_data(): # Test that the scorer work with multilabel-indicator format # for multilabel and multi-output multi-class classifier X, y = make_multilabel_classification(allow_unlabeled=False, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Multi-output multi-class predict_proba clf = DecisionTreeClassifier() clf.fit(X_train, y_train) y_proba = clf.predict_proba(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p[:, -1] for p in y_proba).T) assert_almost_equal(score1, score2) # Multi-output multi-class decision_function # TODO Is there any yet? clf = DecisionTreeClassifier() clf.fit(X_train, y_train) clf._predict_proba = clf.predict_proba clf.predict_proba = None clf.decision_function = lambda X: [p[:, 1] for p in clf._predict_proba(X)] y_proba = clf.decision_function(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p for p in y_proba).T) assert_almost_equal(score1, score2) # Multilabel predict_proba clf = OneVsRestClassifier(DecisionTreeClassifier()) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)) assert_almost_equal(score1, score2) # Multilabel decision function clf = OneVsRestClassifier(LinearSVC(random_state=0)) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) assert_almost_equal(score1, score2) def test_unsupervised_scorers(): # Test clustering scorers against gold standard labeling. # We don't have any real unsupervised Scorers yet. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) km = KMeans(n_clusters=3) km.fit(X_train) score1 = get_scorer('adjusted_rand_score')(km, X_test, y_test) score2 = adjusted_rand_score(y_test, km.predict(X_test)) assert_almost_equal(score1, score2) @ignore_warnings def test_raises_on_score_list(): # Test that when a list of scores is returned, we raise proper errors. X, y = make_blobs(random_state=0) f1_scorer_no_average = make_scorer(f1_score, average=None) clf = DecisionTreeClassifier() assert_raises(ValueError, cross_val_score, clf, X, y, scoring=f1_scorer_no_average) grid_search = GridSearchCV(clf, scoring=f1_scorer_no_average, param_grid={'max_depth': [1, 2]}) assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_scorer_sample_weight(): # Test that scorers support sample_weight or raise sensible errors # Unlike the metrics invariance test, in the scorer case it's harder # to ensure that, on the classifier output, weighted and unweighted # scores really should be unequal. X, y = make_classification(random_state=0) _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0) split = train_test_split(X, y, y_ml, random_state=0) X_train, X_test, y_train, y_test, y_ml_train, y_ml_test = split sample_weight = np.ones_like(y_test) sample_weight[:10] = 0 # get sensible estimators for each metric estimator = _make_estimators(X_train, y_train, y_ml_train) for name, scorer in SCORERS.items(): if name in MULTILABEL_ONLY_SCORERS: target = y_ml_test else: target = y_test try: weighted = scorer(estimator[name], X_test, target, sample_weight=sample_weight) ignored = scorer(estimator[name], X_test[10:], target[10:]) unweighted = scorer(estimator[name], X_test, target) assert_not_equal(weighted, unweighted, msg="scorer {0} behaves identically when " "called with sample weights: {1} vs " "{2}".format(name, weighted, unweighted)) assert_almost_equal(weighted, ignored, err_msg="scorer {0} behaves differently when " "ignoring samples and setting sample_weight to" " 0: {1} vs {2}".format(name, weighted, ignored)) except TypeError as e: assert_true("sample_weight" in str(e), "scorer {0} raises unhelpful exception when called " "with sample weights: {1}".format(name, str(e))) @ignore_warnings # UndefinedMetricWarning for P / R scores def check_scorer_memmap(scorer_name): scorer, estimator = SCORERS[scorer_name], ESTIMATORS[scorer_name] if scorer_name in MULTILABEL_ONLY_SCORERS: score = scorer(estimator, X_mm, y_ml_mm) else: score = scorer(estimator, X_mm, y_mm) assert isinstance(score, numbers.Number), scorer_name def test_scorer_memmap_input(): # Non-regression test for #6147: some score functions would # return singleton memmap when computed on memmap data instead of scalar # float values. for name in SCORERS.keys(): yield check_scorer_memmap, name def test_deprecated_names(): X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression(random_state=0) clf.fit(X_train, y_train) for name in ('mean_absolute_error', 'mean_squared_error', 'median_absolute_error', 'log_loss'): warning_msg = "Scoring method %s was renamed to" % name for scorer in (get_scorer(name), SCORERS[name]): assert_warns_message(DeprecationWarning, warning_msg, scorer, clf, X, y) assert_warns_message(DeprecationWarning, warning_msg, cross_val_score, clf, X, y, scoring=name) def test_scoring_is_not_metric(): assert_raises_regexp(ValueError, 'make_scorer', check_scoring, LogisticRegression(), f1_score) assert_raises_regexp(ValueError, 'make_scorer', check_scoring, LogisticRegression(), roc_auc_score) assert_raises_regexp(ValueError, 'make_scorer', check_scoring, Ridge(), r2_score) assert_raises_regexp(ValueError, 'make_scorer', check_scoring, KMeans(), adjusted_rand_score)
mit
wavelets/zipline
zipline/examples/dual_ema_talib.py
2
3230
#!/usr/bin/env python # # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import matplotlib.pyplot as plt from zipline.algorithm import TradingAlgorithm from zipline.utils.factory import load_from_yahoo # Import exponential moving average from talib wrapper from zipline.transforms.ta import EMA from datetime import datetime import pytz class DualEMATaLib(TradingAlgorithm): """Dual Moving Average Crossover algorithm. This algorithm buys apple once its short moving average crosses its long moving average (indicating upwards momentum) and sells its shares once the averages cross again (indicating downwards momentum). """ def initialize(self, short_window=20, long_window=40): # Add 2 mavg transforms, one with a long window, one # with a short window. self.short_ema_trans = EMA(timeperiod=short_window) self.long_ema_trans = EMA(timeperiod=long_window) # To keep track of whether we invested in the stock or not self.invested = False def handle_data(self, data): self.short_ema = self.short_ema_trans.handle_data(data) self.long_ema = self.long_ema_trans.handle_data(data) if self.short_ema is None or self.long_ema is None: return self.buy = False self.sell = False if (self.short_ema > self.long_ema).all() and not self.invested: self.order('AAPL', 100) self.invested = True self.buy = True elif (self.short_ema < self.long_ema).all() and self.invested: self.order('AAPL', -100) self.invested = False self.sell = True self.record(AAPL=data['AAPL'].price, short_ema=self.short_ema['AAPL'], long_ema=self.long_ema['AAPL'], buy=self.buy, sell=self.sell) if __name__ == '__main__': start = datetime(1990, 1, 1, 0, 0, 0, 0, pytz.utc) end = datetime(1991, 1, 1, 0, 0, 0, 0, pytz.utc) data = load_from_yahoo(stocks=['AAPL'], indexes={}, start=start, end=end) dma = DualEMATaLib() results = dma.run(data).dropna() fig = plt.figure() ax1 = fig.add_subplot(211, ylabel='portfolio value') results.portfolio_value.plot(ax=ax1) ax2 = fig.add_subplot(212) results[['AAPL', 'short_ema', 'long_ema']].plot(ax=ax2) ax2.plot(results.ix[results.buy].index, results.short_ema[results.buy], '^', markersize=10, color='m') ax2.plot(results.ix[results.sell].index, results.short_ema[results.sell], 'v', markersize=10, color='k') plt.legend(loc=0) plt.gcf().set_size_inches(18, 8)
apache-2.0
ChanChiChoi/scikit-learn
examples/model_selection/plot_roc.py
146
3697
""" ======================================= Receiver Operating Characteristic (ROC) ======================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. ROC curves are typically used in binary classification to study the output of a classifier. In order to extend ROC curve and ROC area to multi-class or multi-label classification, it is necessary to binarize the output. One ROC curve can be drawn per label, but one can also draw a ROC curve by considering each element of the label indicator matrix as a binary prediction (micro-averaging). .. note:: See also :func:`sklearn.metrics.roc_auc_score`, :ref:`example_model_selection_plot_roc_crossval.py`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.cross_validation import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier # Import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Binarize the output y = label_binarize(y, classes=[0, 1, 2]) n_classes = y.shape[1] # Add noisy features to make the problem harder random_state = np.random.RandomState(0) n_samples, n_features = X.shape X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # shuffle and split training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) # Learn to predict each class against the other classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=random_state)) y_score = classifier.fit(X_train, y_train).decision_function(X_test) # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) # Plot of a ROC curve for a specific class plt.figure() plt.plot(fpr[2], tpr[2], label='ROC curve (area = %0.2f)' % roc_auc[2]) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() # Plot ROC curve plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"])) for i in range(n_classes): plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Some extension of Receiver operating characteristic to multi-class') plt.legend(loc="lower right") plt.show()
bsd-3-clause
rcolasanti/CompaniesHouseScraper
DVLACompanyNmeMatchCoHoAPIFindMissing.py
1
5174
import requests import json import numpy as np import pandas as pd import CoHouseToken from difflib import SequenceMatcher # In[3]: def exactMatch(line1, line2): line1=line1.upper().rstrip() line2=line2.upper().rstrip() #print("|"+line1+"|"+line2+"|",line1==line2) return line1==line2 def aStopWord(word): return word.upper().replace("COMPANY","CO").replace("LIMITED","LTD").replace("&","AND").rstrip() def spaces(word): w = word.upper().replace("/"," ") w = w.replace("."," ").replace(","," ").replace("-"," ").rstrip() return w def removeAStopWord(word): w = word.upper().replace("LTD"," ").replace("CO"," ").replace("AND"," ").replace("("," ").replace("/"," ") w = w.replace(")"," ").replace("."," ").replace(","," ").replace("-"," ").rstrip() return w def removeABlank(word): w = word.replace(" ","") return w def removeABracket (line): flag = False word="" for a in line: if a=="(": flag = True a="" if a==")": a="" flag = False if flag: a="" word+=a return word def stopWord(line1, line2): line1=aStopWord(line1) line2=aStopWord(line2) #print("|"+line1+"|"+line2+"|",line1==line2) return line1==line2 def removeStopWord(line1, line2): line1=spaces(line1) line2=spaces(line2) line1=aStopWord(line1) line2=aStopWord(line2) line1=removeAStopWord(line1) line2=removeAStopWord(line2) #print("|"+line1+"|"+line2+"|",line1==line2) return line1==line2 def removeBlanks(line1, line2): line1=spaces(line1) line2=spaces(line2) line1=aStopWord(line1) line2=aStopWord(line2) line1=removeAStopWord(line1) line2=removeAStopWord(line2) line1=removeABlank(line1) line2=removeABlank(line2) return line1==line2 def removeBrackets(line1, line2): line1=removeABracket(line1) line2=removeABracket(line2) line1=spaces(line1) line2=spaces(line2) line1=aStopWord(line1) line2=aStopWord(line2) line1=removeAStopWord(line1) line2=removeAStopWord(line2) line1=removeABlank(line1) line2=removeABlank(line2) #print("|"+line1+"|"+line2+"|",line1==line2) return line1==line2 def strip(line1, line2): line1=removeABracket(line1) line2=removeABracket(line2) line1=spaces(line1) line2=spaces(line2) line1=aStopWord(line1) line2=aStopWord(line2) line1=removeAStopWord(line1) line2=removeAStopWord(line2) line1=removeABlank(line1) line2=removeABlank(line2) return line1,line2 def match(company,results): for i in results['items']: line = i['title'] number = i['company_number'] if(exactMatch(company,line)): return True,line,number for i in results['items']: line = i['title'] number = i['company_number'] if(stopWord(company,line)): return True,line,number for i in results['items']: line = i['title'] number = i['company_number'] if(removeStopWord(company,line)): return True,line,number for i in results['items']: line = i['title'] number = i['company_number'] if(removeBlanks(company,line)): return True,line,number for i in results['items']: line = i['title'] number = i['company_number'] if(removeBrackets(company,line)): return True,line,number #old_match(company,results) return False,"","" def main(args): print(args[0]) search_url ="https://api.companieshouse.gov.uk/search/companies?q=" token = CoHouseToken.getToken() pw = '' base_url = 'https://api.companieshouse.gov.uk' file = args[1] print(file) df = pd.read_csv(file,names=['Organisation']) companies = df.Organisation count=0 found = open("found2.csv",'w') missing = open("missing2.csv",'w') for c in companies: c =c.upper().replace("&","AND") c = c.split(" T/A ")[0] c = c.split("WAS ")[0] c= spaces(c) url=search_url+c results = json.loads(requests.get(url, auth=(token,pw)).text) for i , key in enumerate(results['items']): a,b = strip(c, key['title']) r = SequenceMatcher(None, a, b).ratio() print("%s \t %s\t %.2f \t %s \t %s"%(i,c,r,key['company_number'],key['title'])) v = input('type number or return to reject: ') if v =="": print("reject") missing.write("%s\n"%(c)) else: key = results['items'][int(v)] print("%s \t %s\t %.2f \t %s \t %s"%(v,c,r,key['company_number'],key['title'])) print("*************************") found.write("%s,%s,%s,\n"%(c,key['title'],key['company_number'])) print() #print(count/len(companies)) return 0 if __name__ == '__main__': import sys sys.exit(main(sys.argv))
gpl-3.0
mclaughlin6464/pasta
pasta/ising.py
1
5474
''' This is a dummy file for me to get started making an Ising model. I'll get this 2-D Ising running, then generalize. ''' import argparse from itertools import izip import numpy as np from matplotlib import pyplot as plt import seaborn as sns sns.set() def run_ising(N, d, K, J,h, n_steps, plot = False): ''' :param N: :param d: :param K: :param J: :param h: :param n_steps: :param plot: :return: ''' if plot: try: assert d <= 2 except AssertionError: raise AssertionError("Can only plot in one or two dimensions.") #TODO wrap these better assert N >0 and N < 1000 assert d > 0 assert n_steps > 0 np.random.seed(0) size = tuple(N for i in xrange(d)) lattice = np.ones(size) #make a random initial state lattice-= np.random.randint(0,2, size =size)*2 # do different initialization E_0 = energy(lattice, potential, K, h) if plot: plt.ion() for step in xrange(n_steps): if step%1000 == 0: print step site = tuple(np.random.randint(0, N, size=d)) # consider flipping this site lattice[site] *= -1 E_f = energy(lattice, potential, K, h) # if E_F < E_0, keep # if E_F > E_0, keep randomly given change of energies if E_f >= E_0: keep = np.random.uniform() < np.exp(K / J * (E_0 - E_f)) else: keep = True if keep: E_0 = E_f else: lattice[site] *= -1 # fig = plt.figure() if plot and step % 100 == 0: if d == 1: plt.imshow(lattice.reshape((1, -1)),interpolation='none') else: plt.imshow(lattice, interpolation='none') plt.title(correlation(lattice, N/2)) plt.pause(0.01) plt.clf() return np.array([correlation(lattice, r) for r in xrange(1, N/2+1)]) def get_NN(site, N, d, r= 1): ''' The NN of the site. Will only return those UP in index (east, south, and down) to avoid double counting. Accounts for PBC :param site: (d,) array of coordinates in the lattice :param N: Size of one side of the lattice :param d: dimension of the lattice :return: dxd numpy array where each row corresponds to the nearest neighbors. ''' mult_sites = np.r_[ [site for i in xrange(d)]] adjustment = np.eye(d)*r return ((mult_sites+adjustment)%N).astype(int) def potential(s1, s2, K, h): ''' Basic Ising potential :param s1: First spin (-1 or 1) :param s2: Second spin :param K: Coupling constant :return: Energy of this particular bond ''' return -1*K*s1*s2 - h/2*(s1+s2)#should this be abstracted to call the NN function? def energy(lattice, potential, K, h = 0): ''' Calculate the energy of a lattice :param lattice: Lattice to calculate the energy on :param potential: Function defining the potential of a given site. :return: Energy of the lattice ''' N = lattice.shape[0] d = len(lattice.shape) dim_slices = np.meshgrid(*(xrange(N) for i in xrange(d)), indexing = 'ij') all_sites = izip(*[slice.flatten() for slice in dim_slices]) E = 0 for site in all_sites: nn = get_NN(site, N, d) for neighbor in nn: E+=potential(lattice[site], lattice[tuple(neighbor)],K = K, h = h) return E def magnetization(lattice): return lattice.mean() def correlation(lattice, r): ''' The average spin correlation at distance r. :param lattice: The lattice to calculate the statistic on. :param r: Distance to measure correlation :return: ''' N = lattice.shape[0] d = len(lattice.shape) dim_slices = np.meshgrid(*(xrange(N) for i in xrange(d)), indexing='ij') all_sites = izip(*[slice.flatten() for slice in dim_slices]) xi = 0 for site in all_sites: nn = get_NN(site, N, d, r) for neighbor in nn: xi += lattice[site]*lattice[tuple(neighbor)] return xi/((N**d)*d) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Simulate an ising model') parser.add_argument('N', type = int, help = 'Length of one side of the cube.') parser.add_argument('d', type = int, help = 'Number of dimensions of the cube.') #parser.add_argument('K', type = float, help ='Bond coupling strength.') parser.add_argument('J', type = float, default = 1.0, nargs = '?',\ help = 'Energy of bond strength. Optional, default is 1.') parser.add_argument('h', type = float, default=0.0, nargs = '?',\ help = 'Magnetic field strength. Optional, default is 0.') parser.add_argument('n_steps', type = int, default = 1000, nargs = '?',\ help = 'Number of steps to simulate. Default is 1e5') parser.add_argument('--plot', action = 'store_true',\ help = 'Whether or not to plot results. Only allowed with d = 1 or 2.') args = parser.parse_args() spins = [] Ks = [ 0.5,0.6,0.65, 0.7,0.8, 0.9] for K in Ks: print K spins.append(run_ising(K = K, **vars(args))) for K, spin in izip(Ks, spins): plt.plot(spin, label = K ) plt.legend(loc = 'best') plt.ylim([-0.1, 1.1]) plt.show()
mit
nicholaschris/landsatpy
stuff.py
1
1864
import cloud_detection_new as cloud_detection from matplotlib import pyplot as plt import views from skimage import exposure nir = cloud_detection.get_nir()[0:600,2000:2600] red = cloud_detection.get_red()[0:600,2000:2600] green = cloud_detection.get_green()[0:600,2000:2600] blue = cloud_detection.get_blue()[0:600,2000:2600] # or use coastal coastal = cloud_detection.get_coastal()[0:600,2000:2600] marine_shadow_index = (green-blue)/(green+blue) img = views.create_composite(red, green, blue) img_rescale = exposure.rescale_intensity(img, in_range=(0, 90)) plt.rcParams['savefig.facecolor'] = "0.8" vmin, vmax=0.0,0.1 def example_plot(ax, data, fontsize=12): ax.imshow(data, vmin=vmin, vmax=vmax) ax.locator_params(nbins=3) ax.set_xlabel('x-label', fontsize=fontsize) ax.set_ylabel('y-label', fontsize=fontsize) ax.set_title('Title', fontsize=fontsize) plt.close('all') fig = plt.figure ax1=plt.subplot(243) ax2=plt.subplot(244) ax3=plt.subplot(247) ax4=plt.subplot(248) ax5=plt.subplot(121) a_coastal = coastal[500:600, 500:600] a_blue = blue[500:600, 500:600] a_green = green[500:600, 500:600] a_red = red[500:600, 500:600] a_nir = nir[500:600, 500:600] a_img = img[500:600, 500:600] spec1 = [a_coastal[60, 60], a_blue[60, 60], a_green[60, 60], a_red[60, 60], a_nir[60, 60]] b_coastal = coastal[200:300, 100:200] b_blue = blue[200:300, 100:200] b_green = green[200:300, 100:200] b_red = red[200:300, 100:200] b_nir = nir[200:300, 100:200] b_img = img[200:300, 100:200] example_plot(ax1, coastal) example_plot(ax2, blue) example_plot(ax3, green) example_plot(ax4, red) ax5.imshow(img) # plt.tight_layout() plt.close('all') spec = [b_coastal[60, 60], b_blue[60, 60], b_green[60, 60], b_red[60, 60], b_nir[60, 60]] plt.plot(spec, 'k*-') plt.plot(spec1, 'k.-') plt.close('all') cbg = (coastal+blue+green)/3 plt.imshow(cbg/red)
mit
Monika319/EWEF-1
Cw2Rezonans/Karolina/Oscyloskop/OscyloskopZ5W2.py
1
1312
# -*- coding: utf-8 -*- """ Plot oscilloscope files from MultiSim """ import numpy as np import matplotlib.pyplot as plt import sys import os from matplotlib import rc rc('font',family="Consolas") files=["real_zad5_05f_p2.txt"] for NazwaPliku in files: print NazwaPliku Plik=open(NazwaPliku) #print DeltaT Dane=Plik.readlines()#[4:] DeltaT=float(Dane[2].split()[3].replace(",",".")) #M=len(Dane[4].split())/2 M=2 Dane=Dane[5:] Plik.close() print M Ys=[np.zeros(len(Dane)) for i in range(M)] for m in range(M): for i in range(len(Dane)): try: Ys[m][i]=float(Dane[i].split()[2+3*m].replace(",",".")) except: print m, i, 2+3*m, len(Dane[i].split()), Dane[i].split() #print i, Y[i] X=np.zeros_like(Ys[0]) for i in range(len(X)): X[i]=i*DeltaT for y in Ys: print max(y)-min(y) Opis=u"Układ szeregowy\nPołowa częstotliwości rezonansowej" Nazwa=u"Z5W2" plt.title(u"Przebieg napięciowy\n"+Opis) plt.xlabel(u"Czas t [s]") plt.ylabel(u"Napięcie [V]") plt.plot(X,Ys[0],label=u"Wejście") plt.plot(X,Ys[1],label=u"Wyjście") plt.grid() plt.legend(loc="best") plt.savefig(Nazwa + ".png", bbox_inches='tight') plt.show()
gpl-2.0
nddsg/TreeDecomps
xplodnTree/tdec/b2CliqueTreeRules.py
1
3569
#!/usr/bin/env python __author__ = 'saguinag' + '@' + 'nd.edu' __version__ = "0.1.0" ## ## fname "b2CliqueTreeRules.py" ## ## TODO: some todo list ## VersionLog: import net_metrics as metrics import pandas as pd import argparse, traceback import os, sys import networkx as nx import re from collections import deque, defaultdict, Counter import tree_decomposition as td import PHRG as phrg import probabilistic_cfg as pcfg import exact_phrg as xphrg import a1_hrg_cliq_tree as nfld from a1_hrg_cliq_tree import load_edgelist DEBUG = False def get_parser (): parser = argparse.ArgumentParser(description='b2CliqueTreeRules.py: given a tree derive grammar rules') parser.add_argument('-t', '--treedecomp', required=True, help='input tree decomposition (dimacs file format)') parser.add_argument('--version', action='version', version=__version__) return parser def dimacs_td_ct (tdfname): """ tree decomp to clique-tree """ print '... input file:', tdfname fname = tdfname graph_name = os.path.basename(fname) gname = graph_name.split('.')[0] gfname = "datasets/out." + gname tdh = os.path.basename(fname).split('.')[1] # tree decomp heuristic tfname = gname+"."+tdh G = load_edgelist(gfname) if DEBUG: print nx.info(G) print with open(fname, 'r') as f: # read tree decomp from inddgo lines = f.readlines() lines = [x.rstrip('\r\n') for x in lines] cbags = {} bags = [x.split() for x in lines if x.startswith('B')] for b in bags: cbags[int(b[1])] = [int(x) for x in b[3:]] # what to do with bag size? edges = [x.split()[1:] for x in lines if x.startswith('e')] edges = [[int(k) for k in x] for x in edges] tree = defaultdict(set) for s, t in edges: tree[frozenset(cbags[s])].add(frozenset(cbags[t])) if DEBUG: print '.. # of keys in `tree`:', len(tree.keys()) if DEBUG: print tree.keys() root = list(tree)[0] if DEBUG: print '.. Root:', root root = frozenset(cbags[1]) if DEBUG: print '.. Root:', root T = td.make_rooted(tree, root) if DEBUG: print '.. T rooted:', len(T) # nfld.unfold_2wide_tuple(T) # lets me display the tree's frozen sets T = phrg.binarize(T) prod_rules = {} td.new_visit(T, G, prod_rules) if DEBUG: print "--------------------" if DEBUG: print "- Production Rules -" if DEBUG: print "--------------------" for k in prod_rules.iterkeys(): if DEBUG: print k s = 0 for d in prod_rules[k]: s += prod_rules[k][d] for d in prod_rules[k]: prod_rules[k][d] = float(prod_rules[k][d]) / float(s) # normailization step to create probs not counts. if DEBUG: print '\t -> ', d, prod_rules[k][d] rules = [] id = 0 for k, v in prod_rules.iteritems(): sid = 0 for x in prod_rules[k]: rhs = re.findall("[^()]+", x) rules.append(("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs, prod_rules[k][x])) if DEBUG: print ("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs, prod_rules[k][x]) sid += 1 id += 1 df = pd.DataFrame(rules) outdf_fname = "./ProdRules/"+tfname+".prules" if not os.path.isfile(outdf_fname+".bz2"): print '...',outdf_fname, "written" df.to_csv(outdf_fname+".bz2", compression="bz2") else: print '...', outdf_fname, "file exists" return def main (): parser = get_parser() args = vars(parser.parse_args()) dimacs_td_ct(args['treedecomp']) # gen synth graph if __name__ == '__main__': try: main() except Exception, e: print str(e) traceback.print_exc() sys.exit(1) sys.exit(0)
mit
apache/spark
python/pyspark/sql/functions.py
14
161861
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ A collections of builtin functions """ import sys import functools import warnings from pyspark import since, SparkContext from pyspark.rdd import PythonEvalType from pyspark.sql.column import Column, _to_java_column, _to_seq, _create_column_from_literal from pyspark.sql.dataframe import DataFrame from pyspark.sql.types import StringType, DataType # Keep UserDefinedFunction import for backwards compatible import; moved in SPARK-22409 from pyspark.sql.udf import UserDefinedFunction, _create_udf # noqa: F401 from pyspark.sql.udf import _create_udf # Keep pandas_udf and PandasUDFType import for backwards compatible import; moved in SPARK-28264 from pyspark.sql.pandas.functions import pandas_udf, PandasUDFType # noqa: F401 from pyspark.sql.utils import to_str # Note to developers: all of PySpark functions here take string as column names whenever possible. # Namely, if columns are referred as arguments, they can be always both Column or string, # even though there might be few exceptions for legacy or inevitable reasons. # If you are fixing other language APIs together, also please note that Scala side is not the case # since it requires to make every single overridden definition. def _get_get_jvm_function(name, sc): """ Retrieves JVM function identified by name from Java gateway associated with sc. """ return getattr(sc._jvm.functions, name) def _invoke_function(name, *args): """ Invokes JVM function identified by name with args and wraps the result with :class:`~pyspark.sql.Column`. """ jf = _get_get_jvm_function(name, SparkContext._active_spark_context) return Column(jf(*args)) def _invoke_function_over_column(name, col): """ Invokes unary JVM function identified by name and wraps the result with :class:`~pyspark.sql.Column`. """ return _invoke_function(name, _to_java_column(col)) def _invoke_binary_math_function(name, col1, col2): """ Invokes binary JVM math function identified by name and wraps the result with :class:`~pyspark.sql.Column`. """ return _invoke_function( name, # For legacy reasons, the arguments here can be implicitly converted into floats, # if they are not columns or strings. _to_java_column(col1) if isinstance(col1, (str, Column)) else float(col1), _to_java_column(col2) if isinstance(col2, (str, Column)) else float(col2) ) def _options_to_str(options=None): if options: return {key: to_str(value) for (key, value) in options.items()} return {} def lit(col): """ Creates a :class:`~pyspark.sql.Column` of literal value. .. versionadded:: 1.3.0 Examples -------- >>> df.select(lit(5).alias('height')).withColumn('spark_user', lit(True)).take(1) [Row(height=5, spark_user=True)] """ return col if isinstance(col, Column) else _invoke_function("lit", col) @since(1.3) def col(col): """ Returns a :class:`~pyspark.sql.Column` based on the given column name.' Examples -------- >>> col('x') Column<'x'> >>> column('x') Column<'x'> """ return _invoke_function("col", col) column = col @since(1.3) def asc(col): """ Returns a sort expression based on the ascending order of the given column name. """ return ( col.asc() if isinstance(col, Column) else _invoke_function("asc", col) ) @since(1.3) def desc(col): """ Returns a sort expression based on the descending order of the given column name. """ return ( col.desc() if isinstance(col, Column) else _invoke_function("desc", col) ) @since(1.3) def sqrt(col): """ Computes the square root of the specified float value. """ return _invoke_function_over_column("sqrt", col) @since(1.3) def abs(col): """ Computes the absolute value. """ return _invoke_function_over_column("abs", col) @since(1.3) def max(col): """ Aggregate function: returns the maximum value of the expression in a group. """ return _invoke_function_over_column("max", col) @since(1.3) def min(col): """ Aggregate function: returns the minimum value of the expression in a group. """ return _invoke_function_over_column("min", col) @since(1.3) def count(col): """ Aggregate function: returns the number of items in a group. """ return _invoke_function_over_column("count", col) @since(1.3) def sum(col): """ Aggregate function: returns the sum of all values in the expression. """ return _invoke_function_over_column("sum", col) @since(1.3) def avg(col): """ Aggregate function: returns the average of the values in a group. """ return _invoke_function_over_column("avg", col) @since(1.3) def mean(col): """ Aggregate function: returns the average of the values in a group. """ return _invoke_function_over_column("mean", col) @since(1.3) def sumDistinct(col): """ Aggregate function: returns the sum of distinct values in the expression. .. deprecated:: 3.2.0 Use :func:`sum_distinct` instead. """ warnings.warn("Deprecated in 3.2, use sum_distinct instead.", FutureWarning) return sum_distinct(col) @since(3.2) def sum_distinct(col): """ Aggregate function: returns the sum of distinct values in the expression. """ return _invoke_function_over_column("sum_distinct", col) def product(col): """ Aggregate function: returns the product of the values in a group. .. versionadded:: 3.2.0 Parameters ---------- col : str, :class:`Column` column containing values to be multiplied together Examples -------- >>> df = spark.range(1, 10).toDF('x').withColumn('mod3', col('x') % 3) >>> prods = df.groupBy('mod3').agg(product('x').alias('product')) >>> prods.orderBy('mod3').show() +----+-------+ |mod3|product| +----+-------+ | 0| 162.0| | 1| 28.0| | 2| 80.0| +----+-------+ """ return _invoke_function_over_column("product", col) def acos(col): """ .. versionadded:: 1.4.0 Returns ------- :class:`~pyspark.sql.Column` inverse cosine of `col`, as if computed by `java.lang.Math.acos()` """ return _invoke_function_over_column("acos", col) def acosh(col): """ Computes inverse hyperbolic cosine of the input column. .. versionadded:: 3.1.0 Returns ------- :class:`~pyspark.sql.Column` """ return _invoke_function_over_column("acosh", col) def asin(col): """ .. versionadded:: 1.3.0 Returns ------- :class:`~pyspark.sql.Column` inverse sine of `col`, as if computed by `java.lang.Math.asin()` """ return _invoke_function_over_column("asin", col) def asinh(col): """ Computes inverse hyperbolic sine of the input column. .. versionadded:: 3.1.0 Returns ------- :class:`~pyspark.sql.Column` """ return _invoke_function_over_column("asinh", col) def atan(col): """ .. versionadded:: 1.4.0 Returns ------- :class:`~pyspark.sql.Column` inverse tangent of `col`, as if computed by `java.lang.Math.atan()` """ return _invoke_function_over_column("atan", col) def atanh(col): """ Computes inverse hyperbolic tangent of the input column. .. versionadded:: 3.1.0 Returns ------- :class:`~pyspark.sql.Column` """ return _invoke_function_over_column("atanh", col) @since(1.4) def cbrt(col): """ Computes the cube-root of the given value. """ return _invoke_function_over_column("cbrt", col) @since(1.4) def ceil(col): """ Computes the ceiling of the given value. """ return _invoke_function_over_column("ceil", col) def cos(col): """ .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str angle in radians Returns ------- :class:`~pyspark.sql.Column` cosine of the angle, as if computed by `java.lang.Math.cos()`. """ return _invoke_function_over_column("cos", col) def cosh(col): """ .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str hyperbolic angle Returns ------- :class:`~pyspark.sql.Column` hyperbolic cosine of the angle, as if computed by `java.lang.Math.cosh()` """ return _invoke_function_over_column("cosh", col) @since(1.4) def exp(col): """ Computes the exponential of the given value. """ return _invoke_function_over_column("exp", col) @since(1.4) def expm1(col): """ Computes the exponential of the given value minus one. """ return _invoke_function_over_column("expm1", col) @since(1.4) def floor(col): """ Computes the floor of the given value. """ return _invoke_function_over_column("floor", col) @since(1.4) def log(col): """ Computes the natural logarithm of the given value. """ return _invoke_function_over_column("log", col) @since(1.4) def log10(col): """ Computes the logarithm of the given value in Base 10. """ return _invoke_function_over_column("log10", col) @since(1.4) def log1p(col): """ Computes the natural logarithm of the given value plus one. """ return _invoke_function_over_column("log1p", col) @since(1.4) def rint(col): """ Returns the double value that is closest in value to the argument and is equal to a mathematical integer. """ return _invoke_function_over_column("rint", col) @since(1.4) def signum(col): """ Computes the signum of the given value. """ return _invoke_function_over_column("signum", col) def sin(col): """ .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str Returns ------- :class:`~pyspark.sql.Column` sine of the angle, as if computed by `java.lang.Math.sin()` """ return _invoke_function_over_column("sin", col) def sinh(col): """ .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str hyperbolic angle Returns ------- :class:`~pyspark.sql.Column` hyperbolic sine of the given value, as if computed by `java.lang.Math.sinh()` """ return _invoke_function_over_column("sinh", col) def tan(col): """ .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str angle in radians Returns ------- :class:`~pyspark.sql.Column` tangent of the given value, as if computed by `java.lang.Math.tan()` """ return _invoke_function_over_column("tan", col) def tanh(col): """ .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str hyperbolic angle Returns ------- :class:`~pyspark.sql.Column` hyperbolic tangent of the given value as if computed by `java.lang.Math.tanh()` """ return _invoke_function_over_column("tanh", col) @since(1.4) def toDegrees(col): """ .. deprecated:: 2.1.0 Use :func:`degrees` instead. """ warnings.warn("Deprecated in 2.1, use degrees instead.", FutureWarning) return degrees(col) @since(1.4) def toRadians(col): """ .. deprecated:: 2.1.0 Use :func:`radians` instead. """ warnings.warn("Deprecated in 2.1, use radians instead.", FutureWarning) return radians(col) @since(1.4) def bitwiseNOT(col): """ Computes bitwise not. .. deprecated:: 3.2.0 Use :func:`bitwise_not` instead. """ warnings.warn("Deprecated in 3.2, use bitwise_not instead.", FutureWarning) return bitwise_not(col) @since(3.2) def bitwise_not(col): """ Computes bitwise not. """ return _invoke_function_over_column("bitwise_not", col) @since(2.4) def asc_nulls_first(col): """ Returns a sort expression based on the ascending order of the given column name, and null values return before non-null values. """ return ( col.asc_nulls_first() if isinstance(col, Column) else _invoke_function("asc_nulls_first", col) ) @since(2.4) def asc_nulls_last(col): """ Returns a sort expression based on the ascending order of the given column name, and null values appear after non-null values. """ return ( col.asc_nulls_last() if isinstance(col, Column) else _invoke_function("asc_nulls_last", col) ) @since(2.4) def desc_nulls_first(col): """ Returns a sort expression based on the descending order of the given column name, and null values appear before non-null values. """ return ( col.desc_nulls_first() if isinstance(col, Column) else _invoke_function("desc_nulls_first", col) ) @since(2.4) def desc_nulls_last(col): """ Returns a sort expression based on the descending order of the given column name, and null values appear after non-null values. """ return ( col.desc_nulls_last() if isinstance(col, Column) else _invoke_function("desc_nulls_last", col) ) @since(1.6) def stddev(col): """ Aggregate function: alias for stddev_samp. """ return _invoke_function_over_column("stddev", col) @since(1.6) def stddev_samp(col): """ Aggregate function: returns the unbiased sample standard deviation of the expression in a group. """ return _invoke_function_over_column("stddev_samp", col) @since(1.6) def stddev_pop(col): """ Aggregate function: returns population standard deviation of the expression in a group. """ return _invoke_function_over_column("stddev_pop", col) @since(1.6) def variance(col): """ Aggregate function: alias for var_samp """ return _invoke_function_over_column("variance", col) @since(1.6) def var_samp(col): """ Aggregate function: returns the unbiased sample variance of the values in a group. """ return _invoke_function_over_column("var_samp", col) @since(1.6) def var_pop(col): """ Aggregate function: returns the population variance of the values in a group. """ return _invoke_function_over_column("var_pop", col) @since(1.6) def skewness(col): """ Aggregate function: returns the skewness of the values in a group. """ return _invoke_function_over_column("skewness", col) @since(1.6) def kurtosis(col): """ Aggregate function: returns the kurtosis of the values in a group. """ return _invoke_function_over_column("kurtosis", col) def collect_list(col): """ Aggregate function: returns a list of objects with duplicates. .. versionadded:: 1.6.0 Notes ----- The function is non-deterministic because the order of collected results depends on the order of the rows which may be non-deterministic after a shuffle. Examples -------- >>> df2 = spark.createDataFrame([(2,), (5,), (5,)], ('age',)) >>> df2.agg(collect_list('age')).collect() [Row(collect_list(age)=[2, 5, 5])] """ return _invoke_function_over_column("collect_list", col) def collect_set(col): """ Aggregate function: returns a set of objects with duplicate elements eliminated. .. versionadded:: 1.6.0 Notes ----- The function is non-deterministic because the order of collected results depends on the order of the rows which may be non-deterministic after a shuffle. Examples -------- >>> df2 = spark.createDataFrame([(2,), (5,), (5,)], ('age',)) >>> df2.agg(collect_set('age')).collect() [Row(collect_set(age)=[5, 2])] """ return _invoke_function_over_column("collect_set", col) def degrees(col): """ Converts an angle measured in radians to an approximately equivalent angle measured in degrees. .. versionadded:: 2.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str angle in radians Returns ------- :class:`~pyspark.sql.Column` angle in degrees, as if computed by `java.lang.Math.toDegrees()` """ return _invoke_function_over_column("degrees", col) def radians(col): """ Converts an angle measured in degrees to an approximately equivalent angle measured in radians. .. versionadded:: 2.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str angle in degrees Returns ------- :class:`~pyspark.sql.Column` angle in radians, as if computed by `java.lang.Math.toRadians()` """ return _invoke_function_over_column("radians", col) def atan2(col1, col2): """ .. versionadded:: 1.4.0 Parameters ---------- col1 : str, :class:`~pyspark.sql.Column` or float coordinate on y-axis col2 : str, :class:`~pyspark.sql.Column` or float coordinate on x-axis Returns ------- :class:`~pyspark.sql.Column` the `theta` component of the point (`r`, `theta`) in polar coordinates that corresponds to the point (`x`, `y`) in Cartesian coordinates, as if computed by `java.lang.Math.atan2()` """ return _invoke_binary_math_function("atan2", col1, col2) @since(1.4) def hypot(col1, col2): """ Computes ``sqrt(a^2 + b^2)`` without intermediate overflow or underflow. """ return _invoke_binary_math_function("hypot", col1, col2) @since(1.4) def pow(col1, col2): """ Returns the value of the first argument raised to the power of the second argument. """ return _invoke_binary_math_function("pow", col1, col2) @since(1.6) def row_number(): """ Window function: returns a sequential number starting at 1 within a window partition. """ return _invoke_function("row_number") @since(1.6) def dense_rank(): """ Window function: returns the rank of rows within a window partition, without any gaps. The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking sequence when there are ties. That is, if you were ranking a competition using dense_rank and had three people tie for second place, you would say that all three were in second place and that the next person came in third. Rank would give me sequential numbers, making the person that came in third place (after the ties) would register as coming in fifth. This is equivalent to the DENSE_RANK function in SQL. """ return _invoke_function("dense_rank") @since(1.6) def rank(): """ Window function: returns the rank of rows within a window partition. The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking sequence when there are ties. That is, if you were ranking a competition using dense_rank and had three people tie for second place, you would say that all three were in second place and that the next person came in third. Rank would give me sequential numbers, making the person that came in third place (after the ties) would register as coming in fifth. This is equivalent to the RANK function in SQL. """ return _invoke_function("rank") @since(1.6) def cume_dist(): """ Window function: returns the cumulative distribution of values within a window partition, i.e. the fraction of rows that are below the current row. """ return _invoke_function("cume_dist") @since(1.6) def percent_rank(): """ Window function: returns the relative rank (i.e. percentile) of rows within a window partition. """ return _invoke_function("percent_rank") @since(1.3) def approxCountDistinct(col, rsd=None): """ .. deprecated:: 2.1.0 Use :func:`approx_count_distinct` instead. """ warnings.warn("Deprecated in 2.1, use approx_count_distinct instead.", FutureWarning) return approx_count_distinct(col, rsd) def approx_count_distinct(col, rsd=None): """Aggregate function: returns a new :class:`~pyspark.sql.Column` for approximate distinct count of column `col`. .. versionadded:: 2.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str rsd : float, optional maximum relative standard deviation allowed (default = 0.05). For rsd < 0.01, it is more efficient to use :func:`count_distinct` Examples -------- >>> df.agg(approx_count_distinct(df.age).alias('distinct_ages')).collect() [Row(distinct_ages=2)] """ sc = SparkContext._active_spark_context if rsd is None: jc = sc._jvm.functions.approx_count_distinct(_to_java_column(col)) else: jc = sc._jvm.functions.approx_count_distinct(_to_java_column(col), rsd) return Column(jc) @since(1.6) def broadcast(df): """Marks a DataFrame as small enough for use in broadcast joins.""" sc = SparkContext._active_spark_context return DataFrame(sc._jvm.functions.broadcast(df._jdf), df.sql_ctx) def coalesce(*cols): """Returns the first column that is not null. .. versionadded:: 1.4.0 Examples -------- >>> cDf = spark.createDataFrame([(None, None), (1, None), (None, 2)], ("a", "b")) >>> cDf.show() +----+----+ | a| b| +----+----+ |null|null| | 1|null| |null| 2| +----+----+ >>> cDf.select(coalesce(cDf["a"], cDf["b"])).show() +--------------+ |coalesce(a, b)| +--------------+ | null| | 1| | 2| +--------------+ >>> cDf.select('*', coalesce(cDf["a"], lit(0.0))).show() +----+----+----------------+ | a| b|coalesce(a, 0.0)| +----+----+----------------+ |null|null| 0.0| | 1|null| 1.0| |null| 2| 0.0| +----+----+----------------+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.coalesce(_to_seq(sc, cols, _to_java_column)) return Column(jc) def corr(col1, col2): """Returns a new :class:`~pyspark.sql.Column` for the Pearson Correlation Coefficient for ``col1`` and ``col2``. .. versionadded:: 1.6.0 Examples -------- >>> a = range(20) >>> b = [2 * x for x in range(20)] >>> df = spark.createDataFrame(zip(a, b), ["a", "b"]) >>> df.agg(corr("a", "b").alias('c')).collect() [Row(c=1.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.corr(_to_java_column(col1), _to_java_column(col2))) def covar_pop(col1, col2): """Returns a new :class:`~pyspark.sql.Column` for the population covariance of ``col1`` and ``col2``. .. versionadded:: 2.0.0 Examples -------- >>> a = [1] * 10 >>> b = [1] * 10 >>> df = spark.createDataFrame(zip(a, b), ["a", "b"]) >>> df.agg(covar_pop("a", "b").alias('c')).collect() [Row(c=0.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.covar_pop(_to_java_column(col1), _to_java_column(col2))) def covar_samp(col1, col2): """Returns a new :class:`~pyspark.sql.Column` for the sample covariance of ``col1`` and ``col2``. .. versionadded:: 2.0.0 Examples -------- >>> a = [1] * 10 >>> b = [1] * 10 >>> df = spark.createDataFrame(zip(a, b), ["a", "b"]) >>> df.agg(covar_samp("a", "b").alias('c')).collect() [Row(c=0.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.covar_samp(_to_java_column(col1), _to_java_column(col2))) def countDistinct(col, *cols): """Returns a new :class:`~pyspark.sql.Column` for distinct count of ``col`` or ``cols``. An alias of :func:`count_distinct`, and it is encouraged to use :func:`count_distinct` directly. .. versionadded:: 1.3.0 """ return count_distinct(col, *cols) def count_distinct(col, *cols): """Returns a new :class:`Column` for distinct count of ``col`` or ``cols``. .. versionadded:: 3.2.0 Examples -------- >>> df.agg(count_distinct(df.age, df.name).alias('c')).collect() [Row(c=2)] >>> df.agg(count_distinct("age", "name").alias('c')).collect() [Row(c=2)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.count_distinct(_to_java_column(col), _to_seq(sc, cols, _to_java_column)) return Column(jc) def first(col, ignorenulls=False): """Aggregate function: returns the first value in a group. The function by default returns the first values it sees. It will return the first non-null value it sees when ignoreNulls is set to true. If all values are null, then null is returned. .. versionadded:: 1.3.0 Notes ----- The function is non-deterministic because its results depends on the order of the rows which may be non-deterministic after a shuffle. """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.first(_to_java_column(col), ignorenulls) return Column(jc) def grouping(col): """ Aggregate function: indicates whether a specified column in a GROUP BY list is aggregated or not, returns 1 for aggregated or 0 for not aggregated in the result set. .. versionadded:: 2.0.0 Examples -------- >>> df.cube("name").agg(grouping("name"), sum("age")).orderBy("name").show() +-----+--------------+--------+ | name|grouping(name)|sum(age)| +-----+--------------+--------+ | null| 1| 7| |Alice| 0| 2| | Bob| 0| 5| +-----+--------------+--------+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.grouping(_to_java_column(col)) return Column(jc) def grouping_id(*cols): """ Aggregate function: returns the level of grouping, equals to (grouping(c1) << (n-1)) + (grouping(c2) << (n-2)) + ... + grouping(cn) .. versionadded:: 2.0.0 Notes ----- The list of columns should match with grouping columns exactly, or empty (means all the grouping columns). Examples -------- >>> df.cube("name").agg(grouping_id(), sum("age")).orderBy("name").show() +-----+-------------+--------+ | name|grouping_id()|sum(age)| +-----+-------------+--------+ | null| 1| 7| |Alice| 0| 2| | Bob| 0| 5| +-----+-------------+--------+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.grouping_id(_to_seq(sc, cols, _to_java_column)) return Column(jc) @since(1.6) def input_file_name(): """Creates a string column for the file name of the current Spark task. """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.input_file_name()) def isnan(col): """An expression that returns true iff the column is NaN. .. versionadded:: 1.6.0 Examples -------- >>> df = spark.createDataFrame([(1.0, float('nan')), (float('nan'), 2.0)], ("a", "b")) >>> df.select(isnan("a").alias("r1"), isnan(df.a).alias("r2")).collect() [Row(r1=False, r2=False), Row(r1=True, r2=True)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.isnan(_to_java_column(col))) def isnull(col): """An expression that returns true iff the column is null. .. versionadded:: 1.6.0 Examples -------- >>> df = spark.createDataFrame([(1, None), (None, 2)], ("a", "b")) >>> df.select(isnull("a").alias("r1"), isnull(df.a).alias("r2")).collect() [Row(r1=False, r2=False), Row(r1=True, r2=True)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.isnull(_to_java_column(col))) def last(col, ignorenulls=False): """Aggregate function: returns the last value in a group. The function by default returns the last values it sees. It will return the last non-null value it sees when ignoreNulls is set to true. If all values are null, then null is returned. .. versionadded:: 1.3.0 Notes ----- The function is non-deterministic because its results depends on the order of the rows which may be non-deterministic after a shuffle. """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.last(_to_java_column(col), ignorenulls) return Column(jc) def monotonically_increasing_id(): """A column that generates monotonically increasing 64-bit integers. The generated ID is guaranteed to be monotonically increasing and unique, but not consecutive. The current implementation puts the partition ID in the upper 31 bits, and the record number within each partition in the lower 33 bits. The assumption is that the data frame has less than 1 billion partitions, and each partition has less than 8 billion records. .. versionadded:: 1.6.0 Notes ----- The function is non-deterministic because its result depends on partition IDs. As an example, consider a :class:`DataFrame` with two partitions, each with 3 records. This expression would return the following IDs: 0, 1, 2, 8589934592 (1L << 33), 8589934593, 8589934594. >>> df0 = sc.parallelize(range(2), 2).mapPartitions(lambda x: [(1,), (2,), (3,)]).toDF(['col1']) >>> df0.select(monotonically_increasing_id().alias('id')).collect() [Row(id=0), Row(id=1), Row(id=2), Row(id=8589934592), Row(id=8589934593), Row(id=8589934594)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.monotonically_increasing_id()) def nanvl(col1, col2): """Returns col1 if it is not NaN, or col2 if col1 is NaN. Both inputs should be floating point columns (:class:`DoubleType` or :class:`FloatType`). .. versionadded:: 1.6.0 Examples -------- >>> df = spark.createDataFrame([(1.0, float('nan')), (float('nan'), 2.0)], ("a", "b")) >>> df.select(nanvl("a", "b").alias("r1"), nanvl(df.a, df.b).alias("r2")).collect() [Row(r1=1.0, r2=1.0), Row(r1=2.0, r2=2.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.nanvl(_to_java_column(col1), _to_java_column(col2))) def percentile_approx(col, percentage, accuracy=10000): """Returns the approximate `percentile` of the numeric column `col` which is the smallest value in the ordered `col` values (sorted from least to greatest) such that no more than `percentage` of `col` values is less than the value or equal to that value. The value of percentage must be between 0.0 and 1.0. The accuracy parameter (default: 10000) is a positive numeric literal which controls approximation accuracy at the cost of memory. Higher value of accuracy yields better accuracy, 1.0/accuracy is the relative error of the approximation. When percentage is an array, each value of the percentage array must be between 0.0 and 1.0. In this case, returns the approximate percentile array of column col at the given percentage array. .. versionadded:: 3.1.0 Examples -------- >>> key = (col("id") % 3).alias("key") >>> value = (randn(42) + key * 10).alias("value") >>> df = spark.range(0, 1000, 1, 1).select(key, value) >>> df.select( ... percentile_approx("value", [0.25, 0.5, 0.75], 1000000).alias("quantiles") ... ).printSchema() root |-- quantiles: array (nullable = true) | |-- element: double (containsNull = false) >>> df.groupBy("key").agg( ... percentile_approx("value", 0.5, lit(1000000)).alias("median") ... ).printSchema() root |-- key: long (nullable = true) |-- median: double (nullable = true) """ sc = SparkContext._active_spark_context if isinstance(percentage, (list, tuple)): # A local list percentage = sc._jvm.functions.array(_to_seq(sc, [ _create_column_from_literal(x) for x in percentage ])) elif isinstance(percentage, Column): # Already a Column percentage = _to_java_column(percentage) else: # Probably scalar percentage = _create_column_from_literal(percentage) accuracy = ( _to_java_column(accuracy) if isinstance(accuracy, Column) else _create_column_from_literal(accuracy) ) return Column(sc._jvm.functions.percentile_approx(_to_java_column(col), percentage, accuracy)) def rand(seed=None): """Generates a random column with independent and identically distributed (i.i.d.) samples uniformly distributed in [0.0, 1.0). .. versionadded:: 1.4.0 Notes ----- The function is non-deterministic in general case. Examples -------- >>> df.withColumn('rand', rand(seed=42) * 3).collect() [Row(age=2, name='Alice', rand=2.4052597283576684), Row(age=5, name='Bob', rand=2.3913904055683974)] """ sc = SparkContext._active_spark_context if seed is not None: jc = sc._jvm.functions.rand(seed) else: jc = sc._jvm.functions.rand() return Column(jc) def randn(seed=None): """Generates a column with independent and identically distributed (i.i.d.) samples from the standard normal distribution. .. versionadded:: 1.4.0 Notes ----- The function is non-deterministic in general case. Examples -------- >>> df.withColumn('randn', randn(seed=42)).collect() [Row(age=2, name='Alice', randn=1.1027054481455365), Row(age=5, name='Bob', randn=0.7400395449950132)] """ sc = SparkContext._active_spark_context if seed is not None: jc = sc._jvm.functions.randn(seed) else: jc = sc._jvm.functions.randn() return Column(jc) def round(col, scale=0): """ Round the given value to `scale` decimal places using HALF_UP rounding mode if `scale` >= 0 or at integral part when `scale` < 0. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([(2.5,)], ['a']).select(round('a', 0).alias('r')).collect() [Row(r=3.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.round(_to_java_column(col), scale)) def bround(col, scale=0): """ Round the given value to `scale` decimal places using HALF_EVEN rounding mode if `scale` >= 0 or at integral part when `scale` < 0. .. versionadded:: 2.0.0 Examples -------- >>> spark.createDataFrame([(2.5,)], ['a']).select(bround('a', 0).alias('r')).collect() [Row(r=2.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.bround(_to_java_column(col), scale)) def shiftLeft(col, numBits): """Shift the given value numBits left. .. versionadded:: 1.5.0 .. deprecated:: 3.2.0 Use :func:`shiftleft` instead. """ warnings.warn("Deprecated in 3.2, use shiftleft instead.", FutureWarning) return shiftleft(col, numBits) def shiftleft(col, numBits): """Shift the given value numBits left. .. versionadded:: 3.2.0 Examples -------- >>> spark.createDataFrame([(21,)], ['a']).select(shiftleft('a', 1).alias('r')).collect() [Row(r=42)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.shiftleft(_to_java_column(col), numBits)) def shiftRight(col, numBits): """(Signed) shift the given value numBits right. .. versionadded:: 1.5.0 .. deprecated:: 3.2.0 Use :func:`shiftright` instead. """ warnings.warn("Deprecated in 3.2, use shiftright instead.", FutureWarning) return shiftright(col, numBits) def shiftright(col, numBits): """(Signed) shift the given value numBits right. .. versionadded:: 3.2.0 Examples -------- >>> spark.createDataFrame([(42,)], ['a']).select(shiftright('a', 1).alias('r')).collect() [Row(r=21)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.shiftRight(_to_java_column(col), numBits) return Column(jc) def shiftRightUnsigned(col, numBits): """Unsigned shift the given value numBits right. .. versionadded:: 1.5.0 .. deprecated:: 3.2.0 Use :func:`shiftrightunsigned` instead. """ warnings.warn("Deprecated in 3.2, use shiftrightunsigned instead.", FutureWarning) return shiftrightunsigned(col, numBits) def shiftrightunsigned(col, numBits): """Unsigned shift the given value numBits right. .. versionadded:: 3.2.0 Examples -------- >>> df = spark.createDataFrame([(-42,)], ['a']) >>> df.select(shiftrightunsigned('a', 1).alias('r')).collect() [Row(r=9223372036854775787)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.shiftRightUnsigned(_to_java_column(col), numBits) return Column(jc) def spark_partition_id(): """A column for partition ID. .. versionadded:: 1.6.0 Notes ----- This is non deterministic because it depends on data partitioning and task scheduling. Examples -------- >>> df.repartition(1).select(spark_partition_id().alias("pid")).collect() [Row(pid=0), Row(pid=0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.spark_partition_id()) def expr(str): """Parses the expression string into the column that it represents .. versionadded:: 1.5.0 Examples -------- >>> df.select(expr("length(name)")).collect() [Row(length(name)=5), Row(length(name)=3)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.expr(str)) def struct(*cols): """Creates a new struct column. .. versionadded:: 1.4.0 Parameters ---------- cols : list, set, str or :class:`~pyspark.sql.Column` column names or :class:`~pyspark.sql.Column`\\s to contain in the output struct. Examples -------- >>> df.select(struct('age', 'name').alias("struct")).collect() [Row(struct=Row(age=2, name='Alice')), Row(struct=Row(age=5, name='Bob'))] >>> df.select(struct([df.age, df.name]).alias("struct")).collect() [Row(struct=Row(age=2, name='Alice')), Row(struct=Row(age=5, name='Bob'))] """ sc = SparkContext._active_spark_context if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] jc = sc._jvm.functions.struct(_to_seq(sc, cols, _to_java_column)) return Column(jc) def greatest(*cols): """ Returns the greatest value of the list of column names, skipping null values. This function takes at least 2 parameters. It will return null iff all parameters are null. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([(1, 4, 3)], ['a', 'b', 'c']) >>> df.select(greatest(df.a, df.b, df.c).alias("greatest")).collect() [Row(greatest=4)] """ if len(cols) < 2: raise ValueError("greatest should take at least two columns") sc = SparkContext._active_spark_context return Column(sc._jvm.functions.greatest(_to_seq(sc, cols, _to_java_column))) def least(*cols): """ Returns the least value of the list of column names, skipping null values. This function takes at least 2 parameters. It will return null iff all parameters are null. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([(1, 4, 3)], ['a', 'b', 'c']) >>> df.select(least(df.a, df.b, df.c).alias("least")).collect() [Row(least=1)] """ if len(cols) < 2: raise ValueError("least should take at least two columns") sc = SparkContext._active_spark_context return Column(sc._jvm.functions.least(_to_seq(sc, cols, _to_java_column))) def when(condition, value): """Evaluates a list of conditions and returns one of multiple possible result expressions. If :func:`pyspark.sql.Column.otherwise` is not invoked, None is returned for unmatched conditions. .. versionadded:: 1.4.0 Parameters ---------- condition : :class:`~pyspark.sql.Column` a boolean :class:`~pyspark.sql.Column` expression. value : a literal value, or a :class:`~pyspark.sql.Column` expression. >>> df.select(when(df['age'] == 2, 3).otherwise(4).alias("age")).collect() [Row(age=3), Row(age=4)] >>> df.select(when(df.age == 2, df.age + 1).alias("age")).collect() [Row(age=3), Row(age=None)] """ sc = SparkContext._active_spark_context if not isinstance(condition, Column): raise TypeError("condition should be a Column") v = value._jc if isinstance(value, Column) else value jc = sc._jvm.functions.when(condition._jc, v) return Column(jc) def log(arg1, arg2=None): """Returns the first argument-based logarithm of the second argument. If there is only one argument, then this takes the natural logarithm of the argument. .. versionadded:: 1.5.0 Examples -------- >>> df.select(log(10.0, df.age).alias('ten')).rdd.map(lambda l: str(l.ten)[:7]).collect() ['0.30102', '0.69897'] >>> df.select(log(df.age).alias('e')).rdd.map(lambda l: str(l.e)[:7]).collect() ['0.69314', '1.60943'] """ sc = SparkContext._active_spark_context if arg2 is None: jc = sc._jvm.functions.log(_to_java_column(arg1)) else: jc = sc._jvm.functions.log(arg1, _to_java_column(arg2)) return Column(jc) def log2(col): """Returns the base-2 logarithm of the argument. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([(4,)], ['a']).select(log2('a').alias('log2')).collect() [Row(log2=2.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.log2(_to_java_column(col))) def conv(col, fromBase, toBase): """ Convert a number in a string column from one base to another. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([("010101",)], ['n']) >>> df.select(conv(df.n, 2, 16).alias('hex')).collect() [Row(hex='15')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.conv(_to_java_column(col), fromBase, toBase)) def factorial(col): """ Computes the factorial of the given value. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([(5,)], ['n']) >>> df.select(factorial(df.n).alias('f')).collect() [Row(f=120)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.factorial(_to_java_column(col))) # --------------- Window functions ------------------------ def lag(col, offset=1, default=None): """ Window function: returns the value that is `offset` rows before the current row, and `default` if there is less than `offset` rows before the current row. For example, an `offset` of one will return the previous row at any given point in the window partition. This is equivalent to the LAG function in SQL. .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression offset : int, optional number of row to extend default : optional default value """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.lag(_to_java_column(col), offset, default)) def lead(col, offset=1, default=None): """ Window function: returns the value that is `offset` rows after the current row, and `default` if there is less than `offset` rows after the current row. For example, an `offset` of one will return the next row at any given point in the window partition. This is equivalent to the LEAD function in SQL. .. versionadded:: 1.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression offset : int, optional number of row to extend default : optional default value """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.lead(_to_java_column(col), offset, default)) def nth_value(col, offset, ignoreNulls=False): """ Window function: returns the value that is the `offset`\\th row of the window frame (counting from 1), and `null` if the size of window frame is less than `offset` rows. It will return the `offset`\\th non-null value it sees when `ignoreNulls` is set to true. If all values are null, then null is returned. This is equivalent to the nth_value function in SQL. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression offset : int, optional number of row to use as the value ignoreNulls : bool, optional indicates the Nth value should skip null in the determination of which row to use """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.nth_value(_to_java_column(col), offset, ignoreNulls)) def ntile(n): """ Window function: returns the ntile group id (from 1 to `n` inclusive) in an ordered window partition. For example, if `n` is 4, the first quarter of the rows will get value 1, the second quarter will get 2, the third quarter will get 3, and the last quarter will get 4. This is equivalent to the NTILE function in SQL. .. versionadded:: 1.4.0 Parameters ---------- n : int an integer """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.ntile(int(n))) # ---------------------- Date/Timestamp functions ------------------------------ @since(1.5) def current_date(): """ Returns the current date at the start of query evaluation as a :class:`DateType` column. All calls of current_date within the same query return the same value. """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.current_date()) def current_timestamp(): """ Returns the current timestamp at the start of query evaluation as a :class:`TimestampType` column. All calls of current_timestamp within the same query return the same value. """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.current_timestamp()) def date_format(date, format): """ Converts a date/timestamp/string to a value of string in the format specified by the date format given by the second argument. A pattern could be for instance `dd.MM.yyyy` and could return a string like '18.03.1993'. All pattern letters of `datetime pattern`_. can be used. .. _datetime pattern: https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html .. versionadded:: 1.5.0 Notes ----- Whenever possible, use specialized functions like `year`. Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(date_format('dt', 'MM/dd/yyy').alias('date')).collect() [Row(date='04/08/2015')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.date_format(_to_java_column(date), format)) def year(col): """ Extract the year of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(year('dt').alias('year')).collect() [Row(year=2015)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.year(_to_java_column(col))) def quarter(col): """ Extract the quarter of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(quarter('dt').alias('quarter')).collect() [Row(quarter=2)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.quarter(_to_java_column(col))) def month(col): """ Extract the month of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(month('dt').alias('month')).collect() [Row(month=4)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.month(_to_java_column(col))) def dayofweek(col): """ Extract the day of the week of a given date as integer. .. versionadded:: 2.3.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(dayofweek('dt').alias('day')).collect() [Row(day=4)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.dayofweek(_to_java_column(col))) def dayofmonth(col): """ Extract the day of the month of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(dayofmonth('dt').alias('day')).collect() [Row(day=8)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.dayofmonth(_to_java_column(col))) def dayofyear(col): """ Extract the day of the year of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(dayofyear('dt').alias('day')).collect() [Row(day=98)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.dayofyear(_to_java_column(col))) def hour(col): """ Extract the hours of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08 13:08:15',)], ['ts']) >>> df.select(hour('ts').alias('hour')).collect() [Row(hour=13)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.hour(_to_java_column(col))) def minute(col): """ Extract the minutes of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08 13:08:15',)], ['ts']) >>> df.select(minute('ts').alias('minute')).collect() [Row(minute=8)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.minute(_to_java_column(col))) def second(col): """ Extract the seconds of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08 13:08:15',)], ['ts']) >>> df.select(second('ts').alias('second')).collect() [Row(second=15)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.second(_to_java_column(col))) def weekofyear(col): """ Extract the week number of a given date as integer. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(weekofyear(df.dt).alias('week')).collect() [Row(week=15)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.weekofyear(_to_java_column(col))) def date_add(start, days): """ Returns the date that is `days` days after `start` .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(date_add(df.dt, 1).alias('next_date')).collect() [Row(next_date=datetime.date(2015, 4, 9))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.date_add(_to_java_column(start), days)) def date_sub(start, days): """ Returns the date that is `days` days before `start` .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(date_sub(df.dt, 1).alias('prev_date')).collect() [Row(prev_date=datetime.date(2015, 4, 7))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.date_sub(_to_java_column(start), days)) def datediff(end, start): """ Returns the number of days from `start` to `end`. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08','2015-05-10')], ['d1', 'd2']) >>> df.select(datediff(df.d2, df.d1).alias('diff')).collect() [Row(diff=32)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.datediff(_to_java_column(end), _to_java_column(start))) def add_months(start, months): """ Returns the date that is `months` months after `start` .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(add_months(df.dt, 1).alias('next_month')).collect() [Row(next_month=datetime.date(2015, 5, 8))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.add_months(_to_java_column(start), months)) def months_between(date1, date2, roundOff=True): """ Returns number of months between dates date1 and date2. If date1 is later than date2, then the result is positive. If date1 and date2 are on the same day of month, or both are the last day of month, returns an integer (time of day will be ignored). The result is rounded off to 8 digits unless `roundOff` is set to `False`. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('1997-02-28 10:30:00', '1996-10-30')], ['date1', 'date2']) >>> df.select(months_between(df.date1, df.date2).alias('months')).collect() [Row(months=3.94959677)] >>> df.select(months_between(df.date1, df.date2, False).alias('months')).collect() [Row(months=3.9495967741935485)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.months_between( _to_java_column(date1), _to_java_column(date2), roundOff)) def to_date(col, format=None): """Converts a :class:`~pyspark.sql.Column` into :class:`pyspark.sql.types.DateType` using the optionally specified format. Specify formats according to `datetime pattern`_. By default, it follows casting rules to :class:`pyspark.sql.types.DateType` if the format is omitted. Equivalent to ``col.cast("date")``. .. _datetime pattern: https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html .. versionadded:: 2.2.0 Examples -------- >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_date(df.t).alias('date')).collect() [Row(date=datetime.date(1997, 2, 28))] >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_date(df.t, 'yyyy-MM-dd HH:mm:ss').alias('date')).collect() [Row(date=datetime.date(1997, 2, 28))] """ sc = SparkContext._active_spark_context if format is None: jc = sc._jvm.functions.to_date(_to_java_column(col)) else: jc = sc._jvm.functions.to_date(_to_java_column(col), format) return Column(jc) def to_timestamp(col, format=None): """Converts a :class:`~pyspark.sql.Column` into :class:`pyspark.sql.types.TimestampType` using the optionally specified format. Specify formats according to `datetime pattern`_. By default, it follows casting rules to :class:`pyspark.sql.types.TimestampType` if the format is omitted. Equivalent to ``col.cast("timestamp")``. .. _datetime pattern: https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html .. versionadded:: 2.2.0 Examples -------- >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_timestamp(df.t).alias('dt')).collect() [Row(dt=datetime.datetime(1997, 2, 28, 10, 30))] >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_timestamp(df.t, 'yyyy-MM-dd HH:mm:ss').alias('dt')).collect() [Row(dt=datetime.datetime(1997, 2, 28, 10, 30))] """ sc = SparkContext._active_spark_context if format is None: jc = sc._jvm.functions.to_timestamp(_to_java_column(col)) else: jc = sc._jvm.functions.to_timestamp(_to_java_column(col), format) return Column(jc) def trunc(date, format): """ Returns date truncated to the unit specified by the format. .. versionadded:: 1.5.0 Parameters ---------- date : :class:`~pyspark.sql.Column` or str format : str 'year', 'yyyy', 'yy' or 'month', 'mon', 'mm' Examples -------- >>> df = spark.createDataFrame([('1997-02-28',)], ['d']) >>> df.select(trunc(df.d, 'year').alias('year')).collect() [Row(year=datetime.date(1997, 1, 1))] >>> df.select(trunc(df.d, 'mon').alias('month')).collect() [Row(month=datetime.date(1997, 2, 1))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.trunc(_to_java_column(date), format)) def date_trunc(format, timestamp): """ Returns timestamp truncated to the unit specified by the format. .. versionadded:: 2.3.0 Parameters ---------- format : str 'year', 'yyyy', 'yy', 'month', 'mon', 'mm', 'day', 'dd', 'hour', 'minute', 'second', 'week', 'quarter' timestamp : :class:`~pyspark.sql.Column` or str Examples -------- >>> df = spark.createDataFrame([('1997-02-28 05:02:11',)], ['t']) >>> df.select(date_trunc('year', df.t).alias('year')).collect() [Row(year=datetime.datetime(1997, 1, 1, 0, 0))] >>> df.select(date_trunc('mon', df.t).alias('month')).collect() [Row(month=datetime.datetime(1997, 2, 1, 0, 0))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.date_trunc(format, _to_java_column(timestamp))) def next_day(date, dayOfWeek): """ Returns the first date which is later than the value of the date column. Day of the week parameter is case insensitive, and accepts: "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun". .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('2015-07-27',)], ['d']) >>> df.select(next_day(df.d, 'Sun').alias('date')).collect() [Row(date=datetime.date(2015, 8, 2))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.next_day(_to_java_column(date), dayOfWeek)) def last_day(date): """ Returns the last day of the month which the given date belongs to. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('1997-02-10',)], ['d']) >>> df.select(last_day(df.d).alias('date')).collect() [Row(date=datetime.date(1997, 2, 28))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.last_day(_to_java_column(date))) def from_unixtime(timestamp, format="yyyy-MM-dd HH:mm:ss"): """ Converts the number of seconds from unix epoch (1970-01-01 00:00:00 UTC) to a string representing the timestamp of that moment in the current system time zone in the given format. .. versionadded:: 1.5.0 Examples -------- >>> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles") >>> time_df = spark.createDataFrame([(1428476400,)], ['unix_time']) >>> time_df.select(from_unixtime('unix_time').alias('ts')).collect() [Row(ts='2015-04-08 00:00:00')] >>> spark.conf.unset("spark.sql.session.timeZone") """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.from_unixtime(_to_java_column(timestamp), format)) def unix_timestamp(timestamp=None, format='yyyy-MM-dd HH:mm:ss'): """ Convert time string with given pattern ('yyyy-MM-dd HH:mm:ss', by default) to Unix time stamp (in seconds), using the default timezone and the default locale, return null if fail. if `timestamp` is None, then it returns current timestamp. .. versionadded:: 1.5.0 Examples -------- >>> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles") >>> time_df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> time_df.select(unix_timestamp('dt', 'yyyy-MM-dd').alias('unix_time')).collect() [Row(unix_time=1428476400)] >>> spark.conf.unset("spark.sql.session.timeZone") """ sc = SparkContext._active_spark_context if timestamp is None: return Column(sc._jvm.functions.unix_timestamp()) return Column(sc._jvm.functions.unix_timestamp(_to_java_column(timestamp), format)) def from_utc_timestamp(timestamp, tz): """ This is a common function for databases supporting TIMESTAMP WITHOUT TIMEZONE. This function takes a timestamp which is timezone-agnostic, and interprets it as a timestamp in UTC, and renders that timestamp as a timestamp in the given time zone. However, timestamp in Spark represents number of microseconds from the Unix epoch, which is not timezone-agnostic. So in Spark this function just shift the timestamp value from UTC timezone to the given timezone. This function may return confusing result if the input is a string with timezone, e.g. '2018-03-13T06:18:23+00:00'. The reason is that, Spark firstly cast the string to timestamp according to the timezone in the string, and finally display the result by converting the timestamp to string according to the session local timezone. .. versionadded:: 1.5.0 Parameters ---------- timestamp : :class:`~pyspark.sql.Column` or str the column that contains timestamps tz : :class:`~pyspark.sql.Column` or str A string detailing the time zone ID that the input should be adjusted to. It should be in the format of either region-based zone IDs or zone offsets. Region IDs must have the form 'area/city', such as 'America/Los_Angeles'. Zone offsets must be in the format '(+|-)HH:mm', for example '-08:00' or '+01:00'. Also 'UTC' and 'Z' are supported as aliases of '+00:00'. Other short names are not recommended to use because they can be ambiguous. .. versionchanged:: 2.4 `tz` can take a :class:`~pyspark.sql.Column` containing timezone ID strings. Examples -------- >>> df = spark.createDataFrame([('1997-02-28 10:30:00', 'JST')], ['ts', 'tz']) >>> df.select(from_utc_timestamp(df.ts, "PST").alias('local_time')).collect() [Row(local_time=datetime.datetime(1997, 2, 28, 2, 30))] >>> df.select(from_utc_timestamp(df.ts, df.tz).alias('local_time')).collect() [Row(local_time=datetime.datetime(1997, 2, 28, 19, 30))] """ sc = SparkContext._active_spark_context if isinstance(tz, Column): tz = _to_java_column(tz) return Column(sc._jvm.functions.from_utc_timestamp(_to_java_column(timestamp), tz)) def to_utc_timestamp(timestamp, tz): """ This is a common function for databases supporting TIMESTAMP WITHOUT TIMEZONE. This function takes a timestamp which is timezone-agnostic, and interprets it as a timestamp in the given timezone, and renders that timestamp as a timestamp in UTC. However, timestamp in Spark represents number of microseconds from the Unix epoch, which is not timezone-agnostic. So in Spark this function just shift the timestamp value from the given timezone to UTC timezone. This function may return confusing result if the input is a string with timezone, e.g. '2018-03-13T06:18:23+00:00'. The reason is that, Spark firstly cast the string to timestamp according to the timezone in the string, and finally display the result by converting the timestamp to string according to the session local timezone. .. versionadded:: 1.5.0 Parameters ---------- timestamp : :class:`~pyspark.sql.Column` or str the column that contains timestamps tz : :class:`~pyspark.sql.Column` or str A string detailing the time zone ID that the input should be adjusted to. It should be in the format of either region-based zone IDs or zone offsets. Region IDs must have the form 'area/city', such as 'America/Los_Angeles'. Zone offsets must be in the format '(+|-)HH:mm', for example '-08:00' or '+01:00'. Also 'UTC' and 'Z' are upported as aliases of '+00:00'. Other short names are not recommended to use because they can be ambiguous. .. versionchanged:: 2.4.0 `tz` can take a :class:`~pyspark.sql.Column` containing timezone ID strings. Examples -------- >>> df = spark.createDataFrame([('1997-02-28 10:30:00', 'JST')], ['ts', 'tz']) >>> df.select(to_utc_timestamp(df.ts, "PST").alias('utc_time')).collect() [Row(utc_time=datetime.datetime(1997, 2, 28, 18, 30))] >>> df.select(to_utc_timestamp(df.ts, df.tz).alias('utc_time')).collect() [Row(utc_time=datetime.datetime(1997, 2, 28, 1, 30))] """ sc = SparkContext._active_spark_context if isinstance(tz, Column): tz = _to_java_column(tz) return Column(sc._jvm.functions.to_utc_timestamp(_to_java_column(timestamp), tz)) def timestamp_seconds(col): """ .. versionadded:: 3.1.0 Examples -------- >>> from pyspark.sql.functions import timestamp_seconds >>> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles") >>> time_df = spark.createDataFrame([(1230219000,)], ['unix_time']) >>> time_df.select(timestamp_seconds(time_df.unix_time).alias('ts')).show() +-------------------+ | ts| +-------------------+ |2008-12-25 07:30:00| +-------------------+ >>> spark.conf.unset("spark.sql.session.timeZone") """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.timestamp_seconds(_to_java_column(col))) def window(timeColumn, windowDuration, slideDuration=None, startTime=None): """Bucketize rows into one or more time windows given a timestamp specifying column. Window starts are inclusive but the window ends are exclusive, e.g. 12:05 will be in the window [12:05,12:10) but not in [12:00,12:05). Windows can support microsecond precision. Windows in the order of months are not supported. The time column must be of :class:`pyspark.sql.types.TimestampType`. Durations are provided as strings, e.g. '1 second', '1 day 12 hours', '2 minutes'. Valid interval strings are 'week', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond'. If the ``slideDuration`` is not provided, the windows will be tumbling windows. The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide `startTime` as `15 minutes`. The output column will be a struct called 'window' by default with the nested columns 'start' and 'end', where 'start' and 'end' will be of :class:`pyspark.sql.types.TimestampType`. .. versionadded:: 2.0.0 Examples -------- >>> df = spark.createDataFrame([("2016-03-11 09:00:07", 1)]).toDF("date", "val") >>> w = df.groupBy(window("date", "5 seconds")).agg(sum("val").alias("sum")) >>> w.select(w.window.start.cast("string").alias("start"), ... w.window.end.cast("string").alias("end"), "sum").collect() [Row(start='2016-03-11 09:00:05', end='2016-03-11 09:00:10', sum=1)] """ def check_string_field(field, fieldName): if not field or type(field) is not str: raise TypeError("%s should be provided as a string" % fieldName) sc = SparkContext._active_spark_context time_col = _to_java_column(timeColumn) check_string_field(windowDuration, "windowDuration") if slideDuration and startTime: check_string_field(slideDuration, "slideDuration") check_string_field(startTime, "startTime") res = sc._jvm.functions.window(time_col, windowDuration, slideDuration, startTime) elif slideDuration: check_string_field(slideDuration, "slideDuration") res = sc._jvm.functions.window(time_col, windowDuration, slideDuration) elif startTime: check_string_field(startTime, "startTime") res = sc._jvm.functions.window(time_col, windowDuration, windowDuration, startTime) else: res = sc._jvm.functions.window(time_col, windowDuration) return Column(res) # ---------------------------- misc functions ---------------------------------- def crc32(col): """ Calculates the cyclic redundancy check value (CRC32) of a binary column and returns the value as a bigint. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('ABC',)], ['a']).select(crc32('a').alias('crc32')).collect() [Row(crc32=2743272264)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.crc32(_to_java_column(col))) def md5(col): """Calculates the MD5 digest and returns the value as a 32 character hex string. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('ABC',)], ['a']).select(md5('a').alias('hash')).collect() [Row(hash='902fbdd2b1df0c4f70b4a5d23525e932')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.md5(_to_java_column(col)) return Column(jc) def sha1(col): """Returns the hex string result of SHA-1. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('ABC',)], ['a']).select(sha1('a').alias('hash')).collect() [Row(hash='3c01bdbb26f358bab27f267924aa2c9a03fcfdb8')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.sha1(_to_java_column(col)) return Column(jc) def sha2(col, numBits): """Returns the hex string result of SHA-2 family of hash functions (SHA-224, SHA-256, SHA-384, and SHA-512). The numBits indicates the desired bit length of the result, which must have a value of 224, 256, 384, 512, or 0 (which is equivalent to 256). .. versionadded:: 1.5.0 Examples -------- >>> digests = df.select(sha2(df.name, 256).alias('s')).collect() >>> digests[0] Row(s='3bc51062973c458d5a6f2d8d64a023246354ad7e064b1e4e009ec8a0699a3043') >>> digests[1] Row(s='cd9fb1e148ccd8442e5aa74904cc73bf6fb54d1d54d333bd596aa9bb4bb4e961') """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.sha2(_to_java_column(col), numBits) return Column(jc) def hash(*cols): """Calculates the hash code of given columns, and returns the result as an int column. .. versionadded:: 2.0.0 Examples -------- >>> spark.createDataFrame([('ABC',)], ['a']).select(hash('a').alias('hash')).collect() [Row(hash=-757602832)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.hash(_to_seq(sc, cols, _to_java_column)) return Column(jc) def xxhash64(*cols): """Calculates the hash code of given columns using the 64-bit variant of the xxHash algorithm, and returns the result as a long column. .. versionadded:: 3.0.0 Examples -------- >>> spark.createDataFrame([('ABC',)], ['a']).select(xxhash64('a').alias('hash')).collect() [Row(hash=4105715581806190027)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.xxhash64(_to_seq(sc, cols, _to_java_column)) return Column(jc) def assert_true(col, errMsg=None): """ Returns null if the input column is true; throws an exception with the provided error message otherwise. .. versionadded:: 3.1.0 Examples -------- >>> df = spark.createDataFrame([(0,1)], ['a', 'b']) >>> df.select(assert_true(df.a < df.b).alias('r')).collect() [Row(r=None)] >>> df = spark.createDataFrame([(0,1)], ['a', 'b']) >>> df.select(assert_true(df.a < df.b, df.a).alias('r')).collect() [Row(r=None)] >>> df = spark.createDataFrame([(0,1)], ['a', 'b']) >>> df.select(assert_true(df.a < df.b, 'error').alias('r')).collect() [Row(r=None)] """ sc = SparkContext._active_spark_context if errMsg is None: return Column(sc._jvm.functions.assert_true(_to_java_column(col))) if not isinstance(errMsg, (str, Column)): raise TypeError( "errMsg should be a Column or a str, got {}".format(type(errMsg)) ) errMsg = ( _create_column_from_literal(errMsg) if isinstance(errMsg, str) else _to_java_column(errMsg) ) return Column(sc._jvm.functions.assert_true(_to_java_column(col), errMsg)) @since(3.1) def raise_error(errMsg): """ Throws an exception with the provided error message. """ if not isinstance(errMsg, (str, Column)): raise TypeError( "errMsg should be a Column or a str, got {}".format(type(errMsg)) ) sc = SparkContext._active_spark_context errMsg = ( _create_column_from_literal(errMsg) if isinstance(errMsg, str) else _to_java_column(errMsg) ) return Column(sc._jvm.functions.raise_error(errMsg)) # ---------------------- String/Binary functions ------------------------------ @since(1.5) def upper(col): """ Converts a string expression to upper case. """ return _invoke_function_over_column("upper", col) @since(1.5) def lower(col): """ Converts a string expression to lower case. """ return _invoke_function_over_column("lower", col) @since(1.5) def ascii(col): """ Computes the numeric value of the first character of the string column. """ return _invoke_function_over_column("ascii", col) @since(1.5) def base64(col): """ Computes the BASE64 encoding of a binary column and returns it as a string column. """ return _invoke_function_over_column("base64", col) @since(1.5) def unbase64(col): """ Decodes a BASE64 encoded string column and returns it as a binary column. """ return _invoke_function_over_column("unbase64", col) @since(1.5) def ltrim(col): """ Trim the spaces from left end for the specified string value. """ return _invoke_function_over_column("ltrim", col) @since(1.5) def rtrim(col): """ Trim the spaces from right end for the specified string value. """ return _invoke_function_over_column("rtrim", col) @since(1.5) def trim(col): """ Trim the spaces from both ends for the specified string column. """ return _invoke_function_over_column("trim", col) def concat_ws(sep, *cols): """ Concatenates multiple input string columns together into a single string column, using the given separator. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('abcd','123')], ['s', 'd']) >>> df.select(concat_ws('-', df.s, df.d).alias('s')).collect() [Row(s='abcd-123')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.concat_ws(sep, _to_seq(sc, cols, _to_java_column))) @since(1.5) def decode(col, charset): """ Computes the first argument into a string from a binary using the provided character set (one of 'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16'). """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.decode(_to_java_column(col), charset)) @since(1.5) def encode(col, charset): """ Computes the first argument into a binary from a string using the provided character set (one of 'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16'). """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.encode(_to_java_column(col), charset)) def format_number(col, d): """ Formats the number X to a format like '#,--#,--#.--', rounded to d decimal places with HALF_EVEN round mode, and returns the result as a string. .. versionadded:: 1.5.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str the column name of the numeric value to be formatted d : int the N decimal places >>> spark.createDataFrame([(5,)], ['a']).select(format_number('a', 4).alias('v')).collect() [Row(v='5.0000')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.format_number(_to_java_column(col), d)) def format_string(format, *cols): """ Formats the arguments in printf-style and returns the result as a string column. .. versionadded:: 1.5.0 Parameters ---------- format : str string that can contain embedded format tags and used as result column's value cols : :class:`~pyspark.sql.Column` or str column names or :class:`~pyspark.sql.Column`\\s to be used in formatting Examples -------- >>> df = spark.createDataFrame([(5, "hello")], ['a', 'b']) >>> df.select(format_string('%d %s', df.a, df.b).alias('v')).collect() [Row(v='5 hello')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.format_string(format, _to_seq(sc, cols, _to_java_column))) def instr(str, substr): """ Locate the position of the first occurrence of substr column in the given string. Returns null if either of the arguments are null. .. versionadded:: 1.5.0 Notes ----- The position is not zero based, but 1 based index. Returns 0 if substr could not be found in str. >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(instr(df.s, 'b').alias('s')).collect() [Row(s=2)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.instr(_to_java_column(str), substr)) def overlay(src, replace, pos, len=-1): """ Overlay the specified portion of `src` with `replace`, starting from byte position `pos` of `src` and proceeding for `len` bytes. .. versionadded:: 3.0.0 Examples -------- >>> df = spark.createDataFrame([("SPARK_SQL", "CORE")], ("x", "y")) >>> df.select(overlay("x", "y", 7).alias("overlayed")).show() +----------+ | overlayed| +----------+ |SPARK_CORE| +----------+ """ if not isinstance(pos, (int, str, Column)): raise TypeError( "pos should be an integer or a Column / column name, got {}".format(type(pos))) if len is not None and not isinstance(len, (int, str, Column)): raise TypeError( "len should be an integer or a Column / column name, got {}".format(type(len))) pos = _create_column_from_literal(pos) if isinstance(pos, int) else _to_java_column(pos) len = _create_column_from_literal(len) if isinstance(len, int) else _to_java_column(len) sc = SparkContext._active_spark_context return Column(sc._jvm.functions.overlay( _to_java_column(src), _to_java_column(replace), pos, len )) def sentences(string, language=None, country=None): """ Splits a string into arrays of sentences, where each sentence is an array of words. The 'language' and 'country' arguments are optional, and if omitted, the default locale is used. .. versionadded:: 3.2.0 Parameters ---------- string : :class:`~pyspark.sql.Column` or str a string to be split language : :class:`~pyspark.sql.Column` or str, optional a language of the locale country : :class:`~pyspark.sql.Column` or str, optional a country of the locale Examples -------- >>> df = spark.createDataFrame([["This is an example sentence."]], ["string"]) >>> df.select(sentences(df.string, lit("en"), lit("US"))).show(truncate=False) +-----------------------------------+ |sentences(string, en, US) | +-----------------------------------+ |[[This, is, an, example, sentence]]| +-----------------------------------+ """ if language is None: language = lit("") if country is None: country = lit("") sc = SparkContext._active_spark_context return Column(sc._jvm.functions.sentences( _to_java_column(string), _to_java_column(language), _to_java_column(country) )) def substring(str, pos, len): """ Substring starts at `pos` and is of length `len` when str is String type or returns the slice of byte array that starts at `pos` in byte and is of length `len` when str is Binary type. .. versionadded:: 1.5.0 Notes ----- The position is not zero based, but 1 based index. Examples -------- >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(substring(df.s, 1, 2).alias('s')).collect() [Row(s='ab')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.substring(_to_java_column(str), pos, len)) def substring_index(str, delim, count): """ Returns the substring from string str before count occurrences of the delimiter delim. If count is positive, everything the left of the final delimiter (counting from left) is returned. If count is negative, every to the right of the final delimiter (counting from the right) is returned. substring_index performs a case-sensitive match when searching for delim. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('a.b.c.d',)], ['s']) >>> df.select(substring_index(df.s, '.', 2).alias('s')).collect() [Row(s='a.b')] >>> df.select(substring_index(df.s, '.', -3).alias('s')).collect() [Row(s='b.c.d')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.substring_index(_to_java_column(str), delim, count)) def levenshtein(left, right): """Computes the Levenshtein distance of the two given strings. .. versionadded:: 1.5.0 Examples -------- >>> df0 = spark.createDataFrame([('kitten', 'sitting',)], ['l', 'r']) >>> df0.select(levenshtein('l', 'r').alias('d')).collect() [Row(d=3)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.levenshtein(_to_java_column(left), _to_java_column(right)) return Column(jc) def locate(substr, str, pos=1): """ Locate the position of the first occurrence of substr in a string column, after position pos. .. versionadded:: 1.5.0 Parameters ---------- substr : str a string str : :class:`~pyspark.sql.Column` or str a Column of :class:`pyspark.sql.types.StringType` pos : int, optional start position (zero based) Notes ----- The position is not zero based, but 1 based index. Returns 0 if substr could not be found in str. Examples -------- >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(locate('b', df.s, 1).alias('s')).collect() [Row(s=2)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.locate(substr, _to_java_column(str), pos)) def lpad(col, len, pad): """ Left-pad the string column to width `len` with `pad`. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(lpad(df.s, 6, '#').alias('s')).collect() [Row(s='##abcd')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.lpad(_to_java_column(col), len, pad)) def rpad(col, len, pad): """ Right-pad the string column to width `len` with `pad`. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(rpad(df.s, 6, '#').alias('s')).collect() [Row(s='abcd##')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.rpad(_to_java_column(col), len, pad)) def repeat(col, n): """ Repeats a string column n times, and returns it as a new string column. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('ab',)], ['s',]) >>> df.select(repeat(df.s, 3).alias('s')).collect() [Row(s='ababab')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.repeat(_to_java_column(col), n)) def split(str, pattern, limit=-1): """ Splits str around matches of the given pattern. .. versionadded:: 1.5.0 Parameters ---------- str : :class:`~pyspark.sql.Column` or str a string expression to split pattern : str a string representing a regular expression. The regex string should be a Java regular expression. limit : int, optional an integer which controls the number of times `pattern` is applied. * ``limit > 0``: The resulting array's length will not be more than `limit`, and the resulting array's last entry will contain all input beyond the last matched pattern. * ``limit <= 0``: `pattern` will be applied as many times as possible, and the resulting array can be of any size. .. versionchanged:: 3.0 `split` now takes an optional `limit` field. If not provided, default limit value is -1. Examples -------- >>> df = spark.createDataFrame([('oneAtwoBthreeC',)], ['s',]) >>> df.select(split(df.s, '[ABC]', 2).alias('s')).collect() [Row(s=['one', 'twoBthreeC'])] >>> df.select(split(df.s, '[ABC]', -1).alias('s')).collect() [Row(s=['one', 'two', 'three', ''])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.split(_to_java_column(str), pattern, limit)) def regexp_extract(str, pattern, idx): r"""Extract a specific group matched by a Java regex, from the specified string column. If the regex did not match, or the specified group did not match, an empty string is returned. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('100-200',)], ['str']) >>> df.select(regexp_extract('str', r'(\d+)-(\d+)', 1).alias('d')).collect() [Row(d='100')] >>> df = spark.createDataFrame([('foo',)], ['str']) >>> df.select(regexp_extract('str', r'(\d+)', 1).alias('d')).collect() [Row(d='')] >>> df = spark.createDataFrame([('aaaac',)], ['str']) >>> df.select(regexp_extract('str', '(a+)(b)?(c)', 2).alias('d')).collect() [Row(d='')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.regexp_extract(_to_java_column(str), pattern, idx) return Column(jc) def regexp_replace(str, pattern, replacement): r"""Replace all substrings of the specified string value that match regexp with rep. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('100-200',)], ['str']) >>> df.select(regexp_replace('str', r'(\d+)', '--').alias('d')).collect() [Row(d='-----')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.regexp_replace(_to_java_column(str), pattern, replacement) return Column(jc) def initcap(col): """Translate the first letter of each word to upper case in the sentence. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('ab cd',)], ['a']).select(initcap("a").alias('v')).collect() [Row(v='Ab Cd')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.initcap(_to_java_column(col))) def soundex(col): """ Returns the SoundEx encoding for a string .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([("Peters",),("Uhrbach",)], ['name']) >>> df.select(soundex(df.name).alias("soundex")).collect() [Row(soundex='P362'), Row(soundex='U612')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.soundex(_to_java_column(col))) def bin(col): """Returns the string representation of the binary value of the given column. .. versionadded:: 1.5.0 Examples -------- >>> df.select(bin(df.age).alias('c')).collect() [Row(c='10'), Row(c='101')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.bin(_to_java_column(col)) return Column(jc) def hex(col): """Computes hex value of the given column, which could be :class:`pyspark.sql.types.StringType`, :class:`pyspark.sql.types.BinaryType`, :class:`pyspark.sql.types.IntegerType` or :class:`pyspark.sql.types.LongType`. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('ABC', 3)], ['a', 'b']).select(hex('a'), hex('b')).collect() [Row(hex(a)='414243', hex(b)='3')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.hex(_to_java_column(col)) return Column(jc) def unhex(col): """Inverse of hex. Interprets each pair of characters as a hexadecimal number and converts to the byte representation of number. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('414243',)], ['a']).select(unhex('a')).collect() [Row(unhex(a)=bytearray(b'ABC'))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.unhex(_to_java_column(col))) def length(col): """Computes the character length of string data or number of bytes of binary data. The length of character data includes the trailing spaces. The length of binary data includes binary zeros. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('ABC ',)], ['a']).select(length('a').alias('length')).collect() [Row(length=4)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.length(_to_java_column(col))) def translate(srcCol, matching, replace): """A function translate any character in the `srcCol` by a character in `matching`. The characters in `replace` is corresponding to the characters in `matching`. The translate will happen when any character in the string matching with the character in the `matching`. .. versionadded:: 1.5.0 Examples -------- >>> spark.createDataFrame([('translate',)], ['a']).select(translate('a', "rnlt", "123") \\ ... .alias('r')).collect() [Row(r='1a2s3ae')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.translate(_to_java_column(srcCol), matching, replace)) # ---------------------- Collection functions ------------------------------ def create_map(*cols): """Creates a new map column. .. versionadded:: 2.0.0 Parameters ---------- cols : :class:`~pyspark.sql.Column` or str column names or :class:`~pyspark.sql.Column`\\s that are grouped as key-value pairs, e.g. (key1, value1, key2, value2, ...). Examples -------- >>> df.select(create_map('name', 'age').alias("map")).collect() [Row(map={'Alice': 2}), Row(map={'Bob': 5})] >>> df.select(create_map([df.name, df.age]).alias("map")).collect() [Row(map={'Alice': 2}), Row(map={'Bob': 5})] """ sc = SparkContext._active_spark_context if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] jc = sc._jvm.functions.map(_to_seq(sc, cols, _to_java_column)) return Column(jc) def map_from_arrays(col1, col2): """Creates a new map from two arrays. .. versionadded:: 2.4.0 Parameters ---------- col1 : :class:`~pyspark.sql.Column` or str name of column containing a set of keys. All elements should not be null col2 : :class:`~pyspark.sql.Column` or str name of column containing a set of values Examples -------- >>> df = spark.createDataFrame([([2, 5], ['a', 'b'])], ['k', 'v']) >>> df.select(map_from_arrays(df.k, df.v).alias("map")).show() +----------------+ | map| +----------------+ |{2 -> a, 5 -> b}| +----------------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_from_arrays(_to_java_column(col1), _to_java_column(col2))) def array(*cols): """Creates a new array column. .. versionadded:: 1.4.0 Parameters ---------- cols : :class:`~pyspark.sql.Column` or str column names or :class:`~pyspark.sql.Column`\\s that have the same data type. Examples -------- >>> df.select(array('age', 'age').alias("arr")).collect() [Row(arr=[2, 2]), Row(arr=[5, 5])] >>> df.select(array([df.age, df.age]).alias("arr")).collect() [Row(arr=[2, 2]), Row(arr=[5, 5])] """ sc = SparkContext._active_spark_context if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] jc = sc._jvm.functions.array(_to_seq(sc, cols, _to_java_column)) return Column(jc) def array_contains(col, value): """ Collection function: returns null if the array is null, true if the array contains the given value, and false otherwise. .. versionadded:: 1.5.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column containing array value : value or column to check for in array Examples -------- >>> df = spark.createDataFrame([(["a", "b", "c"],), ([],)], ['data']) >>> df.select(array_contains(df.data, "a")).collect() [Row(array_contains(data, a)=True), Row(array_contains(data, a)=False)] >>> df.select(array_contains(df.data, lit("a"))).collect() [Row(array_contains(data, a)=True), Row(array_contains(data, a)=False)] """ sc = SparkContext._active_spark_context value = value._jc if isinstance(value, Column) else value return Column(sc._jvm.functions.array_contains(_to_java_column(col), value)) def arrays_overlap(a1, a2): """ Collection function: returns true if the arrays contain any common non-null element; if not, returns null if both the arrays are non-empty and any of them contains a null element; returns false otherwise. .. versionadded:: 2.4.0 Examples -------- >>> df = spark.createDataFrame([(["a", "b"], ["b", "c"]), (["a"], ["b", "c"])], ['x', 'y']) >>> df.select(arrays_overlap(df.x, df.y).alias("overlap")).collect() [Row(overlap=True), Row(overlap=False)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.arrays_overlap(_to_java_column(a1), _to_java_column(a2))) def slice(x, start, length): """ Collection function: returns an array containing all the elements in `x` from index `start` (array indices start at 1, or from the end if `start` is negative) with the specified `length`. .. versionadded:: 2.4.0 Parameters ---------- x : :class:`~pyspark.sql.Column` or str the array to be sliced start : :class:`~pyspark.sql.Column` or int the starting index length : :class:`~pyspark.sql.Column` or int the length of the slice Examples -------- >>> df = spark.createDataFrame([([1, 2, 3],), ([4, 5],)], ['x']) >>> df.select(slice(df.x, 2, 2).alias("sliced")).collect() [Row(sliced=[2, 3]), Row(sliced=[5])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.slice( _to_java_column(x), start._jc if isinstance(start, Column) else start, length._jc if isinstance(length, Column) else length )) def array_join(col, delimiter, null_replacement=None): """ Concatenates the elements of `column` using the `delimiter`. Null values are replaced with `null_replacement` if set, otherwise they are ignored. .. versionadded:: 2.4.0 Examples -------- >>> df = spark.createDataFrame([(["a", "b", "c"],), (["a", None],)], ['data']) >>> df.select(array_join(df.data, ",").alias("joined")).collect() [Row(joined='a,b,c'), Row(joined='a')] >>> df.select(array_join(df.data, ",", "NULL").alias("joined")).collect() [Row(joined='a,b,c'), Row(joined='a,NULL')] """ sc = SparkContext._active_spark_context if null_replacement is None: return Column(sc._jvm.functions.array_join(_to_java_column(col), delimiter)) else: return Column(sc._jvm.functions.array_join( _to_java_column(col), delimiter, null_replacement)) def concat(*cols): """ Concatenates multiple input columns together into a single column. The function works with strings, binary and compatible array columns. .. versionadded:: 1.5.0 Examples -------- >>> df = spark.createDataFrame([('abcd','123')], ['s', 'd']) >>> df.select(concat(df.s, df.d).alias('s')).collect() [Row(s='abcd123')] >>> df = spark.createDataFrame([([1, 2], [3, 4], [5]), ([1, 2], None, [3])], ['a', 'b', 'c']) >>> df.select(concat(df.a, df.b, df.c).alias("arr")).collect() [Row(arr=[1, 2, 3, 4, 5]), Row(arr=None)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.concat(_to_seq(sc, cols, _to_java_column))) def array_position(col, value): """ Collection function: Locates the position of the first occurrence of the given value in the given array. Returns null if either of the arguments are null. .. versionadded:: 2.4.0 Notes ----- The position is not zero based, but 1 based index. Returns 0 if the given value could not be found in the array. Examples -------- >>> df = spark.createDataFrame([(["c", "b", "a"],), ([],)], ['data']) >>> df.select(array_position(df.data, "a")).collect() [Row(array_position(data, a)=3), Row(array_position(data, a)=0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_position(_to_java_column(col), value)) def element_at(col, extraction): """ Collection function: Returns element of array at given index in extraction if col is array. Returns value for the given key in extraction if col is map. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column containing array or map extraction : index to check for in array or key to check for in map Notes ----- The position is not zero based, but 1 based index. Examples -------- >>> df = spark.createDataFrame([(["a", "b", "c"],), ([],)], ['data']) >>> df.select(element_at(df.data, 1)).collect() [Row(element_at(data, 1)='a'), Row(element_at(data, 1)=None)] >>> df = spark.createDataFrame([({"a": 1.0, "b": 2.0},), ({},)], ['data']) >>> df.select(element_at(df.data, lit("a"))).collect() [Row(element_at(data, a)=1.0), Row(element_at(data, a)=None)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.element_at( _to_java_column(col), lit(extraction)._jc)) def array_remove(col, element): """ Collection function: Remove all elements that equal to element from the given array. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column containing array element : element to be removed from the array Examples -------- >>> df = spark.createDataFrame([([1, 2, 3, 1, 1],), ([],)], ['data']) >>> df.select(array_remove(df.data, 1)).collect() [Row(array_remove(data, 1)=[2, 3]), Row(array_remove(data, 1)=[])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_remove(_to_java_column(col), element)) def array_distinct(col): """ Collection function: removes duplicate values from the array. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> df = spark.createDataFrame([([1, 2, 3, 2],), ([4, 5, 5, 4],)], ['data']) >>> df.select(array_distinct(df.data)).collect() [Row(array_distinct(data)=[1, 2, 3]), Row(array_distinct(data)=[4, 5])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_distinct(_to_java_column(col))) def array_intersect(col1, col2): """ Collection function: returns an array of the elements in the intersection of col1 and col2, without duplicates. .. versionadded:: 2.4.0 Parameters ---------- col1 : :class:`~pyspark.sql.Column` or str name of column containing array col2 : :class:`~pyspark.sql.Column` or str name of column containing array Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])]) >>> df.select(array_intersect(df.c1, df.c2)).collect() [Row(array_intersect(c1, c2)=['a', 'c'])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_intersect(_to_java_column(col1), _to_java_column(col2))) def array_union(col1, col2): """ Collection function: returns an array of the elements in the union of col1 and col2, without duplicates. .. versionadded:: 2.4.0 Parameters ---------- col1 : :class:`~pyspark.sql.Column` or str name of column containing array col2 : :class:`~pyspark.sql.Column` or str name of column containing array Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])]) >>> df.select(array_union(df.c1, df.c2)).collect() [Row(array_union(c1, c2)=['b', 'a', 'c', 'd', 'f'])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_union(_to_java_column(col1), _to_java_column(col2))) def array_except(col1, col2): """ Collection function: returns an array of the elements in col1 but not in col2, without duplicates. .. versionadded:: 2.4.0 Parameters ---------- col1 : :class:`~pyspark.sql.Column` or str name of column containing array col2 : :class:`~pyspark.sql.Column` or str name of column containing array Examples -------- >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])]) >>> df.select(array_except(df.c1, df.c2)).collect() [Row(array_except(c1, c2)=['b'])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_except(_to_java_column(col1), _to_java_column(col2))) def explode(col): """ Returns a new row for each element in the given array or map. Uses the default column name `col` for elements in the array and `key` and `value` for elements in the map unless specified otherwise. .. versionadded:: 1.4.0 Examples -------- >>> from pyspark.sql import Row >>> eDF = spark.createDataFrame([Row(a=1, intlist=[1,2,3], mapfield={"a": "b"})]) >>> eDF.select(explode(eDF.intlist).alias("anInt")).collect() [Row(anInt=1), Row(anInt=2), Row(anInt=3)] >>> eDF.select(explode(eDF.mapfield).alias("key", "value")).show() +---+-----+ |key|value| +---+-----+ | a| b| +---+-----+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.explode(_to_java_column(col)) return Column(jc) def posexplode(col): """ Returns a new row for each element with position in the given array or map. Uses the default column name `pos` for position, and `col` for elements in the array and `key` and `value` for elements in the map unless specified otherwise. .. versionadded:: 2.1.0 Examples -------- >>> from pyspark.sql import Row >>> eDF = spark.createDataFrame([Row(a=1, intlist=[1,2,3], mapfield={"a": "b"})]) >>> eDF.select(posexplode(eDF.intlist)).collect() [Row(pos=0, col=1), Row(pos=1, col=2), Row(pos=2, col=3)] >>> eDF.select(posexplode(eDF.mapfield)).show() +---+---+-----+ |pos|key|value| +---+---+-----+ | 0| a| b| +---+---+-----+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.posexplode(_to_java_column(col)) return Column(jc) def explode_outer(col): """ Returns a new row for each element in the given array or map. Unlike explode, if the array/map is null or empty then null is produced. Uses the default column name `col` for elements in the array and `key` and `value` for elements in the map unless specified otherwise. .. versionadded:: 2.3.0 Examples -------- >>> df = spark.createDataFrame( ... [(1, ["foo", "bar"], {"x": 1.0}), (2, [], {}), (3, None, None)], ... ("id", "an_array", "a_map") ... ) >>> df.select("id", "an_array", explode_outer("a_map")).show() +---+----------+----+-----+ | id| an_array| key|value| +---+----------+----+-----+ | 1|[foo, bar]| x| 1.0| | 2| []|null| null| | 3| null|null| null| +---+----------+----+-----+ >>> df.select("id", "a_map", explode_outer("an_array")).show() +---+----------+----+ | id| a_map| col| +---+----------+----+ | 1|{x -> 1.0}| foo| | 1|{x -> 1.0}| bar| | 2| {}|null| | 3| null|null| +---+----------+----+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.explode_outer(_to_java_column(col)) return Column(jc) def posexplode_outer(col): """ Returns a new row for each element with position in the given array or map. Unlike posexplode, if the array/map is null or empty then the row (null, null) is produced. Uses the default column name `pos` for position, and `col` for elements in the array and `key` and `value` for elements in the map unless specified otherwise. .. versionadded:: 2.3.0 Examples -------- >>> df = spark.createDataFrame( ... [(1, ["foo", "bar"], {"x": 1.0}), (2, [], {}), (3, None, None)], ... ("id", "an_array", "a_map") ... ) >>> df.select("id", "an_array", posexplode_outer("a_map")).show() +---+----------+----+----+-----+ | id| an_array| pos| key|value| +---+----------+----+----+-----+ | 1|[foo, bar]| 0| x| 1.0| | 2| []|null|null| null| | 3| null|null|null| null| +---+----------+----+----+-----+ >>> df.select("id", "a_map", posexplode_outer("an_array")).show() +---+----------+----+----+ | id| a_map| pos| col| +---+----------+----+----+ | 1|{x -> 1.0}| 0| foo| | 1|{x -> 1.0}| 1| bar| | 2| {}|null|null| | 3| null|null|null| +---+----------+----+----+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.posexplode_outer(_to_java_column(col)) return Column(jc) def get_json_object(col, path): """ Extracts json object from a json string based on json path specified, and returns json string of the extracted json object. It will return null if the input json string is invalid. .. versionadded:: 1.6.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str string column in json format path : str path to the json object to extract Examples -------- >>> data = [("1", '''{"f1": "value1", "f2": "value2"}'''), ("2", '''{"f1": "value12"}''')] >>> df = spark.createDataFrame(data, ("key", "jstring")) >>> df.select(df.key, get_json_object(df.jstring, '$.f1').alias("c0"), \\ ... get_json_object(df.jstring, '$.f2').alias("c1") ).collect() [Row(key='1', c0='value1', c1='value2'), Row(key='2', c0='value12', c1=None)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.get_json_object(_to_java_column(col), path) return Column(jc) def json_tuple(col, *fields): """Creates a new row for a json column according to the given field names. .. versionadded:: 1.6.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str string column in json format fields : str fields to extract Examples -------- >>> data = [("1", '''{"f1": "value1", "f2": "value2"}'''), ("2", '''{"f1": "value12"}''')] >>> df = spark.createDataFrame(data, ("key", "jstring")) >>> df.select(df.key, json_tuple(df.jstring, 'f1', 'f2')).collect() [Row(key='1', c0='value1', c1='value2'), Row(key='2', c0='value12', c1=None)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.json_tuple(_to_java_column(col), _to_seq(sc, fields)) return Column(jc) def from_json(col, schema, options=None): """ Parses a column containing a JSON string into a :class:`MapType` with :class:`StringType` as keys type, :class:`StructType` or :class:`ArrayType` with the specified schema. Returns `null`, in the case of an unparseable string. .. versionadded:: 2.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str string column in json format schema : :class:`DataType` or str a StructType or ArrayType of StructType to use when parsing the json column. .. versionchanged:: 2.3 the DDL-formatted string is also supported for ``schema``. options : dict, optional options to control parsing. accepts the same options as the json datasource. See `Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-json.html#data-source-option>`_ in the version you use. .. # noqa Examples -------- >>> from pyspark.sql.types import * >>> data = [(1, '''{"a": 1}''')] >>> schema = StructType([StructField("a", IntegerType())]) >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=Row(a=1))] >>> df.select(from_json(df.value, "a INT").alias("json")).collect() [Row(json=Row(a=1))] >>> df.select(from_json(df.value, "MAP<STRING,INT>").alias("json")).collect() [Row(json={'a': 1})] >>> data = [(1, '''[{"a": 1}]''')] >>> schema = ArrayType(StructType([StructField("a", IntegerType())])) >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=[Row(a=1)])] >>> schema = schema_of_json(lit('''{"a": 0}''')) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=Row(a=None))] >>> data = [(1, '''[1, 2, 3]''')] >>> schema = ArrayType(IntegerType()) >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=[1, 2, 3])] """ sc = SparkContext._active_spark_context if isinstance(schema, DataType): schema = schema.json() elif isinstance(schema, Column): schema = _to_java_column(schema) jc = sc._jvm.functions.from_json(_to_java_column(col), schema, _options_to_str(options)) return Column(jc) def to_json(col, options=None): """ Converts a column containing a :class:`StructType`, :class:`ArrayType` or a :class:`MapType` into a JSON string. Throws an exception, in the case of an unsupported type. .. versionadded:: 2.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column containing a struct, an array or a map. options : dict, optional options to control converting. accepts the same options as the JSON datasource. See `Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-json.html#data-source-option>`_ in the version you use. Additionally the function supports the `pretty` option which enables pretty JSON generation. .. # noqa Examples -------- >>> from pyspark.sql import Row >>> from pyspark.sql.types import * >>> data = [(1, Row(age=2, name='Alice'))] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json='{"age":2,"name":"Alice"}')] >>> data = [(1, [Row(age=2, name='Alice'), Row(age=3, name='Bob')])] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json='[{"age":2,"name":"Alice"},{"age":3,"name":"Bob"}]')] >>> data = [(1, {"name": "Alice"})] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json='{"name":"Alice"}')] >>> data = [(1, [{"name": "Alice"}, {"name": "Bob"}])] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json='[{"name":"Alice"},{"name":"Bob"}]')] >>> data = [(1, ["Alice", "Bob"])] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json='["Alice","Bob"]')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.to_json(_to_java_column(col), _options_to_str(options)) return Column(jc) def schema_of_json(json, options=None): """ Parses a JSON string and infers its schema in DDL format. .. versionadded:: 2.4.0 Parameters ---------- json : :class:`~pyspark.sql.Column` or str a JSON string or a foldable string column containing a JSON string. options : dict, optional options to control parsing. accepts the same options as the JSON datasource. See `Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-json.html#data-source-option>`_ in the version you use. .. # noqa .. versionchanged:: 3.0 It accepts `options` parameter to control schema inferring. Examples -------- >>> df = spark.range(1) >>> df.select(schema_of_json(lit('{"a": 0}')).alias("json")).collect() [Row(json='STRUCT<`a`: BIGINT>')] >>> schema = schema_of_json('{a: 1}', {'allowUnquotedFieldNames':'true'}) >>> df.select(schema.alias("json")).collect() [Row(json='STRUCT<`a`: BIGINT>')] """ if isinstance(json, str): col = _create_column_from_literal(json) elif isinstance(json, Column): col = _to_java_column(json) else: raise TypeError("schema argument should be a column or string") sc = SparkContext._active_spark_context jc = sc._jvm.functions.schema_of_json(col, _options_to_str(options)) return Column(jc) def schema_of_csv(csv, options=None): """ Parses a CSV string and infers its schema in DDL format. .. versionadded:: 3.0.0 Parameters ---------- csv : :class:`~pyspark.sql.Column` or str a CSV string or a foldable string column containing a CSV string. options : dict, optional options to control parsing. accepts the same options as the CSV datasource. See `Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-csv.html#data-source-option>`_ in the version you use. .. # noqa Examples -------- >>> df = spark.range(1) >>> df.select(schema_of_csv(lit('1|a'), {'sep':'|'}).alias("csv")).collect() [Row(csv='STRUCT<`_c0`: INT, `_c1`: STRING>')] >>> df.select(schema_of_csv('1|a', {'sep':'|'}).alias("csv")).collect() [Row(csv='STRUCT<`_c0`: INT, `_c1`: STRING>')] """ if isinstance(csv, str): col = _create_column_from_literal(csv) elif isinstance(csv, Column): col = _to_java_column(csv) else: raise TypeError("schema argument should be a column or string") sc = SparkContext._active_spark_context jc = sc._jvm.functions.schema_of_csv(col, _options_to_str(options)) return Column(jc) def to_csv(col, options=None): """ Converts a column containing a :class:`StructType` into a CSV string. Throws an exception, in the case of an unsupported type. .. versionadded:: 3.0.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column containing a struct. options: dict, optional options to control converting. accepts the same options as the CSV datasource. See `Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-csv.html#data-source-option>`_ in the version you use. .. # noqa Examples -------- >>> from pyspark.sql import Row >>> data = [(1, Row(age=2, name='Alice'))] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_csv(df.value).alias("csv")).collect() [Row(csv='2,Alice')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.to_csv(_to_java_column(col), _options_to_str(options)) return Column(jc) def size(col): """ Collection function: returns the length of the array or map stored in the column. .. versionadded:: 1.5.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> df = spark.createDataFrame([([1, 2, 3],),([1],),([],)], ['data']) >>> df.select(size(df.data)).collect() [Row(size(data)=3), Row(size(data)=1), Row(size(data)=0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.size(_to_java_column(col))) def array_min(col): """ Collection function: returns the minimum value of the array. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> df = spark.createDataFrame([([2, 1, 3],), ([None, 10, -1],)], ['data']) >>> df.select(array_min(df.data).alias('min')).collect() [Row(min=1), Row(min=-1)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_min(_to_java_column(col))) def array_max(col): """ Collection function: returns the maximum value of the array. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> df = spark.createDataFrame([([2, 1, 3],), ([None, 10, -1],)], ['data']) >>> df.select(array_max(df.data).alias('max')).collect() [Row(max=3), Row(max=10)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_max(_to_java_column(col))) def sort_array(col, asc=True): """ Collection function: sorts the input array in ascending or descending order according to the natural ordering of the array elements. Null elements will be placed at the beginning of the returned array in ascending order or at the end of the returned array in descending order. .. versionadded:: 1.5.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression asc : bool, optional Examples -------- >>> df = spark.createDataFrame([([2, 1, None, 3],),([1],),([],)], ['data']) >>> df.select(sort_array(df.data).alias('r')).collect() [Row(r=[None, 1, 2, 3]), Row(r=[1]), Row(r=[])] >>> df.select(sort_array(df.data, asc=False).alias('r')).collect() [Row(r=[3, 2, 1, None]), Row(r=[1]), Row(r=[])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.sort_array(_to_java_column(col), asc)) def array_sort(col): """ Collection function: sorts the input array in ascending order. The elements of the input array must be orderable. Null elements will be placed at the end of the returned array. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> df = spark.createDataFrame([([2, 1, None, 3],),([1],),([],)], ['data']) >>> df.select(array_sort(df.data).alias('r')).collect() [Row(r=[1, 2, 3, None]), Row(r=[1]), Row(r=[])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_sort(_to_java_column(col))) def shuffle(col): """ Collection function: Generates a random permutation of the given array. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Notes ----- The function is non-deterministic. Examples -------- >>> df = spark.createDataFrame([([1, 20, 3, 5],), ([1, 20, None, 3],)], ['data']) >>> df.select(shuffle(df.data).alias('s')).collect() # doctest: +SKIP [Row(s=[3, 1, 5, 20]), Row(s=[20, None, 3, 1])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.shuffle(_to_java_column(col))) def reverse(col): """ Collection function: returns a reversed string or an array with reverse order of elements. .. versionadded:: 1.5.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> df = spark.createDataFrame([('Spark SQL',)], ['data']) >>> df.select(reverse(df.data).alias('s')).collect() [Row(s='LQS krapS')] >>> df = spark.createDataFrame([([2, 1, 3],) ,([1],) ,([],)], ['data']) >>> df.select(reverse(df.data).alias('r')).collect() [Row(r=[3, 1, 2]), Row(r=[1]), Row(r=[])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.reverse(_to_java_column(col))) def flatten(col): """ Collection function: creates a single array from an array of arrays. If a structure of nested arrays is deeper than two levels, only one level of nesting is removed. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> df = spark.createDataFrame([([[1, 2, 3], [4, 5], [6]],), ([None, [4, 5]],)], ['data']) >>> df.select(flatten(df.data).alias('r')).collect() [Row(r=[1, 2, 3, 4, 5, 6]), Row(r=None)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.flatten(_to_java_column(col))) def map_keys(col): """ Collection function: Returns an unordered array containing the keys of the map. .. versionadded:: 2.3.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> from pyspark.sql.functions import map_keys >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as data") >>> df.select(map_keys("data").alias("keys")).show() +------+ | keys| +------+ |[1, 2]| +------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_keys(_to_java_column(col))) def map_values(col): """ Collection function: Returns an unordered array containing the values of the map. .. versionadded:: 2.3.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> from pyspark.sql.functions import map_values >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as data") >>> df.select(map_values("data").alias("values")).show() +------+ |values| +------+ |[a, b]| +------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_values(_to_java_column(col))) def map_entries(col): """ Collection function: Returns an unordered array of all entries in the given map. .. versionadded:: 3.0.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> from pyspark.sql.functions import map_entries >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as data") >>> df.select(map_entries("data").alias("entries")).show() +----------------+ | entries| +----------------+ |[{1, a}, {2, b}]| +----------------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_entries(_to_java_column(col))) def map_from_entries(col): """ Collection function: Returns a map created from the given array of entries. .. versionadded:: 2.4.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression Examples -------- >>> from pyspark.sql.functions import map_from_entries >>> df = spark.sql("SELECT array(struct(1, 'a'), struct(2, 'b')) as data") >>> df.select(map_from_entries("data").alias("map")).show() +----------------+ | map| +----------------+ |{1 -> a, 2 -> b}| +----------------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_from_entries(_to_java_column(col))) def array_repeat(col, count): """ Collection function: creates an array containing a column repeated count times. .. versionadded:: 2.4.0 Examples -------- >>> df = spark.createDataFrame([('ab',)], ['data']) >>> df.select(array_repeat(df.data, 3).alias('r')).collect() [Row(r=['ab', 'ab', 'ab'])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_repeat( _to_java_column(col), _to_java_column(count) if isinstance(count, Column) else count )) def arrays_zip(*cols): """ Collection function: Returns a merged array of structs in which the N-th struct contains all N-th values of input arrays. .. versionadded:: 2.4.0 Parameters ---------- cols : :class:`~pyspark.sql.Column` or str columns of arrays to be merged. Examples -------- >>> from pyspark.sql.functions import arrays_zip >>> df = spark.createDataFrame([(([1, 2, 3], [2, 3, 4]))], ['vals1', 'vals2']) >>> df.select(arrays_zip(df.vals1, df.vals2).alias('zipped')).collect() [Row(zipped=[Row(vals1=1, vals2=2), Row(vals1=2, vals2=3), Row(vals1=3, vals2=4)])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.arrays_zip(_to_seq(sc, cols, _to_java_column))) def map_concat(*cols): """Returns the union of all the given maps. .. versionadded:: 2.4.0 Parameters ---------- cols : :class:`~pyspark.sql.Column` or str column names or :class:`~pyspark.sql.Column`\\s Examples -------- >>> from pyspark.sql.functions import map_concat >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as map1, map(3, 'c') as map2") >>> df.select(map_concat("map1", "map2").alias("map3")).show(truncate=False) +------------------------+ |map3 | +------------------------+ |{1 -> a, 2 -> b, 3 -> c}| +------------------------+ """ sc = SparkContext._active_spark_context if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] jc = sc._jvm.functions.map_concat(_to_seq(sc, cols, _to_java_column)) return Column(jc) def sequence(start, stop, step=None): """ Generate a sequence of integers from `start` to `stop`, incrementing by `step`. If `step` is not set, incrementing by 1 if `start` is less than or equal to `stop`, otherwise -1. .. versionadded:: 2.4.0 Examples -------- >>> df1 = spark.createDataFrame([(-2, 2)], ('C1', 'C2')) >>> df1.select(sequence('C1', 'C2').alias('r')).collect() [Row(r=[-2, -1, 0, 1, 2])] >>> df2 = spark.createDataFrame([(4, -4, -2)], ('C1', 'C2', 'C3')) >>> df2.select(sequence('C1', 'C2', 'C3').alias('r')).collect() [Row(r=[4, 2, 0, -2, -4])] """ sc = SparkContext._active_spark_context if step is None: return Column(sc._jvm.functions.sequence(_to_java_column(start), _to_java_column(stop))) else: return Column(sc._jvm.functions.sequence( _to_java_column(start), _to_java_column(stop), _to_java_column(step))) def from_csv(col, schema, options=None): """ Parses a column containing a CSV string to a row with the specified schema. Returns `null`, in the case of an unparseable string. .. versionadded:: 3.0.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str string column in CSV format schema :class:`~pyspark.sql.Column` or str a string with schema in DDL format to use when parsing the CSV column. options : dict, optional options to control parsing. accepts the same options as the CSV datasource. See `Data Source Option <https://spark.apache.org/docs/latest/sql-data-sources-csv.html#data-source-option>`_ in the version you use. .. # noqa Examples -------- >>> data = [("1,2,3",)] >>> df = spark.createDataFrame(data, ("value",)) >>> df.select(from_csv(df.value, "a INT, b INT, c INT").alias("csv")).collect() [Row(csv=Row(a=1, b=2, c=3))] >>> value = data[0][0] >>> df.select(from_csv(df.value, schema_of_csv(value)).alias("csv")).collect() [Row(csv=Row(_c0=1, _c1=2, _c2=3))] >>> data = [(" abc",)] >>> df = spark.createDataFrame(data, ("value",)) >>> options = {'ignoreLeadingWhiteSpace': True} >>> df.select(from_csv(df.value, "s string", options).alias("csv")).collect() [Row(csv=Row(s='abc'))] """ sc = SparkContext._active_spark_context if isinstance(schema, str): schema = _create_column_from_literal(schema) elif isinstance(schema, Column): schema = _to_java_column(schema) else: raise TypeError("schema argument should be a column or string") jc = sc._jvm.functions.from_csv(_to_java_column(col), schema, _options_to_str(options)) return Column(jc) def _unresolved_named_lambda_variable(*name_parts): """ Create `o.a.s.sql.expressions.UnresolvedNamedLambdaVariable`, convert it to o.s.sql.Column and wrap in Python `Column` Parameters ---------- name_parts : str """ sc = SparkContext._active_spark_context name_parts_seq = _to_seq(sc, name_parts) expressions = sc._jvm.org.apache.spark.sql.catalyst.expressions return Column( sc._jvm.Column( expressions.UnresolvedNamedLambdaVariable(name_parts_seq) ) ) def _get_lambda_parameters(f): import inspect signature = inspect.signature(f) parameters = signature.parameters.values() # We should exclude functions that use # variable args and keyword argnames # as well as keyword only args supported_parameter_types = { inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.POSITIONAL_ONLY, } # Validate that # function arity is between 1 and 3 if not (1 <= len(parameters) <= 3): raise ValueError( "f should take between 1 and 3 arguments, but provided function takes {}".format( len(parameters) ) ) # and all arguments can be used as positional if not all(p.kind in supported_parameter_types for p in parameters): raise ValueError( "f should use only POSITIONAL or POSITIONAL OR KEYWORD arguments" ) return parameters def _create_lambda(f): """ Create `o.a.s.sql.expressions.LambdaFunction` corresponding to transformation described by f :param f: A Python of one of the following forms: - (Column) -> Column: ... - (Column, Column) -> Column: ... - (Column, Column, Column) -> Column: ... """ parameters = _get_lambda_parameters(f) sc = SparkContext._active_spark_context expressions = sc._jvm.org.apache.spark.sql.catalyst.expressions argnames = ["x", "y", "z"] args = [ _unresolved_named_lambda_variable( expressions.UnresolvedNamedLambdaVariable.freshVarName(arg) ) for arg in argnames[: len(parameters)] ] result = f(*args) if not isinstance(result, Column): raise ValueError("f should return Column, got {}".format(type(result))) jexpr = result._jc.expr() jargs = _to_seq(sc, [arg._jc.expr() for arg in args]) return expressions.LambdaFunction(jexpr, jargs, False) def _invoke_higher_order_function(name, cols, funs): """ Invokes expression identified by name, (relative to ```org.apache.spark.sql.catalyst.expressions``) and wraps the result with Column (first Scala one, then Python). :param name: Name of the expression :param cols: a list of columns :param funs: a list of((*Column) -> Column functions. :return: a Column """ sc = SparkContext._active_spark_context expressions = sc._jvm.org.apache.spark.sql.catalyst.expressions expr = getattr(expressions, name) jcols = [_to_java_column(col).expr() for col in cols] jfuns = [_create_lambda(f) for f in funs] return Column(sc._jvm.Column(expr(*jcols + jfuns))) def transform(col, f): """ Returns an array of elements after applying a transformation to each element in the input array. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression f : function a function that is applied to each element of the input array. Can take one of the following forms: - Unary ``(x: Column) -> Column: ...`` - Binary ``(x: Column, i: Column) -> Column...``, where the second argument is a 0-based index of the element. and can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([(1, [1, 2, 3, 4])], ("key", "values")) >>> df.select(transform("values", lambda x: x * 2).alias("doubled")).show() +------------+ | doubled| +------------+ |[2, 4, 6, 8]| +------------+ >>> def alternate(x, i): ... return when(i % 2 == 0, x).otherwise(-x) >>> df.select(transform("values", alternate).alias("alternated")).show() +--------------+ | alternated| +--------------+ |[1, -2, 3, -4]| +--------------+ """ return _invoke_higher_order_function("ArrayTransform", [col], [f]) def exists(col, f): """ Returns whether a predicate holds for one or more elements in the array. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression f : function ``(x: Column) -> Column: ...`` returning the Boolean expression. Can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). :return: a :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([(1, [1, 2, 3, 4]), (2, [3, -1, 0])],("key", "values")) >>> df.select(exists("values", lambda x: x < 0).alias("any_negative")).show() +------------+ |any_negative| +------------+ | false| | true| +------------+ """ return _invoke_higher_order_function("ArrayExists", [col], [f]) def forall(col, f): """ Returns whether a predicate holds for every element in the array. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression f : function ``(x: Column) -> Column: ...`` returning the Boolean expression. Can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame( ... [(1, ["bar"]), (2, ["foo", "bar"]), (3, ["foobar", "foo"])], ... ("key", "values") ... ) >>> df.select(forall("values", lambda x: x.rlike("foo")).alias("all_foo")).show() +-------+ |all_foo| +-------+ | false| | false| | true| +-------+ """ return _invoke_higher_order_function("ArrayForAll", [col], [f]) def filter(col, f): """ Returns an array of elements for which a predicate holds in a given array. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression f : function A function that returns the Boolean expression. Can take one of the following forms: - Unary ``(x: Column) -> Column: ...`` - Binary ``(x: Column, i: Column) -> Column...``, where the second argument is a 0-based index of the element. and can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame( ... [(1, ["2018-09-20", "2019-02-03", "2019-07-01", "2020-06-01"])], ... ("key", "values") ... ) >>> def after_second_quarter(x): ... return month(to_date(x)) > 6 >>> df.select( ... filter("values", after_second_quarter).alias("after_second_quarter") ... ).show(truncate=False) +------------------------+ |after_second_quarter | +------------------------+ |[2018-09-20, 2019-07-01]| +------------------------+ """ return _invoke_higher_order_function("ArrayFilter", [col], [f]) def aggregate(col, initialValue, merge, finish=None): """ Applies a binary operator to an initial state and all elements in the array, and reduces this to a single state. The final state is converted into the final result by applying a finish function. Both functions can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression initialValue : :class:`~pyspark.sql.Column` or str initial value. Name of column or expression merge : function a binary function ``(acc: Column, x: Column) -> Column...`` returning expression of the same type as ``zero`` finish : function an optional unary function ``(x: Column) -> Column: ...`` used to convert accumulated value. Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([(1, [20.0, 4.0, 2.0, 6.0, 10.0])], ("id", "values")) >>> df.select(aggregate("values", lit(0.0), lambda acc, x: acc + x).alias("sum")).show() +----+ | sum| +----+ |42.0| +----+ >>> def merge(acc, x): ... count = acc.count + 1 ... sum = acc.sum + x ... return struct(count.alias("count"), sum.alias("sum")) >>> df.select( ... aggregate( ... "values", ... struct(lit(0).alias("count"), lit(0.0).alias("sum")), ... merge, ... lambda acc: acc.sum / acc.count, ... ).alias("mean") ... ).show() +----+ |mean| +----+ | 8.4| +----+ """ if finish is not None: return _invoke_higher_order_function( "ArrayAggregate", [col, initialValue], [merge, finish] ) else: return _invoke_higher_order_function( "ArrayAggregate", [col, initialValue], [merge] ) def zip_with(left, right, f): """ Merge two given arrays, element-wise, into a single array using a function. If one array is shorter, nulls are appended at the end to match the length of the longer array, before applying the function. .. versionadded:: 3.1.0 Parameters ---------- left : :class:`~pyspark.sql.Column` or str name of the first column or expression right : :class:`~pyspark.sql.Column` or str name of the second column or expression f : function a binary function ``(x1: Column, x2: Column) -> Column...`` Can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([(1, [1, 3, 5, 8], [0, 2, 4, 6])], ("id", "xs", "ys")) >>> df.select(zip_with("xs", "ys", lambda x, y: x ** y).alias("powers")).show(truncate=False) +---------------------------+ |powers | +---------------------------+ |[1.0, 9.0, 625.0, 262144.0]| +---------------------------+ >>> df = spark.createDataFrame([(1, ["foo", "bar"], [1, 2, 3])], ("id", "xs", "ys")) >>> df.select(zip_with("xs", "ys", lambda x, y: concat_ws("_", x, y)).alias("xs_ys")).show() +-----------------+ | xs_ys| +-----------------+ |[foo_1, bar_2, 3]| +-----------------+ """ return _invoke_higher_order_function("ZipWith", [left, right], [f]) def transform_keys(col, f): """ Applies a function to every key-value pair in a map and returns a map with the results of those applications as the new keys for the pairs. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression f : function a binary function ``(k: Column, v: Column) -> Column...`` Can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([(1, {"foo": -2.0, "bar": 2.0})], ("id", "data")) >>> df.select(transform_keys( ... "data", lambda k, _: upper(k)).alias("data_upper") ... ).show(truncate=False) +-------------------------+ |data_upper | +-------------------------+ |{BAR -> 2.0, FOO -> -2.0}| +-------------------------+ """ return _invoke_higher_order_function("TransformKeys", [col], [f]) def transform_values(col, f): """ Applies a function to every key-value pair in a map and returns a map with the results of those applications as the new values for the pairs. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression f : function a binary function ``(k: Column, v: Column) -> Column...`` Can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([(1, {"IT": 10.0, "SALES": 2.0, "OPS": 24.0})], ("id", "data")) >>> df.select(transform_values( ... "data", lambda k, v: when(k.isin("IT", "OPS"), v + 10.0).otherwise(v) ... ).alias("new_data")).show(truncate=False) +---------------------------------------+ |new_data | +---------------------------------------+ |{OPS -> 34.0, IT -> 20.0, SALES -> 2.0}| +---------------------------------------+ """ return _invoke_higher_order_function("TransformValues", [col], [f]) def map_filter(col, f): """ Returns a map whose key-value pairs satisfy a predicate. .. versionadded:: 3.1.0 Parameters ---------- col : :class:`~pyspark.sql.Column` or str name of column or expression f : function a binary function ``(k: Column, v: Column) -> Column...`` Can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([(1, {"foo": 42.0, "bar": 1.0, "baz": 32.0})], ("id", "data")) >>> df.select(map_filter( ... "data", lambda _, v: v > 30.0).alias("data_filtered") ... ).show(truncate=False) +--------------------------+ |data_filtered | +--------------------------+ |{baz -> 32.0, foo -> 42.0}| +--------------------------+ """ return _invoke_higher_order_function("MapFilter", [col], [f]) def map_zip_with(col1, col2, f): """ Merge two given maps, key-wise into a single map using a function. .. versionadded:: 3.1.0 Parameters ---------- col1 : :class:`~pyspark.sql.Column` or str name of the first column or expression col2 : :class:`~pyspark.sql.Column` or str name of the second column or expression f : function a ternary function ``(k: Column, v1: Column, v2: Column) -> Column...`` Can use methods of :class:`~pyspark.sql.Column`, functions defined in :py:mod:`pyspark.sql.functions` and Scala ``UserDefinedFunctions``. Python ``UserDefinedFunctions`` are not supported (`SPARK-27052 <https://issues.apache.org/jira/browse/SPARK-27052>`__). Returns ------- :class:`~pyspark.sql.Column` Examples -------- >>> df = spark.createDataFrame([ ... (1, {"IT": 24.0, "SALES": 12.00}, {"IT": 2.0, "SALES": 1.4})], ... ("id", "base", "ratio") ... ) >>> df.select(map_zip_with( ... "base", "ratio", lambda k, v1, v2: round(v1 * v2, 2)).alias("updated_data") ... ).show(truncate=False) +---------------------------+ |updated_data | +---------------------------+ |{SALES -> 16.8, IT -> 48.0}| +---------------------------+ """ return _invoke_higher_order_function("MapZipWith", [col1, col2], [f]) # ---------------------- Partition transform functions -------------------------------- def years(col): """ Partition transform function: A transform for timestamps and dates to partition data into years. .. versionadded:: 3.1.0 Examples -------- >>> df.writeTo("catalog.db.table").partitionedBy( # doctest: +SKIP ... years("ts") ... ).createOrReplace() Notes ----- This function can be used only in combination with :py:meth:`~pyspark.sql.readwriter.DataFrameWriterV2.partitionedBy` method of the `DataFrameWriterV2`. """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.years(_to_java_column(col))) def months(col): """ Partition transform function: A transform for timestamps and dates to partition data into months. .. versionadded:: 3.1.0 Examples -------- >>> df.writeTo("catalog.db.table").partitionedBy( ... months("ts") ... ).createOrReplace() # doctest: +SKIP Notes ----- This function can be used only in combination with :py:meth:`~pyspark.sql.readwriter.DataFrameWriterV2.partitionedBy` method of the `DataFrameWriterV2`. """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.months(_to_java_column(col))) def days(col): """ Partition transform function: A transform for timestamps and dates to partition data into days. .. versionadded:: 3.1.0 Examples -------- >>> df.writeTo("catalog.db.table").partitionedBy( # doctest: +SKIP ... days("ts") ... ).createOrReplace() Notes ----- This function can be used only in combination with :py:meth:`~pyspark.sql.readwriter.DataFrameWriterV2.partitionedBy` method of the `DataFrameWriterV2`. """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.days(_to_java_column(col))) def hours(col): """ Partition transform function: A transform for timestamps to partition data into hours. .. versionadded:: 3.1.0 Examples -------- >>> df.writeTo("catalog.db.table").partitionedBy( # doctest: +SKIP ... hours("ts") ... ).createOrReplace() Notes ----- This function can be used only in combination with :py:meth:`~pyspark.sql.readwriter.DataFrameWriterV2.partitionedBy` method of the `DataFrameWriterV2`. """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.hours(_to_java_column(col))) def bucket(numBuckets, col): """ Partition transform function: A transform for any type that partitions by a hash of the input column. .. versionadded:: 3.1.0 Examples -------- >>> df.writeTo("catalog.db.table").partitionedBy( # doctest: +SKIP ... bucket(42, "ts") ... ).createOrReplace() Notes ----- This function can be used only in combination with :py:meth:`~pyspark.sql.readwriter.DataFrameWriterV2.partitionedBy` method of the `DataFrameWriterV2`. """ if not isinstance(numBuckets, (int, Column)): raise TypeError( "numBuckets should be a Column or an int, got {}".format(type(numBuckets)) ) sc = SparkContext._active_spark_context numBuckets = ( _create_column_from_literal(numBuckets) if isinstance(numBuckets, int) else _to_java_column(numBuckets) ) return Column(sc._jvm.functions.bucket(numBuckets, _to_java_column(col))) # ---------------------------- User Defined Function ---------------------------------- def udf(f=None, returnType=StringType()): """Creates a user defined function (UDF). .. versionadded:: 1.3.0 Parameters ---------- f : function python function if used as a standalone function returnType : :class:`pyspark.sql.types.DataType` or str the return type of the user-defined function. The value can be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. Examples -------- >>> from pyspark.sql.types import IntegerType >>> slen = udf(lambda s: len(s), IntegerType()) >>> @udf ... def to_upper(s): ... if s is not None: ... return s.upper() ... >>> @udf(returnType=IntegerType()) ... def add_one(x): ... if x is not None: ... return x + 1 ... >>> df = spark.createDataFrame([(1, "John Doe", 21)], ("id", "name", "age")) >>> df.select(slen("name").alias("slen(name)"), to_upper("name"), add_one("age")).show() +----------+--------------+------------+ |slen(name)|to_upper(name)|add_one(age)| +----------+--------------+------------+ | 8| JOHN DOE| 22| +----------+--------------+------------+ Notes ----- The user-defined functions are considered deterministic by default. Due to optimization, duplicate invocations may be eliminated or the function may even be invoked more times than it is present in the query. If your function is not deterministic, call `asNondeterministic` on the user defined function. E.g.: >>> from pyspark.sql.types import IntegerType >>> import random >>> random_udf = udf(lambda: int(random.random() * 100), IntegerType()).asNondeterministic() The user-defined functions do not support conditional expressions or short circuiting in boolean expressions and it ends up with being executed all internally. If the functions can fail on special rows, the workaround is to incorporate the condition into the functions. The user-defined functions do not take keyword arguments on the calling side. """ # The following table shows most of Python data and SQL type conversions in normal UDFs that # are not yet visible to the user. Some of behaviors are buggy and might be changed in the near # future. The table might have to be eventually documented externally. # Please see SPARK-28131's PR to see the codes in order to generate the table below. # # +-----------------------------+--------------+----------+------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+----------------------------+------------+--------------+------------------+----------------------+ # noqa # |SQL Type \ Python Value(Type)|None(NoneType)|True(bool)|1(int)| a(str)| 1970-01-01(date)|1970-01-01 00:00:00(datetime)|1.0(float)|array('i', [1])(array)|[1](list)| (1,)(tuple)|bytearray(b'ABC')(bytearray)| 1(Decimal)|{'a': 1}(dict)|Row(kwargs=1)(Row)|Row(namedtuple=1)(Row)| # noqa # +-----------------------------+--------------+----------+------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+----------------------------+------------+--------------+------------------+----------------------+ # noqa # | boolean| None| True| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | tinyint| None| None| 1| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | smallint| None| None| 1| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | int| None| None| 1| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | bigint| None| None| 1| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | string| None| 'true'| '1'| 'a'|'java.util.Gregor...| 'java.util.Gregor...| '1.0'| '[I@66cbb73a'| '[1]'|'[Ljava.lang.Obje...| '[B@5a51eb1a'| '1'| '{a=1}'| X| X| # noqa # | date| None| X| X| X|datetime.date(197...| datetime.date(197...| X| X| X| X| X| X| X| X| X| # noqa # | timestamp| None| X| X| X| X| datetime.datetime...| X| X| X| X| X| X| X| X| X| # noqa # | float| None| None| None| None| None| None| 1.0| None| None| None| None| None| None| X| X| # noqa # | double| None| None| None| None| None| None| 1.0| None| None| None| None| None| None| X| X| # noqa # | array<int>| None| None| None| None| None| None| None| [1]| [1]| [1]| [65, 66, 67]| None| None| X| X| # noqa # | binary| None| None| None|bytearray(b'a')| None| None| None| None| None| None| bytearray(b'ABC')| None| None| X| X| # noqa # | decimal(10,0)| None| None| None| None| None| None| None| None| None| None| None|Decimal('1')| None| X| X| # noqa # | map<string,int>| None| None| None| None| None| None| None| None| None| None| None| None| {'a': 1}| X| X| # noqa # | struct<_1:int>| None| X| X| X| X| X| X| X|Row(_1=1)| Row(_1=1)| X| X| Row(_1=None)| Row(_1=1)| Row(_1=1)| # noqa # +-----------------------------+--------------+----------+------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+----------------------------+------------+--------------+------------------+----------------------+ # noqa # # Note: DDL formatted string is used for 'SQL Type' for simplicity. This string can be # used in `returnType`. # Note: The values inside of the table are generated by `repr`. # Note: 'X' means it throws an exception during the conversion. # Note: Python 3.7.3 is used. # decorator @udf, @udf(), @udf(dataType()) if f is None or isinstance(f, (str, DataType)): # If DataType has been passed as a positional argument # for decorator use it as a returnType return_type = f or returnType return functools.partial(_create_udf, returnType=return_type, evalType=PythonEvalType.SQL_BATCHED_UDF) else: return _create_udf(f=f, returnType=returnType, evalType=PythonEvalType.SQL_BATCHED_UDF) def _test(): import doctest from pyspark.sql import Row, SparkSession import pyspark.sql.functions globs = pyspark.sql.functions.__dict__.copy() spark = SparkSession.builder\ .master("local[4]")\ .appName("sql.functions tests")\ .getOrCreate() sc = spark.sparkContext globs['sc'] = sc globs['spark'] = spark globs['df'] = spark.createDataFrame([Row(age=2, name='Alice'), Row(age=5, name='Bob')]) (failure_count, test_count) = doctest.testmod( pyspark.sql.functions, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
Charence/stk-code
tools/batch.py
16
3189
from matplotlib import pyplot from os import listdir def is_numeric(x): try: float(x) except ValueError: return False return True avg_lap_time = {} avg_pos = {} avg_speed = {} avg_top = {} total_rescued = {} tests = len(listdir('../../batch'))-1 for file in listdir('../../batch'): if (file == '.DS_Store'): continue f = open('../../batch/'+file,'r') ''' name_index = file.find('.') kart_name = str(file[:name_index]) first = file.find('.',name_index+1) track_name = file[name_index+1:first] second = file.find('.',first+1) run = int(file[first+1:second]) ''' track_name = "snowmountain" kart_names = ["gnu", "sara", "tux", "elephpant"] if track_name == "snowmountain": contents = f.readlines() ''' contents = contents[2:contents.index("[debug ] profile: \n")-1] content = [s for s in contents if kart_name in s] data = [float(x) for x in content[0].split() if is_numeric(x)] if kart_name not in avg_lap_time: avg_lap_time[kart_name] = [] avg_pos[kart_name] = [] avg_speed[kart_name] = [] avg_top[kart_name] = [] total_rescued[kart_name] = [] avg_lap_time[kart_name].append(data[2]/4) avg_pos[kart_name].append(data[1]) avg_speed[kart_name].append(data[3]) avg_top[kart_name].append(data[4]) total_rescued[kart_name].append(data[7]) ''' contents = contents[2:6] #TODO check if all is in here for kart in kart_names: content = [s for s in contents if kart in s] data = [float(x) for x in content[0].split() if is_numeric(x)] if kart not in avg_lap_time: avg_lap_time[kart] = [] avg_pos[kart] = [] avg_speed[kart] = [] avg_top[kart] = [] total_rescued[kart] = [] avg_lap_time[kart].append(data[2]/4) avg_pos[kart].append(data[1]) avg_speed[kart].append(data[3]) avg_top[kart].append(data[4]) total_rescued[kart].append(data[7]) tests = len(avg_lap_time["gnu"]) print total_rescued for kart in kart_names: print "rescues for ", kart , ": ", sum(total_rescued[kart])/tests print "avg_lap_time for " , kart , ": " , sum(avg_lap_time[kart])/tests print "avg_pos for " , kart , ": " , sum(avg_pos[kart])/tests print "avg_speed for " , kart , ": " , sum(avg_speed[kart])/tests print "avg_top for " , kart , ": " , sum(avg_top[kart])/tests pyplot.subplot(2,2,1) pyplot.plot(list(xrange(tests)),avg_pos["gnu"], "b-") pyplot.xlabel("tests") pyplot.ylabel("gnu") pyplot.subplot(2,2,2) pyplot.plot(list(xrange(tests)),avg_pos["sara"], "r-") pyplot.xlabel("tests") pyplot.ylabel("sara") pyplot.subplot(2,2,3) pyplot.plot(list(xrange(tests)),avg_pos["elephpant"], "y-") pyplot.xlabel("tests") pyplot.ylabel("elephpant") pyplot.subplot(2,2,4) pyplot.plot(list(xrange(tests)),avg_pos["tux"], "g-") pyplot.xlabel("tests") pyplot.ylabel("tux") pyplot.show()
gpl-3.0
belltailjp/scikit-learn
sklearn/decomposition/base.py
313
5647
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Mathieu Blondel <mathieu@mblondel.org> # Denis A. Engemann <d.engemann@fz-juelich.de> # Kyle Kastner <kastnerkyle@gmail.com> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..utils import check_array from ..utils.extmath import fast_dot from ..utils.validation import check_is_fitted from ..externals import six from abc import ABCMeta, abstractmethod class _BasePCA(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision @abstractmethod def fit(X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ def transform(self, X, y=None): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Examples -------- >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False) >>> ipca.transform(X) # doctest: +SKIP """ check_is_fitted(self, ['mean_', 'components_'], all_or_any=all) X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X, y=None): """Transform data back to its original space. In other words, return an input X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return fast_dot(X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_
bsd-3-clause
tosolveit/scikit-learn
sklearn/ensemble/tests/test_partial_dependence.py
365
6996
""" Testing for the partial dependence module. """ import numpy as np from numpy.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import if_matplotlib from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn import datasets # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the boston dataset boston = datasets.load_boston() # also load the iris dataset iris = datasets.load_iris() def test_partial_dependence_classifier(): # Test partial dependence for classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) pdp, axes = partial_dependence(clf, [0], X=X, grid_resolution=5) # only 4 grid points instead of 5 because only 4 unique X[:,0] vals assert pdp.shape == (1, 4) assert axes[0].shape[0] == 4 # now with our own grid X_ = np.asarray(X) grid = np.unique(X_[:, 0]) pdp_2, axes = partial_dependence(clf, [0], grid=grid) assert axes is None assert_array_equal(pdp, pdp_2) def test_partial_dependence_multiclass(): # Test partial dependence for multi-class classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 n_classes = clf.n_classes_ pdp, axes = partial_dependence( clf, [0], X=iris.data, grid_resolution=grid_resolution) assert pdp.shape == (n_classes, grid_resolution) assert len(axes) == 1 assert axes[0].shape[0] == grid_resolution def test_partial_dependence_regressor(): # Test partial dependence for regressor clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 pdp, axes = partial_dependence( clf, [0], X=boston.data, grid_resolution=grid_resolution) assert pdp.shape == (1, grid_resolution) assert axes[0].shape[0] == grid_resolution def test_partial_dependecy_input(): # Test input validation of partial dependence. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_raises(ValueError, partial_dependence, clf, [0], grid=None, X=None) assert_raises(ValueError, partial_dependence, clf, [0], grid=[0, 1], X=X) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, partial_dependence, {}, [0], X=X) # Gradient boosting estimator must be fit assert_raises(ValueError, partial_dependence, GradientBoostingClassifier(), [0], X=X) assert_raises(ValueError, partial_dependence, clf, [-1], X=X) assert_raises(ValueError, partial_dependence, clf, [100], X=X) # wrong ndim for grid grid = np.random.rand(10, 2, 1) assert_raises(ValueError, partial_dependence, clf, [0], grid=grid) @if_matplotlib def test_plot_partial_dependence(): # Test partial dependence plot function. clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, boston.data, [0, 1, (0, 1)], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with str features and array feature names fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with list feature_names feature_names = boston.feature_names.tolist() fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) @if_matplotlib def test_plot_partial_dependence_input(): # Test partial dependence plot function input checks. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) # not fitted yet assert_raises(ValueError, plot_partial_dependence, clf, X, [0]) clf.fit(X, y) assert_raises(ValueError, plot_partial_dependence, clf, np.array(X)[:, :0], [0]) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, plot_partial_dependence, {}, X, [0]) # must be larger than -1 assert_raises(ValueError, plot_partial_dependence, clf, X, [-1]) # too large feature value assert_raises(ValueError, plot_partial_dependence, clf, X, [100]) # str feature but no feature_names assert_raises(ValueError, plot_partial_dependence, clf, X, ['foobar']) # not valid features value assert_raises(ValueError, plot_partial_dependence, clf, X, [{'foo': 'bar'}]) @if_matplotlib def test_plot_partial_dependence_multiclass(): # Test partial dependence plot function on multi-class input. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label=0, grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # now with symbol labels target = iris.target_names[iris.target] clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label='setosa', grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # label not in gbrt.classes_ assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], label='foobar', grid_resolution=grid_resolution) # label not provided assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], grid_resolution=grid_resolution)
bsd-3-clause
caseyclements/bokeh
bokeh/compat/mplexporter/exporter.py
32
12403
""" Matplotlib Exporter =================== This submodule contains tools for crawling a matplotlib figure and exporting relevant pieces to a renderer. """ import warnings import io from . import utils import matplotlib from matplotlib import transforms from matplotlib.backends.backend_agg import FigureCanvasAgg class Exporter(object): """Matplotlib Exporter Parameters ---------- renderer : Renderer object The renderer object called by the exporter to create a figure visualization. See mplexporter.Renderer for information on the methods which should be defined within the renderer. close_mpl : bool If True (default), close the matplotlib figure as it is rendered. This is useful for when the exporter is used within the notebook, or with an interactive matplotlib backend. """ def __init__(self, renderer, close_mpl=True): self.close_mpl = close_mpl self.renderer = renderer def run(self, fig): """ Run the exporter on the given figure Parmeters --------- fig : matplotlib.Figure instance The figure to export """ # Calling savefig executes the draw() command, putting elements # in the correct place. if fig.canvas is None: fig.canvas = FigureCanvasAgg(fig) fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi) if self.close_mpl: import matplotlib.pyplot as plt plt.close(fig) self.crawl_fig(fig) @staticmethod def process_transform(transform, ax=None, data=None, return_trans=False, force_trans=None): """Process the transform and convert data to figure or data coordinates Parameters ---------- transform : matplotlib Transform object The transform applied to the data ax : matplotlib Axes object (optional) The axes the data is associated with data : ndarray (optional) The array of data to be transformed. return_trans : bool (optional) If true, return the final transform of the data force_trans : matplotlib.transform instance (optional) If supplied, first force the data to this transform Returns ------- code : string Code is either "data", "axes", "figure", or "display", indicating the type of coordinates output. transform : matplotlib transform the transform used to map input data to output data. Returned only if return_trans is True new_data : ndarray Data transformed to match the given coordinate code. Returned only if data is specified """ if isinstance(transform, transforms.BlendedGenericTransform): warnings.warn("Blended transforms not yet supported. " "Zoom behavior may not work as expected.") if force_trans is not None: if data is not None: data = (transform - force_trans).transform(data) transform = force_trans code = "display" if ax is not None: for (c, trans) in [("data", ax.transData), ("axes", ax.transAxes), ("figure", ax.figure.transFigure), ("display", transforms.IdentityTransform())]: if transform.contains_branch(trans): code, transform = (c, transform - trans) break if data is not None: if return_trans: return code, transform.transform(data), transform else: return code, transform.transform(data) else: if return_trans: return code, transform else: return code def crawl_fig(self, fig): """Crawl the figure and process all axes""" with self.renderer.draw_figure(fig=fig, props=utils.get_figure_properties(fig)): for ax in fig.axes: self.crawl_ax(ax) def crawl_ax(self, ax): """Crawl the axes and process all elements within""" with self.renderer.draw_axes(ax=ax, props=utils.get_axes_properties(ax)): for line in ax.lines: self.draw_line(ax, line) for text in ax.texts: self.draw_text(ax, text) for (text, ttp) in zip([ax.xaxis.label, ax.yaxis.label, ax.title], ["xlabel", "ylabel", "title"]): if(hasattr(text, 'get_text') and text.get_text()): self.draw_text(ax, text, force_trans=ax.transAxes, text_type=ttp) for artist in ax.artists: # TODO: process other artists if isinstance(artist, matplotlib.text.Text): self.draw_text(ax, artist) for patch in ax.patches: self.draw_patch(ax, patch) for collection in ax.collections: self.draw_collection(ax, collection) for image in ax.images: self.draw_image(ax, image) legend = ax.get_legend() if legend is not None: props = utils.get_legend_properties(ax, legend) with self.renderer.draw_legend(legend=legend, props=props): if props['visible']: self.crawl_legend(ax, legend) def crawl_legend(self, ax, legend): """ Recursively look through objects in legend children """ legendElements = list(utils.iter_all_children(legend._legend_box, skipContainers=True)) legendElements.append(legend.legendPatch) for child in legendElements: # force a large zorder so it appears on top child.set_zorder(1E6 + child.get_zorder()) try: # What kind of object... if isinstance(child, matplotlib.patches.Patch): self.draw_patch(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.text.Text): if not (child is legend.get_children()[-1] and child.get_text() == 'None'): self.draw_text(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.lines.Line2D): self.draw_line(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.collections.Collection): self.draw_collection(ax, child, force_pathtrans=ax.transAxes) else: warnings.warn("Legend element %s not impemented" % child) except NotImplementedError: warnings.warn("Legend element %s not impemented" % child) def draw_line(self, ax, line, force_trans=None): """Process a matplotlib line and call renderer.draw_line""" coordinates, data = self.process_transform(line.get_transform(), ax, line.get_xydata(), force_trans=force_trans) linestyle = utils.get_line_style(line) if linestyle['dasharray'] is None: linestyle = None markerstyle = utils.get_marker_style(line) if (markerstyle['marker'] in ['None', 'none', None] or markerstyle['markerpath'][0].size == 0): markerstyle = None label = line.get_label() if markerstyle or linestyle: self.renderer.draw_marked_line(data=data, coordinates=coordinates, linestyle=linestyle, markerstyle=markerstyle, label=label, mplobj=line) def draw_text(self, ax, text, force_trans=None, text_type=None): """Process a matplotlib text object and call renderer.draw_text""" content = text.get_text() if content: transform = text.get_transform() position = text.get_position() coords, position = self.process_transform(transform, ax, position, force_trans=force_trans) style = utils.get_text_style(text) self.renderer.draw_text(text=content, position=position, coordinates=coords, text_type=text_type, style=style, mplobj=text) def draw_patch(self, ax, patch, force_trans=None): """Process a matplotlib patch object and call renderer.draw_path""" vertices, pathcodes = utils.SVG_path(patch.get_path()) transform = patch.get_transform() coordinates, vertices = self.process_transform(transform, ax, vertices, force_trans=force_trans) linestyle = utils.get_path_style(patch, fill=patch.get_fill()) self.renderer.draw_path(data=vertices, coordinates=coordinates, pathcodes=pathcodes, style=linestyle, mplobj=patch) def draw_collection(self, ax, collection, force_pathtrans=None, force_offsettrans=None): """Process a matplotlib collection and call renderer.draw_collection""" (transform, transOffset, offsets, paths) = collection._prepare_points() offset_coords, offsets = self.process_transform( transOffset, ax, offsets, force_trans=force_offsettrans) path_coords = self.process_transform( transform, ax, force_trans=force_pathtrans) processed_paths = [utils.SVG_path(path) for path in paths] processed_paths = [(self.process_transform( transform, ax, path[0], force_trans=force_pathtrans)[1], path[1]) for path in processed_paths] path_transforms = collection.get_transforms() try: # matplotlib 1.3: path_transforms are transform objects. # Convert them to numpy arrays. path_transforms = [t.get_matrix() for t in path_transforms] except AttributeError: # matplotlib 1.4: path transforms are already numpy arrays. pass styles = {'linewidth': collection.get_linewidths(), 'facecolor': collection.get_facecolors(), 'edgecolor': collection.get_edgecolors(), 'alpha': collection._alpha, 'zorder': collection.get_zorder()} offset_dict = {"data": "before", "screen": "after"} offset_order = offset_dict[collection.get_offset_position()] self.renderer.draw_path_collection(paths=processed_paths, path_coordinates=path_coords, path_transforms=path_transforms, offsets=offsets, offset_coordinates=offset_coords, offset_order=offset_order, styles=styles, mplobj=collection) def draw_image(self, ax, image): """Process a matplotlib image object and call renderer.draw_image""" self.renderer.draw_image(imdata=utils.image_to_base64(image), extent=image.get_extent(), coordinates="data", style={"alpha": image.get_alpha(), "zorder": image.get_zorder()}, mplobj=image)
bsd-3-clause
harlowja/networkx
examples/drawing/knuth_miles.py
50
2994
#!/usr/bin/env python """ An example using networkx.Graph(). miles_graph() returns an undirected graph over the 128 US cities from the datafile miles_dat.txt. The cities each have location and population data. The edges are labeled with the distance betwen the two cities. This example is described in Section 1.1 in Knuth's book [1,2]. References. ----------- [1] Donald E. Knuth, "The Stanford GraphBase: A Platform for Combinatorial Computing", ACM Press, New York, 1993. [2] http://www-cs-faculty.stanford.edu/~knuth/sgb.html """ __author__ = """Aric Hagberg (hagberg@lanl.gov)""" # Copyright (C) 2004-2015 by # Aric Hagberg <hagberg@lanl.gov> # Dan Schult <dschult@colgate.edu> # Pieter Swart <swart@lanl.gov> # All rights reserved. # BSD license. import networkx as nx def miles_graph(): """ Return the cites example graph in miles_dat.txt from the Stanford GraphBase. """ # open file miles_dat.txt.gz (or miles_dat.txt) import gzip fh = gzip.open('knuth_miles.txt.gz','r') G=nx.Graph() G.position={} G.population={} cities=[] for line in fh.readlines(): line = line.decode() if line.startswith("*"): # skip comments continue numfind=re.compile("^\d+") if numfind.match(line): # this line is distances dist=line.split() for d in dist: G.add_edge(city,cities[i],weight=int(d)) i=i+1 else: # this line is a city, position, population i=1 (city,coordpop)=line.split("[") cities.insert(0,city) (coord,pop)=coordpop.split("]") (y,x)=coord.split(",") G.add_node(city) # assign position - flip x axis for matplotlib, shift origin G.position[city]=(-int(x)+7500,int(y)-3000) G.population[city]=float(pop)/1000.0 return G if __name__ == '__main__': import networkx as nx import re import sys G=miles_graph() print("Loaded miles_dat.txt containing 128 cities.") print("digraph has %d nodes with %d edges"\ %(nx.number_of_nodes(G),nx.number_of_edges(G))) # make new graph of cites, edge if less then 300 miles between them H=nx.Graph() for v in G: H.add_node(v) for (u,v,d) in G.edges(data=True): if d['weight'] < 300: H.add_edge(u,v) # draw with matplotlib/pylab try: import matplotlib.pyplot as plt plt.figure(figsize=(8,8)) # with nodes colored by degree sized by population node_color=[float(H.degree(v)) for v in H] nx.draw(H,G.position, node_size=[G.population[v] for v in H], node_color=node_color, with_labels=False) # scale the axes equally plt.xlim(-5000,500) plt.ylim(-2000,3500) plt.savefig("knuth_miles.png") except: pass
bsd-3-clause
jblackburne/scikit-learn
sklearn/neural_network/rbm.py
46
12291
"""Restricted Boltzmann Machine """ # Authors: Yann N. Dauphin <dauphiya@iro.umontreal.ca> # Vlad Niculae # Gabriel Synnaeve # Lars Buitinck # License: BSD 3 clause import time import numpy as np import scipy.sparse as sp from ..base import BaseEstimator from ..base import TransformerMixin from ..externals.six.moves import xrange from ..utils import check_array from ..utils import check_random_state from ..utils import gen_even_slices from ..utils import issparse from ..utils.extmath import safe_sparse_dot from ..utils.extmath import log_logistic from ..utils.fixes import expit # logistic function from ..utils.validation import check_is_fitted class BernoulliRBM(BaseEstimator, TransformerMixin): """Bernoulli Restricted Boltzmann Machine (RBM). A Restricted Boltzmann Machine with binary visible units and binary hidden units. Parameters are estimated using Stochastic Maximum Likelihood (SML), also known as Persistent Contrastive Divergence (PCD) [2]. The time complexity of this implementation is ``O(d ** 2)`` assuming d ~ n_features ~ n_components. Read more in the :ref:`User Guide <rbm>`. Parameters ---------- n_components : int, optional Number of binary hidden units. learning_rate : float, optional The learning rate for weight updates. It is *highly* recommended to tune this hyper-parameter. Reasonable values are in the 10**[0., -3.] range. batch_size : int, optional Number of examples per minibatch. n_iter : int, optional Number of iterations/sweeps over the training dataset to perform during training. verbose : int, optional The verbosity level. The default, zero, means silent mode. random_state : integer or numpy.RandomState, optional A random number generator instance to define the state of the random permutations generator. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- intercept_hidden_ : array-like, shape (n_components,) Biases of the hidden units. intercept_visible_ : array-like, shape (n_features,) Biases of the visible units. components_ : array-like, shape (n_components, n_features) Weight matrix, where n_features in the number of visible units and n_components is the number of hidden units. Examples -------- >>> import numpy as np >>> from sklearn.neural_network import BernoulliRBM >>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) >>> model = BernoulliRBM(n_components=2) >>> model.fit(X) BernoulliRBM(batch_size=10, learning_rate=0.1, n_components=2, n_iter=10, random_state=None, verbose=0) References ---------- [1] Hinton, G. E., Osindero, S. and Teh, Y. A fast learning algorithm for deep belief nets. Neural Computation 18, pp 1527-1554. http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf [2] Tieleman, T. Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient. International Conference on Machine Learning (ICML) 2008 """ def __init__(self, n_components=256, learning_rate=0.1, batch_size=10, n_iter=10, verbose=0, random_state=None): self.n_components = n_components self.learning_rate = learning_rate self.batch_size = batch_size self.n_iter = n_iter self.verbose = verbose self.random_state = random_state def transform(self, X): """Compute the hidden layer activation probabilities, P(h=1|v=X). Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) The data to be transformed. Returns ------- h : array, shape (n_samples, n_components) Latent representations of the data. """ check_is_fitted(self, "components_") X = check_array(X, accept_sparse='csr', dtype=np.float64) return self._mean_hiddens(X) def _mean_hiddens(self, v): """Computes the probabilities P(h=1|v). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer. Returns ------- h : array-like, shape (n_samples, n_components) Corresponding mean field values for the hidden layer. """ p = safe_sparse_dot(v, self.components_.T) p += self.intercept_hidden_ return expit(p, out=p) def _sample_hiddens(self, v, rng): """Sample from the distribution P(h|v). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer to sample from. rng : RandomState Random number generator to use. Returns ------- h : array-like, shape (n_samples, n_components) Values of the hidden layer. """ p = self._mean_hiddens(v) return (rng.random_sample(size=p.shape) < p) def _sample_visibles(self, h, rng): """Sample from the distribution P(v|h). Parameters ---------- h : array-like, shape (n_samples, n_components) Values of the hidden layer to sample from. rng : RandomState Random number generator to use. Returns ------- v : array-like, shape (n_samples, n_features) Values of the visible layer. """ p = np.dot(h, self.components_) p += self.intercept_visible_ expit(p, out=p) return (rng.random_sample(size=p.shape) < p) def _free_energy(self, v): """Computes the free energy F(v) = - log sum_h exp(-E(v,h)). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer. Returns ------- free_energy : array-like, shape (n_samples,) The value of the free energy. """ return (- safe_sparse_dot(v, self.intercept_visible_) - np.logaddexp(0, safe_sparse_dot(v, self.components_.T) + self.intercept_hidden_).sum(axis=1)) def gibbs(self, v): """Perform one Gibbs sampling step. Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer to start from. Returns ------- v_new : array-like, shape (n_samples, n_features) Values of the visible layer after one Gibbs step. """ check_is_fitted(self, "components_") if not hasattr(self, "random_state_"): self.random_state_ = check_random_state(self.random_state) h_ = self._sample_hiddens(v, self.random_state_) v_ = self._sample_visibles(h_, self.random_state_) return v_ def partial_fit(self, X, y=None): """Fit the model to the data X which should contain a partial segment of the data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. Returns ------- self : BernoulliRBM The fitted model. """ X = check_array(X, accept_sparse='csr', dtype=np.float64) if not hasattr(self, 'random_state_'): self.random_state_ = check_random_state(self.random_state) if not hasattr(self, 'components_'): self.components_ = np.asarray( self.random_state_.normal( 0, 0.01, (self.n_components, X.shape[1]) ), order='F') if not hasattr(self, 'intercept_hidden_'): self.intercept_hidden_ = np.zeros(self.n_components, ) if not hasattr(self, 'intercept_visible_'): self.intercept_visible_ = np.zeros(X.shape[1], ) if not hasattr(self, 'h_samples_'): self.h_samples_ = np.zeros((self.batch_size, self.n_components)) self._fit(X, self.random_state_) def _fit(self, v_pos, rng): """Inner fit for one mini-batch. Adjust the parameters to maximize the likelihood of v using Stochastic Maximum Likelihood (SML). Parameters ---------- v_pos : array-like, shape (n_samples, n_features) The data to use for training. rng : RandomState Random number generator to use for sampling. """ h_pos = self._mean_hiddens(v_pos) v_neg = self._sample_visibles(self.h_samples_, rng) h_neg = self._mean_hiddens(v_neg) lr = float(self.learning_rate) / v_pos.shape[0] update = safe_sparse_dot(v_pos.T, h_pos, dense_output=True).T update -= np.dot(h_neg.T, v_neg) self.components_ += lr * update self.intercept_hidden_ += lr * (h_pos.sum(axis=0) - h_neg.sum(axis=0)) self.intercept_visible_ += lr * (np.asarray( v_pos.sum(axis=0)).squeeze() - v_neg.sum(axis=0)) h_neg[rng.uniform(size=h_neg.shape) < h_neg] = 1.0 # sample binomial self.h_samples_ = np.floor(h_neg, h_neg) def score_samples(self, X): """Compute the pseudo-likelihood of X. Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) Values of the visible layer. Must be all-boolean (not checked). Returns ------- pseudo_likelihood : array-like, shape (n_samples,) Value of the pseudo-likelihood (proxy for likelihood). Notes ----- This method is not deterministic: it computes a quantity called the free energy on X, then on a randomly corrupted version of X, and returns the log of the logistic function of the difference. """ check_is_fitted(self, "components_") v = check_array(X, accept_sparse='csr') rng = check_random_state(self.random_state) # Randomly corrupt one feature in each sample in v. ind = (np.arange(v.shape[0]), rng.randint(0, v.shape[1], v.shape[0])) if issparse(v): data = -2 * v[ind] + 1 v_ = v + sp.csr_matrix((data.A.ravel(), ind), shape=v.shape) else: v_ = v.copy() v_[ind] = 1 - v_[ind] fe = self._free_energy(v) fe_ = self._free_energy(v_) return v.shape[1] * log_logistic(fe_ - fe) def fit(self, X, y=None): """Fit the model to the data X. Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) Training data. Returns ------- self : BernoulliRBM The fitted model. """ X = check_array(X, accept_sparse='csr', dtype=np.float64) n_samples = X.shape[0] rng = check_random_state(self.random_state) self.components_ = np.asarray( rng.normal(0, 0.01, (self.n_components, X.shape[1])), order='F') self.intercept_hidden_ = np.zeros(self.n_components, ) self.intercept_visible_ = np.zeros(X.shape[1], ) self.h_samples_ = np.zeros((self.batch_size, self.n_components)) n_batches = int(np.ceil(float(n_samples) / self.batch_size)) batch_slices = list(gen_even_slices(n_batches * self.batch_size, n_batches, n_samples)) verbose = self.verbose begin = time.time() for iteration in xrange(1, self.n_iter + 1): for batch_slice in batch_slices: self._fit(X[batch_slice], rng) if verbose: end = time.time() print("[%s] Iteration %d, pseudo-likelihood = %.2f," " time = %.2fs" % (type(self).__name__, iteration, self.score_samples(X).mean(), end - begin)) begin = end return self
bsd-3-clause
abonil91/ncanda-data-integration
scripts/redcap/scoring/ctq/__init__.py
1
3092
#!/usr/bin/env python ## ## Copyright 2016 SRI International ## See COPYING file distributed along with the package for the copyright and license terms. ## import pandas import Rwrapper # # Variables from surveys needed for CTQ # # LimeSurvey field names lime_fields = [ "ctq_set1 [ctq1]", "ctq_set1 [ctq2]", "ctq_set1 [ctq3]", "ctq_set1 [ctq4]", "ctq_set1 [ctq5]", "ctq_set1 [ctq6]", "ctq_set1 [ctq7]", "ctq_set2 [ctq8]", "ctq_set2 [ctq9]", "ctq_set2 [ct10]", "ctq_set2 [ct11]", "ctq_set2 [ct12]", "ctq_set2 [ct13]", "ctq_set2 [ct14]", "ctq_set3 [ctq15]", "ctq_set3 [ctq16]", "ctq_set3 [ctq17]", "ctq_set3 [ctq18]", "ctq_set3 [ctq19]", "ctq_set3 [ctq20]", "ctq_set3 [ctq21]", "ctq_set4 [ctq22]", "ctq_set4 [ctq23]", "ctq_set4 [ctq24]", "ctq_set4 [ctq25]", "ctq_set4 [ctq26]", "ctq_set4 [ctq27]", "ctq_set4 [ctq28]" ] # Dictionary to recover LimeSurvey field names from REDCap names rc2lime = dict() for field in lime_fields: rc2lime[Rwrapper.label_to_sri( 'youthreport2', field )] = field # REDCap fields names input_fields = { 'mrireport' : [ 'youth_report_2_complete', 'youthreport2_missing' ] + rc2lime.keys() } # # This determines the name of the form in REDCap where the results are posted. # output_form = 'clinical' # # CTQ field names mapping from R to REDCap # R2rc = { 'Emotional Abuse Scale Total Score' : 'ctq_ea', 'Physical Abuse Scale Total Score' : 'ctq_pa', 'Sexual Abuse Scale Total Score' : 'ctq_sa', 'Emotional Neglect Scale Total Score' : 'ctq_en', 'Physical Neglect Scale Total Score' : 'ctq_pn', 'Minimization/Denial Scale Total Score' : 'ctq_minds' } # # Scoring function - take requested data (as requested by "input_fields") for each (subject,event), and demographics (date of birth, gender) for each subject. # def compute_scores( data, demographics ): # Get rid of all records that don't have YR2 data.dropna( axis=1, subset=['youth_report_2_complete'] ) data = data[ data['youth_report_2_complete'] > 0 ] data = data[ ~(data['youthreport2_missing'] > 0) ] # If no records to score, return empty DF if len( data ) == 0: return pandas.DataFrame() # Replace all column labels with the original LimeSurvey names data.columns = Rwrapper.map_labels( data.columns, rc2lime ) # Call the scoring function for all table rows scores = data.apply( Rwrapper.runscript, axis=1, Rscript='ctq/CTQ.R', scores_key='CTQ.ary' ) # Replace all score columns with REDCap field names scores.columns = Rwrapper.map_labels( scores.columns, R2rc ) # Simply copy completion status from the input surveys scores['ctq_complete'] = data['youth_report_2_complete'].map( int ) # Make a proper multi-index for the scores table scores.index = pandas.MultiIndex.from_tuples(scores.index) scores.index.names = ['study_id', 'redcap_event_name'] # Return the computed scores - this is what will be imported back into REDCap outfield_list = [ 'ctq_complete' ] + R2rc.values() return scores[ outfield_list ]
bsd-3-clause
jorik041/scikit-learn
sklearn/linear_model/randomized_l1.py
95
23365
""" Randomized Lasso/Logistic: feature selection based on Lasso and sparse Logistic Regression """ # Author: Gael Varoquaux, Alexandre Gramfort # # License: BSD 3 clause import itertools from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy.sparse import issparse from scipy import sparse from scipy.interpolate import interp1d from .base import center_data from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.joblib import Memory, Parallel, delayed from ..utils import (as_float_array, check_random_state, check_X_y, check_array, safe_mask, ConvergenceWarning) from ..utils.validation import check_is_fitted from .least_angle import lars_path, LassoLarsIC from .logistic import LogisticRegression ############################################################################### # Randomized linear model: feature selection def _resample_model(estimator_func, X, y, scaling=.5, n_resampling=200, n_jobs=1, verbose=False, pre_dispatch='3*n_jobs', random_state=None, sample_fraction=.75, **params): random_state = check_random_state(random_state) # We are generating 1 - weights, and not weights n_samples, n_features = X.shape if not (0 < scaling < 1): raise ValueError( "'scaling' should be between 0 and 1. Got %r instead." % scaling) scaling = 1. - scaling scores_ = 0.0 for active_set in Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)( delayed(estimator_func)( X, y, weights=scaling * random_state.random_integers( 0, 1, size=(n_features,)), mask=(random_state.rand(n_samples) < sample_fraction), verbose=max(0, verbose - 1), **params) for _ in range(n_resampling)): scores_ += active_set scores_ /= n_resampling return scores_ class BaseRandomizedLinearModel(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class to implement randomized linear models for feature selection This implements the strategy by Meinshausen and Buhlman: stability selection with randomized sampling, and random re-weighting of the penalty. """ @abstractmethod def __init__(self): pass _center_data = staticmethod(center_data) def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, sparse matrix shape = [n_samples, n_features] Training data. y : array-like, shape = [n_samples] Target values. Returns ------- self : object Returns an instance of self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], y_numeric=True) X = as_float_array(X, copy=False) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = self._center_data(X, y, self.fit_intercept, self.normalize) estimator_func, params = self._make_estimator_and_params(X, y) memory = self.memory if isinstance(memory, six.string_types): memory = Memory(cachedir=memory) scores_ = memory.cache( _resample_model, ignore=['verbose', 'n_jobs', 'pre_dispatch'] )( estimator_func, X, y, scaling=self.scaling, n_resampling=self.n_resampling, n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=self.pre_dispatch, random_state=self.random_state, sample_fraction=self.sample_fraction, **params) if scores_.ndim == 1: scores_ = scores_[:, np.newaxis] self.all_scores_ = scores_ self.scores_ = np.max(self.all_scores_, axis=1) return self def _make_estimator_and_params(self, X, y): """Return the parameters passed to the estimator""" raise NotImplementedError def get_support(self, indices=False): """Return a mask, or list, of the features/indices selected.""" check_is_fitted(self, 'scores_') mask = self.scores_ > self.selection_threshold return mask if not indices else np.where(mask)[0] # XXX: the two function below are copy/pasted from feature_selection, # Should we add an intermediate base class? def transform(self, X): """Transform a new matrix using the selected features""" mask = self.get_support() X = check_array(X) if len(mask) != X.shape[1]: raise ValueError("X has a different shape than during fitting.") return check_array(X)[:, safe_mask(X, mask)] def inverse_transform(self, X): """Transform a new matrix using the selected features""" support = self.get_support() if X.ndim == 1: X = X[None, :] Xt = np.zeros((X.shape[0], support.size)) Xt[:, support] = X return Xt ############################################################################### # Randomized lasso: regression settings def _randomized_lasso(X, y, weights, mask, alpha=1., verbose=False, precompute=False, eps=np.finfo(np.float).eps, max_iter=500): X = X[safe_mask(X, mask)] y = y[mask] # Center X and y to avoid fit the intercept X -= X.mean(axis=0) y -= y.mean() alpha = np.atleast_1d(np.asarray(alpha, dtype=np.float)) X = (1 - weights) * X with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) alphas_, _, coef_ = lars_path(X, y, Gram=precompute, copy_X=False, copy_Gram=False, alpha_min=np.min(alpha), method='lasso', verbose=verbose, max_iter=max_iter, eps=eps) if len(alpha) > 1: if len(alphas_) > 1: # np.min(alpha) < alpha_min interpolator = interp1d(alphas_[::-1], coef_[:, ::-1], bounds_error=False, fill_value=0.) scores = (interpolator(alpha) != 0.0) else: scores = np.zeros((X.shape[1], len(alpha)), dtype=np.bool) else: scores = coef_[:, -1] != 0.0 return scores class RandomizedLasso(BaseRandomizedLinearModel): """Randomized Lasso. Randomized Lasso works by resampling the train data and computing a Lasso on each resampling. In short, the features selected more often are good features. It is also known as stability selection. Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- alpha : float, 'aic', or 'bic', optional The regularization parameter alpha parameter in the Lasso. Warning: this is not the alpha parameter in the stability selection article which is scaling. scaling : float, optional The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. sample_fraction : float, optional The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. n_resampling : int, optional Number of randomized models. selection_threshold: float, optional The score above which features should be selected. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default True If True, the regressors X will be normalized before regression. precompute : True | False | 'auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument. max_iter : integer, optional Maximum number of iterations to perform in the Lars algorithm. eps : float, optional The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the 'tol' parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' memory : Instance of joblib.Memory or string Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory. Attributes ---------- scores_ : array, shape = [n_features] Feature scores between 0 and 1. all_scores_ : array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization \ parameter. The reference article suggests ``scores_`` is the max of \ ``all_scores_``. Examples -------- >>> from sklearn.linear_model import RandomizedLasso >>> randomized_lasso = RandomizedLasso() Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. References ---------- Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x See also -------- RandomizedLogisticRegression, LogisticRegression """ def __init__(self, alpha='aic', scaling=.5, sample_fraction=.75, n_resampling=200, selection_threshold=.25, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(np.float).eps, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None, verbose=0)): self.alpha = alpha self.scaling = scaling self.sample_fraction = sample_fraction self.n_resampling = n_resampling self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.precompute = precompute self.eps = eps self.random_state = random_state self.n_jobs = n_jobs self.selection_threshold = selection_threshold self.pre_dispatch = pre_dispatch self.memory = memory def _make_estimator_and_params(self, X, y): assert self.precompute in (True, False, None, 'auto') alpha = self.alpha if alpha in ('aic', 'bic'): model = LassoLarsIC(precompute=self.precompute, criterion=self.alpha, max_iter=self.max_iter, eps=self.eps) model.fit(X, y) self.alpha_ = alpha = model.alpha_ return _randomized_lasso, dict(alpha=alpha, max_iter=self.max_iter, eps=self.eps, precompute=self.precompute) ############################################################################### # Randomized logistic: classification settings def _randomized_logistic(X, y, weights, mask, C=1., verbose=False, fit_intercept=True, tol=1e-3): X = X[safe_mask(X, mask)] y = y[mask] if issparse(X): size = len(weights) weight_dia = sparse.dia_matrix((1 - weights, 0), (size, size)) X = X * weight_dia else: X *= (1 - weights) C = np.atleast_1d(np.asarray(C, dtype=np.float)) scores = np.zeros((X.shape[1], len(C)), dtype=np.bool) for this_C, this_scores in zip(C, scores.T): # XXX : would be great to do it with a warm_start ... clf = LogisticRegression(C=this_C, tol=tol, penalty='l1', dual=False, fit_intercept=fit_intercept) clf.fit(X, y) this_scores[:] = np.any( np.abs(clf.coef_) > 10 * np.finfo(np.float).eps, axis=0) return scores class RandomizedLogisticRegression(BaseRandomizedLinearModel): """Randomized Logistic Regression Randomized Regression works by resampling the train data and computing a LogisticRegression on each resampling. In short, the features selected more often are good features. It is also known as stability selection. Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- C : float, optional, default=1 The regularization parameter C in the LogisticRegression. scaling : float, optional, default=0.5 The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. sample_fraction : float, optional, default=0.75 The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. n_resampling : int, optional, default=200 Number of randomized models. selection_threshold : float, optional, default=0.25 The score above which features should be selected. fit_intercept : boolean, optional, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). verbose : boolean or integer, optional Sets the verbosity amount normalize : boolean, optional, default=True If True, the regressors X will be normalized before regression. tol : float, optional, default=1e-3 tolerance for stopping criteria of LogisticRegression n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' memory : Instance of joblib.Memory or string Used for internal caching. By default, no caching is done. If a string is given, it is the path to the caching directory. Attributes ---------- scores_ : array, shape = [n_features] Feature scores between 0 and 1. all_scores_ : array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization \ parameter. The reference article suggests ``scores_`` is the max \ of ``all_scores_``. Examples -------- >>> from sklearn.linear_model import RandomizedLogisticRegression >>> randomized_logistic = RandomizedLogisticRegression() Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. References ---------- Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x See also -------- RandomizedLasso, Lasso, ElasticNet """ def __init__(self, C=1, scaling=.5, sample_fraction=.75, n_resampling=200, selection_threshold=.25, tol=1e-3, fit_intercept=True, verbose=False, normalize=True, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None, verbose=0)): self.C = C self.scaling = scaling self.sample_fraction = sample_fraction self.n_resampling = n_resampling self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.tol = tol self.random_state = random_state self.n_jobs = n_jobs self.selection_threshold = selection_threshold self.pre_dispatch = pre_dispatch self.memory = memory def _make_estimator_and_params(self, X, y): params = dict(C=self.C, tol=self.tol, fit_intercept=self.fit_intercept) return _randomized_logistic, params def _center_data(self, X, y, fit_intercept, normalize=False): """Center the data in X but not in y""" X, _, Xmean, _, X_std = center_data(X, y, fit_intercept, normalize=normalize) return X, y, Xmean, y, X_std ############################################################################### # Stability paths def _lasso_stability_path(X, y, mask, weights, eps): "Inner loop of lasso_stability_path" X = X * weights[np.newaxis, :] X = X[safe_mask(X, mask), :] y = y[mask] alpha_max = np.max(np.abs(np.dot(X.T, y))) / X.shape[0] alpha_min = eps * alpha_max # set for early stopping in path with warnings.catch_warnings(): warnings.simplefilter('ignore', ConvergenceWarning) alphas, _, coefs = lars_path(X, y, method='lasso', verbose=False, alpha_min=alpha_min) # Scale alpha by alpha_max alphas /= alphas[0] # Sort alphas in assending order alphas = alphas[::-1] coefs = coefs[:, ::-1] # Get rid of the alphas that are too small mask = alphas >= eps # We also want to keep the first one: it should be close to the OLS # solution mask[0] = True alphas = alphas[mask] coefs = coefs[:, mask] return alphas, coefs def lasso_stability_path(X, y, scaling=0.5, random_state=None, n_resampling=200, n_grid=100, sample_fraction=0.75, eps=4 * np.finfo(np.float).eps, n_jobs=1, verbose=False): """Stabiliy path based on randomized Lasso estimates Read more in the :ref:`User Guide <randomized_l1>`. Parameters ---------- X : array-like, shape = [n_samples, n_features] training data. y : array-like, shape = [n_samples] target values. scaling : float, optional, default=0.5 The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1. random_state : integer or numpy.random.RandomState, optional The generator used to randomize the design. n_resampling : int, optional, default=200 Number of randomized models. n_grid : int, optional, default=100 Number of grid points. The path is linearly reinterpolated on a grid between 0 and 1 before computing the scores. sample_fraction : float, optional, default=0.75 The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used. eps : float, optional Smallest value of alpha / alpha_max considered n_jobs : integer, optional Number of CPUs to use during the resampling. If '-1', use all the CPUs verbose : boolean or integer, optional Sets the verbosity amount Returns ------- alphas_grid : array, shape ~ [n_grid] The grid points between 0 and 1: alpha/alpha_max scores_path : array, shape = [n_features, n_grid] The scores for each feature along the path. Notes ----- See examples/linear_model/plot_sparse_recovery.py for an example. """ rng = check_random_state(random_state) if not (0 < scaling < 1): raise ValueError("Parameter 'scaling' should be between 0 and 1." " Got %r instead." % scaling) n_samples, n_features = X.shape paths = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_lasso_stability_path)( X, y, mask=rng.rand(n_samples) < sample_fraction, weights=1. - scaling * rng.random_integers(0, 1, size=(n_features,)), eps=eps) for k in range(n_resampling)) all_alphas = sorted(list(set(itertools.chain(*[p[0] for p in paths])))) # Take approximately n_grid values stride = int(max(1, int(len(all_alphas) / float(n_grid)))) all_alphas = all_alphas[::stride] if not all_alphas[-1] == 1: all_alphas.append(1.) all_alphas = np.array(all_alphas) scores_path = np.zeros((n_features, len(all_alphas))) for alphas, coefs in paths: if alphas[0] != 0: alphas = np.r_[0, alphas] coefs = np.c_[np.ones((n_features, 1)), coefs] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] coefs = np.c_[coefs, np.zeros((n_features, 1))] scores_path += (interp1d(alphas, coefs, kind='nearest', bounds_error=False, fill_value=0, axis=-1)(all_alphas) != 0) scores_path /= n_resampling return all_alphas, scores_path
bsd-3-clause
jingxiang-li/kaggle-yelp
model/level3_model_rf.py
1
5669
from __future__ import division from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.calibration import CalibratedClassifierCV from sklearn.metrics import f1_score import argparse from os import path import os from hyperopt import fmin, tpe, hp, STATUS_OK, Trials from utils import * import pickle np.random.seed(54568464) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--yix', type=int, default=0) return parser.parse_args() # functions for hyperparameters optimization class Score: def __init__(self, X, y): self.y = y self.X = X def get_score(self, params): params['n_estimators'] = int(params['n_estimators']) params['max_depth'] = int(params['max_depth']) params['min_samples_split'] = int(params['min_samples_split']) params['min_samples_leaf'] = int(params['min_samples_leaf']) params['n_estimators'] = int(params['n_estimators']) print('Training with params:') print(params) # cross validation here scores = [] for train_ix, test_ix in makeKFold(5, self.y, 1): X_train, y_train = self.X[train_ix, :], self.y[train_ix] X_test, y_test = self.X[test_ix, :], self.y[test_ix] weight = y_train.shape[0] / (2 * np.bincount(y_train)) sample_weight = np.array([weight[i] for i in y_train]) clf = RandomForestClassifier(**params) cclf = CalibratedClassifierCV(base_estimator=clf, method='isotonic', cv=makeKFold(3, y_train, 1)) cclf.fit(X_train, y_train, sample_weight) pred = cclf.predict(X_test) scores.append(f1_score(y_true=y_test, y_pred=pred)) print(scores) score = np.mean(scores) print(score) return {'loss': -score, 'status': STATUS_OK} def optimize(trials, X, y, max_evals): space = { 'n_estimators': hp.quniform('n_estimators', 100, 500, 50), 'criterion': hp.choice('criterion', ['gini', 'entropy']), 'max_depth': hp.quniform('max_depth', 1, 7, 1), 'min_samples_split': hp.quniform('min_samples_split', 1, 9, 2), 'min_samples_leaf': hp.quniform('min_samples_leaf', 1, 5, 1), 'bootstrap': True, 'oob_score': True, 'n_jobs': -1 } s = Score(X, y) best = fmin(s.get_score, space, algo=tpe.suggest, trials=trials, max_evals=max_evals ) best['n_estimators'] = int(best['n_estimators']) best['max_depth'] = int(best['max_depth']) best['min_samples_split'] = int(best['min_samples_split']) best['min_samples_leaf'] = int(best['min_samples_leaf']) best['n_estimators'] = int(best['n_estimators']) best['criterion'] = ['gini', 'entropy'][best['criterion']] best['bootstrap'] = True best['oob_score'] = True best['n_jobs'] = -1 del s return best def out_fold_pred(params, X, y): # cross validation here preds = np.zeros((y.shape[0])) for train_ix, test_ix in makeKFold(5, y, 1): X_train, y_train = X[train_ix, :], y[train_ix] X_test = X[test_ix, :] weight = y_train.shape[0] / (2 * np.bincount(y_train)) sample_weight = np.array([weight[i] for i in y_train]) clf = RandomForestClassifier(**params) cclf = CalibratedClassifierCV(base_estimator=clf, method='isotonic', cv=makeKFold(3, y_train, 1)) cclf.fit(X_train, y_train, sample_weight) pred = cclf.predict_proba(X_test)[:, 1] preds[test_ix] = pred return preds def get_model(params, X, y): clf = RandomForestClassifier(**params) cclf = CalibratedClassifierCV(base_estimator=clf, method='isotonic', cv=makeKFold(3, y, 1)) weight = y.shape[0] / (2 * np.bincount(y)) sample_weight = np.array([weight[i] for i in y]) cclf.fit(X, y, sample_weight) return cclf args = parse_args() data_dir = '../level3-feature/' + str(args.yix) X_train = np.load(path.join(data_dir, 'X_train.npy')) X_test = np.load(path.join(data_dir, 'X_test.npy')) y_train = np.load(path.join(data_dir, 'y_train.npy')) print(X_train.shape, X_test.shape, y_train.shape) X_train_ext = np.load('../extra_ftrs/' + str(args.yix) + '/X_train_ext.npy') X_test_ext = np.load('../extra_ftrs/' + str(args.yix) + '/X_test_ext.npy') print(X_train_ext.shape, X_test_ext.shape) X_train = np.hstack((X_train, X_train_ext)) X_test = np.hstack((X_test, X_test_ext)) print('Add Extra') print(X_train.shape, X_test.shape, y_train.shape) # Now we have X_train, X_test, y_train trials = Trials() params = optimize(trials, X_train, y_train, 50) out_fold = out_fold_pred(params, X_train, y_train) clf = get_model(params, X_train, y_train) preds = clf.predict_proba(X_test)[:, 1] save_dir = '../level3-model-final/' + str(args.yix) print(save_dir) if not path.exists(save_dir): os.makedirs(save_dir) # save model, parameter, outFold_pred, pred with open(path.join(save_dir, 'model_rf.pkl'), 'wb') as f_model: pickle.dump(clf.calibrated_classifiers_, f_model) with open(path.join(save_dir, 'param_rf.pkl'), 'wb') as f_param: pickle.dump(params, f_param) np.save(path.join(save_dir, 'pred_rf.npy'), preds) np.save(path.join(save_dir, 'outFold_rf.npy'), out_fold)
mit
jreback/pandas
pandas/io/formats/html.py
2
23192
""" Module for formatting output data in HTML. """ from textwrap import dedent from typing import Any, Dict, Iterable, List, Mapping, Optional, Tuple, Union, cast from pandas._config import get_option from pandas._libs import lib from pandas import MultiIndex, option_context from pandas.io.common import is_url from pandas.io.formats.format import DataFrameFormatter, get_level_lengths from pandas.io.formats.printing import pprint_thing class HTMLFormatter: """ Internal class for formatting output data in html. This class is intended for shared functionality between DataFrame.to_html() and DataFrame._repr_html_(). Any logic in common with other output formatting methods should ideally be inherited from classes in format.py and this class responsible for only producing html markup. """ indent_delta = 2 def __init__( self, formatter: DataFrameFormatter, classes: Optional[Union[str, List[str], Tuple[str, ...]]] = None, border: Optional[int] = None, table_id: Optional[str] = None, render_links: bool = False, ) -> None: self.fmt = formatter self.classes = classes self.frame = self.fmt.frame self.columns = self.fmt.tr_frame.columns self.elements: List[str] = [] self.bold_rows = self.fmt.bold_rows self.escape = self.fmt.escape self.show_dimensions = self.fmt.show_dimensions if border is None: border = cast(int, get_option("display.html.border")) self.border = border self.table_id = table_id self.render_links = render_links self.col_space = { column: f"{value}px" if isinstance(value, int) else value for column, value in self.fmt.col_space.items() } def to_string(self) -> str: lines = self.render() if any(isinstance(x, str) for x in lines): lines = [str(x) for x in lines] return "\n".join(lines) def render(self) -> List[str]: self._write_table() if self.should_show_dimensions: by = chr(215) # × self.write( f"<p>{len(self.frame)} rows {by} {len(self.frame.columns)} columns</p>" ) return self.elements @property def should_show_dimensions(self): return self.fmt.should_show_dimensions @property def show_row_idx_names(self) -> bool: return self.fmt.show_row_idx_names @property def show_col_idx_names(self) -> bool: return self.fmt.show_col_idx_names @property def row_levels(self) -> int: if self.fmt.index: # showing (row) index return self.frame.index.nlevels elif self.show_col_idx_names: # see gh-22579 # Column misalignment also occurs for # a standard index when the columns index is named. # If the row index is not displayed a column of # blank cells need to be included before the DataFrame values. return 1 # not showing (row) index return 0 def _get_columns_formatted_values(self) -> Iterable: return self.columns @property def is_truncated(self) -> bool: return self.fmt.is_truncated @property def ncols(self) -> int: return len(self.fmt.tr_frame.columns) def write(self, s: Any, indent: int = 0) -> None: rs = pprint_thing(s) self.elements.append(" " * indent + rs) def write_th( self, s: Any, header: bool = False, indent: int = 0, tags: Optional[str] = None ) -> None: """ Method for writing a formatted <th> cell. If col_space is set on the formatter then that is used for the value of min-width. Parameters ---------- s : object The data to be written inside the cell. header : bool, default False Set to True if the <th> is for use inside <thead>. This will cause min-width to be set if there is one. indent : int, default 0 The indentation level of the cell. tags : str, default None Tags to include in the cell. Returns ------- A written <th> cell. """ col_space = self.col_space.get(s, None) if header and col_space is not None: tags = tags or "" tags += f'style="min-width: {col_space};"' self._write_cell(s, kind="th", indent=indent, tags=tags) def write_td(self, s: Any, indent: int = 0, tags: Optional[str] = None) -> None: self._write_cell(s, kind="td", indent=indent, tags=tags) def _write_cell( self, s: Any, kind: str = "td", indent: int = 0, tags: Optional[str] = None ) -> None: if tags is not None: start_tag = f"<{kind} {tags}>" else: start_tag = f"<{kind}>" if self.escape: # escape & first to prevent double escaping of & esc = {"&": r"&amp;", "<": r"&lt;", ">": r"&gt;"} else: esc = {} rs = pprint_thing(s, escape_chars=esc).strip() if self.render_links and is_url(rs): rs_unescaped = pprint_thing(s, escape_chars={}).strip() start_tag += f'<a href="{rs_unescaped}" target="_blank">' end_a = "</a>" else: end_a = "" self.write(f"{start_tag}{rs}{end_a}</{kind}>", indent) def write_tr( self, line: Iterable, indent: int = 0, indent_delta: int = 0, header: bool = False, align: Optional[str] = None, tags: Optional[Dict[int, str]] = None, nindex_levels: int = 0, ) -> None: if tags is None: tags = {} if align is None: self.write("<tr>", indent) else: self.write(f'<tr style="text-align: {align};">', indent) indent += indent_delta for i, s in enumerate(line): val_tag = tags.get(i, None) if header or (self.bold_rows and i < nindex_levels): self.write_th(s, indent=indent, header=header, tags=val_tag) else: self.write_td(s, indent, tags=val_tag) indent -= indent_delta self.write("</tr>", indent) def _write_table(self, indent: int = 0) -> None: _classes = ["dataframe"] # Default class. use_mathjax = get_option("display.html.use_mathjax") if not use_mathjax: _classes.append("tex2jax_ignore") if self.classes is not None: if isinstance(self.classes, str): self.classes = self.classes.split() if not isinstance(self.classes, (list, tuple)): raise TypeError( "classes must be a string, list, " f"or tuple, not {type(self.classes)}" ) _classes.extend(self.classes) if self.table_id is None: id_section = "" else: id_section = f' id="{self.table_id}"' self.write( f'<table border="{self.border}" class="{" ".join(_classes)}"{id_section}>', indent, ) if self.fmt.header or self.show_row_idx_names: self._write_header(indent + self.indent_delta) self._write_body(indent + self.indent_delta) self.write("</table>", indent) def _write_col_header(self, indent: int) -> None: is_truncated_horizontally = self.fmt.is_truncated_horizontally if isinstance(self.columns, MultiIndex): template = 'colspan="{span:d}" halign="left"' if self.fmt.sparsify: # GH3547 sentinel = lib.no_default else: sentinel = False levels = self.columns.format(sparsify=sentinel, adjoin=False, names=False) level_lengths = get_level_lengths(levels, sentinel) inner_lvl = len(level_lengths) - 1 for lnum, (records, values) in enumerate(zip(level_lengths, levels)): if is_truncated_horizontally: # modify the header lines ins_col = self.fmt.tr_col_num if self.fmt.sparsify: recs_new = {} # Increment tags after ... col. for tag, span in list(records.items()): if tag >= ins_col: recs_new[tag + 1] = span elif tag + span > ins_col: recs_new[tag] = span + 1 if lnum == inner_lvl: values = ( values[:ins_col] + ("...",) + values[ins_col:] ) else: # sparse col headers do not receive a ... values = ( values[:ins_col] + (values[ins_col - 1],) + values[ins_col:] ) else: recs_new[tag] = span # if ins_col lies between tags, all col headers # get ... if tag + span == ins_col: recs_new[ins_col] = 1 values = values[:ins_col] + ("...",) + values[ins_col:] records = recs_new inner_lvl = len(level_lengths) - 1 if lnum == inner_lvl: records[ins_col] = 1 else: recs_new = {} for tag, span in list(records.items()): if tag >= ins_col: recs_new[tag + 1] = span else: recs_new[tag] = span recs_new[ins_col] = 1 records = recs_new values = values[:ins_col] + ["..."] + values[ins_col:] # see gh-22579 # Column Offset Bug with to_html(index=False) with # MultiIndex Columns and Index. # Initially fill row with blank cells before column names. # TODO: Refactor to remove code duplication with code # block below for standard columns index. row = [""] * (self.row_levels - 1) if self.fmt.index or self.show_col_idx_names: # see gh-22747 # If to_html(index_names=False) do not show columns # index names. # TODO: Refactor to use _get_column_name_list from # DataFrameFormatter class and create a # _get_formatted_column_labels function for code # parity with DataFrameFormatter class. if self.fmt.show_index_names: name = self.columns.names[lnum] row.append(pprint_thing(name or "")) else: row.append("") tags = {} j = len(row) for i, v in enumerate(values): if i in records: if records[i] > 1: tags[j] = template.format(span=records[i]) else: continue j += 1 row.append(v) self.write_tr(row, indent, self.indent_delta, tags=tags, header=True) else: # see gh-22579 # Column misalignment also occurs for # a standard index when the columns index is named. # Initially fill row with blank cells before column names. # TODO: Refactor to remove code duplication with code block # above for columns MultiIndex. row = [""] * (self.row_levels - 1) if self.fmt.index or self.show_col_idx_names: # see gh-22747 # If to_html(index_names=False) do not show columns # index names. # TODO: Refactor to use _get_column_name_list from # DataFrameFormatter class. if self.fmt.show_index_names: row.append(self.columns.name or "") else: row.append("") row.extend(self._get_columns_formatted_values()) align = self.fmt.justify if is_truncated_horizontally: ins_col = self.row_levels + self.fmt.tr_col_num row.insert(ins_col, "...") self.write_tr(row, indent, self.indent_delta, header=True, align=align) def _write_row_header(self, indent: int) -> None: is_truncated_horizontally = self.fmt.is_truncated_horizontally row = [x if x is not None else "" for x in self.frame.index.names] + [""] * ( self.ncols + (1 if is_truncated_horizontally else 0) ) self.write_tr(row, indent, self.indent_delta, header=True) def _write_header(self, indent: int) -> None: self.write("<thead>", indent) if self.fmt.header: self._write_col_header(indent + self.indent_delta) if self.show_row_idx_names: self._write_row_header(indent + self.indent_delta) self.write("</thead>", indent) def _get_formatted_values(self) -> Dict[int, List[str]]: with option_context("display.max_colwidth", None): fmt_values = {i: self.fmt.format_col(i) for i in range(self.ncols)} return fmt_values def _write_body(self, indent: int) -> None: self.write("<tbody>", indent) fmt_values = self._get_formatted_values() # write values if self.fmt.index and isinstance(self.frame.index, MultiIndex): self._write_hierarchical_rows(fmt_values, indent + self.indent_delta) else: self._write_regular_rows(fmt_values, indent + self.indent_delta) self.write("</tbody>", indent) def _write_regular_rows( self, fmt_values: Mapping[int, List[str]], indent: int ) -> None: is_truncated_horizontally = self.fmt.is_truncated_horizontally is_truncated_vertically = self.fmt.is_truncated_vertically nrows = len(self.fmt.tr_frame) if self.fmt.index: fmt = self.fmt._get_formatter("__index__") if fmt is not None: index_values = self.fmt.tr_frame.index.map(fmt) else: index_values = self.fmt.tr_frame.index.format() row: List[str] = [] for i in range(nrows): if is_truncated_vertically and i == (self.fmt.tr_row_num): str_sep_row = ["..."] * len(row) self.write_tr( str_sep_row, indent, self.indent_delta, tags=None, nindex_levels=self.row_levels, ) row = [] if self.fmt.index: row.append(index_values[i]) # see gh-22579 # Column misalignment also occurs for # a standard index when the columns index is named. # Add blank cell before data cells. elif self.show_col_idx_names: row.append("") row.extend(fmt_values[j][i] for j in range(self.ncols)) if is_truncated_horizontally: dot_col_ix = self.fmt.tr_col_num + self.row_levels row.insert(dot_col_ix, "...") self.write_tr( row, indent, self.indent_delta, tags=None, nindex_levels=self.row_levels ) def _write_hierarchical_rows( self, fmt_values: Mapping[int, List[str]], indent: int ) -> None: template = 'rowspan="{span}" valign="top"' is_truncated_horizontally = self.fmt.is_truncated_horizontally is_truncated_vertically = self.fmt.is_truncated_vertically frame = self.fmt.tr_frame nrows = len(frame) assert isinstance(frame.index, MultiIndex) idx_values = frame.index.format(sparsify=False, adjoin=False, names=False) idx_values = list(zip(*idx_values)) if self.fmt.sparsify: # GH3547 sentinel = lib.no_default levels = frame.index.format(sparsify=sentinel, adjoin=False, names=False) level_lengths = get_level_lengths(levels, sentinel) inner_lvl = len(level_lengths) - 1 if is_truncated_vertically: # Insert ... row and adjust idx_values and # level_lengths to take this into account. ins_row = self.fmt.tr_row_num inserted = False for lnum, records in enumerate(level_lengths): rec_new = {} for tag, span in list(records.items()): if tag >= ins_row: rec_new[tag + 1] = span elif tag + span > ins_row: rec_new[tag] = span + 1 # GH 14882 - Make sure insertion done once if not inserted: dot_row = list(idx_values[ins_row - 1]) dot_row[-1] = "..." idx_values.insert(ins_row, tuple(dot_row)) inserted = True else: dot_row = list(idx_values[ins_row]) dot_row[inner_lvl - lnum] = "..." idx_values[ins_row] = tuple(dot_row) else: rec_new[tag] = span # If ins_row lies between tags, all cols idx cols # receive ... if tag + span == ins_row: rec_new[ins_row] = 1 if lnum == 0: idx_values.insert( ins_row, tuple(["..."] * len(level_lengths)) ) # GH 14882 - Place ... in correct level elif inserted: dot_row = list(idx_values[ins_row]) dot_row[inner_lvl - lnum] = "..." idx_values[ins_row] = tuple(dot_row) level_lengths[lnum] = rec_new level_lengths[inner_lvl][ins_row] = 1 for ix_col in range(len(fmt_values)): fmt_values[ix_col].insert(ins_row, "...") nrows += 1 for i in range(nrows): row = [] tags = {} sparse_offset = 0 j = 0 for records, v in zip(level_lengths, idx_values[i]): if i in records: if records[i] > 1: tags[j] = template.format(span=records[i]) else: sparse_offset += 1 continue j += 1 row.append(v) row.extend(fmt_values[j][i] for j in range(self.ncols)) if is_truncated_horizontally: row.insert( self.row_levels - sparse_offset + self.fmt.tr_col_num, "..." ) self.write_tr( row, indent, self.indent_delta, tags=tags, nindex_levels=len(levels) - sparse_offset, ) else: row = [] for i in range(len(frame)): if is_truncated_vertically and i == (self.fmt.tr_row_num): str_sep_row = ["..."] * len(row) self.write_tr( str_sep_row, indent, self.indent_delta, tags=None, nindex_levels=self.row_levels, ) idx_values = list( zip(*frame.index.format(sparsify=False, adjoin=False, names=False)) ) row = [] row.extend(idx_values[i]) row.extend(fmt_values[j][i] for j in range(self.ncols)) if is_truncated_horizontally: row.insert(self.row_levels + self.fmt.tr_col_num, "...") self.write_tr( row, indent, self.indent_delta, tags=None, nindex_levels=frame.index.nlevels, ) class NotebookFormatter(HTMLFormatter): """ Internal class for formatting output data in html for display in Jupyter Notebooks. This class is intended for functionality specific to DataFrame._repr_html_() and DataFrame.to_html(notebook=True) """ def _get_formatted_values(self) -> Dict[int, List[str]]: return {i: self.fmt.format_col(i) for i in range(self.ncols)} def _get_columns_formatted_values(self) -> List[str]: return self.columns.format() def write_style(self) -> None: # We use the "scoped" attribute here so that the desired # style properties for the data frame are not then applied # throughout the entire notebook. template_first = """\ <style scoped>""" template_last = """\ </style>""" template_select = """\ .dataframe %s { %s: %s; }""" element_props = [ ("tbody tr th:only-of-type", "vertical-align", "middle"), ("tbody tr th", "vertical-align", "top"), ] if isinstance(self.columns, MultiIndex): element_props.append(("thead tr th", "text-align", "left")) if self.show_row_idx_names: element_props.append( ("thead tr:last-of-type th", "text-align", "right") ) else: element_props.append(("thead th", "text-align", "right")) template_mid = "\n\n".join(map(lambda t: template_select % t, element_props)) template = dedent("\n".join((template_first, template_mid, template_last))) self.write(template) def render(self) -> List[str]: self.write("<div>") self.write_style() super().render() self.write("</div>") return self.elements
bsd-3-clause
modelkayak/python_signal_examples
energy_fft.py
1
2685
import numpy as np import scipy from matplotlib import pyplot as plt from numpy import pi as pi # Plotting logic switches time_plot = True freq_plot = True # Oversample to make things look purty oversample = 100 # Frequencies to simulate f_min = 5 #[Hz] f_max = 10 #[Hz] f_list = np.arange(f_min,f_max) # Note: arange does not include the stop pt # Time array t_start = 0 #[s] t_stop = oversample/f_min #[s] f_samp = oversample*f_max #[Hz] t_step = 1/f_samp #[s] # Create a time span, but do not care about the number of points. # This will likely create sinc functions in the FFT. #t = np.arange(t_start,t_stop,t_step) # Use N points to make a faster FFT and to avoid # the addition of zeros at the end of the FFT array. # The addition of zeros will result in the mulitplication # of a box filter in the time domain, which results in # a sinc function in the frequency domain N = int(np.power(2,np.ceil(np.log2(t_stop/t_step)))) # Create a time span, but care about the number of points such that # the signal does not look like a sinc function in the freq. domain. # Source: U of RI ECE, ELE 436: Comm. Sys., FFT Tutorial t = np.linspace(t_start,t_stop,num=N,endpoint=True) # Create random amplitudes a_list = [np.random.randint(1,10) for i in f_list] # Create a time signal with random amplitudes for each frequency x = 0 for a,f in zip(a_list,f_list): x += a*np.sin(2*pi*f*t) # Take the FFT of the signal # Normalize by the size of x due to how a DTFT is taken # Take absoulte value because we only care about the real part # of the signal. X = np.abs(np.fft.fft(x)/x.size) # Get the labels for the frequencies, num pts and delta between them freq_labels = np.fft.fftfreq(N,t[1]-t[0]) # Plot the time signal if time_plot and not freq_plot: plt.figure('Time Domain View') plt.title("Time domain view of signal x") plt.plot(t,x) plt.xlim([0,5/f_min]) plt.xlabel("Time [s]") plt.ylabel("Amplitude") plt.show() # Or plot the frequecy if freq_plot and not time_plot: plt.figure('Frequency Domain View') plt.title("Frequency domain view of signal x") plt.plot(freq_labels,X) plt.xlim([-f_max,f_max]) plt.show() # Or plot both if freq_plot and time_plot: plt.subplot(211) plt.title("Time and frequency domain view of real signal x") plt.plot(t,x) plt.xlim([0,5/f_min]) # Limit the time shown to a small amount plt.xlabel("Time [s]") plt.ylabel("Amplitude") plt.subplot(212) plt.plot(freq_labels,X) plt.xlim([-f_max,f_max]) # Limit the freq shown to a small amount plt.xlabel("Frequency [Hz]") plt.ylabel("Magnitude (linear)") plt.show()
mit
FrankTsui/robust_rescaled_svm
common.py
1
1636
import numpy as np import matplotlib.pyplot as plt def plot_decision_function(classifier, fea, gnd, title): ''' plot the decision function in 2-d plane classifiers: the svm models fea: array like, shape = (smp_num, fea_num) gnd: array like, shape = (smp_num,) title: title of plot ''' fea_min = fea.min(axis = 0) fea_max = fea.max(axis = 0) mesh_num = 100 # meshgrid xx, yy = np.meshgrid(np.linspace(fea_min[0], fea_max[0], mesh_num), \ np.linspace(fea_min[1], fea_max[1], mesh_num)) Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()], last_model_flag = False) Z_first = Z[:, 0].copy() Z_last = Z[:, -1].copy() Z_first = Z_first.reshape(xx.shape) Z_last = Z_last.reshape(xx.shape) del Z # plot the line, the points leg_svm = plt.contour(xx, yy, Z_first, levels = [0.0], colors = 'k') leg_rsvm = plt.contour(xx, yy, Z_last, levels = [0.0], colors = 'r') posi_index = gnd == 1 nega_index = gnd == -1 marker_size = 70 plt.scatter(fea[:, 0], fea[:, 1], marker = 'o', \ s = classifier.smp_weights_mat[:, -1] * marker_size * 4, c = 'w', alpha = 1.0, edgecolors = 'm', label = 'weights') plt.scatter(fea[posi_index, 0], fea[posi_index, 1], marker = '^', s = marker_size, c = 'g', alpha = 0.8, label = 'posi') plt.scatter(fea[nega_index, 0], fea[nega_index, 1], marker = 'x', s = marker_size, c = 'b', label = 'nega') leg_svm.collections[0].set_label('svm') leg_rsvm.collections[0].set_label('rsvm') plt.legend(loc = 'upper left') plt.axis('on') plt.title(title)
apache-2.0
JeanKossaifi/scikit-learn
sklearn/tree/tests/test_tree.py
48
47506
""" Testing for the tree module (sklearn.tree). """ import pickle from functools import partial from itertools import product import platform import numpy as np from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from sklearn.random_projection import sparse_random_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_true from sklearn.utils.testing import raises from sklearn.utils.validation import check_random_state from sklearn.utils.validation import NotFittedError from sklearn.utils.testing import ignore_warnings from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn.tree import ExtraTreeClassifier from sklearn.tree import ExtraTreeRegressor from sklearn import tree from sklearn.tree.tree import SPARSE_SPLITTERS from sklearn.tree._tree import TREE_LEAF from sklearn import datasets from sklearn.preprocessing._weights import _balance_weights CLF_CRITERIONS = ("gini", "entropy") REG_CRITERIONS = ("mse", ) CLF_TREES = { "DecisionTreeClassifier": DecisionTreeClassifier, "Presort-DecisionTreeClassifier": partial(DecisionTreeClassifier, splitter="presort-best"), "ExtraTreeClassifier": ExtraTreeClassifier, } REG_TREES = { "DecisionTreeRegressor": DecisionTreeRegressor, "Presort-DecisionTreeRegressor": partial(DecisionTreeRegressor, splitter="presort-best"), "ExtraTreeRegressor": ExtraTreeRegressor, } ALL_TREES = dict() ALL_TREES.update(CLF_TREES) ALL_TREES.update(REG_TREES) SPARSE_TREES = [name for name, Tree in ALL_TREES.items() if Tree().splitter in SPARSE_SPLITTERS] X_small = np.array([ [0, 0, 4, 0, 0, 0, 1, -14, 0, -4, 0, 0, 0, 0, ], [0, 0, 5, 3, 0, -4, 0, 0, 1, -5, 0.2, 0, 4, 1, ], [-1, -1, 0, 0, -4.5, 0, 0, 2.1, 1, 0, 0, -4.5, 0, 1, ], [-1, -1, 0, -1.2, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 1, ], [-1, -1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, ], [-1, -2, 0, 4, -3, 10, 4, 0, -3.2, 0, 4, 3, -4, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 0, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0, 0, -2, 1, ], [2.11, 8, -6, -0.5, 0, 11, 0, 0, -3.2, 6, 0.5, 0, -1, 0, ], [2, 8, 5, 1, 0.5, -4, 10, 0, 1, -5, 3, 0, 2, 0, ], [2, 0, 1, 1, 1, -1, 1, 0, 0, -2, 3, 0, 1, 0, ], [2, 0, 1, 2, 3, -1, 10, 2, 0, -1, 1, 2, 2, 0, ], [1, 1, 0, 2, 2, -1, 1, 2, 0, -5, 1, 2, 3, 0, ], [3, 1, 0, 3, 0, -4, 10, 0, 1, -5, 3, 0, 3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 0.5, 0, -3, 1, ], [2.11, 8, -6, -0.5, 0, 1, 0, 0, -3.2, 6, 1.5, 1, -1, -1, ], [2.11, 8, -6, -0.5, 0, 10, 0, 0, -3.2, 6, 0.5, 0, -1, -1, ], [2, 0, 5, 1, 0.5, -2, 10, 0, 1, -5, 3, 1, 0, -1, ], [2, 0, 1, 1, 1, -2, 1, 0, 0, -2, 0, 0, 0, 1, ], [2, 1, 1, 1, 2, -1, 10, 2, 0, -1, 0, 2, 1, 1, ], [1, 1, 0, 0, 1, -3, 1, 2, 0, -5, 1, 2, 1, 1, ], [3, 1, 0, 1, 0, -4, 1, 0, 1, -2, 0, 0, 1, 0, ]]) y_small = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] y_small_reg = [1.0, 2.1, 1.2, 0.05, 10, 2.4, 3.1, 1.01, 0.01, 2.98, 3.1, 1.1, 0.0, 1.2, 2, 11, 0, 0, 4.5, 0.201, 1.06, 0.9, 0] # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = np.random.RandomState(1) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] digits = datasets.load_digits() perm = rng.permutation(digits.target.size) digits.data = digits.data[perm] digits.target = digits.target[perm] random_state = check_random_state(0) X_multilabel, y_multilabel = datasets.make_multilabel_classification( random_state=0, n_samples=30, n_features=10) X_sparse_pos = random_state.uniform(size=(20, 5)) X_sparse_pos[X_sparse_pos <= 0.8] = 0. y_random = random_state.randint(0, 4, size=(20, )) X_sparse_mix = sparse_random_matrix(20, 10, density=0.25, random_state=0) DATASETS = { "iris": {"X": iris.data, "y": iris.target}, "boston": {"X": boston.data, "y": boston.target}, "digits": {"X": digits.data, "y": digits.target}, "toy": {"X": X, "y": y}, "clf_small": {"X": X_small, "y": y_small}, "reg_small": {"X": X_small, "y": y_small_reg}, "multilabel": {"X": X_multilabel, "y": y_multilabel}, "sparse-pos": {"X": X_sparse_pos, "y": y_random}, "sparse-neg": {"X": - X_sparse_pos, "y": y_random}, "sparse-mix": {"X": X_sparse_mix, "y": y_random}, "zeros": {"X": np.zeros((20, 3)), "y": y_random} } for name in DATASETS: DATASETS[name]["X_sparse"] = csc_matrix(DATASETS[name]["X"]) def assert_tree_equal(d, s, message): assert_equal(s.node_count, d.node_count, "{0}: inequal number of node ({1} != {2})" "".format(message, s.node_count, d.node_count)) assert_array_equal(d.children_right, s.children_right, message + ": inequal children_right") assert_array_equal(d.children_left, s.children_left, message + ": inequal children_left") external = d.children_right == TREE_LEAF internal = np.logical_not(external) assert_array_equal(d.feature[internal], s.feature[internal], message + ": inequal features") assert_array_equal(d.threshold[internal], s.threshold[internal], message + ": inequal threshold") assert_array_equal(d.n_node_samples.sum(), s.n_node_samples.sum(), message + ": inequal sum(n_node_samples)") assert_array_equal(d.n_node_samples, s.n_node_samples, message + ": inequal n_node_samples") assert_almost_equal(d.impurity, s.impurity, err_msg=message + ": inequal impurity") assert_array_almost_equal(d.value[external], s.value[external], err_msg=message + ": inequal value") def test_classification_toy(): # Check classification on a toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_weighted_classification_toy(): # Check classification on a weighted toy dataset. for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y, sample_weight=np.ones(len(X))) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) clf.fit(X, y, sample_weight=np.ones(len(X)) * 0.5) assert_array_equal(clf.predict(T), true_result, "Failed with {0}".format(name)) def test_regression_toy(): # Check regression on a toy dataset. for name, Tree in REG_TREES.items(): reg = Tree(random_state=1) reg.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) clf = Tree(max_features=1, random_state=1) clf.fit(X, y) assert_almost_equal(reg.predict(T), true_result, err_msg="Failed with {0}".format(name)) def test_xor(): # Check on a XOR problem y = np.zeros((10, 10)) y[:5, :5] = 1 y[5:, 5:] = 1 gridx, gridy = np.indices(y.shape) X = np.vstack([gridx.ravel(), gridy.ravel()]).T y = y.ravel() for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) clf = Tree(random_state=0, max_features=1) clf.fit(X, y) assert_equal(clf.score(X, y), 1.0, "Failed with {0}".format(name)) def test_iris(): # Check consistency on dataset iris. for (name, Tree), criterion in product(CLF_TREES.items(), CLF_CRITERIONS): clf = Tree(criterion=criterion, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.9, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) clf = Tree(criterion=criterion, max_features=2, random_state=0) clf.fit(iris.data, iris.target) score = accuracy_score(clf.predict(iris.data), iris.target) assert_greater(score, 0.5, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_boston(): # Check consistency on dataset boston house prices. for (name, Tree), criterion in product(REG_TREES.items(), REG_CRITERIONS): reg = Tree(criterion=criterion, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 1, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) # using fewer features reduces the learning ability of this tree, # but reduces training time. reg = Tree(criterion=criterion, max_features=6, random_state=0) reg.fit(boston.data, boston.target) score = mean_squared_error(boston.target, reg.predict(boston.data)) assert_less(score, 2, "Failed with {0}, criterion = {1} and score = {2}" "".format(name, criterion, score)) def test_probability(): # Predict probabilities using DecisionTreeClassifier. for name, Tree in CLF_TREES.items(): clf = Tree(max_depth=1, max_features=1, random_state=42) clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal(np.sum(prob_predict, 1), np.ones(iris.data.shape[0]), err_msg="Failed with {0}".format(name)) assert_array_equal(np.argmax(prob_predict, 1), clf.predict(iris.data), err_msg="Failed with {0}".format(name)) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8, err_msg="Failed with {0}".format(name)) def test_arrayrepr(): # Check the array representation. # Check resize X = np.arange(10000)[:, np.newaxis] y = np.arange(10000) for name, Tree in REG_TREES.items(): reg = Tree(max_depth=None, random_state=0) reg.fit(X, y) def test_pure_set(): # Check when y is pure. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [1, 1, 1, 1, 1, 1] for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) reg.fit(X, y) assert_almost_equal(clf.predict(X), y, err_msg="Failed with {0}".format(name)) def test_numerical_stability(): # Check numerical stability. X = np.array([ [152.08097839, 140.40744019, 129.75102234, 159.90493774], [142.50700378, 135.81935120, 117.82884979, 162.75781250], [127.28772736, 140.40744019, 129.75102234, 159.90493774], [132.37025452, 143.71923828, 138.35694885, 157.84558105], [103.10237122, 143.71928406, 138.35696411, 157.84559631], [127.71276855, 143.71923828, 138.35694885, 157.84558105], [120.91514587, 140.40744019, 129.75102234, 159.90493774]]) y = np.array( [1., 0.70209277, 0.53896582, 0., 0.90914464, 0.48026916, 0.49622521]) with np.errstate(all="raise"): for name, Tree in REG_TREES.items(): reg = Tree(random_state=0) reg.fit(X, y) reg.fit(X, -y) reg.fit(-X, y) reg.fit(-X, -y) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, Tree in CLF_TREES.items(): clf = Tree(random_state=0) clf.fit(X, y) importances = clf.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10, "Failed with {0}".format(name)) assert_equal(n_important, 3, "Failed with {0}".format(name)) X_new = clf.transform(X, threshold="mean") assert_less(0, X_new.shape[1], "Failed with {0}".format(name)) assert_less(X_new.shape[1], X.shape[1], "Failed with {0}".format(name)) # Check on iris that importances are the same for all builders clf = DecisionTreeClassifier(random_state=0) clf.fit(iris.data, iris.target) clf2 = DecisionTreeClassifier(random_state=0, max_leaf_nodes=len(iris.data)) clf2.fit(iris.data, iris.target) assert_array_equal(clf.feature_importances_, clf2.feature_importances_) @raises(ValueError) def test_importances_raises(): # Check if variable importance before fit raises ValueError. clf = DecisionTreeClassifier() clf.feature_importances_ def test_importances_gini_equal_mse(): # Check that gini is equivalent to mse for binary output variable X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) # The gini index and the mean square error (variance) might differ due # to numerical instability. Since those instabilities mainly occurs at # high tree depth, we restrict this maximal depth. clf = DecisionTreeClassifier(criterion="gini", max_depth=5, random_state=0).fit(X, y) reg = DecisionTreeRegressor(criterion="mse", max_depth=5, random_state=0).fit(X, y) assert_almost_equal(clf.feature_importances_, reg.feature_importances_) assert_array_equal(clf.tree_.feature, reg.tree_.feature) assert_array_equal(clf.tree_.children_left, reg.tree_.children_left) assert_array_equal(clf.tree_.children_right, reg.tree_.children_right) assert_array_equal(clf.tree_.n_node_samples, reg.tree_.n_node_samples) def test_max_features(): # Check max_features. for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(max_features="auto") reg.fit(boston.data, boston.target) assert_equal(reg.max_features_, boston.data.shape[1]) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(max_features="auto") clf.fit(iris.data, iris.target) assert_equal(clf.max_features_, 2) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_features="sqrt") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.sqrt(iris.data.shape[1]))) est = TreeEstimator(max_features="log2") est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(np.log2(iris.data.shape[1]))) est = TreeEstimator(max_features=1) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=3) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 3) est = TreeEstimator(max_features=0.01) est.fit(iris.data, iris.target) assert_equal(est.max_features_, 1) est = TreeEstimator(max_features=0.5) est.fit(iris.data, iris.target) assert_equal(est.max_features_, int(0.5 * iris.data.shape[1])) est = TreeEstimator(max_features=1.0) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) est = TreeEstimator(max_features=None) est.fit(iris.data, iris.target) assert_equal(est.max_features_, iris.data.shape[1]) # use values of max_features that are invalid est = TreeEstimator(max_features=10) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=-1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=0.0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features=1.5) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_features="foobar") assert_raises(ValueError, est.fit, X, y) def test_error(): # Test that it gives proper exception on deficient input. for name, TreeEstimator in CLF_TREES.items(): # predict before fit est = TreeEstimator() assert_raises(NotFittedError, est.predict_proba, X) est.fit(X, y) X2 = [[-2, -1, 1]] # wrong feature shape for sample assert_raises(ValueError, est.predict_proba, X2) for name, TreeEstimator in ALL_TREES.items(): # Invalid values for parameters assert_raises(ValueError, TreeEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(min_weight_fraction_leaf=0.51).fit, X, y) assert_raises(ValueError, TreeEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_depth=-1).fit, X, y) assert_raises(ValueError, TreeEstimator(max_features=42).fit, X, y) # Wrong dimensions est = TreeEstimator() y2 = y[:-1] assert_raises(ValueError, est.fit, X, y2) # Test with arrays that are non-contiguous. Xf = np.asfortranarray(X) est = TreeEstimator() est.fit(Xf, y) assert_almost_equal(est.predict(T), true_result) # predict before fitting est = TreeEstimator() assert_raises(NotFittedError, est.predict, T) # predict on vector with different dims est.fit(X, y) t = np.asarray(T) assert_raises(ValueError, est.predict, t[:, 1:]) # wrong sample shape Xt = np.array(X).T est = TreeEstimator() est.fit(np.dot(X, Xt), y) assert_raises(ValueError, est.predict, X) assert_raises(ValueError, est.apply, X) clf = TreeEstimator() clf.fit(X, y) assert_raises(ValueError, clf.predict, Xt) assert_raises(ValueError, clf.apply, Xt) # apply before fitting est = TreeEstimator() assert_raises(NotFittedError, est.apply, T) def test_min_samples_leaf(): # Test if leaves contain more than leaf_count training examples X = np.asfortranarray(iris.data.astype(tree._tree.DTYPE)) y = iris.target # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes in (None, 1000): for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(min_samples_leaf=5, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y) out = est.tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) def check_min_weight_fraction_leaf(name, datasets, sparse=False): """Test if leaves contain at least min_weight_fraction_leaf of the training set""" if sparse: X = DATASETS[datasets]["X_sparse"].astype(np.float32) else: X = DATASETS[datasets]["X"].astype(np.float32) y = DATASETS[datasets]["y"] weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) TreeEstimator = ALL_TREES[name] # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for max_leaf_nodes, frac in product((None, 1000), np.linspace(0, 0.5, 6)): est = TreeEstimator(min_weight_fraction_leaf=frac, max_leaf_nodes=max_leaf_nodes, random_state=0) est.fit(X, y, sample_weight=weights) if sparse: out = est.tree_.apply(X.tocsr()) else: out = est.tree_.apply(X) node_weights = np.bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): # Check on dense input for name in ALL_TREES: yield check_min_weight_fraction_leaf, name, "iris" # Check on sparse input for name in SPARSE_TREES: yield check_min_weight_fraction_leaf, name, "multilabel", True def test_pickle(): # Check that tree estimator are pickable for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) serialized_object = pickle.dumps(clf) clf2 = pickle.loads(serialized_object) assert_equal(type(clf2), clf.__class__) score2 = clf2.score(iris.data, iris.target) assert_equal(score, score2, "Failed to generate same score " "after pickling (classification) " "with {0}".format(name)) for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) reg.fit(boston.data, boston.target) score = reg.score(boston.data, boston.target) serialized_object = pickle.dumps(reg) reg2 = pickle.loads(serialized_object) assert_equal(type(reg2), reg.__class__) score2 = reg2.score(boston.data, boston.target) assert_equal(score, score2, "Failed to generate same score " "after pickling (regression) " "with {0}".format(name)) def test_multioutput(): # Check estimators on multi-output problems. X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] T = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_true = [[-1, 0], [1, 1], [-1, 2], [1, 3]] # toy classification problem for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) y_hat = clf.fit(X, y).predict(T) assert_array_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) proba = clf.predict_proba(T) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = clf.predict_log_proba(T) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) # toy regression problem for name, TreeRegressor in REG_TREES.items(): reg = TreeRegressor(random_state=0) y_hat = reg.fit(X, y).predict(T) assert_almost_equal(y_hat, y_true) assert_equal(y_hat.shape, (4, 2)) def test_classes_shape(): # Test that n_classes_ and classes_ have proper shape. for name, TreeClassifier in CLF_TREES.items(): # Classification, single output clf = TreeClassifier(random_state=0) clf.fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = TreeClassifier(random_state=0) clf.fit(X, _y) assert_equal(len(clf.n_classes_), 2) assert_equal(len(clf.classes_), 2) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_unbalanced_iris(): # Check class rebalancing. unbalanced_X = iris.data[:125] unbalanced_y = iris.target[:125] sample_weight = _balance_weights(unbalanced_y) for name, TreeClassifier in CLF_TREES.items(): clf = TreeClassifier(random_state=0) clf.fit(unbalanced_X, unbalanced_y, sample_weight=sample_weight) assert_almost_equal(clf.predict(unbalanced_X), unbalanced_y) def test_memory_layout(): # Check that it works no matter the memory layout for (name, TreeEstimator), dtype in product(ALL_TREES.items(), [np.float64, np.float32]): est = TreeEstimator(random_state=0) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if est.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_sample_weight(): # Check sample weighting. # Test that zero-weighted samples are not taken into account X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 sample_weight = np.ones(100) sample_weight[y == 0] = 0.0 clf = DecisionTreeClassifier(random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), np.ones(100)) # Test that low weighted samples are not taken into account at low depth X = np.arange(200)[:, np.newaxis] y = np.zeros(200) y[50:100] = 1 y[100:200] = 2 X[100:200, 0] = 200 sample_weight = np.ones(200) sample_weight[y == 2] = .51 # Samples of class '2' are still weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 149.5) sample_weight[y == 2] = .5 # Samples of class '2' are no longer weightier clf = DecisionTreeClassifier(max_depth=1, random_state=0) clf.fit(X, y, sample_weight=sample_weight) assert_equal(clf.tree_.threshold[0], 49.5) # Threshold should have moved # Test that sample weighting is the same as having duplicates X = iris.data y = iris.target duplicates = rng.randint(0, X.shape[0], 100) clf = DecisionTreeClassifier(random_state=1) clf.fit(X[duplicates], y[duplicates]) sample_weight = np.bincount(duplicates, minlength=X.shape[0]) clf2 = DecisionTreeClassifier(random_state=1) clf2.fit(X, y, sample_weight=sample_weight) internal = clf.tree_.children_left != tree._tree.TREE_LEAF assert_array_almost_equal(clf.tree_.threshold[internal], clf2.tree_.threshold[internal]) def test_sample_weight_invalid(): # Check sample weighting raises errors. X = np.arange(100)[:, np.newaxis] y = np.ones(100) y[:50] = 0.0 clf = DecisionTreeClassifier(random_state=0) sample_weight = np.random.rand(100, 1) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.array(0) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(101) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) sample_weight = np.ones(99) assert_raises(ValueError, clf.fit, X, y, sample_weight=sample_weight) def check_class_weights(name): """Check class_weights resemble sample_weights behavior.""" TreeClassifier = CLF_TREES[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = TreeClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = TreeClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "auto" which should also have no effect clf4 = TreeClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = TreeClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = TreeClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) def test_class_weights(): for name in CLF_TREES: yield check_class_weights, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. TreeClassifier = CLF_TREES[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = TreeClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Not a list or preset for multi-output clf = TreeClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = TreeClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in CLF_TREES: yield check_class_weight_errors, name def test_max_leaf_nodes(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=None, max_leaf_nodes=k + 1).fit(X, y) tree = est.tree_ assert_equal((tree.children_left == TREE_LEAF).sum(), k + 1) # max_leaf_nodes in (0, 1) should raise ValueError est = TreeEstimator(max_depth=None, max_leaf_nodes=0) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=1) assert_raises(ValueError, est.fit, X, y) est = TreeEstimator(max_depth=None, max_leaf_nodes=0.1) assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test preceedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.tree_ assert_greater(tree.max_depth, 1) def test_arrays_persist(): # Ensure property arrays' memory stays alive when tree disappears # non-regression for #2726 for attr in ['n_classes', 'value', 'children_left', 'children_right', 'threshold', 'impurity', 'feature', 'n_node_samples']: value = getattr(DecisionTreeClassifier().fit([[0]], [0]).tree_, attr) # if pointing to freed memory, contents may be arbitrary assert_true(-2 <= value.flat[0] < 2, 'Array points to arbitrary memory') def test_only_constant_features(): random_state = check_random_state(0) X = np.zeros((10, 20)) y = random_state.randint(0, 2, (10, )) for name, TreeEstimator in ALL_TREES.items(): est = TreeEstimator(random_state=0) est.fit(X, y) assert_equal(est.tree_.max_depth, 0) def test_with_only_one_non_constant_features(): X = np.hstack([np.array([[1.], [1.], [0.], [0.]]), np.zeros((4, 1000))]) y = np.array([0., 1., 0., 1.0]) for name, TreeEstimator in CLF_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict_proba(X), 0.5 * np.ones((4, 2))) for name, TreeEstimator in REG_TREES.items(): est = TreeEstimator(random_state=0, max_features=1) est.fit(X, y) assert_equal(est.tree_.max_depth, 1) assert_array_equal(est.predict(X), 0.5 * np.ones((4, ))) def test_big_input(): # Test if the warning for too large inputs is appropriate. X = np.repeat(10 ** 40., 4).astype(np.float64).reshape(-1, 1) clf = DecisionTreeClassifier() try: clf.fit(X, [0, 1, 0, 1]) except ValueError as e: assert_in("float32", str(e)) def test_realloc(): from sklearn.tree._utils import _realloc_test assert_raises(MemoryError, _realloc_test) def test_huge_allocations(): n_bits = int(platform.architecture()[0].rstrip('bit')) X = np.random.randn(10, 2) y = np.random.randint(0, 2, 10) # Sanity check: we cannot request more memory than the size of the address # space. Currently raises OverflowError. huge = 2 ** (n_bits + 1) clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(Exception, clf.fit, X, y) # Non-regression test: MemoryError used to be dropped by Cython # because of missing "except *". huge = 2 ** (n_bits - 1) - 1 clf = DecisionTreeClassifier(splitter='best', max_leaf_nodes=huge) assert_raises(MemoryError, clf.fit, X, y) def check_sparse_input(tree, dataset, max_depth=None): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Gain testing time if dataset in ["digits", "boston"]: n_samples = X.shape[0] // 5 X = X[:n_samples] X_sparse = X_sparse[:n_samples] y = y[:n_samples] for sparse_format in (csr_matrix, csc_matrix, coo_matrix): X_sparse = sparse_format(X_sparse) # Check the default (depth first search) d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) y_pred = d.predict(X) if tree in CLF_TREES: y_proba = d.predict_proba(X) y_log_proba = d.predict_log_proba(X) for sparse_matrix in (csr_matrix, csc_matrix, coo_matrix): X_sparse_test = sparse_matrix(X_sparse, dtype=np.float32) assert_array_almost_equal(s.predict(X_sparse_test), y_pred) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X_sparse_test), y_proba) assert_array_almost_equal(s.predict_log_proba(X_sparse_test), y_log_proba) def test_sparse_input(): for tree, dataset in product(SPARSE_TREES, ("clf_small", "toy", "digits", "multilabel", "sparse-pos", "sparse-neg", "sparse-mix", "zeros")): max_depth = 3 if dataset == "digits" else None yield (check_sparse_input, tree, dataset, max_depth) # Due to numerical instability of MSE and too strict test, we limit the # maximal depth for tree, dataset in product(REG_TREES, ["boston", "reg_small"]): if tree in SPARSE_TREES: yield (check_sparse_input, tree, dataset, 2) def check_sparse_parameters(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check max_features d = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, max_depth=2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_split d = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X, y) s = TreeEstimator(random_state=0, max_features=1, min_samples_split=10).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check min_samples_leaf d = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X, y) s = TreeEstimator(random_state=0, min_samples_leaf=X_sparse.shape[0] // 2).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) # Check best-first search d = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X, y) s = TreeEstimator(random_state=0, max_leaf_nodes=3).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_parameters(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_parameters, tree, dataset) def check_sparse_criterion(tree, dataset): TreeEstimator = ALL_TREES[tree] X = DATASETS[dataset]["X"] X_sparse = DATASETS[dataset]["X_sparse"] y = DATASETS[dataset]["y"] # Check various criterion CRITERIONS = REG_CRITERIONS if tree in REG_TREES else CLF_CRITERIONS for criterion in CRITERIONS: d = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X, y) s = TreeEstimator(random_state=0, max_depth=3, criterion=criterion).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) assert_array_almost_equal(s.predict(X), d.predict(X)) def test_sparse_criterion(): for tree, dataset in product(SPARSE_TREES, ["sparse-pos", "sparse-neg", "sparse-mix", "zeros"]): yield (check_sparse_criterion, tree, dataset) def check_explicit_sparse_zeros(tree, max_depth=3, n_features=10): TreeEstimator = ALL_TREES[tree] # n_samples set n_feature to ease construction of a simultaneous # construction of a csr and csc matrix n_samples = n_features samples = np.arange(n_samples) # Generate X, y random_state = check_random_state(0) indices = [] data = [] offset = 0 indptr = [offset] for i in range(n_features): n_nonzero_i = random_state.binomial(n_samples, 0.5) indices_i = random_state.permutation(samples)[:n_nonzero_i] indices.append(indices_i) data_i = random_state.binomial(3, 0.5, size=(n_nonzero_i, )) - 1 data.append(data_i) offset += n_nonzero_i indptr.append(offset) indices = np.concatenate(indices) data = np.array(np.concatenate(data), dtype=np.float32) X_sparse = csc_matrix((data, indices, indptr), shape=(n_samples, n_features)) X = X_sparse.toarray() X_sparse_test = csr_matrix((data, indices, indptr), shape=(n_samples, n_features)) X_test = X_sparse_test.toarray() y = random_state.randint(0, 3, size=(n_samples, )) # Ensure that X_sparse_test owns its data, indices and indptr array X_sparse_test = X_sparse_test.copy() # Ensure that we have explicit zeros assert_greater((X_sparse.data == 0.).sum(), 0) assert_greater((X_sparse_test.data == 0.).sum(), 0) # Perform the comparison d = TreeEstimator(random_state=0, max_depth=max_depth).fit(X, y) s = TreeEstimator(random_state=0, max_depth=max_depth).fit(X_sparse, y) assert_tree_equal(d.tree_, s.tree_, "{0} with dense and sparse format gave different " "trees".format(tree)) Xs = (X_test, X_sparse_test) for X1, X2 in product(Xs, Xs): assert_array_almost_equal(s.tree_.apply(X1), d.tree_.apply(X2)) assert_array_almost_equal(s.apply(X1), d.apply(X2)) assert_array_almost_equal(s.apply(X1), s.tree_.apply(X1)) assert_array_almost_equal(s.predict(X1), d.predict(X2)) if tree in CLF_TREES: assert_array_almost_equal(s.predict_proba(X1), d.predict_proba(X2)) def test_explicit_sparse_zeros(): for tree in SPARSE_TREES: yield (check_explicit_sparse_zeros, tree) @ignore_warnings def check_raise_error_on_1d_input(name): TreeEstimator = ALL_TREES[name] X = iris.data[:, 0].ravel() X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target assert_raises(ValueError, TreeEstimator(random_state=0).fit, X, y) est = TreeEstimator(random_state=0) est.fit(X_2d, y) assert_raises(ValueError, est.predict, [X]) @ignore_warnings def test_1d_input(): for name in ALL_TREES: yield check_raise_error_on_1d_input, name def _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight): # Private function to keep pretty printing in nose yielded tests est = TreeEstimator(random_state=0) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 1) est = TreeEstimator(random_state=0, min_weight_fraction_leaf=0.4) est.fit(X, y, sample_weight=sample_weight) assert_equal(est.tree_.max_depth, 0) def check_min_weight_leaf_split_level(name): TreeEstimator = ALL_TREES[name] X = np.array([[0], [0], [0], [0], [1]]) y = [0, 0, 0, 0, 1] sample_weight = [0.2, 0.2, 0.2, 0.2, 0.2] _check_min_weight_leaf_split_level(TreeEstimator, X, y, sample_weight) if TreeEstimator().splitter in SPARSE_SPLITTERS: _check_min_weight_leaf_split_level(TreeEstimator, csc_matrix(X), y, sample_weight) def test_min_weight_leaf_split_level(): for name in ALL_TREES: yield check_min_weight_leaf_split_level, name def check_public_apply(name): X_small32 = X_small.astype(tree._tree.DTYPE) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def check_public_apply_sparse(name): X_small32 = csr_matrix(X_small.astype(tree._tree.DTYPE)) est = ALL_TREES[name]() est.fit(X_small, y_small) assert_array_equal(est.apply(X_small), est.tree_.apply(X_small32)) def test_public_apply(): for name in ALL_TREES: yield (check_public_apply, name) for name in SPARSE_TREES: yield (check_public_apply_sparse, name)
bsd-3-clause
srinathv/vispy
vispy/visuals/isocurve.py
18
7809
# -*- coding: utf-8 -*- # Copyright (c) 2015, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. from __future__ import division import numpy as np from .line import LineVisual from ..color import ColorArray from ..color.colormap import _normalize, get_colormap from ..geometry.isocurve import isocurve from ..testing import has_matplotlib # checking for matplotlib _HAS_MPL = has_matplotlib() if _HAS_MPL: from matplotlib import _cntr as cntr class IsocurveVisual(LineVisual): """Displays an isocurve of a 2D scalar array. Parameters ---------- data : ndarray | None 2D scalar array. levels : ndarray, shape (Nlev,) | None The levels at which the isocurve is constructed from "*data*". color_lev : Color, colormap name, tuple, list or array The color to use when drawing the line. If a list is given, it must be of shape (Nlev), if an array is given, it must be of shape (Nlev, ...). and provide one color per level (rgba, colorname). clim : tuple (min, max) limits to apply when mapping level values through a colormap. **kwargs : dict Keyword arguments to pass to `LineVisual`. Notes ----- """ def __init__(self, data=None, levels=None, color_lev=None, clim=None, **kwargs): self._data = None self._levels = levels self._color_lev = color_lev self._clim = clim self._need_color_update = True self._need_level_update = True self._need_recompute = True self._X = None self._Y = None self._iso = None self._level_min = None self._data_is_uniform = False self._lc = None self._cl = None self._li = None self._connect = None self._verts = None kwargs['method'] = 'gl' kwargs['antialias'] = False LineVisual.__init__(self, **kwargs) if data is not None: self.set_data(data) @property def levels(self): """ The threshold at which the isocurve is constructed from the 2D data. """ return self._levels @levels.setter def levels(self, levels): self._levels = levels self._need_level_update = True self._need_recompute = True self.update() @property def color(self): return self._color_lev @color.setter def color(self, color): self._color_lev = color self._need_level_update = True self._need_color_update = True self.update() def set_data(self, data): """ Set the scalar array data Parameters ---------- data : ndarray A 2D array of scalar values. The isocurve is constructed to show all locations in the scalar field equal to ``self.levels``. """ self._data = data # if using matplotlib isoline algorithm we have to check for meshgrid # and we can setup the tracer object here if _HAS_MPL: if self._X is None or self._X.T.shape != data.shape: self._X, self._Y = np.meshgrid(np.arange(data.shape[0]), np.arange(data.shape[1])) self._iso = cntr.Cntr(self._X, self._Y, self._data.astype(float)) if self._clim is None: self._clim = (data.min(), data.max()) # sanity check, # should we raise an error here, since no isolines can be drawn? # for now, _prepare_draw returns False if no isoline can be drawn if self._data.min() != self._data.max(): self._data_is_uniform = False else: self._data_is_uniform = True self._need_recompute = True self.update() def _get_verts_and_connect(self, paths): """ retrieve vertices and connects from given paths-list """ verts = np.vstack(paths) gaps = np.add.accumulate(np.array([len(x) for x in paths])) - 1 connect = np.ones(gaps[-1], dtype=bool) connect[gaps[:-1]] = False return verts, connect def _compute_iso_line(self): """ compute LineVisual vertices, connects and color-index """ level_index = [] connects = [] verts = [] # calculate which level are within data range # this works for now and the existing examples, but should be tested # thoroughly also with the data-sanity check in set_data-function choice = np.nonzero((self.levels > self._data.min()) & (self._levels < self._data.max())) levels_to_calc = np.array(self.levels)[choice] # save minimum level index self._level_min = choice[0][0] for level in levels_to_calc: # if we use matplotlib isoline algorithm we need to add half a # pixel in both (x,y) dimensions because isolines are aligned to # pixel centers if _HAS_MPL: nlist = self._iso.trace(level, level, 0) paths = nlist[:len(nlist)//2] v, c = self._get_verts_and_connect(paths) v += np.array([0.5, 0.5]) else: paths = isocurve(self._data.astype(float).T, level, extend_to_edge=True, connected=True) v, c = self._get_verts_and_connect(paths) level_index.append(v.shape[0]) connects.append(np.hstack((c, [False]))) verts.append(v) self._li = np.hstack(level_index) self._connect = np.hstack(connects) self._verts = np.vstack(verts) def _compute_iso_color(self): """ compute LineVisual color from level index and corresponding color """ level_color = [] colors = self._lc for i, index in enumerate(self._li): level_color.append(np.zeros((index, 4)) + colors[i+self._level_min]) self._cl = np.vstack(level_color) def _levels_to_colors(self): # computes ColorArrays for given levels # try _color_lev as colormap, except as everything else try: f_color_levs = get_colormap(self._color_lev) except: colors = ColorArray(self._color_lev).rgba else: lev = _normalize(self._levels, self._clim[0], self._clim[1]) # map function expects (Nlev,1)! colors = f_color_levs.map(lev[:, np.newaxis]) # broadcast to (nlev, 4) array if len(colors) == 1: colors = colors * np.ones((len(self._levels), 1)) # detect color_lev/levels mismatch and raise error if (len(colors) != len(self._levels)): raise TypeError("Color/level mismatch. Color must be of shape " "(Nlev, ...) and provide one color per level") self._lc = colors def _prepare_draw(self, view): if (self._data is None or self._levels is None or self._color_lev is None or self._data_is_uniform): return False if self._need_level_update: self._levels_to_colors() self._need_level_update = False if self._need_recompute: self._compute_iso_line() self._compute_iso_color() LineVisual.set_data(self, pos=self._verts, connect=self._connect, color=self._cl) self._need_recompute = False if self._need_color_update: self._compute_iso_color() LineVisual.set_data(self, color=self._cl) self._need_color_update = False return LineVisual._prepare_draw(self, view)
bsd-3-clause
eljost/pysisyphus
deprecated/tests/test_dynamics/test_dynamics.py
1
2531
from matplotlib.patches import Circle import matplotlib.pyplot as plt import numpy as np import pytest from pysisyphus.calculators.AnaPot import AnaPot from pysisyphus.dynamics.velocity_verlet import md def test_velocity_verlet(): geom = AnaPot.get_geom((0.52, 1.80, 0)) x0 = geom.coords.copy() v0 = .1 * np.random.rand(*geom.coords.shape) t = 3 dts = (.005, .01, .02, .04, .08) all_xs = list() for dt in dts: geom.coords = x0.copy() md_kwargs = { "v0": v0.copy(), "t": t, "dt": dt, } md_result = md(geom, **md_kwargs) all_xs.append(md_result.coords) calc = geom.calculator calc.plot() ax = calc.ax for dt, xs in zip(dts, all_xs): ax.plot(*xs.T[:2], "o-", label=f"dt={dt:.3f}") # ax.plot(*xs.T[:2], "-", label=f"dt={dt:.3f}") ax.legend() plt.show() def ase_md_playground(): geom = AnaPot.get_geom((0.52, 1.80, 0), atoms=("H", )) atoms = geom.as_ase_atoms() # ase_calc = FakeASE(geom.calculator) # from ase.optimize import BFGS # dyn = BFGS(atoms) # dyn.run(fmax=0.05) import ase from ase import units from ase.io.trajectory import Trajectory from ase.md.velocitydistribution import MaxwellBoltzmannDistribution from ase.md.verlet import VelocityVerlet MaxwellBoltzmannDistribution(atoms, 300 * units.kB) momenta = atoms.get_momenta() momenta[0, 2] = 0. # Zero 3rd dimension atoms.set_momenta(momenta) dyn = VelocityVerlet(atoms, .005 * units.fs) # 5 fs time step. def printenergy(a): """Function to print the potential, kinetic and total energy""" epot = a.get_potential_energy() / len(a) ekin = a.get_kinetic_energy() / len(a) print('Energy per atom: Epot = %.3feV Ekin = %.3feV (T=%3.0fK) ' 'Etot = %.3feV' % (epot, ekin, ekin / (1.5 * units.kB), epot + ekin)) # Now run the dynamics printenergy(atoms) traj_fn = 'asemd.traj' traj = Trajectory(traj_fn, 'w', atoms) dyn.attach(traj.write, interval=5) # dyn.attach(bumms().bimms, interval=1) dyn.run(10000) printenergy(atoms) traj.close() traj = ase.io.read(traj_fn+"@:")#, "r") pos = [a.get_positions() for a in traj] from pysisyphus.constants import BOHR2ANG pos = np.array(pos) / BOHR2ANG calc = geom.calculator calc.plot() ax = calc.ax ax.plot(*pos[:,0,:2].T) plt.show() if __name__ == "__main__": ase_md_playground()
gpl-3.0
AtsushiSakai/PythonRobotics
PathPlanning/Eta3SplinePath/eta3_spline_path.py
1
13649
""" eta^3 polynomials planner author: Joe Dinius, Ph.D (https://jwdinius.github.io) Atsushi Sakai (@Atsushi_twi) Ref: - [eta^3-Splines for the Smooth Path Generation of Wheeled Mobile Robots] (https://ieeexplore.ieee.org/document/4339545/) """ import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad # NOTE: *_pose is a 3-array: # 0 - x coord, 1 - y coord, 2 - orientation angle \theta show_animation = True class Eta3Path(object): """ Eta3Path input segments: a list of `Eta3PathSegment` instances defining a continuous path """ def __init__(self, segments): # ensure input has the correct form assert(isinstance(segments, list) and isinstance( segments[0], Eta3PathSegment)) # ensure that each segment begins from the previous segment's end (continuity) for r, s in zip(segments[:-1], segments[1:]): assert(np.array_equal(r.end_pose, s.start_pose)) self.segments = segments def calc_path_point(self, u): """ Eta3Path::calc_path_point input normalized interpolation point along path object, 0 <= u <= len(self.segments) returns 2d (x,y) position vector """ assert(0 <= u <= len(self.segments)) if np.isclose(u, len(self.segments)): segment_idx = len(self.segments) - 1 u = 1. else: segment_idx = int(np.floor(u)) u -= segment_idx return self.segments[segment_idx].calc_point(u) class Eta3PathSegment(object): """ Eta3PathSegment - constructs an eta^3 path segment based on desired shaping, eta, and curvature vector, kappa. If either, or both, of eta and kappa are not set during initialization, they will default to zeros. input start_pose - starting pose array (x, y, \theta) end_pose - ending pose array (x, y, \theta) eta - shaping parameters, default=None kappa - curvature parameters, default=None """ def __init__(self, start_pose, end_pose, eta=None, kappa=None): # make sure inputs are of the correct size assert(len(start_pose) == 3 and len(start_pose) == len(end_pose)) self.start_pose = start_pose self.end_pose = end_pose # if no eta is passed, initialize it to array of zeros if not eta: eta = np.zeros((6,)) else: # make sure that eta has correct size assert(len(eta) == 6) # if no kappa is passed, initialize to array of zeros if not kappa: kappa = np.zeros((4,)) else: assert(len(kappa) == 4) # set up angle cosines and sines for simpler computations below ca = np.cos(start_pose[2]) sa = np.sin(start_pose[2]) cb = np.cos(end_pose[2]) sb = np.sin(end_pose[2]) # 2 dimensions (x,y) x 8 coefficients per dimension self.coeffs = np.empty((2, 8)) # constant terms (u^0) self.coeffs[0, 0] = start_pose[0] self.coeffs[1, 0] = start_pose[1] # linear (u^1) self.coeffs[0, 1] = eta[0] * ca self.coeffs[1, 1] = eta[0] * sa # quadratic (u^2) self.coeffs[0, 2] = 1. / 2 * eta[2] * \ ca - 1. / 2 * eta[0]**2 * kappa[0] * sa self.coeffs[1, 2] = 1. / 2 * eta[2] * \ sa + 1. / 2 * eta[0]**2 * kappa[0] * ca # cubic (u^3) self.coeffs[0, 3] = 1. / 6 * eta[4] * ca - 1. / 6 * \ (eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * sa self.coeffs[1, 3] = 1. / 6 * eta[4] * sa + 1. / 6 * \ (eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * ca # quartic (u^4) tmp1 = 35. * (end_pose[0] - start_pose[0]) tmp2 = (20. * eta[0] + 5 * eta[2] + 2. / 3 * eta[4]) * ca tmp3 = (5. * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * sa tmp4 = (15. * eta[1] - 5. / 2 * eta[3] + 1. / 6 * eta[5]) * cb tmp5 = (5. / 2 * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 * kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * sb self.coeffs[0, 4] = tmp1 - tmp2 + tmp3 - tmp4 - tmp5 tmp1 = 35. * (end_pose[1] - start_pose[1]) tmp2 = (20. * eta[0] + 5. * eta[2] + 2. / 3 * eta[4]) * sa tmp3 = (5. * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * ca tmp4 = (15. * eta[1] - 5. / 2 * eta[3] + 1. / 6 * eta[5]) * sb tmp5 = (5. / 2 * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 * kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * cb self.coeffs[1, 4] = tmp1 - tmp2 - tmp3 - tmp4 + tmp5 # quintic (u^5) tmp1 = -84. * (end_pose[0] - start_pose[0]) tmp2 = (45. * eta[0] + 10. * eta[2] + eta[4]) * ca tmp3 = (10. * eta[0] ** 2 * kappa[0] + eta[0] ** 3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * sa tmp4 = (39. * eta[1] - 7. * eta[3] + 1. / 2 * eta[5]) * cb tmp5 = + (7. * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 * kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * sb self.coeffs[0, 5] = tmp1 + tmp2 - tmp3 + tmp4 + tmp5 tmp1 = -84. * (end_pose[1] - start_pose[1]) tmp2 = (45. * eta[0] + 10. * eta[2] + eta[4]) * sa tmp3 = (10. * eta[0] ** 2 * kappa[0] + eta[0] ** 3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * ca tmp4 = (39. * eta[1] - 7. * eta[3] + 1. / 2 * eta[5]) * sb tmp5 = - (7. * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 * kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * cb self.coeffs[1, 5] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5 # sextic (u^6) tmp1 = 70. * (end_pose[0] - start_pose[0]) tmp2 = (36. * eta[0] + 15. / 2 * eta[2] + 2. / 3 * eta[4]) * ca tmp3 = + (15. / 2 * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * sa tmp4 = (34. * eta[1] - 13. / 2 * eta[3] + 1. / 2 * eta[5]) * cb tmp5 = - (13. / 2 * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 * kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * sb self.coeffs[0, 6] = tmp1 - tmp2 + tmp3 - tmp4 + tmp5 tmp1 = 70. * (end_pose[1] - start_pose[1]) tmp2 = - (36. * eta[0] + 15. / 2 * eta[2] + 2. / 3 * eta[4]) * sa tmp3 = - (15. / 2 * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * ca tmp4 = - (34. * eta[1] - 13. / 2 * eta[3] + 1. / 2 * eta[5]) * sb tmp5 = + (13. / 2 * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 * kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * cb self.coeffs[1, 6] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5 # septic (u^7) tmp1 = -20. * (end_pose[0] - start_pose[0]) tmp2 = (10. * eta[0] + 2. * eta[2] + 1. / 6 * eta[4]) * ca tmp3 = - (2. * eta[0] ** 2 * kappa[0] + 1. / 6 * eta[0] ** 3 * kappa[1] + 1. / 2 * eta[0] * eta[2] * kappa[0]) * sa tmp4 = (10. * eta[1] - 2. * eta[3] + 1. / 6 * eta[5]) * cb tmp5 = (2. * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 * kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * sb self.coeffs[0, 7] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5 tmp1 = -20. * (end_pose[1] - start_pose[1]) tmp2 = (10. * eta[0] + 2. * eta[2] + 1. / 6 * eta[4]) * sa tmp3 = (2. * eta[0] ** 2 * kappa[0] + 1. / 6 * eta[0] ** 3 * kappa[1] + 1. / 2 * eta[0] * eta[2] * kappa[0]) * ca tmp4 = (10. * eta[1] - 2. * eta[3] + 1. / 6 * eta[5]) * sb tmp5 = - (2. * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 * kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * cb self.coeffs[1, 7] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5 self.s_dot = lambda u: max(np.linalg.norm( self.coeffs[:, 1:].dot(np.array( [1, 2. * u, 3. * u**2, 4. * u**3, 5. * u**4, 6. * u**5, 7. * u**6]))), 1e-6) self.f_length = lambda ue: quad(lambda u: self.s_dot(u), 0, ue) self.segment_length = self.f_length(1)[0] def calc_point(self, u): """ Eta3PathSegment::calc_point input u - parametric representation of a point along the segment, 0 <= u <= 1 returns (x,y) of point along the segment """ assert(0 <= u <= 1) return self.coeffs.dot(np.array([1, u, u**2, u**3, u**4, u**5, u**6, u**7])) def calc_deriv(self, u, order=1): """ Eta3PathSegment::calc_deriv input u - parametric representation of a point along the segment, 0 <= u <= 1 returns (d^nx/du^n,d^ny/du^n) of point along the segment, for 0 < n <= 2 """ assert(0 <= u <= 1) assert(0 < order <= 2) if order == 1: return self.coeffs[:, 1:].dot(np.array([1, 2. * u, 3. * u**2, 4. * u**3, 5. * u**4, 6. * u**5, 7. * u**6])) return self.coeffs[:, 2:].dot(np.array([2, 6. * u, 12. * u**2, 20. * u**3, 30. * u**4, 42. * u**5])) def test1(): for i in range(10): path_segments = [] # segment 1: lane-change curve start_pose = [0, 0, 0] end_pose = [4, 3.0, 0] # NOTE: The ordering on kappa is [kappa_A, kappad_A, kappa_B, kappad_B], with kappad_* being the curvature derivative kappa = [0, 0, 0, 0] eta = [i, i, 0, 0, 0, 0] path_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) path = Eta3Path(path_segments) # interpolate at several points along the path ui = np.linspace(0, len(path_segments), 1001) pos = np.empty((2, ui.size)) for j, u in enumerate(ui): pos[:, j] = path.calc_path_point(u) if show_animation: # plot the path plt.plot(pos[0, :], pos[1, :]) # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) plt.pause(1.0) if show_animation: plt.close("all") def test2(): for i in range(10): path_segments = [] # segment 1: lane-change curve start_pose = [0, 0, 0] end_pose = [4, 3.0, 0] # NOTE: The ordering on kappa is [kappa_A, kappad_A, kappa_B, kappad_B], with kappad_* being the curvature derivative kappa = [0, 0, 0, 0] eta = [0, 0, (i - 5) * 20, (5 - i) * 20, 0, 0] path_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) path = Eta3Path(path_segments) # interpolate at several points along the path ui = np.linspace(0, len(path_segments), 1001) pos = np.empty((2, ui.size)) for j, u in enumerate(ui): pos[:, j] = path.calc_path_point(u) if show_animation: # plot the path plt.plot(pos[0, :], pos[1, :]) plt.pause(1.0) if show_animation: plt.close("all") def test3(): path_segments = [] # segment 1: lane-change curve start_pose = [0, 0, 0] end_pose = [4, 1.5, 0] # NOTE: The ordering on kappa is [kappa_A, kappad_A, kappa_B, kappad_B], with kappad_* being the curvature derivative kappa = [0, 0, 0, 0] eta = [4.27, 4.27, 0, 0, 0, 0] path_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # segment 2: line segment start_pose = [4, 1.5, 0] end_pose = [5.5, 1.5, 0] kappa = [0, 0, 0, 0] eta = [0, 0, 0, 0, 0, 0] path_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # segment 3: cubic spiral start_pose = [5.5, 1.5, 0] end_pose = [7.4377, 1.8235, 0.6667] kappa = [0, 0, 1, 1] eta = [1.88, 1.88, 0, 0, 0, 0] path_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # segment 4: generic twirl arc start_pose = [7.4377, 1.8235, 0.6667] end_pose = [7.8, 4.3, 1.8] kappa = [1, 1, 0.5, 0] eta = [7, 10, 10, -10, 4, 4] path_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # segment 5: circular arc start_pose = [7.8, 4.3, 1.8] end_pose = [5.4581, 5.8064, 3.3416] kappa = [0.5, 0, 0.5, 0] eta = [2.98, 2.98, 0, 0, 0, 0] path_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # construct the whole path path = Eta3Path(path_segments) # interpolate at several points along the path ui = np.linspace(0, len(path_segments), 1001) pos = np.empty((2, ui.size)) for i, u in enumerate(ui): pos[:, i] = path.calc_path_point(u) # plot the path if show_animation: plt.figure('Path from Reference') plt.plot(pos[0, :], pos[1, :]) plt.xlabel('x') plt.ylabel('y') plt.title('Path') plt.pause(1.0) plt.show() def main(): """ recreate path from reference (see Table 1) """ test1() test2() test3() if __name__ == '__main__': main()
mit
kaczla/PJN
src/Przecinki/scikit.py
1
1048
#!/usr/bin/python2 # -*- coding: utf-8 -*- import sys import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.cross_validation import cross_val_predict from sklearn import linear_model from sklearn import datasets X = [] Y = [] for line in sys.stdin: line = line.rstrip() X.append([len(line.split())]) Y.append(line.count(",")) lr = linear_model.LinearRegression() predicted = cross_val_predict(lr, X, Y) FILE = open(sys.argv[1], "r") X_TEST = [] Y_TEST = [] for line in FILE: line = line.rstrip() Y_TEST.append(line.count(",")) line = line.replace(",", "") X_TEST.append([len(line.split())]) regr = linear_model.LinearRegression() regr.fit(X, Y) print "Coefficients: ", regr.coef_ print "Residual sum of squares: %.2f" % np.mean((regr.predict(X_TEST) - Y_TEST) ** 2) print "Variance score: %.2f" % regr.score(X_TEST, Y_TEST) plt.scatter(X_TEST, Y_TEST, color='black') plt.plot(X_TEST, regr.predict(X_TEST), color='green', linewidth=2) plt.xticks(()) plt.yticks(()) plt.show()
gpl-2.0
danforthcenter/plantcv
plantcv/plantcv/photosynthesis/analyze_fvfm.py
2
5529
# Fluorescence Analysis import os import cv2 import numpy as np import pandas as pd from plotnine import ggplot, geom_label, aes, geom_line from plantcv.plantcv import print_image from plantcv.plantcv import plot_image from plantcv.plantcv import fatal_error from plantcv.plantcv import params from plantcv.plantcv import outputs def analyze_fvfm(fdark, fmin, fmax, mask, bins=256, label="default"): """Analyze PSII camera images. Inputs: fdark = grayscale fdark image fmin = grayscale fmin image fmax = grayscale fmax image mask = mask of plant (binary, single channel) bins = number of bins (1 to 256 for 8-bit; 1 to 65,536 for 16-bit; default is 256) label = optional label parameter, modifies the variable name of observations recorded Returns: analysis_images = list of images (fv image and fvfm histogram image) :param fdark: numpy.ndarray :param fmin: numpy.ndarray :param fmax: numpy.ndarray :param mask: numpy.ndarray :param bins: int :param label: str :return analysis_images: numpy.ndarray """ # Auto-increment the device counter params.device += 1 # Check that fdark, fmin, and fmax are grayscale (single channel) if not all(len(np.shape(i)) == 2 for i in [fdark, fmin, fmax]): fatal_error("The fdark, fmin, and fmax images must be grayscale images.") # QC Fdark Image fdark_mask = cv2.bitwise_and(fdark, fdark, mask=mask) if np.amax(fdark_mask) > 2000: qc_fdark = False else: qc_fdark = True # Mask Fmin and Fmax Image fmin_mask = cv2.bitwise_and(fmin, fmin, mask=mask) fmax_mask = cv2.bitwise_and(fmax, fmax, mask=mask) # Calculate Fvariable, where Fv = Fmax - Fmin (masked) fv = np.subtract(fmax_mask, fmin_mask) # When Fmin is greater than Fmax, a negative value is returned. # Because the data type is unsigned integers, negative values roll over, resulting in nonsensical values # Wherever Fmin is greater than Fmax, set Fv to zero fv[np.where(fmax_mask < fmin_mask)] = 0 analysis_images = [] # Calculate Fv/Fm (Fvariable / Fmax) where Fmax is greater than zero # By definition above, wherever Fmax is zero, Fvariable will also be zero # To calculate the divisions properly we need to change from unit16 to float64 data types fvfm = fv.astype(np.float64) analysis_images.append(fvfm) fmax_flt = fmax_mask.astype(np.float64) fvfm[np.where(fmax_mask > 0)] /= fmax_flt[np.where(fmax_mask > 0)] # Calculate the median Fv/Fm value for non-zero pixels fvfm_median = np.median(fvfm[np.where(fvfm > 0)]) # Calculate the histogram of Fv/Fm non-zero values fvfm_hist, fvfm_bins = np.histogram(fvfm[np.where(fvfm > 0)], bins, range=(0, 1)) # fvfm_bins is a bins + 1 length list of bin endpoints, so we need to calculate bin midpoints so that # the we have a one-to-one list of x (FvFm) and y (frequency) values. # To do this we add half the bin width to each lower bin edge x-value midpoints = fvfm_bins[:-1] + 0.5 * np.diff(fvfm_bins) # Calculate which non-zero bin has the maximum Fv/Fm value max_bin = midpoints[np.argmax(fvfm_hist)] # Create a dataframe dataset = pd.DataFrame({'Plant Pixels': fvfm_hist, 'Fv/Fm': midpoints}) # Make the histogram figure using plotnine fvfm_hist_fig = (ggplot(data=dataset, mapping=aes(x='Fv/Fm', y='Plant Pixels')) + geom_line(color='green', show_legend=True) + geom_label(label='Peak Bin Value: ' + str(max_bin), x=.15, y=205, size=8, color='green')) analysis_images.append(fvfm_hist_fig) if params.debug == 'print': print_image(fmin_mask, os.path.join(params.debug_outdir, str(params.device) + '_fmin_mask.png')) print_image(fmax_mask, os.path.join(params.debug_outdir, str(params.device) + '_fmax_mask.png')) print_image(fv, os.path.join(params.debug_outdir, str(params.device) + '_fv_convert.png')) fvfm_hist_fig.save(os.path.join(params.debug_outdir, str(params.device) + '_fv_hist.png'), verbose=False) elif params.debug == 'plot': plot_image(fmin_mask, cmap='gray') plot_image(fmax_mask, cmap='gray') plot_image(fv, cmap='gray') print(fvfm_hist_fig) outputs.add_observation(sample=label, variable='fvfm_hist', trait='Fv/Fm frequencies', method='plantcv.plantcv.fluor_fvfm', scale='none', datatype=list, value=fvfm_hist.tolist(), label=np.around(midpoints, decimals=len(str(bins))).tolist()) outputs.add_observation(sample=label, variable='fvfm_hist_peak', trait='peak Fv/Fm value', method='plantcv.plantcv.fluor_fvfm', scale='none', datatype=float, value=float(max_bin), label='none') outputs.add_observation(sample=label, variable='fvfm_median', trait='Fv/Fm median', method='plantcv.plantcv.fluor_fvfm', scale='none', datatype=float, value=float(np.around(fvfm_median, decimals=4)), label='none') outputs.add_observation(sample=label, variable='fdark_passed_qc', trait='Fdark passed QC', method='plantcv.plantcv.fluor_fvfm', scale='none', datatype=bool, value=qc_fdark, label='none') # Store images outputs.images.append(analysis_images) return analysis_images
mit
linearregression/mpld3
mpld3/__init__.py
20
1109
""" Interactive D3 rendering of matplotlib images ============================================= Functions: General Use ---------------------- :func:`fig_to_html` convert a figure to an html string :func:`fig_to_dict` convert a figure to a dictionary representation :func:`show` launch a web server to view an d3/html figure representation :func:`save_html` save a figure to an html file :func:`save_json` save a JSON representation of a figure to file Functions: IPython Notebook --------------------------- :func:`display` display a figure in an IPython notebook :func:`enable_notebook` enable automatic D3 display of figures in the IPython notebook. :func:`disable_notebook` disable automatic D3 display of figures in the IPython """ __all__ = ["__version__", "fig_to_html", "fig_to_dict", "fig_to_d3", "display_d3", "display", "show_d3", "show", "save_html", "save_json", "enable_notebook", "disable_notebook", "plugins", "urls"] from .__about__ import __version__ from . import plugins from . import urls from ._display import *
bsd-3-clause
chaluemwut/fbserver
venv/lib/python2.7/site-packages/sklearn/neighbors/base.py
1
24541
"""Base and mixin classes for nearest neighbors""" # Authors: Jake Vanderplas <vanderplas@astro.washington.edu> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Sparseness support by Lars Buitinck <L.J.Buitinck@uva.nl> # Multi-output support by Arnaud Joly <a.joly@ulg.ac.be> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import csr_matrix, issparse from .ball_tree import BallTree from .kd_tree import KDTree from ..base import BaseEstimator from ..metrics import pairwise_distances from ..metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from ..utils import safe_asarray, atleast2d_or_csr, check_arrays from ..utils.fixes import argpartition from ..utils.validation import DataConversionWarning from ..externals import six VALID_METRICS = dict(ball_tree=BallTree.valid_metrics, kd_tree=KDTree.valid_metrics, # The following list comes from the # sklearn.metrics.pairwise doc string brute=(list(PAIRWISE_DISTANCE_FUNCTIONS.keys()) + ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', 'wminkowski'])) VALID_METRICS_SPARSE = dict(ball_tree=[], kd_tree=[], brute=PAIRWISE_DISTANCE_FUNCTIONS.keys()) class NeighborsWarning(UserWarning): pass # Make sure that NeighborsWarning are displayed more than once warnings.simplefilter("always", NeighborsWarning) def _check_weights(weights): """Check to make sure weights are valid""" if weights in (None, 'uniform', 'distance'): return weights elif callable(weights): return weights else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") def _get_weights(dist, weights): """Get the weights from an array of distances and a parameter ``weights`` Parameters =========== dist: ndarray The input distances weights: {'uniform', 'distance' or a callable} The kind of weighting used Returns ======== weights_arr: array of the same shape as ``dist`` if ``weights == 'uniform'``, then returns None """ if weights in (None, 'uniform'): return None elif weights == 'distance': with np.errstate(divide='ignore'): dist = 1. / dist return dist elif callable(weights): return weights(dist) else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") class NeighborsBase(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for nearest neighbors estimators.""" @abstractmethod def __init__(self): pass def _init_params(self, n_neighbors=None, radius=None, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, **kwargs): if kwargs: warnings.warn("Passing additional arguments to the metric " "function as **kwargs is deprecated " "and will no longer be supported in 0.18. " "Use metric_params instead.", DeprecationWarning, stacklevel=3) if metric_params is None: metric_params = {} metric_params.update(kwargs) self.n_neighbors = n_neighbors self.radius = radius self.algorithm = algorithm self.leaf_size = leaf_size self.metric = metric self.metric_params = metric_params self.p = p if algorithm not in ['auto', 'brute', 'kd_tree', 'ball_tree']: raise ValueError("unrecognized algorithm: '%s'" % algorithm) if algorithm == 'auto': alg_check = 'ball_tree' else: alg_check = algorithm if callable(metric): if algorithm == 'kd_tree': # callable metric is only valid for brute force and ball_tree raise ValueError( "kd_tree algorithm does not support callable metric '%s'" % metric) elif metric not in VALID_METRICS[alg_check]: raise ValueError("Metric '%s' not valid for algorithm '%s'" % (metric, algorithm)) if self.metric_params is not None and 'p' in self.metric_params: warnings.warn("Parameter p is found in metric_params. " "The corresponding parameter from __init__ " "is ignored.", SyntaxWarning, stacklevel=3) effective_p = metric_params['p'] else: effective_p = self.p if self.metric in ['wminkowski', 'minkowski'] and effective_p < 1: raise ValueError("p must be greater than one for minkowski metric") self._fit_X = None self._tree = None self._fit_method = None def _fit(self, X): if self.metric_params is None: self.effective_metric_params_ = {} else: self.effective_metric_params_ = self.metric_params.copy() effective_p = self.effective_metric_params_.get('p', self.p) if self.metric in ['wminkowski', 'minkowski']: self.effective_metric_params_['p'] = effective_p self.effective_metric_ = self.metric # For minkowski distance, use more efficient methods where available if self.metric == 'minkowski': p = self.effective_metric_params_.pop('p', 2) if p < 1: raise ValueError("p must be greater than one " "for minkowski metric") elif p == 1: self.effective_metric_ = 'manhattan' elif p == 2: self.effective_metric_ = 'euclidean' elif p == np.inf: self.effective_metric_ = 'chebyshev' else: self.effective_metric_params_['p'] = p if isinstance(X, NeighborsBase): self._fit_X = X._fit_X self._tree = X._tree self._fit_method = X._fit_method return self elif isinstance(X, BallTree): self._fit_X = X.data self._tree = X self._fit_method = 'ball_tree' return self elif isinstance(X, KDTree): self._fit_X = X.data self._tree = X self._fit_method = 'kd_tree' return self X = atleast2d_or_csr(X, copy=False) n_samples = X.shape[0] if n_samples == 0: raise ValueError("n_samples must be greater than 0") if issparse(X): if self.algorithm not in ('auto', 'brute'): warnings.warn("cannot use tree with sparse input: " "using brute force") if self.effective_metric_ not in VALID_METRICS_SPARSE['brute']: raise ValueError("metric '%s' not valid for sparse input" % self.effective_metric_) self._fit_X = X.copy() self._tree = None self._fit_method = 'brute' return self self._fit_method = self.algorithm self._fit_X = X if self._fit_method == 'auto': # A tree approach is better for small number of neighbors, # and KDTree is generally faster when available if (self.n_neighbors is None or self.n_neighbors < self._fit_X.shape[0] // 2): if self.effective_metric_ in VALID_METRICS['kd_tree']: self._fit_method = 'kd_tree' else: self._fit_method = 'ball_tree' else: self._fit_method = 'brute' if self._fit_method == 'ball_tree': self._tree = BallTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'kd_tree': self._tree = KDTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'brute': self._tree = None else: raise ValueError("algorithm = '%s' not recognized" % self.algorithm) return self class KNeighborsMixin(object): """Mixin for k-neighbors searches""" def kneighbors(self, X, n_neighbors=None, return_distance=True): """Finds the K-neighbors of a point. Returns distance Parameters ---------- X : array-like, last dimension same as that of fit data The new point. n_neighbors : int Number of neighbors to get (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array Array representing the lengths to point, only present if return_distance=True ind : array Indices of the nearest points in the population matrix. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1,1,1] >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=1) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.kneighbors([1., 1., 1.])) # doctest: +ELLIPSIS (array([[ 0.5]]), array([[2]]...)) As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third element of samples (indexes start at 0). You can also query for multiple points: >>> X = [[0., 1., 0.], [1., 0., 1.]] >>> neigh.kneighbors(X, return_distance=False) # doctest: +ELLIPSIS array([[1], [2]]...) """ if self._fit_method is None: raise ValueError("must fit neighbors before querying") X = atleast2d_or_csr(X) if n_neighbors is None: n_neighbors = self.n_neighbors if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_params_) neigh_ind = argpartition(dist, n_neighbors - 1, axis=1) neigh_ind = neigh_ind[:, :n_neighbors] # argpartition doesn't guarantee sorted order, so we sort again j = np.arange(neigh_ind.shape[0])[:, None] neigh_ind = neigh_ind[j, np.argsort(dist[j, neigh_ind])] if return_distance: if self.effective_metric_ == 'euclidean': return np.sqrt(dist[j, neigh_ind]), neigh_ind else: return dist[j, neigh_ind], neigh_ind else: return neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: result = self._tree.query(X, n_neighbors, return_distance=return_distance) return result else: raise ValueError("internal: _fit_method not recognized") def kneighbors_graph(self, X, n_neighbors=None, mode='connectivity'): """Computes the (weighted) graph of k-Neighbors for points in X Parameters ---------- X : array-like, shape = [n_samples, n_features] Sample data n_neighbors : int Number of neighbors for each sample. (default is value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit] n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=2) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.kneighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- NearestNeighbors.radius_neighbors_graph """ X = safe_asarray(X) if n_neighbors is None: n_neighbors = self.n_neighbors n_samples1 = X.shape[0] n_samples2 = self._fit_X.shape[0] n_nonzero = n_samples1 * n_neighbors A_indptr = np.arange(0, n_nonzero + 1, n_neighbors) # construct CSR matrix representation of the k-NN graph if mode == 'connectivity': A_data = np.ones((n_samples1, n_neighbors)) A_ind = self.kneighbors(X, n_neighbors, return_distance=False) elif mode == 'distance': data, ind = self.kneighbors(X, n_neighbors + 1, return_distance=True) A_data, A_ind = data[:, 1:], ind[:, 1:] else: raise ValueError( 'Unsupported mode, must be one of "connectivity" ' 'or "distance" but got "%s" instead' % mode) return csr_matrix((A_data.ravel(), A_ind.ravel(), A_indptr), shape=(n_samples1, n_samples2)) class RadiusNeighborsMixin(object): """Mixin for radius-based neighbors searches""" def radius_neighbors(self, X, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Returns indices of and distances to the neighbors of each point. Parameters ---------- X : array-like, last dimension same as that of fit data The new point or points radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array Array representing the euclidean distances to each point, only present if return_distance=True. ind : array Indices of the nearest points in the population matrix. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1,1,1] >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.6) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.radius_neighbors([1., 1., 1.])) # doctest: +ELLIPSIS (array([[ 1.5, 0.5]]...), array([[1, 2]]...) The first array returned contains the distances to all points which are closer than 1.6, while the second array returned contains their indices. In general, multiple points can be queried at the same time. Notes ----- Because the number of neighbors of each point is not necessarily equal, the results for multiple query points cannot be fit in a standard data array. For efficiency, `radius_neighbors` returns arrays of objects, where each object is a 1D array of indices or distances. """ if self._fit_method is None: raise ValueError("must fit neighbors before querying") X = atleast2d_or_csr(X) if radius is None: radius = self.radius if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) radius *= radius else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_params_) neigh_ind = [np.where(d < radius)[0] for d in dist] # if there are the same number of neighbors for each point, # we can do a normal array. Otherwise, we return an object # array with elements that are numpy arrays try: neigh_ind = np.asarray(neigh_ind, dtype=int) dtype_F = float except ValueError: neigh_ind = np.asarray(neigh_ind, dtype='object') dtype_F = object if return_distance: if self.effective_metric_ == 'euclidean': dist = np.array([np.sqrt(d[neigh_ind[i]]) for i, d in enumerate(dist)], dtype=dtype_F) else: dist = np.array([d[neigh_ind[i]] for i, d in enumerate(dist)], dtype=dtype_F) return dist, neigh_ind else: return neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: results = self._tree.query_radius(X, radius, return_distance=return_distance) if return_distance: ind, dist = results return dist, ind else: return results else: raise ValueError("internal: _fit_method not recognized") def radius_neighbors_graph(self, X, radius=None, mode='connectivity'): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Parameters ---------- X : array-like, shape = [n_samples, n_features] Sample data radius : float Radius of neighborhoods. (default is the value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.5) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.radius_neighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ X = safe_asarray(X) if radius is None: radius = self.radius n_samples1 = X.shape[0] n_samples2 = self._fit_X.shape[0] # construct CSR matrix representation of the NN graph if mode == 'connectivity': A_ind = self.radius_neighbors(X, radius, return_distance=False) A_data = None elif mode == 'distance': dist, A_ind = self.radius_neighbors(X, radius, return_distance=True) A_data = np.concatenate(list(dist)) else: raise ValueError( 'Unsupported mode, must be one of "connectivity", ' 'or "distance" but got %s instead' % mode) n_neighbors = np.array([len(a) for a in A_ind]) n_nonzero = np.sum(n_neighbors) if A_data is None: A_data = np.ones(n_nonzero) A_ind = np.concatenate(list(A_ind)) A_indptr = np.concatenate((np.zeros(1, dtype=int), np.cumsum(n_neighbors))) return csr_matrix((A_data, A_ind, A_indptr), shape=(n_samples1, n_samples2)) class SupervisedFloatMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] y : {array-like, sparse matrix} Target values, array of float values, shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_arrays(X, y, sparse_format="csr") self._y = y return self._fit(X) class SupervisedIntegerMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] y : {array-like, sparse matrix} Target values of shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_arrays(X, y, sparse_format="csr") if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1: if y.ndim != 1: warnings.warn("A column-vector y was passed when a 1d array " "was expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) self.outputs_2d_ = False y = y.reshape((-1, 1)) else: self.outputs_2d_ = True self.classes_ = [] self._y = np.empty(y.shape, dtype=np.int) for k in range(self._y.shape[1]): classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes) if not self.outputs_2d_: self.classes_ = self.classes_[0] self._y = self._y.ravel() return self._fit(X) class UnsupervisedMixin(object): def fit(self, X, y=None): """Fit the model using X as training data Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] """ return self._fit(X)
apache-2.0
Vimos/scikit-learn
sklearn/ensemble/tests/test_partial_dependence.py
365
6996
""" Testing for the partial dependence module. """ import numpy as np from numpy.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import if_matplotlib from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn import datasets # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the boston dataset boston = datasets.load_boston() # also load the iris dataset iris = datasets.load_iris() def test_partial_dependence_classifier(): # Test partial dependence for classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) pdp, axes = partial_dependence(clf, [0], X=X, grid_resolution=5) # only 4 grid points instead of 5 because only 4 unique X[:,0] vals assert pdp.shape == (1, 4) assert axes[0].shape[0] == 4 # now with our own grid X_ = np.asarray(X) grid = np.unique(X_[:, 0]) pdp_2, axes = partial_dependence(clf, [0], grid=grid) assert axes is None assert_array_equal(pdp, pdp_2) def test_partial_dependence_multiclass(): # Test partial dependence for multi-class classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 n_classes = clf.n_classes_ pdp, axes = partial_dependence( clf, [0], X=iris.data, grid_resolution=grid_resolution) assert pdp.shape == (n_classes, grid_resolution) assert len(axes) == 1 assert axes[0].shape[0] == grid_resolution def test_partial_dependence_regressor(): # Test partial dependence for regressor clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 pdp, axes = partial_dependence( clf, [0], X=boston.data, grid_resolution=grid_resolution) assert pdp.shape == (1, grid_resolution) assert axes[0].shape[0] == grid_resolution def test_partial_dependecy_input(): # Test input validation of partial dependence. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_raises(ValueError, partial_dependence, clf, [0], grid=None, X=None) assert_raises(ValueError, partial_dependence, clf, [0], grid=[0, 1], X=X) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, partial_dependence, {}, [0], X=X) # Gradient boosting estimator must be fit assert_raises(ValueError, partial_dependence, GradientBoostingClassifier(), [0], X=X) assert_raises(ValueError, partial_dependence, clf, [-1], X=X) assert_raises(ValueError, partial_dependence, clf, [100], X=X) # wrong ndim for grid grid = np.random.rand(10, 2, 1) assert_raises(ValueError, partial_dependence, clf, [0], grid=grid) @if_matplotlib def test_plot_partial_dependence(): # Test partial dependence plot function. clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, boston.data, [0, 1, (0, 1)], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with str features and array feature names fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with list feature_names feature_names = boston.feature_names.tolist() fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) @if_matplotlib def test_plot_partial_dependence_input(): # Test partial dependence plot function input checks. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) # not fitted yet assert_raises(ValueError, plot_partial_dependence, clf, X, [0]) clf.fit(X, y) assert_raises(ValueError, plot_partial_dependence, clf, np.array(X)[:, :0], [0]) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, plot_partial_dependence, {}, X, [0]) # must be larger than -1 assert_raises(ValueError, plot_partial_dependence, clf, X, [-1]) # too large feature value assert_raises(ValueError, plot_partial_dependence, clf, X, [100]) # str feature but no feature_names assert_raises(ValueError, plot_partial_dependence, clf, X, ['foobar']) # not valid features value assert_raises(ValueError, plot_partial_dependence, clf, X, [{'foo': 'bar'}]) @if_matplotlib def test_plot_partial_dependence_multiclass(): # Test partial dependence plot function on multi-class input. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label=0, grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # now with symbol labels target = iris.target_names[iris.target] clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label='setosa', grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # label not in gbrt.classes_ assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], label='foobar', grid_resolution=grid_resolution) # label not provided assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], grid_resolution=grid_resolution)
bsd-3-clause
pico12/trading-with-python
sandbox/spreadCalculations.py
78
1496
''' Created on 28 okt 2011 @author: jev ''' from tradingWithPython import estimateBeta, Spread, returns, Portfolio, readBiggerScreener from tradingWithPython.lib import yahooFinance from pandas import DataFrame, Series import numpy as np import matplotlib.pyplot as plt import os symbols = ['SPY','IWM'] y = yahooFinance.HistData('temp.csv') y.startDate = (2007,1,1) df = y.loadSymbols(symbols,forceDownload=False) #df = y.downloadData(symbols) res = readBiggerScreener('CointPairs.csv') #---check with spread scanner #sp = DataFrame(index=symbols) # #sp['last'] = df.ix[-1,:] #sp['targetCapital'] = Series({'SPY':100,'IWM':-100}) #sp['targetShares'] = sp['targetCapital']/sp['last'] #print sp #The dollar-neutral ratio is about 1 * IWM - 1.7 * IWM. You will get the spread = zero (or probably very near zero) #s = Spread(symbols, histClose = df) #print s #s.value.plot() #print 'beta (returns)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='returns') #print 'beta (log)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='log') #print 'beta (standard)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='standard') #p = Portfolio(df) #p.setShares([1, -1.7]) #p.value.plot() quote = yahooFinance.getQuote(symbols) print quote s = Spread(symbols,histClose=df, estimateBeta = False) s.setLast(quote['last']) s.setShares(Series({'SPY':1,'IWM':-1.7})) print s #s.value.plot() #s.plot() fig = figure(2) s.plot()
bsd-3-clause
XiaoxiaoLiu/morphology_analysis
bigneuron/reestimate_radius.py
1
1506
__author__ = 'xiaoxiaol' __author__ = 'xiaoxiaol' # run standardize swc to make sure swc files have one single root, and sorted, and has the valide type id ( 1~4) import matplotlib.pyplot as plt import seaborn as sb import os import os.path as path import numpy as np import pandas as pd import platform import sys import glob if (platform.system() == "Linux"): WORK_PATH = "/local1/xiaoxiaol/work" else: WORK_PATH = "/Users/xiaoxiaoliu/work" p = WORK_PATH + '/src/morphology_analysis' sys.path.append(p) import bigneuron.recon_prescreening as rp import bigneuron.plot_distances as plt_dist import blast_neuron.blast_neuron_comp as bn ### main data_DIR = "/data/mat/xiaoxiaol/data/big_neuron/silver/0401_gold163_all_soma_sort" output_dir = data_DIR #run_consensus(data_DIR, output_dir) os.system("rm "+data_DIR+"/qsub2/*.qsub") os.system("rm "+data_DIR+"/qsub2/*.o*") for item in os.listdir(data_DIR): folder_name = os.path.join(data_DIR, item) if os.path.isdir(folder_name): print folder_name imagefile = glob.glob(folder_name+'/*.v3dpbd') imagefile.extend(glob.glob(folder_name+'/*.v3draw')) files =glob.glob(folder_name+'/*.strict.swc') if len(files)>0 and len(imagefile)>0: gs_swc_file =files[0] if not os.path.exists(gs_swc_file+".out.swc"): bn.estimate_radius(input_image=imagefile[0], input_swc_path=gs_swc_file,bg_th=40, GEN_QSUB = 0, qsub_script_dir= output_dir+"/qsub2", id=None)
gpl-3.0
siutanwong/scikit-learn
examples/text/document_clustering.py
230
8356
""" ======================================= Clustering text documents using k-means ======================================= This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. Two feature extraction methods can be used in this example: - TfidfVectorizer uses a in-memory vocabulary (a python dict) to map the most frequent words to features indices and hence compute a word occurrence frequency (sparse) matrix. The word frequencies are then reweighted using the Inverse Document Frequency (IDF) vector collected feature-wise over the corpus. - HashingVectorizer hashes word occurrences to a fixed dimensional space, possibly with collisions. The word count vectors are then normalized to each have l2-norm equal to one (projected to the euclidean unit-ball) which seems to be important for k-means to work in high dimensional space. HashingVectorizer does not provide IDF weighting as this is a stateless model (the fit method does nothing). When IDF weighting is needed it can be added by pipelining its output to a TfidfTransformer instance. Two algorithms are demoed: ordinary k-means and its more scalable cousin minibatch k-means. Additionally, latent sematic analysis can also be used to reduce dimensionality and discover latent patterns in the data. It can be noted that k-means (and minibatch k-means) are very sensitive to feature scaling and that in this case the IDF weighting helps improve the quality of the clustering by quite a lot as measured against the "ground truth" provided by the class label assignments of the 20 newsgroups dataset. This improvement is not visible in the Silhouette Coefficient which is small for both as this measure seem to suffer from the phenomenon called "Concentration of Measure" or "Curse of Dimensionality" for high dimensional datasets such as text data. Other measures such as V-measure and Adjusted Rand Index are information theoretic based evaluation scores: as they are only based on cluster assignments rather than distances, hence not affected by the curse of dimensionality. Note: as k-means is optimizing a non-convex objective function, it will likely end up in a local optimum. Several runs with independent random init might be necessary to get a good convergence. """ # Author: Peter Prettenhofer <peter.prettenhofer@gmail.com> # Lars Buitinck <L.J.Buitinck@uva.nl> # License: BSD 3 clause from __future__ import print_function from sklearn.datasets import fetch_20newsgroups from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Normalizer from sklearn import metrics from sklearn.cluster import KMeans, MiniBatchKMeans import logging from optparse import OptionParser import sys from time import time import numpy as np # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--lsa", dest="n_components", type="int", help="Preprocess documents with latent semantic analysis.") op.add_option("--no-minibatch", action="store_false", dest="minibatch", default=True, help="Use ordinary k-means algorithm (in batch mode).") op.add_option("--no-idf", action="store_false", dest="use_idf", default=True, help="Disable Inverse Document Frequency feature weighting.") op.add_option("--use-hashing", action="store_true", default=False, help="Use a hashing feature vectorizer") op.add_option("--n-features", type=int, default=10000, help="Maximum number of features (dimensions)" " to extract from text.") op.add_option("--verbose", action="store_true", dest="verbose", default=False, help="Print progress reports inside k-means algorithm.") print(__doc__) op.print_help() (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) ############################################################################### # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] # Uncomment the following to do the analysis on all the categories #categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) dataset = fetch_20newsgroups(subset='all', categories=categories, shuffle=True, random_state=42) print("%d documents" % len(dataset.data)) print("%d categories" % len(dataset.target_names)) print() labels = dataset.target true_k = np.unique(labels).shape[0] print("Extracting features from the training dataset using a sparse vectorizer") t0 = time() if opts.use_hashing: if opts.use_idf: # Perform an IDF normalization on the output of HashingVectorizer hasher = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=True, norm=None, binary=False) vectorizer = make_pipeline(hasher, TfidfTransformer()) else: vectorizer = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=False, norm='l2', binary=False) else: vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features, min_df=2, stop_words='english', use_idf=opts.use_idf) X = vectorizer.fit_transform(dataset.data) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X.shape) print() if opts.n_components: print("Performing dimensionality reduction using LSA") t0 = time() # Vectorizer results are normalized, which makes KMeans behave as # spherical k-means for better results. Since LSA/SVD results are # not normalized, we have to redo the normalization. svd = TruncatedSVD(opts.n_components) normalizer = Normalizer(copy=False) lsa = make_pipeline(svd, normalizer) X = lsa.fit_transform(X) print("done in %fs" % (time() - t0)) explained_variance = svd.explained_variance_ratio_.sum() print("Explained variance of the SVD step: {}%".format( int(explained_variance * 100))) print() ############################################################################### # Do the actual clustering if opts.minibatch: km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1, init_size=1000, batch_size=1000, verbose=opts.verbose) else: km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1, verbose=opts.verbose) print("Clustering sparse data with %s" % km) t0 = time() km.fit(X) print("done in %0.3fs" % (time() - t0)) print() print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_)) print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_)) print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_)) print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(labels, km.labels_)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, km.labels_, sample_size=1000)) print() if not opts.use_hashing: print("Top terms per cluster:") if opts.n_components: original_space_centroids = svd.inverse_transform(km.cluster_centers_) order_centroids = original_space_centroids.argsort()[:, ::-1] else: order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(true_k): print("Cluster %d:" % i, end='') for ind in order_centroids[i, :10]: print(' %s' % terms[ind], end='') print()
bsd-3-clause
COL-IU/XLSearch
xlsearch_train.py
1
5042
import sys import pickle import os import getopt from time import ctime import numpy as np usage = ''' USAGE: python xlsearch_train.py -l [path to xlsearch library] -p [parameter file] -o [output file]''' (pairs, args) = getopt.getopt(sys.argv[1:], 'l:p:o:') cmd_arg = dict() for i in range(len(pairs)): cmd_arg[pairs[i][0]] = pairs[i][1] if len(cmd_arg) != 3: print usage sys.exit(1) lib_path = cmd_arg['-l'] param_file = cmd_arg['-p'] output_file = cmd_arg['-o'] sys.path.append(lib_path) from utility import * from index import EnumIndexBuilder from fastareader import FastaReader print 'XLSearch, version 1.0' print 'Copyright of School of Informatics and Computing, Indiana University' print 'Current time %s' % ctime() print 'Training logistic regression models using authetic true-true PSMs...' print '\nReading paramters from: %s...' % param_file [param, mass] = read_param(param_file) param['ntermxlink'] = False param['neutral_loss']['h2o_loss']['aa'] = set('DEST') param['neutral_loss']['nh3_loss']['aa'] = set('KNQR') param['neutral_loss']['h2o_gain']['aa'] = set() mass['C'] = 103.009184 print 'Reading parameters done!' print '\nReading MSMS spectra files from directory: %s...' % param['ms_data'] spec_dict = read_spec(param['ms_data'], param, mass) pickle.dump(spec_dict, file('spectra.pickle', 'w')) print 'Total number of spectra: %d' % len(spec_dict) print 'Reading MSMS spectra files done!' print '\nDeisotoping MSMS spectra...' spec_dict = pickle.load(file('spectra.pickle')) deisotoped = dict() titles = spec_dict.keys() for i in range(len(titles)): title = titles[i] (one, align) = spec_dict[title].deisotope(mass, 4, 0.02) deisotoped[title] = one pickle.dump(deisotoped, file('deisotoped.pickle', 'w')) deisotoped = pickle.load(file('deisotoped.pickle')) spec_dict = deisotoped print 'Deisotoping MSMS spectra done!' print 'Current time %s' % ctime() print '\nBuilding index for all possible inter-peptide cross-links...' index = EnumIndexBuilder(param['target_database'], spec_dict, mass, param) pickle.dump(index, file('index.pickle', 'w')) index = pickle.load(file('index.pickle')) print 'Building index done!' print 'Current time %s' % ctime() print '\nComputing features for candidate PSMs for query spectra...' results = [] titles = [] for title in index.search_index.keys(): if len(index.search_index[title]) != 0: titles.append(title) length = len(titles) for i in range(0, length): print '%d / %d' % (i, length) sys.stdout.flush() title = titles[i] result = get_matches_per_spec(mass, param, index, title) result = [title, result] results.append(result) print 'Computing features done!\n' print 'Current time: %s' % ctime() pickle.dump(results, file('results.pickle', 'w')) results = pickle.load(file('results.pickle')) print 'Extracting authentic true-true PSMs...' true_true = get_true_true(results, index, param, mass) pickle.dump(true_true, file('TT.pickle', 'w')) print 'Extracting authentic true-true PSMs done!' print 'Extracting true-false PSMs based on true-true PSMs as seeds...' true_false = get_true_false(true_true, param, mass) pickle.dump(true_false, file('TF.pickle', 'w')) print 'Extracting true-false PSMs done!' print 'Extracting false-false PSMs based on true-true PSMs as seeds...' false_false = get_false_false(true_true, param, mass) pickle.dump(false_false, file('FF.pickle', 'w')) print 'Extracting false-false PSMs done!' print 'Computing feature matrix for true-true, true-false, false-false PSMs...' X_true_true = get_feature_matrix(true_true) X_true_false = get_feature_matrix(true_false) X_false_false = get_feature_matrix(false_false) X_TT_TF = np.concatenate((X_true_true, X_true_false), axis = 0) y_TT_TF = [] y_TT_TF.extend([1.0] * len(true_true)) y_TT_TF.extend([0.0] * len(true_false)) y_TT_TF = np.asarray(y_TT_TF) y_TT_TF = y_TT_TF.T X_TF_FF = np.concatenate((X_true_false, X_false_false), axis = 0) y_TF_FF = [] y_TF_FF.extend([1.0] * len(true_false)) y_TF_FF.extend([0.0] * len(false_false)) y_TF_FF = np.asarray(y_TF_FF) y_TF_FF = y_TF_FF.T print 'Computing features done!' from sklearn import linear_model log_reg = linear_model.LogisticRegression() log_reg.fit(X_TT_TF, y_TT_TF) model_TT_TF = [] model_TT_TF.extend(log_reg.intercept_.tolist()) model_TT_TF.extend(log_reg.coef_.tolist()) log_reg = linear_model.LogisticRegression() log_reg.fit(X_TF_FF, y_TF_FF) model_TF_FF = [] model_TF_FF.extend(log_reg.intercept_.tolist()) model_TF_FF.extend(log_reg.coef_.tolist()) f = open(output_file, 'w') f.write('# Classifier I (TT-TF) coefficients') for i in range(len(model_TT_TF)): f.write('CI%02d\t') f.write('%.60f\n' % model_TT_TF[i]) f.write('# Classifier II (TF-FF) coefficients') for i in range(len(model_TF_FF)): f.write('CII%02d\t') f.write('%.60f\n' % model_TF_FF[i]) f.write('nTT\t%d\n' % len(true_true)) f.write('nTF\t%d\n' % len(true_false)) f.write('nFF\t%d\n' % len(false_false)) f.close() print 'XLSearch train mode finished!'
mit
Sumith1896/sympy
sympy/utilities/runtests.py
4
78928
""" This is our testing framework. Goals: * it should be compatible with py.test and operate very similarly (or identically) * doesn't require any external dependencies * preferably all the functionality should be in this file only * no magic, just import the test file and execute the test functions, that's it * portable """ from __future__ import print_function, division import os import sys import platform import inspect import traceback import pdb import re import linecache from fnmatch import fnmatch from timeit import default_timer as clock import doctest as pdoctest # avoid clashing with our doctest() function from doctest import DocTestFinder, DocTestRunner import random import subprocess import signal import stat from inspect import isgeneratorfunction from sympy.core.cache import clear_cache from sympy.core.compatibility import exec_, PY3, string_types, range from sympy.utilities.misc import find_executable from sympy.external import import_module from sympy.utilities.exceptions import SymPyDeprecationWarning IS_WINDOWS = (os.name == 'nt') class Skipped(Exception): pass import __future__ # add more flags ?? future_flags = __future__.division.compiler_flag def _indent(s, indent=4): """ Add the given number of space characters to the beginning of every non-blank line in ``s``, and return the result. If the string ``s`` is Unicode, it is encoded using the stdout encoding and the ``backslashreplace`` error handler. """ # After a 2to3 run the below code is bogus, so wrap it with a version check if not PY3: if isinstance(s, unicode): s = s.encode(pdoctest._encoding, 'backslashreplace') # This regexp matches the start of non-blank lines: return re.sub('(?m)^(?!$)', indent*' ', s) pdoctest._indent = _indent # ovverride reporter to maintain windows and python3 def _report_failure(self, out, test, example, got): """ Report that the given example failed. """ s = self._checker.output_difference(example, got, self.optionflags) s = s.encode('raw_unicode_escape').decode('utf8', 'ignore') out(self._failure_header(test, example) + s) if PY3 and IS_WINDOWS: DocTestRunner.report_failure = _report_failure def convert_to_native_paths(lst): """ Converts a list of '/' separated paths into a list of native (os.sep separated) paths and converts to lowercase if the system is case insensitive. """ newlst = [] for i, rv in enumerate(lst): rv = os.path.join(*rv.split("/")) # on windows the slash after the colon is dropped if sys.platform == "win32": pos = rv.find(':') if pos != -1: if rv[pos + 1] != '\\': rv = rv[:pos + 1] + '\\' + rv[pos + 1:] newlst.append(sys_normcase(rv)) return newlst def get_sympy_dir(): """ Returns the root sympy directory and set the global value indicating whether the system is case sensitive or not. """ global sys_case_insensitive this_file = os.path.abspath(__file__) sympy_dir = os.path.join(os.path.dirname(this_file), "..", "..") sympy_dir = os.path.normpath(sympy_dir) sys_case_insensitive = (os.path.isdir(sympy_dir) and os.path.isdir(sympy_dir.lower()) and os.path.isdir(sympy_dir.upper())) return sys_normcase(sympy_dir) def sys_normcase(f): if sys_case_insensitive: # global defined after call to get_sympy_dir() return f.lower() return f def setup_pprint(): from sympy import pprint_use_unicode, init_printing # force pprint to be in ascii mode in doctests pprint_use_unicode(False) # hook our nice, hash-stable strprinter init_printing(pretty_print=False) def run_in_subprocess_with_hash_randomization(function, function_args=(), function_kwargs={}, command=sys.executable, module='sympy.utilities.runtests', force=False): """ Run a function in a Python subprocess with hash randomization enabled. If hash randomization is not supported by the version of Python given, it returns False. Otherwise, it returns the exit value of the command. The function is passed to sys.exit(), so the return value of the function will be the return value. The environment variable PYTHONHASHSEED is used to seed Python's hash randomization. If it is set, this function will return False, because starting a new subprocess is unnecessary in that case. If it is not set, one is set at random, and the tests are run. Note that if this environment variable is set when Python starts, hash randomization is automatically enabled. To force a subprocess to be created even if PYTHONHASHSEED is set, pass ``force=True``. This flag will not force a subprocess in Python versions that do not support hash randomization (see below), because those versions of Python do not support the ``-R`` flag. ``function`` should be a string name of a function that is importable from the module ``module``, like "_test". The default for ``module`` is "sympy.utilities.runtests". ``function_args`` and ``function_kwargs`` should be a repr-able tuple and dict, respectively. The default Python command is sys.executable, which is the currently running Python command. This function is necessary because the seed for hash randomization must be set by the environment variable before Python starts. Hence, in order to use a predetermined seed for tests, we must start Python in a separate subprocess. Hash randomization was added in the minor Python versions 2.6.8, 2.7.3, 3.1.5, and 3.2.3, and is enabled by default in all Python versions after and including 3.3.0. Examples ======== >>> from sympy.utilities.runtests import ( ... run_in_subprocess_with_hash_randomization) >>> # run the core tests in verbose mode >>> run_in_subprocess_with_hash_randomization("_test", ... function_args=("core",), ... function_kwargs={'verbose': True}) # doctest: +SKIP # Will return 0 if sys.executable supports hash randomization and tests # pass, 1 if they fail, and False if it does not support hash # randomization. """ # Note, we must return False everywhere, not None, as subprocess.call will # sometimes return None. # First check if the Python version supports hash randomization # If it doesn't have this support, it won't reconize the -R flag p = subprocess.Popen([command, "-RV"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) p.communicate() if p.returncode != 0: return False hash_seed = os.getenv("PYTHONHASHSEED") if not hash_seed: os.environ["PYTHONHASHSEED"] = str(random.randrange(2**32)) else: if not force: return False # Now run the command commandstring = ("import sys; from %s import %s;sys.exit(%s(*%s, **%s))" % (module, function, function, repr(function_args), repr(function_kwargs))) try: p = subprocess.Popen([command, "-R", "-c", commandstring]) p.communicate() except KeyboardInterrupt: p.wait() finally: # Put the environment variable back, so that it reads correctly for # the current Python process. if hash_seed is None: del os.environ["PYTHONHASHSEED"] else: os.environ["PYTHONHASHSEED"] = hash_seed return p.returncode def run_all_tests(test_args=(), test_kwargs={}, doctest_args=(), doctest_kwargs={}, examples_args=(), examples_kwargs={'quiet': True}): """ Run all tests. Right now, this runs the regular tests (bin/test), the doctests (bin/doctest), the examples (examples/all.py), and the sage tests (see sympy/external/tests/test_sage.py). This is what ``setup.py test`` uses. You can pass arguments and keyword arguments to the test functions that support them (for now, test, doctest, and the examples). See the docstrings of those functions for a description of the available options. For example, to run the solvers tests with colors turned off: >>> from sympy.utilities.runtests import run_all_tests >>> run_all_tests(test_args=("solvers",), ... test_kwargs={"colors:False"}) # doctest: +SKIP """ tests_successful = True try: # Regular tests if not test(*test_args, **test_kwargs): # some regular test fails, so set the tests_successful # flag to false and continue running the doctests tests_successful = False # Doctests print() if not doctest(*doctest_args, **doctest_kwargs): tests_successful = False # Examples print() sys.path.append("examples") from all import run_examples # examples/all.py if not run_examples(*examples_args, **examples_kwargs): tests_successful = False # Sage tests if not (sys.platform == "win32" or PY3): # run Sage tests; Sage currently doesn't support Windows or Python 3 dev_null = open(os.devnull, 'w') if subprocess.call("sage -v", shell=True, stdout=dev_null, stderr=dev_null) == 0: if subprocess.call("sage -python bin/test " "sympy/external/tests/test_sage.py", shell=True) != 0: tests_successful = False if tests_successful: return else: # Return nonzero exit code sys.exit(1) except KeyboardInterrupt: print() print("DO *NOT* COMMIT!") sys.exit(1) def test(*paths, **kwargs): """ Run tests in the specified test_*.py files. Tests in a particular test_*.py file are run if any of the given strings in ``paths`` matches a part of the test file's path. If ``paths=[]``, tests in all test_*.py files are run. Notes: - If sort=False, tests are run in random order (not default). - Paths can be entered in native system format or in unix, forward-slash format. - Files that are on the blacklist can be tested by providing their path; they are only excluded if no paths are given. **Explanation of test results** ====== =============================================================== Output Meaning ====== =============================================================== . passed F failed X XPassed (expected to fail but passed) f XFAILed (expected to fail and indeed failed) s skipped w slow T timeout (e.g., when ``--timeout`` is used) K KeyboardInterrupt (when running the slow tests with ``--slow``, you can interrupt one of them without killing the test runner) ====== =============================================================== Colors have no additional meaning and are used just to facilitate interpreting the output. Examples ======== >>> import sympy Run all tests: >>> sympy.test() # doctest: +SKIP Run one file: >>> sympy.test("sympy/core/tests/test_basic.py") # doctest: +SKIP >>> sympy.test("_basic") # doctest: +SKIP Run all tests in sympy/functions/ and some particular file: >>> sympy.test("sympy/core/tests/test_basic.py", ... "sympy/functions") # doctest: +SKIP Run all tests in sympy/core and sympy/utilities: >>> sympy.test("/core", "/util") # doctest: +SKIP Run specific test from a file: >>> sympy.test("sympy/core/tests/test_basic.py", ... kw="test_equality") # doctest: +SKIP Run specific test from any file: >>> sympy.test(kw="subs") # doctest: +SKIP Run the tests with verbose mode on: >>> sympy.test(verbose=True) # doctest: +SKIP Don't sort the test output: >>> sympy.test(sort=False) # doctest: +SKIP Turn on post-mortem pdb: >>> sympy.test(pdb=True) # doctest: +SKIP Turn off colors: >>> sympy.test(colors=False) # doctest: +SKIP Force colors, even when the output is not to a terminal (this is useful, e.g., if you are piping to ``less -r`` and you still want colors) >>> sympy.test(force_colors=False) # doctest: +SKIP The traceback verboseness can be set to "short" or "no" (default is "short") >>> sympy.test(tb='no') # doctest: +SKIP The ``split`` option can be passed to split the test run into parts. The split currently only splits the test files, though this may change in the future. ``split`` should be a string of the form 'a/b', which will run part ``a`` of ``b``. For instance, to run the first half of the test suite: >>> sympy.test(split='1/2') # doctest: +SKIP You can disable running the tests in a separate subprocess using ``subprocess=False``. This is done to support seeding hash randomization, which is enabled by default in the Python versions where it is supported. If subprocess=False, hash randomization is enabled/disabled according to whether it has been enabled or not in the calling Python process. However, even if it is enabled, the seed cannot be printed unless it is called from a new Python process. Hash randomization was added in the minor Python versions 2.6.8, 2.7.3, 3.1.5, and 3.2.3, and is enabled by default in all Python versions after and including 3.3.0. If hash randomization is not supported ``subprocess=False`` is used automatically. >>> sympy.test(subprocess=False) # doctest: +SKIP To set the hash randomization seed, set the environment variable ``PYTHONHASHSEED`` before running the tests. This can be done from within Python using >>> import os >>> os.environ['PYTHONHASHSEED'] = '42' # doctest: +SKIP Or from the command line using $ PYTHONHASHSEED=42 ./bin/test If the seed is not set, a random seed will be chosen. Note that to reproduce the same hash values, you must use both the same seed as well as the same architecture (32-bit vs. 64-bit). """ subprocess = kwargs.pop("subprocess", True) rerun = kwargs.pop("rerun", 0) # count up from 0, do not print 0 print_counter = lambda i : (print("rerun %d" % (rerun-i)) if rerun-i else None) if subprocess: # loop backwards so last i is 0 for i in range(rerun, -1, -1): print_counter(i) ret = run_in_subprocess_with_hash_randomization("_test", function_args=paths, function_kwargs=kwargs) if ret is False: break val = not bool(ret) # exit on the first failure or if done if not val or i == 0: return val # rerun even if hash randomization is not supported for i in range(rerun, -1, -1): print_counter(i) val = not bool(_test(*paths, **kwargs)) if not val or i == 0: return val def _test(*paths, **kwargs): """ Internal function that actually runs the tests. All keyword arguments from ``test()`` are passed to this function except for ``subprocess``. Returns 0 if tests passed and 1 if they failed. See the docstring of ``test()`` for more information. """ verbose = kwargs.get("verbose", False) tb = kwargs.get("tb", "short") kw = kwargs.get("kw", None) or () # ensure that kw is a tuple if isinstance(kw, str): kw = (kw, ) post_mortem = kwargs.get("pdb", False) colors = kwargs.get("colors", True) force_colors = kwargs.get("force_colors", False) sort = kwargs.get("sort", True) seed = kwargs.get("seed", None) if seed is None: seed = random.randrange(100000000) timeout = kwargs.get("timeout", False) slow = kwargs.get("slow", False) enhance_asserts = kwargs.get("enhance_asserts", False) split = kwargs.get('split', None) blacklist = kwargs.get('blacklist', []) blacklist = convert_to_native_paths(blacklist) r = PyTestReporter(verbose=verbose, tb=tb, colors=colors, force_colors=force_colors, split=split) t = SymPyTests(r, kw, post_mortem, seed) # Disable warnings for external modules import sympy.external sympy.external.importtools.WARN_OLD_VERSION = False sympy.external.importtools.WARN_NOT_INSTALLED = False # Show deprecation warnings import warnings warnings.simplefilter("error", SymPyDeprecationWarning) test_files = t.get_test_files('sympy') not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: paths = convert_to_native_paths(paths) matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break if split: matched = split_list(matched, split) t._testfiles.extend(matched) return int(not t.test(sort=sort, timeout=timeout, slow=slow, enhance_asserts=enhance_asserts)) def doctest(*paths, **kwargs): """ Runs doctests in all \*.py files in the sympy directory which match any of the given strings in ``paths`` or all tests if paths=[]. Notes: - Paths can be entered in native system format or in unix, forward-slash format. - Files that are on the blacklist can be tested by providing their path; they are only excluded if no paths are given. Examples ======== >>> import sympy Run all tests: >>> sympy.doctest() # doctest: +SKIP Run one file: >>> sympy.doctest("sympy/core/basic.py") # doctest: +SKIP >>> sympy.doctest("polynomial.rst") # doctest: +SKIP Run all tests in sympy/functions/ and some particular file: >>> sympy.doctest("/functions", "basic.py") # doctest: +SKIP Run any file having polynomial in its name, doc/src/modules/polynomial.rst, sympy/functions/special/polynomials.py, and sympy/polys/polynomial.py: >>> sympy.doctest("polynomial") # doctest: +SKIP The ``split`` option can be passed to split the test run into parts. The split currently only splits the test files, though this may change in the future. ``split`` should be a string of the form 'a/b', which will run part ``a`` of ``b``. Note that the regular doctests and the Sphinx doctests are split independently. For instance, to run the first half of the test suite: >>> sympy.doctest(split='1/2') # doctest: +SKIP The ``subprocess`` and ``verbose`` options are the same as with the function ``test()``. See the docstring of that function for more information. """ subprocess = kwargs.pop("subprocess", True) rerun = kwargs.pop("rerun", 0) # count up from 0, do not print 0 print_counter = lambda i : (print("rerun %d" % (rerun-i)) if rerun-i else None) if subprocess: # loop backwards so last i is 0 for i in range(rerun, -1, -1): print_counter(i) ret = run_in_subprocess_with_hash_randomization("_doctest", function_args=paths, function_kwargs=kwargs) if ret is False: break val = not bool(ret) # exit on the first failure or if done if not val or i == 0: return val # rerun even if hash randomization is not supported for i in range(rerun, -1, -1): print_counter(i) val = not bool(_doctest(*paths, **kwargs)) if not val or i == 0: return val def _doctest(*paths, **kwargs): """ Internal function that actually runs the doctests. All keyword arguments from ``doctest()`` are passed to this function except for ``subprocess``. Returns 0 if tests passed and 1 if they failed. See the docstrings of ``doctest()`` and ``test()`` for more information. """ normal = kwargs.get("normal", False) verbose = kwargs.get("verbose", False) blacklist = kwargs.get("blacklist", []) split = kwargs.get('split', None) blacklist.extend([ "doc/src/modules/plotting.rst", # generates live plots "sympy/utilities/compilef.py", # needs tcc "sympy/physics/gaussopt.py", # raises deprecation warning ]) if import_module('numpy') is None: blacklist.extend([ "sympy/plotting/experimental_lambdify.py", "sympy/plotting/plot_implicit.py", "examples/advanced/autowrap_integrators.py", "examples/advanced/autowrap_ufuncify.py", "examples/intermediate/sample.py", "examples/intermediate/mplot2d.py", "examples/intermediate/mplot3d.py", "doc/src/modules/numeric-computation.rst" ]) else: if import_module('matplotlib') is None: blacklist.extend([ "examples/intermediate/mplot2d.py", "examples/intermediate/mplot3d.py" ]) else: # don't display matplotlib windows from sympy.plotting.plot import unset_show unset_show() if import_module('pyglet') is None: blacklist.extend(["sympy/plotting/pygletplot"]) if import_module('theano') is None: blacklist.extend(["doc/src/modules/numeric-computation.rst"]) # disabled because of doctest failures in asmeurer's bot blacklist.extend([ "sympy/utilities/autowrap.py", "examples/advanced/autowrap_integrators.py", "examples/advanced/autowrap_ufuncify.py" ]) # blacklist these modules until issue 4840 is resolved blacklist.extend([ "sympy/conftest.py", "sympy/utilities/benchmarking.py" ]) blacklist = convert_to_native_paths(blacklist) # Disable warnings for external modules import sympy.external sympy.external.importtools.WARN_OLD_VERSION = False sympy.external.importtools.WARN_NOT_INSTALLED = False # Show deprecation warnings import warnings warnings.simplefilter("error", SymPyDeprecationWarning) r = PyTestReporter(verbose, split=split) t = SymPyDocTests(r, normal) test_files = t.get_test_files('sympy') test_files.extend(t.get_test_files('examples', init_only=False)) not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: # take only what was requested...but not blacklisted items # and allow for partial match anywhere or fnmatch of name paths = convert_to_native_paths(paths) matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break if split: matched = split_list(matched, split) t._testfiles.extend(matched) # run the tests and record the result for this *py portion of the tests if t._testfiles: failed = not t.test() else: failed = False # N.B. # -------------------------------------------------------------------- # Here we test *.rst files at or below doc/src. Code from these must # be self supporting in terms of imports since there is no importing # of necessary modules by doctest.testfile. If you try to pass *.py # files through this they might fail because they will lack the needed # imports and smarter parsing that can be done with source code. # test_files = t.get_test_files('doc/src', '*.rst', init_only=False) test_files.sort() not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: # Take only what was requested as long as it's not on the blacklist. # Paths were already made native in *py tests so don't repeat here. # There's no chance of having a *py file slip through since we # only have *rst files in test_files. matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break if split: matched = split_list(matched, split) setup_pprint() first_report = True for rst_file in matched: if not os.path.isfile(rst_file): continue old_displayhook = sys.displayhook try: out = sympytestfile( rst_file, module_relative=False, encoding='utf-8', optionflags=pdoctest.ELLIPSIS | pdoctest.NORMALIZE_WHITESPACE | pdoctest.IGNORE_EXCEPTION_DETAIL) finally: # make sure we return to the original displayhook in case some # doctest has changed that sys.displayhook = old_displayhook rstfailed, tested = out if tested: failed = rstfailed or failed if first_report: first_report = False msg = 'rst doctests start' if not t._testfiles: r.start(msg=msg) else: r.write_center(msg) print() # use as the id, everything past the first 'sympy' file_id = rst_file[rst_file.find('sympy') + len('sympy') + 1:] print(file_id, end=" ") # get at least the name out so it is know who is being tested wid = r.terminal_width - len(file_id) - 1 # update width test_file = '[%s]' % (tested) report = '[%s]' % (rstfailed or 'OK') print(''.join( [test_file, ' '*(wid - len(test_file) - len(report)), report]) ) # the doctests for *py will have printed this message already if there was # a failure, so now only print it if there was intervening reporting by # testing the *rst as evidenced by first_report no longer being True. if not first_report and failed: print() print("DO *NOT* COMMIT!") return int(failed) sp = re.compile(r'([0-9]+)/([1-9][0-9]*)') def split_list(l, split): """ Splits a list into part a of b split should be a string of the form 'a/b'. For instance, '1/3' would give the split one of three. If the length of the list is not divisible by the number of splits, the last split will have more items. >>> from sympy.utilities.runtests import split_list >>> a = list(range(10)) >>> split_list(a, '1/3') [0, 1, 2] >>> split_list(a, '2/3') [3, 4, 5] >>> split_list(a, '3/3') [6, 7, 8, 9] """ m = sp.match(split) if not m: raise ValueError("split must be a string of the form a/b where a and b are ints") i, t = map(int, m.groups()) return l[(i - 1)*len(l)//t:i*len(l)//t] from collections import namedtuple SymPyTestResults = namedtuple('TestResults', 'failed attempted') def sympytestfile(filename, module_relative=True, name=None, package=None, globs=None, verbose=None, report=True, optionflags=0, extraglobs=None, raise_on_error=False, parser=pdoctest.DocTestParser(), encoding=None): """ Test examples in the given file. Return (#failures, #tests). Optional keyword arg ``module_relative`` specifies how filenames should be interpreted: - If ``module_relative`` is True (the default), then ``filename`` specifies a module-relative path. By default, this path is relative to the calling module's directory; but if the ``package`` argument is specified, then it is relative to that package. To ensure os-independence, ``filename`` should use "/" characters to separate path segments, and should not be an absolute path (i.e., it may not begin with "/"). - If ``module_relative`` is False, then ``filename`` specifies an os-specific path. The path may be absolute or relative (to the current working directory). Optional keyword arg ``name`` gives the name of the test; by default use the file's basename. Optional keyword argument ``package`` is a Python package or the name of a Python package whose directory should be used as the base directory for a module relative filename. If no package is specified, then the calling module's directory is used as the base directory for module relative filenames. It is an error to specify ``package`` if ``module_relative`` is False. Optional keyword arg ``globs`` gives a dict to be used as the globals when executing examples; by default, use {}. A copy of this dict is actually used for each docstring, so that each docstring's examples start with a clean slate. Optional keyword arg ``extraglobs`` gives a dictionary that should be merged into the globals that are used to execute examples. By default, no extra globals are used. Optional keyword arg ``verbose`` prints lots of stuff if true, prints only failures if false; by default, it's true iff "-v" is in sys.argv. Optional keyword arg ``report`` prints a summary at the end when true, else prints nothing at the end. In verbose mode, the summary is detailed, else very brief (in fact, empty if all tests passed). Optional keyword arg ``optionflags`` or's together module constants, and defaults to 0. Possible values (see the docs for details): - DONT_ACCEPT_TRUE_FOR_1 - DONT_ACCEPT_BLANKLINE - NORMALIZE_WHITESPACE - ELLIPSIS - SKIP - IGNORE_EXCEPTION_DETAIL - REPORT_UDIFF - REPORT_CDIFF - REPORT_NDIFF - REPORT_ONLY_FIRST_FAILURE Optional keyword arg ``raise_on_error`` raises an exception on the first unexpected exception or failure. This allows failures to be post-mortem debugged. Optional keyword arg ``parser`` specifies a DocTestParser (or subclass) that should be used to extract tests from the files. Optional keyword arg ``encoding`` specifies an encoding that should be used to convert the file to unicode. Advanced tomfoolery: testmod runs methods of a local instance of class doctest.Tester, then merges the results into (or creates) global Tester instance doctest.master. Methods of doctest.master can be called directly too, if you want to do something unusual. Passing report=0 to testmod is especially useful then, to delay displaying a summary. Invoke doctest.master.summarize(verbose) when you're done fiddling. """ if package and not module_relative: raise ValueError("Package may only be specified for module-" "relative paths.") # Relativize the path if not PY3: text, filename = pdoctest._load_testfile( filename, package, module_relative) if encoding is not None: text = text.decode(encoding) else: text, filename = pdoctest._load_testfile( filename, package, module_relative, encoding) # If no name was given, then use the file's name. if name is None: name = os.path.basename(filename) # Assemble the globals. if globs is None: globs = {} else: globs = globs.copy() if extraglobs is not None: globs.update(extraglobs) if '__name__' not in globs: globs['__name__'] = '__main__' if raise_on_error: runner = pdoctest.DebugRunner(verbose=verbose, optionflags=optionflags) else: runner = SymPyDocTestRunner(verbose=verbose, optionflags=optionflags) runner._checker = SymPyOutputChecker() # Read the file, convert it to a test, and run it. test = parser.get_doctest(text, globs, name, filename, 0) runner.run(test, compileflags=future_flags) if report: runner.summarize() if pdoctest.master is None: pdoctest.master = runner else: pdoctest.master.merge(runner) return SymPyTestResults(runner.failures, runner.tries) class SymPyTests(object): def __init__(self, reporter, kw="", post_mortem=False, seed=None): self._post_mortem = post_mortem self._kw = kw self._count = 0 self._root_dir = sympy_dir self._reporter = reporter self._reporter.root_dir(self._root_dir) self._testfiles = [] self._seed = seed if seed is not None else random.random() def test(self, sort=False, timeout=False, slow=False, enhance_asserts=False): """ Runs the tests returning True if all tests pass, otherwise False. If sort=False run tests in random order. """ if sort: self._testfiles.sort() else: from random import shuffle random.seed(self._seed) shuffle(self._testfiles) self._reporter.start(self._seed) for f in self._testfiles: try: self.test_file(f, sort, timeout, slow, enhance_asserts) except KeyboardInterrupt: print(" interrupted by user") self._reporter.finish() raise return self._reporter.finish() def _enhance_asserts(self, source): from ast import (NodeTransformer, Compare, Name, Store, Load, Tuple, Assign, BinOp, Str, Mod, Assert, parse, fix_missing_locations) ops = {"Eq": '==', "NotEq": '!=', "Lt": '<', "LtE": '<=', "Gt": '>', "GtE": '>=', "Is": 'is', "IsNot": 'is not', "In": 'in', "NotIn": 'not in'} class Transform(NodeTransformer): def visit_Assert(self, stmt): if isinstance(stmt.test, Compare): compare = stmt.test values = [compare.left] + compare.comparators names = [ "_%s" % i for i, _ in enumerate(values) ] names_store = [ Name(n, Store()) for n in names ] names_load = [ Name(n, Load()) for n in names ] target = Tuple(names_store, Store()) value = Tuple(values, Load()) assign = Assign([target], value) new_compare = Compare(names_load[0], compare.ops, names_load[1:]) msg_format = "\n%s " + "\n%s ".join([ ops[op.__class__.__name__] for op in compare.ops ]) + "\n%s" msg = BinOp(Str(msg_format), Mod(), Tuple(names_load, Load())) test = Assert(new_compare, msg, lineno=stmt.lineno, col_offset=stmt.col_offset) return [assign, test] else: return stmt tree = parse(source) new_tree = Transform().visit(tree) return fix_missing_locations(new_tree) def test_file(self, filename, sort=True, timeout=False, slow=False, enhance_asserts=False): funcs = [] try: gl = {'__file__': filename} try: if PY3: open_file = lambda: open(filename, encoding="utf8") else: open_file = lambda: open(filename) with open_file() as f: source = f.read() if self._kw: for l in source.splitlines(): if l.lstrip().startswith('def '): if any(l.find(k) != -1 for k in self._kw): break else: return if enhance_asserts: try: source = self._enhance_asserts(source) except ImportError: pass code = compile(source, filename, "exec") exec_(code, gl) except (SystemExit, KeyboardInterrupt): raise except ImportError: self._reporter.import_error(filename, sys.exc_info()) return clear_cache() self._count += 1 random.seed(self._seed) pytestfile = "" if "XFAIL" in gl: pytestfile = inspect.getsourcefile(gl["XFAIL"]) pytestfile2 = "" if "slow" in gl: pytestfile2 = inspect.getsourcefile(gl["slow"]) disabled = gl.get("disabled", False) if not disabled: # we need to filter only those functions that begin with 'test_' # that are defined in the testing file or in the file where # is defined the XFAIL decorator funcs = [gl[f] for f in gl.keys() if f.startswith("test_") and (inspect.isfunction(gl[f]) or inspect.ismethod(gl[f])) and (inspect.getsourcefile(gl[f]) == filename or inspect.getsourcefile(gl[f]) == pytestfile or inspect.getsourcefile(gl[f]) == pytestfile2)] if slow: funcs = [f for f in funcs if getattr(f, '_slow', False)] # Sorting of XFAILed functions isn't fixed yet :-( funcs.sort(key=lambda x: inspect.getsourcelines(x)[1]) i = 0 while i < len(funcs): if isgeneratorfunction(funcs[i]): # some tests can be generators, that return the actual # test functions. We unpack it below: f = funcs.pop(i) for fg in f(): func = fg[0] args = fg[1:] fgw = lambda: func(*args) funcs.insert(i, fgw) i += 1 else: i += 1 # drop functions that are not selected with the keyword expression: funcs = [x for x in funcs if self.matches(x)] if not funcs: return except Exception: self._reporter.entering_filename(filename, len(funcs)) raise self._reporter.entering_filename(filename, len(funcs)) if not sort: random.shuffle(funcs) for f in funcs: self._reporter.entering_test(f) try: if getattr(f, '_slow', False) and not slow: raise Skipped("Slow") if timeout: self._timeout(f, timeout) else: random.seed(self._seed) f() except KeyboardInterrupt: if getattr(f, '_slow', False): self._reporter.test_skip("KeyboardInterrupt") else: raise except Exception: if timeout: signal.alarm(0) # Disable the alarm. It could not be handled before. t, v, tr = sys.exc_info() if t is AssertionError: self._reporter.test_fail((t, v, tr)) if self._post_mortem: pdb.post_mortem(tr) elif t.__name__ == "Skipped": self._reporter.test_skip(v) elif t.__name__ == "XFail": self._reporter.test_xfail() elif t.__name__ == "XPass": self._reporter.test_xpass(v) else: self._reporter.test_exception((t, v, tr)) if self._post_mortem: pdb.post_mortem(tr) else: self._reporter.test_pass() self._reporter.leaving_filename() def _timeout(self, function, timeout): def callback(x, y): signal.alarm(0) raise Skipped("Timeout") signal.signal(signal.SIGALRM, callback) signal.alarm(timeout) # Set an alarm with a given timeout function() signal.alarm(0) # Disable the alarm def matches(self, x): """ Does the keyword expression self._kw match "x"? Returns True/False. Always returns True if self._kw is "". """ if not self._kw: return True for kw in self._kw: if x.__name__.find(kw) != -1: return True return False def get_test_files(self, dir, pat='test_*.py'): """ Returns the list of test_*.py (default) files at or below directory ``dir`` relative to the sympy home directory. """ dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0]) g = [] for path, folders, files in os.walk(dir): g.extend([os.path.join(path, f) for f in files if fnmatch(f, pat)]) return sorted([sys_normcase(gi) for gi in g]) class SymPyDocTests(object): def __init__(self, reporter, normal): self._count = 0 self._root_dir = sympy_dir self._reporter = reporter self._reporter.root_dir(self._root_dir) self._normal = normal self._testfiles = [] def test(self): """ Runs the tests and returns True if all tests pass, otherwise False. """ self._reporter.start() for f in self._testfiles: try: self.test_file(f) except KeyboardInterrupt: print(" interrupted by user") self._reporter.finish() raise return self._reporter.finish() def test_file(self, filename): clear_cache() from sympy.core.compatibility import StringIO rel_name = filename[len(self._root_dir) + 1:] dirname, file = os.path.split(filename) module = rel_name.replace(os.sep, '.')[:-3] if rel_name.startswith("examples"): # Examples files do not have __init__.py files, # So we have to temporarily extend sys.path to import them sys.path.insert(0, dirname) module = file[:-3] # remove ".py" setup_pprint() try: module = pdoctest._normalize_module(module) tests = SymPyDocTestFinder().find(module) except (SystemExit, KeyboardInterrupt): raise except ImportError: self._reporter.import_error(filename, sys.exc_info()) return finally: if rel_name.startswith("examples"): del sys.path[0] tests = [test for test in tests if len(test.examples) > 0] # By default tests are sorted by alphabetical order by function name. # We sort by line number so one can edit the file sequentially from # bottom to top. However, if there are decorated functions, their line # numbers will be too large and for now one must just search for these # by text and function name. tests.sort(key=lambda x: -x.lineno) if not tests: return self._reporter.entering_filename(filename, len(tests)) for test in tests: assert len(test.examples) != 0 # check if there are external dependencies which need to be met if '_doctest_depends_on' in test.globs: if not self._process_dependencies(test.globs['_doctest_depends_on']): self._reporter.test_skip() continue runner = SymPyDocTestRunner(optionflags=pdoctest.ELLIPSIS | pdoctest.NORMALIZE_WHITESPACE | pdoctest.IGNORE_EXCEPTION_DETAIL) runner._checker = SymPyOutputChecker() old = sys.stdout new = StringIO() sys.stdout = new # If the testing is normal, the doctests get importing magic to # provide the global namespace. If not normal (the default) then # then must run on their own; all imports must be explicit within # a function's docstring. Once imported that import will be # available to the rest of the tests in a given function's # docstring (unless clear_globs=True below). if not self._normal: test.globs = {} # if this is uncommented then all the test would get is what # comes by default with a "from sympy import *" #exec('from sympy import *') in test.globs test.globs['print_function'] = print_function try: f, t = runner.run(test, compileflags=future_flags, out=new.write, clear_globs=False) except KeyboardInterrupt: raise finally: sys.stdout = old if f > 0: self._reporter.doctest_fail(test.name, new.getvalue()) else: self._reporter.test_pass() self._reporter.leaving_filename() def get_test_files(self, dir, pat='*.py', init_only=True): """ Returns the list of \*.py files (default) from which docstrings will be tested which are at or below directory ``dir``. By default, only those that have an __init__.py in their parent directory and do not start with ``test_`` will be included. """ def importable(x): """ Checks if given pathname x is an importable module by checking for __init__.py file. Returns True/False. Currently we only test if the __init__.py file exists in the directory with the file "x" (in theory we should also test all the parent dirs). """ init_py = os.path.join(os.path.dirname(x), "__init__.py") return os.path.exists(init_py) dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0]) g = [] for path, folders, files in os.walk(dir): g.extend([os.path.join(path, f) for f in files if not f.startswith('test_') and fnmatch(f, pat)]) if init_only: # skip files that are not importable (i.e. missing __init__.py) g = [x for x in g if importable(x)] return [sys_normcase(gi) for gi in g] def _process_dependencies(self, deps): """ Returns ``False`` if some dependencies are not met and the test should be skipped otherwise returns ``True``. """ executables = deps.get('exe', None) moduledeps = deps.get('modules', None) viewers = deps.get('disable_viewers', None) pyglet = deps.get('pyglet', None) # print deps if executables is not None: for ex in executables: found = find_executable(ex) if found is None: return False if moduledeps is not None: for extmod in moduledeps: if extmod == 'matplotlib': matplotlib = import_module( 'matplotlib', __import__kwargs={'fromlist': ['pyplot', 'cm', 'collections']}, min_module_version='1.0.0', catch=(RuntimeError,)) if matplotlib is not None: pass else: return False else: # TODO min version support mod = import_module(extmod) if mod is not None: version = "unknown" if hasattr(mod, '__version__'): version = mod.__version__ else: return False if viewers is not None: import tempfile tempdir = tempfile.mkdtemp() os.environ['PATH'] = '%s:%s' % (tempdir, os.environ['PATH']) if PY3: vw = '#!/usr/bin/env python3\n' \ 'import sys\n' \ 'if len(sys.argv) <= 1:\n' \ ' exit("wrong number of args")\n' else: vw = '#!/usr/bin/env python\n' \ 'import sys\n' \ 'if len(sys.argv) <= 1:\n' \ ' exit("wrong number of args")\n' for viewer in viewers: with open(os.path.join(tempdir, viewer), 'w') as fh: fh.write(vw) # make the file executable os.chmod(os.path.join(tempdir, viewer), stat.S_IREAD | stat.S_IWRITE | stat.S_IXUSR) if pyglet: # monkey-patch pyglet s.t. it does not open a window during # doctesting import pyglet class DummyWindow(object): def __init__(self, *args, **kwargs): self.has_exit=True self.width = 600 self.height = 400 def set_vsync(self, x): pass def switch_to(self): pass def push_handlers(self, x): pass def close(self): pass pyglet.window.Window = DummyWindow return True class SymPyDocTestFinder(DocTestFinder): """ A class used to extract the DocTests that are relevant to a given object, from its docstring and the docstrings of its contained objects. Doctests can currently be extracted from the following object types: modules, functions, classes, methods, staticmethods, classmethods, and properties. Modified from doctest's version by looking harder for code in the case that it looks like the the code comes from a different module. In the case of decorated functions (e.g. @vectorize) they appear to come from a different module (e.g. multidemensional) even though their code is not there. """ def _find(self, tests, obj, name, module, source_lines, globs, seen): """ Find tests for the given object and any contained objects, and add them to ``tests``. """ if self._verbose: print('Finding tests in %s' % name) # If we've already processed this object, then ignore it. if id(obj) in seen: return seen[id(obj)] = 1 # Make sure we don't run doctests for classes outside of sympy, such # as in numpy or scipy. if inspect.isclass(obj): if obj.__module__.split('.')[0] != 'sympy': return # Find a test for this object, and add it to the list of tests. test = self._get_test(obj, name, module, globs, source_lines) if test is not None: tests.append(test) if not self._recurse: return # Look for tests in a module's contained objects. if inspect.ismodule(obj): for rawname, val in obj.__dict__.items(): # Recurse to functions & classes. if inspect.isfunction(val) or inspect.isclass(val): # Make sure we don't run doctests functions or classes # from different modules if val.__module__ != module.__name__: continue assert self._from_module(module, val), \ "%s is not in module %s (rawname %s)" % (val, module, rawname) try: valname = '%s.%s' % (name, rawname) self._find(tests, val, valname, module, source_lines, globs, seen) except KeyboardInterrupt: raise # Look for tests in a module's __test__ dictionary. for valname, val in getattr(obj, '__test__', {}).items(): if not isinstance(valname, string_types): raise ValueError("SymPyDocTestFinder.find: __test__ keys " "must be strings: %r" % (type(valname),)) if not (inspect.isfunction(val) or inspect.isclass(val) or inspect.ismethod(val) or inspect.ismodule(val) or isinstance(val, string_types)): raise ValueError("SymPyDocTestFinder.find: __test__ values " "must be strings, functions, methods, " "classes, or modules: %r" % (type(val),)) valname = '%s.__test__.%s' % (name, valname) self._find(tests, val, valname, module, source_lines, globs, seen) # Look for tests in a class's contained objects. if inspect.isclass(obj): for valname, val in obj.__dict__.items(): # Special handling for staticmethod/classmethod. if isinstance(val, staticmethod): val = getattr(obj, valname) if isinstance(val, classmethod): val = getattr(obj, valname).__func__ # Recurse to methods, properties, and nested classes. if (inspect.isfunction(val) or inspect.isclass(val) or isinstance(val, property)): # Make sure we don't run doctests functions or classes # from different modules if isinstance(val, property): if hasattr(val.fget, '__module__'): if val.fget.__module__ != module.__name__: continue else: if val.__module__ != module.__name__: continue assert self._from_module(module, val), \ "%s is not in module %s (valname %s)" % ( val, module, valname) valname = '%s.%s' % (name, valname) self._find(tests, val, valname, module, source_lines, globs, seen) def _get_test(self, obj, name, module, globs, source_lines): """ Return a DocTest for the given object, if it defines a docstring; otherwise, return None. """ lineno = None # Extract the object's docstring. If it doesn't have one, # then return None (no test for this object). if isinstance(obj, string_types): # obj is a string in the case for objects in the polys package. # Note that source_lines is a binary string (compiled polys # modules), which can't be handled by _find_lineno so determine # the line number here. docstring = obj matches = re.findall("line \d+", name) assert len(matches) == 1, \ "string '%s' does not contain lineno " % name # NOTE: this is not the exact linenumber but its better than no # lineno ;) lineno = int(matches[0][5:]) else: try: if obj.__doc__ is None: docstring = '' else: docstring = obj.__doc__ if not isinstance(docstring, string_types): docstring = str(docstring) except (TypeError, AttributeError): docstring = '' # Don't bother if the docstring is empty. if self._exclude_empty and not docstring: return None # check that properties have a docstring because _find_lineno # assumes it if isinstance(obj, property): if obj.fget.__doc__ is None: return None # Find the docstring's location in the file. if lineno is None: # handling of properties is not implemented in _find_lineno so do # it here if hasattr(obj, 'func_closure') and obj.func_closure is not None: tobj = obj.func_closure[0].cell_contents elif isinstance(obj, property): tobj = obj.fget else: tobj = obj lineno = self._find_lineno(tobj, source_lines) if lineno is None: return None # Return a DocTest for this object. if module is None: filename = None else: filename = getattr(module, '__file__', module.__name__) if filename[-4:] in (".pyc", ".pyo"): filename = filename[:-1] if hasattr(obj, '_doctest_depends_on'): globs['_doctest_depends_on'] = obj._doctest_depends_on else: globs['_doctest_depends_on'] = {} return self._parser.get_doctest(docstring, globs, name, filename, lineno) class SymPyDocTestRunner(DocTestRunner): """ A class used to run DocTest test cases, and accumulate statistics. The ``run`` method is used to process a single DocTest case. It returns a tuple ``(f, t)``, where ``t`` is the number of test cases tried, and ``f`` is the number of test cases that failed. Modified from the doctest version to not reset the sys.displayhook (see issue 5140). See the docstring of the original DocTestRunner for more information. """ def run(self, test, compileflags=None, out=None, clear_globs=True): """ Run the examples in ``test``, and display the results using the writer function ``out``. The examples are run in the namespace ``test.globs``. If ``clear_globs`` is true (the default), then this namespace will be cleared after the test runs, to help with garbage collection. If you would like to examine the namespace after the test completes, then use ``clear_globs=False``. ``compileflags`` gives the set of flags that should be used by the Python compiler when running the examples. If not specified, then it will default to the set of future-import flags that apply to ``globs``. The output of each example is checked using ``SymPyDocTestRunner.check_output``, and the results are formatted by the ``SymPyDocTestRunner.report_*`` methods. """ self.test = test if compileflags is None: compileflags = pdoctest._extract_future_flags(test.globs) save_stdout = sys.stdout if out is None: out = save_stdout.write sys.stdout = self._fakeout # Patch pdb.set_trace to restore sys.stdout during interactive # debugging (so it's not still redirected to self._fakeout). # Note that the interactive output will go to *our* # save_stdout, even if that's not the real sys.stdout; this # allows us to write test cases for the set_trace behavior. save_set_trace = pdb.set_trace self.debugger = pdoctest._OutputRedirectingPdb(save_stdout) self.debugger.reset() pdb.set_trace = self.debugger.set_trace # Patch linecache.getlines, so we can see the example's source # when we're inside the debugger. self.save_linecache_getlines = pdoctest.linecache.getlines linecache.getlines = self.__patched_linecache_getlines try: test.globs['print_function'] = print_function return self.__run(test, compileflags, out) finally: sys.stdout = save_stdout pdb.set_trace = save_set_trace linecache.getlines = self.save_linecache_getlines if clear_globs: test.globs.clear() # We have to override the name mangled methods. SymPyDocTestRunner._SymPyDocTestRunner__patched_linecache_getlines = \ DocTestRunner._DocTestRunner__patched_linecache_getlines SymPyDocTestRunner._SymPyDocTestRunner__run = DocTestRunner._DocTestRunner__run SymPyDocTestRunner._SymPyDocTestRunner__record_outcome = \ DocTestRunner._DocTestRunner__record_outcome class SymPyOutputChecker(pdoctest.OutputChecker): """ Compared to the OutputChecker from the stdlib our OutputChecker class supports numerical comparison of floats occuring in the output of the doctest examples """ def __init__(self): # NOTE OutputChecker is an old-style class with no __init__ method, # so we can't call the base class version of __init__ here got_floats = r'(\d+\.\d*|\.\d+)' # floats in the 'want' string may contain ellipses want_floats = got_floats + r'(\.{3})?' front_sep = r'\s|\+|\-|\*|,' back_sep = front_sep + r'|j|e' fbeg = r'^%s(?=%s|$)' % (got_floats, back_sep) fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, got_floats, back_sep) self.num_got_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend)) fbeg = r'^%s(?=%s|$)' % (want_floats, back_sep) fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, want_floats, back_sep) self.num_want_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend)) def check_output(self, want, got, optionflags): """ Return True iff the actual output from an example (`got`) matches the expected output (`want`). These strings are always considered to match if they are identical; but depending on what option flags the test runner is using, several non-exact match types are also possible. See the documentation for `TestRunner` for more information about option flags. """ # Handle the common case first, for efficiency: # if they're string-identical, always return true. if got == want: return True # TODO parse integers as well ? # Parse floats and compare them. If some of the parsed floats contain # ellipses, skip the comparison. matches = self.num_got_rgx.finditer(got) numbers_got = [match.group(1) for match in matches] # list of strs matches = self.num_want_rgx.finditer(want) numbers_want = [match.group(1) for match in matches] # list of strs if len(numbers_got) != len(numbers_want): return False if len(numbers_got) > 0: nw_ = [] for ng, nw in zip(numbers_got, numbers_want): if '...' in nw: nw_.append(ng) continue else: nw_.append(nw) if abs(float(ng)-float(nw)) > 1e-5: return False got = self.num_got_rgx.sub(r'%s', got) got = got % tuple(nw_) # <BLANKLINE> can be used as a special sequence to signify a # blank line, unless the DONT_ACCEPT_BLANKLINE flag is used. if not (optionflags & pdoctest.DONT_ACCEPT_BLANKLINE): # Replace <BLANKLINE> in want with a blank line. want = re.sub('(?m)^%s\s*?$' % re.escape(pdoctest.BLANKLINE_MARKER), '', want) # If a line in got contains only spaces, then remove the # spaces. got = re.sub('(?m)^\s*?$', '', got) if got == want: return True # This flag causes doctest to ignore any differences in the # contents of whitespace strings. Note that this can be used # in conjunction with the ELLIPSIS flag. if optionflags & pdoctest.NORMALIZE_WHITESPACE: got = ' '.join(got.split()) want = ' '.join(want.split()) if got == want: return True # The ELLIPSIS flag says to let the sequence "..." in `want` # match any substring in `got`. if optionflags & pdoctest.ELLIPSIS: if pdoctest._ellipsis_match(want, got): return True # We didn't find any match; return false. return False class Reporter(object): """ Parent class for all reporters. """ pass class PyTestReporter(Reporter): """ Py.test like reporter. Should produce output identical to py.test. """ def __init__(self, verbose=False, tb="short", colors=True, force_colors=False, split=None): self._verbose = verbose self._tb_style = tb self._colors = colors self._force_colors = force_colors self._xfailed = 0 self._xpassed = [] self._failed = [] self._failed_doctest = [] self._passed = 0 self._skipped = 0 self._exceptions = [] self._terminal_width = None self._default_width = 80 self._split = split # this tracks the x-position of the cursor (useful for positioning # things on the screen), without the need for any readline library: self._write_pos = 0 self._line_wrap = False def root_dir(self, dir): self._root_dir = dir @property def terminal_width(self): if self._terminal_width is not None: return self._terminal_width def findout_terminal_width(): if sys.platform == "win32": # Windows support is based on: # # http://code.activestate.com/recipes/ # 440694-determine-size-of-console-window-on-windows/ from ctypes import windll, create_string_buffer h = windll.kernel32.GetStdHandle(-12) csbi = create_string_buffer(22) res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi) if res: import struct (_, _, _, _, _, left, _, right, _, _, _) = \ struct.unpack("hhhhHhhhhhh", csbi.raw) return right - left else: return self._default_width if hasattr(sys.stdout, 'isatty') and not sys.stdout.isatty(): return self._default_width # leave PIPEs alone try: process = subprocess.Popen(['stty', '-a'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = process.stdout.read() if PY3: stdout = stdout.decode("utf-8") except (OSError, IOError): pass else: # We support the following output formats from stty: # # 1) Linux -> columns 80 # 2) OS X -> 80 columns # 3) Solaris -> columns = 80 re_linux = r"columns\s+(?P<columns>\d+);" re_osx = r"(?P<columns>\d+)\s*columns;" re_solaris = r"columns\s+=\s+(?P<columns>\d+);" for regex in (re_linux, re_osx, re_solaris): match = re.search(regex, stdout) if match is not None: columns = match.group('columns') try: width = int(columns) except ValueError: pass if width != 0: return width return self._default_width width = findout_terminal_width() self._terminal_width = width return width def write(self, text, color="", align="left", width=None, force_colors=False): """ Prints a text on the screen. It uses sys.stdout.write(), so no readline library is necessary. Parameters ========== color : choose from the colors below, "" means default color align : "left"/"right", "left" is a normal print, "right" is aligned on the right-hand side of the screen, filled with spaces if necessary width : the screen width """ color_templates = ( ("Black", "0;30"), ("Red", "0;31"), ("Green", "0;32"), ("Brown", "0;33"), ("Blue", "0;34"), ("Purple", "0;35"), ("Cyan", "0;36"), ("LightGray", "0;37"), ("DarkGray", "1;30"), ("LightRed", "1;31"), ("LightGreen", "1;32"), ("Yellow", "1;33"), ("LightBlue", "1;34"), ("LightPurple", "1;35"), ("LightCyan", "1;36"), ("White", "1;37"), ) colors = {} for name, value in color_templates: colors[name] = value c_normal = '\033[0m' c_color = '\033[%sm' if width is None: width = self.terminal_width if align == "right": if self._write_pos + len(text) > width: # we don't fit on the current line, create a new line self.write("\n") self.write(" "*(width - self._write_pos - len(text))) if not self._force_colors and hasattr(sys.stdout, 'isatty') and not \ sys.stdout.isatty(): # the stdout is not a terminal, this for example happens if the # output is piped to less, e.g. "bin/test | less". In this case, # the terminal control sequences would be printed verbatim, so # don't use any colors. color = "" elif sys.platform == "win32": # Windows consoles don't support ANSI escape sequences color = "" elif not self._colors: color = "" if self._line_wrap: if text[0] != "\n": sys.stdout.write("\n") # Avoid UnicodeEncodeError when printing out test failures if PY3 and IS_WINDOWS: text = text.encode('raw_unicode_escape').decode('utf8', 'ignore') elif PY3 and not sys.stdout.encoding.lower().startswith('utf'): text = text.encode(sys.stdout.encoding, 'backslashreplace' ).decode(sys.stdout.encoding) if color == "": sys.stdout.write(text) else: sys.stdout.write("%s%s%s" % (c_color % colors[color], text, c_normal)) sys.stdout.flush() l = text.rfind("\n") if l == -1: self._write_pos += len(text) else: self._write_pos = len(text) - l - 1 self._line_wrap = self._write_pos >= width self._write_pos %= width def write_center(self, text, delim="="): width = self.terminal_width if text != "": text = " %s " % text idx = (width - len(text)) // 2 t = delim*idx + text + delim*(width - idx - len(text)) self.write(t + "\n") def write_exception(self, e, val, tb): t = traceback.extract_tb(tb) # remove the first item, as that is always runtests.py t = t[1:] t = traceback.format_list(t) self.write("".join(t)) t = traceback.format_exception_only(e, val) self.write("".join(t)) def start(self, seed=None, msg="test process starts"): self.write_center(msg) executable = sys.executable v = tuple(sys.version_info) python_version = "%s.%s.%s-%s-%s" % v implementation = platform.python_implementation() if implementation == 'PyPy': implementation += " %s.%s.%s-%s-%s" % sys.pypy_version_info self.write("executable: %s (%s) [%s]\n" % (executable, python_version, implementation)) from .misc import ARCH self.write("architecture: %s\n" % ARCH) from sympy.core.cache import USE_CACHE self.write("cache: %s\n" % USE_CACHE) from sympy.core.compatibility import GROUND_TYPES, HAS_GMPY version = '' if GROUND_TYPES =='gmpy': if HAS_GMPY == 1: import gmpy elif HAS_GMPY == 2: import gmpy2 as gmpy version = gmpy.version() self.write("ground types: %s %s\n" % (GROUND_TYPES, version)) if seed is not None: self.write("random seed: %d\n" % seed) from .misc import HASH_RANDOMIZATION self.write("hash randomization: ") hash_seed = os.getenv("PYTHONHASHSEED") or '0' if HASH_RANDOMIZATION and (hash_seed == "random" or int(hash_seed)): self.write("on (PYTHONHASHSEED=%s)\n" % hash_seed) else: self.write("off\n") if self._split: self.write("split: %s\n" % self._split) self.write('\n') self._t_start = clock() def finish(self): self._t_end = clock() self.write("\n") global text, linelen text = "tests finished: %d passed, " % self._passed linelen = len(text) def add_text(mytext): global text, linelen """Break new text if too long.""" if linelen + len(mytext) > self.terminal_width: text += '\n' linelen = 0 text += mytext linelen += len(mytext) if len(self._failed) > 0: add_text("%d failed, " % len(self._failed)) if len(self._failed_doctest) > 0: add_text("%d failed, " % len(self._failed_doctest)) if self._skipped > 0: add_text("%d skipped, " % self._skipped) if self._xfailed > 0: add_text("%d expected to fail, " % self._xfailed) if len(self._xpassed) > 0: add_text("%d expected to fail but passed, " % len(self._xpassed)) if len(self._exceptions) > 0: add_text("%d exceptions, " % len(self._exceptions)) add_text("in %.2f seconds" % (self._t_end - self._t_start)) if len(self._xpassed) > 0: self.write_center("xpassed tests", "_") for e in self._xpassed: self.write("%s: %s\n" % (e[0], e[1])) self.write("\n") if self._tb_style != "no" and len(self._exceptions) > 0: for e in self._exceptions: filename, f, (t, val, tb) = e self.write_center("", "_") if f is None: s = "%s" % filename else: s = "%s:%s" % (filename, f.__name__) self.write_center(s, "_") self.write_exception(t, val, tb) self.write("\n") if self._tb_style != "no" and len(self._failed) > 0: for e in self._failed: filename, f, (t, val, tb) = e self.write_center("", "_") self.write_center("%s:%s" % (filename, f.__name__), "_") self.write_exception(t, val, tb) self.write("\n") if self._tb_style != "no" and len(self._failed_doctest) > 0: for e in self._failed_doctest: filename, msg = e self.write_center("", "_") self.write_center("%s" % filename, "_") self.write(msg) self.write("\n") self.write_center(text) ok = len(self._failed) == 0 and len(self._exceptions) == 0 and \ len(self._failed_doctest) == 0 if not ok: self.write("DO *NOT* COMMIT!\n") return ok def entering_filename(self, filename, n): rel_name = filename[len(self._root_dir) + 1:] self._active_file = rel_name self._active_file_error = False self.write(rel_name) self.write("[%d] " % n) def leaving_filename(self): self.write(" ") if self._active_file_error: self.write("[FAIL]", "Red", align="right") else: self.write("[OK]", "Green", align="right") self.write("\n") if self._verbose: self.write("\n") def entering_test(self, f): self._active_f = f if self._verbose: self.write("\n" + f.__name__ + " ") def test_xfail(self): self._xfailed += 1 self.write("f", "Green") def test_xpass(self, v): message = str(v) self._xpassed.append((self._active_file, message)) self.write("X", "Green") def test_fail(self, exc_info): self._failed.append((self._active_file, self._active_f, exc_info)) self.write("F", "Red") self._active_file_error = True def doctest_fail(self, name, error_msg): # the first line contains "******", remove it: error_msg = "\n".join(error_msg.split("\n")[1:]) self._failed_doctest.append((name, error_msg)) self.write("F", "Red") self._active_file_error = True def test_pass(self, char="."): self._passed += 1 if self._verbose: self.write("ok", "Green") else: self.write(char, "Green") def test_skip(self, v=None): char = "s" self._skipped += 1 if v is not None: message = str(v) if message == "KeyboardInterrupt": char = "K" elif message == "Timeout": char = "T" elif message == "Slow": char = "w" self.write(char, "Blue") if self._verbose: self.write(" - ", "Blue") if v is not None: self.write(message, "Blue") def test_exception(self, exc_info): self._exceptions.append((self._active_file, self._active_f, exc_info)) self.write("E", "Red") self._active_file_error = True def import_error(self, filename, exc_info): self._exceptions.append((filename, None, exc_info)) rel_name = filename[len(self._root_dir) + 1:] self.write(rel_name) self.write("[?] Failed to import", "Red") self.write(" ") self.write("[FAIL]", "Red", align="right") self.write("\n") sympy_dir = get_sympy_dir()
bsd-3-clause
gauravmm/Remote-Temperature-Monitor
utilities/colormap/colormaps.py
28
50518
# New matplotlib colormaps by Nathaniel J. Smith, Stefan van der Walt, # and (in the case of viridis) Eric Firing. # # This file and the colormaps in it are released under the CC0 license / # public domain dedication. We would appreciate credit if you use or # redistribute these colormaps, but do not impose any legal restrictions. # # To the extent possible under law, the persons who associated CC0 with # mpl-colormaps have waived all copyright and related or neighboring rights # to mpl-colormaps. # # You should have received a copy of the CC0 legalcode along with this # work. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. __all__ = ['magma', 'inferno', 'plasma', 'viridis'] _magma_data = [[0.001462, 0.000466, 0.013866], [0.002258, 0.001295, 0.018331], [0.003279, 0.002305, 0.023708], [0.004512, 0.003490, 0.029965], [0.005950, 0.004843, 0.037130], [0.007588, 0.006356, 0.044973], [0.009426, 0.008022, 0.052844], [0.011465, 0.009828, 0.060750], [0.013708, 0.011771, 0.068667], [0.016156, 0.013840, 0.076603], [0.018815, 0.016026, 0.084584], [0.021692, 0.018320, 0.092610], [0.024792, 0.020715, 0.100676], [0.028123, 0.023201, 0.108787], [0.031696, 0.025765, 0.116965], [0.035520, 0.028397, 0.125209], [0.039608, 0.031090, 0.133515], [0.043830, 0.033830, 0.141886], [0.048062, 0.036607, 0.150327], [0.052320, 0.039407, 0.158841], [0.056615, 0.042160, 0.167446], [0.060949, 0.044794, 0.176129], [0.065330, 0.047318, 0.184892], [0.069764, 0.049726, 0.193735], [0.074257, 0.052017, 0.202660], [0.078815, 0.054184, 0.211667], [0.083446, 0.056225, 0.220755], [0.088155, 0.058133, 0.229922], [0.092949, 0.059904, 0.239164], [0.097833, 0.061531, 0.248477], [0.102815, 0.063010, 0.257854], [0.107899, 0.064335, 0.267289], [0.113094, 0.065492, 0.276784], [0.118405, 0.066479, 0.286321], [0.123833, 0.067295, 0.295879], [0.129380, 0.067935, 0.305443], [0.135053, 0.068391, 0.315000], [0.140858, 0.068654, 0.324538], [0.146785, 0.068738, 0.334011], [0.152839, 0.068637, 0.343404], [0.159018, 0.068354, 0.352688], [0.165308, 0.067911, 0.361816], [0.171713, 0.067305, 0.370771], [0.178212, 0.066576, 0.379497], [0.184801, 0.065732, 0.387973], [0.191460, 0.064818, 0.396152], [0.198177, 0.063862, 0.404009], [0.204935, 0.062907, 0.411514], [0.211718, 0.061992, 0.418647], [0.218512, 0.061158, 0.425392], [0.225302, 0.060445, 0.431742], [0.232077, 0.059889, 0.437695], [0.238826, 0.059517, 0.443256], [0.245543, 0.059352, 0.448436], [0.252220, 0.059415, 0.453248], [0.258857, 0.059706, 0.457710], [0.265447, 0.060237, 0.461840], [0.271994, 0.060994, 0.465660], [0.278493, 0.061978, 0.469190], [0.284951, 0.063168, 0.472451], [0.291366, 0.064553, 0.475462], [0.297740, 0.066117, 0.478243], [0.304081, 0.067835, 0.480812], [0.310382, 0.069702, 0.483186], [0.316654, 0.071690, 0.485380], [0.322899, 0.073782, 0.487408], [0.329114, 0.075972, 0.489287], [0.335308, 0.078236, 0.491024], [0.341482, 0.080564, 0.492631], [0.347636, 0.082946, 0.494121], [0.353773, 0.085373, 0.495501], [0.359898, 0.087831, 0.496778], [0.366012, 0.090314, 0.497960], [0.372116, 0.092816, 0.499053], [0.378211, 0.095332, 0.500067], [0.384299, 0.097855, 0.501002], [0.390384, 0.100379, 0.501864], [0.396467, 0.102902, 0.502658], [0.402548, 0.105420, 0.503386], [0.408629, 0.107930, 0.504052], [0.414709, 0.110431, 0.504662], [0.420791, 0.112920, 0.505215], [0.426877, 0.115395, 0.505714], [0.432967, 0.117855, 0.506160], [0.439062, 0.120298, 0.506555], [0.445163, 0.122724, 0.506901], [0.451271, 0.125132, 0.507198], [0.457386, 0.127522, 0.507448], [0.463508, 0.129893, 0.507652], [0.469640, 0.132245, 0.507809], [0.475780, 0.134577, 0.507921], [0.481929, 0.136891, 0.507989], [0.488088, 0.139186, 0.508011], [0.494258, 0.141462, 0.507988], [0.500438, 0.143719, 0.507920], [0.506629, 0.145958, 0.507806], [0.512831, 0.148179, 0.507648], [0.519045, 0.150383, 0.507443], [0.525270, 0.152569, 0.507192], [0.531507, 0.154739, 0.506895], [0.537755, 0.156894, 0.506551], [0.544015, 0.159033, 0.506159], [0.550287, 0.161158, 0.505719], [0.556571, 0.163269, 0.505230], [0.562866, 0.165368, 0.504692], [0.569172, 0.167454, 0.504105], [0.575490, 0.169530, 0.503466], [0.581819, 0.171596, 0.502777], [0.588158, 0.173652, 0.502035], [0.594508, 0.175701, 0.501241], [0.600868, 0.177743, 0.500394], [0.607238, 0.179779, 0.499492], [0.613617, 0.181811, 0.498536], [0.620005, 0.183840, 0.497524], [0.626401, 0.185867, 0.496456], [0.632805, 0.187893, 0.495332], [0.639216, 0.189921, 0.494150], [0.645633, 0.191952, 0.492910], [0.652056, 0.193986, 0.491611], [0.658483, 0.196027, 0.490253], [0.664915, 0.198075, 0.488836], [0.671349, 0.200133, 0.487358], [0.677786, 0.202203, 0.485819], [0.684224, 0.204286, 0.484219], [0.690661, 0.206384, 0.482558], [0.697098, 0.208501, 0.480835], [0.703532, 0.210638, 0.479049], [0.709962, 0.212797, 0.477201], [0.716387, 0.214982, 0.475290], [0.722805, 0.217194, 0.473316], [0.729216, 0.219437, 0.471279], [0.735616, 0.221713, 0.469180], [0.742004, 0.224025, 0.467018], [0.748378, 0.226377, 0.464794], [0.754737, 0.228772, 0.462509], [0.761077, 0.231214, 0.460162], [0.767398, 0.233705, 0.457755], [0.773695, 0.236249, 0.455289], [0.779968, 0.238851, 0.452765], [0.786212, 0.241514, 0.450184], [0.792427, 0.244242, 0.447543], [0.798608, 0.247040, 0.444848], [0.804752, 0.249911, 0.442102], [0.810855, 0.252861, 0.439305], [0.816914, 0.255895, 0.436461], [0.822926, 0.259016, 0.433573], [0.828886, 0.262229, 0.430644], [0.834791, 0.265540, 0.427671], [0.840636, 0.268953, 0.424666], [0.846416, 0.272473, 0.421631], [0.852126, 0.276106, 0.418573], [0.857763, 0.279857, 0.415496], [0.863320, 0.283729, 0.412403], [0.868793, 0.287728, 0.409303], [0.874176, 0.291859, 0.406205], [0.879464, 0.296125, 0.403118], [0.884651, 0.300530, 0.400047], [0.889731, 0.305079, 0.397002], [0.894700, 0.309773, 0.393995], [0.899552, 0.314616, 0.391037], [0.904281, 0.319610, 0.388137], [0.908884, 0.324755, 0.385308], [0.913354, 0.330052, 0.382563], [0.917689, 0.335500, 0.379915], [0.921884, 0.341098, 0.377376], [0.925937, 0.346844, 0.374959], [0.929845, 0.352734, 0.372677], [0.933606, 0.358764, 0.370541], [0.937221, 0.364929, 0.368567], [0.940687, 0.371224, 0.366762], [0.944006, 0.377643, 0.365136], [0.947180, 0.384178, 0.363701], [0.950210, 0.390820, 0.362468], [0.953099, 0.397563, 0.361438], [0.955849, 0.404400, 0.360619], [0.958464, 0.411324, 0.360014], [0.960949, 0.418323, 0.359630], [0.963310, 0.425390, 0.359469], [0.965549, 0.432519, 0.359529], [0.967671, 0.439703, 0.359810], [0.969680, 0.446936, 0.360311], [0.971582, 0.454210, 0.361030], [0.973381, 0.461520, 0.361965], [0.975082, 0.468861, 0.363111], [0.976690, 0.476226, 0.364466], [0.978210, 0.483612, 0.366025], [0.979645, 0.491014, 0.367783], [0.981000, 0.498428, 0.369734], [0.982279, 0.505851, 0.371874], [0.983485, 0.513280, 0.374198], [0.984622, 0.520713, 0.376698], [0.985693, 0.528148, 0.379371], [0.986700, 0.535582, 0.382210], [0.987646, 0.543015, 0.385210], [0.988533, 0.550446, 0.388365], [0.989363, 0.557873, 0.391671], [0.990138, 0.565296, 0.395122], [0.990871, 0.572706, 0.398714], [0.991558, 0.580107, 0.402441], [0.992196, 0.587502, 0.406299], [0.992785, 0.594891, 0.410283], [0.993326, 0.602275, 0.414390], [0.993834, 0.609644, 0.418613], [0.994309, 0.616999, 0.422950], [0.994738, 0.624350, 0.427397], [0.995122, 0.631696, 0.431951], [0.995480, 0.639027, 0.436607], [0.995810, 0.646344, 0.441361], [0.996096, 0.653659, 0.446213], [0.996341, 0.660969, 0.451160], [0.996580, 0.668256, 0.456192], [0.996775, 0.675541, 0.461314], [0.996925, 0.682828, 0.466526], [0.997077, 0.690088, 0.471811], [0.997186, 0.697349, 0.477182], [0.997254, 0.704611, 0.482635], [0.997325, 0.711848, 0.488154], [0.997351, 0.719089, 0.493755], [0.997351, 0.726324, 0.499428], [0.997341, 0.733545, 0.505167], [0.997285, 0.740772, 0.510983], [0.997228, 0.747981, 0.516859], [0.997138, 0.755190, 0.522806], [0.997019, 0.762398, 0.528821], [0.996898, 0.769591, 0.534892], [0.996727, 0.776795, 0.541039], [0.996571, 0.783977, 0.547233], [0.996369, 0.791167, 0.553499], [0.996162, 0.798348, 0.559820], [0.995932, 0.805527, 0.566202], [0.995680, 0.812706, 0.572645], [0.995424, 0.819875, 0.579140], [0.995131, 0.827052, 0.585701], [0.994851, 0.834213, 0.592307], [0.994524, 0.841387, 0.598983], [0.994222, 0.848540, 0.605696], [0.993866, 0.855711, 0.612482], [0.993545, 0.862859, 0.619299], [0.993170, 0.870024, 0.626189], [0.992831, 0.877168, 0.633109], [0.992440, 0.884330, 0.640099], [0.992089, 0.891470, 0.647116], [0.991688, 0.898627, 0.654202], [0.991332, 0.905763, 0.661309], [0.990930, 0.912915, 0.668481], [0.990570, 0.920049, 0.675675], [0.990175, 0.927196, 0.682926], [0.989815, 0.934329, 0.690198], [0.989434, 0.941470, 0.697519], [0.989077, 0.948604, 0.704863], [0.988717, 0.955742, 0.712242], [0.988367, 0.962878, 0.719649], [0.988033, 0.970012, 0.727077], [0.987691, 0.977154, 0.734536], [0.987387, 0.984288, 0.742002], [0.987053, 0.991438, 0.749504]] _inferno_data = [[0.001462, 0.000466, 0.013866], [0.002267, 0.001270, 0.018570], [0.003299, 0.002249, 0.024239], [0.004547, 0.003392, 0.030909], [0.006006, 0.004692, 0.038558], [0.007676, 0.006136, 0.046836], [0.009561, 0.007713, 0.055143], [0.011663, 0.009417, 0.063460], [0.013995, 0.011225, 0.071862], [0.016561, 0.013136, 0.080282], [0.019373, 0.015133, 0.088767], [0.022447, 0.017199, 0.097327], [0.025793, 0.019331, 0.105930], [0.029432, 0.021503, 0.114621], [0.033385, 0.023702, 0.123397], [0.037668, 0.025921, 0.132232], [0.042253, 0.028139, 0.141141], [0.046915, 0.030324, 0.150164], [0.051644, 0.032474, 0.159254], [0.056449, 0.034569, 0.168414], [0.061340, 0.036590, 0.177642], [0.066331, 0.038504, 0.186962], [0.071429, 0.040294, 0.196354], [0.076637, 0.041905, 0.205799], [0.081962, 0.043328, 0.215289], [0.087411, 0.044556, 0.224813], [0.092990, 0.045583, 0.234358], [0.098702, 0.046402, 0.243904], [0.104551, 0.047008, 0.253430], [0.110536, 0.047399, 0.262912], [0.116656, 0.047574, 0.272321], [0.122908, 0.047536, 0.281624], [0.129285, 0.047293, 0.290788], [0.135778, 0.046856, 0.299776], [0.142378, 0.046242, 0.308553], [0.149073, 0.045468, 0.317085], [0.155850, 0.044559, 0.325338], [0.162689, 0.043554, 0.333277], [0.169575, 0.042489, 0.340874], [0.176493, 0.041402, 0.348111], [0.183429, 0.040329, 0.354971], [0.190367, 0.039309, 0.361447], [0.197297, 0.038400, 0.367535], [0.204209, 0.037632, 0.373238], [0.211095, 0.037030, 0.378563], [0.217949, 0.036615, 0.383522], [0.224763, 0.036405, 0.388129], [0.231538, 0.036405, 0.392400], [0.238273, 0.036621, 0.396353], [0.244967, 0.037055, 0.400007], [0.251620, 0.037705, 0.403378], [0.258234, 0.038571, 0.406485], [0.264810, 0.039647, 0.409345], [0.271347, 0.040922, 0.411976], [0.277850, 0.042353, 0.414392], [0.284321, 0.043933, 0.416608], [0.290763, 0.045644, 0.418637], [0.297178, 0.047470, 0.420491], [0.303568, 0.049396, 0.422182], [0.309935, 0.051407, 0.423721], [0.316282, 0.053490, 0.425116], [0.322610, 0.055634, 0.426377], [0.328921, 0.057827, 0.427511], [0.335217, 0.060060, 0.428524], [0.341500, 0.062325, 0.429425], [0.347771, 0.064616, 0.430217], [0.354032, 0.066925, 0.430906], [0.360284, 0.069247, 0.431497], [0.366529, 0.071579, 0.431994], [0.372768, 0.073915, 0.432400], [0.379001, 0.076253, 0.432719], [0.385228, 0.078591, 0.432955], [0.391453, 0.080927, 0.433109], [0.397674, 0.083257, 0.433183], [0.403894, 0.085580, 0.433179], [0.410113, 0.087896, 0.433098], [0.416331, 0.090203, 0.432943], [0.422549, 0.092501, 0.432714], [0.428768, 0.094790, 0.432412], [0.434987, 0.097069, 0.432039], [0.441207, 0.099338, 0.431594], [0.447428, 0.101597, 0.431080], [0.453651, 0.103848, 0.430498], [0.459875, 0.106089, 0.429846], [0.466100, 0.108322, 0.429125], [0.472328, 0.110547, 0.428334], [0.478558, 0.112764, 0.427475], [0.484789, 0.114974, 0.426548], [0.491022, 0.117179, 0.425552], [0.497257, 0.119379, 0.424488], [0.503493, 0.121575, 0.423356], [0.509730, 0.123769, 0.422156], [0.515967, 0.125960, 0.420887], [0.522206, 0.128150, 0.419549], [0.528444, 0.130341, 0.418142], [0.534683, 0.132534, 0.416667], [0.540920, 0.134729, 0.415123], [0.547157, 0.136929, 0.413511], [0.553392, 0.139134, 0.411829], [0.559624, 0.141346, 0.410078], [0.565854, 0.143567, 0.408258], [0.572081, 0.145797, 0.406369], [0.578304, 0.148039, 0.404411], [0.584521, 0.150294, 0.402385], [0.590734, 0.152563, 0.400290], [0.596940, 0.154848, 0.398125], [0.603139, 0.157151, 0.395891], [0.609330, 0.159474, 0.393589], [0.615513, 0.161817, 0.391219], [0.621685, 0.164184, 0.388781], [0.627847, 0.166575, 0.386276], [0.633998, 0.168992, 0.383704], [0.640135, 0.171438, 0.381065], [0.646260, 0.173914, 0.378359], [0.652369, 0.176421, 0.375586], [0.658463, 0.178962, 0.372748], [0.664540, 0.181539, 0.369846], [0.670599, 0.184153, 0.366879], [0.676638, 0.186807, 0.363849], [0.682656, 0.189501, 0.360757], [0.688653, 0.192239, 0.357603], [0.694627, 0.195021, 0.354388], [0.700576, 0.197851, 0.351113], [0.706500, 0.200728, 0.347777], [0.712396, 0.203656, 0.344383], [0.718264, 0.206636, 0.340931], [0.724103, 0.209670, 0.337424], [0.729909, 0.212759, 0.333861], [0.735683, 0.215906, 0.330245], [0.741423, 0.219112, 0.326576], [0.747127, 0.222378, 0.322856], [0.752794, 0.225706, 0.319085], [0.758422, 0.229097, 0.315266], [0.764010, 0.232554, 0.311399], [0.769556, 0.236077, 0.307485], [0.775059, 0.239667, 0.303526], [0.780517, 0.243327, 0.299523], [0.785929, 0.247056, 0.295477], [0.791293, 0.250856, 0.291390], [0.796607, 0.254728, 0.287264], [0.801871, 0.258674, 0.283099], [0.807082, 0.262692, 0.278898], [0.812239, 0.266786, 0.274661], [0.817341, 0.270954, 0.270390], [0.822386, 0.275197, 0.266085], [0.827372, 0.279517, 0.261750], [0.832299, 0.283913, 0.257383], [0.837165, 0.288385, 0.252988], [0.841969, 0.292933, 0.248564], [0.846709, 0.297559, 0.244113], [0.851384, 0.302260, 0.239636], [0.855992, 0.307038, 0.235133], [0.860533, 0.311892, 0.230606], [0.865006, 0.316822, 0.226055], [0.869409, 0.321827, 0.221482], [0.873741, 0.326906, 0.216886], [0.878001, 0.332060, 0.212268], [0.882188, 0.337287, 0.207628], [0.886302, 0.342586, 0.202968], [0.890341, 0.347957, 0.198286], [0.894305, 0.353399, 0.193584], [0.898192, 0.358911, 0.188860], [0.902003, 0.364492, 0.184116], [0.905735, 0.370140, 0.179350], [0.909390, 0.375856, 0.174563], [0.912966, 0.381636, 0.169755], [0.916462, 0.387481, 0.164924], [0.919879, 0.393389, 0.160070], [0.923215, 0.399359, 0.155193], [0.926470, 0.405389, 0.150292], [0.929644, 0.411479, 0.145367], [0.932737, 0.417627, 0.140417], [0.935747, 0.423831, 0.135440], [0.938675, 0.430091, 0.130438], [0.941521, 0.436405, 0.125409], [0.944285, 0.442772, 0.120354], [0.946965, 0.449191, 0.115272], [0.949562, 0.455660, 0.110164], [0.952075, 0.462178, 0.105031], [0.954506, 0.468744, 0.099874], [0.956852, 0.475356, 0.094695], [0.959114, 0.482014, 0.089499], [0.961293, 0.488716, 0.084289], [0.963387, 0.495462, 0.079073], [0.965397, 0.502249, 0.073859], [0.967322, 0.509078, 0.068659], [0.969163, 0.515946, 0.063488], [0.970919, 0.522853, 0.058367], [0.972590, 0.529798, 0.053324], [0.974176, 0.536780, 0.048392], [0.975677, 0.543798, 0.043618], [0.977092, 0.550850, 0.039050], [0.978422, 0.557937, 0.034931], [0.979666, 0.565057, 0.031409], [0.980824, 0.572209, 0.028508], [0.981895, 0.579392, 0.026250], [0.982881, 0.586606, 0.024661], [0.983779, 0.593849, 0.023770], [0.984591, 0.601122, 0.023606], [0.985315, 0.608422, 0.024202], [0.985952, 0.615750, 0.025592], [0.986502, 0.623105, 0.027814], [0.986964, 0.630485, 0.030908], [0.987337, 0.637890, 0.034916], [0.987622, 0.645320, 0.039886], [0.987819, 0.652773, 0.045581], [0.987926, 0.660250, 0.051750], [0.987945, 0.667748, 0.058329], [0.987874, 0.675267, 0.065257], [0.987714, 0.682807, 0.072489], [0.987464, 0.690366, 0.079990], [0.987124, 0.697944, 0.087731], [0.986694, 0.705540, 0.095694], [0.986175, 0.713153, 0.103863], [0.985566, 0.720782, 0.112229], [0.984865, 0.728427, 0.120785], [0.984075, 0.736087, 0.129527], [0.983196, 0.743758, 0.138453], [0.982228, 0.751442, 0.147565], [0.981173, 0.759135, 0.156863], [0.980032, 0.766837, 0.166353], [0.978806, 0.774545, 0.176037], [0.977497, 0.782258, 0.185923], [0.976108, 0.789974, 0.196018], [0.974638, 0.797692, 0.206332], [0.973088, 0.805409, 0.216877], [0.971468, 0.813122, 0.227658], [0.969783, 0.820825, 0.238686], [0.968041, 0.828515, 0.249972], [0.966243, 0.836191, 0.261534], [0.964394, 0.843848, 0.273391], [0.962517, 0.851476, 0.285546], [0.960626, 0.859069, 0.298010], [0.958720, 0.866624, 0.310820], [0.956834, 0.874129, 0.323974], [0.954997, 0.881569, 0.337475], [0.953215, 0.888942, 0.351369], [0.951546, 0.896226, 0.365627], [0.950018, 0.903409, 0.380271], [0.948683, 0.910473, 0.395289], [0.947594, 0.917399, 0.410665], [0.946809, 0.924168, 0.426373], [0.946392, 0.930761, 0.442367], [0.946403, 0.937159, 0.458592], [0.946903, 0.943348, 0.474970], [0.947937, 0.949318, 0.491426], [0.949545, 0.955063, 0.507860], [0.951740, 0.960587, 0.524203], [0.954529, 0.965896, 0.540361], [0.957896, 0.971003, 0.556275], [0.961812, 0.975924, 0.571925], [0.966249, 0.980678, 0.587206], [0.971162, 0.985282, 0.602154], [0.976511, 0.989753, 0.616760], [0.982257, 0.994109, 0.631017], [0.988362, 0.998364, 0.644924]] _plasma_data = [[0.050383, 0.029803, 0.527975], [0.063536, 0.028426, 0.533124], [0.075353, 0.027206, 0.538007], [0.086222, 0.026125, 0.542658], [0.096379, 0.025165, 0.547103], [0.105980, 0.024309, 0.551368], [0.115124, 0.023556, 0.555468], [0.123903, 0.022878, 0.559423], [0.132381, 0.022258, 0.563250], [0.140603, 0.021687, 0.566959], [0.148607, 0.021154, 0.570562], [0.156421, 0.020651, 0.574065], [0.164070, 0.020171, 0.577478], [0.171574, 0.019706, 0.580806], [0.178950, 0.019252, 0.584054], [0.186213, 0.018803, 0.587228], [0.193374, 0.018354, 0.590330], [0.200445, 0.017902, 0.593364], [0.207435, 0.017442, 0.596333], [0.214350, 0.016973, 0.599239], [0.221197, 0.016497, 0.602083], [0.227983, 0.016007, 0.604867], [0.234715, 0.015502, 0.607592], [0.241396, 0.014979, 0.610259], [0.248032, 0.014439, 0.612868], [0.254627, 0.013882, 0.615419], [0.261183, 0.013308, 0.617911], [0.267703, 0.012716, 0.620346], [0.274191, 0.012109, 0.622722], [0.280648, 0.011488, 0.625038], [0.287076, 0.010855, 0.627295], [0.293478, 0.010213, 0.629490], [0.299855, 0.009561, 0.631624], [0.306210, 0.008902, 0.633694], [0.312543, 0.008239, 0.635700], [0.318856, 0.007576, 0.637640], [0.325150, 0.006915, 0.639512], [0.331426, 0.006261, 0.641316], [0.337683, 0.005618, 0.643049], [0.343925, 0.004991, 0.644710], [0.350150, 0.004382, 0.646298], [0.356359, 0.003798, 0.647810], [0.362553, 0.003243, 0.649245], [0.368733, 0.002724, 0.650601], [0.374897, 0.002245, 0.651876], [0.381047, 0.001814, 0.653068], [0.387183, 0.001434, 0.654177], [0.393304, 0.001114, 0.655199], [0.399411, 0.000859, 0.656133], [0.405503, 0.000678, 0.656977], [0.411580, 0.000577, 0.657730], [0.417642, 0.000564, 0.658390], [0.423689, 0.000646, 0.658956], [0.429719, 0.000831, 0.659425], [0.435734, 0.001127, 0.659797], [0.441732, 0.001540, 0.660069], [0.447714, 0.002080, 0.660240], [0.453677, 0.002755, 0.660310], [0.459623, 0.003574, 0.660277], [0.465550, 0.004545, 0.660139], [0.471457, 0.005678, 0.659897], [0.477344, 0.006980, 0.659549], [0.483210, 0.008460, 0.659095], [0.489055, 0.010127, 0.658534], [0.494877, 0.011990, 0.657865], [0.500678, 0.014055, 0.657088], [0.506454, 0.016333, 0.656202], [0.512206, 0.018833, 0.655209], [0.517933, 0.021563, 0.654109], [0.523633, 0.024532, 0.652901], [0.529306, 0.027747, 0.651586], [0.534952, 0.031217, 0.650165], [0.540570, 0.034950, 0.648640], [0.546157, 0.038954, 0.647010], [0.551715, 0.043136, 0.645277], [0.557243, 0.047331, 0.643443], [0.562738, 0.051545, 0.641509], [0.568201, 0.055778, 0.639477], [0.573632, 0.060028, 0.637349], [0.579029, 0.064296, 0.635126], [0.584391, 0.068579, 0.632812], [0.589719, 0.072878, 0.630408], [0.595011, 0.077190, 0.627917], [0.600266, 0.081516, 0.625342], [0.605485, 0.085854, 0.622686], [0.610667, 0.090204, 0.619951], [0.615812, 0.094564, 0.617140], [0.620919, 0.098934, 0.614257], [0.625987, 0.103312, 0.611305], [0.631017, 0.107699, 0.608287], [0.636008, 0.112092, 0.605205], [0.640959, 0.116492, 0.602065], [0.645872, 0.120898, 0.598867], [0.650746, 0.125309, 0.595617], [0.655580, 0.129725, 0.592317], [0.660374, 0.134144, 0.588971], [0.665129, 0.138566, 0.585582], [0.669845, 0.142992, 0.582154], [0.674522, 0.147419, 0.578688], [0.679160, 0.151848, 0.575189], [0.683758, 0.156278, 0.571660], [0.688318, 0.160709, 0.568103], [0.692840, 0.165141, 0.564522], [0.697324, 0.169573, 0.560919], [0.701769, 0.174005, 0.557296], [0.706178, 0.178437, 0.553657], [0.710549, 0.182868, 0.550004], [0.714883, 0.187299, 0.546338], [0.719181, 0.191729, 0.542663], [0.723444, 0.196158, 0.538981], [0.727670, 0.200586, 0.535293], [0.731862, 0.205013, 0.531601], [0.736019, 0.209439, 0.527908], [0.740143, 0.213864, 0.524216], [0.744232, 0.218288, 0.520524], [0.748289, 0.222711, 0.516834], [0.752312, 0.227133, 0.513149], [0.756304, 0.231555, 0.509468], [0.760264, 0.235976, 0.505794], [0.764193, 0.240396, 0.502126], [0.768090, 0.244817, 0.498465], [0.771958, 0.249237, 0.494813], [0.775796, 0.253658, 0.491171], [0.779604, 0.258078, 0.487539], [0.783383, 0.262500, 0.483918], [0.787133, 0.266922, 0.480307], [0.790855, 0.271345, 0.476706], [0.794549, 0.275770, 0.473117], [0.798216, 0.280197, 0.469538], [0.801855, 0.284626, 0.465971], [0.805467, 0.289057, 0.462415], [0.809052, 0.293491, 0.458870], [0.812612, 0.297928, 0.455338], [0.816144, 0.302368, 0.451816], [0.819651, 0.306812, 0.448306], [0.823132, 0.311261, 0.444806], [0.826588, 0.315714, 0.441316], [0.830018, 0.320172, 0.437836], [0.833422, 0.324635, 0.434366], [0.836801, 0.329105, 0.430905], [0.840155, 0.333580, 0.427455], [0.843484, 0.338062, 0.424013], [0.846788, 0.342551, 0.420579], [0.850066, 0.347048, 0.417153], [0.853319, 0.351553, 0.413734], [0.856547, 0.356066, 0.410322], [0.859750, 0.360588, 0.406917], [0.862927, 0.365119, 0.403519], [0.866078, 0.369660, 0.400126], [0.869203, 0.374212, 0.396738], [0.872303, 0.378774, 0.393355], [0.875376, 0.383347, 0.389976], [0.878423, 0.387932, 0.386600], [0.881443, 0.392529, 0.383229], [0.884436, 0.397139, 0.379860], [0.887402, 0.401762, 0.376494], [0.890340, 0.406398, 0.373130], [0.893250, 0.411048, 0.369768], [0.896131, 0.415712, 0.366407], [0.898984, 0.420392, 0.363047], [0.901807, 0.425087, 0.359688], [0.904601, 0.429797, 0.356329], [0.907365, 0.434524, 0.352970], [0.910098, 0.439268, 0.349610], [0.912800, 0.444029, 0.346251], [0.915471, 0.448807, 0.342890], [0.918109, 0.453603, 0.339529], [0.920714, 0.458417, 0.336166], [0.923287, 0.463251, 0.332801], [0.925825, 0.468103, 0.329435], [0.928329, 0.472975, 0.326067], [0.930798, 0.477867, 0.322697], [0.933232, 0.482780, 0.319325], [0.935630, 0.487712, 0.315952], [0.937990, 0.492667, 0.312575], [0.940313, 0.497642, 0.309197], [0.942598, 0.502639, 0.305816], [0.944844, 0.507658, 0.302433], [0.947051, 0.512699, 0.299049], [0.949217, 0.517763, 0.295662], [0.951344, 0.522850, 0.292275], [0.953428, 0.527960, 0.288883], [0.955470, 0.533093, 0.285490], [0.957469, 0.538250, 0.282096], [0.959424, 0.543431, 0.278701], [0.961336, 0.548636, 0.275305], [0.963203, 0.553865, 0.271909], [0.965024, 0.559118, 0.268513], [0.966798, 0.564396, 0.265118], [0.968526, 0.569700, 0.261721], [0.970205, 0.575028, 0.258325], [0.971835, 0.580382, 0.254931], [0.973416, 0.585761, 0.251540], [0.974947, 0.591165, 0.248151], [0.976428, 0.596595, 0.244767], [0.977856, 0.602051, 0.241387], [0.979233, 0.607532, 0.238013], [0.980556, 0.613039, 0.234646], [0.981826, 0.618572, 0.231287], [0.983041, 0.624131, 0.227937], [0.984199, 0.629718, 0.224595], [0.985301, 0.635330, 0.221265], [0.986345, 0.640969, 0.217948], [0.987332, 0.646633, 0.214648], [0.988260, 0.652325, 0.211364], [0.989128, 0.658043, 0.208100], [0.989935, 0.663787, 0.204859], [0.990681, 0.669558, 0.201642], [0.991365, 0.675355, 0.198453], [0.991985, 0.681179, 0.195295], [0.992541, 0.687030, 0.192170], [0.993032, 0.692907, 0.189084], [0.993456, 0.698810, 0.186041], [0.993814, 0.704741, 0.183043], [0.994103, 0.710698, 0.180097], [0.994324, 0.716681, 0.177208], [0.994474, 0.722691, 0.174381], [0.994553, 0.728728, 0.171622], [0.994561, 0.734791, 0.168938], [0.994495, 0.740880, 0.166335], [0.994355, 0.746995, 0.163821], [0.994141, 0.753137, 0.161404], [0.993851, 0.759304, 0.159092], [0.993482, 0.765499, 0.156891], [0.993033, 0.771720, 0.154808], [0.992505, 0.777967, 0.152855], [0.991897, 0.784239, 0.151042], [0.991209, 0.790537, 0.149377], [0.990439, 0.796859, 0.147870], [0.989587, 0.803205, 0.146529], [0.988648, 0.809579, 0.145357], [0.987621, 0.815978, 0.144363], [0.986509, 0.822401, 0.143557], [0.985314, 0.828846, 0.142945], [0.984031, 0.835315, 0.142528], [0.982653, 0.841812, 0.142303], [0.981190, 0.848329, 0.142279], [0.979644, 0.854866, 0.142453], [0.977995, 0.861432, 0.142808], [0.976265, 0.868016, 0.143351], [0.974443, 0.874622, 0.144061], [0.972530, 0.881250, 0.144923], [0.970533, 0.887896, 0.145919], [0.968443, 0.894564, 0.147014], [0.966271, 0.901249, 0.148180], [0.964021, 0.907950, 0.149370], [0.961681, 0.914672, 0.150520], [0.959276, 0.921407, 0.151566], [0.956808, 0.928152, 0.152409], [0.954287, 0.934908, 0.152921], [0.951726, 0.941671, 0.152925], [0.949151, 0.948435, 0.152178], [0.946602, 0.955190, 0.150328], [0.944152, 0.961916, 0.146861], [0.941896, 0.968590, 0.140956], [0.940015, 0.975158, 0.131326]] _viridis_data = [[0.267004, 0.004874, 0.329415], [0.268510, 0.009605, 0.335427], [0.269944, 0.014625, 0.341379], [0.271305, 0.019942, 0.347269], [0.272594, 0.025563, 0.353093], [0.273809, 0.031497, 0.358853], [0.274952, 0.037752, 0.364543], [0.276022, 0.044167, 0.370164], [0.277018, 0.050344, 0.375715], [0.277941, 0.056324, 0.381191], [0.278791, 0.062145, 0.386592], [0.279566, 0.067836, 0.391917], [0.280267, 0.073417, 0.397163], [0.280894, 0.078907, 0.402329], [0.281446, 0.084320, 0.407414], [0.281924, 0.089666, 0.412415], [0.282327, 0.094955, 0.417331], [0.282656, 0.100196, 0.422160], [0.282910, 0.105393, 0.426902], [0.283091, 0.110553, 0.431554], [0.283197, 0.115680, 0.436115], [0.283229, 0.120777, 0.440584], [0.283187, 0.125848, 0.444960], [0.283072, 0.130895, 0.449241], [0.282884, 0.135920, 0.453427], [0.282623, 0.140926, 0.457517], [0.282290, 0.145912, 0.461510], [0.281887, 0.150881, 0.465405], [0.281412, 0.155834, 0.469201], [0.280868, 0.160771, 0.472899], [0.280255, 0.165693, 0.476498], [0.279574, 0.170599, 0.479997], [0.278826, 0.175490, 0.483397], [0.278012, 0.180367, 0.486697], [0.277134, 0.185228, 0.489898], [0.276194, 0.190074, 0.493001], [0.275191, 0.194905, 0.496005], [0.274128, 0.199721, 0.498911], [0.273006, 0.204520, 0.501721], [0.271828, 0.209303, 0.504434], [0.270595, 0.214069, 0.507052], [0.269308, 0.218818, 0.509577], [0.267968, 0.223549, 0.512008], [0.266580, 0.228262, 0.514349], [0.265145, 0.232956, 0.516599], [0.263663, 0.237631, 0.518762], [0.262138, 0.242286, 0.520837], [0.260571, 0.246922, 0.522828], [0.258965, 0.251537, 0.524736], [0.257322, 0.256130, 0.526563], [0.255645, 0.260703, 0.528312], [0.253935, 0.265254, 0.529983], [0.252194, 0.269783, 0.531579], [0.250425, 0.274290, 0.533103], [0.248629, 0.278775, 0.534556], [0.246811, 0.283237, 0.535941], [0.244972, 0.287675, 0.537260], [0.243113, 0.292092, 0.538516], [0.241237, 0.296485, 0.539709], [0.239346, 0.300855, 0.540844], [0.237441, 0.305202, 0.541921], [0.235526, 0.309527, 0.542944], [0.233603, 0.313828, 0.543914], [0.231674, 0.318106, 0.544834], [0.229739, 0.322361, 0.545706], [0.227802, 0.326594, 0.546532], [0.225863, 0.330805, 0.547314], [0.223925, 0.334994, 0.548053], [0.221989, 0.339161, 0.548752], [0.220057, 0.343307, 0.549413], [0.218130, 0.347432, 0.550038], [0.216210, 0.351535, 0.550627], [0.214298, 0.355619, 0.551184], [0.212395, 0.359683, 0.551710], [0.210503, 0.363727, 0.552206], [0.208623, 0.367752, 0.552675], [0.206756, 0.371758, 0.553117], [0.204903, 0.375746, 0.553533], [0.203063, 0.379716, 0.553925], [0.201239, 0.383670, 0.554294], [0.199430, 0.387607, 0.554642], [0.197636, 0.391528, 0.554969], [0.195860, 0.395433, 0.555276], [0.194100, 0.399323, 0.555565], [0.192357, 0.403199, 0.555836], [0.190631, 0.407061, 0.556089], [0.188923, 0.410910, 0.556326], [0.187231, 0.414746, 0.556547], [0.185556, 0.418570, 0.556753], [0.183898, 0.422383, 0.556944], [0.182256, 0.426184, 0.557120], [0.180629, 0.429975, 0.557282], [0.179019, 0.433756, 0.557430], [0.177423, 0.437527, 0.557565], [0.175841, 0.441290, 0.557685], [0.174274, 0.445044, 0.557792], [0.172719, 0.448791, 0.557885], [0.171176, 0.452530, 0.557965], [0.169646, 0.456262, 0.558030], [0.168126, 0.459988, 0.558082], [0.166617, 0.463708, 0.558119], [0.165117, 0.467423, 0.558141], [0.163625, 0.471133, 0.558148], [0.162142, 0.474838, 0.558140], [0.160665, 0.478540, 0.558115], [0.159194, 0.482237, 0.558073], [0.157729, 0.485932, 0.558013], [0.156270, 0.489624, 0.557936], [0.154815, 0.493313, 0.557840], [0.153364, 0.497000, 0.557724], [0.151918, 0.500685, 0.557587], [0.150476, 0.504369, 0.557430], [0.149039, 0.508051, 0.557250], [0.147607, 0.511733, 0.557049], [0.146180, 0.515413, 0.556823], [0.144759, 0.519093, 0.556572], [0.143343, 0.522773, 0.556295], [0.141935, 0.526453, 0.555991], [0.140536, 0.530132, 0.555659], [0.139147, 0.533812, 0.555298], [0.137770, 0.537492, 0.554906], [0.136408, 0.541173, 0.554483], [0.135066, 0.544853, 0.554029], [0.133743, 0.548535, 0.553541], [0.132444, 0.552216, 0.553018], [0.131172, 0.555899, 0.552459], [0.129933, 0.559582, 0.551864], [0.128729, 0.563265, 0.551229], [0.127568, 0.566949, 0.550556], [0.126453, 0.570633, 0.549841], [0.125394, 0.574318, 0.549086], [0.124395, 0.578002, 0.548287], [0.123463, 0.581687, 0.547445], [0.122606, 0.585371, 0.546557], [0.121831, 0.589055, 0.545623], [0.121148, 0.592739, 0.544641], [0.120565, 0.596422, 0.543611], [0.120092, 0.600104, 0.542530], [0.119738, 0.603785, 0.541400], [0.119512, 0.607464, 0.540218], [0.119423, 0.611141, 0.538982], [0.119483, 0.614817, 0.537692], [0.119699, 0.618490, 0.536347], [0.120081, 0.622161, 0.534946], [0.120638, 0.625828, 0.533488], [0.121380, 0.629492, 0.531973], [0.122312, 0.633153, 0.530398], [0.123444, 0.636809, 0.528763], [0.124780, 0.640461, 0.527068], [0.126326, 0.644107, 0.525311], [0.128087, 0.647749, 0.523491], [0.130067, 0.651384, 0.521608], [0.132268, 0.655014, 0.519661], [0.134692, 0.658636, 0.517649], [0.137339, 0.662252, 0.515571], [0.140210, 0.665859, 0.513427], [0.143303, 0.669459, 0.511215], [0.146616, 0.673050, 0.508936], [0.150148, 0.676631, 0.506589], [0.153894, 0.680203, 0.504172], [0.157851, 0.683765, 0.501686], [0.162016, 0.687316, 0.499129], [0.166383, 0.690856, 0.496502], [0.170948, 0.694384, 0.493803], [0.175707, 0.697900, 0.491033], [0.180653, 0.701402, 0.488189], [0.185783, 0.704891, 0.485273], [0.191090, 0.708366, 0.482284], [0.196571, 0.711827, 0.479221], [0.202219, 0.715272, 0.476084], [0.208030, 0.718701, 0.472873], [0.214000, 0.722114, 0.469588], [0.220124, 0.725509, 0.466226], [0.226397, 0.728888, 0.462789], [0.232815, 0.732247, 0.459277], [0.239374, 0.735588, 0.455688], [0.246070, 0.738910, 0.452024], [0.252899, 0.742211, 0.448284], [0.259857, 0.745492, 0.444467], [0.266941, 0.748751, 0.440573], [0.274149, 0.751988, 0.436601], [0.281477, 0.755203, 0.432552], [0.288921, 0.758394, 0.428426], [0.296479, 0.761561, 0.424223], [0.304148, 0.764704, 0.419943], [0.311925, 0.767822, 0.415586], [0.319809, 0.770914, 0.411152], [0.327796, 0.773980, 0.406640], [0.335885, 0.777018, 0.402049], [0.344074, 0.780029, 0.397381], [0.352360, 0.783011, 0.392636], [0.360741, 0.785964, 0.387814], [0.369214, 0.788888, 0.382914], [0.377779, 0.791781, 0.377939], [0.386433, 0.794644, 0.372886], [0.395174, 0.797475, 0.367757], [0.404001, 0.800275, 0.362552], [0.412913, 0.803041, 0.357269], [0.421908, 0.805774, 0.351910], [0.430983, 0.808473, 0.346476], [0.440137, 0.811138, 0.340967], [0.449368, 0.813768, 0.335384], [0.458674, 0.816363, 0.329727], [0.468053, 0.818921, 0.323998], [0.477504, 0.821444, 0.318195], [0.487026, 0.823929, 0.312321], [0.496615, 0.826376, 0.306377], [0.506271, 0.828786, 0.300362], [0.515992, 0.831158, 0.294279], [0.525776, 0.833491, 0.288127], [0.535621, 0.835785, 0.281908], [0.545524, 0.838039, 0.275626], [0.555484, 0.840254, 0.269281], [0.565498, 0.842430, 0.262877], [0.575563, 0.844566, 0.256415], [0.585678, 0.846661, 0.249897], [0.595839, 0.848717, 0.243329], [0.606045, 0.850733, 0.236712], [0.616293, 0.852709, 0.230052], [0.626579, 0.854645, 0.223353], [0.636902, 0.856542, 0.216620], [0.647257, 0.858400, 0.209861], [0.657642, 0.860219, 0.203082], [0.668054, 0.861999, 0.196293], [0.678489, 0.863742, 0.189503], [0.688944, 0.865448, 0.182725], [0.699415, 0.867117, 0.175971], [0.709898, 0.868751, 0.169257], [0.720391, 0.870350, 0.162603], [0.730889, 0.871916, 0.156029], [0.741388, 0.873449, 0.149561], [0.751884, 0.874951, 0.143228], [0.762373, 0.876424, 0.137064], [0.772852, 0.877868, 0.131109], [0.783315, 0.879285, 0.125405], [0.793760, 0.880678, 0.120005], [0.804182, 0.882046, 0.114965], [0.814576, 0.883393, 0.110347], [0.824940, 0.884720, 0.106217], [0.835270, 0.886029, 0.102646], [0.845561, 0.887322, 0.099702], [0.855810, 0.888601, 0.097452], [0.866013, 0.889868, 0.095953], [0.876168, 0.891125, 0.095250], [0.886271, 0.892374, 0.095374], [0.896320, 0.893616, 0.096335], [0.906311, 0.894855, 0.098125], [0.916242, 0.896091, 0.100717], [0.926106, 0.897330, 0.104071], [0.935904, 0.898570, 0.108131], [0.945636, 0.899815, 0.112838], [0.955300, 0.901065, 0.118128], [0.964894, 0.902323, 0.123941], [0.974417, 0.903590, 0.130215], [0.983868, 0.904867, 0.136897], [0.993248, 0.906157, 0.143936]] from matplotlib.colors import ListedColormap cmaps = {} for (name, data) in (('magma', _magma_data), ('inferno', _inferno_data), ('plasma', _plasma_data), ('viridis', _viridis_data)): cmaps[name] = ListedColormap(data, name=name) magma = cmaps['magma'] inferno = cmaps['inferno'] plasma = cmaps['plasma'] viridis = cmaps['viridis']
mit
meduz/scikit-learn
examples/linear_model/plot_lasso_lars.py
363
1080
#!/usr/bin/env python """ ===================== Lasso path using LARS ===================== Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. """ print(__doc__) # Author: Fabian Pedregosa <fabian.pedregosa@inria.fr> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target print("Computing regularization path using the LARS ...") alphas, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True) xx = np.sum(np.abs(coefs.T), axis=1) xx /= xx[-1] plt.plot(xx, coefs.T) ymin, ymax = plt.ylim() plt.vlines(xx, ymin, ymax, linestyle='dashed') plt.xlabel('|coef| / max|coef|') plt.ylabel('Coefficients') plt.title('LASSO Path') plt.axis('tight') plt.show()
bsd-3-clause
timkpaine/lantern
tests/plot/test_plot.py
1
1272
from mock import patch import matplotlib matplotlib.use('Agg') class TestConfig: def setup(self): pass # setup() before each test method def teardown(self): pass # teardown() after each test method @classmethod def setup_class(cls): pass # setup_class() before any methods in this class @classmethod def teardown_class(cls): pass # teardown_class() after any methods in this class def test_all(self): with patch('lantern.plotting.plot_matplotlib.in_ipynb', create=True) as mock1: import lantern as l mock1.return_value = True df = l.bar() l.plot(df, 'line', 'matplotlib') def test_list(self): with patch('lantern.plotting.plot_matplotlib.in_ipynb', create=True) as mock1: import lantern as l mock1.return_value = True df = l.bar() l.plot(df, ['line' for _ in df], 'matplotlib') def test_dict(self): with patch('lantern.plotting.plot_matplotlib.in_ipynb', create=True) as mock1: import lantern as l mock1.return_value = True df = l.bar() l.plot(df, {c: 'line' for c in df.columns}, 'matplotlib')
apache-2.0
PrashntS/scikit-learn
examples/decomposition/plot_faces_decomposition.py
103
4394
""" ============================ Faces dataset decompositions ============================ This example applies to :ref:`olivetti_faces` different unsupervised matrix decomposition (dimension reduction) methods from the module :py:mod:`sklearn.decomposition` (see the documentation chapter :ref:`decompositions`) . """ print(__doc__) # Authors: Vlad Niculae, Alexandre Gramfort # License: BSD 3 clause import logging from time import time from numpy.random import RandomState import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.cluster import MiniBatchKMeans from sklearn import decomposition # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') n_row, n_col = 2, 3 n_components = n_row * n_col image_shape = (64, 64) rng = RandomState(0) ############################################################################### # Load faces data dataset = fetch_olivetti_faces(shuffle=True, random_state=rng) faces = dataset.data n_samples, n_features = faces.shape # global centering faces_centered = faces - faces.mean(axis=0) # local centering faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1) print("Dataset consists of %d faces" % n_samples) ############################################################################### def plot_gallery(title, images, n_col=n_col, n_row=n_row): plt.figure(figsize=(2. * n_col, 2.26 * n_row)) plt.suptitle(title, size=16) for i, comp in enumerate(images): plt.subplot(n_row, n_col, i + 1) vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray, interpolation='nearest', vmin=-vmax, vmax=vmax) plt.xticks(()) plt.yticks(()) plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.) ############################################################################### # List of the different estimators, whether to center and transpose the # problem, and whether the transformer uses the clustering API. estimators = [ ('Eigenfaces - RandomizedPCA', decomposition.RandomizedPCA(n_components=n_components, whiten=True), True), ('Non-negative components - NMF', decomposition.NMF(n_components=n_components, init='nndsvda', tol=5e-3), False), ('Independent components - FastICA', decomposition.FastICA(n_components=n_components, whiten=True), True), ('Sparse comp. - MiniBatchSparsePCA', decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8, n_iter=100, batch_size=3, random_state=rng), True), ('MiniBatchDictionaryLearning', decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1, n_iter=50, batch_size=3, random_state=rng), True), ('Cluster centers - MiniBatchKMeans', MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20, max_iter=50, random_state=rng), True), ('Factor Analysis components - FA', decomposition.FactorAnalysis(n_components=n_components, max_iter=2), True), ] ############################################################################### # Plot a sample of the input data plot_gallery("First centered Olivetti faces", faces_centered[:n_components]) ############################################################################### # Do the estimation and plot it for name, estimator, center in estimators: print("Extracting the top %d %s..." % (n_components, name)) t0 = time() data = faces if center: data = faces_centered estimator.fit(data) train_time = (time() - t0) print("done in %0.3fs" % train_time) if hasattr(estimator, 'cluster_centers_'): components_ = estimator.cluster_centers_ else: components_ = estimator.components_ if hasattr(estimator, 'noise_variance_'): plot_gallery("Pixelwise variance", estimator.noise_variance_.reshape(1, -1), n_col=1, n_row=1) plot_gallery('%s - Train time %.1fs' % (name, train_time), components_[:n_components]) plt.show()
bsd-3-clause
cbmoore/statsmodels
docs/source/plots/graphics_gofplots_qqplot.py
38
1911
# -*- coding: utf-8 -*- """ Created on Sun May 06 05:32:15 2012 Author: Josef Perktold editted by: Paul Hobson (2012-08-19) """ from scipy import stats from matplotlib import pyplot as plt import statsmodels.api as sm #example from docstring data = sm.datasets.longley.load() data.exog = sm.add_constant(data.exog, prepend=True) mod_fit = sm.OLS(data.endog, data.exog).fit() res = mod_fit.resid left = -1.8 #x coordinate for text insert fig = plt.figure() ax = fig.add_subplot(2, 2, 1) sm.graphics.qqplot(res, ax=ax) top = ax.get_ylim()[1] * 0.75 txt = ax.text(left, top, 'no keywords', verticalalignment='top') txt.set_bbox(dict(facecolor='k', alpha=0.1)) ax = fig.add_subplot(2, 2, 2) sm.graphics.qqplot(res, line='s', ax=ax) top = ax.get_ylim()[1] * 0.75 txt = ax.text(left, top, "line='s'", verticalalignment='top') txt.set_bbox(dict(facecolor='k', alpha=0.1)) ax = fig.add_subplot(2, 2, 3) sm.graphics.qqplot(res, line='45', fit=True, ax=ax) ax.set_xlim(-2, 2) top = ax.get_ylim()[1] * 0.75 txt = ax.text(left, top, "line='45', \nfit=True", verticalalignment='top') txt.set_bbox(dict(facecolor='k', alpha=0.1)) ax = fig.add_subplot(2, 2, 4) sm.graphics.qqplot(res, dist=stats.t, line='45', fit=True, ax=ax) ax.set_xlim(-2, 2) top = ax.get_ylim()[1] * 0.75 txt = ax.text(left, top, "dist=stats.t, \nline='45', \nfit=True", verticalalignment='top') txt.set_bbox(dict(facecolor='k', alpha=0.1)) fig.tight_layout() plt.gcf() # example with the new ProbPlot class import numpy as np x = np.random.normal(loc=8.25, scale=3.5, size=37) y = np.random.normal(loc=8.00, scale=3.25, size=37) pp_x = sm.ProbPlot(x, fit=True) pp_y = sm.ProbPlot(y, fit=True) # probability of exceedance fig2 = pp_x.probplot(exceed=True) # compare x quantiles to y quantiles fig3 = pp_x.qqplot(other=pp_y, line='45') # same as above with probabilities/percentiles fig4 = pp_x.ppplot(other=pp_y, line='45')
bsd-3-clause
karstenw/nodebox-pyobjc
examples/Extended Application/matplotlib/examples/event_handling/zoom_window.py
1
2014
""" =========== Zoom Window =========== This example shows how to connect events in one window, for example, a mouse press, to another figure window. If you click on a point in the first window, the z and y limits of the second will be adjusted so that the center of the zoom in the second window will be the x,y coordinates of the clicked point. Note the diameter of the circles in the scatter are defined in points**2, so their size is independent of the zoom """ import matplotlib.pyplot as plt #import figure, show import numpy as np # nodebox section if __name__ == '__builtin__': # were in nodebox import os import tempfile W = 800 inset = 20 size(W, 600) plt.cla() plt.clf() plt.close('all') def tempimage(): fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False) fname = fob.name fob.close() return fname imgx = 20 imgy = 0 def pltshow(plt, dpi=150): global imgx, imgy temppath = tempimage() plt.savefig(temppath, dpi=dpi) dx,dy = imagesize(temppath) w = min(W,dx) image(temppath,imgx,imgy,width=w) imgy = imgy + dy + 20 os.remove(temppath) size(W, HEIGHT+dy+40) else: def pltshow(mplpyplot): mplpyplot.show() # nodebox section end figsrc = plt.figure() figzoom = plt.figure() axsrc = figsrc.add_subplot(111, xlim=(0, 1), ylim=(0, 1), autoscale_on=False) axzoom = figzoom.add_subplot(111, xlim=(0.45, 0.55), ylim=(0.4, .6), autoscale_on=False) axsrc.set_title('Click to zoom') axzoom.set_title('zoom window') x, y, s, c = np.random.rand(4, 200) s *= 200 axsrc.scatter(x, y, s, c) axzoom.scatter(x, y, s, c) def onpress(event): if event.button != 1: return x, y = event.xdata, event.ydata axzoom.set_xlim(x - 0.1, x + 0.1) axzoom.set_ylim(y - 0.1, y + 0.1) figzoom.canvas.draw() figsrc.canvas.mpl_connect('button_press_event', onpress) pltshow(plt)
mit
cwu2011/seaborn
seaborn/timeseries.py
6
13239
"""Timeseries plotting functions.""" from __future__ import division import numpy as np import pandas as pd from scipy import stats, interpolate import matplotlib as mpl import matplotlib.pyplot as plt from .external.six import string_types from . import utils from . import algorithms as algo from .palettes import color_palette def tsplot(data, time=None, unit=None, condition=None, value=None, err_style="ci_band", ci=68, interpolate=True, color=None, estimator=np.mean, n_boot=5000, err_palette=None, err_kws=None, legend=True, ax=None, **kwargs): """Plot one or more timeseries with flexible representation of uncertainty. This function can take data specified either as a long-form (tidy) DataFrame or as an ndarray with dimensions for sampling unit, time, and (optionally) condition. The interpretation of some of the other parameters changes depending on the type of object passed as data. Parameters ---------- data : DataFrame or ndarray Data for the plot. Should either be a "long form" dataframe or an array with dimensions (unit, time, condition). In both cases, the condition field/dimension is optional. The type of this argument determines the interpretation of the next few parameters. time : string or series-like Either the name of the field corresponding to time in the data DataFrame or x values for a plot when data is an array. If a Series, the name will be used to label the x axis. unit : string Field in the data DataFrame identifying the sampling unit (e.g. subject, neuron, etc.). The error representation will collapse over units at each time/condition observation. This has no role when data is an array. value : string Either the name of the field corresponding to the data values in the data DataFrame (i.e. the y coordinate) or a string that forms the y axis label when data is an array. condition : string or Series-like Either the name of the field identifying the condition an observation falls under in the data DataFrame, or a sequence of names with a length equal to the size of the third dimension of data. There will be a separate trace plotted for each condition. If condition is a Series with a name attribute, the name will form the title for the plot legend (unless legend is set to False). err_style : string or list of strings or None Names of ways to plot uncertainty across units from set of {ci_band, ci_bars, boot_traces, boot_kde, unit_traces, unit_points}. Can use one or more than one method. ci : float or list of floats in [0, 100] Confidence interaval size(s). If a list, it will stack the error plots for each confidence interval. Only relevant for error styles with "ci" in the name. interpolate : boolean Whether to do a linear interpolation between each timepoint when plotting. The value of this parameter also determines the marker used for the main plot traces, unless marker is specified as a keyword argument. color : seaborn palette or matplotlib color name or dictionary Palette or color for the main plots and error representation (unless plotting by unit, which can be separately controlled with err_palette). If a dictionary, should map condition name to color spec. estimator : callable Function to determine central tendency and to pass to bootstrap must take an ``axis`` argument. n_boot : int Number of bootstrap iterations. err_palette: seaborn palette Palette name or list of colors used when plotting data for each unit. err_kws : dict, optional Keyword argument dictionary passed through to matplotlib function generating the error plot, ax : axis object, optional Plot in given axis; if None creates a new figure kwargs : Other keyword arguments are passed to main plot() call Returns ------- ax : matplotlib axis axis with plot data """ # Sort out default values for the parameters if ax is None: ax = plt.gca() if err_kws is None: err_kws = {} # Handle different types of input data if isinstance(data, pd.DataFrame): xlabel = time ylabel = value # Condition is optional if condition is None: condition = pd.Series(np.ones(len(data))) legend = False legend_name = None n_cond = 1 else: legend = True and legend legend_name = condition n_cond = len(data[condition].unique()) else: data = np.asarray(data) # Data can be a timecourse from a single unit or # several observations in one condition if data.ndim == 1: data = data[np.newaxis, :, np.newaxis] elif data.ndim == 2: data = data[:, :, np.newaxis] n_unit, n_time, n_cond = data.shape # Units are experimental observations. Maybe subjects, or neurons if unit is None: units = np.arange(n_unit) unit = "unit" units = np.repeat(units, n_time * n_cond) ylabel = None # Time forms the xaxis of the plot if time is None: times = np.arange(n_time) else: times = np.asarray(time) xlabel = None if hasattr(time, "name"): xlabel = time.name time = "time" times = np.tile(np.repeat(times, n_cond), n_unit) # Conditions split the timeseries plots if condition is None: conds = range(n_cond) legend = False if isinstance(color, dict): err = "Must have condition names if using color dict." raise ValueError(err) else: conds = np.asarray(condition) legend = True and legend if hasattr(condition, "name"): legend_name = condition.name else: legend_name = None condition = "cond" conds = np.tile(conds, n_unit * n_time) # Value forms the y value in the plot if value is None: ylabel = None else: ylabel = value value = "value" # Convert to long-form DataFrame data = pd.DataFrame(dict(value=data.ravel(), time=times, unit=units, cond=conds)) # Set up the err_style and ci arguments for the loop below if isinstance(err_style, string_types): err_style = [err_style] elif err_style is None: err_style = [] if not hasattr(ci, "__iter__"): ci = [ci] # Set up the color palette if color is None: current_palette = mpl.rcParams["axes.color_cycle"] if len(current_palette) < n_cond: colors = color_palette("husl", n_cond) else: colors = color_palette(n_colors=n_cond) elif isinstance(color, dict): colors = [color[c] for c in data[condition].unique()] else: try: colors = color_palette(color, n_cond) except ValueError: color = mpl.colors.colorConverter.to_rgb(color) colors = [color] * n_cond # Do a groupby with condition and plot each trace for c, (cond, df_c) in enumerate(data.groupby(condition, sort=False)): df_c = df_c.pivot(unit, time, value) x = df_c.columns.values.astype(np.float) # Bootstrap the data for confidence intervals boot_data = algo.bootstrap(df_c.values, n_boot=n_boot, axis=0, func=estimator) cis = [utils.ci(boot_data, v, axis=0) for v in ci] central_data = estimator(df_c.values, axis=0) # Get the color for this condition color = colors[c] # Use subroutines to plot the uncertainty for style in err_style: # Allow for null style (only plot central tendency) if style is None: continue # Grab the function from the global environment try: plot_func = globals()["_plot_%s" % style] except KeyError: raise ValueError("%s is not a valid err_style" % style) # Possibly set up to plot each observation in a different color if err_palette is not None and "unit" in style: orig_color = color color = color_palette(err_palette, len(df_c.values)) # Pass all parameters to the error plotter as keyword args plot_kwargs = dict(ax=ax, x=x, data=df_c.values, boot_data=boot_data, central_data=central_data, color=color, err_kws=err_kws) # Plot the error representation, possibly for multiple cis for ci_i in cis: plot_kwargs["ci"] = ci_i plot_func(**plot_kwargs) if err_palette is not None and "unit" in style: color = orig_color # Plot the central trace kwargs.setdefault("marker", "" if interpolate else "o") ls = kwargs.pop("ls", "-" if interpolate else "") kwargs.setdefault("linestyle", ls) label = cond if legend else "_nolegend_" ax.plot(x, central_data, color=color, label=label, **kwargs) # Pad the sides of the plot only when not interpolating ax.set_xlim(x.min(), x.max()) x_diff = x[1] - x[0] if not interpolate: ax.set_xlim(x.min() - x_diff, x.max() + x_diff) # Add the plot labels if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) if legend: ax.legend(loc=0, title=legend_name) return ax # Subroutines for tsplot errorbar plotting # ---------------------------------------- def _plot_ci_band(ax, x, ci, color, err_kws, **kwargs): """Plot translucent error bands around the central tendancy.""" low, high = ci if "alpha" not in err_kws: err_kws["alpha"] = 0.2 ax.fill_between(x, low, high, color=color, **err_kws) def _plot_ci_bars(ax, x, central_data, ci, color, err_kws, **kwargs): """Plot error bars at each data point.""" for x_i, y_i, (low, high) in zip(x, central_data, ci.T): ax.plot([x_i, x_i], [low, high], color=color, solid_capstyle="round", **err_kws) def _plot_boot_traces(ax, x, boot_data, color, err_kws, **kwargs): """Plot 250 traces from bootstrap.""" err_kws.setdefault("alpha", 0.25) err_kws.setdefault("linewidth", 0.25) if "lw" in err_kws: err_kws["linewidth"] = err_kws.pop("lw") ax.plot(x, boot_data.T, color=color, label="_nolegend_", **err_kws) def _plot_unit_traces(ax, x, data, ci, color, err_kws, **kwargs): """Plot a trace for each observation in the original data.""" if isinstance(color, list): if "alpha" not in err_kws: err_kws["alpha"] = .5 for i, obs in enumerate(data): ax.plot(x, obs, color=color[i], label="_nolegend_", **err_kws) else: if "alpha" not in err_kws: err_kws["alpha"] = .2 ax.plot(x, data.T, color=color, label="_nolegend_", **err_kws) def _plot_unit_points(ax, x, data, color, err_kws, **kwargs): """Plot each original data point discretely.""" if isinstance(color, list): for i, obs in enumerate(data): ax.plot(x, obs, "o", color=color[i], alpha=0.8, markersize=4, label="_nolegend_", **err_kws) else: ax.plot(x, data.T, "o", color=color, alpha=0.5, markersize=4, label="_nolegend_", **err_kws) def _plot_boot_kde(ax, x, boot_data, color, **kwargs): """Plot the kernal density estimate of the bootstrap distribution.""" kwargs.pop("data") _ts_kde(ax, x, boot_data, color, **kwargs) def _plot_unit_kde(ax, x, data, color, **kwargs): """Plot the kernal density estimate over the sample.""" _ts_kde(ax, x, data, color, **kwargs) def _ts_kde(ax, x, data, color, **kwargs): """Upsample over time and plot a KDE of the bootstrap distribution.""" kde_data = [] y_min, y_max = data.min(), data.max() y_vals = np.linspace(y_min, y_max, 100) upsampler = interpolate.interp1d(x, data) data_upsample = upsampler(np.linspace(x.min(), x.max(), 100)) for pt_data in data_upsample.T: pt_kde = stats.kde.gaussian_kde(pt_data) kde_data.append(pt_kde(y_vals)) kde_data = np.transpose(kde_data) rgb = mpl.colors.ColorConverter().to_rgb(color) img = np.zeros((kde_data.shape[0], kde_data.shape[1], 4)) img[:, :, :3] = rgb kde_data /= kde_data.max(axis=0) kde_data[kde_data > 1] = 1 img[:, :, 3] = kde_data ax.imshow(img, interpolation="spline16", zorder=2, extent=(x.min(), x.max(), y_min, y_max), aspect="auto", origin="lower")
bsd-3-clause
zak-k/cis
cis/test/plot_tests/idiff.py
3
2350
#!/usr/bin/env python # (C) British Crown Copyright 2010 - 2014, Met Office # # This file was heavily influenced by a similar file in the iris package. """ Provides "diff-like" comparison of images. Currently relies on matplotlib for image processing so limited to PNG format. """ from __future__ import (absolute_import, division, print_function) import os.path import shutil import matplotlib.pyplot as plt import matplotlib.image as mimg import matplotlib.widgets as mwidget def diff_viewer(expected_fname, result_fname, diff_fname): plt.figure(figsize=(16, 16)) plt.suptitle(os.path.basename(expected_fname)) ax = plt.subplot(221) ax.imshow(mimg.imread(expected_fname)) ax = plt.subplot(222, sharex=ax, sharey=ax) ax.imshow(mimg.imread(result_fname)) ax = plt.subplot(223, sharex=ax, sharey=ax) ax.imshow(mimg.imread(diff_fname)) def accept(event): # removes the expected result, and move the most recent result in print('ACCEPTED NEW FILE: %s' % (os.path.basename(expected_fname), )) os.remove(expected_fname) shutil.copy2(result_fname, expected_fname) os.remove(diff_fname) plt.close() def reject(event): print('REJECTED: %s' % (os.path.basename(expected_fname), )) plt.close() ax_accept = plt.axes([0.6, 0.35, 0.1, 0.075]) ax_reject = plt.axes([0.71, 0.35, 0.1, 0.075]) bnext = mwidget.Button(ax_accept, 'Accept change') bnext.on_clicked(accept) bprev = mwidget.Button(ax_reject, 'Reject') bprev.on_clicked(reject) plt.show() def step_over_diffs(): import cis.test.plot_tests image_dir = os.path.join(os.path.dirname(cis.test.plot_tests.__file__), 'reference', 'visual_tests') diff_dir = os.path.join(os.path.dirname(cis.test.plot_tests.__file__), 'result_image_comparison') for expected_fname in sorted(os.listdir(image_dir)): result_path = os.path.join(diff_dir, expected_fname) diff_path = result_path[:-4] + '-failed-diff.png' # if the test failed, there will be a diff file if os.path.exists(diff_path): expected_path = os.path.join(image_dir, expected_fname) diff_viewer(expected_path, result_path, diff_path) if __name__ == '__main__': step_over_diffs()
gpl-3.0
vermouthmjl/scikit-learn
sklearn/metrics/classification.py
1
69294
"""Metrics to assess performance on classification task given class prediction Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Mathieu Blondel <mathieu@mblondel.org> # Olivier Grisel <olivier.grisel@ensta.org> # Arnaud Joly <a.joly@ulg.ac.be> # Jochen Wersdorfer <jochen@wersdoerfer.de> # Lars Buitinck # Joel Nothman <joel.nothman@gmail.com> # Noel Dawe <noel@dawe.me> # Jatin Shah <jatindshah@gmail.com> # Saurabh Jha <saurabh.jhaa@gmail.com> # Bernardo Stein <bernardovstein@gmail.com> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix from ..preprocessing import LabelBinarizer, label_binarize from ..preprocessing import LabelEncoder from ..utils import check_array from ..utils import check_consistent_length from ..utils import column_or_1d from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..utils.validation import _num_samples from ..utils.sparsefuncs import count_nonzero from ..utils.fixes import bincount from ..exceptions import UndefinedMetricWarning def _check_targets(y_true, y_pred): """Check that y_true and y_pred belong to the same classification task This converts multiclass or binary types to a common shape, and raises a ValueError for a mix of multilabel and multiclass targets, a mix of multilabel formats, for the presence of continuous-valued or multioutput targets, or for targets of different lengths. Column vectors are squeezed to 1d, while multilabel formats are returned as CSR sparse label indicators. Parameters ---------- y_true : array-like y_pred : array-like Returns ------- type_true : one of {'multilabel-indicator', 'multiclass', 'binary'} The type of the true target data, as output by ``utils.multiclass.type_of_target`` y_true : array or indicator matrix y_pred : array or indicator matrix """ check_consistent_length(y_true, y_pred) type_true = type_of_target(y_true) type_pred = type_of_target(y_pred) y_type = set([type_true, type_pred]) if y_type == set(["binary", "multiclass"]): y_type = set(["multiclass"]) if len(y_type) > 1: raise ValueError("Can't handle mix of {0} and {1}" "".format(type_true, type_pred)) # We can't have more than one value on y_type => The set is no more needed y_type = y_type.pop() # No metrics support "multiclass-multioutput" format if (y_type not in ["binary", "multiclass", "multilabel-indicator"]): raise ValueError("{0} is not supported".format(y_type)) if y_type in ["binary", "multiclass"]: y_true = column_or_1d(y_true) y_pred = column_or_1d(y_pred) if y_type.startswith('multilabel'): y_true = csr_matrix(y_true) y_pred = csr_matrix(y_pred) y_type = 'multilabel-indicator' return y_type, y_true, y_pred def _weighted_sum(sample_score, sample_weight, normalize=False): if normalize: return np.average(sample_score, weights=sample_weight) elif sample_weight is not None: return np.dot(sample_score, sample_weight) else: return sample_score.sum() def accuracy_score(y_true, y_pred, normalize=True, sample_weight=None): """Accuracy classification score. In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must *exactly* match the corresponding set of labels in y_true. Read more in the :ref:`User Guide <accuracy_score>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the number of correctly classified samples. Otherwise, return the fraction of correctly classified samples. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float If ``normalize == True``, return the correctly classified samples (float), else it returns the number of correctly classified samples (int). The best performance is 1 with ``normalize == True`` and the number of samples with ``normalize == False``. See also -------- jaccard_similarity_score, hamming_loss, zero_one_loss Notes ----- In binary and multiclass classification, this function is equal to the ``jaccard_similarity_score`` function. Examples -------- >>> import numpy as np >>> from sklearn.metrics import accuracy_score >>> y_pred = [0, 2, 1, 3] >>> y_true = [0, 1, 2, 3] >>> accuracy_score(y_true, y_pred) 0.5 >>> accuracy_score(y_true, y_pred, normalize=False) 2 In the multilabel case with binary label indicators: >>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 """ # Compute accuracy for each possible representation y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type.startswith('multilabel'): differing_labels = count_nonzero(y_true - y_pred, axis=1) score = differing_labels == 0 else: score = y_true == y_pred return _weighted_sum(score, sample_weight, normalize) def confusion_matrix(y_true, y_pred, labels=None, sample_weight=None): """Compute confusion matrix to evaluate the accuracy of a classification By definition a confusion matrix :math:`C` is such that :math:`C_{i, j}` is equal to the number of observations known to be in group :math:`i` but predicted to be in group :math:`j`. Read more in the :ref:`User Guide <confusion_matrix>`. Parameters ---------- y_true : array, shape = [n_samples] Ground truth (correct) target values. y_pred : array, shape = [n_samples] Estimated targets as returned by a classifier. labels : array, shape = [n_classes], optional List of labels to index the matrix. This may be used to reorder or select a subset of labels. If none is given, those that appear at least once in ``y_true`` or ``y_pred`` are used in sorted order. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- C : array, shape = [n_classes, n_classes] Confusion matrix References ---------- .. [1] `Wikipedia entry for the Confusion matrix <https://en.wikipedia.org/wiki/Confusion_matrix>`_ Examples -------- >>> from sklearn.metrics import confusion_matrix >>> y_true = [2, 0, 2, 2, 0, 1] >>> y_pred = [0, 0, 2, 2, 0, 2] >>> confusion_matrix(y_true, y_pred) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) >>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"] >>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"] >>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"]) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type not in ("binary", "multiclass"): raise ValueError("%s is not supported" % y_type) if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels) if sample_weight is None: sample_weight = np.ones(y_true.shape[0], dtype=np.int) else: sample_weight = np.asarray(sample_weight) check_consistent_length(sample_weight, y_true, y_pred) n_labels = labels.size label_to_ind = dict((y, x) for x, y in enumerate(labels)) # convert yt, yp into index y_pred = np.array([label_to_ind.get(x, n_labels + 1) for x in y_pred]) y_true = np.array([label_to_ind.get(x, n_labels + 1) for x in y_true]) # intersect y_pred, y_true with labels, eliminate items not in labels ind = np.logical_and(y_pred < n_labels, y_true < n_labels) y_pred = y_pred[ind] y_true = y_true[ind] # also eliminate weights of eliminated items sample_weight = sample_weight[ind] CM = coo_matrix((sample_weight, (y_true, y_pred)), shape=(n_labels, n_labels) ).toarray() return CM def cohen_kappa_score(y1, y2, labels=None): """Cohen's kappa: a statistic that measures inter-annotator agreement. This function computes Cohen's kappa [1], a score that expresses the level of agreement between two annotators on a classification problem. It is defined as .. math:: \kappa = (p_o - p_e) / (1 - p_e) where :math:`p_o` is the empirical probability of agreement on the label assigned to any sample (the observed agreement ratio), and :math:`p_e` is the expected agreement when both annotators assign labels randomly. :math:`p_e` is estimated using a per-annotator empirical prior over the class labels [2]. Parameters ---------- y1 : array, shape = [n_samples] Labels assigned by the first annotator. y2 : array, shape = [n_samples] Labels assigned by the second annotator. The kappa statistic is symmetric, so swapping ``y1`` and ``y2`` doesn't change the value. labels : array, shape = [n_classes], optional List of labels to index the matrix. This may be used to select a subset of labels. If None, all labels that appear at least once in ``y1`` or ``y2`` are used. Returns ------- kappa : float The kappa statistic, which is a number between -1 and 1. The maximum value means complete agreement; zero or lower means chance agreement. References ---------- .. [1] J. Cohen (1960). "A coefficient of agreement for nominal scales". Educational and Psychological Measurement 20(1):37-46. doi:10.1177/001316446002000104. .. [2] R. Artstein and M. Poesio (2008). "Inter-coder agreement for computational linguistics". Computational Linguistic 34(4):555-596. """ confusion = confusion_matrix(y1, y2, labels=labels) P = confusion / float(confusion.sum()) p_observed = np.trace(P) p_expected = np.dot(P.sum(axis=0), P.sum(axis=1)) return (p_observed - p_expected) / (1 - p_expected) def jaccard_similarity_score(y_true, y_pred, normalize=True, sample_weight=None): """Jaccard similarity coefficient score The Jaccard index [1], or Jaccard similarity coefficient, defined as the size of the intersection divided by the size of the union of two label sets, is used to compare set of predicted labels for a sample to the corresponding set of labels in ``y_true``. Read more in the :ref:`User Guide <jaccard_similarity_score>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the sum of the Jaccard similarity coefficient over the sample set. Otherwise, return the average of Jaccard similarity coefficient. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float If ``normalize == True``, return the average Jaccard similarity coefficient, else it returns the sum of the Jaccard similarity coefficient over the sample set. The best performance is 1 with ``normalize == True`` and the number of samples with ``normalize == False``. See also -------- accuracy_score, hamming_loss, zero_one_loss Notes ----- In binary and multiclass classification, this function is equivalent to the ``accuracy_score``. It differs in the multilabel classification problem. References ---------- .. [1] `Wikipedia entry for the Jaccard index <https://en.wikipedia.org/wiki/Jaccard_index>`_ Examples -------- >>> import numpy as np >>> from sklearn.metrics import jaccard_similarity_score >>> y_pred = [0, 2, 1, 3] >>> y_true = [0, 1, 2, 3] >>> jaccard_similarity_score(y_true, y_pred) 0.5 >>> jaccard_similarity_score(y_true, y_pred, normalize=False) 2 In the multilabel case with binary label indicators: >>> jaccard_similarity_score(np.array([[0, 1], [1, 1]]),\ np.ones((2, 2))) 0.75 """ # Compute accuracy for each possible representation y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type.startswith('multilabel'): with np.errstate(divide='ignore', invalid='ignore'): # oddly, we may get an "invalid" rather than a "divide" error here pred_or_true = count_nonzero(y_true + y_pred, axis=1) pred_and_true = count_nonzero(y_true.multiply(y_pred), axis=1) score = pred_and_true / pred_or_true # If there is no label, it results in a Nan instead, we set # the jaccard to 1: lim_{x->0} x/x = 1 # Note with py2.6 and np 1.3: we can't check safely for nan. score[pred_or_true == 0.0] = 1.0 else: score = y_true == y_pred return _weighted_sum(score, sample_weight, normalize) def matthews_corrcoef(y_true, y_pred, sample_weight=None): """Compute the Matthews correlation coefficient (MCC) for binary classes The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary (two-class) classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] Only in the binary case does this relate to information about true and false positives and negatives. See references below. Read more in the :ref:`User Guide <matthews_corrcoef>`. Parameters ---------- y_true : array, shape = [n_samples] Ground truth (correct) target values. y_pred : array, shape = [n_samples] Estimated targets as returned by a classifier. sample_weight : array-like of shape = [n_samples], default None Sample weights. Returns ------- mcc : float The Matthews correlation coefficient (+1 represents a perfect prediction, 0 an average random prediction and -1 and inverse prediction). References ---------- .. [1] `Baldi, Brunak, Chauvin, Andersen and Nielsen, (2000). Assessing the accuracy of prediction algorithms for classification: an overview <http://dx.doi.org/10.1093/bioinformatics/16.5.412>`_ .. [2] `Wikipedia entry for the Matthews Correlation Coefficient <https://en.wikipedia.org/wiki/Matthews_correlation_coefficient>`_ Examples -------- >>> from sklearn.metrics import matthews_corrcoef >>> y_true = [+1, +1, +1, -1] >>> y_pred = [+1, -1, +1, +1] >>> matthews_corrcoef(y_true, y_pred) # doctest: +ELLIPSIS -0.33... """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type != "binary": raise ValueError("%s is not supported" % y_type) lb = LabelEncoder() lb.fit(np.hstack([y_true, y_pred])) y_true = lb.transform(y_true) y_pred = lb.transform(y_pred) mean_yt = np.average(y_true, weights=sample_weight) mean_yp = np.average(y_pred, weights=sample_weight) y_true_u_cent = y_true - mean_yt y_pred_u_cent = y_pred - mean_yp cov_ytyp = np.average(y_true_u_cent * y_pred_u_cent, weights=sample_weight) var_yt = np.average(y_true_u_cent ** 2, weights=sample_weight) var_yp = np.average(y_pred_u_cent ** 2, weights=sample_weight) mcc = cov_ytyp / np.sqrt(var_yt * var_yp) if np.isnan(mcc): return 0. else: return mcc def zero_one_loss(y_true, y_pred, normalize=True, sample_weight=None): """Zero-one classification loss. If normalize is ``True``, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). The best performance is 0. Read more in the :ref:`User Guide <zero_one_loss>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the number of misclassifications. Otherwise, return the fraction of misclassifications. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float or int, If ``normalize == True``, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). Notes ----- In multilabel classification, the zero_one_loss function corresponds to the subset zero-one loss: for each sample, the entire set of labels must be correctly predicted, otherwise the loss for that sample is equal to one. See also -------- accuracy_score, hamming_loss, jaccard_similarity_score Examples -------- >>> from sklearn.metrics import zero_one_loss >>> y_pred = [1, 2, 3, 4] >>> y_true = [2, 2, 3, 4] >>> zero_one_loss(y_true, y_pred) 0.25 >>> zero_one_loss(y_true, y_pred, normalize=False) 1 In the multilabel case with binary label indicators: >>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 """ score = accuracy_score(y_true, y_pred, normalize=normalize, sample_weight=sample_weight) if normalize: return 1 - score else: if sample_weight is not None: n_samples = np.sum(sample_weight) else: n_samples = _num_samples(y_true) return n_samples - score def f1_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the F1 score, also known as balanced F-score or F-measure The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:: F1 = 2 * (precision * recall) / (precision + recall) In the multi-class and multi-label case, this is the weighted average of the F1 score of each class. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- f1_score : float or array of float, shape = [n_unique_labels] F1 score of the positive class in binary classification or weighted average of the F1 scores of each class for the multiclass task. References ---------- .. [1] `Wikipedia entry for the F1-score <https://en.wikipedia.org/wiki/F1_score>`_ Examples -------- >>> from sklearn.metrics import f1_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> f1_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.26... >>> f1_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> f1_score(y_true, y_pred, average='weighted') # doctest: +ELLIPSIS 0.26... >>> f1_score(y_true, y_pred, average=None) array([ 0.8, 0. , 0. ]) """ return fbeta_score(y_true, y_pred, 1, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) def fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the F-beta score The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst value at 0. The `beta` parameter determines the weight of precision in the combined score. ``beta < 1`` lends more weight to precision, while ``beta > 1`` favors recall (``beta -> 0`` considers only precision, ``beta -> inf`` only recall). Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. beta: float Weight of precision in harmonic mean. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fbeta_score : float (if average is not None) or array of float, shape =\ [n_unique_labels] F-beta score of the positive class in binary classification or weighted average of the F-beta score of each class for the multiclass task. References ---------- .. [1] R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 327-328. .. [2] `Wikipedia entry for the F1-score <https://en.wikipedia.org/wiki/F1_score>`_ Examples -------- >>> from sklearn.metrics import fbeta_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> fbeta_score(y_true, y_pred, average='macro', beta=0.5) ... # doctest: +ELLIPSIS 0.23... >>> fbeta_score(y_true, y_pred, average='micro', beta=0.5) ... # doctest: +ELLIPSIS 0.33... >>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5) ... # doctest: +ELLIPSIS 0.23... >>> fbeta_score(y_true, y_pred, average=None, beta=0.5) ... # doctest: +ELLIPSIS array([ 0.71..., 0. , 0. ]) """ _, _, f, _ = precision_recall_fscore_support(y_true, y_pred, beta=beta, labels=labels, pos_label=pos_label, average=average, warn_for=('f-score',), sample_weight=sample_weight) return f def _prf_divide(numerator, denominator, metric, modifier, average, warn_for): """Performs division and handles divide-by-zero. On zero-division, sets the corresponding result elements to zero and raises a warning. The metric, modifier and average arguments are used only for determining an appropriate warning. """ result = numerator / denominator mask = denominator == 0.0 if not np.any(mask): return result # remove infs result[mask] = 0.0 # build appropriate warning # E.g. "Precision and F-score are ill-defined and being set to 0.0 in # labels with no predicted samples" axis0 = 'sample' axis1 = 'label' if average == 'samples': axis0, axis1 = axis1, axis0 if metric in warn_for and 'f-score' in warn_for: msg_start = '{0} and F-score are'.format(metric.title()) elif metric in warn_for: msg_start = '{0} is'.format(metric.title()) elif 'f-score' in warn_for: msg_start = 'F-score is' else: return result msg = ('{0} ill-defined and being set to 0.0 {{0}} ' 'no {1} {2}s.'.format(msg_start, modifier, axis0)) if len(mask) == 1: msg = msg.format('due to') else: msg = msg.format('in {0}s with'.format(axis1)) warnings.warn(msg, UndefinedMetricWarning, stacklevel=2) return result def precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None, pos_label=1, average=None, warn_for=('precision', 'recall', 'f-score'), sample_weight=None): """Compute precision, recall, F-measure and support for each class The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The F-beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F-beta score reaches its best value at 1 and worst score at 0. The F-beta score weights recall more than precision by a factor of ``beta``. ``beta == 1.0`` means recall and precision are equally important. The support is the number of occurrences of each class in ``y_true``. If ``pos_label is None`` and in binary classification, this function returns the average precision, recall and F-measure if ``average`` is one of ``'micro'``, ``'macro'``, ``'weighted'`` or ``'samples'``. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. beta : float, 1.0 by default The strength of recall versus precision in the F-score. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None (default), 'binary', 'micro', 'macro', 'samples', \ 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. warn_for : tuple or set, for internal use This determines which warnings will be made in the case that this function is being used to return only one of its metrics. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision: float (if average is not None) or array of float, shape =\ [n_unique_labels] recall: float (if average is not None) or array of float, , shape =\ [n_unique_labels] fbeta_score: float (if average is not None) or array of float, shape =\ [n_unique_labels] support: int (if average is not None) or array of int, shape =\ [n_unique_labels] The number of occurrences of each label in ``y_true``. References ---------- .. [1] `Wikipedia entry for the Precision and recall <https://en.wikipedia.org/wiki/Precision_and_recall>`_ .. [2] `Wikipedia entry for the F1-score <https://en.wikipedia.org/wiki/F1_score>`_ .. [3] `Discriminative Methods for Multi-labeled Classification Advances in Knowledge Discovery and Data Mining (2004), pp. 22-30 by Shantanu Godbole, Sunita Sarawagi <http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf>` Examples -------- >>> from sklearn.metrics import precision_recall_fscore_support >>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig']) >>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog']) >>> precision_recall_fscore_support(y_true, y_pred, average='macro') ... # doctest: +ELLIPSIS (0.22..., 0.33..., 0.26..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='micro') ... # doctest: +ELLIPSIS (0.33..., 0.33..., 0.33..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='weighted') ... # doctest: +ELLIPSIS (0.22..., 0.33..., 0.26..., None) It is possible to compute per-label precisions, recalls, F1-scores and supports instead of averaging: >>> precision_recall_fscore_support(y_true, y_pred, average=None, ... labels=['pig', 'dog', 'cat']) ... # doctest: +ELLIPSIS,+NORMALIZE_WHITESPACE (array([ 0. , 0. , 0.66...]), array([ 0., 0., 1.]), array([ 0. , 0. , 0.8]), array([2, 2, 2])) """ average_options = (None, 'micro', 'macro', 'weighted', 'samples') if average not in average_options and average != 'binary': raise ValueError('average has to be one of ' + str(average_options)) if beta <= 0: raise ValueError("beta should be >0 in the F-beta score") y_type, y_true, y_pred = _check_targets(y_true, y_pred) present_labels = unique_labels(y_true, y_pred) if average == 'binary' and (y_type != 'binary' or pos_label is None): warnings.warn('The default `weighted` averaging is deprecated, ' 'and from version 0.18, use of precision, recall or ' 'F-score with multiclass or multilabel data or ' 'pos_label=None will result in an exception. ' 'Please set an explicit value for `average`, one of ' '%s. In cross validation use, for instance, ' 'scoring="f1_weighted" instead of scoring="f1".' % str(average_options), DeprecationWarning, stacklevel=2) average = 'weighted' if y_type == 'binary' and pos_label is not None and average is not None: if average != 'binary': warnings.warn('From version 0.18, binary input will not be ' 'handled specially when using averaged ' 'precision/recall/F-score. ' 'Please use average=\'binary\' to report only the ' 'positive class performance.', DeprecationWarning) if labels is None or len(labels) <= 2: if pos_label not in present_labels: if len(present_labels) < 2: # Only negative labels return (0., 0., 0., 0) else: raise ValueError("pos_label=%r is not a valid label: %r" % (pos_label, present_labels)) labels = [pos_label] if labels is None: labels = present_labels n_labels = None else: n_labels = len(labels) labels = np.hstack([labels, np.setdiff1d(present_labels, labels, assume_unique=True)]) # Calculate tp_sum, pred_sum, true_sum ### if y_type.startswith('multilabel'): sum_axis = 1 if average == 'samples' else 0 # All labels are index integers for multilabel. # Select labels: if not np.all(labels == present_labels): if np.max(labels) > np.max(present_labels): raise ValueError('All labels must be in [0, n labels). ' 'Got %d > %d' % (np.max(labels), np.max(present_labels))) if np.min(labels) < 0: raise ValueError('All labels must be in [0, n labels). ' 'Got %d < 0' % np.min(labels)) y_true = y_true[:, labels[:n_labels]] y_pred = y_pred[:, labels[:n_labels]] # calculate weighted counts true_and_pred = y_true.multiply(y_pred) tp_sum = count_nonzero(true_and_pred, axis=sum_axis, sample_weight=sample_weight) pred_sum = count_nonzero(y_pred, axis=sum_axis, sample_weight=sample_weight) true_sum = count_nonzero(y_true, axis=sum_axis, sample_weight=sample_weight) elif average == 'samples': raise ValueError("Sample-based precision, recall, fscore is " "not meaningful outside multilabel " "classification. See the accuracy_score instead.") else: le = LabelEncoder() le.fit(labels) y_true = le.transform(y_true) y_pred = le.transform(y_pred) sorted_labels = le.classes_ # labels are now from 0 to len(labels) - 1 -> use bincount tp = y_true == y_pred tp_bins = y_true[tp] if sample_weight is not None: tp_bins_weights = np.asarray(sample_weight)[tp] else: tp_bins_weights = None if len(tp_bins): tp_sum = bincount(tp_bins, weights=tp_bins_weights, minlength=len(labels)) else: # Pathological case true_sum = pred_sum = tp_sum = np.zeros(len(labels)) if len(y_pred): pred_sum = bincount(y_pred, weights=sample_weight, minlength=len(labels)) if len(y_true): true_sum = bincount(y_true, weights=sample_weight, minlength=len(labels)) # Retain only selected labels indices = np.searchsorted(sorted_labels, labels[:n_labels]) tp_sum = tp_sum[indices] true_sum = true_sum[indices] pred_sum = pred_sum[indices] if average == 'micro': tp_sum = np.array([tp_sum.sum()]) pred_sum = np.array([pred_sum.sum()]) true_sum = np.array([true_sum.sum()]) # Finally, we have all our sufficient statistics. Divide! # beta2 = beta ** 2 with np.errstate(divide='ignore', invalid='ignore'): # Divide, and on zero-division, set scores to 0 and warn: # Oddly, we may get an "invalid" rather than a "divide" error # here. precision = _prf_divide(tp_sum, pred_sum, 'precision', 'predicted', average, warn_for) recall = _prf_divide(tp_sum, true_sum, 'recall', 'true', average, warn_for) # Don't need to warn for F: either P or R warned, or tp == 0 where pos # and true are nonzero, in which case, F is well-defined and zero f_score = ((1 + beta2) * precision * recall / (beta2 * precision + recall)) f_score[tp_sum == 0] = 0.0 # Average the results if average == 'weighted': weights = true_sum if weights.sum() == 0: return 0, 0, 0, None elif average == 'samples': weights = sample_weight else: weights = None if average is not None: assert average != 'binary' or len(precision) == 1 precision = np.average(precision, weights=weights) recall = np.average(recall, weights=weights) f_score = np.average(f_score, weights=weights) true_sum = None # return no support return precision, recall, f_score, true_sum def precision_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the precision The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The best value is 1 and the worst value is 0. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : float (if average is not None) or array of float, shape =\ [n_unique_labels] Precision of the positive class in binary classification or weighted average of the precision of each class for the multiclass task. Examples -------- >>> from sklearn.metrics import precision_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> precision_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.22... >>> precision_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> precision_score(y_true, y_pred, average='weighted') ... # doctest: +ELLIPSIS 0.22... >>> precision_score(y_true, y_pred, average=None) # doctest: +ELLIPSIS array([ 0.66..., 0. , 0. ]) """ p, _, _, _ = precision_recall_fscore_support(y_true, y_pred, labels=labels, pos_label=pos_label, average=average, warn_for=('precision',), sample_weight=sample_weight) return p def recall_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the recall The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The best value is 1 and the worst value is 0. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- recall : float (if average is not None) or array of float, shape =\ [n_unique_labels] Recall of the positive class in binary classification or weighted average of the recall of each class for the multiclass task. Examples -------- >>> from sklearn.metrics import recall_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> recall_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average='weighted') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average=None) array([ 1., 0., 0.]) """ _, r, _, _ = precision_recall_fscore_support(y_true, y_pred, labels=labels, pos_label=pos_label, average=average, warn_for=('recall',), sample_weight=sample_weight) return r def classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2): """Build a text report showing the main classification metrics Read more in the :ref:`User Guide <classification_report>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : array, shape = [n_labels] Optional list of label indices to include in the report. target_names : list of strings Optional display names matching the labels (same order). sample_weight : array-like of shape = [n_samples], optional Sample weights. digits : int Number of digits for formatting output floating point values Returns ------- report : string Text summary of the precision, recall, F1 score for each class. Examples -------- >>> from sklearn.metrics import classification_report >>> y_true = [0, 1, 2, 2, 2] >>> y_pred = [0, 0, 2, 2, 1] >>> target_names = ['class 0', 'class 1', 'class 2'] >>> print(classification_report(y_true, y_pred, target_names=target_names)) precision recall f1-score support <BLANKLINE> class 0 0.50 1.00 0.67 1 class 1 0.00 0.00 0.00 1 class 2 1.00 0.67 0.80 3 <BLANKLINE> avg / total 0.70 0.60 0.61 5 <BLANKLINE> """ if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels) last_line_heading = 'avg / total' if target_names is None: target_names = ['%s' % l for l in labels] name_width = max(len(cn) for cn in target_names) width = max(name_width, len(last_line_heading), digits) headers = ["precision", "recall", "f1-score", "support"] fmt = '%% %ds' % width # first column: class name fmt += ' ' fmt += ' '.join(['% 9s' for _ in headers]) fmt += '\n' headers = [""] + headers report = fmt % tuple(headers) report += '\n' p, r, f1, s = precision_recall_fscore_support(y_true, y_pred, labels=labels, average=None, sample_weight=sample_weight) for i, label in enumerate(labels): values = [target_names[i]] for v in (p[i], r[i], f1[i]): values += ["{0:0.{1}f}".format(v, digits)] values += ["{0}".format(s[i])] report += fmt % tuple(values) report += '\n' # compute averages values = [last_line_heading] for v in (np.average(p, weights=s), np.average(r, weights=s), np.average(f1, weights=s)): values += ["{0:0.{1}f}".format(v, digits)] values += ['{0}'.format(np.sum(s))] report += fmt % tuple(values) return report def hamming_loss(y_true, y_pred, classes=None, sample_weight=None): """Compute the average Hamming loss. The Hamming loss is the fraction of labels that are incorrectly predicted. Read more in the :ref:`User Guide <hamming_loss>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. classes : array, shape = [n_labels], optional Integer array of labels. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float or int, Return the average Hamming loss between element of ``y_true`` and ``y_pred``. See Also -------- accuracy_score, jaccard_similarity_score, zero_one_loss Notes ----- In multiclass classification, the Hamming loss correspond to the Hamming distance between ``y_true`` and ``y_pred`` which is equivalent to the subset ``zero_one_loss`` function. In multilabel classification, the Hamming loss is different from the subset zero-one loss. The zero-one loss considers the entire set of labels for a given sample incorrect if it does entirely match the true set of labels. Hamming loss is more forgiving in that it penalizes the individual labels. The Hamming loss is upperbounded by the subset zero-one loss. When normalized over samples, the Hamming loss is always between 0 and 1. References ---------- .. [1] Grigorios Tsoumakas, Ioannis Katakis. Multi-Label Classification: An Overview. International Journal of Data Warehousing & Mining, 3(3), 1-13, July-September 2007. .. [2] `Wikipedia entry on the Hamming distance <https://en.wikipedia.org/wiki/Hamming_distance>`_ Examples -------- >>> from sklearn.metrics import hamming_loss >>> y_pred = [1, 2, 3, 4] >>> y_true = [2, 2, 3, 4] >>> hamming_loss(y_true, y_pred) 0.25 In the multilabel case with binary label indicators: >>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2))) 0.75 """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if classes is None: classes = unique_labels(y_true, y_pred) else: classes = np.asarray(classes) if sample_weight is None: weight_average = 1. else: weight_average = np.mean(sample_weight) if y_type.startswith('multilabel'): n_differences = count_nonzero(y_true - y_pred, sample_weight=sample_weight) return (n_differences / (y_true.shape[0] * len(classes) * weight_average)) elif y_type in ["binary", "multiclass"]: return _weighted_sum(y_true != y_pred, sample_weight, normalize=True) else: raise ValueError("{0} is not supported".format(y_type)) def log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None): """Log loss, aka logistic loss or cross-entropy loss. This is the loss function used in (multinomial) logistic regression and extensions of it such as neural networks, defined as the negative log-likelihood of the true labels given a probabilistic classifier's predictions. For a single sample with true label yt in {0,1} and estimated probability yp that yt = 1, the log loss is -log P(yt|yp) = -(yt log(yp) + (1 - yt) log(1 - yp)) Read more in the :ref:`User Guide <log_loss>`. Parameters ---------- y_true : array-like or label indicator matrix Ground truth (correct) labels for n_samples samples. y_pred : array-like of float, shape = (n_samples, n_classes) Predicted probabilities, as returned by a classifier's predict_proba method. eps : float Log loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1 - eps, p)). normalize : bool, optional (default=True) If true, return the mean loss per sample. Otherwise, return the sum of the per-sample losses. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float Examples -------- >>> log_loss(["spam", "ham", "ham", "spam"], # doctest: +ELLIPSIS ... [[.1, .9], [.9, .1], [.8, .2], [.35, .65]]) 0.21616... References ---------- C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer, p. 209. Notes ----- The logarithm used is the natural logarithm (base-e). """ lb = LabelBinarizer() T = lb.fit_transform(y_true) if T.shape[1] == 1: T = np.append(1 - T, T, axis=1) y_pred = check_array(y_pred, ensure_2d=False) # Clipping Y = np.clip(y_pred, eps, 1 - eps) # This happens in cases when elements in y_pred have type "str". if not isinstance(Y, np.ndarray): raise ValueError("y_pred should be an array of floats.") # If y_pred is of single dimension, assume y_true to be binary # and then check. if Y.ndim == 1: Y = Y[:, np.newaxis] if Y.shape[1] == 1: Y = np.append(1 - Y, Y, axis=1) # Check if dimensions are consistent. check_consistent_length(T, Y) T = check_array(T) Y = check_array(Y) if T.shape[1] != Y.shape[1]: raise ValueError("y_true and y_pred have different number of classes " "%d, %d" % (T.shape[1], Y.shape[1])) # Renormalize Y /= Y.sum(axis=1)[:, np.newaxis] loss = -(T * np.log(Y)).sum(axis=1) return _weighted_sum(loss, sample_weight, normalize) def hinge_loss(y_true, pred_decision, labels=None, sample_weight=None): """Average hinge loss (non-regularized) In binary class case, assuming labels in y_true are encoded with +1 and -1, when a prediction mistake is made, ``margin = y_true * pred_decision`` is always negative (since the signs disagree), implying ``1 - margin`` is always greater than 1. The cumulated hinge loss is therefore an upper bound of the number of mistakes made by the classifier. In multiclass case, the function expects that either all the labels are included in y_true or an optional labels argument is provided which contains all the labels. The multilabel margin is calculated according to Crammer-Singer's method. As in the binary case, the cumulated hinge loss is an upper bound of the number of mistakes made by the classifier. Read more in the :ref:`User Guide <hinge_loss>`. Parameters ---------- y_true : array, shape = [n_samples] True target, consisting of integers of two values. The positive label must be greater than the negative label. pred_decision : array, shape = [n_samples] or [n_samples, n_classes] Predicted decisions, as output by decision_function (floats). labels : array, optional, default None Contains all the labels for the problem. Used in multiclass hinge loss. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float References ---------- .. [1] `Wikipedia entry on the Hinge loss <https://en.wikipedia.org/wiki/Hinge_loss>`_ .. [2] Koby Crammer, Yoram Singer. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. Journal of Machine Learning Research 2, (2001), 265-292 .. [3] `L1 AND L2 Regularization for Multiclass Hinge Loss Models by Robert C. Moore, John DeNero. <http://www.ttic.edu/sigml/symposium2011/papers/ Moore+DeNero_Regularization.pdf>`_ Examples -------- >>> from sklearn import svm >>> from sklearn.metrics import hinge_loss >>> X = [[0], [1]] >>> y = [-1, 1] >>> est = svm.LinearSVC(random_state=0) >>> est.fit(X, y) LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=0, tol=0.0001, verbose=0) >>> pred_decision = est.decision_function([[-2], [3], [0.5]]) >>> pred_decision # doctest: +ELLIPSIS array([-2.18..., 2.36..., 0.09...]) >>> hinge_loss([-1, 1, 1], pred_decision) # doctest: +ELLIPSIS 0.30... In the multiclass case: >>> X = np.array([[0], [1], [2], [3]]) >>> Y = np.array([0, 1, 2, 3]) >>> labels = np.array([0, 1, 2, 3]) >>> est = svm.LinearSVC() >>> est.fit(X, Y) LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, verbose=0) >>> pred_decision = est.decision_function([[-1], [2], [3]]) >>> y_true = [0, 2, 3] >>> hinge_loss(y_true, pred_decision, labels) #doctest: +ELLIPSIS 0.56... """ check_consistent_length(y_true, pred_decision, sample_weight) pred_decision = check_array(pred_decision, ensure_2d=False) y_true = column_or_1d(y_true) y_true_unique = np.unique(y_true) if y_true_unique.size > 2: if (labels is None and pred_decision.ndim > 1 and (np.size(y_true_unique) != pred_decision.shape[1])): raise ValueError("Please include all labels in y_true " "or pass labels as third argument") if labels is None: labels = y_true_unique le = LabelEncoder() le.fit(labels) y_true = le.transform(y_true) mask = np.ones_like(pred_decision, dtype=bool) mask[np.arange(y_true.shape[0]), y_true] = False margin = pred_decision[~mask] margin -= np.max(pred_decision[mask].reshape(y_true.shape[0], -1), axis=1) else: # Handles binary class case # this code assumes that positive and negative labels # are encoded as +1 and -1 respectively pred_decision = column_or_1d(pred_decision) pred_decision = np.ravel(pred_decision) lbin = LabelBinarizer(neg_label=-1) y_true = lbin.fit_transform(y_true)[:, 0] try: margin = y_true * pred_decision except TypeError: raise TypeError("pred_decision should be an array of floats.") losses = 1 - margin # The hinge_loss doesn't penalize good enough predictions. losses[losses <= 0] = 0 return np.average(losses, weights=sample_weight) def _check_binary_probabilistic_predictions(y_true, y_prob): """Check that y_true is binary and y_prob contains valid probabilities""" check_consistent_length(y_true, y_prob) labels = np.unique(y_true) if len(labels) != 2: raise ValueError("Only binary classification is supported. " "Provided labels %s." % labels) if y_prob.max() > 1: raise ValueError("y_prob contains values greater than 1.") if y_prob.min() < 0: raise ValueError("y_prob contains values less than 0.") return label_binarize(y_true, labels)[:, 0] def brier_score_loss(y_true, y_prob, sample_weight=None, pos_label=None): """Compute the Brier score. The smaller the Brier score, the better, hence the naming with "loss". Across all items in a set N predictions, the Brier score measures the mean squared difference between (1) the predicted probability assigned to the possible outcomes for item i, and (2) the actual outcome. Therefore, the lower the Brier score is for a set of predictions, the better the predictions are calibrated. Note that the Brier score always takes on a value between zero and one, since this is the largest possible difference between a predicted probability (which must be between zero and one) and the actual outcome (which can take on values of only 0 and 1). The Brier score is appropriate for binary and categorical outcomes that can be structured as true or false, but is inappropriate for ordinal variables which can take on three or more values (this is because the Brier score assumes that all possible outcomes are equivalently "distant" from one another). Which label is considered to be the positive label is controlled via the parameter pos_label, which defaults to 1. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- y_true : array, shape (n_samples,) True targets. y_prob : array, shape (n_samples,) Probabilities of the positive class. sample_weight : array-like of shape = [n_samples], optional Sample weights. pos_label : int (default: None) Label of the positive class. If None, the maximum label is used as positive class Returns ------- score : float Brier score Examples -------- >>> import numpy as np >>> from sklearn.metrics import brier_score_loss >>> y_true = np.array([0, 1, 1, 0]) >>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"]) >>> y_prob = np.array([0.1, 0.9, 0.8, 0.3]) >>> brier_score_loss(y_true, y_prob) # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true, 1-y_prob, pos_label=0) # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true_categorical, y_prob, \ pos_label="ham") # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true, np.array(y_prob) > 0.5) 0.0 References ---------- https://en.wikipedia.org/wiki/Brier_score """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) if pos_label is None: pos_label = y_true.max() y_true = np.array(y_true == pos_label, int) y_true = _check_binary_probabilistic_predictions(y_true, y_prob) return np.average((y_true - y_prob) ** 2, weights=sample_weight)
bsd-3-clause
DailyActie/Surrogate-Model
01-codes/scikit-learn-master/examples/decomposition/plot_sparse_coding.py
1
4054
""" =========================================== Sparse coding with a precomputed dictionary =========================================== Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding methods using the :class:`sklearn.decomposition.SparseCoder` estimator. The Ricker (also known as Mexican hat or the second derivative of a Gaussian) is not a particularly good kernel to represent piecewise constant signals like this one. It can therefore be seen how much adding different widths of atoms matters and it therefore motivates learning the dictionary to best fit your type of signals. The richer dictionary on the right is not larger in size, heavier subsampling is performed in order to stay on the same order of magnitude. """ print(__doc__) import matplotlib.pylab as plt import numpy as np from sklearn.decomposition import SparseCoder def ricker_function(resolution, center, width): """Discrete sub-sampled Ricker (Mexican hat) wavelet""" x = np.linspace(0, resolution - 1, resolution) x = ((2 / ((np.sqrt(3 * width) * np.pi ** 1 / 4))) * (1 - ((x - center) ** 2 / width ** 2)) * np.exp((-(x - center) ** 2) / (2 * width ** 2))) return x def ricker_matrix(width, resolution, n_components): """Dictionary of Ricker (Mexican hat) wavelets""" centers = np.linspace(0, resolution - 1, n_components) D = np.empty((n_components, resolution)) for i, center in enumerate(centers): D[i] = ricker_function(resolution, center, width) D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis] return D resolution = 1024 subsampling = 3 # subsampling factor width = 100 n_components = resolution / subsampling # Compute a wavelet dictionary D_fixed = ricker_matrix(width=width, resolution=resolution, n_components=n_components) D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution, n_components=np.floor(n_components / 5)) for w in (10, 50, 100, 500, 1000))] # Generate a signal y = np.linspace(0, resolution - 1, resolution) first_quarter = y < resolution / 4 y[first_quarter] = 3. y[np.logical_not(first_quarter)] = -1. # List the different sparse coding methods in the following format: # (title, transform_algorithm, transform_alpha, transform_n_nozero_coefs) estimators = [('OMP', 'omp', None, 15, 'navy'), ('Lasso', 'lasso_cd', 2, None, 'turquoise'), ] lw = 2 plt.figure(figsize=(13, 6)) for subplot, (D, title) in enumerate(zip((D_fixed, D_multi), ('fixed width', 'multiple widths'))): plt.subplot(1, 2, subplot + 1) plt.title('Sparse coding against %s dictionary' % title) plt.plot(y, lw=lw, linestyle='--', label='Original signal') # Do a wavelet approximation for title, algo, alpha, n_nonzero, color in estimators: coder = SparseCoder(dictionary=D, transform_n_nonzero_coefs=n_nonzero, transform_alpha=alpha, transform_algorithm=algo) x = coder.transform(y.reshape(1, -1)) density = len(np.flatnonzero(x)) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) plt.plot(x, color=color, lw=lw, label='%s: %s nonzero coefs,\n%.2f error' % (title, density, squared_error)) # Soft thresholding debiasing coder = SparseCoder(dictionary=D, transform_algorithm='threshold', transform_alpha=20) x = coder.transform(y.reshape(1, -1)) _, idx = np.where(x != 0) x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) plt.plot(x, color='darkorange', lw=lw, label='Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error' % (len(idx), squared_error)) plt.axis('tight') plt.legend(shadow=False, loc='best') plt.subplots_adjust(.04, .07, .97, .90, .09, .2) plt.show()
mit
ChrisBeaumont/brut
bubbly/hyperopt.py
2
2563
""" A simple interface for random exploration of hyperparameter space """ import random import numpy as np from scipy import stats from sklearn.metrics import auc from sklearn import metrics as met class Choice(object): """Randomly select from a list""" def __init__(self, *choices): self._choices = choices def rvs(self): return random.choice(self._choices) class Space(object): """ Spaces gather and randomly sample collections of hyperparameters Any class with an rvs method is a valid hyperparameter (e.g., anything in scipy.stats is a hyperparameter) """ def __init__(self, **hyperparams): self._hyperparams = hyperparams def __iter__(self): while True: yield {k: v.rvs() for k, v in self._hyperparams.items()} def auc_below_fpos(y, yp, fpos): """ Variant on the area under the ROC curve score Only integrate the portion of the curve to the left of a threshold in fpos """ fp, tp, th = met.roc_curve(y, yp) good = (fp <= fpos) return auc(fp[good], tp[good]) def fmin(objective, space, threshold=np.inf): """ Generator that randomly samples a space, and yields whenever a new minimum is encountered Parameters ---------- objective : A function which takes hyperparameters as input, and computes an objective function and classifier out output space : the Space to sample threshold : A threshold in the objective function values. If provided, will not yield anything until the objective function falls below threshold Yields ------ Tuples of (objective function, parameter dict, classifier) """ best = threshold try: for p in space: f, clf = objective(**p) if f < best: best = f yield best, p, clf except KeyboardInterrupt: pass #default space for Gradient Boosted Decision trees gb_space = Space(learning_rate = stats.uniform(1e-3, 1 - 1.01e-3), n_estimators = Choice(50, 100, 200), max_depth = Choice(1, 2, 3), subsample = stats.uniform(1e-3, 1 - 1.01e-3)) #default space for WiseRF random forests rf_space = Space(n_estimators = Choice(200, 400, 800, 1600), min_samples_split = Choice(1, 2, 4), criterion = Choice('gini', 'gainratio', 'infogain'), max_features = Choice('auto'), n_jobs = Choice(2))
mit
Scaravex/clue-hackathon
clustering/time_profile_cluster.py
2
1438
# -*- coding: utf-8 -*- """ Created on Sun Mar 19 11:21:47 2017 @author: mskara """ import pandas as pd import matplotlib.pyplot as plt from src.pre_process import load_binary def create_profile_for_symptoms(df, date_range=15): profiles = {} for symptom in symptoms: temp = df[df['symptom'] == symptom] sympt_profile = temp.groupby(by=temp['day_in_cycle']).mean()[0:date_range] plt.plot(sympt_profile) profiles[symptom] = sympt_profile return profiles def check_probability_access(data): '''find probability_access''' df_active = data['active_days'] df_cycles = data['cycles'] access_prob = [] for i in range(1, 30): access_prob.append((df_active['day_in_cycle'] == i).sum() /(df_cycles['cycle_length'][df_cycles['cycle_length']>=i]).count()) # access_prob.plot(X) return access_prob df = pd.read_csv('result.txt') # now is done until 15 day, afterwords our predictions are wrong daily_profiles = create_profile_for_symptoms(df,date_range = 15) data = load_binary() access_profile = check_probability_access(data) plt.plot (access_profile[0:29]) # probability of access for symptom in symptoms: real_prob = daily_profiles[symptom].copy() for i in range(15): real_prob.loc[i]=real_prob.loc[i]/access_profile[i] plt.plot(real_prob)
apache-2.0
zuku1985/scikit-learn
sklearn/utils/tests/test_multiclass.py
58
14316
from __future__ import division import numpy as np import scipy.sparse as sp from itertools import product from sklearn.externals.six.moves import xrange from sklearn.externals.six import iteritems from scipy.sparse import issparse from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.multiclass import unique_labels from sklearn.utils.multiclass import is_multilabel from sklearn.utils.multiclass import type_of_target from sklearn.utils.multiclass import class_distribution from sklearn.utils.multiclass import check_classification_targets from sklearn.utils.metaestimators import _safe_split from sklearn.model_selection import ShuffleSplit from sklearn.svm import SVC from sklearn import datasets class NotAnArray(object): """An object that is convertable to an array. This is useful to simulate a Pandas timeseries.""" def __init__(self, data): self.data = data def __array__(self, dtype=None): return self.data EXAMPLES = { 'multilabel-indicator': [ # valid when the data is formatted as sparse or dense, identified # by CSR format when the testing takes place csr_matrix(np.random.RandomState(42).randint(2, size=(10, 10))), csr_matrix(np.array([[0, 1], [1, 0]])), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.bool)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.int8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.uint8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float32)), csr_matrix(np.array([[0, 0], [0, 0]])), csr_matrix(np.array([[0, 1]])), # Only valid when data is dense np.array([[-1, 1], [1, -1]]), np.array([[-3, 3], [3, -3]]), NotAnArray(np.array([[-3, 3], [3, -3]])), ], 'multiclass': [ [1, 0, 2, 2, 1, 4, 2, 4, 4, 4], np.array([1, 0, 2]), np.array([1, 0, 2], dtype=np.int8), np.array([1, 0, 2], dtype=np.uint8), np.array([1, 0, 2], dtype=np.float), np.array([1, 0, 2], dtype=np.float32), np.array([[1], [0], [2]]), NotAnArray(np.array([1, 0, 2])), [0, 1, 2], ['a', 'b', 'c'], np.array([u'a', u'b', u'c']), np.array([u'a', u'b', u'c'], dtype=object), np.array(['a', 'b', 'c'], dtype=object), ], 'multiclass-multioutput': [ np.array([[1, 0, 2, 2], [1, 4, 2, 4]]), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32), np.array([['a', 'b'], ['c', 'd']]), np.array([[u'a', u'b'], [u'c', u'd']]), np.array([[u'a', u'b'], [u'c', u'd']], dtype=object), np.array([[1, 0, 2]]), NotAnArray(np.array([[1, 0, 2]])), ], 'binary': [ [0, 1], [1, 1], [], [0], np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.bool), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32), np.array([[0], [1]]), NotAnArray(np.array([[0], [1]])), [1, -1], [3, 5], ['a'], ['a', 'b'], ['abc', 'def'], np.array(['abc', 'def']), [u'a', u'b'], np.array(['abc', 'def'], dtype=object), ], 'continuous': [ [1e-5], [0, .5], np.array([[0], [.5]]), np.array([[0], [.5]], dtype=np.float32), ], 'continuous-multioutput': [ np.array([[0, .5], [.5, 0]]), np.array([[0, .5], [.5, 0]], dtype=np.float32), np.array([[0, .5]]), ], 'unknown': [ [[]], [()], # sequence of sequences that weren't supported even before deprecation np.array([np.array([]), np.array([1, 2, 3])], dtype=object), [np.array([]), np.array([1, 2, 3])], [set([1, 2, 3]), set([1, 2])], [frozenset([1, 2, 3]), frozenset([1, 2])], # and also confusable as sequences of sequences [{0: 'a', 1: 'b'}, {0: 'a'}], # empty second dimension np.array([[], []]), # 3d np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), ] } NON_ARRAY_LIKE_EXAMPLES = [ set([1, 2, 3]), {0: 'a', 1: 'b'}, {0: [5], 1: [5]}, 'abc', frozenset([1, 2, 3]), None, ] MULTILABEL_SEQUENCES = [ [[1], [2], [0, 1]], [(), (2), (0, 1)], np.array([[], [1, 2]], dtype='object'), NotAnArray(np.array([[], [1, 2]], dtype='object')) ] def test_unique_labels(): # Empty iterable assert_raises(ValueError, unique_labels) # Multiclass problem assert_array_equal(unique_labels(xrange(10)), np.arange(10)) assert_array_equal(unique_labels(np.arange(10)), np.arange(10)) assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4])) # Multilabel indicator assert_array_equal(unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3)) assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3)) # Several arrays passed assert_array_equal(unique_labels([4, 0, 2], xrange(5)), np.arange(5)) assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3)) # Border line case with binary indicator matrix assert_raises(ValueError, unique_labels, [4, 0, 2], np.ones((5, 5))) assert_raises(ValueError, unique_labels, np.ones((5, 4)), np.ones((5, 5))) assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5)) def test_unique_labels_non_specific(): # Test unique_labels with a variety of collected examples # Smoke test for all supported format for format in ["binary", "multiclass", "multilabel-indicator"]: for y in EXAMPLES[format]: unique_labels(y) # We don't support those format at the moment for example in NON_ARRAY_LIKE_EXAMPLES: assert_raises(ValueError, unique_labels, example) for y_type in ["unknown", "continuous", 'continuous-multioutput', 'multiclass-multioutput']: for example in EXAMPLES[y_type]: assert_raises(ValueError, unique_labels, example) def test_unique_labels_mixed_types(): # Mix with binary or multiclass and multilabel mix_clf_format = product(EXAMPLES["multilabel-indicator"], EXAMPLES["multiclass"] + EXAMPLES["binary"]) for y_multilabel, y_multiclass in mix_clf_format: assert_raises(ValueError, unique_labels, y_multiclass, y_multilabel) assert_raises(ValueError, unique_labels, y_multilabel, y_multiclass) assert_raises(ValueError, unique_labels, [[1, 2]], [["a", "d"]]) assert_raises(ValueError, unique_labels, ["1", 2]) assert_raises(ValueError, unique_labels, [["1", 2], [1, 3]]) assert_raises(ValueError, unique_labels, [["1", "2"], [2, 3]]) def test_is_multilabel(): for group, group_examples in iteritems(EXAMPLES): if group in ['multilabel-indicator']: dense_assert_, dense_exp = assert_true, 'True' else: dense_assert_, dense_exp = assert_false, 'False' for example in group_examples: # Only mark explicitly defined sparse examples as valid sparse # multilabel-indicators if group == 'multilabel-indicator' and issparse(example): sparse_assert_, sparse_exp = assert_true, 'True' else: sparse_assert_, sparse_exp = assert_false, 'False' if (issparse(example) or (hasattr(example, '__array__') and np.asarray(example).ndim == 2 and np.asarray(example).dtype.kind in 'biuf' and np.asarray(example).shape[1] > 0)): examples_sparse = [sparse_matrix(example) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for exmpl_sparse in examples_sparse: sparse_assert_(is_multilabel(exmpl_sparse), msg=('is_multilabel(%r)' ' should be %s') % (exmpl_sparse, sparse_exp)) # Densify sparse examples before testing if issparse(example): example = example.toarray() dense_assert_(is_multilabel(example), msg='is_multilabel(%r) should be %s' % (example, dense_exp)) def test_check_classification_targets(): for y_type in EXAMPLES.keys(): if y_type in ["unknown", "continuous", 'continuous-multioutput']: for example in EXAMPLES[y_type]: msg = 'Unknown label type: ' assert_raises_regex(ValueError, msg, check_classification_targets, example) else: for example in EXAMPLES[y_type]: check_classification_targets(example) # @ignore_warnings def test_type_of_target(): for group, group_examples in iteritems(EXAMPLES): for example in group_examples: assert_equal(type_of_target(example), group, msg=('type_of_target(%r) should be %r, got %r' % (example, group, type_of_target(example)))) for example in NON_ARRAY_LIKE_EXAMPLES: msg_regex = 'Expected array-like \(array or non-string sequence\).*' assert_raises_regex(ValueError, msg_regex, type_of_target, example) for example in MULTILABEL_SEQUENCES: msg = ('You appear to be using a legacy multi-label data ' 'representation. Sequence of sequences are no longer supported;' ' use a binary array or sparse matrix instead.') assert_raises_regex(ValueError, msg, type_of_target, example) def test_class_distribution(): y = np.array([[1, 0, 0, 1], [2, 2, 0, 1], [1, 3, 0, 1], [4, 2, 0, 1], [2, 0, 0, 1], [1, 3, 0, 1]]) # Define the sparse matrix with a mix of implicit and explicit zeros data = np.array([1, 2, 1, 4, 2, 1, 0, 2, 3, 2, 3, 1, 1, 1, 1, 1, 1]) indices = np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5]) indptr = np.array([0, 6, 11, 11, 17]) y_sp = sp.csc_matrix((data, indices, indptr), shape=(6, 4)) classes, n_classes, class_prior = class_distribution(y) classes_sp, n_classes_sp, class_prior_sp = class_distribution(y_sp) classes_expected = [[1, 2, 4], [0, 2, 3], [0], [1]] n_classes_expected = [3, 3, 1, 1] class_prior_expected = [[3/6, 2/6, 1/6], [1/3, 1/3, 1/3], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) # Test again with explicit sample weights (classes, n_classes, class_prior) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) (classes_sp, n_classes_sp, class_prior_sp) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) class_prior_expected = [[4/9, 3/9, 2/9], [2/9, 4/9, 3/9], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") iris = datasets.load_iris() X, y = iris.data, iris.target K = np.dot(X, X.T) cv = ShuffleSplit(test_size=0.25, random_state=0) train, test = list(cv.split(X))[0] X_train, y_train = _safe_split(clf, X, y, train) K_train, y_train2 = _safe_split(clfp, K, y, train) assert_array_almost_equal(K_train, np.dot(X_train, X_train.T)) assert_array_almost_equal(y_train, y_train2) X_test, y_test = _safe_split(clf, X, y, test, train) K_test, y_test2 = _safe_split(clfp, K, y, test, train) assert_array_almost_equal(K_test, np.dot(X_test, X_train.T)) assert_array_almost_equal(y_test, y_test2)
bsd-3-clause
Weihonghao/ECM
Vpy34/lib/python3.5/site-packages/pandas/compat/numpy/__init__.py
3
2213
""" support numpy compatiblitiy across versions """ import re import numpy as np from distutils.version import LooseVersion from pandas.compat import string_types, string_and_binary_types # numpy versioning _np_version = np.__version__ _nlv = LooseVersion(_np_version) _np_version_under1p8 = _nlv < '1.8' _np_version_under1p9 = _nlv < '1.9' _np_version_under1p10 = _nlv < '1.10' _np_version_under1p11 = _nlv < '1.11' _np_version_under1p12 = _nlv < '1.12' _np_version_under1p13 = _nlv < '1.13' if _nlv < '1.7.0': raise ImportError('this version of pandas is incompatible with ' 'numpy < 1.7.0\n' 'your numpy version is {0}.\n' 'Please upgrade numpy to >= 1.7.0 to use ' 'this pandas version'.format(_np_version)) _tz_regex = re.compile('[+-]0000$') def tz_replacer(s): if isinstance(s, string_types): if s.endswith('Z'): s = s[:-1] elif _tz_regex.search(s): s = s[:-5] return s def np_datetime64_compat(s, *args, **kwargs): """ provide compat for construction of strings to numpy datetime64's with tz-changes in 1.11 that make '2015-01-01 09:00:00Z' show a deprecation warning, when need to pass '2015-01-01 09:00:00' """ if not _np_version_under1p11: s = tz_replacer(s) return np.datetime64(s, *args, **kwargs) def np_array_datetime64_compat(arr, *args, **kwargs): """ provide compat for construction of an array of strings to a np.array(..., dtype=np.datetime64(..)) tz-changes in 1.11 that make '2015-01-01 09:00:00Z' show a deprecation warning, when need to pass '2015-01-01 09:00:00' """ if not _np_version_under1p11: # is_list_like if hasattr(arr, '__iter__') and not \ isinstance(arr, string_and_binary_types): arr = [tz_replacer(s) for s in arr] else: arr = tz_replacer(arr) return np.array(arr, *args, **kwargs) __all__ = ['np', '_np_version_under1p8', '_np_version_under1p9', '_np_version_under1p10', '_np_version_under1p11', '_np_version_under1p12', ]
agpl-3.0
dpinney/omf
omf/solvers/VB.py
1
29740
import pandas as pd import pulp import numpy as np from numpy import * class VirtualBattery(object): """ Base class for abstraction. """ def __init__(self, ambient_temp, capacitance, resistance, rated_power, COP, deadband, setpoint, tcl_number): # C :thermal capacitance # R : thermal resistance # P: rated power (kW) of each TCL # eta: COP # delta: temperature deadband # theta_s: temperature setpoint # N: number of TCL # ambient: ambient temperature self.ambient = ambient_temp self.C = capacitance self.R = resistance self.P = rated_power self.eta = COP self.delta = deadband self.theta_s = setpoint self.N = tcl_number def generate(self, participation_number, P0_number): """ Main calculation happens here. """ #heuristic function of participation atan = np.arctan participation = participation_number P0 = P0_number P0[P0 < 0] = 0.0 # set negative power consumption to 0 p_lower = self.N*participation*P0 # aggregated baseline power consumption considering participation p_upper = self.N*participation*(self.P - P0) p_upper[p_upper < 0] = 0.0 # set negative power upper bound to 0 e_ul = self.N*participation*self.C*self.delta/2/self.eta return p_lower, p_upper, e_ul class AC(VirtualBattery): """ Derived Class for specifically AC Virtual Battery. """ def __init__(self, theta_a, capacitance, resistance, rated_power, COP, deadband, setpoint, tcl_number): super(AC, self).__init__(theta_a, capacitance, resistance, rated_power, COP, deadband, setpoint, tcl_number) # self.tcl_idx = tcl_idx self.theta_a = self.ambient # theta_a == ambient temperature def generate(self): #heuristic function of participation atan = np.arctan # participation for AC Ta = np.linspace(20, 45, num=51) participation = (atan(self.theta_a-27) - atan(Ta[0]-27))/((atan(Ta[-1]-27) - atan(Ta[0]-27))) participation = np.clip(participation, 0, 1) #P0 for AC P0 = (self.theta_a - self.theta_s)/self.R/self.eta # average baseline power consumption for the given temperature setpoint return super(AC, self).generate(participation, P0) class HP(VirtualBattery): """ Derived Class for specifically HP Virtual Battery. """ def __init__(self, theta_a, capacitance, resistance, rated_power, COP, deadband, setpoint, tcl_number): super(HP, self).__init__(theta_a, capacitance, resistance, rated_power, COP, deadband, setpoint, tcl_number) # self.tcl_idx = tcl_idx self.theta_a = self.ambient # theta_a == ambient temperature def generate(self): #heuristic function of participation atan = np.arctan # participation for HP Ta = np.linspace(0, 25, num=51) participation = 1-(atan(self.theta_a-10) - atan(Ta[0]-10))/((atan(Ta[-1]-10) - atan(Ta[0]-10))) participation = np.clip(participation, 0, 1) #P0 for HP P0 = (self.theta_s - self.theta_a)/self.R/self.eta return super(HP, self).generate(participation, P0) class RG(VirtualBattery): """ Derived Class for specifically RG Virtual Battery. """ def __init__(self, theta_a, capacitance, resistance, rated_power, COP, deadband, setpoint, tcl_number): super(RG, self).__init__(theta_a, capacitance, resistance, rated_power, COP, deadband, setpoint, tcl_number) # self.tcl_idx = tcl_idx self.theta_a = self.ambient # theta_a == ambient temperature def generate(self): #heuristic function of participation atan = np.arctan # participation for RG participation = np.ones(self.theta_a.shape) participation = np.clip(participation, 0, 1) #P0 for RG P0 = (self.theta_a - self.theta_s)/self.R/self.eta # average baseline power consumption for the given temperature setpoint return super(RG, self).generate(participation, P0) class WH(VirtualBattery): """ Derived class for specifically Water Heater Virtual Battery. """ N_wh = 50 def __init__(self, theta_a, capacitance, resistance, rated_power, COP, deadband, setpoint, tcl_number,Tout, water): super(WH, self).__init__(theta_a, capacitance, resistance, rated_power, COP, deadband, setpoint, tcl_number) self.C_wh = self.C*np.ones((self.N_wh, 1)) # thermal capacitance, set in parent class self.R_wh = self.R*np.ones((self.N_wh, 1)) # thermal resistance self.P_wh = self.P*np.ones((self.N_wh, 1)) # rated power (kW) of each TCL self.delta_wh = self.delta*np.ones((self.N_wh, 1)) # temperature deadband self.theta_s_wh = self.theta_s*np.ones((self.N_wh, 1)) # temperature setpoint self.Tout=Tout self.water = water # self.N = self.para[6] # number of TCL def calculate_twat(self,tout_avg,tout_madif): tout_avg=tout_avg/5*9+32 tout_madif=tout_madif/5*9 ratio = 0.4 + 0.01 * (tout_avg - 44) lag = 35 - 1.0 * (tout_avg - 44) twat = 1*np.ones((365*24*60,1)) for i in range(365): for j in range(60*24): twat[i*24*60+j]= (tout_avg+6)+ratio*(tout_madif/ 2) * sin((0.986 * (i - 15 - lag) - 90)/180*3.14) twat=(twat-32.)/9.*5. return twat def prepare_pare_for_calculate_twat(self,tou_raw): tout_avg = sum(tou_raw)/len(tou_raw) mon=[31,28,31,30,31,30,31,31,30,31,30,31] mon_ave=1*np.ones((12,1)) mon_ave[1]=sum(tou_raw[0:mon[1]*24])/mon[1]/24 stop=mon[1]*24 for idx in range(1,len(mon)): mon_ave[idx]=sum(tou_raw[stop:stop+mon[idx]*24])/mon[idx]/24; tou_madif=max(mon_ave)- min(mon_ave) return tout_avg, tou_madif def generate(self): # theta_a is the ambient temperature # theta_a = (72-32)*5.0/9*np.ones((365, 24*60)) # This is a hard-coded 72degF, converted to degCel theta_a = self.ambient#*np.ones((365, 24*60)) # theta_a == ambient temperature #nRow, nCol = theta_a.shape nRow, nCol = 365, 24*60 theta_a = np.reshape(theta_a, [nRow*nCol, 1]) Tout1min= np.zeros((size(theta_a))); for i in range(len(self.Tout)): theta_a[i]= (self.Tout[i]+self.ambient[i])/2; # CHANGED THIS # h is the model time discretization step in seconds h = 60 #T is the number of time step considered, i.e., T = 365*24*60 means a year # with 1 minute time discretization T = len(theta_a) tou_avg,maxdiff=self.prepare_pare_for_calculate_twat(self.Tout) twat=self.calculate_twat(tou_avg,maxdiff); # print twat # theta_lower is the temperature lower bound theta_lower_wh = self.theta_s_wh - self.delta_wh/2.0 # theta_upper is the temperature upper bound theta_upper_wh = self.theta_s_wh + self.delta_wh/2.0 # m_water is the water draw in unit of gallon per minute m_water = self.water#np.genfromtxt("Flow_raw_1minute_BPA.csv", delimiter=',')[1:, 1:] where_are_NaNs = isnan(m_water) m_water[where_are_NaNs] = 0 m_water = m_water *0.00378541178*1000/h m_water_row, m_water_col = m_water.shape water_draw = np.zeros((m_water_row, int(self.N_wh))) for i in range(int(self.N_wh)): k = np.random.randint(m_water_col) water_draw[:, i] = np.roll(m_water[:, k], (1, np.random.randint(-14, 1))) + m_water[:, k] * 0.1 * (np.random.random() - 0.5) # k = m_water_col - 1 # print(k) # raise(ArgumentError, "Stop here") # water_draw[:, i] = m_water[:, k] first = -( np.matmul(theta_a, np.ones((1, self.N_wh))) - np.matmul(np.ones((T, 1)), self.theta_s_wh.transpose()) ) # print(np.argwhere(np.isnan(first))) second = np.matmul(np.ones((T, 1)), self.R_wh.transpose()) # print(np.argwhere(np.isnan(second))) Po = ( first / second - 4.2 * np.multiply(water_draw, (55-32) * 5/9.0 - np.matmul(np.ones((T, 1)), self.theta_s_wh.transpose())) ) # print(water_draw.shape) # print(len(water_draw[:1])) # Po_total is the analytically predicted aggregate baseline power Po_total = np.sum(Po, axis=1) upper_limit = np.sum(self.P_wh, axis=0) # print(np.argwhere(np.isnan(water_draw))) Po_total[Po_total > upper_limit[0]] = upper_limit # theta is the temperature of TCLs theta = np.zeros((self.N_wh, T)) theta[:, 0] = self.theta_s_wh.reshape(-1) # m is the indicator of on-off state: 1 is on, 0 is off m = np.ones((self.N_wh, T)) m[:int(self.N_wh*0.8), 0] = 0 for t in range(T - 1): theta[:, t+1] = ( (1 - h/(self.C_wh * 3600) / self.R_wh).reshape(-1) * theta[:, t] + (h / (self.C_wh * 3600) / self.R_wh).reshape(-1) * theta_a[t] + ((h/(self.C_wh * 3600))*self.P_wh).reshape(-1)*m[:, t] ) m[theta[:, t+1] > (theta_upper_wh).reshape(-1), t+1] = 0 m[theta[:, t+1] < (theta_lower_wh).reshape(-1), t+1] = 1 m[(theta[:, t+1] >= (theta_lower_wh).reshape(-1)) & (theta[:, t+1] <= (theta_upper_wh).reshape(-1)), t+1] = m[(theta[:, t+1] >= (theta_lower_wh).reshape(-1)) & (theta[:, t+1] <= (theta_upper_wh).reshape(-1)), t] theta[:, 0] = theta[:, -1] m[:, 0] = m[:, -1] # Po_total_sim is the predicted aggregate baseline power using simulations Po_total_sim = np.zeros((T, 1)) Po_total_sim[0] = np.sum(m[:, 0]*(self.P_wh.reshape(-1))) for t in range(T - 1): # print t theta[:, t+1] = (1 - h/(self.C_wh * 3600)/self.R_wh).reshape(-1) * theta[:, t] + (h/(self.C_wh * 3600)/self.R_wh).reshape(-1)*theta_a[t] + (h/(self.C_wh*3600)).reshape(-1)*m[:, t]*self.P_wh.reshape(-1) + h*4.2*water_draw[t, :].transpose() * (twat[t] -theta[:, t]) / ((self.C_wh*3600).reshape(-1)) m[theta[:, t+1] > (theta_upper_wh).reshape(-1), t+1] = 0 m[theta[:, t+1] < (theta_lower_wh).reshape(-1), t+1] = 1 m[(theta[:, t+1] >= (theta_lower_wh).reshape(-1)) & (theta[:, t+1] <= (theta_upper_wh).reshape(-1)), t+1] = m[(theta[:, t+1] >= (theta_lower_wh).reshape(-1)) & (theta[:, t+1] <= (theta_upper_wh).reshape(-1)), t] Po_total_sim[t+1] = np.sum(m[:, t+1] * self.P_wh.reshape(-1)) index_available = np.ones((self.N_wh, T)) for t in range(T - 1): index_available[(theta[:, t] < (theta_lower_wh-0.5).reshape(-1)) | (theta[:, t] > (theta_upper_wh+0.5).reshape(-1)), t] = 0 # Virtual battery parameters p_upper_wh1 = np.sum(self.P_wh) - Po_total_sim p_lower_wh1 = Po_total_sim e_ul_wh1 = np.sum((np.matmul(self.C_wh, np.ones((1, T))) * np.matmul(self.delta_wh, np.ones((1, T))) / 2 * index_available).transpose(), axis=1) # calculate hourly average data from minute output for power p_upper_wh1 = np.reshape(p_upper_wh1, [8760,60]) p_upper_wh = np.mean(p_upper_wh1, axis=1)*float(self.N)/float(self.N_wh) p_lower_wh1 = np.reshape(p_lower_wh1, [8760,60]) p_lower_wh = np.mean(p_lower_wh1, axis=1)*float(self.N)/float(self.N_wh) # extract hourly data from minute output for energy e_ul_wh = e_ul_wh1[59:len(e_ul_wh1):60]*float(self.N)/float(self.N_wh) return p_lower_wh, p_upper_wh, e_ul_wh # ------------------------STACKED CODE FROM PNNL----------------------------- # def run_fhec(ind, gt_demand, Input): use_hour = int(ind["userHourLimit"]) # number of VB use hours specified by the user epsilon = 1 #float(ind["energyReserve"]) # energy reserve parameter, range: 0 - 1 fhec_kwh_rate = float(ind["electricityCost"]) # $/kW fhec_peak_mult = float(ind["peakMultiplier"]) s = sorted(gt_demand) # peak hours calculation perc = float(ind["peakPercentile"]) fhec_gt98 = s[int(perc*len(s))] fhec_peak_hours = [] for idx, val in enumerate(gt_demand): if val > fhec_gt98: fhec_peak_hours.extend([idx+1]) fhec_off_peak_hours = [] for i in range(len(gt_demand)): if i not in fhec_peak_hours: fhec_off_peak_hours.extend([i+1]) # read the input data, including load profile, VB profile, and regulation price # Input = pd.read_csv(input_csv, index_col=['Hour']) # VB model parameters C = float(ind["capacitance"]) # thermal capacitance R = float(ind["resistance"]) # thermal resistance deltaT = 1 alpha = math.exp(-deltaT/(C*R)) # hourly self discharge rate E_0 = 0 # VB initial energy state arbitrage_option = ind["use_arbitrage"] == "on" regulation_option = ind["use_regulation"] == "on" deferral_option = ind["use_deferral"] == "on" # calculate the predicted profits for all 8760 hours use_prft = [] for hour in Input.index: temp = 0 if arbitrage_option or deferral_option: if hour in fhec_peak_hours: temp += fhec_peak_mult*fhec_kwh_rate*(Input.loc[hour, "VB Energy upper (kWh)"]-Input.loc[hour, "VB Energy lower (kWh)"]) if hour in fhec_off_peak_hours: temp += fhec_kwh_rate*(Input.loc[hour, "VB Energy upper (kWh)"]-Input.loc[hour, "VB Energy lower (kWh)"]) if regulation_option: temp += (Input.loc[hour, "Reg-up Price ($/MW)"]+Input.loc[hour, "Reg-dn Price ($/MW)"])/1000*(Input.loc[hour, "VB Energy upper (kWh)"]-Input.loc[hour, "VB Energy lower (kWh)"]) use_prft.append({'Hour': hour, 'Profit': temp}) # sort the predicted profits from the highest to the lowest use_prft = sorted(use_prft, reverse = True, key = lambda i : i['Profit']) # get the indices of the first use_hour hours, and the optimization will be scheduled only for those hours use_list = [] for index in range(use_hour): use_list.append(use_prft[index]['Hour']) ############################################################################### # start demand charge reduction LP problem model = pulp.LpProblem("Demand charge minimization problem FHEC-Knievel", pulp.LpMinimize) # decision variable of VB charging power; dim: 8760 by 1 VBpower = pulp.LpVariable.dicts("ChargingPower", ((hour) for hour in Input.index)) # set bound for hour in Input.index: if hour in use_list: VBpower[hour].lowBound = Input.loc[hour, "VB Power lower (kW)"] VBpower[hour].upBound = Input.loc[hour, "VB Power upper (kW)"] if hour not in use_list: VBpower[hour].lowBound = 0 VBpower[hour].upBound = 0 # decision variable of VB energy state; dim: 8760 by 1 VBenergy = pulp.LpVariable.dicts("EnergyState", ((hour) for hour in Input.index)) # set bound for hour in Input.index: VBenergy[hour].lowBound = Input.loc[hour, "VB Energy lower (kWh)"] VBenergy[hour].upBound = Input.loc[hour, "VB Energy upper (kWh)"] # decision variable of annual peak demand PeakDemand = pulp.LpVariable("annual peak demand", lowBound=0) # decision variable: hourly regulation up capacity; dim: 8760 by 1 reg_up = pulp.LpVariable.dicts("hour reg up", ((hour) for hour in Input.index), lowBound=0) # decision variable: hourly regulation dn capacity; dim: 8760 by 1 reg_dn = pulp.LpVariable.dicts("hour reg dn", ((hour) for hour in Input.index), lowBound=0) for hour in Input.index: if hour not in use_list: reg_up[hour].upBound = 0 reg_dn[hour].upBound = 0 # objective functions if (arbitrage_option == False and regulation_option == False and deferral_option == False): model += 0, "an arbitrary objective function" if (arbitrage_option == True and regulation_option == False and deferral_option == False): model += pulp.lpSum([fhec_peak_mult*fhec_kwh_rate*(Input.loc[hour, "Load (kW)"]+VBpower[hour]) for hour in fhec_peak_hours] + [fhec_kwh_rate*(Input.loc[hour, "Load (kW)"]+VBpower[hour]) for hour in fhec_off_peak_hours]) if (arbitrage_option == False and regulation_option == True and deferral_option == False): model += pulp.lpSum([-Input.loc[hour, "Reg-up Price ($/MW)"]/1000*reg_up[hour] for hour in Input.index] + [-Input.loc[hour, "Reg-dn Price ($/MW)"]/1000*reg_dn[hour] for hour in Input.index]) if (arbitrage_option == False and regulation_option == False and deferral_option == True): model += pulp.lpSum(1E03*PeakDemand) if (arbitrage_option == True and regulation_option == True and deferral_option == False): model += pulp.lpSum([fhec_peak_mult*fhec_kwh_rate*(Input.loc[hour, "Load (kW)"]+VBpower[hour]) for hour in fhec_peak_hours] + [fhec_kwh_rate*(Input.loc[hour, "Load (kW)"]+VBpower[hour]) for hour in fhec_off_peak_hours] + [-Input.loc[hour, "Reg-up Price ($/MW)"]/1000*reg_up[hour] for hour in Input.index] + [-Input.loc[hour, "Reg-dn Price ($/MW)"]/1000*reg_dn[hour] for hour in Input.index]) if (arbitrage_option == True and regulation_option == False and deferral_option == True): model += pulp.lpSum([fhec_peak_mult*fhec_kwh_rate*(Input.loc[hour, "Load (kW)"]+VBpower[hour]) for hour in fhec_peak_hours] + [fhec_kwh_rate*(Input.loc[hour, "Load (kW)"]+VBpower[hour]) for hour in fhec_off_peak_hours] + 1E03*PeakDemand) if (arbitrage_option == False and regulation_option == True and deferral_option == True): model += pulp.lpSum([-Input.loc[hour, "Reg-up Price ($/MW)"]/1000*reg_up[hour] for hour in Input.index] + [-Input.loc[hour, "Reg-dn Price ($/MW)"]/1000*reg_dn[hour] for hour in Input.index] + 1E03*PeakDemand) if (arbitrage_option == True and regulation_option == True and deferral_option == True): model += pulp.lpSum([fhec_peak_mult*fhec_kwh_rate*(Input.loc[hour, "Load (kW)"]+VBpower[hour]) for hour in fhec_peak_hours] + [fhec_kwh_rate*(Input.loc[hour, "Load (kW)"]+VBpower[hour]) for hour in fhec_off_peak_hours] + [-Input.loc[hour, "Reg-up Price ($/MW)"]/1000*reg_up[hour] for hour in Input.index] + [-Input.loc[hour, "Reg-dn Price ($/MW)"]/1000*reg_dn[hour] for hour in Input.index] + 1E03*PeakDemand) # VB energy state as a function of VB power for hour in Input.index: if hour==1: model += VBenergy[hour] == alpha*E_0 + VBpower[hour]*deltaT else: model += VBenergy[hour] == alpha*VBenergy[hour-1] + VBpower[hour]*deltaT # hourly regulation constraints for hour in Input.index: if regulation_option: model += reg_up[hour] == reg_dn[hour] # regulation balance model += VBenergy[hour] - epsilon*reg_up[hour]*deltaT >= VBenergy[hour].lowBound model += VBenergy[hour] + epsilon*reg_dn[hour]*deltaT <= VBenergy[hour].upBound else: model += reg_up[hour] == 0 model += reg_dn[hour] == 0 # extra constraints for hour in Input.index: model += PeakDemand >= Input.loc[hour, "Load (kW)"] + VBpower[hour] model.solve() ############################################################################### use_hour_indicator = [] for hour in Input.index: if VBpower[hour].varValue != 0 or reg_up[hour].varValue != 0: use_hour_indicator.append({'Hour': hour, 'Use': 1}) else: use_hour_indicator.append({'Hour': hour, 'Use': 0}) output = [] for hour in Input.index: var_output = { 'Hour': hour, 'VB energy (kWh)': int(100*VBenergy[hour].varValue)/100, 'VB power (kW)': int(100*VBpower[hour].varValue)/100, 'Load (kW)': int(100*Input.loc[hour, "Load (kW)"])/100, 'Net load (kW)': int(100*(VBpower[hour].varValue+Input.loc[hour, "Load (kW)"]))/100, 'Hour used': use_hour_indicator[hour-1]['Use'] } if regulation_option: var_regulation = {'Regulation (kW)': int(100*reg_up[hour].varValue)/100} var_output.update(var_regulation) output.append(var_output) output_df = pd.DataFrame.from_records(output) # output_df.to_csv('fhec_output.csv', index=False) return output_df def run_okec(ind, Input): # Input.to_csv('okec_input.csv', index=False) use_hour = int(ind["userHourLimit"]) # number of VB use hours specified by the user epsilon = 1 #float(ind["energyReserve"]) # energy reserve parameter, range: 0 - 1 okec_peak_charge = float(ind["annual_peak_charge"]) # annual peak demand charge $100/kW okec_avg_demand_charge = float(ind["avg_demand_charge"]) # $120/kW okec_fuel_charge = float(ind["fuel_charge"]) # total energy $/kWh # VB model parameters C = float(ind["capacitance"]) # thermal capacitance R = float(ind["resistance"]) # thermal resistance deltaT = 1 alpha = math.exp(-deltaT/(C*R)) # hourly self discharge rate E_0 = 0 # VB initial energy state arbitrage_option = ind["use_arbitrage"] == "on" regulation_option = ind["use_regulation"] == "on" deferral_option = ind["use_deferral"] == "on" # calculate the predicted profits for all 8760 hours use_prft = [] for hour in Input.index: temp = 0 if arbitrage_option or deferral_option: temp += okec_avg_demand_charge/len(Input.index)*(Input.loc[hour, "VB Energy upper (kWh)"]-Input.loc[hour, "VB Energy lower (kWh)"]) if regulation_option: temp += (Input.loc[hour, "Reg-up Price ($/MW)"]+Input.loc[hour, "Reg-dn Price ($/MW)"])/1000*(Input.loc[hour, "VB Energy upper (kWh)"]-Input.loc[hour, "VB Energy lower (kWh)"]) use_prft.append({'Hour': hour, 'Profit': temp}) # sort the predicted profits from the highest to the lowest use_prft = sorted(use_prft, reverse = True, key = lambda i : i['Profit']) # get the indices of the first use_hour hours, and the optimization will be scheduled only for those hours use_list = [] for index in range(use_hour): use_list.append(use_prft[index]['Hour']) # start demand charge reduction LP problem model = pulp.LpProblem("Demand charge minimization problem OKEC-Buffett", pulp.LpMinimize) # decision variable of VB charging power; dim: 8760 by 1 VBpower = pulp.LpVariable.dicts("ChargingPower", ((hour) for hour in Input.index)) # set bound for hour in Input.index: if hour in use_list: VBpower[hour].lowBound = Input.loc[hour, "VB Power lower (kW)"] VBpower[hour].upBound = Input.loc[hour, "VB Power upper (kW)"] if hour not in use_list: VBpower[hour].lowBound = 0 VBpower[hour].upBound = 0 # decision variable of VB energy state; dim: 8760 by 1 VBenergy = pulp.LpVariable.dicts("EnergyState", ((hour) for hour in Input.index)) # set bound for hour in Input.index: VBenergy[hour].lowBound = Input.loc[hour, "VB Energy lower (kWh)"] VBenergy[hour].upBound = Input.loc[hour, "VB Energy upper (kWh)"] # decision variable of annual peak demand PeakDemand = pulp.LpVariable("annual peak demand", lowBound=0) # decision variable: hourly regulation up capacity; dim: 8760 by 1 reg_up = pulp.LpVariable.dicts("hour reg up", ((hour) for hour in Input.index), lowBound=0) # decision variable: hourly regulation dn capacity; dim: 8760 by 1 reg_dn = pulp.LpVariable.dicts("hour reg dn", ((hour) for hour in Input.index), lowBound=0) for hour in Input.index: if hour not in use_list: reg_up[hour].upBound = 0 reg_dn[hour].upBound = 0 # objective function: sum of monthly demand charge if (arbitrage_option == False and regulation_option == False and deferral_option == False): model += 0, "an arbitrary objective function" if (arbitrage_option == True and regulation_option == False and deferral_option == False): model += pulp.lpSum(okec_peak_charge*PeakDemand + [okec_avg_demand_charge*(Input.loc[hour, "Load (kW)"]+VBpower[hour])/len(Input.index) for hour in Input.index] + [okec_fuel_charge*(Input.loc[hour, "Load (kW)"]+VBpower[hour])*deltaT for hour in Input.index]) if (arbitrage_option == False and regulation_option == True and deferral_option == False): model += pulp.lpSum([-Input.loc[hour, "Reg-up Price ($/MW)"]/1000*reg_up[hour] for hour in Input.index] + [-Input.loc[hour, "Reg-dn Price ($/MW)"]/1000*reg_dn[hour] for hour in Input.index]) if (arbitrage_option == False and regulation_option == False and deferral_option == True): model += pulp.lpSum(1E03*PeakDemand) if (arbitrage_option == True and regulation_option == True and deferral_option == False): model += pulp.lpSum(okec_peak_charge*PeakDemand + [okec_avg_demand_charge*(Input.loc[hour, "Load (kW)"]+VBpower[hour])/len(Input.index) for hour in Input.index] + [okec_fuel_charge*(Input.loc[hour, "Load (kW)"]+VBpower[hour])*deltaT for hour in Input.index] + [-Input.loc[hour, "Reg-up Price ($/MW)"]/1000*reg_up[hour] for hour in Input.index] + [-Input.loc[hour, "Reg-dn Price ($/MW)"]/1000*reg_dn[hour] for hour in Input.index]) if (arbitrage_option == True and regulation_option == False and deferral_option == True): model += pulp.lpSum(okec_peak_charge*PeakDemand + [okec_avg_demand_charge*(Input.loc[hour, "Load (kW)"]+VBpower[hour])/len(Input.index) for hour in Input.index] + [okec_fuel_charge*(Input.loc[hour, "Load (kW)"]+VBpower[hour])*deltaT for hour in Input.index] + 1E03*PeakDemand) if (arbitrage_option == False and regulation_option == True and deferral_option == True): model += pulp.lpSum([-Input.loc[hour, "Reg-up Price ($/MW)"]/1000*reg_up[hour] for hour in Input.index] + [-Input.loc[hour, "Reg-dn Price ($/MW)"]/1000*reg_dn[hour] for hour in Input.index] + 1E03*PeakDemand) if (arbitrage_option == True and regulation_option == True and deferral_option == True): model += pulp.lpSum(okec_peak_charge*PeakDemand + [okec_avg_demand_charge*(Input.loc[hour, "Load (kW)"]+VBpower[hour])/len(Input.index) for hour in Input.index] + [okec_fuel_charge*(Input.loc[hour, "Load (kW)"]+VBpower[hour])*deltaT for hour in Input.index] + [-Input.loc[hour, "Reg-up Price ($/MW)"]/1000*reg_up[hour] for hour in Input.index] + [-Input.loc[hour, "Reg-dn Price ($/MW)"]/1000*reg_dn[hour] for hour in Input.index] + 1E03*PeakDemand) # VB energy state as a function of VB power for hour in Input.index: if hour==1: model += VBenergy[hour] == alpha*E_0 + VBpower[hour]*deltaT else: model += VBenergy[hour] == alpha*VBenergy[hour-1] + VBpower[hour]*deltaT # hourly regulation constraints for hour in Input.index: if regulation_option: model += reg_up[hour] == reg_dn[hour] # regulation balance model += VBenergy[hour] - epsilon*reg_up[hour]*deltaT >= VBenergy[hour].lowBound model += VBenergy[hour] + epsilon*reg_dn[hour]*deltaT <= VBenergy[hour].upBound else: model += reg_up[hour] == 0 model += reg_dn[hour] == 0 # extra constraints for hour in Input.index: model += PeakDemand >= Input.loc[hour, "Load (kW)"] + VBpower[hour] model.solve() ############################################################################### use_hour_indicator = [] for hour in Input.index: if VBpower[hour].varValue != 0 or reg_up[hour].varValue != 0: use_hour_indicator.append({'Hour': hour, 'Use': 1}) else: use_hour_indicator.append({'Hour': hour, 'Use': 0}) output = [] for hour in Input.index: var_output = { 'Hour': hour, 'VB energy (kWh)': int(100*VBenergy[hour].varValue)/100, 'VB power (kW)': int(100*VBpower[hour].varValue)/100, 'Load (kW)': int(100*Input.loc[hour, "Load (kW)"])/100, 'Net load (kW)': int(100*(VBpower[hour].varValue+Input.loc[hour, "Load (kW)"]))/100, 'Hour used': use_hour_indicator[hour-1]['Use'] } if regulation_option: var_regulation = {'Regulation (kW)': int(100*reg_up[hour].varValue)/100} var_output.update(var_regulation) output.append(var_output) output_df = pd.DataFrame.from_records(output) return output_df
gpl-2.0
etkirsch/scikit-learn
sklearn/datasets/species_distributions.py
198
7923
""" ============================= Species distribution dataset ============================= This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References: * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes: * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset """ # Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com> # Jake Vanderplas <vanderplas@astro.washington.edu> # # License: BSD 3 clause from io import BytesIO from os import makedirs from os.path import join from os.path import exists try: # Python 2 from urllib2 import urlopen PY2 = True except ImportError: # Python 3 from urllib.request import urlopen PY2 = False import numpy as np from sklearn.datasets.base import get_data_home, Bunch from sklearn.externals import joblib DIRECTORY_URL = "http://www.cs.princeton.edu/~schapire/maxent/datasets/" SAMPLES_URL = join(DIRECTORY_URL, "samples.zip") COVERAGES_URL = join(DIRECTORY_URL, "coverages.zip") DATA_ARCHIVE_NAME = "species_coverage.pkz" def _load_coverage(F, header_length=6, dtype=np.int16): """Load a coverage file from an open file object. This will return a numpy array of the given dtype """ header = [F.readline() for i in range(header_length)] make_tuple = lambda t: (t.split()[0], float(t.split()[1])) header = dict([make_tuple(line) for line in header]) M = np.loadtxt(F, dtype=dtype) nodata = header[b'NODATA_value'] if nodata != -9999: print(nodata) M[nodata] = -9999 return M def _load_csv(F): """Load csv file. Parameters ---------- F : file object CSV file open in byte mode. Returns ------- rec : np.ndarray record array representing the data """ if PY2: # Numpy recarray wants Python 2 str but not unicode names = F.readline().strip().split(',') else: # Numpy recarray wants Python 3 str but not bytes... names = F.readline().decode('ascii').strip().split(',') rec = np.loadtxt(F, skiprows=0, delimiter=',', dtype='a22,f4,f4') rec.dtype.names = names return rec def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) def fetch_species_distributions(data_home=None, download_if_missing=True): """Loader for species distribution dataset from Phillips et. al. (2006) Read more in the :ref:`User Guide <datasets>`. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing: optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns -------- The data is returned as a Bunch object with the following attributes: coverages : array, shape = [14, 1592, 1212] These represent the 14 features measured at each point of the map grid. The latitude/longitude values for the grid are discussed below. Missing data is represented by the value -9999. train : record array, shape = (1623,) The training points for the data. Each point has three fields: - train['species'] is the species name - train['dd long'] is the longitude, in degrees - train['dd lat'] is the latitude, in degrees test : record array, shape = (619,) The test points for the data. Same format as the training data. Nx, Ny : integers The number of longitudes (x) and latitudes (y) in the grid x_left_lower_corner, y_left_lower_corner : floats The (x,y) position of the lower-left corner, in degrees grid_size : float The spacing between points of the grid, in degrees Notes ------ This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes ----- * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset with scikit-learn """ data_home = get_data_home(data_home) if not exists(data_home): makedirs(data_home) # Define parameters for the data files. These should not be changed # unless the data model changes. They will be saved in the npz file # with the downloaded data. extra_params = dict(x_left_lower_corner=-94.8, Nx=1212, y_left_lower_corner=-56.05, Ny=1592, grid_size=0.05) dtype = np.int16 if not exists(join(data_home, DATA_ARCHIVE_NAME)): print('Downloading species data from %s to %s' % (SAMPLES_URL, data_home)) X = np.load(BytesIO(urlopen(SAMPLES_URL).read())) for f in X.files: fhandle = BytesIO(X[f]) if 'train' in f: train = _load_csv(fhandle) if 'test' in f: test = _load_csv(fhandle) print('Downloading coverage data from %s to %s' % (COVERAGES_URL, data_home)) X = np.load(BytesIO(urlopen(COVERAGES_URL).read())) coverages = [] for f in X.files: fhandle = BytesIO(X[f]) print(' - converting', f) coverages.append(_load_coverage(fhandle)) coverages = np.asarray(coverages, dtype=dtype) bunch = Bunch(coverages=coverages, test=test, train=train, **extra_params) joblib.dump(bunch, join(data_home, DATA_ARCHIVE_NAME), compress=9) else: bunch = joblib.load(join(data_home, DATA_ARCHIVE_NAME)) return bunch
bsd-3-clause
ominux/scikit-learn
examples/cluster/plot_adjusted_for_chance_measures.py
1
4105
""" ========================================================== Adjustment for chance in clustering performance evaluation ========================================================== The following plots demonstrate the impact of the number of clusters and number of samples on various clustering performance evaluation metrics. Non-adjusted measures such as the V-Measure show a dependency between the number of clusters and the number of samples: the mean V-Measure of random labeling increases signicantly as the number of clusters is closer to the total number of samples used to compute the measure. Adjusted for chance measure such as ARI display some random variations centered around a mean score of 0.0 for any number of samples and clusters. Only adjusted measures can hence safely be used as a consensus index to evaluate the average stability of clustering algorithms for a given value of k on various overlapping sub-samples of the dataset. """ print __doc__ # Author: Olivier Grisel <olivier.grisel@ensta.org> # License: Simplified BSD import numpy as np import pylab as pl from sklearn import metrics def uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=None, n_runs=10, seed=42): """Compute score for 2 random uniform cluster labelings. Both random labelings have the same number of clusters for each value possible value in ``n_clusters_range``. When fixed_n_classes is not None the first labeling is considered a ground truth class assignement with fixed number of classes. """ random_labels = np.random.RandomState(seed).random_integers scores = np.zeros((len(n_clusters_range), n_runs)) if fixed_n_classes is not None: labels_a = random_labels(low=0, high=fixed_n_classes - 1, size=n_samples) for i, k in enumerate(n_clusters_range): for j in range(n_runs): if fixed_n_classes is None: labels_a = random_labels(low=0, high=k - 1, size=n_samples) labels_b = random_labels(low=0, high=k - 1, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores score_funcs = [ metrics.adjusted_rand_score, metrics.v_measure_score, ] # 2 independent random clusterings with equal cluster number n_samples = 100 n_clusters_range = np.linspace(2, n_samples, 10).astype(np.int) pl.figure(1) plots = [] names = [] for score_func in score_funcs: print "Computing %s for %d values of n_clusters and n_samples=%d" % ( score_func.__name__, len(n_clusters_range), n_samples) scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range) plots.append(pl.errorbar( n_clusters_range, scores.mean(axis=1), scores.std(axis=1))) names.append(score_func.__name__) pl.title("Clustering measures for 2 random uniform labelings\n" "with equal number of clusters") pl.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) pl.ylabel('Score value') pl.legend(plots, names) pl.ylim(ymin=-0.05, ymax=1.05) pl.show() # Random labeling with varying n_clusters against ground class labels # with fixed number of clusters n_samples = 1000 n_clusters_range = np.linspace(2, 100, 10).astype(np.int) n_classes = 10 pl.figure(2) plots = [] names = [] for score_func in score_funcs: print "Computing %s for %d values of n_clusters and n_samples=%d" % ( score_func.__name__, len(n_clusters_range), n_samples) scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=n_classes) plots.append(pl.errorbar( n_clusters_range, scores.mean(axis=1), scores.std(axis=1))) names.append(score_func.__name__) pl.title("Clustering measures for random uniform labeling\n" "against reference assignement with %d classes" % n_classes) pl.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) pl.ylabel('Score value') pl.ylim(ymin=-0.05, ymax=1.05) pl.legend(plots, names) pl.show()
bsd-3-clause
percyfal/snakemakelib-core
snakemakelib/plot/bokeh/color.py
1
1126
# Copyright (C) 2015 by Per Unneberg import math import pandas.core.common as com from bokeh.palettes import brewer as bokeh_brewer from .palettes import brewer as snakemakelib_brewer import logging logger = logging.getLogger(__name__) MINSIZE = 3 MAXSIZE = 9 # FIXME: some palettes have 9 as max, some 11 brewer = bokeh_brewer brewer.update(snakemakelib_brewer) def colorbrewer(size=MINSIZE, palette="Paired", datalen=None): """Generate a color palette following colorbrewer. Args: size (int): size of desired palette palette (str): name of palette datalen (int): length of data vector. If None, the palette size will equal size, else the colors will be reused to fill up a vector of length datalen Returns: palette (list): list of colors """ size = max(MINSIZE, min(size, MAXSIZE)) if datalen <= MAXSIZE and datalen >= MINSIZE: size = datalen colors = brewer[palette][size] if datalen > size: colors = colors * math.ceil(datalen / size) return colors[0:datalen] else: return colors
mit
eegroopm/pyLATTICE
gui/pyLATTICE.py
1
74321
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ pyLATTICE is... """ from __future__ import division #necessary for python2 from __future__ import unicode_literals # define authorship information __authors__ = ['Evan Groopman', 'Thomas Bernatowicz'] __author__ = ','.join(__authors__) __credits__ = [] __copyright__ = 'Copyright (c) 2011-2014' __license__ = 'GPL' # maintanence information __maintainer__ = 'Evan Groopman' __email__ = 'eegroopm@gmail.com' """ Created on Wed Apr 11 14:46:56 2012 @author: Evan Groopman """ #Main imports from PyQt4 import QtCore, QtGui, uic import os, sys import numpy as np import pandas as pd import re #Matplotlib imports import matplotlib as mpl mpl.use('Qt4Agg') from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar # Local files in the resource directory import gui from resources.TableWidget import TableWidget from resources.Diffraction import Diffraction #from resources.pyqtresizer import logit,slResizer,Resizer from resources.IPythonConsole import IPythonConsole from resources.common import common from resources.matplotlibwidget import matplotlibWidget from resources.Dialogs import (MineralListDialog, NewMineralDialog, ManualConditionsDialog, SettingsDialog) try: from resources.dspace import DSpace print('Importing compiled "DSpace"') except ImportError as error: # Attempt autocompilation. import pyximport pyximport.install() from resources._dspace import DSpace print('Building "DSpace"') try: from resources.diffspot import CalcSpots, CalcSpotsHCP print('Importing compiled "DiffSpot"') except ImportError as error: # Attempt autocompilation. import pyximport pyximport.install() from resources._diffspot import CalcSpots, CalcSpotsHCP print('Building "DiffSpot"') #need different compiled versions of Cython modules depending on python version #if sys.version_info[0] == 3: # #from resources.dspace import DSpace#Cython function for calculating d-spaces # #from resources.diffspot import CalcSpots, CalcSpotsHCP#Cython function for calculating diffraction spot coordinates # from resources.pyqtresizer import logit,slResizer,Resizer #elif sys.version_info[0] == 2: # #from resources.dspace_py2 import DSpace#Cython function for calculating d-spaces # #from resources.diffspot_py2 import CalcSpots, CalcSpotsHCP#Cython function for calculating diffraction spot coordinates # from resources.pyqtresizer_py2 import logit,slResizer,Resizer #from Wulff_net import WULFF #dealing with unicode characters in windows, which breaks compiled linux rendering if sys.platform == 'win32': mpl.rc('font', **{'sans-serif' : 'Arial Unicode MS','family' : 'sans-serif'}) #elif sys.platform == 'linux':# and os.path.isfile('pyLATTICE'): #on linux AND executable file exists. Does nothing if running from source # print('Adjusting font') # mpl.rc('font',**{'sans-serif' : 'Bitstream Vera Sans','family' : 'sans-serif'}) #use LaTeX to render symbols #plt.rc('text', usetex=True) mpl.rcParams['mathtext.default'] = 'regular' #mpl.rcParams['text.latex.preamble'] = [r'\usepackage{textcomp}'] #mpl.rcParams['text.latex.unicode'] = True #Other try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: _fromUtf8 = lambda s: s ################################################################################ ## Gui file ## # Set up window class pyLATTICE_GUI(QtGui.QMainWindow): def __init__(self, parent=None): super(pyLATTICE_GUI, self).__init__(parent) # load the ui gui.loadUi(__file__,self) self.version = gui.__version__ self._grabCommon() self.Diffraction = Diffraction() self.DiffWidget = matplotlibWidget(self.common,self.Diffraction) #mplwidget can access common data #self.DiffWidget.setStyleSheet("font-family: 'Arial Unicode MS', Arial, sans-serif; font-size: 15px;") self.verticalLayout.addWidget(self.DiffWidget) self.DiffWidget.distances.connect(self.on_distances_sent) #self.DiffWidget = self.MplWidget self.Plot = self.DiffWidget.canvas.ax self.Plot.axis('equal') #locks aspect ratio 1:1, even when zooming #matplotlibWidget.setupToolbar(self.DiffWidget.canvas, self.DiffTab) # Create the navigation toolbar, tied to the canvas self.mpl_toolbar = NavigationToolbar(self.DiffWidget.canvas, self.DiffTab) #add widgets to toolbar self.comboBox_rotate = QtGui.QComboBox() self.checkBox_labels = QtGui.QCheckBox("Labels") self.checkBox_labels.setChecked(True) self.mpl_toolbar.addWidget(self.comboBox_rotate) self.mpl_toolbar.addWidget(self.checkBox_labels) #add toolbar to tabs self.verticalLayout.addWidget(self.mpl_toolbar) #Plot initial zero spot self.Plot.plot(0,0, linestyle = '', marker='o', markersize = 10, color = 'black') self.Plot.set_xlim([-5,5]) self.Plot.set_ylim([-5,5]) #self.Plot.annotate('0 0 0', xy = (0,0), xytext=(0,10),textcoords = 'offset points', ha = 'center', va = 'bottom', #bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.01)) #Initialize Metric tensor Tables self.Gtable_size = (200,200) self.Gtable = TableWidget() self.G_inv_table = TableWidget() self.tensorlayout.addWidget(self.Gtable,2,0) #third row, first column self.tensorlayout.addWidget(self.G_inv_table,2,1) self.Gtable.resize(self.Gtable_size[0],self.Gtable_size[1]) self.G_inv_table.resize(self.Gtable_size[0],self.Gtable_size[1]) self.Gtable.setData(np.eye(3)) self.G_inv_table.setData(np.eye(3)) for i in range(3): self.Gtable.setColumnWidth(i,self.Gtable_size[0]/4) self.Gtable.setRowHeight(i,self.Gtable_size[1]/3.5) self.G_inv_table.setColumnWidth(i,self.Gtable_size[0]/3.35) self.G_inv_table.setRowHeight(i,self.Gtable_size[1]/3.5) self.a = 1; self.b=1; self.c=1 #Initialize parameter tables self.param_table_size = (200,200) self.Gparam_table = TableWidget() self.Gparam_inv_table = TableWidget() self.Gparam_table.resize(self.param_table_size[0],self.param_table_size[1]) self.Gparam_inv_table.resize(self.param_table_size[0],self.param_table_size[1]) initdat = np.transpose(np.array([[1,1,1,90,90,90]])) self.Gparam_table.setData(initdat) self.Gparam_inv_table.setData(initdat) self.Gparam_table.setHorizontalHeaderLabels(['Parameters']) self.Gparam_inv_table.setHorizontalHeaderLabels(['Parameters']) self.Gparam_table.setVerticalHeaderLabels([u'a',u'b',u'c',u'\u03B1',u'\u03B2',u'\u03B3']) self.Gparam_inv_table.setVerticalHeaderLabels([u'a*',u'b*',u'c*',u'\u03B1*',u'\u03B2*',u'\u03B3*']) self.tensorlayout.addWidget(self.Gparam_table,3,0) self.tensorlayout.addWidget(self.Gparam_inv_table,3,1) for i in range(0,6): self.Gparam_table.setColumnWidth(i,self.param_table_size[0]) self.Gparam_table.setRowHeight(i,self.param_table_size[0]/6.7) self.Gparam_inv_table.setColumnWidth(i,self.param_table_size[0]) self.Gparam_inv_table.setRowHeight(i,self.param_table_size[0]/6.7) #D-spacing table self.dspace_table_size = (400,630) self.dspace_table = TableWidget() self.dspace_table.resize(self.dspace_table_size[0],self.dspace_table_size[1]) self.dspace_table.setData(np.array([[0,0,0,0]])) self.dspace_table.setHorizontalHeaderLabels(['d-space','h','k','l']) self.dspacelayout.addWidget(self.dspace_table) self.dspace_table.setColumnWidth(0,80) for i in range(1,4): self.dspace_table.setColumnWidth(i,50) # Set miller indices self.miller_indices = [str(x) for x in range(-6,7)] self.comboBox_hmin.addItems(self.miller_indices) self.comboBox_kmin.addItems(self.miller_indices) self.comboBox_lmin.addItems(self.miller_indices) self.comboBox_hmin.setCurrentIndex(4) self.comboBox_kmin.setCurrentIndex(4) self.comboBox_lmin.setCurrentIndex(4) # Miller max indices set to be 1 greater than selected min index self.comboBox_hmax.addItems(self.miller_indices) self.comboBox_kmax.addItems(self.miller_indices) self.comboBox_lmax.addItems(self.miller_indices) #self.setMillerMax_h() #self.setMillerMax_k() #self.setMillerMax_l() self.comboBox_hmax.setCurrentIndex(8) self.comboBox_kmax.setCurrentIndex(8) self.comboBox_lmax.setCurrentIndex(8) #Set zone axis parameters #by default set as [0 0 1] zone_indices = [str(x) for x in range(-5,6)] self.comboBox_u.addItems(zone_indices) self.comboBox_v.addItems(zone_indices) self.comboBox_w.addItems(zone_indices) self.comboBox_u.setCurrentIndex(5) self.comboBox_v.setCurrentIndex(5) self.comboBox_w.setCurrentIndex(6) #set calculator comboboxes self.comboBox_h1.addItems(self.miller_indices) self.comboBox_h2.addItems(self.miller_indices) self.comboBox_k1.addItems(self.miller_indices) self.comboBox_k2.addItems(self.miller_indices) self.comboBox_l1.addItems(self.miller_indices) self.comboBox_l2.addItems(self.miller_indices) self.comboBox_h1.setCurrentIndex(7) self.comboBox_h2.setCurrentIndex(8) self.comboBox_k1.setCurrentIndex(6) self.comboBox_k2.setCurrentIndex(6) self.comboBox_l1.setCurrentIndex(6) self.comboBox_l2.setCurrentIndex(6) #Initialize mineral database combobox self.setMineralList() #Initialize rotation of diffraction pattern. #Will only offer 0,90,180,270 degrees rotate_items = ['-180','-150','-120','-90','-60','-30','0','30','60','90','120','150','180'] self.comboBox_rotate.addItems(rotate_items) self.comboBox_rotate.setCurrentIndex(6) #zero by default #get values in energy, cam legnth, cam const. combo boxes self.spinBox_beamenergy.setValue(int(self.common.beamenergy)) self.spinBox_camlength.setValue(int(self.common.camlength)) self.doubleSpinBox_camconst.setValue(self.common.camconst) #Initialize signals and slots #This needs to go here after setting Miller indices #When initializing, it runs Recalculate to do metric tensor and d-spacings #must go before setting crystal types, but after setting all of the combo boxes #combo boxes recalculate each time their index changes once the signals/slots set up #if signals/slots placed before, will recalc d-spacings every time you initialize a combobox value self.signals_slots() # Set crystal type combo box items: self.crystaltypes = ['Cubic','Tetragonal','Orthorhombic','Trigonal', 'Hexagonal','Monoclinic','Triclinic'] self.comboBox_crystaltype.addItems(self.crystaltypes) #Redo some labels in unicode/greek characters self.label_alpha.setText(u'\u03B1') self.label_beta.setText(u'\u03B2') self.label_gamma.setText(u'\u03B3') self.label_dist_recip.setText(u'Reciprocal Distance (\u212B\u207B\u00B9 )') self.label_dist_real.setText(u'Real Distance (\u212B)') self.label_dist_film.setText(u'Film Distance (cm)') self.label_angle.setText(u'Angle (\u00B0)') v = self.version.split('.') pv = v[0] + '.' + v[1] #only major/minor versions. not bugfixes self.label_pyLATTICE.setText(u'pyLATTICE %s' % pv) #initialize popup IPython console #can interact with specific data self._initIPython(self.common) def _grabCommon(self): """Get all common variables.""" self.common = common() self._overline_strings = self.common._overline_strings self.DSpaces = self.common.DSpaces self.ZoneAxis = self.common.ZoneAxis self.u = self.common.u self.v = self.common.v self.w = self.common.w #lattice parameters and angles self.a = self.common.a self.b = self.common.b self.c = self.common.c self.astar = self.common.astar self.bstar = self.common.bstar self.cstar = self.common.cstar self.alpha = self.common.alpha self.beta = self.common.beta self.gamma = self.common.gamma self.alphastar = self.common.alphastar self.betastar = self.common.betastar self.gammastar = self.common.gammastar #TEM params self.beamenergy = self.common.beamenergy self.camlength = self.common.camlength self.camconst = self.common.camconst self.wavelength = self.common.wavelength #SpaceGroup data self.sg = self.common.sg self.sghex = self.common.sghex self.mineraldb = self.common.mineraldb self.manualConds = self.common.manualConds #manual space group conditions def updateCommon(self): """Update all of the common variables and push these to the IPython console""" self.common.DSpaces = self.DSpaces self.common.ZoneAxis = self.ZoneAxis self.common.u = self.u self.common.v = self.v self.common.w = self.w self.common.a = self.a self.common.b = self.b self.common.c = self.c self.common.astar = self.astar self.common.bstar = self.bstar self.common.cstar = self.cstar self.common.alpha = self.alpha self.common.beta = self.beta self.common.gamma = self.gamma self.common.alphastar = self.alphastar self.common.betastar = self.betastar self.common.gammastar = self.gammastar #mineral database and manual conditions #self.mineraldb = self.common.mineraldb self.common.manualConds = self.manualConds #manual space group conditions self.common.beamenergy = self.beamenergy = self.spinBox_beamenergy.value() self.common.camlength = self.camlength = self.spinBox_camlength.value() self.common.camconst = self.camconst = self.doubleSpinBox_camconst.value() self.common.wavelength = self.wavelength = self.common.Wavelength(self.beamenergy) self.updateIPY(self.common) @QtCore.pyqtSlot(str,str,str,str) def on_distances_sent(self,recip_d, real_d, film_d, angle): self.lineEdit_recip_2.setText(recip_d) self.lineEdit_real_2.setText(real_d) self.lineEdit_film_2.setText(film_d) self.lineEdit_angle_3.setText(angle) def Recalculate(self): """Run MetricTensor() and D_Spacigns(). For use when slider hasn't changed""" self.MetricTensor() self.D_Spacings() def ReplotDiffraction(self): self.Recalculate() try: self.PlotDiffraction() except UnboundLocalError: pass # def Print(self): # """test print fn""" # print(self.comboBox_spacegroup.currentIndex()) def signals_slots(self): """All of the signals and slots not in .ui file""" #Testing #QtCore.QObject.connect(self.command_Wulff, QtCore.SIGNAL(_fromUtf8("clicked()")),WULFF) ### Menu actions QtCore.QObject.connect(self.actionClose, QtCore.SIGNAL(_fromUtf8("triggered()")), self.close) QtCore.QObject.connect(self.actionAbout, QtCore.SIGNAL(_fromUtf8("triggered()")), self.About) QtCore.QObject.connect(self.actionHow_to, QtCore.SIGNAL(_fromUtf8("triggered()")), self.HowTo) QtCore.QObject.connect(self.actionSave_D_spacings, QtCore.SIGNAL(_fromUtf8("triggered()")), self.SaveDSpace) QtCore.QObject.connect(self.actionRemove_DB_Minerals, QtCore.SIGNAL(_fromUtf8("triggered()")), self.removeMinerals) QtCore.QObject.connect(self.actionSave_Mineral_Database, QtCore.SIGNAL(_fromUtf8("triggered()")), self.SaveMineralDB) QtCore.QObject.connect(self.actionLoad_Mineral_Database, QtCore.SIGNAL(_fromUtf8("triggered()")), self.LoadMineralDB) QtCore.QObject.connect(self.actionAppendMineral, QtCore.SIGNAL(_fromUtf8("triggered()")), self.AppendMineral) QtCore.QObject.connect(self.actionIPython_Console, QtCore.SIGNAL(_fromUtf8("triggered()")), self.IPY) QtCore.QObject.connect(self.actionManualCond, QtCore.SIGNAL(_fromUtf8("triggered()")), self.ManualConditions) QtCore.QObject.connect(self.actionSettings, QtCore.SIGNAL(_fromUtf8("triggered()")), self.setSettings) ### Command buttons QtCore.QObject.connect(self.command_Plot, QtCore.SIGNAL(_fromUtf8("clicked()")),self.PlotDiffraction) QtCore.QObject.connect(self.command_recalculate, QtCore.SIGNAL(_fromUtf8("clicked()")),self.Recalculate) #QtCore.QObject.connect(self.command_Wulff, QtCore.SIGNAL(_fromUtf8("clicked()")),self.updateIPY) ### crystal and cell type actions QtCore.QObject.connect(self.comboBox_crystaltype, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.setCellType) QtCore.QObject.connect(self.comboBox_celltype, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.setConditions) QtCore.QObject.connect(self.spinBox_spacegroup, QtCore.SIGNAL(_fromUtf8("valueChanged(int)")), self.SpaceGroupLookup) QtCore.QObject.connect(self.checkBox_obverse, QtCore.SIGNAL(_fromUtf8("toggled(bool)")), self.D_Spacings) QtCore.QObject.connect(self.comboBox_mineraldb, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.setMineral) #QtCore.QObject.connect(self.comboBox_spacegroup, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.D_Spacings) ### Navigation Toolbar buttons QtCore.QObject.connect(self.comboBox_rotate, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.PlotDiffraction) QtCore.QObject.connect(self.checkBox_labels, QtCore.SIGNAL(_fromUtf8("toggled(bool)")), self.PlotDiffraction) #labels checkbox ### Checkboxes and Miller indices QtCore.QObject.connect(self.checkBox_samemin, QtCore.SIGNAL(_fromUtf8("toggled(bool)")), self.sameMin) QtCore.QObject.connect(self.checkBox_samemax, QtCore.SIGNAL(_fromUtf8("toggled(bool)")), self.sameMax) QtCore.QObject.connect(self.comboBox_hmin, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_kmin,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) QtCore.QObject.connect(self.comboBox_kmin, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_lmin,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) QtCore.QObject.connect(self.comboBox_lmin, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_hmin,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) QtCore.QObject.connect(self.comboBox_hmax, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_kmax,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) QtCore.QObject.connect(self.comboBox_kmax, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_lmax,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) QtCore.QObject.connect(self.comboBox_lmax, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_hmax,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) QtCore.QObject.connect(self.checkBox_showforbidden, QtCore.SIGNAL(_fromUtf8("toggled(bool)")), self.PlotDiffraction) ### Sliders/spin boxes: lattice parameters QtCore.QObject.connect(self.hSlider_a, QtCore.SIGNAL(_fromUtf8("valueChanged(int)")), self.slider_to_spindouble) QtCore.QObject.connect(self.hSlider_b, QtCore.SIGNAL(_fromUtf8("valueChanged(int)")), self.slider_to_spindouble) QtCore.QObject.connect(self.hSlider_c, QtCore.SIGNAL(_fromUtf8("valueChanged(int)")), self.slider_to_spindouble) QtCore.QObject.connect(self.hSlider_a, QtCore.SIGNAL(_fromUtf8("sliderReleased()")), self.D_Spacings) QtCore.QObject.connect(self.hSlider_b, QtCore.SIGNAL(_fromUtf8("sliderReleased()")), self.D_Spacings) QtCore.QObject.connect(self.hSlider_c, QtCore.SIGNAL(_fromUtf8("sliderReleased()")), self.D_Spacings) QtCore.QObject.connect(self.doubleSpinBox_a, QtCore.SIGNAL(_fromUtf8("valueChanged(double)")), self.spindouble_to_slider) QtCore.QObject.connect(self.doubleSpinBox_b, QtCore.SIGNAL(_fromUtf8("valueChanged(double)")), self.spindouble_to_slider) QtCore.QObject.connect(self.doubleSpinBox_c, QtCore.SIGNAL(_fromUtf8("valueChanged(double)")), self.spindouble_to_slider) QtCore.QObject.connect(self.doubleSpinBox_a, QtCore.SIGNAL(_fromUtf8("valueChanged(double)")), self.MetricTensor) QtCore.QObject.connect(self.doubleSpinBox_b, QtCore.SIGNAL(_fromUtf8("valueChanged(double)")), self.MetricTensor) QtCore.QObject.connect(self.doubleSpinBox_c, QtCore.SIGNAL(_fromUtf8("valueChanged(double)")), self.MetricTensor) #QtCore.QObject.connect(self.doubleSpinBox_a, QtCore.SIGNAL(_fromUtf8("valueChanged(double)")), self.D_Spacings) #QtCore.QObject.connect(self.doubleSpinBox_b, QtCore.SIGNAL(_fromUtf8("valueChanged(double)")), self.D_Spacings) #QtCore.QObject.connect(self.doubleSpinBox_c, QtCore.SIGNAL(_fromUtf8("valueChanged(double)")), self.D_Spacings) QtCore.QObject.connect(self.hSlider_alpha, QtCore.SIGNAL(_fromUtf8("valueChanged(int)")), self.MetricTensor) QtCore.QObject.connect(self.hSlider_beta, QtCore.SIGNAL(_fromUtf8("valueChanged(int)")), self.MetricTensor) QtCore.QObject.connect(self.hSlider_gamma, QtCore.SIGNAL(_fromUtf8("valueChanged(int)")), self.MetricTensor) QtCore.QObject.connect(self.hSlider_alpha, QtCore.SIGNAL(_fromUtf8("sliderReleased()")), self.D_Spacings) QtCore.QObject.connect(self.hSlider_beta, QtCore.SIGNAL(_fromUtf8("sliderReleased()")), self.D_Spacings) QtCore.QObject.connect(self.hSlider_gamma, QtCore.SIGNAL(_fromUtf8("sliderReleased()")), self.D_Spacings) #Spinboxes beam energy, cam length, camconst QtCore.QObject.connect(self.spinBox_beamenergy,QtCore.SIGNAL(_fromUtf8("valueChanged(int)")),self.updateCommon) QtCore.QObject.connect(self.spinBox_camlength,QtCore.SIGNAL(_fromUtf8("valueChanged(int)")),self.updateCommon) QtCore.QObject.connect(self.doubleSpinBox_camconst,QtCore.SIGNAL(_fromUtf8("valueChanged(double)")),self.updateCommon) #Instances to recalculate metric tensor and d-spacings #only enable these once you get miller maxes sorted out so they don't change QtCore.QObject.connect(self.checkBox_zoneaxis, QtCore.SIGNAL(_fromUtf8("toggled(bool)")),self.DiffWidget, QtCore.SLOT(_fromUtf8("setEnabled(bool)"))) QtCore.QObject.connect(self.comboBox_u, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.ReplotDiffraction) QtCore.QObject.connect(self.comboBox_v, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.ReplotDiffraction) QtCore.QObject.connect(self.comboBox_w, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.ReplotDiffraction) QtCore.QObject.connect(self.comboBox_hmax, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.D_Spacings) QtCore.QObject.connect(self.comboBox_hmin, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.D_Spacings) #QtCore.QObject.connect(self.checkBox_labels, QtCore.SIGNAL(_fromUtf8("toggled(bool)")),self.UpdatePlot) #QtCore.QObject.connect(self.comboBox_hmax, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.TempMax) #QtCore.QObject.connect(self.comboBox_kmax, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.TempMax) #QtCore.QObject.connect(self.comboBox_lmax, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.TempMax) #QtCore.QObject.connect(self.comboBox_hmin, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.Recalculate) #QtCore.QObject.connect(self.comboBox_kmin, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.Recalculate) #QtCore.QObject.connect(self.comboBox_lmin, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.Recalculate) #QtCore.QObject.connect(self.comboBox_w, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.ReplotDiffraction) #Calculator Tab QtCore.QObject.connect(self.checkBox_normals, QtCore.SIGNAL(_fromUtf8("toggled(bool)")),self.CalcLabels) QtCore.QObject.connect(self.command_angle, QtCore.SIGNAL(_fromUtf8("clicked()")),self.Calculator) def _initIPython(self,common): """Initialize IPython console from which the user can interact with data/files""" banner = """Welcome to the pyLATTICE IPython Qt4 Console. You are here to interact with data and parameters - Python command line knowledge required. Use the 'whos' command for a list of available variables. Sometimes this does not work the first time. Imported packages include: pylab (including numpy modules) as 'pl'; pandas as 'pd' \n""" self.ipywidget = IPythonConsole(common,banner=banner) def IPY(self): self.ipywidget.SHOW() def updateIPY(self,common): self.ipyvars = common.__dict__ self.ipywidget.pushVariables(self.ipyvars) def slider_to_spindouble(self,slider): """Sliders only send/receive int data. Converts int to double by dividing by 100.""" if self.hSlider_a.isSliderDown(): self.a = self.hSlider_a.value() / 100 self.doubleSpinBox_a.setValue(self.a) elif self.hSlider_b.isSliderDown(): self.b = self.hSlider_b.value() / 100 self.doubleSpinBox_b.setValue(self.b) elif self.hSlider_c.isSliderDown(): self.c = self.hSlider_c.value() / 100 self.doubleSpinBox_c.setValue(self.c) def spindouble_to_slider(self,spinbox): """Converts spindouble entry into int for slider (multiply by 100)""" #There may be some redundancy in the connections setting values. #hopefully this does not slow the program down. #without these, some aspect often lags and gives the wrong value if self.comboBox_crystaltype.currentText() == 'Cubic': self.a = self.doubleSpinBox_a.value() self.hSlider_a.setValue(self.a * 100) self.hSlider_b.setValue(self.a * 100);self.doubleSpinBox_b.setValue(self.a) self.hSlider_c.setValue(self.a * 100);self.doubleSpinBox_c.setValue(self.a) elif self.comboBox_crystaltype.currentText() == 'Tetragonal': self.a = self.doubleSpinBox_a.value() self.hSlider_a.setValue(self.a * 100) self.hSlider_b.setValue(self.a * 100); self.doubleSpinBox_b.setValue(self.a) elif self.comboBox_crystaltype.currentText() == 'Trigonal': self.a = self.doubleSpinBox_a.value() self.hSlider_a.setValue(self.a * 100) self.hSlider_b.setValue(self.a * 100); self.doubleSpinBox_b.setValue(self.a) elif self.comboBox_crystaltype.currentText() == 'Hexagonal': self.a = self.doubleSpinBox_a.value() self.hSlider_a.setValue(self.a * 100) self.hSlider_b.setValue(self.a * 100); self.doubleSpinBox_b.setValue(self.a) else: self.a = self.doubleSpinBox_a.value() self.hSlider_a.setValue(self.a * 100) self.b = self.doubleSpinBox_b.value() self.hSlider_b.setValue(self.b * 100) self.c = self.doubleSpinBox_c.value() self.hSlider_c.setValue(self.c * 100) def setMillerMax_h(self): """Sets the items available for the max miller indices to include everything greater than the selected min index""" self.miller_max_h = [str(x) for x in range(int(self.comboBox_hmin.currentText()) + 1,7)] self.comboBox_hmax.clear() self.comboBox_hmax.addItems(self.miller_max_h) def setMillerMax_k(self): """Sets the items available for the max miller indices to include everything greater than the selected min index""" self.miller_max_k = [str(x) for x in range(int(self.comboBox_kmin.currentText()) + 1,7)] self.comboBox_kmax.clear() self.comboBox_kmax.addItems(self.miller_max_k) def setMillerMax_l(self): """Sets the items available for the max miller indices to include everything greater than the selected min index""" self.miller_max_l = [str(x) for x in range(int(self.comboBox_lmin.currentText()) + 1,7)] self.comboBox_lmax.clear() self.comboBox_lmax.addItems(self.miller_max_l) def sameMin(self): if not self.checkBox_samemin.isChecked(): #change to value_changed, not index changed. lengths may be different if checkboxes aren't clicked QtCore.QObject.disconnect(self.comboBox_hmin, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_kmin,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) QtCore.QObject.disconnect(self.comboBox_kmin, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_lmin,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) QtCore.QObject.disconnect(self.comboBox_lmin, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_hmin,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) elif self.checkBox_samemin.isChecked(): QtCore.QObject.connect(self.comboBox_hmin, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_kmin,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) QtCore.QObject.connect(self.comboBox_kmin, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_lmin,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) QtCore.QObject.connect(self.comboBox_lmin, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_hmin,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) def sameMax(self): if not self.checkBox_samemax.isChecked(): QtCore.QObject.disconnect(self.comboBox_hmax, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_kmax,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) QtCore.QObject.disconnect(self.comboBox_kmax, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_lmax,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) QtCore.QObject.disconnect(self.comboBox_lmax, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_hmax,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) elif self.checkBox_samemax.isChecked(): QtCore.QObject.connect(self.comboBox_hmax, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_kmax,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) QtCore.QObject.connect(self.comboBox_kmax, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_lmax,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) QtCore.QObject.connect(self.comboBox_lmax, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(int)")), self.comboBox_hmax,QtCore.SLOT(_fromUtf8("setCurrentIndex(int)"))) def setMineral(self): i = self.comboBox_mineraldb.currentIndex() if i == 0: pass else: #disconnect d-space calculations till the end QtCore.QObject.disconnect(self.comboBox_crystaltype, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.setCellType) QtCore.QObject.disconnect(self.comboBox_celltype, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.setConditions) QtCore.QObject.disconnect(self.spinBox_spacegroup, QtCore.SIGNAL(_fromUtf8("valueChanged(int)")), self.SpaceGroupLookup) m = self.mineraldb.loc[i] ind = ['Cubic','Tetragonal','Orthorhombic','Trigonal','Hexagonal','Monoclinic','Triclinic'].index(m.Crystal) self.comboBox_crystaltype.setCurrentIndex(ind) self.setCellType() ind = self.celltypes.index(m.UnitCell) self.comboBox_celltype.setCurrentIndex(ind) self.setConditions() ind = self.sgnumbers.index(m.SpaceGroup) self.comboBox_spacegroup.setCurrentIndex(ind) #now a,b,c paramters #print(self.sgnumbers) self.doubleSpinBox_a.setValue(m.a) self.a = m.a if not np.isnan(m.b): self.doubleSpinBox_b.setValue(m.b) self.b = m.b if not np.isnan(m.c): self.doubleSpinBox_c.setValue(m.c) self.c = m.c try: self.manualConds = m.SpecialConditions.split(';') except AttributeError: #ignore floats or nans self.manualConds = '' self.MetricTensor() #reconnect and calculate QtCore.QObject.connect(self.comboBox_crystaltype, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.setCellType) QtCore.QObject.connect(self.comboBox_celltype, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.setConditions) QtCore.QObject.connect(self.spinBox_spacegroup, QtCore.SIGNAL(_fromUtf8("valueChanged(int)")), self.SpaceGroupLookup) self.D_Spacings() def setCellType(self): """Sets the unit cell possibilities based upon the crystal type selected""" self.comboBox_celltype.clear() self.comboBox_spacegroup.clear() self.celltypes = [] if self.comboBox_crystaltype.currentText() == 'Cubic': self.celltypes = ['Primitive','Face Centered','Body Centered'] self.length_label = u' a = b = c' self.label_lattice_equality.setText(self.length_label) self.hSlider_b.setDisabled(True); self.hSlider_c.setDisabled(True) self.doubleSpinBox_b.setDisabled(True); self.doubleSpinBox_c.setDisabled(True) self.angles_label = u' \u03B1 = \u03B2 = \u03B3 = 90°' self.label_angle_equality.setText(self.angles_label) self.alpha = 90; self.beta = 90; self.gamma = 90 self.hSlider_alpha.setValue(self.alpha); self.hSlider_beta.setValue(self.beta); self.hSlider_gamma.setValue(self.gamma) #disable editing sliders and spinboxes self.hSlider_alpha.setDisabled(True); self.hSlider_beta.setDisabled(True); self.hSlider_gamma.setDisabled(True) self.spinBox_alpha.setDisabled(True); self.spinBox_beta.setDisabled(True); self.spinBox_gamma.setDisabled(True) elif self.comboBox_crystaltype.currentText() == 'Tetragonal': self.celltypes = ['Primitive','Body Centered'] self.length_label = u' a = b ≠ c' self.label_lattice_equality.setText(self.length_label) self.hSlider_b.setDisabled(True); self.hSlider_c.setDisabled(False) self.doubleSpinBox_b.setDisabled(True); self.doubleSpinBox_c.setDisabled(False) self.angles_label = u' \u03B1 = \u03B2 = \u03B3 = 90°' self.label_angle_equality.setText(self.angles_label) self.alpha = 90; self.beta = 90; self.gamma = 90 self.hSlider_alpha.setValue(self.alpha); self.hSlider_beta.setValue(self.beta); self.hSlider_gamma.setValue(self.gamma) #disable editing sliders and spinboxes self.hSlider_alpha.setDisabled(True); self.hSlider_beta.setDisabled(True); self.hSlider_gamma.setDisabled(True) self.spinBox_alpha.setDisabled(True); self.spinBox_beta.setDisabled(True); self.spinBox_gamma.setDisabled(True) elif self.comboBox_crystaltype.currentText() == 'Orthorhombic': self.celltypes = ['Primitive','Face Centered','Body Centered','(001) Base Centered','(100) Base Centered'] self.length_label = u' a ≠ b ≠ c' self.label_lattice_equality.setText(self.length_label) self.hSlider_b.setDisabled(False); self.hSlider_c.setDisabled(False) self.doubleSpinBox_b.setDisabled(False); self.doubleSpinBox_c.setDisabled(False) self.angles_label = u' \u03B1 = \u03B2 = \u03B3 = 90°' self.label_angle_equality.setText(self.angles_label) self.alpha = 90; self.beta = 90; self.gamma = 90 self.hSlider_alpha.setValue(self.alpha); self.hSlider_beta.setValue(self.beta); self.hSlider_gamma.setValue(self.gamma) #disable editing sliders and spinboxes self.hSlider_alpha.setDisabled(True); self.hSlider_beta.setDisabled(True); self.hSlider_gamma.setDisabled(True) self.spinBox_alpha.setDisabled(True); self.spinBox_beta.setDisabled(True); self.spinBox_gamma.setDisabled(True) elif self.comboBox_crystaltype.currentText() == 'Trigonal': self.celltypes = ['Primitive','Rhombohedral','Rhombohedral, Hexagonal Axes','Hexagonal'] self.length_label = u' a = b ≠ c' self.label_lattice_equality.setText(self.length_label) self.hSlider_b.setDisabled(True); self.hSlider_c.setDisabled(False) self.doubleSpinBox_b.setDisabled(True); self.doubleSpinBox_c.setDisabled(False) self.angles_label = u' \u03B1 = \u03B2 = 90°, \u03B3 = 120°' self.label_angle_equality.setText(self.angles_label) self.alpha = 90; self.beta = 90; self.gamma = 120 self.hSlider_alpha.setValue(self.alpha); self.hSlider_beta.setValue(self.beta); self.hSlider_gamma.setValue(self.gamma) #disable editing sliders and spinboxes self.hSlider_alpha.setDisabled(True); self.hSlider_beta.setDisabled(True); self.hSlider_gamma.setDisabled(True) self.spinBox_alpha.setDisabled(True); self.spinBox_beta.setDisabled(True); self.spinBox_gamma.setDisabled(True) elif self.comboBox_crystaltype.currentText() == 'Hexagonal': self.celltypes = ['Primitive'] self.length_label = u' a = b ≠ c' self.label_lattice_equality.setText(self.length_label) self.hSlider_b.setDisabled(True); self.hSlider_c.setDisabled(False) self.doubleSpinBox_b.setDisabled(True); self.doubleSpinBox_c.setDisabled(False) self.angles_label = u' \u03B1 = \u03B2 = 90°, \u03B3 = 120°' self.label_angle_equality.setText(self.angles_label) self.alpha = 90; self.beta = 90; self.gamma = 120 self.hSlider_alpha.setValue(self.alpha); self.hSlider_beta.setValue(self.beta); self.hSlider_gamma.setValue(self.gamma) #disable editing sliders and spinboxes self.hSlider_alpha.setDisabled(True); self.hSlider_beta.setDisabled(True); self.hSlider_gamma.setDisabled(True) self.spinBox_alpha.setDisabled(True); self.spinBox_beta.setDisabled(True); self.spinBox_gamma.setDisabled(True) elif self.comboBox_crystaltype.currentText() == 'Monoclinic': self.celltypes = ['Primitive','(001) Base Centered'] self.length_label = u' a ≠ b ≠ c' self.label_lattice_equality.setText(self.length_label) self.hSlider_b.setDisabled(False); self.hSlider_c.setDisabled(False) self.doubleSpinBox_b.setDisabled(False); self.doubleSpinBox_c.setDisabled(False) self.angles_label = u' \u03B1 = \u03B3 = 90°' self.label_angle_equality.setText(self.angles_label) self.alpha = 90; self.beta = 90; self.gamma = 90 self.hSlider_alpha.setValue(self.alpha); self.hSlider_beta.setValue(self.beta); self.hSlider_gamma.setValue(self.gamma) #disable editing sliders and spinboxes self.hSlider_alpha.setDisabled(True); self.hSlider_beta.setDisabled(True); self.hSlider_gamma.setDisabled(True) self.spinBox_alpha.setDisabled(True); self.spinBox_beta.setDisabled(True); self.spinBox_gamma.setDisabled(True) elif self.comboBox_crystaltype.currentText() == 'Triclinic': self.celltypes = ['Primitive'] self.length_label = u' a ≠ b ≠ c' self.label_lattice_equality.setText(self.length_label) self.hSlider_b.setDisabled(False); self.hSlider_c.setDisabled(False) self.doubleSpinBox_b.setDisabled(False); self.doubleSpinBox_c.setDisabled(False) self.angles_label = u'' self.label_angle_equality.setText(self.angles_label) #Enable editing sliders and spinboxes self.hSlider_alpha.setDisabled(False); self.hSlider_beta.setDisabled(False); self.hSlider_gamma.setDisabled(False) self.spinBox_alpha.setDisabled(False); self.spinBox_beta.setDisabled(False); self.spinBox_gamma.setDisabled(False) self.comboBox_celltype.addItems(self.celltypes) #self.Recalculate() def setConditions(self): """Sets conditions based upon which unit cell type is chosen. Store equations in strings and then evaluate and solve with eval()""" geom = self.comboBox_crystaltype.currentText() unit = self.comboBox_celltype.currentText() if unit in ['Rhombohedral','Rhombohedral, Hexagonal Axes']: self.checkBox_obverse.setDisabled(False) else: self.checkBox_obverse.setDisabled(True) try: #there is a loop I cant find where this tries to calculate conditions before unit cell type is set resulting in index error. #this simply supresses the error, as another pass is always fine. if unit in ['Rhombohedral, Hexagonal Axes','Hexagonal']: rhomhex=True self.conditions = np.unique(self.sghex[self.sghex['Unit Cell'] == unit]['Conditions'])[0] else: rhomhex=False self.conditions = np.unique(self.sg[self.sg['Unit Cell'] == unit]['Conditions'])[0] #grab individual condition b/c of repetition self.setSpaceGroups(geom,unit,rhomhex) #QtCore.QObject.disconnect(self.comboBox_spacegroup, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.D_Spacings) self.comboBox_spacegroup.clear() self.comboBox_spacegroup.addItems(self.sgnumlist) #QtCore.QObject.connect(self.comboBox_spacegroup, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.D_Spacings) self.Recalculate() except IndexError: pass def setSpaceGroups(self,geom,unit,rhomhex=False): """Sets the space group options based upon crystal geometry and unit cell type""" if rhomhex: sg = self.sghex elif not rhomhex: sg = self.sg self.sgnumbers = list(sg[(sg['Geometry'] == geom) & (sg['Unit Cell'] == unit)].index) self.sglist = list(sg.loc[self.sgnumbers,'Patterson']) self.sgnumlist = [str(x) + ': ' + y for x,y in zip(self.sgnumbers,self.sglist)] def SpaceGroupConditions(self,number): """Looks up the space-group-specific allowed diffraction spots. number is the specific space group number to look up.""" if not self.checkBox_spacegroup.isChecked(): sg_conditions = 'True' elif self.checkBox_spacegroup.isChecked(): #make sure number is an integer #something is wrong with some FCC crystals number = int(number) unit = self.comboBox_celltype.currentText() if unit in ['Rhombohedral, Hexagonal Axes','Hexagonal']: sg = self.sghex else: sg = self.sg sg_conditions = sg.loc[number,'SG Conditions'] return sg_conditions def SpaceGroupLookup(self): """Takes input from slider/spinbox and outputs sapcegroup info into text line""" index = self.spinBox_spacegroup.value() c = self.sg.loc[index,'Geometry'] #u = self.sg.loc[index,'Unit Cell'] sg = self.sg.loc[index,'Patterson'] text = ': '.join([c,sg]) self.label_spacegrouplookup.setText(text) def MetricTensor(self): """Calculate and show G, the metric tensor, and G*, the inverse metric tensor. Also call function that outputs parameters into tables.""" self.G = np.zeros([3,3]) #self.G_inv #remember, indices start at 0 #metric tensor is axially symmetric self.a = self.doubleSpinBox_a.value() self.b = self.doubleSpinBox_b.value() self.c = self.doubleSpinBox_c.value() self.G[0,0] = self.a**2 self.G[0,1] = round(self.a * self.b * np.cos(np.radians(self.spinBox_gamma.value())),6) self.G[1,0] = self.G[0,1] self.G[1,1] = self.b**2 self.G[0,2] = round(self.a * self.c * np.cos(np.radians(self.spinBox_beta.value())),6) self.G[2,0] = self.G[0,2] self.G[2,2] = self.doubleSpinBox_c.value()**2 self.G[1,2] = round(self.c * self.b * np.cos(np.radians(self.spinBox_alpha.value())),6) self.G[2,1] = self.G[1,2] # calc G inverse, G* self.G_inv = np.linalg.inv(self.G) self.Gtable.setData(self.G) #self.Gtable.resizeColumnsToContents() self.G_inv_table.setData(self.G_inv) #self.G_inv_table.resizeColumnsToContents() for i in range(0,3): self.Gtable.setColumnWidth(i,self.Gtable_size[0]/3.35) self.Gtable.setRowHeight(i,self.Gtable_size[1]/3.5) self.G_inv_table.setColumnWidth(i,self.Gtable_size[0]/3.35) self.G_inv_table.setRowHeight(i,self.Gtable_size[1]/3.5) self.Parameters() def Parameters(self): """Grabs current parameters and outputs them in tables. Calculates reciprocal lattice parameters as well. Must make it deal with complex numbers, but really only necessary for Triclinic...""" self.parameters_direct = np.transpose(np.array([[self.doubleSpinBox_a.value(),self.doubleSpinBox_b.value(),self.doubleSpinBox_c.value(),self.spinBox_alpha.value(),self.spinBox_beta.value(),self.spinBox_gamma.value()]])) self.astar = np.sqrt(self.G_inv[0,0]); self.bstar = np.sqrt(self.G_inv[1,1]); self.cstar = np.sqrt(self.G_inv[2,2]) self.gammastar = np.arccos(self.G_inv[0,1] / (self.astar * self.bstar))*180 / np.pi self.betastar = np.arccos(self.G_inv[0,2] / (self.astar * self.cstar))*180 / np.pi self.alphastar = np.arccos(self.G_inv[1,2] / (self.cstar * self.bstar))*180 / np.pi self.parameters_reciprocal = np.transpose(np.array([[self.astar,self.bstar,self.cstar,self.alphastar,self.betastar,self.gammastar]])) self.Gparam_table.setData(self.parameters_direct) self.Gparam_inv_table.setData(self.parameters_reciprocal) self.Gparam_table.setHorizontalHeaderLabels(['Parameters']) self.Gparam_inv_table.setHorizontalHeaderLabels(['Parameters']) self.Gparam_table.setVerticalHeaderLabels([u'a',u'b',u'c',u'\u03B1',u'\u03B2',u'\u03B3']) self.Gparam_inv_table.setVerticalHeaderLabels([u'a*',u'b*',u'c*',u'\u03B1*',u'\u03B2*',u'\u03B3*']) for i in range(0,6): self.Gparam_table.setColumnWidth(i,self.param_table_size[0]) self.Gparam_table.setRowHeight(i,self.param_table_size[0]/6.7) self.Gparam_inv_table.setColumnWidth(i,self.param_table_size[0]) self.Gparam_inv_table.setRowHeight(i,self.param_table_size[0]/6.7) def D_Spacings(self): """Calculates D-spacings using the metric tensor and places them in a table (sorted?)""" #grab spacegroup conditions #multiple different spacegroup conditions. e.g. eval('h==1 or k==1') returns a True if on is satisfied #add all conditions together into one string #full_conditions = self.conditions + ' and ' + sg_conditions if self.checkBox_zoneaxis.isChecked(): try: self.u = int(self.comboBox_u.currentText()) except ValueError: self.u = 0 try: self.v = int(self.comboBox_v.currentText()) except ValueError: self.v = 0 try: self.w = int(self.comboBox_w.currentText()) except ValueError: self.w = 0 #set "q" for rhombohedral obserse/reverse if self.checkBox_obverse.isChecked(): q = 1 elif not self.checkBox_obverse.isChecked(): q = -1 else: q = 0 #make pandas dataframe with multiindex h,k,l #reinitialize dataframe self.DSpaces = pd.DataFrame(columns = ['d-space','h','k','l']) self.Forbidden = pd.DataFrame(columns = ['d-space','h','k','l']) #maybe implement masking instead of loops hmin = int(self.comboBox_hmin.currentText()) hmax = int(self.comboBox_hmax.currentText()) kmin = int(self.comboBox_kmin.currentText()) kmax = int(self.comboBox_kmax.currentText()) lmin = int(self.comboBox_lmin.currentText()) lmax = int(self.comboBox_lmax.currentText()) gen_conditions = str(self.conditions) #needs to deal with possibility of conditional special statements, will update dspace.pyx #first calculate all general conditions self.DSpaces = DSpace(self.G_inv,self.u,self.v,self.w,hmin,hmax,kmin,kmax,lmin,lmax,gen_conditions,q) #now deal with special spacegroup conditions by removing invalid spots sg_conditions = self.SpaceGroupConditions(self.sgnumbers[self.comboBox_spacegroup.currentIndex()]) if self.manualConds != []: if sg_conditions == 'True': sg_conditions = '' for c in self.manualConds: sg_conditions += ';%s' % c sg_conditions = sg_conditions.lstrip(';') self.DSpaces = self.RemoveForbidden(self.DSpaces,sg_conditions) #sort in descending Dspace order, then by h values, then k, then l... self.DSpaces.sort(columns=['d-space','h','k','l'],ascending=False,inplace=True) #reset indices for convenience later self.DSpaces.index = [x for x in range(len(self.DSpaces))] self.common.DSpaces = self.DSpaces #update DSpaces self.dspace_table.setData(self.DSpaces) self.dspace_table.setColumnWidth(0,80) #make d-space column a bit wider for i in range(1,4): self.dspace_table.setColumnWidth(i,45) elif not self.checkBox_zoneaxis.isChecked(): pass try: self.updateCommon() except AttributeError: #first go round ipython console hasn't been initialized yet pass def RemoveForbidden(self,d,sgconditions): #h = d['h']; k = d['k']; l = d['l'] f = pd.DataFrame(columns = ['d-space','h','k','l']) try: if eval(sgconditions): return(d) except (KeyError,SyntaxError): #if sgconditions not 'True' #d[(h==k) & ~(l%2==0)] #d = d.drop(r.index) #split multiple conditions up conds = sgconditions.split(';') for c in conds: #these should be if:then statements, so remove the if:~thens c = c.strip() if not c.startswith('if'): r = d[eval(c)] d = d.drop(r.index) else: c = c.lstrip('if').strip() iff, then = c.split(':') #eval doesnt care about spaces #needed for eval h = d.h; k = d.k; l = d.l r = d[eval('(' + iff + ')& ~(' + then + ')')] d = d.drop(r.index) f = pd.concat([f,r]) f.sort(columns=['d-space','h','k','l'],ascending=False,inplace=True) f.index = [x for x in range(len(f))] self.common.Forbidden = f self.Forbidden = self.common.Forbidden return(d) def setMineralList(self): self.comboBox_mineraldb.clear() self.minlist = list(self.mineraldb['Chemical'] + ': ' + self.mineraldb['Name']) self.comboBox_mineraldb.addItems(self.minlist) def removeMinerals(self): QtCore.QObject.disconnect(self.comboBox_mineraldb, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.setMineral) mindiag = MineralListDialog() model = QtGui.QStandardItemModel(mindiag.listView) #mindiag.buttonBox.accepted.connect(mindiag.accept) #mindiag.buttonBox.rejected.connect(mindiag.reject) for mineral in self.minlist[1:]: item = QtGui.QStandardItem(mineral) item.setCheckable(True) item.setEditable(False) model.appendRow(item) mindiag.listView.setModel(model) if mindiag.exec_(): i=1 l=[] while model.item(i): if model.item(i).checkState(): l.append(i) i += 1 self.mineraldb = self.mineraldb.drop(self.mineraldb.index[l]) self.mineraldb.index = list(range(len(self.mineraldb))) self.setMineralList() QtCore.QObject.connect(self.comboBox_mineraldb, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.setMineral) def AppendMineral(self): QtCore.QObject.disconnect(self.comboBox_mineraldb, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.setMineral) dial = NewMineralDialog() if dial.exec_(): name = dial.lineEdit_name.text() sym = dial.lineEdit_sym.text() if name == '': name = 'Mineral' if sym == '': sym = 'XX' #set special conditions to a bunch of strings or as a NaN if self.manualConds == []: SCs = np.nan else: SCs = ';'.join(self.manualConds) params = {'Name':name, 'Chemical':sym, 'Crystal':self.comboBox_crystaltype.currentText(), 'UnitCell':self.comboBox_celltype.currentText(), 'SpaceGroup':int(self.comboBox_spacegroup.currentText().split(':')[0]), 'a':self.doubleSpinBox_a.value(), 'b':self.doubleSpinBox_b.value(), 'c':self.doubleSpinBox_c.value(), 'SpecialConditions':SCs} self.mineraldb = self.mineraldb.append(params,ignore_index=True) self.setMineralList() QtCore.QObject.connect(self.comboBox_mineraldb, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.setMineral) def setSettings(self): """Raise SettingsDialog and pass values to pyLATTICE parameters. Grab current settings first.""" current = {'a max':self.doubleSpinBox_a.maximum(), 'b max':self.doubleSpinBox_b.maximum(), 'c max':self.doubleSpinBox_c.maximum()} dial = SettingsDialog(current) if dial.exec_(): amax = dial.maxa.value() bmax = dial.maxb.value() cmax = dial.maxc.value() #set slider and spinbox maxima self.doubleSpinBox_a.setMaximum(amax) self.doubleSpinBox_b.setMaximum(bmax) self.doubleSpinBox_c.setMaximum(cmax) self.hSlider_a.setMaximum(int(10*amax)) self.hSlider_b.setMaximum(int(10*bmax)) self.hSlider_c.setMaximum(int(10*cmax)) def ManualConditions(self): """Raise the manual space group conditions dialog""" dial = ManualConditionsDialog(conditions= self.manualConds) if dial.exec_(): num = dial.manualCondList.count() self.manualConds = [dial.manualCondList.item(i).text() for i in range(num)] def SaveDSpace(self): self.Save(self.DSpaces) def SaveMineralDB(self): self.Save(self.mineraldb) def LoadMineralDB(self): QtCore.QObject.disconnect(self.comboBox_mineraldb, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.setMineral) ftypes = 'HDF (*.h5);;CSV (*.csv);;Excel (*.xlsx)' fname,ffilter = QtGui.QFileDialog.getOpenFileNameAndFilter(self,caption='Load Mineral Database',directory=self.common.path,filter=ftypes) fname = str(fname) ffilter=str(ffilter) #print(fname,ffilter) name, ext = os.path.splitext(fname) self.common.path = os.path.dirname(fname) if ffilter.startswith('HDF'): item = pd.read_hdf(name + '.h5','table') elif ffilter.startswith('CSV'): item = pd.read_csv(name + '.csv',sep=',') elif ffilter.startswith('Excel'): #allow for different excel formats sheetname,ok = QtGui.QInputDialog.getText(self,'Input Sheetname','Sheetname') if ok and sheetname != '': if ext == '.xlsx' or ext == '': item = pd.read_excel(name + '.xlsx',str(sheetname)) elif ext == '.xls': item = pd.read_excel(name + '.xls',str(sheetname)) self.mineraldb = item else: QtGui.QMessageBox.information(self, "Warning!", 'You must specify a sheet name!') self.setMineralList() QtCore.QObject.connect(self.comboBox_mineraldb, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.setMineral) def Save(self,item): #item should be pandas dataframe object ftypes = 'HDF (*.h5);;CSV (*.csv);;Excel (*.xlsx)' fname,ffilter = QtGui.QFileDialog.getSaveFileNameAndFilter(self,caption='Save D-Spacings',directory=self.common.path,filter=ftypes) fname = str(fname) ffilter=str(ffilter) #print(fname,ffilter) name, ext = os.path.splitext(fname) self.common.path = os.path.dirname(fname) print(name + ext) if ffilter.startswith('HDF'): item.to_hdf(name + '.h5','table') elif ffilter.startswith('CSV'): item.to_csv(name + '.csv',sep=',') elif ffilter.startswith('Excel'): #allow for different excel formats if ext == '.xlsx' or ext == '': item.to_excel(name + '.xlsx') elif ext == '.xls': item.to_excel(name + '.xls') ################################################################################ ############################### Plotting ####################################### ################################################################################ def PlotDiffraction(self): """Plots the current list of spots and d-spacings. For each point in self.DSpaces [d-space,h,k,l], determines anlges for plotting.""" #initialize plot with center spot only self.Plot.clear() self.common._x2 = False self.Plot.set_xlabel(u'Distance (\u212B\u207B\u00B9)')#angstrom^-1 self.Plot.set_ylabel(u'Distance (\u212B\u207B\u00B9)') #get values in energy, cam legnth, cam const. combo boxes self.energy = self.spinBox_beamenergy.value() self.camlength = self.spinBox_camlength.value() self.camconst = self.doubleSpinBox_camconst.value() #self.Plot.plot(0,0, linestyle = '', marker='o', markersize = 10, color = 'black',picker=5, label = u'0 0 0') #add some labels if self.checkBox_labels.isChecked() == True: #center spot #self.Plot.annotate(u'0 0 0', xy = (0,0), xytext=(0,10),textcoords = 'offset points', ha = 'center', va = 'bottom', # bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.01)) #add crystal structure information in an annotation #grab current values self.a = self.doubleSpinBox_a.value(); self.b = self.doubleSpinBox_b.value(); self.c = self.doubleSpinBox_c.value() alph = self.spinBox_alpha.value(); beta = self.spinBox_beta.value(); gam = self.spinBox_gamma.value() plot_label = r'''%s: %s; a = %.2f, b = %.2f, c = %.2f; $\alpha$ = %d$^o$, $\beta$ = %d$^o$, $\gamma$ = %d$^o$''' % (self.comboBox_crystaltype.currentText(),self.comboBox_celltype.currentText(),self.a,self.b,self.c,alph,beta,gam) ann = self.Plot.annotate(plot_label, xy=(0.02, 1.02), xycoords='axes fraction',bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.01)) ann.draggable() #make annotation draggable #need to choose a reference point with smallest sum of absolute miller indices #since self.DSpaces is sorted with largest d-space first, this will be the smallest sum of abs miller indices #first point rotation = np.radians(float(self.comboBox_rotate.currentText())) d = np.array(self.DSpaces['d-space'],dtype=np.float) ref = np.array(self.DSpaces.loc[0,['h','k','l']],dtype=np.int) Q2 = np.array(self.DSpaces[['h','k','l']],dtype=np.int) recip_vec = np.array([self.astar,self.bstar,self.cstar],dtype=np.float) dir_vec = np.array([self.u,self.v,self.w],dtype=np.int) #add extra factor if hcp unit cell t = self.comboBox_crystaltype.currentText() #must check that Forbidden dataframe isn't empty for a spcific zone axis showf = self.checkBox_showforbidden.isChecked() and not self.Forbidden.empty if t in ['Hexagonal','Trigonal']: #print('Hexagonal') #change dtypes ref = np.array(ref,dtype=np.float) Q2 = np.array(Q2,dtype=np.float) lam = np.sqrt(2/3)*(self.c/self.a) ref[2] = ref[2]/lam ref = np.hstack([ref,-(ref[0]+ref[1])]) #add i direction, but to the end b/c it doesnt matter Q2[:,2] = Q2[:,2]/lam Q2 = np.append(Q2,np.array([-Q2[:,0]-Q2[:,1]]).T,axis=1) theta,x,y = CalcSpotsHCP(d,Q2,ref,recip_vec,dir_vec,rotation) if showf: df = np.array(self.Forbidden['d-space'],dtype=np.float) Q2f = np.array(self.Forbidden[['h','k','l']],dtype=np.int) Q2f = np.array(Q2f,dtype=np.float) Q2f[:,2] = Q2f[:,2]/lam Q2f = np.append(Q2f,np.array([-Q2f[:,0]-Q2f[:,1]]).T,axis=1) thetaf,xf,yf = CalcSpotsHCP(df,Q2f,ref,recip_vec,dir_vec,rotation) else: theta,x,y = CalcSpots(d,Q2,ref,recip_vec,self.G_inv,dir_vec,rotation) if showf: df = np.array(self.Forbidden['d-space'],dtype=np.float) Q2f = np.array(self.Forbidden[['h','k','l']],dtype=np.int) thetaf,xf,yf = CalcSpots(df,Q2f,ref,recip_vec,self.G_inv,dir_vec,rotation) self.DSpaces['theta'] = np.degrees(theta).round(2); self.DSpaces['x'] = x; self.DSpaces['y'] = y if showf: self.Forbidden['theta'] = np.degrees(thetaf).round(2); self.Forbidden['x'] = xf; self.Forbidden['y'] = yf for i in range(len(self.Forbidden)): label = ' '.join([str(int(x)) for x in self.Forbidden.loc[i,['h','k','l']]]) #this is a bit dense, but makes a list of str() hkl values, then concatenates #convert negative numbers to overline numbers for visual effect for j,num in enumerate(self._overline_strings): match = re.search(u'-%d' % (j+1),label) if match: label = re.sub(match.group(),num,label) #add each label and coordinate to DSpace dataframe # self.DSpaces.loc[i,'x'] = coords[0] # self.DSpaces.loc[i,'y'] = coords[1] self.Forbidden.loc[i,'label'] = label #print(self.DSpaces) #make label for each spot for i in range(len(self.DSpaces)): label = r' '.join([str(int(x)) for x in self.DSpaces.loc[i,['h','k','l']]]) #this is a bit dense, but makes a list of str() hkl values, then concatenates #convert negative numbers to overline numbers for visual effect for j,num in enumerate(self._overline_strings): match = re.search(u'-%d' % (j+1),label) if match: label = re.sub(match.group(),num,label) #add each label and coordinate to DSpace dataframe # self.DSpaces.loc[i,'x'] = coords[0] # self.DSpaces.loc[i,'y'] = coords[1] label = r'$%s$' % label.replace(' ','\ ') #convert to mathtex string and add spaces self.DSpaces.loc[i,'label'] = label #add 000 spot self.DSpaces.loc[len(self.DSpaces),['d-space','h','k','l','x','y','label']] = [0,0,0,0,0,0,r'$0\ 0\ 0$'] #print(self.DSpaces) #scatterplots make it difficult to get data back in matplotlibwidget # for i in range(len(self.DSpaces)): self.Plot.plot(self.DSpaces['x'],self.DSpaces['y'],ls='',marker='o',markersize=10,color='k',picker=5)#,label='%i %i %i' % (self.DSpaces.loc[i,['h']],self.DSpaces.loc[i,['k']],self.DSpaces.loc[i,['l']])) if showf: self.Plot.plot(self.Forbidden['x'],self.Forbidden['y'],ls='',marker='o',markersize=7,color='gray', alpha=.7) #xmax = max(self.DSpaces['x']); xmin = min(self.DSpaces['x']) #ymax = max(self.DSpaces['y']); ymin = min(self.DSpaces['y']) #self.Plot.set_xlim([1.5*xmin,1.5*xmax]) #self.Plot.set_ylim([1.5*ymin,1.5*ymax]) if self.checkBox_labels.isChecked() == True: for i in range(len(self.DSpaces)): #label = self.MathLabels(i) label = self.DSpaces.loc[i,'label'] self.Plot.annotate(label, xy = (self.DSpaces.loc[i,'x'],self.DSpaces.loc[i,'y']), xytext=(0,10),textcoords = 'offset points', ha = 'center', va = 'bottom', bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.01)) if showf: for i in range(len(self.Forbidden)): #label = self.MathLabels(i) label = self.Forbidden.loc[i,'label'] self.Plot.annotate(label, xy = (self.Forbidden.loc[i,'x'],self.Forbidden.loc[i,'y']), xytext=(0,10),textcoords = 'offset points', ha = 'center', va = 'bottom',color='gray', bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.01)) if showf: self.common.Forbidden = self.Forbidden self.common.DSpaces = self.DSpaces self.common.a = self.doubleSpinBox_a.value()#for determining arrow size in plot self.DiffWidget.canvas.draw() def MathLabels(self,i): '''Make labels with overlines instead of minus signs for plotting with matplotlib. i is the index for DSpaces''' label = r'' if self.DSpaces.loc[i,'h'] < 0: label+=r'$\bar %i$ ' % abs(self.DSpaces.loc[i,'h']) else: label+=r'%i ' % self.DSpaces.loc[i,'h'] if self.DSpaces.loc[i,'k'] < 0: label+=r'$\bar %i$ ' % abs(self.DSpaces.loc[i,'k']) else: label+=r'%i ' % self.DSpaces.loc[i,'k'] if self.DSpaces.loc[i,'l'] < 0: label+=r'$\bar %i$' % abs(self.DSpaces.loc[i,'l']) else: label+=r'%i' % self.DSpaces.loc[i,'l'] return(label) ################################################################################ ############################### Calculator ##################################### ################################################################################ def Calculator(self): """Grabs current miller indices or zone directions and calls AngleCalc""" h1 = int(self.comboBox_h1.currentText()) h2 = int(self.comboBox_h2.currentText()) k1 = int(self.comboBox_k1.currentText()) k2 = int(self.comboBox_k2.currentText()) l1 = int(self.comboBox_l1.currentText()) l2 = int(self.comboBox_l2.currentText()) i1 = -(h1+k1) i2 = -(h2+k2) hex = self.checkBox_hexagonal.isChecked() angle = round(np.degrees(self.Diffraction.PlaneAngle(p1=np.array([h1,k1,l1]),p2=np.array([h2,k2,l2]),hex=hex)),2) if np.isnan(angle): QtGui.QMessageBox.information(self, "Uh, Oh!", 'There is no [0 0 0] direction/plane!') else: if self.checkBox_normals.isChecked(): self.lineEdit_angle.setText(u'φ = %.2f°' % angle) bra = u'(' ket = u')' elif not self.checkBox_normals.isChecked(): self.lineEdit_angle.setText(u'ρ = %.2f°' % angle) bra = u'[' ket = u']' if hex == False: hkls = [bra,h1,k1,l1,ket,bra,h2,k2,l2,ket] for j,it in enumerate(hkls): if type(it) == int and it < 0: hkls[j] = self._overline_strings[abs(it)-1] self.lineEdit_dirs.setText(u'%s%s%s%s%s \u2220 %s%s%s%s%s' % tuple(hkls)) else: hkls = [bra,h1,k1,i1,l1,ket,bra,h2,k2,i2,l2,ket] for j,it in enumerate(hkls): if type(it) == int and it < 0: hkls[j] = self._overline_strings[abs(it)-1] self.lineEdit_dirs.setText(u'%s%s%s%s%s%s \u2220 %s%s%s%s%s%s' % tuple(hkls)) def CalcLabels(self): """Rewrite labels for aesthetics""" if self.checkBox_normals.isChecked(): self.label_h2.setText(u'h') self.label_k2.setText(u'k') self.label_l2.setText(u'l') #self.label_h2.setAlignment(0x0004) #self.label_k2.setAlignment(0x0004) #self.label_l2.setAlignment(0x0004) elif not self.checkBox_normals.isChecked(): self.label_h2.setText(u'u') self.label_k2.setText(u'v') self.label_l2.setText(u'w') #self.label_h2.setAlignment(0x0004) #self.label_k2.setAlignment(0x0004) #self.label_l2.setAlignment(0x0004) ################################################################################ ############################### Other ########################################## ################################################################################ def About(self): """Displays the About message""" QtGui.QMessageBox.information(self, "About", """pyLATTICE %s: Written by Evan Groopman Based upon LATTICE (DOS) by Thomas Bernatowicz c. 2011-2014 For help contact: eegroopm@gmail.com""" % self.version) def HowTo(self): """How-to dialog box""" howtomessage = ( """ - Select crystal type, unit cell type, and lattice parameters to calculate the metric tensor. - OR select a mineral from the database. - D-spacings will be calculated between the selected Miller indices. - Select zone axis and press "Plot" to show diffraction pattern. - Select two diffraction spots to measure distance and angle. Note: pyLATTICE only includes general reflection conditions for each space group. It does not includes special conditions based upon multiplcity, site symmetry, etc. EXCEPT for FCC diamond #227. """) QtGui.QMessageBox.information(self, "How to use", howtomessage)
gpl-2.0
najmacherrad/master_thesis
Waltz/plotcomparaisons_waltz.py
1
7577
# Waltz # Compare results between wild type and mutant # coding=utf-8 import numpy as np import matplotlib.pyplot as plt import pandas as pd import csv from scipy import stats from pylab import plot, show, savefig, xlim, figure, \ hold, ylim, legend, boxplot, setp, axes import pylab from numpy import * def getColumn(filename, column,deli): results = csv.reader(open(filename), delimiter=deli) return [result[column] for result in results] #import files file_wt = 'waltzresults_wt.csv' file_mut = 'waltzresults_mut.csv' #------------------------------------ # AGGREGATION #------------------------------------ #-------------------------------------- # SCATTER PLOT pred_wt = getColumn(file_wt,3,'\t') pred_mut = getColumn(file_mut,3,'\t') pred_wt.pop(0) pred_mut.pop(0) x,y=[],[] for i in range(0,len(pred_wt)): #max=98.662207 if pred_wt[i]=='NA': x.append(np.nan) else: x.append(float(pred_wt[i])) for i in range(0,len(pred_mut)): #max=99.665552 if pred_mut[i]=='NA': y.append(np.nan) else: y.append(float(pred_mut[i])) fig = plt.figure() a=b=[0,100] plt.scatter(x, y,edgecolor = 'none', c= 'k') plt.plot(a,b,'r-') plt.grid('on') plt.xlim(-1,101) plt.ylim(-1,101) plt.xlabel('Wild types') plt.ylabel('Deleterious DIDA mutants') fig.savefig('waltz_wtVSmut.jpg') #---------------- # PROBABILITY DENSITY CURVE fig = figure() mu1, std1 = stats.norm.fit(x) mu2, std2 = stats.norm.fit(y) xmin1, xmax1 = plt.xlim() xmin2, xmax2 = plt.xlim() x1 = np.linspace(xmin1, 100, 100) x2 = np.linspace(xmin2, 100, 100) p1 = stats.norm.pdf(x1, mu1, std1) p2 = stats.norm.pdf(x2, mu2, std2) plt.plot(x1, p1, 'k',label='Wild types (fit results: mu=%.2f,std=%.2f)'%(mu1, std1)) plt.plot(x2, p2, 'r',label='Deleterious DIDA mutants \n(fit results: mu=%.2f,std=%.2f)'%(mu2, std2)) plt.xlabel('Aggregation conformation predicted values (amylogenic regions)') plt.ylabel('Frequency') plt.xlim(0,100) #plt.ylim(0,0.0) plt.legend(loc='upper right') fig.savefig('histwaltz_missense.png') #missense_wt - missense_mut miss=[] [miss.append(a_i - b_i) for a_i, b_i in zip(x, y)] #KOLMOGOROV-SMINORV: stats.kstest(miss,'norm') # (D,pvalue) = (0.3552063996073398, 0.0) #So we reject H0 -> not normal distribution #WILCOXON TEST: stats.wilcoxon(miss) # (T, pvalue) = (4898.0, 0.29548245005836105) #So we do not reject H0 -> There is no significant difference between wt and mut #-------------------------------------- # AGGREGATION ENVIRONMENT #-------------------------------------- #-------------------------------------- # SCATTER PLOT pred_wt = getColumn(file_wt,4,'\t') pred_mut = getColumn(file_mut,4,'\t') pred_wt.pop(0) pred_mut.pop(0) x,y=[],[] for i in range(0,len(pred_wt)): #max=98.662207 if pred_wt[i]=='NA': x.append(np.nan) else: x.append(float(pred_wt[i])) for i in range(0,len(pred_mut)): #max=98.996656 if pred_mut[i]=='NA': y.append(np.nan) else: y.append(float(pred_mut[i])) fig = plt.figure() a=b=[0,100] plt.scatter(x, y,edgecolor = 'none', c= 'k') plt.plot(a,b,'r-') plt.grid('on') plt.xlim(-1,101) plt.ylim(-1,101) plt.xlabel('Wild types') plt.ylabel('Deleterious DIDA mutants') fig.savefig('waltz_envt_wtVSmut.jpg') #-------------------------------------- # HISTOGRAM fig = figure() mu1, std1 = stats.norm.fit(x) mu2, std2 = stats.norm.fit(y) xmin1, xmax1 = plt.xlim() xmin2, xmax2 = plt.xlim() x1 = np.linspace(xmin1, 100, 100) x2 = np.linspace(xmin2, 100, 100) p1 = stats.norm.pdf(x1, mu1, std1) p2 = stats.norm.pdf(x2, mu2, std2) plt.plot(x1, p1, 'k',label='Wild types (fit results: mu=%.2f,std=%.2f)'%(mu1, std1)) plt.plot(x2, p2, 'r',label='Deleterious DIDA mutants \n(fit results: mu=%.2f,std=%.2f)'%(mu2, std2)) plt.xlabel('Aggregation conformation predicted values (amylogenic regions)') plt.ylabel('Frequency') plt.xlim(0,100) plt.ylim(0,0.06) plt.legend(loc='upper right') fig.savefig('histwaltzenvt_missense.png') #missense_wt - missense_mut miss=[] [miss.append(a_i - b_i) for a_i, b_i in zip(x, y)] #KOLMOGOROV-SMINORV: stats.kstest(miss,'norm') # (D,pvalue) = (0.34964202670995748, 0.0) #So we reject H0 -> not normal distribution #WILCOXON TEST: stats.wilcoxon(miss) #-> (T, pvalue) = (8711.0, 0.55024961096028457) #So we do not reject H0 -> There is no significant difference between wt and mut #----------------------------------------------------------------------------- # OUTLIERS FOR AGGREGATION () #----------------------------------------------------------------------------- pred_wt = getColumn(file_wt,3,'\t') pred_mut = getColumn(file_mut,3,'\t') pred_wt.pop(0) pred_mut.pop(0) pred_envt_wt = getColumn(file_wt,4,'\t') pred_envt_mut = getColumn(file_mut,4,'\t') pred_envt_wt.pop(0) pred_envt_mut.pop(0) variant_liste = getColumn(file_wt,0,'\t') output = open('waltz_outliers.csv','w') output.write('ID,agg_wt,agg_mut,difference,agg_envt_wt,agg_envt_mut,difference_envt\n') for i in range(0,len(pred_wt)): for j in range(0,len(pred_mut)): if i==j: if pred_wt[i]!='NA'and pred_mut[j]!='NA': if (abs(float(pred_wt[i])-float(pred_mut[j]))) > 20: output.write(variant_liste[i+1] + ',' + pred_wt[i] + ',' + pred_mut[j] + ',' + str(abs(float(pred_wt[i])-float(pred_mut[j]))) + ',' + pred_envt_wt[i] + ',' + pred_envt_mut[i] + ',' + str(abs(float(pred_envt_wt[i])-float(pred_envt_mut[j]))) + '\n') output.close() #------------------------------------------------------------------------------- #COMPARISON WITH NETSURFP RSA #------------------------------------------------------------------------------- W_wt = pd.read_csv(file_wt,'\t') W_mut = pd.read_csv(file_mut,'\t') W_wt['DWaltz'] = '' W_wt['DWaltz'] = W_wt.aggregation - W_mut.aggregation W_wt['DWaltz_envt'] = '' W_wt['DWaltz_envt'] = W_wt.aggregation_envt - W_mut.aggregation_envt W_wt = W_wt.drop(['aggregation','aggregation_envt'], 1) W_wt.to_csv('waltzresults_compare.csv', index=False) #RESIDUE waltz = getColumn('waltzresults_compare.csv',3,',') waltz.pop(0) netsurfp = getColumn('netsurfpresults_compare.csv',3,',') netsurfp.pop(0) x,y=[],[] for i in range(0,len(netsurfp)): #min=-0.183 and max=0.302 if netsurfp[i]=='': x.append(np.nan) else: x.append(float(netsurfp[i])) for i in range(0,len(waltz)): #min=-98.862207 and max=98.327759 if waltz[i]=='': y.append(np.nan) else: y.append(float(waltz[i])) fig = plt.figure() plt.scatter(x, y,edgecolor = 'none', c= 'k') plt.grid('on') plt.xlim(-0.4,0.4) plt.ylim(-100,100) plt.xlabel('delta(Solvent accessibility prediction) by NetSurfP') plt.ylabel('delta(Aggregation conformation prediction) by Waltz') fig.savefig('WaltzVSnetsurfp.jpg') #ENVIRONMENT waltz_envt = getColumn('waltzresults_compare.csv',4,',') waltz_envt.pop(0) netsurfp_envt = getColumn('netsurfpresults_compare.csv',4,',') netsurfp_envt.pop(0) x,y=[],[] for i in range(0,len(netsurfp_envt)): #min=-0.183 and max=0.302 if netsurfp_envt[i]=='': x.append(np.nan) else: x.append(float(netsurfp_envt[i])) for i in range(0,len(waltz_envt)): #min=-98.862207 and max=98.327759 if waltz_envt[i]=='': y.append(np.nan) else: y.append(float(waltz_envt[i])) fig = plt.figure() plt.scatter(x, y,edgecolor = 'none', c= 'k') plt.grid('on') plt.xlim(-0.4,0.4) plt.ylim(-100,100) plt.xlabel('delta(Solvent accessibility prediction) by NetSurfP') plt.ylabel('delta(Aggregation conformation prediction) by Waltz') fig.savefig('WaltzVSnetsurfp_envt.jpg')
mit
satishgoda/bokeh
examples/plotting/file/unemployment.py
46
1846
from collections import OrderedDict import numpy as np from bokeh.plotting import ColumnDataSource, figure, show, output_file from bokeh.models import HoverTool from bokeh.sampledata.unemployment1948 import data # Read in the data with pandas. Convert the year column to string data['Year'] = [str(x) for x in data['Year']] years = list(data['Year']) months = ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"] data = data.set_index('Year') # this is the colormap from the original plot colors = [ "#75968f", "#a5bab7", "#c9d9d3", "#e2e2e2", "#dfccce", "#ddb7b1", "#cc7878", "#933b41", "#550b1d" ] # Set up the data for plotting. We will need to have values for every # pair of year/month names. Map the rate to a color. month = [] year = [] color = [] rate = [] for y in years: for m in months: month.append(m) year.append(y) monthly_rate = data[m][y] rate.append(monthly_rate) color.append(colors[min(int(monthly_rate)-2, 8)]) source = ColumnDataSource( data=dict(month=month, year=year, color=color, rate=rate) ) output_file('unemployment.html') TOOLS = "resize,hover,save,pan,box_zoom,wheel_zoom" p = figure(title="US Unemployment (1948 - 2013)", x_range=years, y_range=list(reversed(months)), x_axis_location="above", plot_width=900, plot_height=400, toolbar_location="left", tools=TOOLS) p.rect("year", "month", 1, 1, source=source, color="color", line_color=None) p.grid.grid_line_color = None p.axis.axis_line_color = None p.axis.major_tick_line_color = None p.axis.major_label_text_font_size = "5pt" p.axis.major_label_standoff = 0 p.xaxis.major_label_orientation = np.pi/3 hover = p.select(dict(type=HoverTool)) hover.tooltips = OrderedDict([ ('date', '@month @year'), ('rate', '@rate'), ]) show(p) # show the plot
bsd-3-clause
tyler-abbot/psid_py
setup.py
1
2486
"""A setup module for psidPy Based on the pypa sample project. A tool to download data and build psid panels based on psidR by Florian Oswald. See: https://github.com/floswald/psidR https://github.com/tyler-abbot/psidPy """ from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the relevant file with open(path.join(here, 'DESCRIPTION.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='psid_py', version='1.0.2', description='A tool to build PSID panels.', # The project's main homepage url='https://github.com/tyler-abbot/psidPy', # Author details author='Tyler Abbot', author_email='tyler.abbot@sciencespo.fr', # Licensing information license='MIT', classifiers=[ #How mature is this project? # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Information Analysis', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4'], # What does your project relate to? keywords='statistics econometrics data', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(exclude=['contrib', 'docs', 'tests*']), # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=['requests', 'pandas', 'beautifulsoup4'], )
mit
gfyoung/pandas
pandas/tests/indexes/common.py
2
28221
import gc from typing import Type import numpy as np import pytest from pandas._libs import iNaT from pandas.errors import InvalidIndexError from pandas.core.dtypes.common import is_datetime64tz_dtype from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( CategoricalIndex, DatetimeIndex, Index, Int64Index, IntervalIndex, MultiIndex, PeriodIndex, RangeIndex, Series, TimedeltaIndex, UInt64Index, isna, ) import pandas._testing as tm from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin class Base: """ base class for index sub-class tests """ _holder: Type[Index] _compat_props = ["shape", "ndim", "size", "nbytes"] def create_index(self) -> Index: raise NotImplementedError("Method not implemented") def test_pickle_compat_construction(self): # need an object to create with msg = ( r"Index\(\.\.\.\) must be called with a collection of some " r"kind, None was passed|" r"__new__\(\) missing 1 required positional argument: 'data'|" r"__new__\(\) takes at least 2 arguments \(1 given\)" ) with pytest.raises(TypeError, match=msg): self._holder() @pytest.mark.parametrize("name", [None, "new_name"]) def test_to_frame(self, name): # see GH-15230, GH-22580 idx = self.create_index() if name: idx_name = name else: idx_name = idx.name or 0 df = idx.to_frame(name=idx_name) assert df.index is idx assert len(df.columns) == 1 assert df.columns[0] == idx_name assert df[idx_name].values is not idx.values df = idx.to_frame(index=False, name=idx_name) assert df.index is not idx def test_shift(self): # GH8083 test the base class for shift idx = self.create_index() msg = ( f"This method is only implemented for DatetimeIndex, PeriodIndex and " f"TimedeltaIndex; Got type {type(idx).__name__}" ) with pytest.raises(NotImplementedError, match=msg): idx.shift(1) with pytest.raises(NotImplementedError, match=msg): idx.shift(1, 2) def test_constructor_name_unhashable(self): # GH#29069 check that name is hashable # See also same-named test in tests.series.test_constructors idx = self.create_index() with pytest.raises(TypeError, match="Index.name must be a hashable type"): type(idx)(idx, name=[]) def test_create_index_existing_name(self): # GH11193, when an existing index is passed, and a new name is not # specified, the new index should inherit the previous object name expected = self.create_index() if not isinstance(expected, MultiIndex): expected.name = "foo" result = Index(expected) tm.assert_index_equal(result, expected) result = Index(expected, name="bar") expected.name = "bar" tm.assert_index_equal(result, expected) else: expected.names = ["foo", "bar"] result = Index(expected) tm.assert_index_equal( result, Index( Index( [ ("foo", "one"), ("foo", "two"), ("bar", "one"), ("baz", "two"), ("qux", "one"), ("qux", "two"), ], dtype="object", ), names=["foo", "bar"], ), ) result = Index(expected, names=["A", "B"]) tm.assert_index_equal( result, Index( Index( [ ("foo", "one"), ("foo", "two"), ("bar", "one"), ("baz", "two"), ("qux", "one"), ("qux", "two"), ], dtype="object", ), names=["A", "B"], ), ) def test_numeric_compat(self): idx = self.create_index() # Check that this doesn't cover MultiIndex case, if/when it does, # we can remove multi.test_compat.test_numeric_compat assert not isinstance(idx, MultiIndex) if type(idx) is Index: return typ = type(idx._data).__name__ lmsg = "|".join( [ rf"unsupported operand type\(s\) for \*: '{typ}' and 'int'", "cannot perform (__mul__|__truediv__|__floordiv__) with " f"this index type: {typ}", ] ) with pytest.raises(TypeError, match=lmsg): idx * 1 rmsg = "|".join( [ rf"unsupported operand type\(s\) for \*: 'int' and '{typ}'", "cannot perform (__rmul__|__rtruediv__|__rfloordiv__) with " f"this index type: {typ}", ] ) with pytest.raises(TypeError, match=rmsg): 1 * idx div_err = lmsg.replace("*", "/") with pytest.raises(TypeError, match=div_err): idx / 1 div_err = rmsg.replace("*", "/") with pytest.raises(TypeError, match=div_err): 1 / idx floordiv_err = lmsg.replace("*", "//") with pytest.raises(TypeError, match=floordiv_err): idx // 1 floordiv_err = rmsg.replace("*", "//") with pytest.raises(TypeError, match=floordiv_err): 1 // idx def test_logical_compat(self): idx = self.create_index() with pytest.raises(TypeError, match="cannot perform all"): idx.all() with pytest.raises(TypeError, match="cannot perform any"): idx.any() def test_reindex_base(self): idx = self.create_index() expected = np.arange(idx.size, dtype=np.intp) actual = idx.get_indexer(idx) tm.assert_numpy_array_equal(expected, actual) with pytest.raises(ValueError, match="Invalid fill method"): idx.get_indexer(idx, method="invalid") def test_get_indexer_consistency(self, index): # See GH 16819 if isinstance(index, IntervalIndex): # requires index.is_non_overlapping return if index.is_unique: indexer = index.get_indexer(index[0:2]) assert isinstance(indexer, np.ndarray) assert indexer.dtype == np.intp else: e = "Reindexing only valid with uniquely valued Index objects" with pytest.raises(InvalidIndexError, match=e): index.get_indexer(index[0:2]) indexer, _ = index.get_indexer_non_unique(index[0:2]) assert isinstance(indexer, np.ndarray) assert indexer.dtype == np.intp def test_ndarray_compat_properties(self): idx = self.create_index() assert idx.T.equals(idx) assert idx.transpose().equals(idx) values = idx.values for prop in self._compat_props: assert getattr(idx, prop) == getattr(values, prop) # test for validity idx.nbytes idx.values.nbytes def test_repr_roundtrip(self): idx = self.create_index() tm.assert_index_equal(eval(repr(idx)), idx) def test_repr_max_seq_item_setting(self): # GH10182 idx = self.create_index() idx = idx.repeat(50) with pd.option_context("display.max_seq_items", None): repr(idx) assert "..." not in str(idx) def test_copy_name(self, index): # gh-12309: Check that the "name" argument # passed at initialization is honored. if isinstance(index, MultiIndex): return first = type(index)(index, copy=True, name="mario") second = type(first)(first, copy=False) # Even though "copy=False", we want a new object. assert first is not second # Not using tm.assert_index_equal() since names differ. assert index.equals(first) assert first.name == "mario" assert second.name == "mario" s1 = Series(2, index=first) s2 = Series(3, index=second[:-1]) if not isinstance(index, CategoricalIndex): # See gh-13365 s3 = s1 * s2 assert s3.index.name == "mario" def test_copy_name2(self, index): # gh-35592 if isinstance(index, MultiIndex): return assert index.copy(name="mario").name == "mario" with pytest.raises(ValueError, match="Length of new names must be 1, got 2"): index.copy(name=["mario", "luigi"]) msg = f"{type(index).__name__}.name must be a hashable type" with pytest.raises(TypeError, match=msg): index.copy(name=[["mario"]]) def test_copy_dtype_deprecated(self, index): # GH35853 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): index.copy(dtype=object) def test_ensure_copied_data(self, index): # Check the "copy" argument of each Index.__new__ is honoured # GH12309 init_kwargs = {} if isinstance(index, PeriodIndex): # Needs "freq" specification: init_kwargs["freq"] = index.freq elif isinstance(index, (RangeIndex, MultiIndex, CategoricalIndex)): # RangeIndex cannot be initialized from data # MultiIndex and CategoricalIndex are tested separately return index_type = type(index) result = index_type(index.values, copy=True, **init_kwargs) if is_datetime64tz_dtype(index.dtype): result = result.tz_localize("UTC").tz_convert(index.tz) if isinstance(index, (DatetimeIndex, TimedeltaIndex)): index = index._with_freq(None) tm.assert_index_equal(index, result) if isinstance(index, PeriodIndex): # .values an object array of Period, thus copied result = index_type(ordinal=index.asi8, copy=False, **init_kwargs) tm.assert_numpy_array_equal(index.asi8, result.asi8, check_same="same") elif isinstance(index, IntervalIndex): # checked in test_interval.py pass else: result = index_type(index.values, copy=False, **init_kwargs) tm.assert_numpy_array_equal(index.values, result.values, check_same="same") def test_memory_usage(self, index): index._engine.clear_mapping() result = index.memory_usage() if index.empty: # we report 0 for no-length assert result == 0 return # non-zero length index.get_loc(index[0]) result2 = index.memory_usage() result3 = index.memory_usage(deep=True) # RangeIndex, IntervalIndex # don't have engines if not isinstance(index, (RangeIndex, IntervalIndex)): assert result2 > result if index.inferred_type == "object": assert result3 > result2 def test_argsort(self, request, index): # separately tested if isinstance(index, CategoricalIndex): return result = index.argsort() expected = np.array(index).argsort() tm.assert_numpy_array_equal(result, expected, check_dtype=False) def test_numpy_argsort(self, index): result = np.argsort(index) expected = index.argsort() tm.assert_numpy_array_equal(result, expected) # these are the only two types that perform # pandas compatibility input validation - the # rest already perform separate (or no) such # validation via their 'values' attribute as # defined in pandas.core.indexes/base.py - they # cannot be changed at the moment due to # backwards compatibility concerns if isinstance(type(index), (CategoricalIndex, RangeIndex)): # TODO: why type(index)? msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(index, axis=1) msg = "the 'kind' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(index, kind="mergesort") msg = "the 'order' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(index, order=("a", "b")) def test_repeat(self): rep = 2 i = self.create_index() expected = Index(i.values.repeat(rep), name=i.name) tm.assert_index_equal(i.repeat(rep), expected) i = self.create_index() rep = np.arange(len(i)) expected = Index(i.values.repeat(rep), name=i.name) tm.assert_index_equal(i.repeat(rep), expected) def test_numpy_repeat(self): rep = 2 i = self.create_index() expected = i.repeat(rep) tm.assert_index_equal(np.repeat(i, rep), expected) msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.repeat(i, rep, axis=0) @pytest.mark.parametrize("klass", [list, tuple, np.array, Series]) def test_where(self, klass): i = self.create_index() if isinstance(i, (pd.DatetimeIndex, pd.TimedeltaIndex)): # where does not preserve freq i = i._with_freq(None) cond = [True] * len(i) result = i.where(klass(cond)) expected = i tm.assert_index_equal(result, expected) cond = [False] + [True] * len(i[1:]) expected = Index([i._na_value] + i[1:].tolist(), dtype=i.dtype) result = i.where(klass(cond)) tm.assert_index_equal(result, expected) def test_insert_base(self, index): result = index[1:4] if not len(index): return # test 0th element assert index[0:4].equals(result.insert(0, index[0])) def test_delete_base(self, index): if not len(index): return if isinstance(index, RangeIndex): # tested in class return expected = index[1:] result = index.delete(0) assert result.equals(expected) assert result.name == expected.name expected = index[:-1] result = index.delete(-1) assert result.equals(expected) assert result.name == expected.name length = len(index) msg = f"index {length} is out of bounds for axis 0 with size {length}" with pytest.raises(IndexError, match=msg): index.delete(length) def test_equals(self, index): if isinstance(index, IntervalIndex): # IntervalIndex tested separately, the index.equals(index.astype(object)) # fails for IntervalIndex return assert index.equals(index) assert index.equals(index.copy()) assert index.equals(index.astype(object)) assert not index.equals(list(index)) assert not index.equals(np.array(index)) # Cannot pass in non-int64 dtype to RangeIndex if not isinstance(index, RangeIndex): same_values = Index(index, dtype=object) assert index.equals(same_values) assert same_values.equals(index) if index.nlevels == 1: # do not test MultiIndex assert not index.equals(Series(index)) def test_equals_op(self): # GH9947, GH10637 index_a = self.create_index() n = len(index_a) index_b = index_a[0:-1] index_c = index_a[0:-1].append(index_a[-2:-1]) index_d = index_a[0:1] msg = "Lengths must match|could not be broadcast" with pytest.raises(ValueError, match=msg): index_a == index_b expected1 = np.array([True] * n) expected2 = np.array([True] * (n - 1) + [False]) tm.assert_numpy_array_equal(index_a == index_a, expected1) tm.assert_numpy_array_equal(index_a == index_c, expected2) # test comparisons with numpy arrays array_a = np.array(index_a) array_b = np.array(index_a[0:-1]) array_c = np.array(index_a[0:-1].append(index_a[-2:-1])) array_d = np.array(index_a[0:1]) with pytest.raises(ValueError, match=msg): index_a == array_b tm.assert_numpy_array_equal(index_a == array_a, expected1) tm.assert_numpy_array_equal(index_a == array_c, expected2) # test comparisons with Series series_a = Series(array_a) series_b = Series(array_b) series_c = Series(array_c) series_d = Series(array_d) with pytest.raises(ValueError, match=msg): index_a == series_b tm.assert_numpy_array_equal(index_a == series_a, expected1) tm.assert_numpy_array_equal(index_a == series_c, expected2) # cases where length is 1 for one of them with pytest.raises(ValueError, match="Lengths must match"): index_a == index_d with pytest.raises(ValueError, match="Lengths must match"): index_a == series_d with pytest.raises(ValueError, match="Lengths must match"): index_a == array_d msg = "Can only compare identically-labeled Series objects" with pytest.raises(ValueError, match=msg): series_a == series_d with pytest.raises(ValueError, match="Lengths must match"): series_a == array_d # comparing with a scalar should broadcast; note that we are excluding # MultiIndex because in this case each item in the index is a tuple of # length 2, and therefore is considered an array of length 2 in the # comparison instead of a scalar if not isinstance(index_a, MultiIndex): expected3 = np.array([False] * (len(index_a) - 2) + [True, False]) # assuming the 2nd to last item is unique in the data item = index_a[-2] tm.assert_numpy_array_equal(index_a == item, expected3) # For RangeIndex we can convert to Int64Index tm.assert_series_equal(series_a == item, Series(expected3)) def test_format(self): # GH35439 idx = self.create_index() expected = [str(x) for x in idx] assert idx.format() == expected def test_format_empty(self): # GH35712 empty_idx = self._holder([]) assert empty_idx.format() == [] assert empty_idx.format(name=True) == [""] def test_hasnans_isnans(self, index): # GH 11343, added tests for hasnans / isnans if isinstance(index, MultiIndex): return # cases in indices doesn't include NaN idx = index.copy(deep=True) expected = np.array([False] * len(idx), dtype=bool) tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans is False idx = index.copy(deep=True) values = np.asarray(idx.values) if len(index) == 0: return elif isinstance(index, DatetimeIndexOpsMixin): values[1] = iNaT elif isinstance(index, (Int64Index, UInt64Index)): return else: values[1] = np.nan if isinstance(index, PeriodIndex): idx = type(index)(values, freq=index.freq) else: idx = type(index)(values) expected = np.array([False] * len(idx), dtype=bool) expected[1] = True tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans is True def test_fillna(self, index): # GH 11343 if len(index) == 0: pass elif isinstance(index, MultiIndex): idx = index.copy(deep=True) msg = "isna is not defined for MultiIndex" with pytest.raises(NotImplementedError, match=msg): idx.fillna(idx[0]) else: idx = index.copy(deep=True) result = idx.fillna(idx[0]) tm.assert_index_equal(result, idx) assert result is not idx msg = "'value' must be a scalar, passed: " with pytest.raises(TypeError, match=msg): idx.fillna([idx[0]]) idx = index.copy(deep=True) values = np.asarray(idx.values) if isinstance(index, DatetimeIndexOpsMixin): values[1] = iNaT elif isinstance(index, (Int64Index, UInt64Index)): return else: values[1] = np.nan if isinstance(index, PeriodIndex): idx = type(index)(values, freq=index.freq) else: idx = type(index)(values) expected = np.array([False] * len(idx), dtype=bool) expected[1] = True tm.assert_numpy_array_equal(idx._isnan, expected) assert idx.hasnans is True def test_nulls(self, index): # this is really a smoke test for the methods # as these are adequately tested for function elsewhere if len(index) == 0: tm.assert_numpy_array_equal(index.isna(), np.array([], dtype=bool)) elif isinstance(index, MultiIndex): idx = index.copy() msg = "isna is not defined for MultiIndex" with pytest.raises(NotImplementedError, match=msg): idx.isna() elif not index.hasnans: tm.assert_numpy_array_equal(index.isna(), np.zeros(len(index), dtype=bool)) tm.assert_numpy_array_equal(index.notna(), np.ones(len(index), dtype=bool)) else: result = isna(index) tm.assert_numpy_array_equal(index.isna(), result) tm.assert_numpy_array_equal(index.notna(), ~result) def test_empty(self): # GH 15270 index = self.create_index() assert not index.empty assert index[:0].empty def test_join_self_unique(self, join_type): index = self.create_index() if index.is_unique: joined = index.join(index, how=join_type) assert (index == joined).all() def test_map(self): # callable index = self.create_index() # we don't infer UInt64 if isinstance(index, pd.UInt64Index): expected = index.astype("int64") else: expected = index result = index.map(lambda x: x) # For RangeIndex we convert to Int64Index tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "mapper", [ lambda values, index: {i: e for e, i in zip(values, index)}, lambda values, index: Series(values, index), ], ) def test_map_dictlike(self, mapper): index = self.create_index() if isinstance(index, (pd.CategoricalIndex, pd.IntervalIndex)): pytest.skip(f"skipping tests for {type(index)}") identity = mapper(index.values, index) # we don't infer to UInt64 for a dict if isinstance(index, pd.UInt64Index) and isinstance(identity, dict): expected = index.astype("int64") else: expected = index result = index.map(identity) # For RangeIndex we convert to Int64Index tm.assert_index_equal(result, expected) # empty mappable expected = Index([np.nan] * len(index)) result = index.map(mapper(expected, index)) tm.assert_index_equal(result, expected) def test_map_str(self): # GH 31202 index = self.create_index() result = index.map(str) expected = Index([str(x) for x in index], dtype=object) tm.assert_index_equal(result, expected) def test_putmask_with_wrong_mask(self): # GH18368 index = self.create_index() fill = index[0] msg = "putmask: mask and data must be the same size" with pytest.raises(ValueError, match=msg): index.putmask(np.ones(len(index) + 1, np.bool_), fill) with pytest.raises(ValueError, match=msg): index.putmask(np.ones(len(index) - 1, np.bool_), fill) with pytest.raises(ValueError, match=msg): index.putmask("foo", fill) @pytest.mark.parametrize("copy", [True, False]) @pytest.mark.parametrize("name", [None, "foo"]) @pytest.mark.parametrize("ordered", [True, False]) def test_astype_category(self, copy, name, ordered): # GH 18630 index = self.create_index() if name: index = index.rename(name) # standard categories dtype = CategoricalDtype(ordered=ordered) result = index.astype(dtype, copy=copy) expected = CategoricalIndex(index.values, name=name, ordered=ordered) tm.assert_index_equal(result, expected) # non-standard categories dtype = CategoricalDtype(index.unique().tolist()[:-1], ordered) result = index.astype(dtype, copy=copy) expected = CategoricalIndex(index.values, name=name, dtype=dtype) tm.assert_index_equal(result, expected) if ordered is False: # dtype='category' defaults to ordered=False, so only test once result = index.astype("category", copy=copy) expected = CategoricalIndex(index.values, name=name) tm.assert_index_equal(result, expected) def test_is_unique(self): # initialize a unique index index = self.create_index().drop_duplicates() assert index.is_unique is True # empty index should be unique index_empty = index[:0] assert index_empty.is_unique is True # test basic dupes index_dup = index.insert(0, index[0]) assert index_dup.is_unique is False # single NA should be unique index_na = index.insert(0, np.nan) assert index_na.is_unique is True # multiple NA should not be unique index_na_dup = index_na.insert(0, np.nan) assert index_na_dup.is_unique is False @pytest.mark.arm_slow def test_engine_reference_cycle(self): # GH27585 index = self.create_index() nrefs_pre = len(gc.get_referrers(index)) index._engine assert len(gc.get_referrers(index)) == nrefs_pre def test_getitem_2d_deprecated(self): # GH#30588 idx = self.create_index() with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): res = idx[:, None] assert isinstance(res, np.ndarray), type(res) def test_contains_requires_hashable_raises(self): idx = self.create_index() msg = "unhashable type: 'list'" with pytest.raises(TypeError, match=msg): [] in idx msg = "|".join( [ r"unhashable type: 'dict'", r"must be real number, not dict", r"an integer is required", r"\{\}", r"pandas\._libs\.interval\.IntervalTree' is not iterable", ] ) with pytest.raises(TypeError, match=msg): {} in idx._engine def test_copy_shares_cache(self): # GH32898, GH36840 idx = self.create_index() idx.get_loc(idx[0]) # populates the _cache. copy = idx.copy() assert copy._cache is idx._cache def test_shallow_copy_shares_cache(self): # GH32669, GH36840 idx = self.create_index() idx.get_loc(idx[0]) # populates the _cache. shallow_copy = idx._shallow_copy() assert shallow_copy._cache is idx._cache shallow_copy = idx._shallow_copy(idx._data) assert shallow_copy._cache is not idx._cache assert shallow_copy._cache == {}
bsd-3-clause
helloworldajou/webserver
demos/classifier_webcam.py
4
7059
#!/usr/bin/env python2 # # Example to run classifier on webcam stream. # Brandon Amos & Vijayenthiran # 2016/06/21 # # Copyright 2015-2016 Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Contrib: Vijayenthiran # This example file shows to run a classifier on webcam stream. You need to # run the classifier.py to generate classifier with your own dataset. # To run this file from the openface home dir: # ./demo/classifier_webcam.py <path-to-your-classifier> import time start = time.time() import argparse import cv2 import os import pickle import sys import numpy as np np.set_printoptions(precision=2) from sklearn.mixture import GMM import openface fileDir = os.path.dirname(os.path.realpath(__file__)) modelDir = os.path.join(fileDir, '..', 'models') dlibModelDir = os.path.join(modelDir, 'dlib') openfaceModelDir = os.path.join(modelDir, 'openface') def getRep(bgrImg): start = time.time() if bgrImg is None: raise Exception("Unable to load image/frame") rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB) if args.verbose: print(" + Original size: {}".format(rgbImg.shape)) if args.verbose: print("Loading the image took {} seconds.".format(time.time() - start)) start = time.time() # Get the largest face bounding box # bb = align.getLargestFaceBoundingBox(rgbImg) #Bounding box # Get all bounding boxes bb = align.getAllFaceBoundingBoxes(rgbImg) if bb is None: # raise Exception("Unable to find a face: {}".format(imgPath)) return None if args.verbose: print("Face detection took {} seconds.".format(time.time() - start)) start = time.time() alignedFaces = [] for box in bb: alignedFaces.append( align.align( args.imgDim, rgbImg, box, landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)) if alignedFaces is None: raise Exception("Unable to align the frame") if args.verbose: print("Alignment took {} seconds.".format(time.time() - start)) start = time.time() reps = [] for alignedFace in alignedFaces: reps.append(net.forward(alignedFace)) if args.verbose: print("Neural network forward pass took {} seconds.".format( time.time() - start)) # print (reps) return reps def infer(img, args): with open(args.classifierModel, 'r') as f: if sys.version_info[0] < 3: (le, clf) = pickle.load(f) # le - label and clf - classifer else: (le, clf) = pickle.load(f, encoding='latin1') # le - label and clf - classifer reps = getRep(img) persons = [] confidences = [] for rep in reps: try: rep = rep.reshape(1, -1) except: print ("No Face detected") return (None, None) start = time.time() predictions = clf.predict_proba(rep).ravel() # print (predictions) maxI = np.argmax(predictions) # max2 = np.argsort(predictions)[-3:][::-1][1] persons.append(le.inverse_transform(maxI)) # print (str(le.inverse_transform(max2)) + ": "+str( predictions [max2])) # ^ prints the second prediction confidences.append(predictions[maxI]) if args.verbose: print("Prediction took {} seconds.".format(time.time() - start)) pass # print("Predict {} with {:.2f} confidence.".format(person.decode('utf-8'), confidence)) if isinstance(clf, GMM): dist = np.linalg.norm(rep - clf.means_[maxI]) print(" + Distance from the mean: {}".format(dist)) pass return (persons, confidences) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--dlibFacePredictor', type=str, help="Path to dlib's face predictor.", default=os.path.join( dlibModelDir, "shape_predictor_68_face_landmarks.dat")) parser.add_argument( '--networkModel', type=str, help="Path to Torch network model.", default=os.path.join( openfaceModelDir, 'nn4.small2.v1.t7')) parser.add_argument('--imgDim', type=int, help="Default image dimension.", default=96) parser.add_argument( '--captureDevice', type=int, default=0, help='Capture device. 0 for latop webcam and 1 for usb webcam') parser.add_argument('--width', type=int, default=320) parser.add_argument('--height', type=int, default=240) parser.add_argument('--threshold', type=float, default=0.5) parser.add_argument('--cuda', action='store_true') parser.add_argument('--verbose', action='store_true') parser.add_argument( 'classifierModel', type=str, help='The Python pickle representing the classifier. This is NOT the Torch network model, which can be set with --networkModel.') args = parser.parse_args() align = openface.AlignDlib(args.dlibFacePredictor) net = openface.TorchNeuralNet( args.networkModel, imgDim=args.imgDim, cuda=args.cuda) # Capture device. Usually 0 will be webcam and 1 will be usb cam. video_capture = cv2.VideoCapture(args.captureDevice) video_capture.set(3, args.width) video_capture.set(4, args.height) confidenceList = [] while True: ret, frame = video_capture.read() persons, confidences = infer(frame, args) print ("P: " + str(persons) + " C: " + str(confidences)) try: # append with two floating point precision confidenceList.append('%.2f' % confidences[0]) except: # If there is no face detected, confidences matrix will be empty. # We can simply ignore it. pass for i, c in enumerate(confidences): if c <= args.threshold: # 0.5 is kept as threshold for known face. persons[i] = "_unknown" # Print the person name and conf value on the frame cv2.putText(frame, "P: {} C: {}".format(persons, confidences), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) cv2.imshow('', frame) # quit the program on the press of key 'q' if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything is done, release the capture video_capture.release() cv2.destroyAllWindows()
apache-2.0
roxyboy/scikit-learn
sklearn/mixture/tests/test_dpgmm.py
261
4490
import unittest import sys import numpy as np from sklearn.mixture import DPGMM, VBGMM from sklearn.mixture.dpgmm import log_normalize from sklearn.datasets import make_blobs from sklearn.utils.testing import assert_array_less, assert_equal from sklearn.mixture.tests.test_gmm import GMMTester from sklearn.externals.six.moves import cStringIO as StringIO np.seterr(all='warn') def test_class_weights(): # check that the class weights are updated # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50) dpgmm.fit(X) # get indices of components that are used: indices = np.unique(dpgmm.predict(X)) active = np.zeros(10, dtype=np.bool) active[indices] = True # used components are important assert_array_less(.1, dpgmm.weights_[active]) # others are not assert_array_less(dpgmm.weights_[~active], .05) def test_verbose_boolean(): # checks that the output for the verbose output is the same # for the flag values '1' and 'True' # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm_bool = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=True) dpgmm_int = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: # generate output with the boolean flag dpgmm_bool.fit(X) verbose_output = sys.stdout verbose_output.seek(0) bool_output = verbose_output.readline() # generate output with the int flag dpgmm_int.fit(X) verbose_output = sys.stdout verbose_output.seek(0) int_output = verbose_output.readline() assert_equal(bool_output, int_output) finally: sys.stdout = old_stdout def test_verbose_first_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout def test_log_normalize(): v = np.array([0.1, 0.8, 0.01, 0.09]) a = np.log(2 * v) assert np.allclose(v, log_normalize(a), rtol=0.01) def do_model(self, **kwds): return VBGMM(verbose=False, **kwds) class DPGMMTester(GMMTester): model = DPGMM do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestDPGMMWithSphericalCovars(unittest.TestCase, DPGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestDPGMMWithDiagCovars(unittest.TestCase, DPGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestDPGMMWithTiedCovars(unittest.TestCase, DPGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestDPGMMWithFullCovars(unittest.TestCase, DPGMMTester): covariance_type = 'full' setUp = GMMTester._setUp class VBGMMTester(GMMTester): model = do_model do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestVBGMMWithSphericalCovars(unittest.TestCase, VBGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestVBGMMWithDiagCovars(unittest.TestCase, VBGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestVBGMMWithTiedCovars(unittest.TestCase, VBGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestVBGMMWithFullCovars(unittest.TestCase, VBGMMTester): covariance_type = 'full' setUp = GMMTester._setUp
bsd-3-clause
pp-mo/iris
lib/iris/quickplot.py
2
9074
# Copyright Iris contributors # # This file is part of Iris and is released under the LGPL license. # See COPYING and COPYING.LESSER in the root of the repository for full # licensing details. """ High-level plotting extensions to :mod:`iris.plot`. These routines work much like their :mod:`iris.plot` counterparts, but they automatically add a plot title, axis titles, and a colour bar when appropriate. See also: :ref:`matplotlib <matplotlib:users-guide-index>`. """ import cf_units import matplotlib.pyplot as plt import iris.config import iris.coords import iris.plot as iplt def _use_symbol(units): # For non-time units use the shortest unit representation. # E.g. prefer 'K' over 'kelvin', but not '0.0174532925199433 rad' # over 'degrees' return ( not units.is_time() and not units.is_time_reference() and len(units.symbol) < len(str(units)) ) def _title(cube_or_coord, with_units): if cube_or_coord is None or isinstance(cube_or_coord, int): title = "" else: title = cube_or_coord.name().replace("_", " ").capitalize() units = cube_or_coord.units if with_units and not ( units.is_unknown() or units.is_no_unit() or units == cf_units.Unit("1") ): if _use_symbol(units): units = units.symbol title += " / {}".format(units) return title def _label(cube, mode, result=None, ndims=2, coords=None, axes=None): """Puts labels on the current plot using the given cube.""" if axes is None: axes = plt.gca() axes.set_title(_title(cube, with_units=False)) if result is not None: draw_edges = mode == iris.coords.POINT_MODE bar = plt.colorbar( result, orientation="horizontal", drawedges=draw_edges ) has_known_units = not ( cube.units.is_unknown() or cube.units.is_no_unit() ) if has_known_units and cube.units != cf_units.Unit("1"): # Use shortest unit representation for anything other than time if _use_symbol(cube.units): bar.set_label(cube.units.symbol) else: bar.set_label(cube.units) # Remove the tick which is put on the colorbar by default. bar.ax.tick_params(length=0) if coords is None: plot_defn = iplt._get_plot_defn(cube, mode, ndims) else: plot_defn = iplt._get_plot_defn_custom_coords_picked( cube, coords, mode, ndims=ndims ) if ndims == 2: if not iplt._can_draw_map(plot_defn.coords): axes.set_ylabel(_title(plot_defn.coords[0], with_units=True)) axes.set_xlabel(_title(plot_defn.coords[1], with_units=True)) elif ndims == 1: axes.set_xlabel(_title(plot_defn.coords[0], with_units=True)) axes.set_ylabel(_title(cube, with_units=True)) else: msg = ( "Unexpected number of dimensions ({}) given to " "_label.".format(ndims) ) raise ValueError(msg) def _label_with_bounds(cube, result=None, ndims=2, coords=None, axes=None): _label(cube, iris.coords.BOUND_MODE, result, ndims, coords, axes) def _label_with_points(cube, result=None, ndims=2, coords=None, axes=None): _label(cube, iris.coords.POINT_MODE, result, ndims, coords, axes) def _get_titles(u_object, v_object): if u_object is None: u_object = iplt._u_object_from_v_object(v_object) xunits = u_object is not None and not u_object.units.is_time_reference() yunits = not v_object.units.is_time_reference() xlabel = _title(u_object, with_units=xunits) ylabel = _title(v_object, with_units=yunits) title = "" if u_object is None: title = _title(v_object, with_units=False) elif isinstance(u_object, iris.cube.Cube) and not isinstance( v_object, iris.cube.Cube ): title = _title(u_object, with_units=False) elif isinstance(v_object, iris.cube.Cube) and not isinstance( u_object, iris.cube.Cube ): title = _title(v_object, with_units=False) return xlabel, ylabel, title def _label_1d_plot(*args, **kwargs): if len(args) > 1 and isinstance( args[1], (iris.cube.Cube, iris.coords.Coord) ): xlabel, ylabel, title = _get_titles(*args[:2]) else: xlabel, ylabel, title = _get_titles(None, args[0]) axes = kwargs.pop("axes", None) if len(kwargs) != 0: msg = "Unexpected kwargs {} given to _label_1d_plot".format( kwargs.keys() ) raise ValueError(msg) if axes is None: axes = plt.gca() axes.set_title(title) axes.set_xlabel(xlabel) axes.set_ylabel(ylabel) def contour(cube, *args, **kwargs): """ Draws contour lines on a labelled plot based on the given Cube. With the basic call signature, contour "level" values are chosen automatically:: contour(cube) Supply a number to use *N* automatically chosen levels:: contour(cube, N) Supply a sequence *V* to use explicitly defined levels:: contour(cube, V) See :func:`iris.plot.contour` for details of valid keyword arguments. """ coords = kwargs.get("coords") axes = kwargs.get("axes") result = iplt.contour(cube, *args, **kwargs) _label_with_points(cube, coords=coords, axes=axes) return result def contourf(cube, *args, **kwargs): """ Draws filled contours on a labelled plot based on the given Cube. With the basic call signature, contour "level" values are chosen automatically:: contour(cube) Supply a number to use *N* automatically chosen levels:: contour(cube, N) Supply a sequence *V* to use explicitly defined levels:: contour(cube, V) See :func:`iris.plot.contourf` for details of valid keyword arguments. """ coords = kwargs.get("coords") axes = kwargs.get("axes") result = iplt.contourf(cube, *args, **kwargs) _label_with_points(cube, result, coords=coords, axes=axes) return result def outline(cube, coords=None, color="k", linewidth=None, axes=None): """ Draws cell outlines on a labelled plot based on the given Cube. Kwargs: * coords: list of :class:`~iris.coords.Coord` objects or coordinate names Use the given coordinates as the axes for the plot. The order of the given coordinates indicates which axis to use for each, where the first element is the horizontal axis of the plot and the second element is the vertical axis of the plot. * color: None or mpl color The color of the cell outlines. If None, the matplotlibrc setting patch.edgecolor is used by default. * linewidth: None or number The width of the lines showing the cell outlines. If None, the default width in patch.linewidth in matplotlibrc is used. """ result = iplt.outline( cube, color=color, linewidth=linewidth, coords=coords, axes=axes ) _label_with_bounds(cube, coords=coords, axes=axes) return result def pcolor(cube, *args, **kwargs): """ Draws a labelled pseudocolor plot based on the given Cube. See :func:`iris.plot.pcolor` for details of valid keyword arguments. """ coords = kwargs.get("coords") axes = kwargs.get("axes") result = iplt.pcolor(cube, *args, **kwargs) _label_with_bounds(cube, result, coords=coords, axes=axes) return result def pcolormesh(cube, *args, **kwargs): """ Draws a labelled pseudocolour plot based on the given Cube. See :func:`iris.plot.pcolormesh` for details of valid keyword arguments. """ coords = kwargs.get("coords") axes = kwargs.get("axes") result = iplt.pcolormesh(cube, *args, **kwargs) _label_with_bounds(cube, result, coords=coords, axes=axes) return result def points(cube, *args, **kwargs): """ Draws sample point positions on a labelled plot based on the given Cube. See :func:`iris.plot.points` for details of valid keyword arguments. """ coords = kwargs.get("coords") axes = kwargs.get("axes") result = iplt.points(cube, *args, **kwargs) _label_with_points(cube, coords=coords, axes=axes) return result def plot(*args, **kwargs): """ Draws a labelled line plot based on the given cube(s) or coordinate(s). See :func:`iris.plot.plot` for details of valid arguments and keyword arguments. """ axes = kwargs.get("axes") result = iplt.plot(*args, **kwargs) _label_1d_plot(*args, axes=axes) return result def scatter(x, y, *args, **kwargs): """ Draws a labelled scatter plot based on the given cubes or coordinates. See :func:`iris.plot.scatter` for details of valid arguments and keyword arguments. """ axes = kwargs.get("axes") result = iplt.scatter(x, y, *args, **kwargs) _label_1d_plot(x, y, axes=axes) return result # Provide a convenience show method from pyplot. show = plt.show
lgpl-3.0
igabriel85/dmon-adp
misc/keras_test.py
1
1530
import numpy import pandas as pd from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasClassifier from keras.utils import np_utils from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import Pipeline import os, sys # fix random seed for reproducibility seed = 7 numpy.random.seed(seed) dataDir = os.path.join(os.path.dirname(os.path.abspath('')), 'data') # load dataset dataframe = pd.read_csv(os.path.join(dataDir, 'iris.csv')) dataset = dataframe.values X = dataset[:,0:4].astype(float) Y = dataset[:,4] # print Y # encode class values as integers encoder = LabelEncoder() encoder.fit(Y) encoded_Y = encoder.transform(Y) # convert integers to dummy variables (i.e. one hot encoded) dummy_y = np_utils.to_categorical(encoded_Y) # print dummy_y # define baseline model def baseline_model(): # create model model = Sequential() model.add(Dense(8, input_dim=4, activation='relu')) model.add(Dense(3, activation='softmax')) # Compile model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model estimator = KerasClassifier(build_fn=baseline_model, epochs=200, batch_size=20, verbose=1) kfold = KFold(n_splits=10, shuffle=True, random_state=seed) results = cross_val_score(estimator, X, dummy_y, cv=kfold) print("Baseline: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
apache-2.0
MalkIPP/ipp_work
ipp_work/simulations/ir_marg_rate.py
1
8481
# -*- coding: utf-8 -*- # OpenFisca -- A versatile microsimulation software # By: OpenFisca Team <contact@openfisca.fr> # # Copyright (C) 2011, 2012, 2013, 2014, 2015 OpenFisca Team # https://github.com/openfisca # # This file is part of OpenFisca. # # OpenFisca is free software; you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # OpenFisca is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import pandas import logging import openfisca_france_data from openfisca_france_data.input_data_builders import get_input_data_frame from openfisca_france_data.surveys import SurveyScenario from openfisca_core.rates import average_rate from ipp_work.utils import from_simulation_to_data_frame_by_entity_key_plural log = logging.getLogger(__name__) def from_input_df_to_entity_key_plural_df(input_data_frame, tax_benefit_system, simulation, used_as_input_variables = None): ''' En entrée il faut: une input_data_frame une liste des variables nécessaires et leurs entités => il faut le tax_benefit_system Objectif: créer une input_data_frame_by_entity_key_plural Il faut ensuite créer une 2e fonction qui transforme cette df en Array ''' assert input_data_frame is not None assert tax_benefit_system is not None id_variables = [ entity.index_for_person_variable_name for entity in simulation.entity_by_key_singular.values() if not entity.is_persons_entity] role_variables = [ entity.role_for_person_variable_name for entity in simulation.entity_by_key_singular.values() if not entity.is_persons_entity] column_by_name = tax_benefit_system.column_by_name # Check 1 (ici ou dans la méthode de classe ?) for column_name in input_data_frame: if column_name not in column_by_name: log.info('Unknown column "{}" in survey, dropped from input table'.format(column_name)) # waiting for the new pandas version to hit Travis repo input_data_frame = input_data_frame.drop(column_name, axis = 1) # , inplace = True) # TODO: effet de bords ? # Check 2 (ici ou dans la méthode de classe ?) for column_name in input_data_frame: if column_name in id_variables + role_variables: continue #TODO: make that work ? (MG, may 15) # if column_by_name[column_name].formula_class.function is not None: # if column_name in column_by_name.used_as_input_variables: # log.info( # 'Column "{}" not dropped because present in used_as_input_variabels'.format(column_name)) # continue # # log.info('Column "{}" in survey set to be calculated, dropped from input table'.format(column_name)) # input_data_frame = input_data_frame.drop(column_name, axis = 1) # , inplace = True) # TODO: effet de bords ? # Work on entities for entity in simulation.entity_by_key_singular.values(): if entity.is_persons_entity: entity.count = entity.step_size = len(input_data_frame) else: entity.count = entity.step_size = (input_data_frame[entity.role_for_person_variable_name] == 0).sum() entity.roles_count = input_data_frame[entity.role_for_person_variable_name].max() + 1 # Classify column by entity: columns_by_entity = {} columns_by_entity['individu'] = [] columns_by_entity['quifam'] = [] columns_by_entity['quifoy'] = [] columns_by_entity['quimen'] = [] for column_name, column_serie in input_data_frame.iteritems(): holder = simulation.get_or_new_holder(column_name) entity = holder.entity if entity.is_persons_entity: columns_by_entity['individu'].append(column_name) else: columns_by_entity[entity.role_for_person_variable_name].append(column_name) input_data_frame_by_entity_key_plural = {} for entity in simulation.entity_by_key_singular.values(): if entity.is_persons_entity: input_data_frame_by_entity_key_plural['individus'] = \ input_data_frame[columns_by_entity['individu']] entity.count = entity.step_size = len(input_data_frame) else: input_data_frame_by_entity_key_plural[entity.index_for_person_variable_name] = \ input_data_frame[columns_by_entity[entity.role_for_person_variable_name]][input_data_frame[entity.role_for_person_variable_name] == 0] return input_data_frame_by_entity_key_plural def marginal_rate_survey(df, target = None, target_2 = None, varying = None, varying_2 = None): # target: numerator, varying: denominator return 1 - (df[target] - df[target_2]) / (df[varying] - df[varying_2]) def varying_survey_simulation(year = 2009, increment = 10, target = 'irpp', varying = 'rni', used_as_input_variables = None): TaxBenefitSystem = openfisca_france_data.init_country() tax_benefit_system = TaxBenefitSystem() input_data_frame = get_input_data_frame(year) # Simulation 1 : get varying and target survey_scenario = SurveyScenario().init_from_data_frame( input_data_frame = input_data_frame, used_as_input_variables = used_as_input_variables, year = year, tax_benefit_system = tax_benefit_system ) simulation = survey_scenario.new_simulation(debug = False) output_data_frame = pandas.DataFrame( dict([(name, simulation.calculate_add(name)) for name in [ target, varying, 'idfoy_original' ]])) # Make input_data_frame_by_entity_key_plural from the previous input_data_frame and simulation input_data_frames_by_entity_key_plural = \ from_input_df_to_entity_key_plural_df(input_data_frame, tax_benefit_system, simulation) foyers = input_data_frames_by_entity_key_plural['idfoy'] foyers = pandas.merge(foyers, output_data_frame, on = 'idfoy_original') # Incrementation of varying: foyers[varying] = foyers[varying] + increment # On remplace la nouvelle base dans le dictionnaire input_data_frames_by_entity_key_plural['idfoy'] = foyers # 2e simulation à partir de input_data_frame_by_entity_key_plural: # TODO: fix used_as_input_variabels in the from_input_df_to_entity_key_plural_df() function used_as_input_variables = used_as_input_variables + [varying] TaxBenefitSystem = openfisca_france_data.init_country() tax_benefit_system = TaxBenefitSystem() survey_scenario = SurveyScenario().init_from_data_frame( input_data_frame = None, input_data_frames_by_entity_key_plural = input_data_frames_by_entity_key_plural, used_as_input_variables = used_as_input_variables, year = year, tax_benefit_system = tax_benefit_system, ) simulation = survey_scenario.new_simulation(debug = False) output_data_frame2 = pandas.DataFrame( dict([(name, simulation.calculate_add(name)) for name in [ target, varying, 'idfoy_original' ]])) output_data_frame2.rename(columns = {varying: '{}_2'.format(varying), target: '{}_2'.format(target)}, inplace = True) merged = pandas.merge(output_data_frame, output_data_frame2, on = 'idfoy_original') merged['marginal_rate'] = marginal_rate_survey(merged, '{}'.format(target), '{}_2'.format(target), 'rni', 'rni_2') merged['average_rate'] = average_rate(target = merged[target], varying = merged[varying]) return merged if __name__ == '__main__': import logging import time log = logging.getLogger(__name__) import sys logging.basicConfig(level = logging.INFO, stream = sys.stdout) start = time.time() used_as_input_variables = ['salaire_imposable', 'cho', 'rst', 'age_en_mois', 'smic55'] merged = varying_survey_simulation(year = 2009, increment = 10, target = 'irpp', varying = 'rni', used_as_input_variables = used_as_input_variables)
agpl-3.0
ResByte/graph_slam
scripts/robot.py
1
1487
#!/usr/bin/env python import roslib import rospy import sys from geometry_msgs.msg import Twist import numpy as np from nav_msgs.msg import Odometry from tf.transformations import euler_from_quaternion import matplotlib.pyplot as plt from sensor_msgs.msg import PointCloud2 import sensor_msgs.point_cloud2 as pc2 import itertools class Robot(): """This is a generic robot class to implement various machine learning algorithms and """ def __init__(self): self.pose = [] #check if this needs to be initialized rospy.init_node('robot',anonymous = False) def odomCb(self,msg): #print msg.pose.pose quaternion = (msg.pose.pose.orientation.x,msg.pose.pose.orientation.y,msg.pose.pose.orientation.z,msg.pose.pose.orientation.w) euler = euler_from_quaternion(quaternion) #print euler self.pose = [msg.pose.pose.position.x,msg.pose.pose.position.y,euler[2]] print self.pose[0],self.pose[1],self.pose[2] def odomSub(self): rospy.Subscriber('/odom',Odometry,self.odomCb) def cloudCb(self,data): #data_out = pc2.read_points(data, field_names=None, skip_nans=False, uvs=[[data.width, data.height]]) #cloud = list(itertools.islice(data_out,0,100)) cloud = np.asarray(data) print def cloudSub(self): rospy.Subscriber('/camera/depth/points',PointCloud2,self.cloudCb) if __name__ == '__main__': print "init_node" try: robot = Robot() while not rospy.is_shutdown(): #robot.odomSub() robot.cloudSub() except: rospy.loginfo("node terminated.")
gpl-2.0
ywcui1990/nupic.research
projects/vehicle-control/agent/run_sm.py
6
7819
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- from collections import defaultdict import operator import time import numpy from unity_client.server import Server from nupic.encoders.coordinate import CoordinateEncoder from nupic.encoders.scalar import ScalarEncoder from nupic.algorithms.monitor_mixin.trace import CountsTrace from sensorimotor.extended_temporal_memory import ApicalTiebreakPairMemory from htmresearch.support.apical_tm_pair_monitor_mixin import ( ApicalTMPairMonitorMixin) class MonitoredApicalTiebreakPairMemory( ApicalTMPairMonitorMixin, ApicalTiebreakPairMemory): pass SCALE = 5 RADIUS = 10 class Agent(object): def __init__(self): self.encoder = CoordinateEncoder(n=1024, w=21) self.motorEncoder = ScalarEncoder(21, -1, 1, n=1024) self.tm = MonitoredApicalTiebreakPairMemory( columnDimensions=[2048], basalInputDimensions: (999999,) # Dodge input checking. cellsPerColumn=1, initialPermanence=0.5, connectedPermanence=0.6, permanenceIncrement=0.1, permanenceDecrement=0.02, minThreshold=35, activationThreshold=35, maxNewSynapseCount=40) self.plotter = Plotter(self.tm, showOverlaps=False, showOverlapsValues=False) self.lastState = None self.lastAction = None self.prevMotorPattern = () def sync(self, outputData): if not ("location" in outputData and "steer" in outputData): print "Warning: Missing data:", outputData return reset = outputData.get("reset") or False if reset: print "Reset." self.tm.reset() location = outputData["location"] steer = outputData["steer"] x = int(location["x"] * SCALE) z = int(location["z"] * SCALE) coordinate = numpy.array([x, z]) encoding = self.encoder.encode((coordinate, RADIUS)) motorEncoding = self.motorEncoder.encode(steer) sensorPattern = set(encoding.nonzero()[0]) motorPattern = set(motorEncoding.nonzero()[0]) self.tm.compute(sensorPattern, activeCellsExternalBasal=motorPattern, reinforceCandidatesExternalBasal=self.prevMotorPattern, growthCandidatesExternalBasal=self.prevMotorPattern) print self.tm.mmPrettyPrintMetrics(self.tm.mmGetDefaultMetrics()) self.plotter.update(encoding, reset) if reset: self.plotter.render() self.lastState = encoding self.lastAction = steer self.prevMotorPattern = motorPattern class Plotter(object): def __init__(self, tm, showOverlaps=False, showOverlapsValues=False): self.tm = tm self.showOverlaps = showOverlaps self.showOverlapsValues = showOverlapsValues self.encodings = [] self.resets = [] self.numSegmentsPerCell = [] self.numSynapsesPerSegment = [] import matplotlib.pyplot as plt self.plt = plt import matplotlib.cm as cm self.cm = cm from pylab import rcParams if self.showOverlaps and self.showOverlapsValues: rcParams.update({'figure.figsize': (20, 20)}) else: rcParams.update({'figure.figsize': (6, 12)}) rcParams.update({'figure.autolayout': True}) rcParams.update({'figure.facecolor': 'white'}) rcParams.update({'ytick.labelsize': 8}) def update(self, encoding, reset): self.encodings.append(encoding) self.resets.append(reset) # TODO: Deal with empty segments / unconnected synapses numSegmentsPerCell = [len(segments) for segments in self.tm.connections._segmentsForCell.values()] self.numSegmentsPerCell.append(numpy.array(numSegmentsPerCell)) numSynapsesPerSegment = [len(synapses) for synapses in self.tm.connections._synapsesForSegment.values()] self.numSynapsesPerSegment.append(numpy.array(numSynapsesPerSegment)) def render(self): timestamp = int(time.time()) self.plt.figure(1) self.plt.clf() self._renderMetrics(timestamp) if self.showOverlaps: self.plt.figure(2) self.plt.clf() self._renderOverlaps(timestamp) def _renderMetrics(self, timestamp): traces = self.tm.mmGetDefaultTraces() traces = [trace for trace in traces if type(trace) is CountsTrace] t = len(traces) n = t + 2 for i in xrange(t): trace = traces[i] self.plt.subplot(n, 1, i+1) self._plot(trace.data, trace.title) self.plt.subplot(n, 1, t+1) self._plotDistributions(self.numSegmentsPerCell, "# segments per cell") self.plt.subplot(n, 1, t+2) self._plotDistributions(self.numSynapsesPerSegment, "# synapses per segment") self.plt.draw() self.plt.savefig("sm-{0}_A.png".format(timestamp)) def _renderOverlaps(self, timestamp): self.plt.subplot(1, 1, 1) overlaps = self._computeOverlaps() self._imshow(overlaps, "Overlaps", aspect=None) for i in self._computeResetIndices(): self.plt.axvline(i, color='black', alpha=0.5) self.plt.axhline(i, color='black', alpha=0.5) if self.showOverlapsValues: for i in range(len(overlaps)): for j in range(len(overlaps[i])): overlap = "%.1f" % overlaps[i][j] self.plt.annotate(overlap, xy=(i, j), fontsize=6, color='red', verticalalignment='center', horizontalalignment='center') self.plt.draw() self.plt.savefig("sm-{0}_B.png".format(timestamp)) def _computeOverlaps(self): overlaps = [] encodings = self.encodings for i in range(len(encodings)): row = [] for j in range(len(encodings)): n = max(encodings[i].sum(), encodings[j].sum()) overlap = (encodings[i] & encodings[j]).sum() / float(n) row.append(overlap) overlaps.append(row) return overlaps def _computeResetIndices(self): return numpy.array(self.resets).nonzero()[0] def _plot(self, data, title): self.plt.plot(range(len(data)), data) self._finishPlot(data, title) def _finishPlot(self, data, title): self.plt.title(title) self.plt.xlim(0, len(data)) for i in self._computeResetIndices(): self.plt.axvline(i, color='black', alpha=0.5) def _imshow(self, data, title, aspect='auto'): self.plt.title(title) self.plt.imshow(data, cmap=self.cm.Greys, interpolation="nearest", aspect=aspect, vmin=0, vmax=1) def _plotDistributions(self, data, title): means = [numpy.mean(x) if len(x) else 0 for x in data] maxs = [numpy.max(x) if len(x) else 0 for x in data] self.plt.plot(range(len(data)), means, label='mean') self.plt.plot(range(len(data)), maxs, label='max') self.plt.legend(loc='lower right') self._finishPlot(data, title) if __name__ == "__main__": agent = Agent() Server(agent)
agpl-3.0
zmlabe/IceVarFigs
Scripts/SeaSurfaceTemperatures/plot_ersst5.py
1
5197
""" Plot selected years of monthly ERSSTv5 global data Website : https://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v5/netcdf/ Author : Zachary M. Labe Date : 22 July 2017 """ from netCDF4 import Dataset import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap, addcyclic, shiftgrid import numpy as np import datetime import nclcmaps as ncm ### Read in data files from server directoryfigure = './Figures/' directorydata = './Data/' ### Define constants now = datetime.datetime.now() month = now.month monthsq = [r'Jan',r'Feb',r'Mar',r'Apr',r'May',r'Jun',r'Jul', r'Aug',r'Sep',r'Oct',r'Nov',r'Dec',r'Jan'] ### Input selected years and months! years = np.arange(1992,2016+1,1) months = np.arange(1,12+1,1) ### Read in data sst = np.empty((years.shape[0],months.shape[0],89,180)) for i in range(years.shape[0]): for j in range(months.shape[0]): filename = directorydata + 'ersst.v5.%s%02d.nc' % (years[i], months[j]) data = Dataset(filename) lats = data.variables['lat'][:] lons = data.variables['lon'][:] sst[i,j,:,:] = data.variables['sst'][0,0,:,:] data.close() print('Completed: Read %s year!' % years[i]) ### Locate missing data sst[np.where(sst == -999)] = np.nan ### Reshape data sst = np.reshape(sst,(300,89,180)) ### Create list of years for plotting yearsqq = np.repeat(years,12) ############################################################################### ############################################################################### ############################################################################### ### Plot figure ### Define parameters (dark) def setcolor(x, color): for m in x: for t in x[m][1]: t.set_color(color) plt.rc('text',usetex=True) plt.rc('font',**{'family':'sans-serif','sans-serif':['Avant Garde']}) plt.rc('savefig',facecolor='black') plt.rc('axes',edgecolor='k') plt.rc('xtick',color='white') plt.rc('ytick',color='white') plt.rc('axes',labelcolor='white') plt.rc('axes',facecolor='black') ### Select map type style = 'global' if style == 'ortho': m = Basemap(projection='ortho',lon_0=-90, lat_0=70,resolution='l',round=True) elif style == 'polar': m = Basemap(projection='npstere',boundinglat=67,lon_0=270,resolution='l',round =True) elif style == 'global': m = Basemap(projection='moll',lon_0=0,resolution='l',area_thresh=10000) ### Begin loop of years/months for i in range(sst.shape[0]): fig = plt.figure() ax = plt.subplot(111) for txt in fig.texts: txt.set_visible(False) var = sst[i,:,:] m.drawmapboundary(fill_color='k') m.drawcoastlines(color='k',linewidth=0.4) ### Colorbar limits barlim = np.arange(0,31,5) ### Make the plot continuous var, lons_cyclic = addcyclic(var, lons) var, lons_cyclic = shiftgrid(180., var, lons_cyclic, start=False) lon2d, lat2d = np.meshgrid(lons_cyclic, lats) x, y = m(lon2d, lat2d) cs = plt.contourf(x,y,var,np.arange(-1.8,31.1,1), extend='max') cmap = ncm.cmap('MPL_gnuplot') cs.set_cmap(cmap) t = plt.annotate(r'\textbf{%s}' % yearsqq[i],textcoords='axes fraction', xy=(0,0), xytext=(0.34,1.03), fontsize=50,color='w',alpha=0.6) t1 = plt.annotate(r'\textbf{GRAPHIC}: Zachary Labe (@ZLabe)', textcoords='axes fraction', xy=(0,0), xytext=(0.02,-0.167), fontsize=4.5,color='w',alpha=0.6) t2 = plt.annotate(r'\textbf{SOURCE}: https://www1.ncdc.noaa.gov/', textcoords='axes fraction', xy=(0,0), xytext=(0.02,-0.197), fontsize=4.5,color='w',alpha=0.6) t3 = plt.annotate(r'\textbf{DATA}: NOAA ERSSTv5, Huang et al. (2017)', textcoords='axes fraction', xy=(0,0), xytext=(0.02,-0.227), fontsize=4.5,color='w',alpha=0.6) t4 = plt.annotate(r'\textbf{SEA SURFACE TEMPERATURES}', textcoords='axes fraction', xy=(0,0), xytext=(0.24,-0.036),fontsize=13,color='w',alpha=0.6) m.fillcontinents(color='k') cbar = plt.colorbar(cs,drawedges=False,orientation='horizontal', pad = 0.04,fraction=0.035) cbar.set_ticks(barlim) cbar.set_ticklabels(list(map(str,barlim))) cbar.set_label(r'\textbf{$\bf{^\circ}$\textbf{C}}',fontsize=13, color='w') cbar.ax.tick_params(axis='x', size=.001) cbar.ax.tick_params(labelsize=6) plt.subplots_adjust(bottom=0.2) ### Save figure to create animation using ImageMagick if i < 10: plt.savefig(directoryfigure + 'sstq_00%s.png' % (i), dpi=200) elif i < 100: plt.savefig(directoryfigure + 'sstq_0%s.png' % (i), dpi=200) else: plt.savefig(directoryfigure + 'sstq_%s.png' % (i), dpi=200) ### Remove text for each figure t.remove() t1.remove() t2.remove() t3.remove() t4.remove()
mit
RachitKansal/scikit-learn
examples/feature_selection/plot_rfe_with_cross_validation.py
226
1384
""" =================================================== Recursive feature elimination with cross-validation =================================================== A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold from sklearn.feature_selection import RFECV from sklearn.datasets import make_classification # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=25, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, random_state=0) # Create the RFE object and compute a cross-validated score. svc = SVC(kernel="linear") # The "accuracy" scoring is proportional to the number of correct # classifications rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(y, 2), scoring='accuracy') rfecv.fit(X, y) print("Optimal number of features : %d" % rfecv.n_features_) # Plot number of features VS. cross-validation scores plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Cross validation score (nb of correct classifications)") plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) plt.show()
bsd-3-clause
tawsifkhan/scikit-learn
sklearn/linear_model/omp.py
127
30417
"""Orthogonal matching pursuit algorithms """ # Author: Vlad Niculae # # License: BSD 3 clause import warnings from distutils.version import LooseVersion import numpy as np from scipy import linalg from scipy.linalg.lapack import get_lapack_funcs from .base import LinearModel, _pre_fit from ..base import RegressorMixin from ..utils import as_float_array, check_array, check_X_y from ..cross_validation import check_cv from ..externals.joblib import Parallel, delayed import scipy solve_triangular_args = {} if LooseVersion(scipy.__version__) >= LooseVersion('0.12'): # check_finite=False is an optimization available only in scipy >=0.12 solve_triangular_args = {'check_finite': False} premature = """ Orthogonal matching pursuit ended prematurely due to linear dependence in the dictionary. The requested precision might not have been met. """ def _cholesky_omp(X, y, n_nonzero_coefs, tol=None, copy_X=True, return_path=False): """Orthogonal Matching Pursuit step using the Cholesky decomposition. Parameters ---------- X : array, shape (n_samples, n_features) Input dictionary. Columns are assumed to have unit norm. y : array, shape (n_samples,) Input targets n_nonzero_coefs : int Targeted number of non-zero elements tol : float Targeted squared error, if not None overrides n_nonzero_coefs. copy_X : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. Returns ------- gamma : array, shape (n_nonzero_coefs,) Non-zero elements of the solution idx : array, shape (n_nonzero_coefs,) Indices of the positions of the elements in gamma within the solution vector coef : array, shape (n_features, n_nonzero_coefs) The first k values of column k correspond to the coefficient value for the active features at that step. The lower left triangle contains garbage. Only returned if ``return_path=True``. n_active : int Number of active features at convergence. """ if copy_X: X = X.copy('F') else: # even if we are allowed to overwrite, still copy it if bad order X = np.asfortranarray(X) min_float = np.finfo(X.dtype).eps nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (X,)) potrs, = get_lapack_funcs(('potrs',), (X,)) alpha = np.dot(X.T, y) residual = y gamma = np.empty(0) n_active = 0 indices = np.arange(X.shape[1]) # keeping track of swapping max_features = X.shape[1] if tol is not None else n_nonzero_coefs if solve_triangular_args: # new scipy, don't need to initialize because check_finite=False L = np.empty((max_features, max_features), dtype=X.dtype) else: # old scipy, we need the garbage upper triangle to be non-Inf L = np.zeros((max_features, max_features), dtype=X.dtype) L[0, 0] = 1. if return_path: coefs = np.empty_like(L) while True: lam = np.argmax(np.abs(np.dot(X.T, residual))) if lam < n_active or alpha[lam] ** 2 < min_float: # atom already selected or inner product too small warnings.warn(premature, RuntimeWarning, stacklevel=2) break if n_active > 0: # Updates the Cholesky decomposition of X' X L[n_active, :n_active] = np.dot(X[:, :n_active].T, X[:, lam]) linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = nrm2(L[n_active, :n_active]) ** 2 if 1 - v <= min_float: # selected atoms are dependent warnings.warn(premature, RuntimeWarning, stacklevel=2) break L[n_active, n_active] = np.sqrt(1 - v) X.T[n_active], X.T[lam] = swap(X.T[n_active], X.T[lam]) alpha[n_active], alpha[lam] = alpha[lam], alpha[n_active] indices[n_active], indices[lam] = indices[lam], indices[n_active] n_active += 1 # solves LL'x = y as a composition of two triangular systems gamma, _ = potrs(L[:n_active, :n_active], alpha[:n_active], lower=True, overwrite_b=False) if return_path: coefs[:n_active, n_active - 1] = gamma residual = y - np.dot(X[:, :n_active], gamma) if tol is not None and nrm2(residual) ** 2 <= tol: break elif n_active == max_features: break if return_path: return gamma, indices[:n_active], coefs[:, :n_active], n_active else: return gamma, indices[:n_active], n_active def _gram_omp(Gram, Xy, n_nonzero_coefs, tol_0=None, tol=None, copy_Gram=True, copy_Xy=True, return_path=False): """Orthogonal Matching Pursuit step on a precomputed Gram matrix. This function uses the the Cholesky decomposition method. Parameters ---------- Gram : array, shape (n_features, n_features) Gram matrix of the input data matrix Xy : array, shape (n_features,) Input targets n_nonzero_coefs : int Targeted number of non-zero elements tol_0 : float Squared norm of y, required if tol is not None. tol : float Targeted squared error, if not None overrides n_nonzero_coefs. copy_Gram : bool, optional Whether the gram matrix must be copied by the algorithm. A false value is only helpful if it is already Fortran-ordered, otherwise a copy is made anyway. copy_Xy : bool, optional Whether the covariance vector Xy must be copied by the algorithm. If False, it may be overwritten. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. Returns ------- gamma : array, shape (n_nonzero_coefs,) Non-zero elements of the solution idx : array, shape (n_nonzero_coefs,) Indices of the positions of the elements in gamma within the solution vector coefs : array, shape (n_features, n_nonzero_coefs) The first k values of column k correspond to the coefficient value for the active features at that step. The lower left triangle contains garbage. Only returned if ``return_path=True``. n_active : int Number of active features at convergence. """ Gram = Gram.copy('F') if copy_Gram else np.asfortranarray(Gram) if copy_Xy: Xy = Xy.copy() min_float = np.finfo(Gram.dtype).eps nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (Gram,)) potrs, = get_lapack_funcs(('potrs',), (Gram,)) indices = np.arange(len(Gram)) # keeping track of swapping alpha = Xy tol_curr = tol_0 delta = 0 gamma = np.empty(0) n_active = 0 max_features = len(Gram) if tol is not None else n_nonzero_coefs if solve_triangular_args: # new scipy, don't need to initialize because check_finite=False L = np.empty((max_features, max_features), dtype=Gram.dtype) else: # old scipy, we need the garbage upper triangle to be non-Inf L = np.zeros((max_features, max_features), dtype=Gram.dtype) L[0, 0] = 1. if return_path: coefs = np.empty_like(L) while True: lam = np.argmax(np.abs(alpha)) if lam < n_active or alpha[lam] ** 2 < min_float: # selected same atom twice, or inner product too small warnings.warn(premature, RuntimeWarning, stacklevel=3) break if n_active > 0: L[n_active, :n_active] = Gram[lam, :n_active] linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = nrm2(L[n_active, :n_active]) ** 2 if 1 - v <= min_float: # selected atoms are dependent warnings.warn(premature, RuntimeWarning, stacklevel=3) break L[n_active, n_active] = np.sqrt(1 - v) Gram[n_active], Gram[lam] = swap(Gram[n_active], Gram[lam]) Gram.T[n_active], Gram.T[lam] = swap(Gram.T[n_active], Gram.T[lam]) indices[n_active], indices[lam] = indices[lam], indices[n_active] Xy[n_active], Xy[lam] = Xy[lam], Xy[n_active] n_active += 1 # solves LL'x = y as a composition of two triangular systems gamma, _ = potrs(L[:n_active, :n_active], Xy[:n_active], lower=True, overwrite_b=False) if return_path: coefs[:n_active, n_active - 1] = gamma beta = np.dot(Gram[:, :n_active], gamma) alpha = Xy - beta if tol is not None: tol_curr += delta delta = np.inner(gamma, beta[:n_active]) tol_curr -= delta if abs(tol_curr) <= tol: break elif n_active == max_features: break if return_path: return gamma, indices[:n_active], coefs[:, :n_active], n_active else: return gamma, indices[:n_active], n_active def orthogonal_mp(X, y, n_nonzero_coefs=None, tol=None, precompute=False, copy_X=True, return_path=False, return_n_iter=False): """Orthogonal Matching Pursuit (OMP) Solves n_targets Orthogonal Matching Pursuit problems. An instance of the problem has the form: When parametrized by the number of non-zero coefficients using `n_nonzero_coefs`: argmin ||y - X\gamma||^2 subject to ||\gamma||_0 <= n_{nonzero coefs} When parametrized by error using the parameter `tol`: argmin ||\gamma||_0 subject to ||y - X\gamma||^2 <= tol Read more in the :ref:`User Guide <omp>`. Parameters ---------- X : array, shape (n_samples, n_features) Input data. Columns are assumed to have unit norm. y : array, shape (n_samples,) or (n_samples, n_targets) Input targets n_nonzero_coefs : int Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float Maximum norm of the residual. If not None, overrides n_nonzero_coefs. precompute : {True, False, 'auto'}, Whether to perform precomputations. Improves performance when n_targets or n_samples is very large. copy_X : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. return_n_iter : bool, optional default False Whether or not to return the number of iterations. Returns ------- coef : array, shape (n_features,) or (n_features, n_targets) Coefficients of the OMP solution. If `return_path=True`, this contains the whole coefficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis yields coefficients in increasing order of active features. n_iters : array-like or int Number of active features across every target. Returned only if `return_n_iter` is set to True. See also -------- OrthogonalMatchingPursuit orthogonal_mp_gram lars_path decomposition.sparse_encode Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf """ X = check_array(X, order='F', copy=copy_X) copy_X = False if y.ndim == 1: y = y.reshape(-1, 1) y = check_array(y) if y.shape[1] > 1: # subsequent targets will be affected copy_X = True if n_nonzero_coefs is None and tol is None: # default for n_nonzero_coefs is 0.1 * n_features # but at least one. n_nonzero_coefs = max(int(0.1 * X.shape[1]), 1) if tol is not None and tol < 0: raise ValueError("Epsilon cannot be negative") if tol is None and n_nonzero_coefs <= 0: raise ValueError("The number of atoms must be positive") if tol is None and n_nonzero_coefs > X.shape[1]: raise ValueError("The number of atoms cannot be more than the number " "of features") if precompute == 'auto': precompute = X.shape[0] > X.shape[1] if precompute: G = np.dot(X.T, X) G = np.asfortranarray(G) Xy = np.dot(X.T, y) if tol is not None: norms_squared = np.sum((y ** 2), axis=0) else: norms_squared = None return orthogonal_mp_gram(G, Xy, n_nonzero_coefs, tol, norms_squared, copy_Gram=copy_X, copy_Xy=False, return_path=return_path) if return_path: coef = np.zeros((X.shape[1], y.shape[1], X.shape[1])) else: coef = np.zeros((X.shape[1], y.shape[1])) n_iters = [] for k in range(y.shape[1]): out = _cholesky_omp( X, y[:, k], n_nonzero_coefs, tol, copy_X=copy_X, return_path=return_path) if return_path: _, idx, coefs, n_iter = out coef = coef[:, :, :len(idx)] for n_active, x in enumerate(coefs.T): coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1] else: x, idx, n_iter = out coef[idx, k] = x n_iters.append(n_iter) if y.shape[1] == 1: n_iters = n_iters[0] if return_n_iter: return np.squeeze(coef), n_iters else: return np.squeeze(coef) def orthogonal_mp_gram(Gram, Xy, n_nonzero_coefs=None, tol=None, norms_squared=None, copy_Gram=True, copy_Xy=True, return_path=False, return_n_iter=False): """Gram Orthogonal Matching Pursuit (OMP) Solves n_targets Orthogonal Matching Pursuit problems using only the Gram matrix X.T * X and the product X.T * y. Read more in the :ref:`User Guide <omp>`. Parameters ---------- Gram : array, shape (n_features, n_features) Gram matrix of the input data: X.T * X Xy : array, shape (n_features,) or (n_features, n_targets) Input targets multiplied by X: X.T * y n_nonzero_coefs : int Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float Maximum norm of the residual. If not None, overrides n_nonzero_coefs. norms_squared : array-like, shape (n_targets,) Squared L2 norms of the lines of y. Required if tol is not None. copy_Gram : bool, optional Whether the gram matrix must be copied by the algorithm. A false value is only helpful if it is already Fortran-ordered, otherwise a copy is made anyway. copy_Xy : bool, optional Whether the covariance vector Xy must be copied by the algorithm. If False, it may be overwritten. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. return_n_iter : bool, optional default False Whether or not to return the number of iterations. Returns ------- coef : array, shape (n_features,) or (n_features, n_targets) Coefficients of the OMP solution. If `return_path=True`, this contains the whole coefficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis yields coefficients in increasing order of active features. n_iters : array-like or int Number of active features across every target. Returned only if `return_n_iter` is set to True. See also -------- OrthogonalMatchingPursuit orthogonal_mp lars_path decomposition.sparse_encode Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf """ Gram = check_array(Gram, order='F', copy=copy_Gram) Xy = np.asarray(Xy) if Xy.ndim > 1 and Xy.shape[1] > 1: # or subsequent target will be affected copy_Gram = True if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if tol is not None: norms_squared = [norms_squared] if n_nonzero_coefs is None and tol is None: n_nonzero_coefs = int(0.1 * len(Gram)) if tol is not None and norms_squared is None: raise ValueError('Gram OMP needs the precomputed norms in order ' 'to evaluate the error sum of squares.') if tol is not None and tol < 0: raise ValueError("Epsilon cannot be negative") if tol is None and n_nonzero_coefs <= 0: raise ValueError("The number of atoms must be positive") if tol is None and n_nonzero_coefs > len(Gram): raise ValueError("The number of atoms cannot be more than the number " "of features") if return_path: coef = np.zeros((len(Gram), Xy.shape[1], len(Gram))) else: coef = np.zeros((len(Gram), Xy.shape[1])) n_iters = [] for k in range(Xy.shape[1]): out = _gram_omp( Gram, Xy[:, k], n_nonzero_coefs, norms_squared[k] if tol is not None else None, tol, copy_Gram=copy_Gram, copy_Xy=copy_Xy, return_path=return_path) if return_path: _, idx, coefs, n_iter = out coef = coef[:, :, :len(idx)] for n_active, x in enumerate(coefs.T): coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1] else: x, idx, n_iter = out coef[idx, k] = x n_iters.append(n_iter) if Xy.shape[1] == 1: n_iters = n_iters[0] if return_n_iter: return np.squeeze(coef), n_iters else: return np.squeeze(coef) class OrthogonalMatchingPursuit(LinearModel, RegressorMixin): """Orthogonal Matching Pursuit model (OMP) Parameters ---------- n_nonzero_coefs : int, optional Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float, optional Maximum norm of the residual. If not None, overrides n_nonzero_coefs. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional If False, the regressors X are assumed to be already normalized. precompute : {True, False, 'auto'}, default 'auto' Whether to use a precomputed Gram and Xy matrix to speed up calculations. Improves performance when `n_targets` or `n_samples` is very large. Note that if you already have such matrices, you can pass them directly to the fit method. Read more in the :ref:`User Guide <omp>`. Attributes ---------- coef_ : array, shape (n_features,) or (n_features, n_targets) parameter vector (w in the formula) intercept_ : float or array, shape (n_targets,) independent term in decision function. n_iter_ : int or array-like Number of active features across every target. Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf See also -------- orthogonal_mp orthogonal_mp_gram lars_path Lars LassoLars decomposition.sparse_encode """ def __init__(self, n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True, precompute='auto'): self.n_nonzero_coefs = n_nonzero_coefs self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, multi_output=True, y_numeric=True) n_features = X.shape[1] X, y, X_mean, y_mean, X_std, Gram, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=True) if y.ndim == 1: y = y[:, np.newaxis] if self.n_nonzero_coefs is None and self.tol is None: # default for n_nonzero_coefs is 0.1 * n_features # but at least one. self.n_nonzero_coefs_ = max(int(0.1 * n_features), 1) else: self.n_nonzero_coefs_ = self.n_nonzero_coefs if Gram is False: coef_, self.n_iter_ = orthogonal_mp( X, y, self.n_nonzero_coefs_, self.tol, precompute=False, copy_X=True, return_n_iter=True) else: norms_sq = np.sum(y ** 2, axis=0) if self.tol is not None else None coef_, self.n_iter_ = orthogonal_mp_gram( Gram, Xy=Xy, n_nonzero_coefs=self.n_nonzero_coefs_, tol=self.tol, norms_squared=norms_sq, copy_Gram=True, copy_Xy=True, return_n_iter=True) self.coef_ = coef_.T self._set_intercept(X_mean, y_mean, X_std) return self def _omp_path_residues(X_train, y_train, X_test, y_test, copy=True, fit_intercept=True, normalize=True, max_iter=100): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array, shape (n_samples, n_features) The data to fit the LARS on y_train : array, shape (n_samples) The target variable to fit LARS on X_test : array, shape (n_samples, n_features) The data to compute the residues on y_test : array, shape (n_samples) The target variable to compute the residues on copy : boolean, optional Whether X_train, X_test, y_train and y_test should be copied. If False, they may be overwritten. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. max_iter : integer, optional Maximum numbers of iterations to perform, therefore maximum features to include. 100 by default. Returns ------- residues: array, shape (n_samples, max_features) Residues of the prediction on the test data """ if copy: X_train = X_train.copy() y_train = y_train.copy() X_test = X_test.copy() y_test = y_test.copy() if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean if normalize: norms = np.sqrt(np.sum(X_train ** 2, axis=0)) nonzeros = np.flatnonzero(norms) X_train[:, nonzeros] /= norms[nonzeros] coefs = orthogonal_mp(X_train, y_train, n_nonzero_coefs=max_iter, tol=None, precompute=False, copy_X=False, return_path=True) if coefs.ndim == 1: coefs = coefs[:, np.newaxis] if normalize: coefs[nonzeros] /= norms[nonzeros][:, np.newaxis] return np.dot(coefs.T, X_test.T) - y_test class OrthogonalMatchingPursuitCV(LinearModel, RegressorMixin): """Cross-validated Orthogonal Matching Pursuit model (OMP) Parameters ---------- copy : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional If False, the regressors X are assumed to be already normalized. max_iter : integer, optional Maximum numbers of iterations to perform, therefore maximum features to include. 10% of ``n_features`` but at least 5 if available. cv : cross-validation generator, optional see :mod:`sklearn.cross_validation`. If ``None`` is passed, default to a 5-fold strategy n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs verbose : boolean or integer, optional Sets the verbosity amount Read more in the :ref:`User Guide <omp>`. Attributes ---------- intercept_ : float or array, shape (n_targets,) Independent term in decision function. coef_ : array, shape (n_features,) or (n_features, n_targets) Parameter vector (w in the problem formulation). n_nonzero_coefs_ : int Estimated number of non-zero coefficients giving the best mean squared error over the cross-validation folds. n_iter_ : int or array-like Number of active features across every target for the model refit with the best hyperparameters got by cross-validating across all folds. See also -------- orthogonal_mp orthogonal_mp_gram lars_path Lars LassoLars OrthogonalMatchingPursuit LarsCV LassoLarsCV decomposition.sparse_encode """ def __init__(self, copy=True, fit_intercept=True, normalize=True, max_iter=None, cv=None, n_jobs=1, verbose=False): self.copy = copy self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.cv = cv self.n_jobs = n_jobs self.verbose = verbose def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape [n_samples, n_features] Training data. y : array-like, shape [n_samples] Target values. Returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, y_numeric=True) X = as_float_array(X, copy=False, force_all_finite=False) cv = check_cv(self.cv, X, y, classifier=False) max_iter = (min(max(int(0.1 * X.shape[1]), 5), X.shape[1]) if not self.max_iter else self.max_iter) cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_omp_path_residues)( X[train], y[train], X[test], y[test], self.copy, self.fit_intercept, self.normalize, max_iter) for train, test in cv) min_early_stop = min(fold.shape[0] for fold in cv_paths) mse_folds = np.array([(fold[:min_early_stop] ** 2).mean(axis=1) for fold in cv_paths]) best_n_nonzero_coefs = np.argmin(mse_folds.mean(axis=0)) + 1 self.n_nonzero_coefs_ = best_n_nonzero_coefs omp = OrthogonalMatchingPursuit(n_nonzero_coefs=best_n_nonzero_coefs, fit_intercept=self.fit_intercept, normalize=self.normalize) omp.fit(X, y) self.coef_ = omp.coef_ self.intercept_ = omp.intercept_ self.n_iter_ = omp.n_iter_ return self
bsd-3-clause
rahiel/shellstats
shellstats.py
1
3629
# -*- coding: utf-8 -*- from __future__ import division from os import getenv from os.path import isfile from sys import exit import click @click.command() @click.option("--n", default=10, help="How many commands to show.") @click.option("--plot", is_flag=True, help="Plot command usage in pie chart.") @click.option("--command", default=None, help="Most frequent subcommands for command, e.g. sudo, git.") @click.option("--history-file", type=click.Path(exists=True, readable=True), default=None, help="Read shell history from history-file.") @click.option("--shell", default=None, help="Specify shell history format: bash, fish or zsh.") def main(n, plot, command, history_file, shell): """Print the most frequently used shell commands.""" history = get_history(history_file, shell, command) commands = {} for line in history: cmd = line.split() if cmd[0] in commands: commands[cmd[0]] += 1 else: commands[cmd[0]] = 1 total = len(history) # counts :: [(command, num_occurance)] counts = sorted(commands.items(), key=lambda x: x[1], reverse=True) print_top(n, counts, total) if plot: pie_top(n, counts, command) return counts def pie_top(n, counts, command): """Show a pie chart of n most used commands.""" try: import matplotlib.pyplot as plt except ImportError: click.echo(click.style("Please install matplotlib for plotting.", fg="red")) exit() label, x = zip(*counts[:n]) fig = plt.figure() fig.canvas.set_window_title("ShellStats") plt.axes(aspect=1) if command: title = "Top {0} used {1} subcommands.".format(min(n, len(counts)), command) else: title = "Top {0} used shell commands.".format(min(n, len(counts))) plt.title(title) plt.pie(x, labels=label) plt.show() def print_top(n, counts, total): """Print the top n used commands.""" click.echo("{:>3} {:<20} {:<10} {:<3}" .format('', "Command", "Count", "Percentage")) # min for when history is too small for i in min(range(n), range(len(counts)), key=len): cmd, count = counts[i] click.echo("{i:>3} {cmd:<20} {count:<10} {percent:<3.3}%" .format(i=i+1, cmd=cmd, count=count, percent=count / total * 100)) def get_history(history_file, shell, command): """Get usage history for the shell in use.""" shell = shell or getenv("SHELL").split('/')[-1] if history_file is None: home = getenv("HOME") + '/' hist_files = {"bash": [".bash_history"], "fish": [".config/fish/fish_history"], "zsh": [".zhistory", ".zsh_history"]} if shell in hist_files: for hist_file in hist_files[shell]: if isfile(home + hist_file): history_file = home + hist_file if not history_file: click.echo(click.style("Shell history file not found.", fg="red")) exit() with open(history_file, 'r') as h: history = [l.strip() for l in h.readlines() if l.strip()] if shell == "fish": history = [l[7:] for l in history if l.startswith("- cmd:")] elif shell == "zsh": hist = [] for l in history: if l.startswith(": "): hist.append(l.split(';', 1)[-1]) else: hist.append(l) history = hist if command: history = [l[len(command) + 1:] for l in history if l.startswith(str(command))] return history
mit
cbertinato/pandas
pandas/tests/frame/test_axis_select_reindex.py
1
44030
from datetime import datetime import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm from pandas.util.testing import assert_frame_equal class TestDataFrameSelectReindex(TestData): # These are specific reindex-based tests; other indexing tests should go in # test_indexing def test_drop_names(self): df = DataFrame([[1, 2, 3], [3, 4, 5], [5, 6, 7]], index=['a', 'b', 'c'], columns=['d', 'e', 'f']) df.index.name, df.columns.name = 'first', 'second' df_dropped_b = df.drop('b') df_dropped_e = df.drop('e', axis=1) df_inplace_b, df_inplace_e = df.copy(), df.copy() df_inplace_b.drop('b', inplace=True) df_inplace_e.drop('e', axis=1, inplace=True) for obj in (df_dropped_b, df_dropped_e, df_inplace_b, df_inplace_e): assert obj.index.name == 'first' assert obj.columns.name == 'second' assert list(df.columns) == ['d', 'e', 'f'] msg = r"\['g'\] not found in axis" with pytest.raises(KeyError, match=msg): df.drop(['g']) with pytest.raises(KeyError, match=msg): df.drop(['g'], 1) # errors = 'ignore' dropped = df.drop(['g'], errors='ignore') expected = Index(['a', 'b', 'c'], name='first') tm.assert_index_equal(dropped.index, expected) dropped = df.drop(['b', 'g'], errors='ignore') expected = Index(['a', 'c'], name='first') tm.assert_index_equal(dropped.index, expected) dropped = df.drop(['g'], axis=1, errors='ignore') expected = Index(['d', 'e', 'f'], name='second') tm.assert_index_equal(dropped.columns, expected) dropped = df.drop(['d', 'g'], axis=1, errors='ignore') expected = Index(['e', 'f'], name='second') tm.assert_index_equal(dropped.columns, expected) # GH 16398 dropped = df.drop([], errors='ignore') expected = Index(['a', 'b', 'c'], name='first') tm.assert_index_equal(dropped.index, expected) def test_drop_col_still_multiindex(self): arrays = [['a', 'b', 'c', 'top'], ['', '', '', 'OD'], ['', '', '', 'wx']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(np.random.randn(3, 4), columns=index) del df[('a', '', '')] assert(isinstance(df.columns, MultiIndex)) def test_drop(self): simple = DataFrame({"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]}) assert_frame_equal(simple.drop("A", axis=1), simple[['B']]) assert_frame_equal(simple.drop(["A", "B"], axis='columns'), simple[[]]) assert_frame_equal(simple.drop([0, 1, 3], axis=0), simple.loc[[2], :]) assert_frame_equal(simple.drop( [0, 3], axis='index'), simple.loc[[1, 2], :]) with pytest.raises(KeyError, match=r"\[5\] not found in axis"): simple.drop(5) with pytest.raises(KeyError, match=r"\['C'\] not found in axis"): simple.drop('C', 1) with pytest.raises(KeyError, match=r"\[5\] not found in axis"): simple.drop([1, 5]) with pytest.raises(KeyError, match=r"\['C'\] not found in axis"): simple.drop(['A', 'C'], 1) # errors = 'ignore' assert_frame_equal(simple.drop(5, errors='ignore'), simple) assert_frame_equal(simple.drop([0, 5], errors='ignore'), simple.loc[[1, 2, 3], :]) assert_frame_equal(simple.drop('C', axis=1, errors='ignore'), simple) assert_frame_equal(simple.drop(['A', 'C'], axis=1, errors='ignore'), simple[['B']]) # non-unique - wheee! nu_df = DataFrame(list(zip(range(3), range(-3, 1), list('abc'))), columns=['a', 'a', 'b']) assert_frame_equal(nu_df.drop('a', axis=1), nu_df[['b']]) assert_frame_equal(nu_df.drop('b', axis='columns'), nu_df['a']) assert_frame_equal(nu_df.drop([]), nu_df) # GH 16398 nu_df = nu_df.set_index(pd.Index(['X', 'Y', 'X'])) nu_df.columns = list('abc') assert_frame_equal(nu_df.drop('X', axis='rows'), nu_df.loc[["Y"], :]) assert_frame_equal(nu_df.drop(['X', 'Y'], axis=0), nu_df.loc[[], :]) # inplace cache issue # GH 5628 df = pd.DataFrame(np.random.randn(10, 3), columns=list('abc')) expected = df[~(df.b > 0)] df.drop(labels=df[df.b > 0].index, inplace=True) assert_frame_equal(df, expected) def test_drop_multiindex_not_lexsorted(self): # GH 11640 # define the lexsorted version lexsorted_mi = MultiIndex.from_tuples( [('a', ''), ('b1', 'c1'), ('b2', 'c2')], names=['b', 'c']) lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi) assert lexsorted_df.columns.is_lexsorted() # define the non-lexsorted version not_lexsorted_df = DataFrame(columns=['a', 'b', 'c', 'd'], data=[[1, 'b1', 'c1', 3], [1, 'b2', 'c2', 4]]) not_lexsorted_df = not_lexsorted_df.pivot_table( index='a', columns=['b', 'c'], values='d') not_lexsorted_df = not_lexsorted_df.reset_index() assert not not_lexsorted_df.columns.is_lexsorted() # compare the results tm.assert_frame_equal(lexsorted_df, not_lexsorted_df) expected = lexsorted_df.drop('a', axis=1) with tm.assert_produces_warning(PerformanceWarning): result = not_lexsorted_df.drop('a', axis=1) tm.assert_frame_equal(result, expected) def test_drop_api_equivalence(self): # equivalence of the labels/axis and index/columns API's (GH12392) df = DataFrame([[1, 2, 3], [3, 4, 5], [5, 6, 7]], index=['a', 'b', 'c'], columns=['d', 'e', 'f']) res1 = df.drop('a') res2 = df.drop(index='a') tm.assert_frame_equal(res1, res2) res1 = df.drop('d', 1) res2 = df.drop(columns='d') tm.assert_frame_equal(res1, res2) res1 = df.drop(labels='e', axis=1) res2 = df.drop(columns='e') tm.assert_frame_equal(res1, res2) res1 = df.drop(['a'], axis=0) res2 = df.drop(index=['a']) tm.assert_frame_equal(res1, res2) res1 = df.drop(['a'], axis=0).drop(['d'], axis=1) res2 = df.drop(index=['a'], columns=['d']) tm.assert_frame_equal(res1, res2) with pytest.raises(ValueError): df.drop(labels='a', index='b') with pytest.raises(ValueError): df.drop(labels='a', columns='b') with pytest.raises(ValueError): df.drop(axis=1) def test_merge_join_different_levels(self): # GH 9455 # first dataframe df1 = DataFrame(columns=['a', 'b'], data=[[1, 11], [0, 22]]) # second dataframe columns = MultiIndex.from_tuples([('a', ''), ('c', 'c1')]) df2 = DataFrame(columns=columns, data=[[1, 33], [0, 44]]) # merge columns = ['a', 'b', ('c', 'c1')] expected = DataFrame(columns=columns, data=[[1, 11, 33], [0, 22, 44]]) with tm.assert_produces_warning(UserWarning): result = pd.merge(df1, df2, on='a') tm.assert_frame_equal(result, expected) # join, see discussion in GH 12219 columns = ['a', 'b', ('a', ''), ('c', 'c1')] expected = DataFrame(columns=columns, data=[[1, 11, 0, 44], [0, 22, 1, 33]]) with tm.assert_produces_warning(UserWarning): result = df1.join(df2, on='a') tm.assert_frame_equal(result, expected) def test_reindex(self): newFrame = self.frame.reindex(self.ts1.index) for col in newFrame.columns: for idx, val in newFrame[col].items(): if idx in self.frame.index: if np.isnan(val): assert np.isnan(self.frame[col][idx]) else: assert val == self.frame[col][idx] else: assert np.isnan(val) for col, series in newFrame.items(): assert tm.equalContents(series.index, newFrame.index) emptyFrame = self.frame.reindex(Index([])) assert len(emptyFrame.index) == 0 # Cython code should be unit-tested directly nonContigFrame = self.frame.reindex(self.ts1.index[::2]) for col in nonContigFrame.columns: for idx, val in nonContigFrame[col].items(): if idx in self.frame.index: if np.isnan(val): assert np.isnan(self.frame[col][idx]) else: assert val == self.frame[col][idx] else: assert np.isnan(val) for col, series in nonContigFrame.items(): assert tm.equalContents(series.index, nonContigFrame.index) # corner cases # Same index, copies values but not index if copy=False newFrame = self.frame.reindex(self.frame.index, copy=False) assert newFrame.index is self.frame.index # length zero newFrame = self.frame.reindex([]) assert newFrame.empty assert len(newFrame.columns) == len(self.frame.columns) # length zero with columns reindexed with non-empty index newFrame = self.frame.reindex([]) newFrame = newFrame.reindex(self.frame.index) assert len(newFrame.index) == len(self.frame.index) assert len(newFrame.columns) == len(self.frame.columns) # pass non-Index newFrame = self.frame.reindex(list(self.ts1.index)) tm.assert_index_equal(newFrame.index, self.ts1.index) # copy with no axes result = self.frame.reindex() assert_frame_equal(result, self.frame) assert result is not self.frame def test_reindex_nan(self): df = pd.DataFrame([[1, 2], [3, 5], [7, 11], [9, 23]], index=[2, np.nan, 1, 5], columns=['joe', 'jim']) i, j = [np.nan, 5, 5, np.nan, 1, 2, np.nan], [1, 3, 3, 1, 2, 0, 1] assert_frame_equal(df.reindex(i), df.iloc[j]) df.index = df.index.astype('object') assert_frame_equal(df.reindex(i), df.iloc[j], check_index_type=False) # GH10388 df = pd.DataFrame({'other': ['a', 'b', np.nan, 'c'], 'date': ['2015-03-22', np.nan, '2012-01-08', np.nan], 'amount': [2, 3, 4, 5]}) df['date'] = pd.to_datetime(df.date) df['delta'] = (pd.to_datetime('2015-06-18') - df['date']).shift(1) left = df.set_index(['delta', 'other', 'date']).reset_index() right = df.reindex(columns=['delta', 'other', 'date', 'amount']) assert_frame_equal(left, right) def test_reindex_name_remains(self): s = Series(np.random.rand(10)) df = DataFrame(s, index=np.arange(len(s))) i = Series(np.arange(10), name='iname') df = df.reindex(i) assert df.index.name == 'iname' df = df.reindex(Index(np.arange(10), name='tmpname')) assert df.index.name == 'tmpname' s = Series(np.random.rand(10)) df = DataFrame(s.T, index=np.arange(len(s))) i = Series(np.arange(10), name='iname') df = df.reindex(columns=i) assert df.columns.name == 'iname' def test_reindex_int(self): smaller = self.intframe.reindex(self.intframe.index[::2]) assert smaller['A'].dtype == np.int64 bigger = smaller.reindex(self.intframe.index) assert bigger['A'].dtype == np.float64 smaller = self.intframe.reindex(columns=['A', 'B']) assert smaller['A'].dtype == np.int64 def test_reindex_like(self): other = self.frame.reindex(index=self.frame.index[:10], columns=['C', 'B']) assert_frame_equal(other, self.frame.reindex_like(other)) def test_reindex_columns(self): new_frame = self.frame.reindex(columns=['A', 'B', 'E']) tm.assert_series_equal(new_frame['B'], self.frame['B']) assert np.isnan(new_frame['E']).all() assert 'C' not in new_frame # Length zero new_frame = self.frame.reindex(columns=[]) assert new_frame.empty def test_reindex_columns_method(self): # GH 14992, reindexing over columns ignored method df = DataFrame(data=[[11, 12, 13], [21, 22, 23], [31, 32, 33]], index=[1, 2, 4], columns=[1, 2, 4], dtype=float) # default method result = df.reindex(columns=range(6)) expected = DataFrame(data=[[np.nan, 11, 12, np.nan, 13, np.nan], [np.nan, 21, 22, np.nan, 23, np.nan], [np.nan, 31, 32, np.nan, 33, np.nan]], index=[1, 2, 4], columns=range(6), dtype=float) assert_frame_equal(result, expected) # method='ffill' result = df.reindex(columns=range(6), method='ffill') expected = DataFrame(data=[[np.nan, 11, 12, 12, 13, 13], [np.nan, 21, 22, 22, 23, 23], [np.nan, 31, 32, 32, 33, 33]], index=[1, 2, 4], columns=range(6), dtype=float) assert_frame_equal(result, expected) # method='bfill' result = df.reindex(columns=range(6), method='bfill') expected = DataFrame(data=[[11, 11, 12, 13, 13, np.nan], [21, 21, 22, 23, 23, np.nan], [31, 31, 32, 33, 33, np.nan]], index=[1, 2, 4], columns=range(6), dtype=float) assert_frame_equal(result, expected) def test_reindex_axes(self): # GH 3317, reindexing by both axes loses freq of the index df = DataFrame(np.ones((3, 3)), index=[datetime(2012, 1, 1), datetime(2012, 1, 2), datetime(2012, 1, 3)], columns=['a', 'b', 'c']) time_freq = date_range('2012-01-01', '2012-01-03', freq='d') some_cols = ['a', 'b'] index_freq = df.reindex(index=time_freq).index.freq both_freq = df.reindex(index=time_freq, columns=some_cols).index.freq seq_freq = df.reindex(index=time_freq).reindex( columns=some_cols).index.freq assert index_freq == both_freq assert index_freq == seq_freq def test_reindex_fill_value(self): df = DataFrame(np.random.randn(10, 4)) # axis=0 result = df.reindex(list(range(15))) assert np.isnan(result.values[-5:]).all() result = df.reindex(range(15), fill_value=0) expected = df.reindex(range(15)).fillna(0) assert_frame_equal(result, expected) # axis=1 result = df.reindex(columns=range(5), fill_value=0.) expected = df.copy() expected[4] = 0. assert_frame_equal(result, expected) result = df.reindex(columns=range(5), fill_value=0) expected = df.copy() expected[4] = 0 assert_frame_equal(result, expected) result = df.reindex(columns=range(5), fill_value='foo') expected = df.copy() expected[4] = 'foo' assert_frame_equal(result, expected) # reindex_axis with tm.assert_produces_warning(FutureWarning): result = df.reindex_axis(range(15), fill_value=0., axis=0) expected = df.reindex(range(15)).fillna(0) assert_frame_equal(result, expected) with tm.assert_produces_warning(FutureWarning): result = df.reindex_axis(range(5), fill_value=0., axis=1) expected = df.reindex(columns=range(5)).fillna(0) assert_frame_equal(result, expected) # other dtypes df['foo'] = 'foo' result = df.reindex(range(15), fill_value=0) expected = df.reindex(range(15)).fillna(0) assert_frame_equal(result, expected) def test_reindex_dups(self): # GH4746, reindex on duplicate index error messages arr = np.random.randn(10) df = DataFrame(arr, index=[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]) # set index is ok result = df.copy() result.index = list(range(len(df))) expected = DataFrame(arr, index=list(range(len(df)))) assert_frame_equal(result, expected) # reindex fails msg = "cannot reindex from a duplicate axis" with pytest.raises(ValueError, match=msg): df.reindex(index=list(range(len(df)))) def test_reindex_axis_style(self): # https://github.com/pandas-dev/pandas/issues/12392 df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) expected = pd.DataFrame({"A": [1, 2, np.nan], "B": [4, 5, np.nan]}, index=[0, 1, 3]) result = df.reindex([0, 1, 3]) assert_frame_equal(result, expected) result = df.reindex([0, 1, 3], axis=0) assert_frame_equal(result, expected) result = df.reindex([0, 1, 3], axis='index') assert_frame_equal(result, expected) def test_reindex_positional_warns(self): # https://github.com/pandas-dev/pandas/issues/12392 df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) expected = pd.DataFrame({"A": [1., 2], 'B': [4., 5], "C": [np.nan, np.nan]}) with tm.assert_produces_warning(FutureWarning): result = df.reindex([0, 1], ['A', 'B', 'C']) assert_frame_equal(result, expected) def test_reindex_axis_style_raises(self): # https://github.com/pandas-dev/pandas/issues/12392 df = pd.DataFrame({"A": [1, 2, 3], 'B': [4, 5, 6]}) with pytest.raises(TypeError, match="Cannot specify both 'axis'"): df.reindex([0, 1], ['A'], axis=1) with pytest.raises(TypeError, match="Cannot specify both 'axis'"): df.reindex([0, 1], ['A'], axis='index') with pytest.raises(TypeError, match="Cannot specify both 'axis'"): df.reindex(index=[0, 1], axis='index') with pytest.raises(TypeError, match="Cannot specify both 'axis'"): df.reindex(index=[0, 1], axis='columns') with pytest.raises(TypeError, match="Cannot specify both 'axis'"): df.reindex(columns=[0, 1], axis='columns') with pytest.raises(TypeError, match="Cannot specify both 'axis'"): df.reindex(index=[0, 1], columns=[0, 1], axis='columns') with pytest.raises(TypeError, match='Cannot specify all'): df.reindex([0, 1], [0], ['A']) # Mixing styles with pytest.raises(TypeError, match="Cannot specify both 'axis'"): df.reindex(index=[0, 1], axis='index') with pytest.raises(TypeError, match="Cannot specify both 'axis'"): df.reindex(index=[0, 1], axis='columns') # Duplicates with pytest.raises(TypeError, match="multiple values"): df.reindex([0, 1], labels=[0, 1]) def test_reindex_single_named_indexer(self): # https://github.com/pandas-dev/pandas/issues/12392 df = pd.DataFrame({"A": [1, 2, 3], "B": [1, 2, 3]}) result = df.reindex([0, 1], columns=['A']) expected = pd.DataFrame({"A": [1, 2]}) assert_frame_equal(result, expected) def test_reindex_api_equivalence(self): # https://github.com/pandas-dev/pandas/issues/12392 # equivalence of the labels/axis and index/columns API's df = DataFrame([[1, 2, 3], [3, 4, 5], [5, 6, 7]], index=['a', 'b', 'c'], columns=['d', 'e', 'f']) res1 = df.reindex(['b', 'a']) res2 = df.reindex(index=['b', 'a']) res3 = df.reindex(labels=['b', 'a']) res4 = df.reindex(labels=['b', 'a'], axis=0) res5 = df.reindex(['b', 'a'], axis=0) for res in [res2, res3, res4, res5]: tm.assert_frame_equal(res1, res) res1 = df.reindex(columns=['e', 'd']) res2 = df.reindex(['e', 'd'], axis=1) res3 = df.reindex(labels=['e', 'd'], axis=1) for res in [res2, res3]: tm.assert_frame_equal(res1, res) with tm.assert_produces_warning(FutureWarning) as m: res1 = df.reindex(['b', 'a'], ['e', 'd']) assert 'reindex' in str(m[0].message) res2 = df.reindex(columns=['e', 'd'], index=['b', 'a']) res3 = df.reindex(labels=['b', 'a'], axis=0).reindex(labels=['e', 'd'], axis=1) for res in [res2, res3]: tm.assert_frame_equal(res1, res) def test_align(self): af, bf = self.frame.align(self.frame) assert af._data is not self.frame._data af, bf = self.frame.align(self.frame, copy=False) assert af._data is self.frame._data # axis = 0 other = self.frame.iloc[:-5, :3] af, bf = self.frame.align(other, axis=0, fill_value=-1) tm.assert_index_equal(bf.columns, other.columns) # test fill value join_idx = self.frame.index.join(other.index) diff_a = self.frame.index.difference(join_idx) diff_b = other.index.difference(join_idx) diff_a_vals = af.reindex(diff_a).values diff_b_vals = bf.reindex(diff_b).values assert (diff_a_vals == -1).all() af, bf = self.frame.align(other, join='right', axis=0) tm.assert_index_equal(bf.columns, other.columns) tm.assert_index_equal(bf.index, other.index) tm.assert_index_equal(af.index, other.index) # axis = 1 other = self.frame.iloc[:-5, :3].copy() af, bf = self.frame.align(other, axis=1) tm.assert_index_equal(bf.columns, self.frame.columns) tm.assert_index_equal(bf.index, other.index) # test fill value join_idx = self.frame.index.join(other.index) diff_a = self.frame.index.difference(join_idx) diff_b = other.index.difference(join_idx) diff_a_vals = af.reindex(diff_a).values # TODO(wesm): unused? diff_b_vals = bf.reindex(diff_b).values # noqa assert (diff_a_vals == -1).all() af, bf = self.frame.align(other, join='inner', axis=1) tm.assert_index_equal(bf.columns, other.columns) af, bf = self.frame.align(other, join='inner', axis=1, method='pad') tm.assert_index_equal(bf.columns, other.columns) # test other non-float types af, bf = self.intframe.align(other, join='inner', axis=1, method='pad') tm.assert_index_equal(bf.columns, other.columns) af, bf = self.mixed_frame.align(self.mixed_frame, join='inner', axis=1, method='pad') tm.assert_index_equal(bf.columns, self.mixed_frame.columns) af, bf = self.frame.align(other.iloc[:, 0], join='inner', axis=1, method=None, fill_value=None) tm.assert_index_equal(bf.index, Index([])) af, bf = self.frame.align(other.iloc[:, 0], join='inner', axis=1, method=None, fill_value=0) tm.assert_index_equal(bf.index, Index([])) # mixed floats/ints af, bf = self.mixed_float.align(other.iloc[:, 0], join='inner', axis=1, method=None, fill_value=0) tm.assert_index_equal(bf.index, Index([])) af, bf = self.mixed_int.align(other.iloc[:, 0], join='inner', axis=1, method=None, fill_value=0) tm.assert_index_equal(bf.index, Index([])) # Try to align DataFrame to Series along bad axis with pytest.raises(ValueError): self.frame.align(af.iloc[0, :3], join='inner', axis=2) # align dataframe to series with broadcast or not idx = self.frame.index s = Series(range(len(idx)), index=idx) left, right = self.frame.align(s, axis=0) tm.assert_index_equal(left.index, self.frame.index) tm.assert_index_equal(right.index, self.frame.index) assert isinstance(right, Series) left, right = self.frame.align(s, broadcast_axis=1) tm.assert_index_equal(left.index, self.frame.index) expected = {c: s for c in self.frame.columns} expected = DataFrame(expected, index=self.frame.index, columns=self.frame.columns) tm.assert_frame_equal(right, expected) # see gh-9558 df = DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}) result = df[df['a'] == 2] expected = DataFrame([[2, 5]], index=[1], columns=['a', 'b']) tm.assert_frame_equal(result, expected) result = df.where(df['a'] == 2, 0) expected = DataFrame({'a': [0, 2, 0], 'b': [0, 5, 0]}) tm.assert_frame_equal(result, expected) def _check_align(self, a, b, axis, fill_axis, how, method, limit=None): aa, ab = a.align(b, axis=axis, join=how, method=method, limit=limit, fill_axis=fill_axis) join_index, join_columns = None, None ea, eb = a, b if axis is None or axis == 0: join_index = a.index.join(b.index, how=how) ea = ea.reindex(index=join_index) eb = eb.reindex(index=join_index) if axis is None or axis == 1: join_columns = a.columns.join(b.columns, how=how) ea = ea.reindex(columns=join_columns) eb = eb.reindex(columns=join_columns) ea = ea.fillna(axis=fill_axis, method=method, limit=limit) eb = eb.fillna(axis=fill_axis, method=method, limit=limit) assert_frame_equal(aa, ea) assert_frame_equal(ab, eb) @pytest.mark.parametrize('meth', ['pad', 'bfill']) @pytest.mark.parametrize('ax', [0, 1, None]) @pytest.mark.parametrize('fax', [0, 1]) @pytest.mark.parametrize('how', ['inner', 'outer', 'left', 'right']) def test_align_fill_method(self, how, meth, ax, fax): self._check_align_fill(how, meth, ax, fax) def _check_align_fill(self, kind, meth, ax, fax): left = self.frame.iloc[0:4, :10] right = self.frame.iloc[2:, 6:] empty = self.frame.iloc[:0, :0] self._check_align(left, right, axis=ax, fill_axis=fax, how=kind, method=meth) self._check_align(left, right, axis=ax, fill_axis=fax, how=kind, method=meth, limit=1) # empty left self._check_align(empty, right, axis=ax, fill_axis=fax, how=kind, method=meth) self._check_align(empty, right, axis=ax, fill_axis=fax, how=kind, method=meth, limit=1) # empty right self._check_align(left, empty, axis=ax, fill_axis=fax, how=kind, method=meth) self._check_align(left, empty, axis=ax, fill_axis=fax, how=kind, method=meth, limit=1) # both empty self._check_align(empty, empty, axis=ax, fill_axis=fax, how=kind, method=meth) self._check_align(empty, empty, axis=ax, fill_axis=fax, how=kind, method=meth, limit=1) def test_align_int_fill_bug(self): # GH #910 X = np.arange(10 * 10, dtype='float64').reshape(10, 10) Y = np.ones((10, 1), dtype=int) df1 = DataFrame(X) df1['0.X'] = Y.squeeze() df2 = df1.astype(float) result = df1 - df1.mean() expected = df2 - df2.mean() assert_frame_equal(result, expected) def test_align_multiindex(self): # GH 10665 # same test cases as test_align_multiindex in test_series.py midx = pd.MultiIndex.from_product([range(2), range(3), range(2)], names=('a', 'b', 'c')) idx = pd.Index(range(2), name='b') df1 = pd.DataFrame(np.arange(12, dtype='int64'), index=midx) df2 = pd.DataFrame(np.arange(2, dtype='int64'), index=idx) # these must be the same results (but flipped) res1l, res1r = df1.align(df2, join='left') res2l, res2r = df2.align(df1, join='right') expl = df1 assert_frame_equal(expl, res1l) assert_frame_equal(expl, res2r) expr = pd.DataFrame([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx) assert_frame_equal(expr, res1r) assert_frame_equal(expr, res2l) res1l, res1r = df1.align(df2, join='right') res2l, res2r = df2.align(df1, join='left') exp_idx = pd.MultiIndex.from_product([range(2), range(2), range(2)], names=('a', 'b', 'c')) expl = pd.DataFrame([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx) assert_frame_equal(expl, res1l) assert_frame_equal(expl, res2r) expr = pd.DataFrame([0, 0, 1, 1] * 2, index=exp_idx) assert_frame_equal(expr, res1r) assert_frame_equal(expr, res2l) def test_align_series_combinations(self): df = pd.DataFrame({'a': [1, 3, 5], 'b': [1, 3, 5]}, index=list('ACE')) s = pd.Series([1, 2, 4], index=list('ABD'), name='x') # frame + series res1, res2 = df.align(s, axis=0) exp1 = pd.DataFrame({'a': [1, np.nan, 3, np.nan, 5], 'b': [1, np.nan, 3, np.nan, 5]}, index=list('ABCDE')) exp2 = pd.Series([1, 2, np.nan, 4, np.nan], index=list('ABCDE'), name='x') tm.assert_frame_equal(res1, exp1) tm.assert_series_equal(res2, exp2) # series + frame res1, res2 = s.align(df) tm.assert_series_equal(res1, exp2) tm.assert_frame_equal(res2, exp1) def test_filter(self): # Items filtered = self.frame.filter(['A', 'B', 'E']) assert len(filtered.columns) == 2 assert 'E' not in filtered filtered = self.frame.filter(['A', 'B', 'E'], axis='columns') assert len(filtered.columns) == 2 assert 'E' not in filtered # Other axis idx = self.frame.index[0:4] filtered = self.frame.filter(idx, axis='index') expected = self.frame.reindex(index=idx) tm.assert_frame_equal(filtered, expected) # like fcopy = self.frame.copy() fcopy['AA'] = 1 filtered = fcopy.filter(like='A') assert len(filtered.columns) == 2 assert 'AA' in filtered # like with ints in column names df = DataFrame(0., index=[0, 1, 2], columns=[0, 1, '_A', '_B']) filtered = df.filter(like='_') assert len(filtered.columns) == 2 # regex with ints in column names # from PR #10384 df = DataFrame(0., index=[0, 1, 2], columns=['A1', 1, 'B', 2, 'C']) expected = DataFrame( 0., index=[0, 1, 2], columns=pd.Index([1, 2], dtype=object)) filtered = df.filter(regex='^[0-9]+$') tm.assert_frame_equal(filtered, expected) expected = DataFrame(0., index=[0, 1, 2], columns=[0, '0', 1, '1']) # shouldn't remove anything filtered = expected.filter(regex='^[0-9]+$') tm.assert_frame_equal(filtered, expected) # pass in None with pytest.raises(TypeError, match='Must pass'): self.frame.filter() with pytest.raises(TypeError, match='Must pass'): self.frame.filter(items=None) with pytest.raises(TypeError, match='Must pass'): self.frame.filter(axis=1) # test mutually exclusive arguments with pytest.raises(TypeError, match='mutually exclusive'): self.frame.filter(items=['one', 'three'], regex='e$', like='bbi') with pytest.raises(TypeError, match='mutually exclusive'): self.frame.filter(items=['one', 'three'], regex='e$', axis=1) with pytest.raises(TypeError, match='mutually exclusive'): self.frame.filter(items=['one', 'three'], regex='e$') with pytest.raises(TypeError, match='mutually exclusive'): self.frame.filter(items=['one', 'three'], like='bbi', axis=0) with pytest.raises(TypeError, match='mutually exclusive'): self.frame.filter(items=['one', 'three'], like='bbi') # objects filtered = self.mixed_frame.filter(like='foo') assert 'foo' in filtered # unicode columns, won't ascii-encode df = self.frame.rename(columns={'B': '\u2202'}) filtered = df.filter(like='C') assert 'C' in filtered def test_filter_regex_search(self): fcopy = self.frame.copy() fcopy['AA'] = 1 # regex filtered = fcopy.filter(regex='[A]+') assert len(filtered.columns) == 2 assert 'AA' in filtered # doesn't have to be at beginning df = DataFrame({'aBBa': [1, 2], 'BBaBB': [1, 2], 'aCCa': [1, 2], 'aCCaBB': [1, 2]}) result = df.filter(regex='BB') exp = df[[x for x in df.columns if 'BB' in x]] assert_frame_equal(result, exp) @pytest.mark.parametrize('name,expected', [ ('a', DataFrame({'a': [1, 2]})), ('a', DataFrame({'a': [1, 2]})), ('あ', DataFrame({'あ': [3, 4]})) ]) def test_filter_unicode(self, name, expected): # GH13101 df = DataFrame({'a': [1, 2], 'あ': [3, 4]}) assert_frame_equal(df.filter(like=name), expected) assert_frame_equal(df.filter(regex=name), expected) @pytest.mark.parametrize('name', ['a', 'a']) def test_filter_bytestring(self, name): # GH13101 df = DataFrame({b'a': [1, 2], b'b': [3, 4]}) expected = DataFrame({b'a': [1, 2]}) assert_frame_equal(df.filter(like=name), expected) assert_frame_equal(df.filter(regex=name), expected) def test_filter_corner(self): empty = DataFrame() result = empty.filter([]) assert_frame_equal(result, empty) result = empty.filter(like='foo') assert_frame_equal(result, empty) def test_take(self): # homogeneous order = [3, 1, 2, 0] for df in [self.frame]: result = df.take(order, axis=0) expected = df.reindex(df.index.take(order)) assert_frame_equal(result, expected) # axis = 1 result = df.take(order, axis=1) expected = df.loc[:, ['D', 'B', 'C', 'A']] assert_frame_equal(result, expected, check_names=False) # negative indices order = [2, 1, -1] for df in [self.frame]: result = df.take(order, axis=0) expected = df.reindex(df.index.take(order)) assert_frame_equal(result, expected) with tm.assert_produces_warning(FutureWarning): result = df.take(order, convert=True, axis=0) assert_frame_equal(result, expected) with tm.assert_produces_warning(FutureWarning): result = df.take(order, convert=False, axis=0) assert_frame_equal(result, expected) # axis = 1 result = df.take(order, axis=1) expected = df.loc[:, ['C', 'B', 'D']] assert_frame_equal(result, expected, check_names=False) # illegal indices msg = "indices are out-of-bounds" with pytest.raises(IndexError, match=msg): df.take([3, 1, 2, 30], axis=0) with pytest.raises(IndexError, match=msg): df.take([3, 1, 2, -31], axis=0) with pytest.raises(IndexError, match=msg): df.take([3, 1, 2, 5], axis=1) with pytest.raises(IndexError, match=msg): df.take([3, 1, 2, -5], axis=1) # mixed-dtype order = [4, 1, 2, 0, 3] for df in [self.mixed_frame]: result = df.take(order, axis=0) expected = df.reindex(df.index.take(order)) assert_frame_equal(result, expected) # axis = 1 result = df.take(order, axis=1) expected = df.loc[:, ['foo', 'B', 'C', 'A', 'D']] assert_frame_equal(result, expected) # negative indices order = [4, 1, -2] for df in [self.mixed_frame]: result = df.take(order, axis=0) expected = df.reindex(df.index.take(order)) assert_frame_equal(result, expected) # axis = 1 result = df.take(order, axis=1) expected = df.loc[:, ['foo', 'B', 'D']] assert_frame_equal(result, expected) # by dtype order = [1, 2, 0, 3] for df in [self.mixed_float, self.mixed_int]: result = df.take(order, axis=0) expected = df.reindex(df.index.take(order)) assert_frame_equal(result, expected) # axis = 1 result = df.take(order, axis=1) expected = df.loc[:, ['B', 'C', 'A', 'D']] assert_frame_equal(result, expected) def test_reindex_boolean(self): frame = DataFrame(np.ones((10, 2), dtype=bool), index=np.arange(0, 20, 2), columns=[0, 2]) reindexed = frame.reindex(np.arange(10)) assert reindexed.values.dtype == np.object_ assert isna(reindexed[0][1]) reindexed = frame.reindex(columns=range(3)) assert reindexed.values.dtype == np.object_ assert isna(reindexed[1]).all() def test_reindex_objects(self): reindexed = self.mixed_frame.reindex(columns=['foo', 'A', 'B']) assert 'foo' in reindexed reindexed = self.mixed_frame.reindex(columns=['A', 'B']) assert 'foo' not in reindexed def test_reindex_corner(self): index = Index(['a', 'b', 'c']) dm = self.empty.reindex(index=[1, 2, 3]) reindexed = dm.reindex(columns=index) tm.assert_index_equal(reindexed.columns, index) # ints are weird smaller = self.intframe.reindex(columns=['A', 'B', 'E']) assert smaller['E'].dtype == np.float64 def test_reindex_axis(self): cols = ['A', 'B', 'E'] with tm.assert_produces_warning(FutureWarning) as m: reindexed1 = self.intframe.reindex_axis(cols, axis=1) assert 'reindex' in str(m[0].message) reindexed2 = self.intframe.reindex(columns=cols) assert_frame_equal(reindexed1, reindexed2) rows = self.intframe.index[0:5] with tm.assert_produces_warning(FutureWarning) as m: reindexed1 = self.intframe.reindex_axis(rows, axis=0) assert 'reindex' in str(m[0].message) reindexed2 = self.intframe.reindex(index=rows) assert_frame_equal(reindexed1, reindexed2) msg = ("No axis named 2 for object type" " <class 'pandas.core.frame.DataFrame'>") with pytest.raises(ValueError, match=msg): self.intframe.reindex_axis(rows, axis=2) # no-op case cols = self.frame.columns.copy() with tm.assert_produces_warning(FutureWarning) as m: newFrame = self.frame.reindex_axis(cols, axis=1) assert 'reindex' in str(m[0].message) assert_frame_equal(newFrame, self.frame) def test_reindex_with_nans(self): df = DataFrame([[1, 2], [3, 4], [np.nan, np.nan], [7, 8], [9, 10]], columns=['a', 'b'], index=[100.0, 101.0, np.nan, 102.0, 103.0]) result = df.reindex(index=[101.0, 102.0, 103.0]) expected = df.iloc[[1, 3, 4]] assert_frame_equal(result, expected) result = df.reindex(index=[103.0]) expected = df.iloc[[4]] assert_frame_equal(result, expected) result = df.reindex(index=[101.0]) expected = df.iloc[[1]] assert_frame_equal(result, expected) def test_reindex_multi(self): df = DataFrame(np.random.randn(3, 3)) result = df.reindex(index=range(4), columns=range(4)) expected = df.reindex(list(range(4))).reindex(columns=range(4)) assert_frame_equal(result, expected) df = DataFrame(np.random.randint(0, 10, (3, 3))) result = df.reindex(index=range(4), columns=range(4)) expected = df.reindex(list(range(4))).reindex(columns=range(4)) assert_frame_equal(result, expected) df = DataFrame(np.random.randint(0, 10, (3, 3))) result = df.reindex(index=range(2), columns=range(2)) expected = df.reindex(range(2)).reindex(columns=range(2)) assert_frame_equal(result, expected) df = DataFrame(np.random.randn(5, 3) + 1j, columns=['a', 'b', 'c']) result = df.reindex(index=[0, 1], columns=['a', 'b']) expected = df.reindex([0, 1]).reindex(columns=['a', 'b']) assert_frame_equal(result, expected) def test_reindex_multi_categorical_time(self): # https://github.com/pandas-dev/pandas/issues/21390 midx = pd.MultiIndex.from_product( [Categorical(['a', 'b', 'c']), Categorical(date_range("2012-01-01", periods=3, freq='H'))]) df = pd.DataFrame({'a': range(len(midx))}, index=midx) df2 = df.iloc[[0, 1, 2, 3, 4, 5, 6, 8]] result = df2.reindex(midx) expected = pd.DataFrame( {'a': [0, 1, 2, 3, 4, 5, 6, np.nan, 8]}, index=midx) assert_frame_equal(result, expected) data = [[1, 2, 3], [1, 2, 3]] @pytest.mark.parametrize('actual', [ DataFrame(data=data, index=['a', 'a']), DataFrame(data=data, index=['a', 'b']), DataFrame(data=data, index=['a', 'b']).set_index([0, 1]), DataFrame(data=data, index=['a', 'a']).set_index([0, 1]) ]) def test_raise_on_drop_duplicate_index(self, actual): # issue 19186 level = 0 if isinstance(actual.index, MultiIndex) else None with pytest.raises(KeyError): actual.drop('c', level=level, axis=0) with pytest.raises(KeyError): actual.T.drop('c', level=level, axis=1) expected_no_err = actual.drop('c', axis=0, level=level, errors='ignore') assert_frame_equal(expected_no_err, actual) expected_no_err = actual.T.drop('c', axis=1, level=level, errors='ignore') assert_frame_equal(expected_no_err.T, actual) @pytest.mark.parametrize('index', [[1, 2, 3], [1, 1, 2]]) @pytest.mark.parametrize('drop_labels', [[], [1], [2]]) def test_drop_empty_list(self, index, drop_labels): # GH 21494 expected_index = [i for i in index if i not in drop_labels] frame = pd.DataFrame(index=index).drop(drop_labels) tm.assert_frame_equal(frame, pd.DataFrame(index=expected_index)) @pytest.mark.parametrize('index', [[1, 2, 3], [1, 2, 2]]) @pytest.mark.parametrize('drop_labels', [[1, 4], [4, 5]]) def test_drop_non_empty_list(self, index, drop_labels): # GH 21494 with pytest.raises(KeyError, match='not found in axis'): pd.DataFrame(index=index).drop(drop_labels)
bsd-3-clause
lpeska/BRDTI
netlaprls.py
1
2811
''' We base the NetLapRLS implementation on the one from PyDTI project, https://github.com/stephenliu0423/PyDTI, changes were made to the evaluation procedure [1] Xia, Zheng, et al. "Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces." BMC systems biology 4.Suppl 2 (2010): S6. Default parameters: gamma_d = 0.01, gamma_d=gamma_d2/gamma_d1 gamma_t = 0.01, gamma_t=gamma_p2/gamma_p1 beta_d = 0.3 beta_t = 0.3 ''' import numpy as np from sklearn.metrics import precision_recall_curve, roc_curve from sklearn.metrics import auc from functions import normalized_discounted_cummulative_gain class NetLapRLS: def __init__(self, gamma_d=0.01, gamma_t=0.01, beta_d=0.3, beta_t=0.3): self.gamma_d = float(gamma_d) self.gamma_t = float(gamma_t) self.beta_d = float(beta_d) self.beta_t = float(beta_t) def fix_model(self, W, intMat, drugMat, targetMat, seed=None): R = W*intMat m, n = R.shape drugMat = (drugMat+drugMat.T)/2 targetMat = (targetMat+targetMat.T)/2 Wd = (drugMat+self.gamma_d*np.dot(R, R.T))/(1.0+self.gamma_d) Wt = (targetMat+self.gamma_t*np.dot(R.T, R))/(1.0+self.gamma_t) Wd = Wd-np.diag(np.diag(Wd)) Wt = Wt-np.diag(np.diag(Wt)) D = np.diag(np.sqrt(1.0/np.sum(Wd, axis=1))) Ld = np.eye(m) - np.dot(np.dot(D, Wd), D) D = np.diag(np.sqrt(1.0/np.sum(Wt, axis=1))) Lt = np.eye(n) - np.dot(np.dot(D, Wt), D) X = np.linalg.inv(Wd+self.beta_d*np.dot(Ld, Wd)) Fd = np.dot(np.dot(Wd, X), R) X = np.linalg.inv(Wt+self.beta_t*np.dot(Lt, Wt)) Ft = np.dot(np.dot(Wt, X), R.T) self.predictR = 0.5*(Fd+Ft.T) def predict_scores(self, test_data, N): inx = np.array(test_data) return self.predictR[inx[:, 0], inx[:, 1]] def evaluation(self, test_data, test_label): scores = self.predictR[test_data[:, 0], test_data[:, 1]] self.scores = scores x, y = test_data[:, 0], test_data[:, 1] test_data_T = np.column_stack((y,x)) ndcg = normalized_discounted_cummulative_gain(test_data, test_label, np.array(scores)) ndcg_inv = normalized_discounted_cummulative_gain(test_data_T, test_label, np.array(scores)) prec, rec, thr = precision_recall_curve(test_label, scores) aupr_val = auc(rec, prec) fpr, tpr, thr = roc_curve(test_label, scores) auc_val = auc(fpr, tpr) #!!!!we should distinguish here between inverted and not inverted methods nDCGs!!!! return aupr_val, auc_val, ndcg, ndcg_inv def __str__(self): return "Model: NetLapRLS, gamma_d:%s, gamma_t:%s, beta_d:%s, beta_t:%s" % (self.gamma_d, self.gamma_t, self.beta_d, self.beta_t)
gpl-2.0
mick-d/nipype
tools/make_examples.py
10
3014
#!/usr/bin/env python """Run the py->rst conversion and run all examples. This also creates the index.rst file appropriately, makes figures, etc. """ from __future__ import print_function, division, unicode_literals, absolute_import from builtins import open from past.builtins import execfile # ----------------------------------------------------------------------------- # Library imports # ----------------------------------------------------------------------------- # Stdlib imports import os import sys from glob import glob # Third-party imports # We must configure the mpl backend before making any further mpl imports import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib._pylab_helpers import Gcf # Local tools from toollib import * # ----------------------------------------------------------------------------- # Globals # ----------------------------------------------------------------------------- examples_header = """ .. _examples: Examples ======== .. note_about_examples """ # ----------------------------------------------------------------------------- # Function defintions # ----------------------------------------------------------------------------- # These global variables let show() be called by the scripts in the usual # manner, but when generating examples, we override it to write the figures to # files with a known name (derived from the script name) plus a counter figure_basename = None # We must change the show command to save instead def show(): allfm = Gcf.get_all_fig_managers() for fcount, fm in enumerate(allfm): fm.canvas.figure.savefig('%s_%02i.png' % (figure_basename, fcount + 1)) _mpl_show = plt.show plt.show = show # ----------------------------------------------------------------------------- # Main script # ----------------------------------------------------------------------------- # Work in examples directory cd('users/examples') if not os.getcwd().endswith('users/examples'): raise OSError('This must be run from doc/examples directory') # Run the conversion from .py to rst file sh('../../../tools/ex2rst --project Nipype --outdir . ../../../examples') sh('../../../tools/ex2rst --project Nipype --outdir . ../../../examples/frontiers_paper') # Make the index.rst file """ index = open('index.rst', 'w') index.write(examples_header) for name in [os.path.splitext(f)[0] for f in glob('*.rst')]: #Don't add the index in there to avoid sphinx errors and don't add the #note_about examples again (because it was added at the top): if name not in(['index','note_about_examples']): index.write(' %s\n' % name) index.close() """ # Execute each python script in the directory. if '--no-exec' in sys.argv: pass else: if not os.path.isdir('fig'): os.mkdir('fig') for script in glob('*.py'): figure_basename = pjoin('fig', os.path.splitext(script)[0]) execfile(script) plt.close('all')
bsd-3-clause
poryfly/scikit-learn
sklearn/kernel_ridge.py
155
6545
"""Module :mod:`sklearn.kernel_ridge` implements kernel ridge regression.""" # Authors: Mathieu Blondel <mathieu@mblondel.org> # Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD 3 clause import numpy as np from .base import BaseEstimator, RegressorMixin from .metrics.pairwise import pairwise_kernels from .linear_model.ridge import _solve_cholesky_kernel from .utils import check_X_y from .utils.validation import check_is_fitted class KernelRidge(BaseEstimator, RegressorMixin): """Kernel ridge regression. Kernel ridge regression (KRR) combines ridge regression (linear least squares with l2-norm regularization) with the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For non-linear kernels, this corresponds to a non-linear function in the original space. The form of the model learned by KRR is identical to support vector regression (SVR). However, different loss functions are used: KRR uses squared error loss while support vector regression uses epsilon-insensitive loss, both combined with l2 regularization. In contrast to SVR, fitting a KRR model can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR, which learns a sparse model for epsilon > 0, at prediction-time. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <kernel_ridge>`. Parameters ---------- alpha : {float, array-like}, shape = [n_targets] Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. kernel : string or callable, default="linear" Kernel mapping used internally. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. gamma : float, default=None Gamma parameter for the RBF, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of string to any, optional Additional parameters (keyword arguments) for kernel function passed as callable object. Attributes ---------- dual_coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s) in kernel space X_fit_ : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data, which is also required for prediction References ---------- * Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press chapter 14.4.3, pp. 492-493 See also -------- Ridge Linear ridge regression. SVR Support Vector Regression implemented using libsvm. Examples -------- >>> from sklearn.kernel_ridge import KernelRidge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples) >>> X = rng.randn(n_samples, n_features) >>> clf = KernelRidge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE KernelRidge(alpha=1.0, coef0=1, degree=3, gamma=None, kernel='linear', kernel_params=None) """ def __init__(self, alpha=1, kernel="linear", gamma=None, degree=3, coef0=1, kernel_params=None): self.alpha = alpha self.kernel = kernel self.gamma = gamma self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params def _get_kernel(self, X, Y=None): if callable(self.kernel): params = self.kernel_params or {} else: params = {"gamma": self.gamma, "degree": self.degree, "coef0": self.coef0} return pairwise_kernels(X, Y, metric=self.kernel, filter_params=True, **params) @property def _pairwise(self): return self.kernel == "precomputed" def fit(self, X, y=None, sample_weight=None): """Fit Kernel Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample, ignored if None is passed. Returns ------- self : returns an instance of self. """ # Convert data X, y = check_X_y(X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True) K = self._get_kernel(X) alpha = np.atleast_1d(self.alpha) ravel = False if len(y.shape) == 1: y = y.reshape(-1, 1) ravel = True copy = self.kernel == "precomputed" self.dual_coef_ = _solve_cholesky_kernel(K, y, alpha, sample_weight, copy) if ravel: self.dual_coef_ = self.dual_coef_.ravel() self.X_fit_ = X return self def predict(self, X): """Predict using the the kernel ridge model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. Returns ------- C : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, ["X_fit_", "dual_coef_"]) K = self._get_kernel(X, self.X_fit_) return np.dot(K, self.dual_coef_)
bsd-3-clause
angelmtenor/IDSFC
L1_intro/H_olympics_medal_points.py
1
1606
import numpy as np from pandas import DataFrame def numpy_dot(): """ Imagine a point system in which each country is awarded 4 points for each gold medal, 2 points for each silver medal, and one point for each bronze medal. Using the numpy.dot function, create a new dataframe called 'olympic_points_df' that includes: a) a column called 'country_name' with the country name b) a column called 'points' with the total number of points the country earned at the Sochi olympics. You do not need to call the function in your code when running it in the browser - the grader will do that automatically when you submit or test it. """ countries = ['Russian Fed.', 'Norway', 'Canada', 'United States', 'Netherlands', 'Germany', 'Switzerland', 'Belarus', 'Austria', 'France', 'Poland', 'China', 'Korea', 'Sweden', 'Czech Republic', 'Slovenia', 'Japan', 'Finland', 'Great Britain', 'Ukraine', 'Slovakia', 'Italy', 'Latvia', 'Australia', 'Croatia', 'Kazakhstan'] gold = [13, 11, 10, 9, 8, 8, 6, 5, 4, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0] silver = [11, 5, 10, 7, 7, 6, 3, 0, 8, 4, 1, 4, 3, 7, 4, 2, 4, 3, 1, 0, 0, 2, 2, 2, 1, 0] bronze = [9, 10, 5, 12, 9, 5, 2, 1, 5, 7, 1, 2, 2, 6, 2, 4, 3, 1, 2, 1, 0, 6, 2, 1, 0, 1] # YOUR CODE HERE points = np.dot([4, 2, 1], [gold, silver, bronze]) olympic_points_df = DataFrame({'country_name': countries, 'points': points}) return olympic_points_df print(numpy_dot())
mit
oiertwo/vampyr
pdftoexcel.py
1
8194
__author__ = 'oier' import os import numpy as np from data.parameters import true_params from data.parameters import false_params import distance as dist import numpy as np def pdftotext(path): os.system("pdftotext {data}".format(data=path)) return(path.replace(".pdf",".txt")) import pandas as pd def parse(path): txt = pd.read_table(path, sep='\n', na_values=False, header=None) for i in txt.index: try : if pd.isnull(float(txt.ix[i])) == False: name = getname(i,txt) print(name) print(float(txt.ix[i])) except : pass def getname(index, df): name = "" for i in range(0,index): size = len(df.ix[i].to_string().split()) idxname = " ".join(df.ix[i].to_string().split()[1:size]) if (len( idxname )> 5) and idxname != None and idxname != "NaN": name = idxname #print(name) return (name) from collections import deque def getnamedict(path): dict = {} numdict = {} names = deque() txt = pd.read_table(path, sep='\n', na_values=False, header=None) name = "" for i in txt.index: try : size = len(txt.ix[i].to_string().split()) nextname = " ".join(txt.ix[i].to_string().split()[1:size]) if (len( nextname )> 5) and \ nextname != None and \ nextname != "NaN" and \ isclean(nextname) and \ validateparam(nextname): names.append(nextname) dict[i] = nextname #print(name) #print(nextname) if pd.isnull(float(txt.ix[i])) == False: number = float(txt.ix[i]) numdict[names.pop()] = number #print(number) #print(i) except : pass print(dict.keys()) print(dict.values()) print(numdict.keys()) print(numdict.values()) #organize(dict,numdict) # print(dict[i]) def organize(names, numbers): ''' :param names: must be dictionary :param numbers: must be dictionary :return: dictionary, dict[name] = number ''' numbs = dict(numbers) nams = dict(names) conn1 = {} conn2 = {} array1 = np.array(nams.keys()) for i in numbs.keys(): actual = 100.0 inconn2 = False key = min(nams.keys(), key=lambda k: abs(k - i)) print(" {} - {} ".format(key,i)) print(" {} - {} ".format(nams[key],numbs[i])) ''' for j in numbs.keys(): actual = i - j if ( actual > conn1[i] or conn1[i] == None): if( conn2[j] == None): conn1[i] = j conn2[j] = actual else: best = j inconn2 = True else if (conn2[j] != None ): ''' return() def isclean(word): w = str(word) test = True strg = "_[]*" bool = True for i in range(len(strg)): c = strg[i] bool = bool or (w.find(c) != -1) test = test and (bool) return(test) def validateparam(word): t_dist = [] f_dist = [] for i in true_params: t_dist.append(dist.levenshtein(word,i)) for i in false_params: f_dist.append(dist.levenshtein(word, i)) print("Word: {}, T: {} , F: {}".format(word, np.min(t_dist), np.min(f_dist[0]))) if( min(t_dist) == 0): print("TRUE") return (True) if (min(f_dist) == 0): print("FALSE") return("FALSE") if ( np.mean(t_dist )< np.mean(f_dist) ): print("TRUE") return(True) print("FALSE") return(False) def getmyarray(path, apath): dict = {} appearances = {} names = deque() with open(path) as f: txt = f.readlines() #txt = pd.read_table(path, sep='\n', na_values=False, header=None) array_txt = pd.read_table(apath, sep='\n', header=None) name = "" for i in txt: actual = i.replace("\n", '') if(len(actual.strip()) == 0): continue try : number = float(actual) if (number > 10000000): continue try: appearances[actual] += 1 except: appearances[actual] = 1 name = localgetmyarray(path, apath, actual, appearances[i]) dict[name] = i print("name: {} numb: {}".format(name, i)) except : pass print(dict.keys()) print(dict.values()) def localgetmyarray(path, apath, word, count): with open(path) as f: txt = f.readlines() #txt = pd.read_table(path, sep='\n', na_values=False, header=None) f = open(apath) array_txt_str = f.read() name = "" idx = [k.start() for k in re.finditer(word, array_txt_str)][count -1] opt = len(array_txt_str) apps ={} for i in txt: try : nextname = i.replace("\n", '') try : float(nextname) except : if (len( nextname )> 5) and nextname != None and \ nextname != "NaN" and isclean(nextname): try: apps[nextname ] += 1 except: apps[nextname] = 1 id = [k for k in re.finditer(nextname, array_txt_str)][apps[nextname]-1].start() myopt = idx - id if (myopt > 0) and (myopt < opt): opt = myopt name = nextname except : pass print("optimum: {} number: {} found: {}".format(opt, word, name)) f.close() return name #DOWN FROM HERE JAVA+PYTHON PDF TO TEXT: import re import extractText as txt def remove_unwanted(str): s = re.sub(r'\[.*?\]', '',str) s = s.replace("\*", "") s = s.replace("\n", "") return (s) def line_control(str): #may return True if str is not valid #returns false if str is valid if(len(str) < 15): return True if(len(str) == 1): return True if(len(str.split(" ")) > 10): return True return False def line_parser(str): item = '' valor = '' dict = {} sline = str.split(" ") helper = {} pos = 0 for schar in sline: try: #dict["val"] if(len(dict.keys()) == 3 and len(sline) > 6): helper[pos] = dict dict = {} pos += 1 dict["val"] #to force failure/raise ofd exception except: try: valor = '' table = [char for char in schar if '/' in char] if schar.find('%') != -1: valor = schar if len(table) > 0: valor = schar if(valor != ''): dict["val"] = valor continue except: pass try: #dict["num"] if(len(dict.keys()) == 3 and len(sline) > 6): helper[pos] = dict dict = {} pos += 1 dict["num"] except: try: num = float(schar) if(num > 10000): return({}) dict["num"] = num continue except: pass try: dict["item"] += " " + schar except: dict["item"] = schar helper[pos] = dict return(helper) def getfromjava(path, dest=''): if (dest == ''): d = path.replace(".pdf", ".txt") txt.extractText(path, d, '') with open(d) as f: text = f.readlines() for line in text: sline = remove_unwanted(line) if(line_control(sline) == True): continue dict = line_parser(sline) for i in dict.keys(): if(len(dict[i].keys()) == 3): print("ITEM: {} NUM: {} VAL: {}".format(dict[i]["item"], dict[i]["num"], dict[i]["val"]))
mit
wrightni/OSSP
segment.py
1
6298
# title: Watershed Transform # author: Nick Wright # adapted from: Justin Chen, Arnold Song import numpy as np import gc import warnings from skimage import filters, morphology, feature, img_as_ubyte from scipy import ndimage from ctypes import * from lib import utils # For Testing: from skimage import segmentation import matplotlib.image as mimg def segment_image(input_data, image_type=False): ''' Wrapper function that handles all of the processing to create watersheds ''' #### Define segmentation parameters # High_threshold: # Low_threshold: Lower threshold for canny edge detection. Determines which "weak" edges to keep. # Values above this amount that are connected to a strong edge will be marked as an edge. # Gauss_sigma: sigma value to use in the gaussian blur applied to the image prior to segmentation. # Value chosen here should be based on the quality and resolution of the image # Feature_separation: minimum distance, in pixels, between the center point of multiple features. Use a lower value # for lower resolution (.5m) images, and higher resolution for aerial images (~.1m). # These values are dependent on the type of imagery being processed, and are # mostly empirically derived. # band_list contains the three bands to be used for segmentation if image_type == 'pan': high_threshold = 0.15 * 255 ## Needs to be checked low_threshold = 0.05 * 255 ## Needs to be checked gauss_sigma = 1 feature_separation = 1 band_list = [0, 0, 0] elif image_type == 'wv02_ms': high_threshold = 0.20 * 255 ## Needs to be checked low_threshold = 0.05 * 255 ## Needs to be checked gauss_sigma = 1.5 feature_separation = 3 band_list = [4, 2, 1] else: #image_type == 'srgb' high_threshold = 0.15 * 255 low_threshold = 0.05 * 255 gauss_sigma = 2 feature_separation = 5 band_list = [0, 1, 2] segmented_data = watershed_transformation(input_data, band_list, low_threshold, high_threshold, gauss_sigma,feature_separation) # Method that provides the user an option to view the original image # side by side with the segmented image. # print(np.amax(segmented_data)) # image_data = np.array([input_data[band_list[0]], # input_data[band_list[1]], # input_data[band_list[2]]], # dtype=np.uint8) # ws_bound = segmentation.find_boundaries(segmented_data) # ws_display = utils.create_composite(image_data) # # # save_name = '/Users/nicholas/Desktop/original_{}.png' # # mimg.imsave(save_name.format(np.random.randint(0,100)), ws_display, format='png') # # ws_display[:, :, 0][ws_bound] = 240 # ws_display[:, :, 1][ws_bound] = 80 # ws_display[:, :, 2][ws_bound] = 80 # # save_name = '/Users/nicholas/Desktop/seg_{}.png' # mimg.imsave(save_name.format(np.random.randint(0, 100)), ws_display, format='png') return segmented_data def watershed_transformation(image_data, band_list, low_threshold, high_threshold, gauss_sigma, feature_separation): ''' Runs a watershed transform on the main dataset 1. Create a gradient image using the sobel algorithm 2. Adjust the gradient image based on given threshold and amplification. 3. Find the local minimum gradient values and place a marker 4. Construct watersheds on top of the gradient image starting at the markers. ''' # If this block has no data, return a placeholder watershed. if np.amax(image_data[0]) <= 1: # We just need the dimensions from one band return np.zeros(np.shape(image_data[0])) # Build a raster of detected edges to inform the creation of watershed seed points edge_image = edge_detect(image_data, band_list, gauss_sigma, low_threshold, high_threshold) # Build a raster of image gradient that will be the base for watershed expansion. grad_image = build_gradient(image_data, band_list, gauss_sigma) image_data = None # Find local minimum values in the edge image by inverting # edge_image and finding the local maximum values inv_edge = np.empty_like(edge_image, dtype=np.uint8) np.subtract(255, edge_image, out=inv_edge) edge_image = None # Distance to the nearest detected edge distance_image = ndimage.distance_transform_edt(inv_edge) inv_edge = None # Local maximum distance local_min = feature.peak_local_max(distance_image, min_distance=feature_separation, exclude_border=False, indices=False, num_peaks_per_label=1) distance_image = None markers = ndimage.label(local_min)[0] local_min = None # Build a watershed from the markers on top of the edge image im_watersheds = morphology.watershed(grad_image, markers) grad_image = None # Set all values outside of the image area (empty pixels, usually caused by # orthorectification) to one value, at the end of the watershed list. # im_watersheds[empty_pixels] = np.amax(im_watersheds)+1 gc.collect() return im_watersheds def edge_detect(image_data, band_list, gauss_sigma, low_threshold, high_threshold): # Detect edges in the image with a canny edge detector with warnings.catch_warnings(): warnings.simplefilter("ignore") edge_image = img_as_ubyte(feature.canny(image_data[band_list[1]], sigma=gauss_sigma, low_threshold=low_threshold, high_threshold=high_threshold)) return edge_image def build_gradient(image_data, band_list, gauss_sigma): with warnings.catch_warnings(): warnings.simplefilter("ignore") smooth_im_blue = ndimage.filters.gaussian_filter(image_data[band_list[2]], sigma=gauss_sigma) grad_image = img_as_ubyte(filters.scharr(smooth_im_blue)) # Prevent the watersheds from 'leaking' along the sides of the image grad_image[:, 0] = grad_image[:, 1] grad_image[:, -1] = grad_image[:, -2] grad_image[0, :] = grad_image[1, :] grad_image[-1, :] = grad_image[-2, :] return grad_image
mit
abhishekgahlot/scikit-learn
examples/applications/topics_extraction_with_nmf.py
106
2313
""" ======================================================== Topics extraction with Non-Negative Matrix Factorization ======================================================== This is a proof of concept application of Non Negative Matrix Factorization of the term frequency matrix of a corpus of documents so as to extract an additive model of the topic structure of the corpus. The output is a list of topics, each represented as a list of terms (weights are not shown). The default parameters (n_samples / n_features / n_topics) should make the example runnable in a couple of tens of seconds. You can try to increase the dimensions of the problem, but be aware than the time complexity is polynomial. """ # Author: Olivier Grisel <olivier.grisel@ensta.org> # Lars Buitinck <L.J.Buitinck@uva.nl> # License: BSD 3 clause from __future__ import print_function from time import time from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import NMF from sklearn.datasets import fetch_20newsgroups n_samples = 2000 n_features = 1000 n_topics = 10 n_top_words = 20 # Load the 20 newsgroups dataset and vectorize it. We use a few heuristics # to filter out useless terms early on: the posts are stripped of headers, # footers and quoted replies, and common English words, words occurring in # only one document or in at least 95% of the documents are removed. t0 = time() print("Loading dataset and extracting TF-IDF features...") dataset = fetch_20newsgroups(shuffle=True, random_state=1, remove=('headers', 'footers', 'quotes')) vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') tfidf = vectorizer.fit_transform(dataset.data[:n_samples]) print("done in %0.3fs." % (time() - t0)) # Fit the NMF model print("Fitting the NMF model with n_samples=%d and n_features=%d..." % (n_samples, n_features)) nmf = NMF(n_components=n_topics, random_state=1).fit(tfidf) print("done in %0.3fs." % (time() - t0)) feature_names = vectorizer.get_feature_names() for topic_idx, topic in enumerate(nmf.components_): print("Topic #%d:" % topic_idx) print(" ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]])) print()
bsd-3-clause
saketkc/statsmodels
tools/backport_pr.py
30
5263
#!/usr/bin/env python """ Backport pull requests to a particular branch. Usage: backport_pr.py branch [PR] e.g.: python tools/backport_pr.py 0.13.1 123 to backport PR #123 onto branch 0.13.1 or python tools/backport_pr.py 1.x to see what PRs are marked for backport that have yet to be applied. Copied from IPython 9e82bc5 https://github.com/ipython/ipython/blob/master/tools/backport_pr.py """ from __future__ import print_function import os import re import sys from subprocess import Popen, PIPE, check_call, check_output from urllib import urlopen from gh_api import ( get_issues_list, get_pull_request, get_pull_request_files, is_pull_request, get_milestone_id, ) from pandas import Series def find_rejects(root='.'): for dirname, dirs, files in os.walk(root): for fname in files: if fname.endswith('.rej'): yield os.path.join(dirname, fname) def get_current_branch(): branches = check_output(['git', 'branch']) for branch in branches.splitlines(): if branch.startswith('*'): return branch[1:].strip() def backport_pr(branch, num, project='statsmodels/statsmodels'): current_branch = get_current_branch() if branch != current_branch: check_call(['git', 'checkout', branch]) check_call(['git', 'pull']) pr = get_pull_request(project, num, auth=True) files = get_pull_request_files(project, num, auth=True) patch_url = pr['patch_url'] title = pr['title'] description = pr['body'] fname = "PR%i.patch" % num if os.path.exists(fname): print("using patch from {fname}".format(**locals())) with open(fname) as f: patch = f.read() else: req = urlopen(patch_url) patch = req.read() msg = "Backport PR #%i: %s" % (num, title) + '\n\n' + description check = Popen(['git', 'apply', '--check', '--verbose'], stdin=PIPE) a,b = check.communicate(patch) if check.returncode: print("patch did not apply, saving to {fname}".format(**locals())) print("edit {fname} until `cat {fname} | git apply --check` succeeds".format(**locals())) print("then run tools/backport_pr.py {num} again".format(**locals())) if not os.path.exists(fname): with open(fname, 'wb') as f: f.write(patch) return 1 p = Popen(['git', 'apply'], stdin=PIPE) a,b = p.communicate(patch) filenames = [ f['filename'] for f in files ] check_call(['git', 'add'] + filenames) check_call(['git', 'commit', '-m', msg]) print("PR #%i applied, with msg:" % num) print() print(msg) print() if branch != current_branch: check_call(['git', 'checkout', current_branch]) return 0 backport_re = re.compile(r"[Bb]ackport.*?(\d+)") def already_backported(branch, since_tag=None): """return set of PRs that have been backported already""" if since_tag is None: since_tag = check_output(['git','describe', branch, '--abbrev=0']).decode('utf8').strip() cmd = ['git', 'log', '%s..%s' % (since_tag, branch), '--oneline'] lines = check_output(cmd).decode('utf8') return set(int(num) for num in backport_re.findall(lines)) def should_backport(labels=None, milestone=None): """return set of PRs marked for backport""" if labels is None and milestone is None: raise ValueError("Specify one of labels or milestone.") elif labels is not None and milestone is not None: raise ValueError("Specify only one of labels or milestone.") if labels is not None: issues = get_issues_list("statsmodels/statsmodels", labels=labels, state='closed', auth=True, ) else: milestone_id = get_milestone_id("statsmodels/statsmodels", milestone, auth=True) issues = get_issues_list("statsmodels/statsmodels", milestone=milestone_id, state='closed', auth=True, ) should_backport = [] merged_dates = [] for issue in issues: if not is_pull_request(issue): continue pr = get_pull_request("statsmodels/statsmodels", issue['number'], auth=True) if not pr['merged']: print ("Marked PR closed without merge: %i" % pr['number']) continue if pr['number'] not in should_backport: merged_dates.append(pr['merged_at']) should_backport.append(pr['number']) return Series(merged_dates, index=should_backport) if __name__ == '__main__': if len(sys.argv) < 2: print(__doc__) sys.exit(1) if len(sys.argv) < 3: branch = sys.argv[1] already = already_backported(branch) #NOTE: change this to the label you've used for marking a backport should = should_backport(milestone="0.5.1") print ("The following PRs should be backported:") to_backport = [] if already: should = should.ix[set(should.index).difference(already)] should.sort() for pr, date in should.iteritems(): print (pr) sys.exit(0) sys.exit(backport_pr(sys.argv[1], int(sys.argv[2])))
bsd-3-clause
RachitKansal/scikit-learn
examples/mixture/plot_gmm_classifier.py
250
3918
""" ================== GMM classification ================== Demonstration of Gaussian mixture models for classification. See :ref:`gmm` for more information on the estimator. Plots predicted labels on both training and held out test data using a variety of GMM classifiers on the iris dataset. Compares GMMs with spherical, diagonal, full, and tied covariance matrices in increasing order of performance. Although one would expect full covariance to perform best in general, it is prone to overfitting on small datasets and does not generalize well to held out test data. On the plots, train data is shown as dots, while test data is shown as crosses. The iris dataset is four-dimensional. Only the first two dimensions are shown here, and thus some points are separated in other dimensions. """ print(__doc__) # Author: Ron Weiss <ronweiss@gmail.com>, Gael Varoquaux # License: BSD 3 clause # $Id$ import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np from sklearn import datasets from sklearn.cross_validation import StratifiedKFold from sklearn.externals.six.moves import xrange from sklearn.mixture import GMM def make_ellipses(gmm, ax): for n, color in enumerate('rgb'): v, w = np.linalg.eigh(gmm._get_covars()[n][:2, :2]) u = w[0] / np.linalg.norm(w[0]) angle = np.arctan2(u[1], u[0]) angle = 180 * angle / np.pi # convert to degrees v *= 9 ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1], 180 + angle, color=color) ell.set_clip_box(ax.bbox) ell.set_alpha(0.5) ax.add_artist(ell) iris = datasets.load_iris() # Break up the dataset into non-overlapping training (75%) and testing # (25%) sets. skf = StratifiedKFold(iris.target, n_folds=4) # Only take the first fold. train_index, test_index = next(iter(skf)) X_train = iris.data[train_index] y_train = iris.target[train_index] X_test = iris.data[test_index] y_test = iris.target[test_index] n_classes = len(np.unique(y_train)) # Try GMMs using different types of covariances. classifiers = dict((covar_type, GMM(n_components=n_classes, covariance_type=covar_type, init_params='wc', n_iter=20)) for covar_type in ['spherical', 'diag', 'tied', 'full']) n_classifiers = len(classifiers) plt.figure(figsize=(3 * n_classifiers / 2, 6)) plt.subplots_adjust(bottom=.01, top=0.95, hspace=.15, wspace=.05, left=.01, right=.99) for index, (name, classifier) in enumerate(classifiers.items()): # Since we have class labels for the training data, we can # initialize the GMM parameters in a supervised manner. classifier.means_ = np.array([X_train[y_train == i].mean(axis=0) for i in xrange(n_classes)]) # Train the other parameters using the EM algorithm. classifier.fit(X_train) h = plt.subplot(2, n_classifiers / 2, index + 1) make_ellipses(classifier, h) for n, color in enumerate('rgb'): data = iris.data[iris.target == n] plt.scatter(data[:, 0], data[:, 1], 0.8, color=color, label=iris.target_names[n]) # Plot the test data with crosses for n, color in enumerate('rgb'): data = X_test[y_test == n] plt.plot(data[:, 0], data[:, 1], 'x', color=color) y_train_pred = classifier.predict(X_train) train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100 plt.text(0.05, 0.9, 'Train accuracy: %.1f' % train_accuracy, transform=h.transAxes) y_test_pred = classifier.predict(X_test) test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100 plt.text(0.05, 0.8, 'Test accuracy: %.1f' % test_accuracy, transform=h.transAxes) plt.xticks(()) plt.yticks(()) plt.title(name) plt.legend(loc='lower right', prop=dict(size=12)) plt.show()
bsd-3-clause
duolinwang/MusiteDeep
MusiteDeep/train_general.py
1
4521
import sys import os import pandas as pd import numpy as np import argparse def main(): parser=argparse.ArgumentParser(description='MusiteDeep custom training tool for general PTM prediction.') parser.add_argument('-input', dest='inputfile', type=str, help='training data in fasta format. Sites followed by "#" are positive sites for a specific PTM prediction.', required=True) parser.add_argument('-output-prefix', dest='outputprefix', type=str, help='prefix of the output files (model and parameter files).', required=True) parser.add_argument('-residue-types', dest='residues', type=str, help='Residue types that this model focus on. For multiple residues, seperate each with \',\'. \n\ Note: all the residues specified by this parameter will be trained in one model.', required=True) parser.add_argument('-valinput', dest='valfile', type=str, help='validation data in fasta format if any. It will randomly select 10 percent of samples from the training data as a validation data set, if no validation file is provided.', required=False,default=None) parser.add_argument('-nclass', dest='nclass', type=int, help='number of classifiers to be trained for one time. [Default:5]', required=False, default=5) parser.add_argument('-window', dest='window', type=int, help='window size: the number of amino acid of the left part or right part adjacent to a potential PTM site. 2*\'windo size\'+1 amino acid will be extracted for one protential fragment. [Default:16]', required=False, default=16) parser.add_argument('-maxneg', dest='maxneg', type=int, help='maximum iterations for each classifier which controls the maximum copy number of the negative data which has the same size with the positive data. [Default: 50]', required=False, default=50) parser.add_argument('-nb_epoch', dest='nb_epoch', type=int, help='number of epoches for one bootstrap step. It is invalidate, if earlystop is set.', required=False, default=None) parser.add_argument('-earlystop', dest='earlystop', type=int, help='after the \'earlystop\' number of epochs with no improvement the training will be stopped for one bootstrap step. [Default: 20]', required=False, default=20) parser.add_argument('-inputweights', dest='inputweights', type=int, help='Initial weights saved in a HDF5 file.', required=False, default=None) parser.add_argument('-backupweights', dest='backupweights', type=int, help='Set the intermediate weights for backup in a HDF5 file.', required=False, default=None) parser.add_argument('-transferlayer', dest='transferlayer', type=int, help='Set the last \'transferlayer\' number of layers to be randomly initialized.', required=False, default=1) args = parser.parse_args() inputfile=args.inputfile; valfile=args.valfile; outputprefix=args.outputprefix; nclass=args.nclass; window=args.window; maxneg=args.maxneg; np_epoch2=args.nb_epoch; earlystop=args.earlystop; inputweights=args.inputweights; backupweights=args.backupweights; transferlayer=args.transferlayer residues=args.residues.split(",") outputmodel=outputprefix+str("_HDF5model"); outputparameter=outputprefix+str("_parameters"); try: output = open(outputparameter, 'w') except IOError: print 'cannot write to ' + outputparameter+ "!\n"; exit() else: print >> output, "%d\t%d\t%s\tgeneral" % (nclass,window,args.residues) from methods.Bootstrapping_allneg_continue_val import bootStrapping_allneg_continue_val from methods.EXtractfragment_sort import extractFragforTraining trainfrag=extractFragforTraining(inputfile,window,'-',focus=residues) if(valfile is not None): valfrag=extractFragforTraining(valfile,window,'-',focus= residues) else: valfrag=None; for bt in range(nclass): models=bootStrapping_allneg_continue_val(trainfrag.as_matrix(),valfile=valfrag, srate=1,nb_epoch1=1,nb_epoch2=np_epoch2,earlystop=earlystop,maxneg=maxneg, outputweights=backupweights, inputweights=inputweights, transferlayer=transferlayer) models.save_weights(outputmodel+'_class'+str(bt),overwrite=True) if __name__ == "__main__": main()
gpl-2.0
rmhyman/DataScience
Lesson1/IntroToPandas.py
1
1976
import pandas as pd ''' The following code is to help you play with the concept of Series in Pandas. You can think of Series as an one-dimensional object that is similar to an array, list, or column in a database. By default, it will assign an index label to each item in the Series ranging from 0 to N, where N is the number of items in the Series minus one. Please feel free to play around with the concept of Series and see what it does *This playground is inspired by Greg Reda's post on Intro to Pandas Data Structures: http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/ ''' # Change False to True to create a Series object if True: series = pd.Series(['Dave', 'Cheng-Han', 'Udacity', 42, -1789710578]) print series ''' You can also manually assign indices to the items in the Series when creating the series ''' # Change False to True to see custom index in action if False: series = pd.Series(['Dave', 'Cheng-Han', 359, 9001], index=['Instructor', 'Curriculum Manager', 'Course Number', 'Power Level']) print series ''' You can use index to select specific items from the Series ''' # Change False to True to see Series indexing in action if False: series = pd.Series(['Dave', 'Cheng-Han', 359, 9001], index=['Instructor', 'Curriculum Manager', 'Course Number', 'Power Level']) print series['Instructor'] print "" print series[['Instructor', 'Curriculum Manager', 'Course Number']] ''' You can also use boolean operators to select specific items from the Series ''' # Change False to True to see boolean indexing in action if True: cuteness = pd.Series([1, 2, 3, 4, 5], index=['Cockroach', 'Fish', 'Mini Pig', 'Puppy', 'Kitten']) print cuteness > 3 print "" print cuteness[cuteness > 3]
mit
neale/CS-program
434-MachineLearning/final_project/linearClassifier/sklearn/__init__.py
27
3086
""" Machine learning module for Python ================================== sklearn is a Python module integrating classical machine learning algorithms in the tightly-knit world of scientific Python packages (numpy, scipy, matplotlib). It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and engineering. See http://scikit-learn.org for complete documentation. """ import sys import re import warnings # Make sure that DeprecationWarning within this package always gets printed warnings.filterwarnings('always', category=DeprecationWarning, module='^{0}\.'.format(re.escape(__name__))) # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.18.dev0' try: # This variable is injected in the __builtins__ by the build # process. It used to enable importing subpackages of sklearn when # the binaries are not built __SKLEARN_SETUP__ except NameError: __SKLEARN_SETUP__ = False if __SKLEARN_SETUP__: sys.stderr.write('Partial import of sklearn during the build process.\n') # We are not importing the rest of the scikit during the build # process, as it may not be compiled yet else: from . import __check_build from .base import clone __check_build # avoid flakes unused variable error __all__ = ['calibration', 'cluster', 'covariance', 'cross_decomposition', 'cross_validation', 'datasets', 'decomposition', 'dummy', 'ensemble', 'exceptions', 'externals', 'feature_extraction', 'feature_selection', 'gaussian_process', 'grid_search', 'isotonic', 'kernel_approximation', 'kernel_ridge', 'lda', 'learning_curve', 'linear_model', 'manifold', 'metrics', 'mixture', 'model_selection', 'multiclass', 'multioutput', 'naive_bayes', 'neighbors', 'neural_network', 'pipeline', 'preprocessing', 'qda', 'random_projection', 'semi_supervised', 'svm', 'tree', 'discriminant_analysis', # Non-modules: 'clone'] def setup_module(module): """Fixture for the tests to assure globally controllable seeding of RNGs""" import os import numpy as np import random # It could have been provided in the environment _random_seed = os.environ.get('SKLEARN_SEED', None) if _random_seed is None: _random_seed = np.random.uniform() * (2 ** 31 - 1) _random_seed = int(_random_seed) print("I: Seeding RNGs with %r" % _random_seed) np.random.seed(_random_seed) random.seed(_random_seed)
unlicense
WarrenWeckesser/scipy
scipy/interpolate/fitpack.py
16
26807
__all__ = ['splrep', 'splprep', 'splev', 'splint', 'sproot', 'spalde', 'bisplrep', 'bisplev', 'insert', 'splder', 'splantider'] import warnings import numpy as np # These are in the API for fitpack even if not used in fitpack.py itself. from ._fitpack_impl import bisplrep, bisplev, dblint from . import _fitpack_impl as _impl from ._bsplines import BSpline def splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None, full_output=0, nest=None, per=0, quiet=1): """ Find the B-spline representation of an N-D curve. Given a list of N rank-1 arrays, `x`, which represent a curve in N-D space parametrized by `u`, find a smooth approximating spline curve g(`u`). Uses the FORTRAN routine parcur from FITPACK. Parameters ---------- x : array_like A list of sample vector arrays representing the curve. w : array_like, optional Strictly positive rank-1 array of weights the same length as `x[0]`. The weights are used in computing the weighted least-squares spline fit. If the errors in the `x` values have standard-deviation given by the vector d, then `w` should be 1/d. Default is ``ones(len(x[0]))``. u : array_like, optional An array of parameter values. If not given, these values are calculated automatically as ``M = len(x[0])``, where v[0] = 0 v[i] = v[i-1] + distance(`x[i]`, `x[i-1]`) u[i] = v[i] / v[M-1] ub, ue : int, optional The end-points of the parameters interval. Defaults to u[0] and u[-1]. k : int, optional Degree of the spline. Cubic splines are recommended. Even values of `k` should be avoided especially with a small s-value. ``1 <= k <= 5``, default is 3. task : int, optional If task==0 (default), find t and c for a given smoothing factor, s. If task==1, find t and c for another value of the smoothing factor, s. There must have been a previous call with task=0 or task=1 for the same set of data. If task=-1 find the weighted least square spline for a given set of knots, t. s : float, optional A smoothing condition. The amount of smoothness is determined by satisfying the conditions: ``sum((w * (y - g))**2,axis=0) <= s``, where g(x) is the smoothed interpolation of (x,y). The user can use `s` to control the trade-off between closeness and smoothness of fit. Larger `s` means more smoothing while smaller values of `s` indicate less smoothing. Recommended values of `s` depend on the weights, w. If the weights represent the inverse of the standard-deviation of y, then a good `s` value should be found in the range ``(m-sqrt(2*m),m+sqrt(2*m))``, where m is the number of data points in x, y, and w. t : int, optional The knots needed for task=-1. full_output : int, optional If non-zero, then return optional outputs. nest : int, optional An over-estimate of the total number of knots of the spline to help in determining the storage space. By default nest=m/2. Always large enough is nest=m+k+1. per : int, optional If non-zero, data points are considered periodic with period ``x[m-1] - x[0]`` and a smooth periodic spline approximation is returned. Values of ``y[m-1]`` and ``w[m-1]`` are not used. quiet : int, optional Non-zero to suppress messages. This parameter is deprecated; use standard Python warning filters instead. Returns ------- tck : tuple (t,c,k) a tuple containing the vector of knots, the B-spline coefficients, and the degree of the spline. u : array An array of the values of the parameter. fp : float The weighted sum of squared residuals of the spline approximation. ier : int An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised. msg : str A message corresponding to the integer flag, ier. See Also -------- splrep, splev, sproot, spalde, splint, bisplrep, bisplev UnivariateSpline, BivariateSpline BSpline make_interp_spline Notes ----- See `splev` for evaluation of the spline and its derivatives. The number of dimensions N must be smaller than 11. The number of coefficients in the `c` array is ``k+1`` less then the number of knots, ``len(t)``. This is in contrast with `splrep`, which zero-pads the array of coefficients to have the same length as the array of knots. These additional coefficients are ignored by evaluation routines, `splev` and `BSpline`. References ---------- .. [1] P. Dierckx, "Algorithms for smoothing data with periodic and parametric splines, Computer Graphics and Image Processing", 20 (1982) 171-184. .. [2] P. Dierckx, "Algorithms for smoothing data with periodic and parametric splines", report tw55, Dept. Computer Science, K.U.Leuven, 1981. .. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993. Examples -------- Generate a discretization of a limacon curve in the polar coordinates: >>> phi = np.linspace(0, 2.*np.pi, 40) >>> r = 0.5 + np.cos(phi) # polar coords >>> x, y = r * np.cos(phi), r * np.sin(phi) # convert to cartesian And interpolate: >>> from scipy.interpolate import splprep, splev >>> tck, u = splprep([x, y], s=0) >>> new_points = splev(u, tck) Notice that (i) we force interpolation by using `s=0`, (ii) the parameterization, ``u``, is generated automatically. Now plot the result: >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> ax.plot(x, y, 'ro') >>> ax.plot(new_points[0], new_points[1], 'r-') >>> plt.show() """ res = _impl.splprep(x, w, u, ub, ue, k, task, s, t, full_output, nest, per, quiet) return res def splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None, full_output=0, per=0, quiet=1): """ Find the B-spline representation of a 1-D curve. Given the set of data points ``(x[i], y[i])`` determine a smooth spline approximation of degree k on the interval ``xb <= x <= xe``. Parameters ---------- x, y : array_like The data points defining a curve y = f(x). w : array_like, optional Strictly positive rank-1 array of weights the same length as x and y. The weights are used in computing the weighted least-squares spline fit. If the errors in the y values have standard-deviation given by the vector d, then w should be 1/d. Default is ones(len(x)). xb, xe : float, optional The interval to fit. If None, these default to x[0] and x[-1] respectively. k : int, optional The degree of the spline fit. It is recommended to use cubic splines. Even values of k should be avoided especially with small s values. 1 <= k <= 5 task : {1, 0, -1}, optional If task==0 find t and c for a given smoothing factor, s. If task==1 find t and c for another value of the smoothing factor, s. There must have been a previous call with task=0 or task=1 for the same set of data (t will be stored an used internally) If task=-1 find the weighted least square spline for a given set of knots, t. These should be interior knots as knots on the ends will be added automatically. s : float, optional A smoothing condition. The amount of smoothness is determined by satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where g(x) is the smoothed interpolation of (x,y). The user can use s to control the tradeoff between closeness and smoothness of fit. Larger s means more smoothing while smaller values of s indicate less smoothing. Recommended values of s depend on the weights, w. If the weights represent the inverse of the standard-deviation of y, then a good s value should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is the number of datapoints in x, y, and w. default : s=m-sqrt(2*m) if weights are supplied. s = 0.0 (interpolating) if no weights are supplied. t : array_like, optional The knots needed for task=-1. If given then task is automatically set to -1. full_output : bool, optional If non-zero, then return optional outputs. per : bool, optional If non-zero, data points are considered periodic with period x[m-1] - x[0] and a smooth periodic spline approximation is returned. Values of y[m-1] and w[m-1] are not used. quiet : bool, optional Non-zero to suppress messages. This parameter is deprecated; use standard Python warning filters instead. Returns ------- tck : tuple A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree of the spline. fp : array, optional The weighted sum of squared residuals of the spline approximation. ier : int, optional An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised. msg : str, optional A message corresponding to the integer flag, ier. See Also -------- UnivariateSpline, BivariateSpline splprep, splev, sproot, spalde, splint bisplrep, bisplev BSpline make_interp_spline Notes ----- See `splev` for evaluation of the spline and its derivatives. Uses the FORTRAN routine ``curfit`` from FITPACK. The user is responsible for assuring that the values of `x` are unique. Otherwise, `splrep` will not return sensible results. If provided, knots `t` must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points ``x[j]`` such that ``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``. This routine zero-pads the coefficients array ``c`` to have the same length as the array of knots ``t`` (the trailing ``k + 1`` coefficients are ignored by the evaluation routines, `splev` and `BSpline`.) This is in contrast with `splprep`, which does not zero-pad the coefficients. References ---------- Based on algorithms described in [1]_, [2]_, [3]_, and [4]_: .. [1] P. Dierckx, "An algorithm for smoothing, differentiation and integration of experimental data using spline functions", J.Comp.Appl.Maths 1 (1975) 165-184. .. [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular grid while using spline functions", SIAM J.Numer.Anal. 19 (1982) 1286-1304. .. [3] P. Dierckx, "An improved algorithm for curve fitting with spline functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981. .. [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993. Examples -------- You can interpolate 1-D points with a B-spline curve. Further examples are given in :ref:`in the tutorial <tutorial-interpolate_splXXX>`. >>> import matplotlib.pyplot as plt >>> from scipy.interpolate import splev, splrep >>> x = np.linspace(0, 10, 10) >>> y = np.sin(x) >>> spl = splrep(x, y) >>> x2 = np.linspace(0, 10, 200) >>> y2 = splev(x2, spl) >>> plt.plot(x, y, 'o', x2, y2) >>> plt.show() """ res = _impl.splrep(x, y, w, xb, xe, k, task, s, t, full_output, per, quiet) return res def splev(x, tck, der=0, ext=0): """ Evaluate a B-spline or its derivatives. Given the knots and coefficients of a B-spline representation, evaluate the value of the smoothing polynomial and its derivatives. This is a wrapper around the FORTRAN routines splev and splder of FITPACK. Parameters ---------- x : array_like An array of points at which to return the value of the smoothed spline or its derivatives. If `tck` was returned from `splprep`, then the parameter values, u should be given. tck : 3-tuple or a BSpline object If a tuple, then it should be a sequence of length 3 returned by `splrep` or `splprep` containing the knots, coefficients, and degree of the spline. (Also see Notes.) der : int, optional The order of derivative of the spline to compute (must be less than or equal to k, the degree of the spline). ext : int, optional Controls the value returned for elements of ``x`` not in the interval defined by the knot sequence. * if ext=0, return the extrapolated value. * if ext=1, return 0 * if ext=2, raise a ValueError * if ext=3, return the boundary value. The default value is 0. Returns ------- y : ndarray or list of ndarrays An array of values representing the spline function evaluated at the points in `x`. If `tck` was returned from `splprep`, then this is a list of arrays representing the curve in an N-D space. Notes ----- Manipulating the tck-tuples directly is not recommended. In new code, prefer using `BSpline` objects. See Also -------- splprep, splrep, sproot, spalde, splint bisplrep, bisplev BSpline References ---------- .. [1] C. de Boor, "On calculating with b-splines", J. Approximation Theory, 6, p.50-62, 1972. .. [2] M. G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths Applics, 10, p.134-149, 1972. .. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993. Examples -------- Examples are given :ref:`in the tutorial <tutorial-interpolate_splXXX>`. """ if isinstance(tck, BSpline): if tck.c.ndim > 1: mesg = ("Calling splev() with BSpline objects with c.ndim > 1 is " "not recommended. Use BSpline.__call__(x) instead.") warnings.warn(mesg, DeprecationWarning) # remap the out-of-bounds behavior try: extrapolate = {0: True, }[ext] except KeyError as e: raise ValueError("Extrapolation mode %s is not supported " "by BSpline." % ext) from e return tck(x, der, extrapolate=extrapolate) else: return _impl.splev(x, tck, der, ext) def splint(a, b, tck, full_output=0): """ Evaluate the definite integral of a B-spline between two given points. Parameters ---------- a, b : float The end-points of the integration interval. tck : tuple or a BSpline instance If a tuple, then it should be a sequence of length 3, containing the vector of knots, the B-spline coefficients, and the degree of the spline (see `splev`). full_output : int, optional Non-zero to return optional output. Returns ------- integral : float The resulting integral. wrk : ndarray An array containing the integrals of the normalized B-splines defined on the set of knots. (Only returned if `full_output` is non-zero) Notes ----- `splint` silently assumes that the spline function is zero outside the data interval (`a`, `b`). Manipulating the tck-tuples directly is not recommended. In new code, prefer using the `BSpline` objects. See Also -------- splprep, splrep, sproot, spalde, splev bisplrep, bisplev BSpline References ---------- .. [1] P.W. Gaffney, The calculation of indefinite integrals of b-splines", J. Inst. Maths Applics, 17, p.37-41, 1976. .. [2] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993. Examples -------- Examples are given :ref:`in the tutorial <tutorial-interpolate_splXXX>`. """ if isinstance(tck, BSpline): if tck.c.ndim > 1: mesg = ("Calling splint() with BSpline objects with c.ndim > 1 is " "not recommended. Use BSpline.integrate() instead.") warnings.warn(mesg, DeprecationWarning) if full_output != 0: mesg = ("full_output = %s is not supported. Proceeding as if " "full_output = 0" % full_output) return tck.integrate(a, b, extrapolate=False) else: return _impl.splint(a, b, tck, full_output) def sproot(tck, mest=10): """ Find the roots of a cubic B-spline. Given the knots (>=8) and coefficients of a cubic B-spline return the roots of the spline. Parameters ---------- tck : tuple or a BSpline object If a tuple, then it should be a sequence of length 3, containing the vector of knots, the B-spline coefficients, and the degree of the spline. The number of knots must be >= 8, and the degree must be 3. The knots must be a montonically increasing sequence. mest : int, optional An estimate of the number of zeros (Default is 10). Returns ------- zeros : ndarray An array giving the roots of the spline. Notes ----- Manipulating the tck-tuples directly is not recommended. In new code, prefer using the `BSpline` objects. See also -------- splprep, splrep, splint, spalde, splev bisplrep, bisplev BSpline References ---------- .. [1] C. de Boor, "On calculating with b-splines", J. Approximation Theory, 6, p.50-62, 1972. .. [2] M. G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths Applics, 10, p.134-149, 1972. .. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993. Examples -------- Examples are given :ref:`in the tutorial <tutorial-interpolate_splXXX>`. """ if isinstance(tck, BSpline): if tck.c.ndim > 1: mesg = ("Calling sproot() with BSpline objects with c.ndim > 1 is " "not recommended.") warnings.warn(mesg, DeprecationWarning) t, c, k = tck.tck # _impl.sproot expects the interpolation axis to be last, so roll it. # NB: This transpose is a no-op if c is 1D. sh = tuple(range(c.ndim)) c = c.transpose(sh[1:] + (0,)) return _impl.sproot((t, c, k), mest) else: return _impl.sproot(tck, mest) def spalde(x, tck): """ Evaluate all derivatives of a B-spline. Given the knots and coefficients of a cubic B-spline compute all derivatives up to order k at a point (or set of points). Parameters ---------- x : array_like A point or a set of points at which to evaluate the derivatives. Note that ``t(k) <= x <= t(n-k+1)`` must hold for each `x`. tck : tuple A tuple ``(t, c, k)``, containing the vector of knots, the B-spline coefficients, and the degree of the spline (see `splev`). Returns ------- results : {ndarray, list of ndarrays} An array (or a list of arrays) containing all derivatives up to order k inclusive for each point `x`. See Also -------- splprep, splrep, splint, sproot, splev, bisplrep, bisplev, BSpline References ---------- .. [1] C. de Boor: On calculating with b-splines, J. Approximation Theory 6 (1972) 50-62. .. [2] M. G. Cox : The numerical evaluation of b-splines, J. Inst. Maths applics 10 (1972) 134-149. .. [3] P. Dierckx : Curve and surface fitting with splines, Monographs on Numerical Analysis, Oxford University Press, 1993. Examples -------- Examples are given :ref:`in the tutorial <tutorial-interpolate_splXXX>`. """ if isinstance(tck, BSpline): raise TypeError("spalde does not accept BSpline instances.") else: return _impl.spalde(x, tck) def insert(x, tck, m=1, per=0): """ Insert knots into a B-spline. Given the knots and coefficients of a B-spline representation, create a new B-spline with a knot inserted `m` times at point `x`. This is a wrapper around the FORTRAN routine insert of FITPACK. Parameters ---------- x (u) : array_like A 1-D point at which to insert a new knot(s). If `tck` was returned from ``splprep``, then the parameter values, u should be given. tck : a `BSpline` instance or a tuple If tuple, then it is expected to be a tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree of the spline. m : int, optional The number of times to insert the given knot (its multiplicity). Default is 1. per : int, optional If non-zero, the input spline is considered periodic. Returns ------- BSpline instance or a tuple A new B-spline with knots t, coefficients c, and degree k. ``t(k+1) <= x <= t(n-k)``, where k is the degree of the spline. In case of a periodic spline (``per != 0``) there must be either at least k interior knots t(j) satisfying ``t(k+1)<t(j)<=x`` or at least k interior knots t(j) satisfying ``x<=t(j)<t(n-k)``. A tuple is returned iff the input argument `tck` is a tuple, otherwise a BSpline object is constructed and returned. Notes ----- Based on algorithms from [1]_ and [2]_. Manipulating the tck-tuples directly is not recommended. In new code, prefer using the `BSpline` objects. References ---------- .. [1] W. Boehm, "Inserting new knots into b-spline curves.", Computer Aided Design, 12, p.199-201, 1980. .. [2] P. Dierckx, "Curve and surface fitting with splines, Monographs on Numerical Analysis", Oxford University Press, 1993. Examples -------- You can insert knots into a B-spline. >>> from scipy.interpolate import splrep, insert >>> x = np.linspace(0, 10, 5) >>> y = np.sin(x) >>> tck = splrep(x, y) >>> tck[0] array([ 0., 0., 0., 0., 5., 10., 10., 10., 10.]) A knot is inserted: >>> tck_inserted = insert(3, tck) >>> tck_inserted[0] array([ 0., 0., 0., 0., 3., 5., 10., 10., 10., 10.]) Some knots are inserted: >>> tck_inserted2 = insert(8, tck, m=3) >>> tck_inserted2[0] array([ 0., 0., 0., 0., 5., 8., 8., 8., 10., 10., 10., 10.]) """ if isinstance(tck, BSpline): t, c, k = tck.tck # FITPACK expects the interpolation axis to be last, so roll it over # NB: if c array is 1D, transposes are no-ops sh = tuple(range(c.ndim)) c = c.transpose(sh[1:] + (0,)) t_, c_, k_ = _impl.insert(x, (t, c, k), m, per) # and roll the last axis back c_ = np.asarray(c_) c_ = c_.transpose((sh[-1],) + sh[:-1]) return BSpline(t_, c_, k_) else: return _impl.insert(x, tck, m, per) def splder(tck, n=1): """ Compute the spline representation of the derivative of a given spline Parameters ---------- tck : BSpline instance or a tuple of (t, c, k) Spline whose derivative to compute n : int, optional Order of derivative to evaluate. Default: 1 Returns ------- `BSpline` instance or tuple Spline of order k2=k-n representing the derivative of the input spline. A tuple is returned iff the input argument `tck` is a tuple, otherwise a BSpline object is constructed and returned. Notes ----- .. versionadded:: 0.13.0 See Also -------- splantider, splev, spalde BSpline Examples -------- This can be used for finding maxima of a curve: >>> from scipy.interpolate import splrep, splder, sproot >>> x = np.linspace(0, 10, 70) >>> y = np.sin(x) >>> spl = splrep(x, y, k=4) Now, differentiate the spline and find the zeros of the derivative. (NB: `sproot` only works for order 3 splines, so we fit an order 4 spline): >>> dspl = splder(spl) >>> sproot(dspl) / np.pi array([ 0.50000001, 1.5 , 2.49999998]) This agrees well with roots :math:`\\pi/2 + n\\pi` of :math:`\\cos(x) = \\sin'(x)`. """ if isinstance(tck, BSpline): return tck.derivative(n) else: return _impl.splder(tck, n) def splantider(tck, n=1): """ Compute the spline for the antiderivative (integral) of a given spline. Parameters ---------- tck : BSpline instance or a tuple of (t, c, k) Spline whose antiderivative to compute n : int, optional Order of antiderivative to evaluate. Default: 1 Returns ------- BSpline instance or a tuple of (t2, c2, k2) Spline of order k2=k+n representing the antiderivative of the input spline. A tuple is returned iff the input argument `tck` is a tuple, otherwise a BSpline object is constructed and returned. See Also -------- splder, splev, spalde BSpline Notes ----- The `splder` function is the inverse operation of this function. Namely, ``splder(splantider(tck))`` is identical to `tck`, modulo rounding error. .. versionadded:: 0.13.0 Examples -------- >>> from scipy.interpolate import splrep, splder, splantider, splev >>> x = np.linspace(0, np.pi/2, 70) >>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2) >>> spl = splrep(x, y) The derivative is the inverse operation of the antiderivative, although some floating point error accumulates: >>> splev(1.7, spl), splev(1.7, splder(splantider(spl))) (array(2.1565429877197317), array(2.1565429877201865)) Antiderivative can be used to evaluate definite integrals: >>> ispl = splantider(spl) >>> splev(np.pi/2, ispl) - splev(0, ispl) 2.2572053588768486 This is indeed an approximation to the complete elliptic integral :math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`: >>> from scipy.special import ellipk >>> ellipk(0.8) 2.2572053268208538 """ if isinstance(tck, BSpline): return tck.antiderivative(n) else: return _impl.splantider(tck, n)
bsd-3-clause
jeffninghan/tracker
OCR_test/ocr_test.py
1
1285
import numpy as np import cv2 from matplotlib import pyplot as plt # test algorithm to recognize digits using kNN # source: http://docs.opencv.org/trunk/doc/py_tutorials/py_ml/py_knn/py_knn_opencv/py_knn_opencv.html img = cv2.imread('../data/digits.png') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Now we split the image to 5000 cells, each 20x20 size cells = [np.hsplit(row,100) for row in np.vsplit(gray,50)] # Make it into a Numpy array. It size will be (50,100,20,20) x = np.array(cells) # Now we prepare train_data and test_data. train = x[:,:50].reshape(-1,400).astype(np.float32) # Size = (2500,400) test = x[:,50:100].reshape(-1,400).astype(np.float32) # Size = (2500,400) # Create labels for train and test data k = np.arange(10) train_labels = np.repeat(k,250)[:,np.newaxis] test_labels = train_labels.copy() # Initiate kNN, train the data, then test it with test data for k=1 print "Training using kNN..." knn = cv2.KNearest() knn.train(train,train_labels) ret,result,neighbours,dist = knn.find_nearest(test,k=5) # Now we check the accuracy of classification # For that, compare the result with test_labels and check which are wrong matches = result==test_labels correct = np.count_nonzero(matches) accuracy = correct*100.0/result.size print "Accuracy:", accuracy
mit
boomsbloom/dtm-fmri
DTM/for_gensim/lib/python2.7/site-packages/matplotlib/sphinxext/plot_directive.py
1
28321
""" A directive for including a matplotlib plot in a Sphinx document. By default, in HTML output, `plot` will include a .png file with a link to a high-res .png and .pdf. In LaTeX output, it will include a .pdf. The source code for the plot may be included in one of three ways: 1. **A path to a source file** as the argument to the directive:: .. plot:: path/to/plot.py When a path to a source file is given, the content of the directive may optionally contain a caption for the plot:: .. plot:: path/to/plot.py This is the caption for the plot Additionally, one may specify the name of a function to call (with no arguments) immediately after importing the module:: .. plot:: path/to/plot.py plot_function1 2. Included as **inline content** to the directive:: .. plot:: import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np img = mpimg.imread('_static/stinkbug.png') imgplot = plt.imshow(img) 3. Using **doctest** syntax:: .. plot:: A plotting example: >>> import matplotlib.pyplot as plt >>> plt.plot([1,2,3], [4,5,6]) Options ------- The ``plot`` directive supports the following options: format : {'python', 'doctest'} Specify the format of the input include-source : bool Whether to display the source code. The default can be changed using the `plot_include_source` variable in conf.py encoding : str If this source file is in a non-UTF8 or non-ASCII encoding, the encoding must be specified using the `:encoding:` option. The encoding will not be inferred using the ``-*- coding -*-`` metacomment. context : bool or str If provided, the code will be run in the context of all previous plot directives for which the `:context:` option was specified. This only applies to inline code plot directives, not those run from files. If the ``:context: reset`` option is specified, the context is reset for this and future plots, and previous figures are closed prior to running the code. ``:context:close-figs`` keeps the context but closes previous figures before running the code. nofigs : bool If specified, the code block will be run, but no figures will be inserted. This is usually useful with the ``:context:`` option. Additionally, this directive supports all of the options of the `image` directive, except for `target` (since plot will add its own target). These include `alt`, `height`, `width`, `scale`, `align` and `class`. Configuration options --------------------- The plot directive has the following configuration options: plot_include_source Default value for the include-source option plot_html_show_source_link Whether to show a link to the source in HTML. plot_pre_code Code that should be executed before each plot. plot_basedir Base directory, to which ``plot::`` file names are relative to. (If None or empty, file names are relative to the directory where the file containing the directive is.) plot_formats File formats to generate. List of tuples or strings:: [(suffix, dpi), suffix, ...] that determine the file format and the DPI. For entries whose DPI was omitted, sensible defaults are chosen. When passing from the command line through sphinx_build the list should be passed as suffix:dpi,suffix:dpi, .... plot_html_show_formats Whether to show links to the files in HTML. plot_rcparams A dictionary containing any non-standard rcParams that should be applied before each plot. plot_apply_rcparams By default, rcParams are applied when `context` option is not used in a plot directive. This configuration option overrides this behavior and applies rcParams before each plot. plot_working_directory By default, the working directory will be changed to the directory of the example, so the code can get at its data files, if any. Also its path will be added to `sys.path` so it can import any helper modules sitting beside it. This configuration option can be used to specify a central directory (also added to `sys.path`) where data files and helper modules for all code are located. plot_template Provide a customized template for preparing restructured text. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six from matplotlib.externals.six.moves import xrange import sys, os, shutil, io, re, textwrap from os.path import relpath import traceback import warnings if not six.PY3: import cStringIO from docutils.parsers.rst import directives from docutils.parsers.rst.directives.images import Image align = Image.align import sphinx sphinx_version = sphinx.__version__.split(".") # The split is necessary for sphinx beta versions where the string is # '6b1' sphinx_version = tuple([int(re.split('[^0-9]', x)[0]) for x in sphinx_version[:2]]) try: # Sphinx depends on either Jinja or Jinja2 import jinja2 def format_template(template, **kw): return jinja2.Template(template).render(**kw) except ImportError: import jinja def format_template(template, **kw): return jinja.from_string(template, **kw) import matplotlib import matplotlib.cbook as cbook try: with warnings.catch_warnings(record=True): warnings.simplefilter("error", UserWarning) matplotlib.use('Agg') except UserWarning: import matplotlib.pyplot as plt plt.switch_backend("Agg") else: import matplotlib.pyplot as plt from matplotlib import _pylab_helpers __version__ = 2 #------------------------------------------------------------------------------ # Registration hook #------------------------------------------------------------------------------ def plot_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): return run(arguments, content, options, state_machine, state, lineno) plot_directive.__doc__ = __doc__ def _option_boolean(arg): if not arg or not arg.strip(): # no argument given, assume used as a flag return True elif arg.strip().lower() in ('no', '0', 'false'): return False elif arg.strip().lower() in ('yes', '1', 'true'): return True else: raise ValueError('"%s" unknown boolean' % arg) def _option_context(arg): if arg in [None, 'reset', 'close-figs']: return arg raise ValueError("argument should be None or 'reset' or 'close-figs'") def _option_format(arg): return directives.choice(arg, ('python', 'doctest')) def _option_align(arg): return directives.choice(arg, ("top", "middle", "bottom", "left", "center", "right")) def mark_plot_labels(app, document): """ To make plots referenceable, we need to move the reference from the "htmlonly" (or "latexonly") node to the actual figure node itself. """ for name, explicit in six.iteritems(document.nametypes): if not explicit: continue labelid = document.nameids[name] if labelid is None: continue node = document.ids[labelid] if node.tagname in ('html_only', 'latex_only'): for n in node: if n.tagname == 'figure': sectname = name for c in n: if c.tagname == 'caption': sectname = c.astext() break node['ids'].remove(labelid) node['names'].remove(name) n['ids'].append(labelid) n['names'].append(name) document.settings.env.labels[name] = \ document.settings.env.docname, labelid, sectname break def setup(app): setup.app = app setup.config = app.config setup.confdir = app.confdir options = {'alt': directives.unchanged, 'height': directives.length_or_unitless, 'width': directives.length_or_percentage_or_unitless, 'scale': directives.nonnegative_int, 'align': _option_align, 'class': directives.class_option, 'include-source': _option_boolean, 'format': _option_format, 'context': _option_context, 'nofigs': directives.flag, 'encoding': directives.encoding } app.add_directive('plot', plot_directive, True, (0, 2, False), **options) app.add_config_value('plot_pre_code', None, True) app.add_config_value('plot_include_source', False, True) app.add_config_value('plot_html_show_source_link', True, True) app.add_config_value('plot_formats', ['png', 'hires.png', 'pdf'], True) app.add_config_value('plot_basedir', None, True) app.add_config_value('plot_html_show_formats', True, True) app.add_config_value('plot_rcparams', {}, True) app.add_config_value('plot_apply_rcparams', False, True) app.add_config_value('plot_working_directory', None, True) app.add_config_value('plot_template', None, True) app.connect(str('doctree-read'), mark_plot_labels) #------------------------------------------------------------------------------ # Doctest handling #------------------------------------------------------------------------------ def contains_doctest(text): try: # check if it's valid Python as-is compile(text, '<string>', 'exec') return False except SyntaxError: pass r = re.compile(r'^\s*>>>', re.M) m = r.search(text) return bool(m) def unescape_doctest(text): """ Extract code from a piece of text, which contains either Python code or doctests. """ if not contains_doctest(text): return text code = "" for line in text.split("\n"): m = re.match(r'^\s*(>>>|\.\.\.) (.*)$', line) if m: code += m.group(2) + "\n" elif line.strip(): code += "# " + line.strip() + "\n" else: code += "\n" return code def split_code_at_show(text): """ Split code at plt.show() """ parts = [] is_doctest = contains_doctest(text) part = [] for line in text.split("\n"): if (not is_doctest and line.strip() == 'plt.show()') or \ (is_doctest and line.strip() == '>>> plt.show()'): part.append(line) parts.append("\n".join(part)) part = [] else: part.append(line) if "\n".join(part).strip(): parts.append("\n".join(part)) return parts def remove_coding(text): """ Remove the coding comment, which six.exec_ doesn't like. """ sub_re = re.compile("^#\s*-\*-\s*coding:\s*.*-\*-$", flags=re.MULTILINE) return sub_re.sub("", text) #------------------------------------------------------------------------------ # Template #------------------------------------------------------------------------------ TEMPLATE = """ {{ source_code }} {{ only_html }} {% if source_link or (html_show_formats and not multi_image) %} ( {%- if source_link -%} `Source code <{{ source_link }}>`__ {%- endif -%} {%- if html_show_formats and not multi_image -%} {%- for img in images -%} {%- for fmt in img.formats -%} {%- if source_link or not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} {%- endfor -%} {%- endif -%} ) {% endif %} {% for img in images %} .. figure:: {{ build_dir }}/{{ img.basename }}.png {% for option in options -%} {{ option }} {% endfor %} {% if html_show_formats and multi_image -%} ( {%- for fmt in img.formats -%} {%- if not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} ) {%- endif -%} {{ caption }} {% endfor %} {{ only_latex }} {% for img in images %} {% if 'pdf' in img.formats -%} .. image:: {{ build_dir }}/{{ img.basename }}.pdf {% endif -%} {% endfor %} {{ only_texinfo }} {% for img in images %} .. image:: {{ build_dir }}/{{ img.basename }}.png {% for option in options -%} {{ option }} {% endfor %} {% endfor %} """ exception_template = """ .. htmlonly:: [`source code <%(linkdir)s/%(basename)s.py>`__] Exception occurred rendering plot. """ # the context of the plot for all directives specified with the # :context: option plot_context = dict() class ImageFile(object): def __init__(self, basename, dirname): self.basename = basename self.dirname = dirname self.formats = [] def filename(self, format): return os.path.join(self.dirname, "%s.%s" % (self.basename, format)) def filenames(self): return [self.filename(fmt) for fmt in self.formats] def out_of_date(original, derived): """ Returns True if derivative is out-of-date wrt original, both of which are full file paths. """ return (not os.path.exists(derived) or (os.path.exists(original) and os.stat(derived).st_mtime < os.stat(original).st_mtime)) class PlotError(RuntimeError): pass def run_code(code, code_path, ns=None, function_name=None): """ Import a Python module from a path, and run the function given by name, if function_name is not None. """ # Change the working directory to the directory of the example, so # it can get at its data files, if any. Add its path to sys.path # so it can import any helper modules sitting beside it. if six.PY2: pwd = os.getcwdu() else: pwd = os.getcwd() old_sys_path = list(sys.path) if setup.config.plot_working_directory is not None: try: os.chdir(setup.config.plot_working_directory) except OSError as err: raise OSError(str(err) + '\n`plot_working_directory` option in' 'Sphinx configuration file must be a valid ' 'directory path') except TypeError as err: raise TypeError(str(err) + '\n`plot_working_directory` option in ' 'Sphinx configuration file must be a string or ' 'None') sys.path.insert(0, setup.config.plot_working_directory) elif code_path is not None: dirname = os.path.abspath(os.path.dirname(code_path)) os.chdir(dirname) sys.path.insert(0, dirname) # Reset sys.argv old_sys_argv = sys.argv sys.argv = [code_path] # Redirect stdout stdout = sys.stdout if six.PY3: sys.stdout = io.StringIO() else: sys.stdout = cStringIO.StringIO() # Assign a do-nothing print function to the namespace. There # doesn't seem to be any other way to provide a way to (not) print # that works correctly across Python 2 and 3. def _dummy_print(*arg, **kwarg): pass try: try: code = unescape_doctest(code) if ns is None: ns = {} if not ns: if setup.config.plot_pre_code is None: six.exec_(six.text_type("import numpy as np\n" + "from matplotlib import pyplot as plt\n"), ns) else: six.exec_(six.text_type(setup.config.plot_pre_code), ns) ns['print'] = _dummy_print if "__main__" in code: six.exec_("__name__ = '__main__'", ns) code = remove_coding(code) six.exec_(code, ns) if function_name is not None: six.exec_(function_name + "()", ns) except (Exception, SystemExit) as err: raise PlotError(traceback.format_exc()) finally: os.chdir(pwd) sys.argv = old_sys_argv sys.path[:] = old_sys_path sys.stdout = stdout return ns def clear_state(plot_rcparams, close=True): if close: plt.close('all') matplotlib.rc_file_defaults() matplotlib.rcParams.update(plot_rcparams) def render_figures(code, code_path, output_dir, output_base, context, function_name, config, context_reset=False, close_figs=False): """ Run a pyplot script and save the low and high res PNGs and a PDF in *output_dir*. Save the images under *output_dir* with file names derived from *output_base* """ # -- Parse format list default_dpi = {'png': 80, 'hires.png': 200, 'pdf': 200} formats = [] plot_formats = config.plot_formats if isinstance(plot_formats, six.string_types): # String Sphinx < 1.3, Split on , to mimic # Sphinx 1.3 and later. Sphinx 1.3 always # returns a list. plot_formats = plot_formats.split(',') for fmt in plot_formats: if isinstance(fmt, six.string_types): if ':' in fmt: suffix,dpi = fmt.split(':') formats.append((str(suffix), int(dpi))) else: formats.append((fmt, default_dpi.get(fmt, 80))) elif type(fmt) in (tuple, list) and len(fmt)==2: formats.append((str(fmt[0]), int(fmt[1]))) else: raise PlotError('invalid image format "%r" in plot_formats' % fmt) # -- Try to determine if all images already exist code_pieces = split_code_at_show(code) # Look for single-figure output files first all_exists = True img = ImageFile(output_base, output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) if all_exists: return [(code, [img])] # Then look for multi-figure output files results = [] all_exists = True for i, code_piece in enumerate(code_pieces): images = [] for j in xrange(1000): if len(code_pieces) > 1: img = ImageFile('%s_%02d_%02d' % (output_base, i, j), output_dir) else: img = ImageFile('%s_%02d' % (output_base, j), output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) # assume that if we have one, we have them all if not all_exists: all_exists = (j > 0) break images.append(img) if not all_exists: break results.append((code_piece, images)) if all_exists: return results # We didn't find the files, so build them results = [] if context: ns = plot_context else: ns = {} if context_reset: clear_state(config.plot_rcparams) plot_context.clear() close_figs = not context or close_figs for i, code_piece in enumerate(code_pieces): if not context or config.plot_apply_rcparams: clear_state(config.plot_rcparams, close_figs) elif close_figs: plt.close('all') run_code(code_piece, code_path, ns, function_name) images = [] fig_managers = _pylab_helpers.Gcf.get_all_fig_managers() for j, figman in enumerate(fig_managers): if len(fig_managers) == 1 and len(code_pieces) == 1: img = ImageFile(output_base, output_dir) elif len(code_pieces) == 1: img = ImageFile("%s_%02d" % (output_base, j), output_dir) else: img = ImageFile("%s_%02d_%02d" % (output_base, i, j), output_dir) images.append(img) for format, dpi in formats: try: figman.canvas.figure.savefig(img.filename(format), dpi=dpi) except Exception as err: raise PlotError(traceback.format_exc()) img.formats.append(format) results.append((code_piece, images)) if not context or config.plot_apply_rcparams: clear_state(config.plot_rcparams, close=not context) return results def run(arguments, content, options, state_machine, state, lineno): # The user may provide a filename *or* Python code content, but not both if arguments and content: raise RuntimeError("plot:: directive can't have both args and content") document = state_machine.document config = document.settings.env.config nofigs = 'nofigs' in options options.setdefault('include-source', config.plot_include_source) keep_context = 'context' in options context_opt = None if not keep_context else options['context'] rst_file = document.attributes['source'] rst_dir = os.path.dirname(rst_file) if len(arguments): if not config.plot_basedir: source_file_name = os.path.join(setup.app.builder.srcdir, directives.uri(arguments[0])) else: source_file_name = os.path.join(setup.confdir, config.plot_basedir, directives.uri(arguments[0])) # If there is content, it will be passed as a caption. caption = '\n'.join(content) # If the optional function name is provided, use it if len(arguments) == 2: function_name = arguments[1] else: function_name = None with io.open(source_file_name, 'r', encoding='utf-8') as fd: code = fd.read() output_base = os.path.basename(source_file_name) else: source_file_name = rst_file code = textwrap.dedent("\n".join(map(str, content))) counter = document.attributes.get('_plot_counter', 0) + 1 document.attributes['_plot_counter'] = counter base, ext = os.path.splitext(os.path.basename(source_file_name)) output_base = '%s-%d.py' % (base, counter) function_name = None caption = '' base, source_ext = os.path.splitext(output_base) if source_ext in ('.py', '.rst', '.txt'): output_base = base else: source_ext = '' # ensure that LaTeX includegraphics doesn't choke in foo.bar.pdf filenames output_base = output_base.replace('.', '-') # is it in doctest format? is_doctest = contains_doctest(code) if 'format' in options: if options['format'] == 'python': is_doctest = False else: is_doctest = True # determine output directory name fragment source_rel_name = relpath(source_file_name, setup.confdir) source_rel_dir = os.path.dirname(source_rel_name) while source_rel_dir.startswith(os.path.sep): source_rel_dir = source_rel_dir[1:] # build_dir: where to place output files (temporarily) build_dir = os.path.join(os.path.dirname(setup.app.doctreedir), 'plot_directive', source_rel_dir) # get rid of .. in paths, also changes pathsep # see note in Python docs for warning about symbolic links on Windows. # need to compare source and dest paths at end build_dir = os.path.normpath(build_dir) if not os.path.exists(build_dir): os.makedirs(build_dir) # output_dir: final location in the builder's directory dest_dir = os.path.abspath(os.path.join(setup.app.builder.outdir, source_rel_dir)) if not os.path.exists(dest_dir): os.makedirs(dest_dir) # no problem here for me, but just use built-ins # how to link to files from the RST file dest_dir_link = os.path.join(relpath(setup.confdir, rst_dir), source_rel_dir).replace(os.path.sep, '/') try: build_dir_link = relpath(build_dir, rst_dir).replace(os.path.sep, '/') except ValueError: # on Windows, relpath raises ValueError when path and start are on # different mounts/drives build_dir_link = build_dir source_link = dest_dir_link + '/' + output_base + source_ext # make figures try: results = render_figures(code, source_file_name, build_dir, output_base, keep_context, function_name, config, context_reset=context_opt == 'reset', close_figs=context_opt == 'close-figs') errors = [] except PlotError as err: reporter = state.memo.reporter sm = reporter.system_message( 2, "Exception occurred in plotting %s\n from %s:\n%s" % (output_base, source_file_name, err), line=lineno) results = [(code, [])] errors = [sm] # Properly indent the caption caption = '\n'.join(' ' + line.strip() for line in caption.split('\n')) # generate output restructuredtext total_lines = [] for j, (code_piece, images) in enumerate(results): if options['include-source']: if is_doctest: lines = [''] lines += [row.rstrip() for row in code_piece.split('\n')] else: lines = ['.. code-block:: python', ''] lines += [' %s' % row.rstrip() for row in code_piece.split('\n')] source_code = "\n".join(lines) else: source_code = "" if nofigs: images = [] opts = [':%s: %s' % (key, val) for key, val in six.iteritems(options) if key in ('alt', 'height', 'width', 'scale', 'align', 'class')] only_html = ".. only:: html" only_latex = ".. only:: latex" only_texinfo = ".. only:: texinfo" # Not-None src_link signals the need for a source link in the generated # html if j == 0 and config.plot_html_show_source_link: src_link = source_link else: src_link = None result = format_template( config.plot_template or TEMPLATE, dest_dir=dest_dir_link, build_dir=build_dir_link, source_link=src_link, multi_image=len(images) > 1, only_html=only_html, only_latex=only_latex, only_texinfo=only_texinfo, options=opts, images=images, source_code=source_code, html_show_formats=config.plot_html_show_formats and not nofigs, caption=caption) total_lines.extend(result.split("\n")) total_lines.extend("\n") if total_lines: state_machine.insert_input(total_lines, source=source_file_name) # copy image files to builder's output directory, if necessary if not os.path.exists(dest_dir): cbook.mkdirs(dest_dir) for code_piece, images in results: for img in images: for fn in img.filenames(): destimg = os.path.join(dest_dir, os.path.basename(fn)) if fn != destimg: shutil.copyfile(fn, destimg) # copy script (if necessary) target_name = os.path.join(dest_dir, output_base + source_ext) with io.open(target_name, 'w', encoding="utf-8") as f: if source_file_name == rst_file: code_escaped = unescape_doctest(code) else: code_escaped = code f.write(code_escaped) return errors
mit
iemejia/beam
sdks/python/apache_beam/examples/complete/juliaset/juliaset/juliaset.py
5
4390
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """A Julia set computing workflow: https://en.wikipedia.org/wiki/Julia_set. We use the quadratic polinomial f(z) = z*z + c, with c = -.62772 +.42193i """ # pytype: skip-file import argparse import apache_beam as beam from apache_beam.io import WriteToText def from_pixel(x, y, n): """Converts a NxN pixel position to a (-1..1, -1..1) complex number.""" return complex(2.0 * x / n - 1.0, 2.0 * y / n - 1.0) def get_julia_set_point_color(element, c, n, max_iterations): """Given an pixel, convert it into a point in our julia set.""" x, y = element z = from_pixel(x, y, n) for i in range(max_iterations): if z.real * z.real + z.imag * z.imag > 2.0: break z = z * z + c return x, y, i # pylint: disable=undefined-loop-variable def generate_julia_set_colors(pipeline, c, n, max_iterations): """Compute julia set coordinates for each point in our set.""" def point_set(n): for x in range(n): for y in range(n): yield (x, y) julia_set_colors = ( pipeline | 'add points' >> beam.Create(point_set(n)) | beam.Map(get_julia_set_point_color, c, n, max_iterations)) return julia_set_colors def generate_julia_set_visualization(data, n, max_iterations): """Generate the pixel matrix for rendering the julia set as an image.""" import numpy as np # pylint: disable=wrong-import-order, wrong-import-position colors = [] for r in range(0, 256, 16): for g in range(0, 256, 16): for b in range(0, 256, 16): colors.append((r, g, b)) xy = np.zeros((n, n, 3), dtype=np.uint8) for x, y, iteration in data: xy[x, y] = colors[iteration * len(colors) // max_iterations] return xy def save_julia_set_visualization(out_file, image_array): """Save the fractal image of our julia set as a png.""" from matplotlib import pyplot as plt # pylint: disable=wrong-import-order, wrong-import-position plt.imsave(out_file, image_array, format='png') def run(argv=None): # pylint: disable=missing-docstring parser = argparse.ArgumentParser() parser.add_argument( '--grid_size', dest='grid_size', default=1000, help='Size of the NxN matrix') parser.add_argument( '--coordinate_output', dest='coordinate_output', required=True, help='Output file to write the color coordinates of the image to.') parser.add_argument( '--image_output', dest='image_output', default=None, help='Output file to write the resulting image to.') known_args, pipeline_args = parser.parse_known_args(argv) with beam.Pipeline(argv=pipeline_args) as p: n = int(known_args.grid_size) coordinates = generate_julia_set_colors(p, complex(-.62772, .42193), n, 100) def x_coord_key(x_y_i): (x, y, i) = x_y_i return (x, (x, y, i)) # Group each coordinate triplet by its x value, then write the coordinates # to the output file with an x-coordinate grouping per line. # pylint: disable=expression-not-assigned ( coordinates | 'x coord key' >> beam.Map(x_coord_key) | 'x coord' >> beam.GroupByKey() | 'format' >> beam.Map( lambda k_coords: ' '.join('(%s, %s, %s)' % c for c in k_coords[1])) | WriteToText(known_args.coordinate_output)) # Optionally render the image and save it to a file. # TODO(silviuc): Add this functionality. # if p.options.image_output is not None: # julia_set_image = generate_julia_set_visualization( # file_with_coordinates, n, 100) # save_julia_set_visualization(p.options.image_output, julia_set_image)
apache-2.0
hlin117/statsmodels
examples/python/regression_plots.py
33
9585
## Regression Plots from __future__ import print_function from statsmodels.compat import lzip import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.formula.api import ols ### Duncan's Prestige Dataset #### Load the Data # We can use a utility function to load any R dataset available from the great <a href="http://vincentarelbundock.github.com/Rdatasets/">Rdatasets package</a>. prestige = sm.datasets.get_rdataset("Duncan", "car", cache=True).data prestige.head() prestige_model = ols("prestige ~ income + education", data=prestige).fit() print(prestige_model.summary()) #### Influence plots # Influence plots show the (externally) studentized residuals vs. the leverage of each observation as measured by the hat matrix. # # Externally studentized residuals are residuals that are scaled by their standard deviation where # # $$var(\\hat{\epsilon}_i)=\hat{\sigma}^2_i(1-h_{ii})$$ # # with # # $$\hat{\sigma}^2_i=\frac{1}{n - p - 1 \;\;}\sum_{j}^{n}\;\;\;\forall \;\;\; j \neq i$$ # # $n$ is the number of observations and $p$ is the number of regressors. $h_{ii}$ is the $i$-th diagonal element of the hat matrix # # $$H=X(X^{\;\prime}X)^{-1}X^{\;\prime}$$ # # The influence of each point can be visualized by the criterion keyword argument. Options are Cook's distance and DFFITS, two measures of influence. fig, ax = plt.subplots(figsize=(12,8)) fig = sm.graphics.influence_plot(prestige_model, ax=ax, criterion="cooks") # As you can see there are a few worrisome observations. Both contractor and reporter have low leverage but a large residual. <br /> # RR.engineer has small residual and large leverage. Conductor and minister have both high leverage and large residuals, and, <br /> # therefore, large influence. #### Partial Regression Plots # Since we are doing multivariate regressions, we cannot just look at individual bivariate plots to discern relationships. <br /> # Instead, we want to look at the relationship of the dependent variable and independent variables conditional on the other <br /> # independent variables. We can do this through using partial regression plots, otherwise known as added variable plots. <br /> # # In a partial regression plot, to discern the relationship between the response variable and the $k$-th variabe, we compute <br /> # the residuals by regressing the response variable versus the independent variables excluding $X_k$. We can denote this by <br /> # $X_{\sim k}$. We then compute the residuals by regressing $X_k$ on $X_{\sim k}$. The partial regression plot is the plot <br /> # of the former versus the latter residuals. <br /> # # The notable points of this plot are that the fitted line has slope $\beta_k$ and intercept zero. The residuals of this plot <br /> # are the same as those of the least squares fit of the original model with full $X$. You can discern the effects of the <br /> # individual data values on the estimation of a coefficient easily. If obs_labels is True, then these points are annotated <br /> # with their observation label. You can also see the violation of underlying assumptions such as homooskedasticity and <br /> # linearity. fig, ax = plt.subplots(figsize=(12,8)) fig = sm.graphics.plot_partregress("prestige", "income", ["income", "education"], data=prestige, ax=ax) ax = fig.axes[0] ax.set_xlim(-2e-15, 1e-14) ax.set_ylim(-25, 30); fix, ax = plt.subplots(figsize=(12,14)) fig = sm.graphics.plot_partregress("prestige", "income", ["education"], data=prestige, ax=ax) # As you can see the partial regression plot confirms the influence of conductor, minister, and RR.engineer on the partial relationship between income and prestige. The cases greatly decrease the effect of income on prestige. Dropping these cases confirms this. subset = ~prestige.index.isin(["conductor", "RR.engineer", "minister"]) prestige_model2 = ols("prestige ~ income + education", data=prestige, subset=subset).fit() print(prestige_model2.summary()) # For a quick check of all the regressors, you can use plot_partregress_grid. These plots will not label the <br /> # points, but you can use them to identify problems and then use plot_partregress to get more information. fig = plt.figure(figsize=(12,8)) fig = sm.graphics.plot_partregress_grid(prestige_model, fig=fig) #### Component-Component plus Residual (CCPR) Plots # The CCPR plot provides a way to judge the effect of one regressor on the <br /> # response variable by taking into account the effects of the other <br /> # independent variables. The partial residuals plot is defined as <br /> # $\text{Residuals} + B_iX_i \text{ }\text{ }$ versus $X_i$. The component adds $B_iX_i$ versus <br /> # $X_i$ to show where the fitted line would lie. Care should be taken if $X_i$ <br /> # is highly correlated with any of the other independent variables. If this <br /> # is the case, the variance evident in the plot will be an underestimate of <br /> # the true variance. fig, ax = plt.subplots(figsize=(12, 8)) fig = sm.graphics.plot_ccpr(prestige_model, "education", ax=ax) # As you can see the relationship between the variation in prestige explained by education conditional on income seems to be linear, though you can see there are some observations that are exerting considerable influence on the relationship. We can quickly look at more than one variable by using plot_ccpr_grid. fig = plt.figure(figsize=(12, 8)) fig = sm.graphics.plot_ccpr_grid(prestige_model, fig=fig) #### Regression Plots # The plot_regress_exog function is a convenience function that gives a 2x2 plot containing the dependent variable and fitted values with confidence intervals vs. the independent variable chosen, the residuals of the model vs. the chosen independent variable, a partial regression plot, and a CCPR plot. This function can be used for quickly checking modeling assumptions with respect to a single regressor. fig = plt.figure(figsize=(12,8)) fig = sm.graphics.plot_regress_exog(prestige_model, "education", fig=fig) #### Fit Plot # The plot_fit function plots the fitted values versus a chosen independent variable. It includes prediction confidence intervals and optionally plots the true dependent variable. fig, ax = plt.subplots(figsize=(12, 8)) fig = sm.graphics.plot_fit(prestige_model, "education", ax=ax) ### Statewide Crime 2009 Dataset # Compare the following to http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter4/statareg_self_assessment_answers4.htm # # Though the data here is not the same as in that example. You could run that example by uncommenting the necessary cells below. #dta = pd.read_csv("http://www.stat.ufl.edu/~aa/social/csv_files/statewide-crime-2.csv") #dta = dta.set_index("State", inplace=True).dropna() #dta.rename(columns={"VR" : "crime", # "MR" : "murder", # "M" : "pctmetro", # "W" : "pctwhite", # "H" : "pcths", # "P" : "poverty", # "S" : "single" # }, inplace=True) # #crime_model = ols("murder ~ pctmetro + poverty + pcths + single", data=dta).fit() dta = sm.datasets.statecrime.load_pandas().data crime_model = ols("murder ~ urban + poverty + hs_grad + single", data=dta).fit() print(crime_model.summary()) #### Partial Regression Plots fig = plt.figure(figsize=(12,8)) fig = sm.graphics.plot_partregress_grid(crime_model, fig=fig) fig, ax = plt.subplots(figsize=(12,8)) fig = sm.graphics.plot_partregress("murder", "hs_grad", ["urban", "poverty", "single"], ax=ax, data=dta) #### Leverage-Resid<sup>2</sup> Plot # Closely related to the influence_plot is the leverage-resid<sup>2</sup> plot. fig, ax = plt.subplots(figsize=(8,6)) fig = sm.graphics.plot_leverage_resid2(crime_model, ax=ax) #### Influence Plot fig, ax = plt.subplots(figsize=(8,6)) fig = sm.graphics.influence_plot(crime_model, ax=ax) #### Using robust regression to correct for outliers. # Part of the problem here in recreating the Stata results is that M-estimators are not robust to leverage points. MM-estimators should do better with this examples. from statsmodels.formula.api import rlm rob_crime_model = rlm("murder ~ urban + poverty + hs_grad + single", data=dta, M=sm.robust.norms.TukeyBiweight(3)).fit(conv="weights") print(rob_crime_model.summary()) #rob_crime_model = rlm("murder ~ pctmetro + poverty + pcths + single", data=dta, M=sm.robust.norms.TukeyBiweight()).fit(conv="weights") #print(rob_crime_model.summary()) # There aren't yet an influence diagnostics as part of RLM, but we can recreate them. (This depends on the status of [issue #888](https://github.com/statsmodels/statsmodels/issues/808)) weights = rob_crime_model.weights idx = weights > 0 X = rob_crime_model.model.exog[idx] ww = weights[idx] / weights[idx].mean() hat_matrix_diag = ww*(X*np.linalg.pinv(X).T).sum(1) resid = rob_crime_model.resid resid2 = resid**2 resid2 /= resid2.sum() nobs = int(idx.sum()) hm = hat_matrix_diag.mean() rm = resid2.mean() from statsmodels.graphics import utils fig, ax = plt.subplots(figsize=(12,8)) ax.plot(resid2[idx], hat_matrix_diag, 'o') ax = utils.annotate_axes(range(nobs), labels=rob_crime_model.model.data.row_labels[idx], points=lzip(resid2[idx], hat_matrix_diag), offset_points=[(-5,5)]*nobs, size="large", ax=ax) ax.set_xlabel("resid2") ax.set_ylabel("leverage") ylim = ax.get_ylim() ax.vlines(rm, *ylim) xlim = ax.get_xlim() ax.hlines(hm, *xlim) ax.margins(0,0)
bsd-3-clause
etkirsch/scikit-learn
examples/model_selection/grid_search_text_feature_extraction.py
253
4158
""" ========================================================== Sample pipeline for text feature extraction and evaluation ========================================================== The dataset used in this example is the 20 newsgroups dataset which will be automatically downloaded and then cached and reused for the document classification example. You can adjust the number of categories by giving their names to the dataset loader or setting them to None to get the 20 of them. Here is a sample output of a run on a quad-core machine:: Loading 20 newsgroups dataset for categories: ['alt.atheism', 'talk.religion.misc'] 1427 documents 2 categories Performing grid search... pipeline: ['vect', 'tfidf', 'clf'] parameters: {'clf__alpha': (1.0000000000000001e-05, 9.9999999999999995e-07), 'clf__n_iter': (10, 50, 80), 'clf__penalty': ('l2', 'elasticnet'), 'tfidf__use_idf': (True, False), 'vect__max_n': (1, 2), 'vect__max_df': (0.5, 0.75, 1.0), 'vect__max_features': (None, 5000, 10000, 50000)} done in 1737.030s Best score: 0.940 Best parameters set: clf__alpha: 9.9999999999999995e-07 clf__n_iter: 50 clf__penalty: 'elasticnet' tfidf__use_idf: True vect__max_n: 2 vect__max_df: 0.75 vect__max_features: 50000 """ # Author: Olivier Grisel <olivier.grisel@ensta.org> # Peter Prettenhofer <peter.prettenhofer@gmail.com> # Mathieu Blondel <mathieu@mblondel.org> # License: BSD 3 clause from __future__ import print_function from pprint import pprint from time import time import logging from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sklearn.pipeline import Pipeline print(__doc__) # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') ############################################################################### # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', ] # Uncomment the following to do the analysis on all the categories #categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) data = fetch_20newsgroups(subset='train', categories=categories) print("%d documents" % len(data.filenames)) print("%d categories" % len(data.target_names)) print() ############################################################################### # define a pipeline combining a text feature extractor with a simple # classifier pipeline = Pipeline([ ('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', SGDClassifier()), ]) # uncommenting more parameters will give better exploring power but will # increase processing time in a combinatorial way parameters = { 'vect__max_df': (0.5, 0.75, 1.0), #'vect__max_features': (None, 5000, 10000, 50000), 'vect__ngram_range': ((1, 1), (1, 2)), # unigrams or bigrams #'tfidf__use_idf': (True, False), #'tfidf__norm': ('l1', 'l2'), 'clf__alpha': (0.00001, 0.000001), 'clf__penalty': ('l2', 'elasticnet'), #'clf__n_iter': (10, 50, 80), } if __name__ == "__main__": # multiprocessing requires the fork to happen in a __main__ protected # block # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1) print("Performing grid search...") print("pipeline:", [name for name, _ in pipeline.steps]) print("parameters:") pprint(parameters) t0 = time() grid_search.fit(data.data, data.target) print("done in %0.3fs" % (time() - t0)) print() print("Best score: %0.3f" % grid_search.best_score_) print("Best parameters set:") best_parameters = grid_search.best_estimator_.get_params() for param_name in sorted(parameters.keys()): print("\t%s: %r" % (param_name, best_parameters[param_name]))
bsd-3-clause
karthiks1995/dejavu
dejavu/fingerprint.py
15
5828
import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt from scipy.ndimage.filters import maximum_filter from scipy.ndimage.morphology import (generate_binary_structure, iterate_structure, binary_erosion) import hashlib from operator import itemgetter IDX_FREQ_I = 0 IDX_TIME_J = 1 ###################################################################### # Sampling rate, related to the Nyquist conditions, which affects # the range frequencies we can detect. DEFAULT_FS = 44100 ###################################################################### # Size of the FFT window, affects frequency granularity DEFAULT_WINDOW_SIZE = 4096 ###################################################################### # Ratio by which each sequential window overlaps the last and the # next window. Higher overlap will allow a higher granularity of offset # matching, but potentially more fingerprints. DEFAULT_OVERLAP_RATIO = 0.5 ###################################################################### # Degree to which a fingerprint can be paired with its neighbors -- # higher will cause more fingerprints, but potentially better accuracy. DEFAULT_FAN_VALUE = 15 ###################################################################### # Minimum amplitude in spectrogram in order to be considered a peak. # This can be raised to reduce number of fingerprints, but can negatively # affect accuracy. DEFAULT_AMP_MIN = 10 ###################################################################### # Number of cells around an amplitude peak in the spectrogram in order # for Dejavu to consider it a spectral peak. Higher values mean less # fingerprints and faster matching, but can potentially affect accuracy. PEAK_NEIGHBORHOOD_SIZE = 20 ###################################################################### # Thresholds on how close or far fingerprints can be in time in order # to be paired as a fingerprint. If your max is too low, higher values of # DEFAULT_FAN_VALUE may not perform as expected. MIN_HASH_TIME_DELTA = 0 MAX_HASH_TIME_DELTA = 200 ###################################################################### # If True, will sort peaks temporally for fingerprinting; # not sorting will cut down number of fingerprints, but potentially # affect performance. PEAK_SORT = True ###################################################################### # Number of bits to throw away from the front of the SHA1 hash in the # fingerprint calculation. The more you throw away, the less storage, but # potentially higher collisions and misclassifications when identifying songs. FINGERPRINT_REDUCTION = 20 def fingerprint(channel_samples, Fs=DEFAULT_FS, wsize=DEFAULT_WINDOW_SIZE, wratio=DEFAULT_OVERLAP_RATIO, fan_value=DEFAULT_FAN_VALUE, amp_min=DEFAULT_AMP_MIN): """ FFT the channel, log transform output, find local maxima, then return locally sensitive hashes. """ # FFT the signal and extract frequency components arr2D = mlab.specgram( channel_samples, NFFT=wsize, Fs=Fs, window=mlab.window_hanning, noverlap=int(wsize * wratio))[0] # apply log transform since specgram() returns linear array arr2D = 10 * np.log10(arr2D) arr2D[arr2D == -np.inf] = 0 # replace infs with zeros # find local maxima local_maxima = get_2D_peaks(arr2D, plot=False, amp_min=amp_min) # return hashes return generate_hashes(local_maxima, fan_value=fan_value) def get_2D_peaks(arr2D, plot=False, amp_min=DEFAULT_AMP_MIN): # http://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.morphology.iterate_structure.html#scipy.ndimage.morphology.iterate_structure struct = generate_binary_structure(2, 1) neighborhood = iterate_structure(struct, PEAK_NEIGHBORHOOD_SIZE) # find local maxima using our fliter shape local_max = maximum_filter(arr2D, footprint=neighborhood) == arr2D background = (arr2D == 0) eroded_background = binary_erosion(background, structure=neighborhood, border_value=1) # Boolean mask of arr2D with True at peaks detected_peaks = local_max - eroded_background # extract peaks amps = arr2D[detected_peaks] j, i = np.where(detected_peaks) # filter peaks amps = amps.flatten() peaks = zip(i, j, amps) peaks_filtered = [x for x in peaks if x[2] > amp_min] # freq, time, amp # get indices for frequency and time frequency_idx = [x[1] for x in peaks_filtered] time_idx = [x[0] for x in peaks_filtered] if plot: # scatter of the peaks fig, ax = plt.subplots() ax.imshow(arr2D) ax.scatter(time_idx, frequency_idx) ax.set_xlabel('Time') ax.set_ylabel('Frequency') ax.set_title("Spectrogram") plt.gca().invert_yaxis() plt.show() return zip(frequency_idx, time_idx) def generate_hashes(peaks, fan_value=DEFAULT_FAN_VALUE): """ Hash list structure: sha1_hash[0:20] time_offset [(e05b341a9b77a51fd26, 32), ... ] """ if PEAK_SORT: peaks.sort(key=itemgetter(1)) for i in range(len(peaks)): for j in range(1, fan_value): if (i + j) < len(peaks): freq1 = peaks[i][IDX_FREQ_I] freq2 = peaks[i + j][IDX_FREQ_I] t1 = peaks[i][IDX_TIME_J] t2 = peaks[i + j][IDX_TIME_J] t_delta = t2 - t1 if t_delta >= MIN_HASH_TIME_DELTA and t_delta <= MAX_HASH_TIME_DELTA: h = hashlib.sha1( "%s|%s|%s" % (str(freq1), str(freq2), str(t_delta))) yield (h.hexdigest()[0:FINGERPRINT_REDUCTION], t1)
mit
sunyihuan326/DeltaLab
shuwei_fengge/practice_one/model/tt.py
1
3958
# coding:utf-8 ''' Created on 2017/12/8. @author: chk01 ''' import scipy.io as scio # data = scio.loadmat(file) # from sklearn.model_selection import train_test_split # # print(data['X'].shape) # print(data['Y'].shape) # X_train, X_test, Y_train, Y_test = train_test_split(data['X'], data['Y'], test_size=0.2) # print(X_train.shape) # print(Y_train.shape) # print(X_test.shape) # print(Y_test.shape) import numpy as np import scipy.io as scio import tensorflow as tf from practice_one.model.utils import * from tensorflow.contrib.factorization import KMeans from sklearn.ensemble import AdaBoostClassifier # print(np.e) # print(-np.log(np.e / (np.e + 8))) # ZL = tf.Variable([[0, 1, 0, 0, 0, 0, 0, 0, 0]], dtype=tf.float32) # print(ZL.shape) # Y = tf.constant([[0, 0, 0, 0, 0, 0, 1, 0, 0]], dtype=tf.float32) # Y = tf.get_variable(dtype=tf.float32, shape=(1, 2), name='tt',initializer=tf.contrib.layers.xavier_initializer()) # cor_op = tf.argmax(Y, 1) # pre_op = tf.argmax(ZL, 1) # cost1 = tf.square(tf.cast(cor_op - pre_op, dtype=tf.float32)) # lost = tf.reduce_mean( # cost1 + tf.nn.softmax_cross_entropy_with_logits(logits=ZL, # labels=Y)) # # loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * loss_more, (y_ - y) * loss_less)) # train_op = tf.train.GradientDescentOptimizer(0.1).minimize(lost) # init = tf.global_variables_initializer() # with tf.Session() as sess: # sess.run(init) # for i in range(30): # sess.run(train_op) # print(sess.run(lost)) # print(sess.run(tf.reduce_mean(cost1))) # print(sess.run(tf.argmax(ZL, 1))) # 1.37195 # 2.37195 # parameters = scio.loadmat('kmeans_parameters.mat') # X_train, X_test, Y_train, Y_test = load_data("face_1_channel_sense.mat") # print(X_test.shape) # num_features = 28 # num_classes = 3 # # X = tf.placeholder(tf.float32, shape=[None, num_features]) # Y = tf.placeholder(tf.float32, shape=[None, num_classes]) # # kmeans = KMeans(inputs=X, num_clusters=300, # distance_metric='cosine', # use_mini_batch=True) # # (all_scores, cluster_idx, scores, cluster_centers_initialized, cluster_centers_var, init_op, # train_op) = kmeans.training_graph() # cluster_idx = cluster_idx[0] # fix for cluster_idx being a tuple # # # Initialize the variables (i.e. assign their default value) # init_vars = tf.global_variables_initializer() # # # Start TensorFlow session # sess = tf.Session() # sess.run(init_vars, feed_dict={X: X_test}) # sess.run(init_op, feed_dict={X: X_test}) # cl = sess.run(cluster_idx, feed_dict={X: X_train}) # print("cl",cl) # print(len(cl)) # parameters = scio.loadmat('kmeans_parameters.mat') # print("parameters",parameters['labels_map'][0]) # labels_map = tf.convert_to_tensor(parameters['labels_map'][0]) # # # Evaluation ops # # Lookup: centroid_id -> label # cluster_label = tf.nn.embedding_lookup(labels_map, cluster_idx) # # # Test Model # test_x, test_y = X_test, Y_test # with sess.as_default(): # cluster_label = cluster_label.eval(feed_dict={X: X_test}) # # c = 0 # for i in range(len(cluster_label)): # if abs(cluster_label[i] - np.argmax(Y_train, 1)[i]) > 1: # c += 1. / len(cluster_label) # print(c) # tt = scio.loadmat("tt_cluster_label.mat") # sense = scio.loadmat("sense_cluster.mat") # tt = tt["tt"][0] # se = sense["sense"][0] # for i in range(len(tt)): # if tt[i] != se[i]: # print(i, tt[i], se[i]) # # print('correct_prediction', correct_prediction) # index = [1, 2, 0, 2, 1, 2] # indice = [[0, 2, 1, 1, 1], [0, 1, 1, 2, 1]] # a = tf.one_hot(index, 3, axis=0) # b = tf.one_hot(indice, 3, axis=1) # with tf.Session() as sess: # print(sess.run(a)) # print("b", sess.run(b)) file = "face_1_channel_sense" X_train, X_test, Y_train, Y_test = load_data(file) clf = AdaBoostClassifier(n_estimators=100) Y_train = np.argmax(Y_train, 1) c = clf.fit(X_train, Y_train) print(c)
mit
timcera/mettoolbox
mettoolbox/pet.py
1
10467
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function import warnings from typing import Optional, Union import numpy as np import pandas as pd import typic from solarpy import declination from tstoolbox import tsutils from . import meteolib, utils warnings.filterwarnings("ignore") def _columns(tsd, req_column_list=[], optional_column_list=[]): if None in req_column_list: raise ValueError( tsutils.error_wrapper( """ You need to supply the column (name or number, data column numbering starts at 1) for {0} time-series. Instead you gave {1}""".format( len(req_column_list), req_column_list ) ) ) collect = [] for loopvar in req_column_list + optional_column_list: try: nloopvar = int(loopvar) - 1 except TypeError: nloopvar = loopvar if nloopvar is None: collect.append(None) else: collect.append(tsd.ix[:, nloopvar]) return collect def _preprocess( input_ts, temp_min_col, temp_max_col, temp_mean_col, temp_min_required, temp_max_required, skiprows, names, index_type, start_date, end_date, round_index, dropna, clean, source_units, ): columns, column_names = utils._check_temperature_cols( temp_min_col=temp_min_col, temp_max_col=temp_max_col, temp_mean_col=temp_mean_col, temp_min_required=temp_min_required, temp_max_required=temp_max_required, ) tsd = tsutils.common_kwds( input_ts, skiprows=skiprows, names=names, index_type=index_type, start_date=start_date, end_date=end_date, pick=columns, round_index=round_index, dropna=dropna, clean=clean, ) if source_units is None: # If "source_units" keyword is None must have source_units in column name. source_units = [] for units in tsd.columns: words = units.split(":") if len(words) >= 2: source_units.append(words[1]) else: raise ValueError( tsutils.error_wrapper( """ If "source_units" are not supplied as the second ":" delimited field in the column name they must be supplied with the "source_units" keyword. """ ) ) else: source_units = tsutils.make_list(source_units) if len(source_units) != len(tsd.columns): raise ValueError( tsutils.error_wrapper( """ The number of "source_units" terms must match the number of temperature columns. """ ) ) interim_target_units = ["degC"] * len(tsd.columns) tsd = tsutils.common_kwds( tsd, source_units=source_units, target_units=interim_target_units, ) tsd.columns = column_names tsd = utils._validate_temperatures(tsd, temp_min_col, temp_max_col) return tsd def et0_pm( input_ts="-", columns=None, start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, source_units=None, target_units=None, print_input=False, tablefmt="csv", avp=None, avp_from_tdew=None, avp_from_twet_tdry=None, avp_from_rhmin_rh_max=None, avp_from_rhmax=None, avp_from_rhmean=None, avp_from_tmin=None, lat=None, ): """Penman-Monteith evaporation.""" tsd = tsutils.common_kwds( tsutils.read_iso_ts( input_ts, skiprows=skiprows, names=names, index_type=index_type ), start_date=start_date, end_date=end_date, pick=columns, round_index=round_index, dropna=dropna, source_units=source_units, target_units=target_units, clean=clean, ) return tsd @typic.constrained(ge=-90, le=90) class FloatLatitude(float): """-90 <= float <= 90""" @typic.al def hamon( lat: FloatLatitude, temp_min_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_max_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_mean_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, k: float = 1, source_units=None, input_ts="-", start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units=None, print_input=False, ): """hamon""" temp_min_required = True temp_max_required = True tsd = _preprocess( input_ts, temp_min_col, temp_max_col, temp_mean_col, temp_min_required, temp_max_required, skiprows, names, index_type, start_date, end_date, round_index, dropna, clean, source_units, ) decl = [declination(i) for i in tsd.index.to_pydatetime()] w = np.arccos(-np.tan(decl) * np.tan(lat)) es = meteolib.es_calc(tsd.tmean) N = 24 * w / np.pi # Create new dataframe with tsd.index as index in # order to get all of the time components correct. pe = pd.DataFrame(0.0, index=tsd.index, columns=["pet_hamon:mm"]) pe["pet_hamon:mm"] = k * 29.8 * N * es / (273.3 + tsd.tmean) pe.loc[tsd.tmean <= 0, "pet_hamon:mm"] = 0.0 if target_units != source_units: pe = tsutils.common_kwds(pe, source_units="mm", target_units=target_units) return tsutils.return_input(print_input, tsd, pe) @typic.al def hargreaves( lat: FloatLatitude, temp_min_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_max_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_mean_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, source_units=None, input_ts="-", start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units="mm", print_input=False, ): """hargreaves""" temp_min_required = True temp_max_required = True tsd = _preprocess( input_ts, temp_min_col, temp_max_col, temp_mean_col, temp_min_required, temp_max_required, skiprows, names, index_type, start_date, end_date, round_index, dropna, clean, source_units, ) newra = utils.radiation(tsd, lat) tsdiff = tsd.tmax - tsd.tmin # Create new dataframe with tsd.index as index in # order to get all of the time components correct. pe = pd.DataFrame(0.0, index=tsd.index, columns=["pet_hargreaves:mm"]) pe["pet_hargreaves:mm"] = ( 0.408 * 0.0023 * newra.ra.values * np.abs(tsdiff.values) ** 0.5 * (tsd.tmean.values + 17.8) ) if target_units != source_units: pe = tsutils.common_kwds(pe, source_units="mm", target_units=target_units) return tsutils.return_input(print_input, tsd, pe) @typic.al def oudin_form( lat: FloatLatitude, temp_min_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_max_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_mean_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, k1=100, k2=5, source_units=None, input_ts="-", start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units=None, print_input=False, ): """oudin form""" temp_min_required = False temp_max_required = False tsd = _preprocess( input_ts, temp_min_col, temp_max_col, temp_mean_col, temp_min_required, temp_max_required, skiprows, names, index_type, start_date, end_date, round_index, dropna, clean, source_units, ) newra = utils.radiation(tsd, lat) # Create new dataframe with tsd.index as index in # order to get all of the time components correct. pe = pd.DataFrame(0.0, index=tsd.index, columns=["pet_oudin:mm"]) gamma = 2.45 # the latent heat flux (MJ kg−1) rho = 1000.0 # density of water (kg m-3) pe.loc[tsd.tmean > k2, "pet_oudin:mm"] = ( newra.ra / (gamma * rho) * (tsd.tmean + k2) / k1 * 1000 ) if target_units != source_units: pe = tsutils.common_kwds(pe, source_units="mm", target_units=target_units) return tsutils.return_input(print_input, tsd, pe) @typic.al def allen( lat: FloatLatitude, temp_min_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_max_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, temp_mean_col: Optional[Union[tsutils.IntGreaterEqualToOne, str]] = None, source_units=None, input_ts="-", start_date=None, end_date=None, dropna="no", clean=False, round_index=None, skiprows=None, index_type="datetime", names=None, target_units=None, print_input=False, ): """Allen""" temp_min_required = False temp_max_required = False tsd = _preprocess( input_ts, temp_min_col, temp_max_col, temp_mean_col, temp_min_required, temp_max_required, skiprows, names, index_type, start_date, end_date, round_index, dropna, clean, source_units, ) newra = utils.radiation(tsd, lat) # Create new dataframe with tsd.index as index in # order to get all of the time components correct. pe = pd.DataFrame(0.0, index=tsd.index, columns=["pet_allen:mm"]) pe["pet_allen:mm"] = ( 0.408 * 0.0029 * newra.ra * (tsd.tmax - tsd.tmin) ** 0.4 * (tsd.tmean + 20) ) if target_units != source_units: pe = tsutils.common_kwds(pe, source_units="mm", target_units=target_units) return tsutils.return_input(print_input, tsd, pe) def reference(): """reference penman-monteith""" print("reference") def potential(): """potential""" print("potential")
bsd-3-clause
krahman/BuildingMachineLearningSystemsWithPython
ch04/build_lda.py
1
2472
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License from __future__ import print_function try: import nltk.corpus except ImportError: print("nltk not found") print("please install it") raise from scipy.spatial import distance import numpy as np import string from gensim import corpora, models, similarities import sklearn.datasets import nltk.stem from collections import defaultdict english_stemmer = nltk.stem.SnowballStemmer('english') stopwords = set(nltk.corpus.stopwords.words('english')) stopwords.update(['from:', 'subject:', 'writes:', 'writes']) class DirectText(corpora.textcorpus.TextCorpus): def get_texts(self): return self.input def __len__(self): return len(self.input) try: dataset = sklearn.datasets.load_mlcomp("20news-18828", "train", mlcomp_root='./data') except: print("Newsgroup data not found.") print("Please download from http://mlcomp.org/datasets/379") print("And expand the zip into the subdirectory data/") print() print() raise otexts = dataset.data texts = dataset.data texts = [t.decode('utf-8', 'ignore') for t in texts] texts = [t.split() for t in texts] texts = [map(lambda w: w.lower(), t) for t in texts] texts = [filter(lambda s: not len(set("+-.?!()>@012345689") & set(s)), t) for t in texts] texts = [filter(lambda s: (len(s) > 3) and (s not in stopwords), t) for t in texts] texts = [map(english_stemmer.stem, t) for t in texts] usage = defaultdict(int) for t in texts: for w in set(t): usage[w] += 1 limit = len(texts) / 10 too_common = [w for w in usage if usage[w] > limit] too_common = set(too_common) texts = [filter(lambda s: s not in too_common, t) for t in texts] corpus = DirectText(texts) dictionary = corpus.dictionary try: dictionary['computer'] except: pass model = models.ldamodel.LdaModel( corpus, num_topics=100, id2word=dictionary.id2token) thetas = np.zeros((len(texts), 100)) for i, c in enumerate(corpus): for ti, v in model[c]: thetas[i, ti] += v distances = distance.squareform(distance.pdist(thetas)) large = distances.max() + 1 for i in xrange(len(distances)): distances[i, i] = large print(otexts[1]) print() print() print() print(otexts[distances[1].argmin()])
mit
olologin/scikit-learn
examples/linear_model/plot_sgd_iris.py
286
2202
""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('tight') # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.title("Decision surface of multi-class SGD") plt.axis('tight') # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show()
bsd-3-clause
ishanic/scikit-learn
sklearn/manifold/tests/test_t_sne.py
162
9771
import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises_regexp from sklearn.utils import check_random_state from sklearn.manifold.t_sne import _joint_probabilities from sklearn.manifold.t_sne import _kl_divergence from sklearn.manifold.t_sne import _gradient_descent from sklearn.manifold.t_sne import trustworthiness from sklearn.manifold.t_sne import TSNE from sklearn.manifold._utils import _binary_search_perplexity from scipy.optimize import check_grad from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform def test_gradient_descent_stops(): # Test stopping conditions of gradient descent. class ObjectiveSmallGradient: def __init__(self): self.it = -1 def __call__(self, _): self.it += 1 return (10 - self.it) / 10.0, np.array([1e-5]) def flat_function(_): return 0.0, np.ones(1) # Gradient norm old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=1e-5, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 1.0) assert_equal(it, 0) assert("gradient norm" in out) # Error difference old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.2, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.9) assert_equal(it, 1) assert("error difference" in out) # Maximum number of iterations without improvement old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( flat_function, np.zeros(1), 0, n_iter=100, n_iter_without_progress=10, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=-1.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 11) assert("did not make any progress" in out) # Maximum number of iterations old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=11, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 10) assert("Iteration 10" in out) def test_binary_search(): # Test if the binary search finds Gaussians with desired perplexity. random_state = check_random_state(0) distances = random_state.randn(50, 2) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) desired_perplexity = 25.0 P = _binary_search_perplexity(distances, desired_perplexity, verbose=0) P = np.maximum(P, np.finfo(np.double).eps) mean_perplexity = np.mean([np.exp(-np.sum(P[i] * np.log(P[i]))) for i in range(P.shape[0])]) assert_almost_equal(mean_perplexity, desired_perplexity, decimal=3) def test_gradient(): # Test gradient of Kullback-Leibler divergence. random_state = check_random_state(0) n_samples = 50 n_features = 2 n_components = 2 alpha = 1.0 distances = random_state.randn(n_samples, n_features) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) X_embedded = random_state.randn(n_samples, n_components) P = _joint_probabilities(distances, desired_perplexity=25.0, verbose=0) fun = lambda params: _kl_divergence(params, P, alpha, n_samples, n_components)[0] grad = lambda params: _kl_divergence(params, P, alpha, n_samples, n_components)[1] assert_almost_equal(check_grad(fun, grad, X_embedded.ravel()), 0.0, decimal=5) def test_trustworthiness(): # Test trustworthiness score. random_state = check_random_state(0) # Affine transformation X = random_state.randn(100, 2) assert_equal(trustworthiness(X, 5.0 + X / 10.0), 1.0) # Randomly shuffled X = np.arange(100).reshape(-1, 1) X_embedded = X.copy() random_state.shuffle(X_embedded) assert_less(trustworthiness(X, X_embedded), 0.6) # Completely different X = np.arange(5).reshape(-1, 1) X_embedded = np.array([[0], [2], [4], [1], [3]]) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 0.2) def test_preserve_trustworthiness_approximately(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) X = random_state.randn(100, 2) for init in ('random', 'pca'): tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, init=init, random_state=0) X_embedded = tsne.fit_transform(X) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_fit_csr_matrix(): # X can be a sparse matrix. random_state = check_random_state(0) X = random_state.randn(100, 2) X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, random_state=0) X_embedded = tsne.fit_transform(X_csr) assert_almost_equal(trustworthiness(X_csr, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_preserve_trustworthiness_approximately_with_precomputed_distances(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) X = random_state.randn(100, 2) D = squareform(pdist(X), "sqeuclidean") tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, metric="precomputed", random_state=0) X_embedded = tsne.fit_transform(D) assert_almost_equal(trustworthiness(D, X_embedded, n_neighbors=1, precomputed=True), 1.0, decimal=1) def test_early_exaggeration_too_small(): # Early exaggeration factor must be >= 1. tsne = TSNE(early_exaggeration=0.99) assert_raises_regexp(ValueError, "early_exaggeration .*", tsne.fit_transform, np.array([[0.0]])) def test_too_few_iterations(): # Number of gradient descent iterations must be at least 200. tsne = TSNE(n_iter=199) assert_raises_regexp(ValueError, "n_iter .*", tsne.fit_transform, np.array([[0.0]])) def test_non_square_precomputed_distances(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed") assert_raises_regexp(ValueError, ".* square distance matrix", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_init_not_available(): # 'init' must be 'pca' or 'random'. assert_raises_regexp(ValueError, "'init' must be either 'pca' or 'random'", TSNE, init="not available") def test_distance_not_available(): # 'metric' must be valid. tsne = TSNE(metric="not available") assert_raises_regexp(ValueError, "Unknown metric not available.*", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_pca_initialization_not_compatible_with_precomputed_kernel(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed", init="pca") assert_raises_regexp(ValueError, "The parameter init=\"pca\" cannot be " "used with metric=\"precomputed\".", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_verbose(): random_state = check_random_state(0) tsne = TSNE(verbose=2) X = random_state.randn(5, 2) old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[t-SNE]" in out) assert("Computing pairwise distances" in out) assert("Computed conditional probabilities" in out) assert("Mean sigma" in out) assert("Finished" in out) assert("early exaggeration" in out) assert("Finished" in out) def test_chebyshev_metric(): # t-SNE should allow metrics that cannot be squared (issue #3526). random_state = check_random_state(0) tsne = TSNE(metric="chebyshev") X = random_state.randn(5, 2) tsne.fit_transform(X) def test_reduction_to_one_component(): # t-SNE should allow reduction to one component (issue #4154). random_state = check_random_state(0) tsne = TSNE(n_components=1) X = random_state.randn(5, 2) X_embedded = tsne.fit(X).embedding_ assert(np.all(np.isfinite(X_embedded)))
bsd-3-clause
achabotl/pambox
setup.py
1
3387
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function from setuptools import setup from setuptools.command.test import test as TestCommand import codecs import os import re here = os.path.abspath(os.path.dirname(__file__)) def read(*parts): # intentionally *not* adding an encoding option to open return codecs.open(os.path.join(here, *parts), 'r').read() def read(*parts): # intentionally *not* adding an encoding option to open return codecs.open(os.path.join(here, *parts), 'r').read() def find_version(*file_paths): version_file = read(*file_paths) version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") long_description = read('README.rst') def check_dependencies(): import os on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if on_rtd: return # Just make sure dependencies exist, I haven't rigorously # tested what the minimal versions that will work are # (help on that would be awesome) try: import numpy except ImportError: raise ImportError("pambox requires numpy") try: import scipy except ImportError: raise ImportError("pambox requires scipy") try: import matplotlib except ImportError: raise ImportError("pambox requires matplotlib") try: import pandas except ImportError: raise ImportError("pambox requires pandas") class PyTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = ['--runslow', 'pambox/tests'] self.test_suite = True def run_tests(self): import pytest errcode = pytest.main(self.test_args) sys.exit(errcode) if __name__ == '__main__': import sys if not (len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', 'egg_info', '--version', 'clean'))): check_dependencies() setup( name='pambox', description='A Python toolbox for auditory modeling', author='Alexandre Chabot-Leclerc', author_email='pambox@alex.alexchabot.net', version=find_version('pambox', '__init__.py'), url='https://bitbucket.org/achabotl/pambox', license='Modified BSD License', tests_require=['pytest'], install_requires=[ 'six>=1.4.1', ], cmdclass={'test': PyTest}, long_description=long_description, packages=['pambox'], include_package_data=True, platforms='any', test_suite='pambox.tests', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Natural Language :: English', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Topic :: Scientific/Engineering', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS' ], extras_require={ 'testing': ['pytest'] } )
bsd-3-clause
hmendozap/auto-sklearn
autosklearn/metalearning/metafeatures/plot_metafeatures.py
1
20297
from __future__ import print_function import argparse import cPickle import itertools import os import StringIO import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.decomposition import PCA try: from sklearn.manifold import TSNE from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS import sklearn.metrics.pairwise except: print("Failed to load TSNE, probably you're using sklearn 0.14.X") from pyMetaLearn.metalearning.meta_base import MetaBase import pyMetaLearn.metalearning.create_datasets import pyMetaLearn.data_repositories.openml.apiconnector def load_dataset(dataset, dataset_directory): dataset_dir = os.path.abspath(os.path.join(dataset_directory, dataset)) fh = open(os.path.join(dataset_dir, dataset + ".pkl")) ds = cPickle.load(fh) fh.close() data_frame = ds.convert_arff_structure_to_pandas(ds .get_unprocessed_files()) class_ = data_frame.keys()[-1] attributes = data_frame.keys()[0:-1] X = data_frame[attributes] Y = data_frame[class_] return X, Y def plot_metafeatures(metafeatures_plot_dir, metafeatures, metafeatures_times, runs, method='pca', seed=1, depth=1, distance='l2'): """Project datasets in a 2d space and plot them. arguments: * metafeatures_plot_dir: a directory to save the generated plots * metafeatures: a pandas Dataframe from the MetaBase * runs: a dictionary of runs from the MetaBase * method: either pca or t-sne * seed: only used for t-sne * depth: if 1, a one-step look-ahead is performed """ if type(metafeatures) != pd.DataFrame: raise ValueError("Argument metafeatures must be of type pd.Dataframe " "but is %s" % str(type(metafeatures))) ############################################################################ # Write out the datasets and their size as a TEX table # TODO put this in an own function dataset_tex = StringIO.StringIO() dataset_tex.write('\\begin{tabular}{lrrr}\n') dataset_tex.write('\\textbf{Dataset name} & ' '\\textbf{\#features} & ' '\\textbf{\#patterns} & ' '\\textbf{\#classes} \\\\\n') num_features = [] num_instances = [] num_classes = [] for dataset in sorted(metafeatures.index): dataset_tex.write('%s & %d & %d & %d \\\\\n' % ( dataset.replace('larochelle_etal_2007_', '').replace( '_', '-'), metafeatures.loc[dataset]['number_of_features'], metafeatures.loc[dataset]['number_of_instances'], metafeatures.loc[dataset]['number_of_classes'])) num_features.append(metafeatures.loc[dataset]['number_of_features']) num_instances.append(metafeatures.loc[dataset]['number_of_instances']) num_classes.append(metafeatures.loc[dataset]['number_of_classes']) dataset_tex.write('Minimum & %.1f & %.1f & %.1f \\\\\n' % (np.min(num_features), np.min(num_instances), np.min(num_classes))) dataset_tex.write('Maximum & %.1f & %.1f & %.1f \\\\\n' % (np.max(num_features), np.max(num_instances), np.max(num_classes))) dataset_tex.write('Mean & %.1f & %.1f & %.1f \\\\\n' % (np.mean(num_features), np.mean(num_instances), np.mean(num_classes))) dataset_tex.write('10\\%% quantile & %.1f & %.1f & %.1f \\\\\n' % ( np.percentile(num_features, 10), np.percentile(num_instances, 10), np.percentile(num_classes, 10))) dataset_tex.write('90\\%% quantile & %.1f & %.1f & %.1f \\\\\n' % ( np.percentile(num_features, 90), np.percentile(num_instances, 90), np.percentile(num_classes, 90))) dataset_tex.write('median & %.1f & %.1f & %.1f \\\\\n' % ( np.percentile(num_features, 50), np.percentile(num_instances, 50), np.percentile(num_classes, 50))) dataset_tex.write('\\end{tabular}') dataset_tex.seek(0) dataset_tex_output = os.path.join(metafeatures_plot_dir, 'datasets.tex') with open(dataset_tex_output, 'w') as fh: fh.write(dataset_tex.getvalue()) ############################################################################ # Write out a list of metafeatures, each with the min/max/mean # calculation time and the min/max/mean value metafeatures_tex = StringIO.StringIO() metafeatures_tex.write('\\begin{tabular}{lrrrrrr}\n') metafeatures_tex.write('\\textbf{Metafeature} & ' '\\textbf{Minimum} & ' '\\textbf{Mean} & ' '\\textbf{Maximum} &' '\\textbf{Minimum time} &' '\\textbf{Mean time} &' '\\textbf{Maximum time} ' '\\\\\n') for mf_name in sorted(metafeatures.columns): metafeatures_tex.write('%s & %.2f & %.2f & %.2f & %.2f & %.2f & %.2f \\\\\n' % (mf_name.replace('_', '-'), metafeatures.loc[:,mf_name].min(), metafeatures.loc[:,mf_name].mean(), metafeatures.loc[:,mf_name].max(), metafeature_times.loc[:, mf_name].min(), metafeature_times.loc[:, mf_name].mean(), metafeature_times.loc[:, mf_name].max())) metafeatures_tex.write('\\end{tabular}') metafeatures_tex.seek(0) metafeatures_tex_output = os.path.join(metafeatures_plot_dir, 'metafeatures.tex') with open(metafeatures_tex_output, 'w') as fh: fh.write(metafeatures_tex.getvalue()) # Without this scaling the transformation for visualization purposes is # useless metafeatures = metafeatures.copy() X_min = np.nanmin(metafeatures, axis=0) X_max = np.nanmax(metafeatures, axis=0) metafeatures = (metafeatures - X_min) / (X_max - X_min) # PCA if method == 'pca': pca = PCA(2) transformation = pca.fit_transform(metafeatures.values) elif method == 't-sne': if distance == 'l2': distance_matrix = sklearn.metrics.pairwise.pairwise_distances( metafeatures.values, metric='l2') elif distance == 'l1': distance_matrix = sklearn.metrics.pairwise.pairwise_distances( metafeatures.values, metric='l1') elif distance == 'runs': names_to_indices = dict() for metafeature in metafeatures.index: idx = len(names_to_indices) names_to_indices[metafeature] = idx X, Y = pyMetaLearn.metalearning.create_datasets\ .create_predict_spearman_rank(metafeatures, runs, 'combination') # Make a metric matrix out of Y distance_matrix = np.zeros((metafeatures.shape[0], metafeatures.shape[0]), dtype=np.float64) for idx in Y.index: dataset_names = idx.split("_") d1 = names_to_indices[dataset_names[0]] d2 = names_to_indices[dataset_names[1]] distance_matrix[d1][d2] = Y.loc[idx] distance_matrix[d2][d1] = Y.loc[idx] else: raise NotImplementedError() # For whatever reason, tsne doesn't accept l1 metric tsne = TSNE(random_state=seed, perplexity=50, verbose=1) transformation = tsne.fit_transform(distance_matrix) # Transform the transformation back to range [0, 1] to ease plotting transformation_min = np.nanmin(transformation, axis=0) transformation_max = np.nanmax(transformation, axis=0) transformation = (transformation - transformation_min) / \ (transformation_max - transformation_min) print(transformation_min, transformation_max) #for i, dataset in enumerate(directory_content): # print dataset, meta_feature_array[i] fig = plt.figure(dpi=600, figsize=(12, 12)) ax = plt.subplot(111) # The dataset names must be aligned at the borders of the plot in a way # the arrows don't cross each other. First, define the different slots # where the labels will be positioned and then figure out the optimal # order of the labels slots = [] # 25 datasets on the top y-axis slots.extend([(-0.1 + 0.05 * i, 1.1) for i in range(25)]) # 24 datasets on the right x-axis slots.extend([(1.1, 1.05 - 0.05 * i) for i in range(24)]) # 25 datasets on the bottom y-axis slots.extend([(-0.1 + 0.05 * i, -0.1) for i in range(25)]) # 24 datasets on the left x-axis slots.extend([(-0.1, 1.05 - 0.05 * i) for i in range(24)]) # Align the labels on the outer axis labels_top = [] labels_left = [] labels_right = [] labels_bottom = [] for values in zip(metafeatures.index, transformation[:, 0], transformation[:, 1]): label, x, y = values # Although all plot area goes up to 1.1, 1.1, the range of all the # points lies inside [0,1] if x >= y and x < 1.0 - y: labels_bottom.append((x, label)) elif x >= y and x >= 1.0 - y: labels_right.append((y, label)) elif y > x and x <= 1.0 -y: labels_left.append((y, label)) else: labels_top.append((x, label)) # Sort the labels according to their alignment labels_bottom.sort() labels_left.sort() labels_left.reverse() labels_right.sort() labels_right.reverse() labels_top.sort() # Build an index label -> x, y points = {} for values in zip(metafeatures.index, transformation[:, 0], transformation[:, 1]): label, x, y = values points[label] = (x, y) # Find out the final positions... positions_top = {} positions_left = {} positions_right = {} positions_bottom = {} # Find the actual positions for i, values in enumerate(labels_bottom): y, label = values margin = 1.2 / len(labels_bottom) positions_bottom[label] = (-0.05 + i * margin, -0.1,) for i, values in enumerate(labels_left): x, label = values margin = 1.2 / len(labels_left) positions_left[label] = (-0.1, 1.1 - i * margin) for i, values in enumerate(labels_top): y, label = values margin = 1.2 / len(labels_top) positions_top[label] = (-0.05 + i * margin, 1.1) for i, values in enumerate(labels_right): y, label = values margin = 1.2 / len(labels_right) positions_right[label] = (1.1, 1.05 - i * margin) # Do greedy resorting if it decreases the number of intersections... def resort(label_positions, marker_positions, maxdepth=1): # TODO: are the inputs dicts or lists # TODO: two-step look-ahead def intersect(start1, end1, start2, end2): # Compute if there is an intersection, for the algorithm see # Computer Graphics by F.S.Hill # If one vector is just a point, it cannot intersect with a line... for v in [start1, start2, end1, end2]: if not np.isfinite(v).all(): return False # Obviously there is no intersection def perpendicular(d): return np.array((-d[1], d[0])) d1 = end1 - start1 # denoted b d2 = end2 - start2 # denoted d d2_1 = start2 - start1 # denoted c d1_perp = perpendicular(d1) # denoted by b_perp d2_perp = perpendicular(d2) # denoted by d_perp t = np.dot(d2_1, d2_perp) / np.dot(d1, d2_perp) u = - np.dot(d2_1, d1_perp) / np.dot(d2, d1_perp) if 0 <= t <= 1 and 0 <= u <= 1: return True # There is an intersection else: return False # There is no intersection def number_of_intersections(label_positions, marker_positions): num = 0 for key1, key2 in itertools.permutations(label_positions, r=2): s1 = np.array(label_positions[key1]) e1 = np.array(marker_positions[key1]) s2 = np.array(label_positions[key2]) e2 = np.array(marker_positions[key2]) if intersect(s1, e1, s2, e2): num += 1 return num # test if swapping two lines would decrease the number of intersections # TODO: if this was done with a datastructure different than dicts, # it could be much faster, because there is a lot of redundant # computing performed in the second iteration def swap(label_positions, marker_positions, depth=0, maxdepth=maxdepth, best_found=sys.maxint): if len(label_positions) <= 1: return two_step_look_ahead = False while True: improvement = False for key1, key2 in itertools.combinations(label_positions, r=2): before = number_of_intersections(label_positions, marker_positions) # swap: tmp = label_positions[key1] label_positions[key1] = label_positions[key2] label_positions[key2] = tmp if depth < maxdepth and two_step_look_ahead: swap(label_positions, marker_positions, depth=depth+1, best_found=before) after = number_of_intersections(label_positions, marker_positions) if best_found > after and before > after: improvement = True print(before, after) print("Depth %d: Swapped %s with %s" % (depth, key1, key2)) else: # swap back... tmp = label_positions[key1] label_positions[key1] = label_positions[key2] label_positions[key2] = tmp if after == 0: break # If it is not yet sorted perfectly, do another pass with # two-step lookahead if before == 0: print("Sorted perfectly...") break print(depth, two_step_look_ahead) if two_step_look_ahead: break if maxdepth == depth: print("Reached maximum recursion depth...") break if not improvement and depth < maxdepth: print("Still %d errors, trying two-step lookahead" % before) two_step_look_ahead = True swap(label_positions, marker_positions, maxdepth=maxdepth) resort(positions_bottom, points, maxdepth=depth) resort(positions_left, points, maxdepth=depth) resort(positions_right, points, maxdepth=depth) resort(positions_top, points, maxdepth=depth) # Helper function def plot(x, y, label_x, label_y, label, ha, va, relpos, rotation=0): ax.scatter(x, y, marker='o', label=label, s=80, linewidths=0.1, color='blue', edgecolor='black') label = label.replace('larochelle_etal_2007_', '') x = ax.annotate(label, xy=(x, y), xytext=(label_x, label_y), ha=ha, va=va, rotation=rotation, bbox=dict(boxstyle='round', fc='gray', alpha=0.5), arrowprops=dict(arrowstyle='->', color='black', relpos=relpos)) # Do the plotting for i, key in enumerate(positions_bottom): x, y = positions_bottom[key] plot(points[key][0], points[key][1], x, y, key, ha='right', va='top', rotation=45, relpos=(1, 1)) for i, key in enumerate(positions_left): x, y = positions_left[key] plot(points[key][0], points[key][1], x, y, key, ha='right', va='top', rotation=45, relpos=(1, 1)) for i, key in enumerate(positions_top): x, y = positions_top[key] plot(points[key][0], points[key][1], x, y, key, ha='left', va='bottom', rotation=45, relpos=(0, 0)) for i, key in enumerate(positions_right): x, y = positions_right[key] plot(points[key][0], points[key][1], x, y, key, ha='left', va='bottom', rotation=45, relpos=(0, 0)) # Resize everything box = ax.get_position() remove = 0.05 * box.width ax.set_position([box.x0 + remove, box.y0 + remove, box.width - remove*2, box.height - remove*2]) locs_x = ax.get_xticks() locs_y = ax.get_yticks() ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_xlim((-0.1, 1.1)) ax.set_ylim((-0.1, 1.1)) plt.savefig(os.path.join(metafeatures_plot_dir, "pca.png")) plt.savefig(os.path.join(metafeatures_plot_dir, "pca.pdf")) plt.clf() # Relation of features to each other... #correlations = [] #for mf_1, mf_2 in itertools.combinations(metafeatures.columns, 2): # x = metafeatures.loc[:, mf_1] # y = metafeatures.loc[:, mf_2] # rho, p = scipy.stats.spearmanr(x, y) # correlations.append((rho, "%s-%s" % (mf_1, mf_2))) # plt.figure() # plt.plot(np.arange(0, 1, 0.01), np.arange(0, 1, 0.01)) # plt.plot(x, y, "x") # plt.xlabel(mf_1) # plt.ylabel(mf_2) # plt.xlim((0, 1)) # plt.ylim((0, 1)) # plt.savefig(os.path.join(target_directory, mf_1 + "__" + mf_2 + " # .png")) # plt.close() #correlations.sort() #for cor in correlations: #print cor if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--tasks", required=True, type=str) parser.add_argument("--runs", type=str) parser.add_argument("experiment_directory", type=str) parser.add_argument("-m", "--method", default='pca', choices=['pca', 't-sne'], help="Dimensionality reduction method") parser.add_argument("--distance", choices=[None, 'l1', 'l2', 'runs'], default='l2') parser.add_argument("-s", "--seed", default=1, type=int) parser.add_argument("-d", "--depth", default=0, type=int) parser.add_argument("--subset", default='all', choices=['all', 'pfahringer_2000_experiment1']) args = parser.parse_args() with open(args.tasks) as fh: task_files_list = fh.readlines() # Load all the experiment run data only if needed if args.distance == 'runs': with open(args.runs) as fh: experiments_file_list = fh.readlines() else: experiments_file_list = StringIO.StringIO() for i in range(len(task_files_list)): experiments_file_list.write("\n") experiments_file_list.seek(0) pyMetaLearn.data_repositories.openml.apiconnector.set_local_directory( args.experiment_directory) meta_base = MetaBase(task_files_list, experiments_file_list) metafeatures = meta_base.get_all_metafeatures_as_pandas( metafeature_subset=args.subset) metafeature_times = meta_base.get_all_metafeatures_times_as_pandas( metafeature_subset=args.subset) #if args.subset: # metafeatures = metafeatures.loc[:,subsets[args.subset]] # metafeature_times = metafeature_times.loc[:,subsets[args.subset]] runs = meta_base.get_all_runs() general_plot_directory = os.path.join(args.experiment_directory, "plots") try: os.mkdir(general_plot_directory) except: pass metafeatures_plot_dir = os.path.join(general_plot_directory, "metafeatures") try: os.mkdir(metafeatures_plot_dir) except: pass plot_metafeatures(metafeatures_plot_dir, metafeatures, metafeature_times, runs, method=args.method, seed=args.seed, depth=args.depth, distance=args.distance)
bsd-3-clause