repo
stringclasses 885
values | file
stringclasses 741
values | content
stringlengths 4
215k
|
---|---|---|
https://github.com/qiskit-community/qiskit-dell-runtime
|
qiskit-community
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# Copyright 2021 Dell (www.dell.com)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from qiskit.providers import JobV1
from qiskit.providers import JobStatus, JobError
from qiskit import transpile
from qiskit_aer import Aer
import functools
def requires_submit(func):
"""
Decorator to ensure that a submit has been performed before
calling the method.
Args:
func (callable): test function to be decorated.
Returns:
callable: the decorated function.
"""
@functools.wraps(func)
def _wrapper(self, *args, **kwargs):
if self.my_job is None:
raise JobError("Job not submitted yet!. You have to .submit() first!")
return func(self, *args, **kwargs)
return _wrapper
class EmulatorJob(JobV1):
def __init__(self, backend, job_id, circuit, shots):
super().__init__(backend, job_id)
self.circuit = circuit
self.shots = shots
self.my_job = None
@requires_submit
def result(self, timeout=None):
return self.my_job.result(timeout=timeout)
def submit(self):
backend = Aer.get_backend('aer_simulator')
self.my_job = backend.run(self.circuit, shots = self.shots)
@requires_submit
def cancel(self):
return self.my_job.cancel()
@requires_submit
def status(self):
return self.my_job.status()
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test the Sabre Swap pass"""
import unittest
import itertools
import ddt
import numpy.random
from qiskit.circuit import Clbit, ControlFlowOp, Qubit
from qiskit.circuit.library import CCXGate, HGate, Measure, SwapGate
from qiskit.circuit.classical import expr
from qiskit.circuit.random import random_circuit
from qiskit.compiler.transpiler import transpile
from qiskit.converters import circuit_to_dag, dag_to_circuit
from qiskit.providers.fake_provider import FakeMumbai, FakeMumbaiV2
from qiskit.transpiler.passes import SabreSwap, TrivialLayout, CheckMap
from qiskit.transpiler import CouplingMap, Layout, PassManager, Target, TranspilerError
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit
from qiskit.test import QiskitTestCase
from qiskit.test._canonical import canonicalize_control_flow
from qiskit.utils import optionals
def looping_circuit(uphill_swaps=1, additional_local_minimum_gates=0):
"""A circuit that causes SabreSwap to loop infinitely.
This looks like (using cz gates to show the symmetry, though we actually output cx for testing
purposes):
.. parsed-literal::
q_0: ─■────────────────
│
q_1: ─┼──■─────────────
│ │
q_2: ─┼──┼──■──────────
│ │ │
q_3: ─┼──┼──┼──■───────
│ │ │ │
q_4: ─┼──┼──┼──┼─────■─
│ │ │ │ │
q_5: ─┼──┼──┼──┼──■──■─
│ │ │ │ │
q_6: ─┼──┼──┼──┼──┼────
│ │ │ │ │
q_7: ─┼──┼──┼──┼──■──■─
│ │ │ │ │
q_8: ─┼──┼──┼──┼─────■─
│ │ │ │
q_9: ─┼──┼──┼──■───────
│ │ │
q_10: ─┼──┼──■──────────
│ │
q_11: ─┼──■─────────────
│
q_12: ─■────────────────
where `uphill_swaps` is the number of qubits separating the inner-most gate (representing how
many swaps need to be made that all increase the heuristics), and
`additional_local_minimum_gates` is how many extra gates to add on the outside (these increase
the size of the region of stability).
"""
outers = 4 + additional_local_minimum_gates
n_qubits = 2 * outers + 4 + uphill_swaps
# This is (most of) the front layer, which is a bunch of outer qubits in the
# coupling map.
outer_pairs = [(i, n_qubits - i - 1) for i in range(outers)]
inner_heuristic_peak = [
# This gate is completely "inside" all the others in the front layer in
# terms of the coupling map, so it's the only one that we can in theory
# make progress towards without making the others worse.
(outers + 1, outers + 2 + uphill_swaps),
# These are the only two gates in the extended set, and they both get
# further apart if you make a swap to bring the above gate closer
# together, which is the trick that creates the "heuristic hill".
(outers, outers + 1),
(outers + 2 + uphill_swaps, outers + 3 + uphill_swaps),
]
qc = QuantumCircuit(n_qubits)
for pair in outer_pairs + inner_heuristic_peak:
qc.cx(*pair)
return qc
@ddt.ddt
class TestSabreSwap(QiskitTestCase):
"""Tests the SabreSwap pass."""
def test_trivial_case(self):
"""Test that an already mapped circuit is unchanged.
┌───┐┌───┐
q_0: ──■──┤ H ├┤ X ├──■──
┌─┴─┐└───┘└─┬─┘ │
q_1: ┤ X ├──■────■────┼──
└───┘┌─┴─┐ │
q_2: ──■──┤ X ├───────┼──
┌─┴─┐├───┤ │
q_3: ┤ X ├┤ X ├───────┼──
└───┘└─┬─┘ ┌─┴─┐
q_4: ───────■───────┤ X ├
└───┘
"""
coupling = CouplingMap.from_ring(5)
qr = QuantumRegister(5, "q")
qc = QuantumCircuit(qr)
qc.cx(0, 1) # free
qc.cx(2, 3) # free
qc.h(0) # free
qc.cx(1, 2) # F
qc.cx(1, 0)
qc.cx(4, 3) # F
qc.cx(0, 4)
passmanager = PassManager(SabreSwap(coupling, "basic"))
new_qc = passmanager.run(qc)
self.assertEqual(new_qc, qc)
def test_trivial_with_target(self):
"""Test that an already mapped circuit is unchanged with target."""
coupling = CouplingMap.from_ring(5)
target = Target(num_qubits=5)
target.add_instruction(SwapGate(), {edge: None for edge in coupling.get_edges()})
qr = QuantumRegister(5, "q")
qc = QuantumCircuit(qr)
qc.cx(0, 1) # free
qc.cx(2, 3) # free
qc.h(0) # free
qc.cx(1, 2) # F
qc.cx(1, 0)
qc.cx(4, 3) # F
qc.cx(0, 4)
passmanager = PassManager(SabreSwap(target, "basic"))
new_qc = passmanager.run(qc)
self.assertEqual(new_qc, qc)
def test_lookahead_mode(self):
"""Test lookahead mode's lookahead finds single SWAP gate.
┌───┐
q_0: ──■──┤ H ├───────────────
┌─┴─┐└───┘
q_1: ┤ X ├──■────■─────────■──
└───┘┌─┴─┐ │ │
q_2: ──■──┤ X ├──┼────■────┼──
┌─┴─┐└───┘┌─┴─┐┌─┴─┐┌─┴─┐
q_3: ┤ X ├─────┤ X ├┤ X ├┤ X ├
└───┘ └───┘└───┘└───┘
q_4: ─────────────────────────
"""
coupling = CouplingMap.from_line(5)
qr = QuantumRegister(5, "q")
qc = QuantumCircuit(qr)
qc.cx(0, 1) # free
qc.cx(2, 3) # free
qc.h(0) # free
qc.cx(1, 2) # free
qc.cx(1, 3) # F
qc.cx(2, 3) # E
qc.cx(1, 3) # E
pm = PassManager(SabreSwap(coupling, "lookahead"))
new_qc = pm.run(qc)
self.assertEqual(new_qc.num_nonlocal_gates(), 7)
def test_do_not_change_cm(self):
"""Coupling map should not change.
See https://github.com/Qiskit/qiskit-terra/issues/5675"""
cm_edges = [(1, 0), (2, 0), (2, 1), (3, 2), (3, 4), (4, 2)]
coupling = CouplingMap(cm_edges)
passmanager = PassManager(SabreSwap(coupling))
_ = passmanager.run(QuantumCircuit(coupling.size()))
self.assertEqual(set(cm_edges), set(coupling.get_edges()))
def test_do_not_reorder_measurements(self):
"""Test that SabreSwap doesn't reorder measurements to the same classical bit.
With the particular coupling map used in this test and the 3q ccx gate, the routing would
invariably the measurements if the classical successors are not accurately tracked.
Regression test of gh-7950."""
coupling = CouplingMap([(0, 2), (2, 0), (1, 2), (2, 1)])
qc = QuantumCircuit(3, 1)
qc.compose(CCXGate().definition, [0, 1, 2], []) # Unroll CCX to 2q operations.
qc.h(0)
qc.barrier()
qc.measure(0, 0) # This measure is 50/50 between the Z states.
qc.measure(1, 0) # This measure always overwrites with 0.
passmanager = PassManager(SabreSwap(coupling))
transpiled = passmanager.run(qc)
last_h = transpiled.data[-4]
self.assertIsInstance(last_h.operation, HGate)
first_measure = transpiled.data[-2]
second_measure = transpiled.data[-1]
self.assertIsInstance(first_measure.operation, Measure)
self.assertIsInstance(second_measure.operation, Measure)
# Assert that the first measure is on the same qubit that the HGate was applied to, and the
# second measurement is on a different qubit (though we don't care which exactly - that
# depends a little on the randomisation of the pass).
self.assertEqual(last_h.qubits, first_measure.qubits)
self.assertNotEqual(last_h.qubits, second_measure.qubits)
# The 'basic' method can't get stuck in the same way.
@ddt.data("lookahead", "decay")
def test_no_infinite_loop(self, method):
"""Test that the 'release value' mechanisms allow SabreSwap to make progress even on
circuits that get stuck in a stable local minimum of the lookahead parameters."""
qc = looping_circuit(3, 1)
qc.measure_all()
coupling_map = CouplingMap.from_line(qc.num_qubits)
routing_pass = PassManager(SabreSwap(coupling_map, method))
n_swap_gates = 0
def leak_number_of_swaps(cls, *args, **kwargs):
nonlocal n_swap_gates
n_swap_gates += 1
if n_swap_gates > 1_000:
raise Exception("SabreSwap seems to be stuck in a loop")
# pylint: disable=bad-super-call
return super(SwapGate, cls).__new__(cls, *args, **kwargs)
with unittest.mock.patch.object(SwapGate, "__new__", leak_number_of_swaps):
routed = routing_pass.run(qc)
routed_ops = routed.count_ops()
del routed_ops["swap"]
self.assertEqual(routed_ops, qc.count_ops())
couplings = {
tuple(routed.find_bit(bit).index for bit in instruction.qubits)
for instruction in routed.data
if len(instruction.qubits) == 2
}
# Asserting equality to the empty set gives better errors on failure than asserting that
# `couplings <= coupling_map`.
self.assertEqual(couplings - set(coupling_map.get_edges()), set())
# Assert that the same keys are produced by a simulation - this is a test that the inserted
# swaps route the qubits correctly.
if not optionals.HAS_AER:
return
from qiskit import Aer
sim = Aer.get_backend("aer_simulator")
in_results = sim.run(qc, shots=4096).result().get_counts()
out_results = sim.run(routed, shots=4096).result().get_counts()
self.assertEqual(set(in_results), set(out_results))
def test_classical_condition(self):
"""Test that :class:`.SabreSwap` correctly accounts for classical conditions in its
reckoning on whether a node is resolved or not. If it is not handled correctly, the second
gate might not appear in the output.
Regression test of gh-8040."""
with self.subTest("1 bit in register"):
qc = QuantumCircuit(2, 1)
qc.z(0)
qc.z(0).c_if(qc.cregs[0], 0)
cm = CouplingMap([(0, 1), (1, 0)])
expected = PassManager([TrivialLayout(cm)]).run(qc)
actual = PassManager([TrivialLayout(cm), SabreSwap(cm)]).run(qc)
self.assertEqual(expected, actual)
with self.subTest("multiple registers"):
cregs = [ClassicalRegister(3), ClassicalRegister(4)]
qc = QuantumCircuit(QuantumRegister(2, name="q"), *cregs)
qc.z(0)
qc.z(0).c_if(cregs[0], 0)
qc.z(0).c_if(cregs[1], 0)
cm = CouplingMap([(0, 1), (1, 0)])
expected = PassManager([TrivialLayout(cm)]).run(qc)
actual = PassManager([TrivialLayout(cm), SabreSwap(cm)]).run(qc)
self.assertEqual(expected, actual)
def test_classical_condition_cargs(self):
"""Test that classical conditions are preserved even if missing from cargs DAGNode field.
Created from reproduction in https://github.com/Qiskit/qiskit-terra/issues/8675
"""
with self.subTest("missing measurement"):
qc = QuantumCircuit(3, 1)
qc.cx(0, 2).c_if(0, 0)
qc.measure(1, 0)
qc.h(2).c_if(0, 0)
expected = QuantumCircuit(3, 1)
expected.swap(1, 2)
expected.cx(0, 1).c_if(0, 0)
expected.measure(2, 0)
expected.h(1).c_if(0, 0)
result = SabreSwap(CouplingMap.from_line(3), seed=12345)(qc)
self.assertEqual(result, expected)
with self.subTest("reordered measurement"):
qc = QuantumCircuit(3, 1)
qc.cx(0, 1).c_if(0, 0)
qc.measure(1, 0)
qc.h(0).c_if(0, 0)
expected = QuantumCircuit(3, 1)
expected.cx(0, 1).c_if(0, 0)
expected.measure(1, 0)
expected.h(0).c_if(0, 0)
result = SabreSwap(CouplingMap.from_line(3), seed=12345)(qc)
self.assertEqual(result, expected)
def test_conditional_measurement(self):
"""Test that instructions with cargs and conditions are handled correctly."""
qc = QuantumCircuit(3, 2)
qc.cx(0, 2).c_if(0, 0)
qc.measure(2, 0).c_if(1, 0)
qc.h(2).c_if(0, 0)
qc.measure(1, 1)
expected = QuantumCircuit(3, 2)
expected.swap(1, 2)
expected.cx(0, 1).c_if(0, 0)
expected.measure(1, 0).c_if(1, 0)
expected.h(1).c_if(0, 0)
expected.measure(2, 1)
result = SabreSwap(CouplingMap.from_line(3), seed=12345)(qc)
self.assertEqual(result, expected)
@ddt.data("basic", "lookahead", "decay")
def test_deterministic(self, heuristic):
"""Test that the output of the SabreSwap pass is deterministic for a given random seed."""
width = 40
# The actual circuit is unimportant, we just need one with lots of scoring degeneracy.
qc = QuantumCircuit(width)
for i in range(width // 2):
qc.cx(i, i + (width // 2))
for i in range(0, width, 2):
qc.cx(i, i + 1)
dag = circuit_to_dag(qc)
coupling = CouplingMap.from_line(width)
pass_0 = SabreSwap(coupling, heuristic, seed=0, trials=1)
pass_1 = SabreSwap(coupling, heuristic, seed=1, trials=1)
dag_0 = pass_0.run(dag)
dag_1 = pass_1.run(dag)
# This deliberately avoids using a topological order, because that introduces an opportunity
# for the re-ordering to sort the swaps back into a canonical order.
def normalize_nodes(dag):
return [(node.op.name, node.qargs, node.cargs) for node in dag.op_nodes()]
# A sanity check for the test - if unequal seeds don't produce different outputs for this
# degenerate circuit, then the test probably needs fixing (or Sabre is ignoring the seed).
self.assertNotEqual(normalize_nodes(dag_0), normalize_nodes(dag_1))
# Check that a re-run with the same seed produces the same circuit in the exact same order.
self.assertEqual(normalize_nodes(dag_0), normalize_nodes(pass_0.run(dag)))
def test_rejects_too_many_qubits(self):
"""Test that a sensible Python-space error message is emitted if the DAG has an incorrect
number of qubits."""
pass_ = SabreSwap(CouplingMap.from_line(4))
qc = QuantumCircuit(QuantumRegister(5, "q"))
with self.assertRaisesRegex(TranspilerError, "More qubits in the circuit"):
pass_(qc)
def test_rejects_too_few_qubits(self):
"""Test that a sensible Python-space error message is emitted if the DAG has an incorrect
number of qubits."""
pass_ = SabreSwap(CouplingMap.from_line(4))
qc = QuantumCircuit(QuantumRegister(3, "q"))
with self.assertRaisesRegex(TranspilerError, "Fewer qubits in the circuit"):
pass_(qc)
@ddt.ddt
class TestSabreSwapControlFlow(QiskitTestCase):
"""Tests for control flow in sabre swap."""
def test_shared_block(self):
"""Test multiple control flow ops sharing the same block instance."""
inner = QuantumCircuit(2)
inner.cx(0, 1)
qreg = QuantumRegister(4, "q")
outer = QuantumCircuit(qreg, ClassicalRegister(1))
for pair in itertools.permutations(range(outer.num_qubits), 2):
outer.if_test((outer.cregs[0], 1), inner, pair, [])
coupling = CouplingMap.from_line(4)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(circuit_to_dag(outer))
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
def test_blocks_use_registers(self):
"""Test that control flow ops using registers still use registers after routing."""
num_qubits = 2
qreg = QuantumRegister(num_qubits, "q")
cr1 = ClassicalRegister(1)
cr2 = ClassicalRegister(1)
qc = QuantumCircuit(qreg, cr1, cr2)
with qc.if_test((cr1, False)):
qc.cx(0, 1)
qc.measure(0, cr2[0])
with qc.if_test((cr2, 0)):
qc.cx(0, 1)
coupling = CouplingMap.from_line(num_qubits)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(circuit_to_dag(qc))
outer_if_op = cdag.op_nodes(ControlFlowOp)[0].op
self.assertEqual(outer_if_op.condition[0], cr1)
inner_if_op = circuit_to_dag(outer_if_op.blocks[0]).op_nodes(ControlFlowOp)[0].op
self.assertEqual(inner_if_op.condition[0], cr2)
def test_pre_if_else_route(self):
"""test swap with if else controlflow construct"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.measure(2, 2)
true_body = QuantumCircuit(qreg, creg[[2]])
true_body.x(3)
false_body = QuantumCircuit(qreg, creg[[2]])
false_body.x(4)
qc.if_else((creg[2], 0), true_body, false_body, qreg, creg[[2]])
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.swap(1, 2)
expected.cx(0, 1)
expected.measure(1, 2)
etrue_body = QuantumCircuit(qreg[[3, 4]], creg[[2]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[3, 4]], creg[[2]])
efalse_body.x(1)
new_order = [0, 2, 1, 3, 4]
expected.if_else((creg[2], 0), etrue_body, efalse_body, qreg[[3, 4]], creg[[2]])
expected.barrier(qreg)
expected.measure(qreg, creg[new_order])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_pre_if_else_route_post_x(self):
"""test swap with if else controlflow construct; pre-cx and post x"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.measure(2, 2)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(3)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.x(4)
qc.if_else((creg[2], 0), true_body, false_body, qreg, creg[[0]])
qc.x(1)
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.swap(1, 2)
expected.cx(0, 1)
expected.measure(1, 2)
new_order = [0, 2, 1, 3, 4]
etrue_body = QuantumCircuit(qreg[[3, 4]], creg[[0]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[3, 4]], creg[[0]])
efalse_body.x(1)
expected.if_else((creg[2], 0), etrue_body, efalse_body, qreg[[3, 4]], creg[[0]])
expected.x(2)
expected.barrier(qreg)
expected.measure(qreg, creg[new_order])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_post_if_else_route(self):
"""test swap with if else controlflow construct; post cx"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(3)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.x(4)
qc.barrier(qreg)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.barrier(qreg)
qc.cx(0, 2)
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg[[3, 4]], creg[[0]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[3, 4]], creg[[0]])
efalse_body.x(1)
expected.barrier(qreg)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg[[3, 4]], creg[[0]])
expected.barrier(qreg)
expected.swap(1, 2)
expected.cx(0, 1)
expected.barrier(qreg)
expected.measure(qreg, creg[[0, 2, 1, 3, 4]])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_pre_if_else2(self):
"""test swap with if else controlflow construct; cx in if statement"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(0)
false_body = QuantumCircuit(qreg, creg[[0]])
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.swap(1, 2)
expected.cx(0, 1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg[[0]], creg[[0]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[0]], creg[[0]])
new_order = [0, 2, 1, 3, 4]
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg[[0]], creg[[0]])
expected.barrier(qreg)
expected.measure(qreg, creg[new_order])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_intra_if_else_route(self):
"""test swap with if else controlflow construct"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.cx(0, 2)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.cx(0, 4)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg, creg[[0]])
etrue_body.swap(1, 2)
etrue_body.cx(0, 1)
etrue_body.swap(1, 2)
efalse_body = QuantumCircuit(qreg, creg[[0]])
efalse_body.swap(0, 1)
efalse_body.swap(3, 4)
efalse_body.swap(2, 3)
efalse_body.cx(1, 2)
efalse_body.swap(0, 1)
efalse_body.swap(2, 3)
efalse_body.swap(3, 4)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg, creg[[0]])
expected.measure(qreg, creg)
self.assertEqual(dag_to_circuit(cdag), expected)
def test_pre_intra_if_else(self):
"""test swap with if else controlflow construct; cx in if statement"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.cx(0, 2)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.cx(0, 4)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
etrue_body = QuantumCircuit(qreg, creg[[0]])
efalse_body = QuantumCircuit(qreg, creg[[0]])
expected.h(0)
expected.x(1)
expected.swap(1, 2)
expected.cx(0, 1)
expected.measure(0, 0)
etrue_body.cx(0, 1)
efalse_body.swap(0, 1)
efalse_body.swap(3, 4)
efalse_body.swap(2, 3)
efalse_body.cx(1, 2)
efalse_body.swap(0, 1)
efalse_body.swap(2, 3)
efalse_body.swap(3, 4)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg, creg[[0]])
expected.measure(qreg, creg[[0, 2, 1, 3, 4]])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_pre_intra_post_if_else(self):
"""test swap with if else controlflow construct; cx before, in, and after if
statement"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.cx(0, 2)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.cx(0, 4)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.h(3)
qc.cx(3, 0)
qc.barrier()
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.swap(0, 1)
expected.cx(1, 2)
expected.measure(1, 0)
etrue_body = QuantumCircuit(qreg[[1, 2, 3, 4]], creg[[0]])
etrue_body.cx(0, 1)
efalse_body = QuantumCircuit(qreg[[1, 2, 3, 4]], creg[[0]])
efalse_body.swap(0, 1)
efalse_body.swap(2, 3)
efalse_body.cx(1, 2)
efalse_body.swap(0, 1)
efalse_body.swap(2, 3)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg[[1, 2, 3, 4]], creg[[0]])
expected.h(3)
expected.swap(1, 2)
expected.cx(3, 2)
expected.barrier()
expected.measure(qreg, creg[[1, 2, 0, 3, 4]])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_if_expr(self):
"""Test simple if conditional with an `Expr` condition."""
coupling = CouplingMap.from_line(4)
body = QuantumCircuit(4)
body.cx(0, 1)
body.cx(0, 2)
body.cx(0, 3)
qc = QuantumCircuit(4, 2)
qc.if_test(expr.logic_and(qc.clbits[0], qc.clbits[1]), body, [0, 1, 2, 3], [])
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=58, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
def test_if_else_expr(self):
"""Test simple if/else conditional with an `Expr` condition."""
coupling = CouplingMap.from_line(4)
true = QuantumCircuit(4)
true.cx(0, 1)
true.cx(0, 2)
true.cx(0, 3)
false = QuantumCircuit(4)
false.cx(3, 0)
false.cx(3, 1)
false.cx(3, 2)
qc = QuantumCircuit(4, 2)
qc.if_else(expr.logic_and(qc.clbits[0], qc.clbits[1]), true, false, [0, 1, 2, 3], [])
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=58, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
def test_no_layout_change(self):
"""test controlflow with no layout change needed"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(2)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.x(4)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.swap(1, 2)
expected.cx(0, 1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg[[1, 4]], creg[[0]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[1, 4]], creg[[0]])
efalse_body.x(1)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg[[1, 4]], creg[[0]])
expected.barrier(qreg)
expected.measure(qreg, creg[[0, 2, 1, 3, 4]])
self.assertEqual(dag_to_circuit(cdag), expected)
@ddt.data(1, 2, 3)
def test_for_loop(self, nloops):
"""test stochastic swap with for_loop"""
num_qubits = 3
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.x(1)
for_body = QuantumCircuit(qreg)
for_body.cx(0, 2)
loop_parameter = None
qc.for_loop(range(nloops), loop_parameter, for_body, qreg, [])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
efor_body = QuantumCircuit(qreg)
efor_body.swap(1, 2)
efor_body.cx(0, 1)
efor_body.swap(1, 2)
loop_parameter = None
expected.for_loop(range(nloops), loop_parameter, efor_body, qreg, [])
expected.measure(qreg, creg)
self.assertEqual(dag_to_circuit(cdag), expected)
def test_while_loop(self):
"""test while loop"""
num_qubits = 4
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(len(qreg))
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
while_body = QuantumCircuit(qreg, creg)
while_body.reset(qreg[2:])
while_body.h(qreg[2:])
while_body.cx(0, 3)
while_body.measure(qreg[3], creg[3])
qc.while_loop((creg, 0), while_body, qc.qubits, qc.clbits)
qc.barrier()
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
ewhile_body = QuantumCircuit(qreg, creg)
ewhile_body.reset(qreg[2:])
ewhile_body.h(qreg[2:])
ewhile_body.swap(0, 1)
ewhile_body.swap(2, 3)
ewhile_body.cx(1, 2)
ewhile_body.measure(qreg[2], creg[3])
ewhile_body.swap(1, 0)
ewhile_body.swap(3, 2)
expected.while_loop((creg, 0), ewhile_body, expected.qubits, expected.clbits)
expected.barrier()
expected.measure(qreg, creg)
self.assertEqual(dag_to_circuit(cdag), expected)
def test_while_loop_expr(self):
"""Test simple while loop with an `Expr` condition."""
coupling = CouplingMap.from_line(4)
body = QuantumCircuit(4)
body.cx(0, 1)
body.cx(0, 2)
body.cx(0, 3)
qc = QuantumCircuit(4, 2)
qc.while_loop(expr.logic_and(qc.clbits[0], qc.clbits[1]), body, [0, 1, 2, 3], [])
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
def test_switch_implicit_carg_use(self):
"""Test that a switch statement that uses cargs only implicitly via its ``target`` attribute
and not explicitly in bodies of the cases is routed correctly, with the dependencies
fulfilled correctly."""
coupling = CouplingMap.from_line(4)
pass_ = SabreSwap(coupling, "lookahead", seed=82, trials=1)
body = QuantumCircuit([Qubit()])
body.x(0)
# If the classical wire condition isn't respected, then the switch would appear in the front
# layer and be immediately eligible for routing, which would produce invalid output.
qc = QuantumCircuit(4, 1)
qc.cx(0, 1)
qc.cx(1, 2)
qc.cx(0, 2)
qc.measure(2, 0)
qc.switch(expr.lift(qc.clbits[0]), [(False, body.copy()), (True, body.copy())], [3], [])
expected = QuantumCircuit(4, 1)
expected.cx(0, 1)
expected.cx(1, 2)
expected.swap(2, 1)
expected.cx(0, 1)
expected.measure(1, 0)
expected.switch(
expr.lift(expected.clbits[0]), [(False, body.copy()), (True, body.copy())], [3], []
)
self.assertEqual(pass_(qc), expected)
def test_switch_single_case(self):
"""Test routing of 'switch' with just a single case."""
qreg = QuantumRegister(5, "q")
creg = ClassicalRegister(3, "c")
qc = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg[[0, 1, 2]], creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.cx(2, 0)
qc.switch(creg, [(0, case0)], qreg[[0, 1, 2]], creg)
coupling = CouplingMap.from_line(len(qreg))
pass_ = SabreSwap(coupling, "lookahead", seed=82, trials=1)
test = pass_(qc)
check = CheckMap(coupling)
check(test)
self.assertTrue(check.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg[[0, 1, 2]], creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.swap(0, 1)
case0.cx(2, 1)
case0.swap(0, 1)
expected.switch(creg, [(0, case0)], qreg[[0, 1, 2]], creg[:])
self.assertEqual(canonicalize_control_flow(test), canonicalize_control_flow(expected))
def test_switch_nonexhaustive(self):
"""Test routing of 'switch' with several but nonexhaustive cases."""
qreg = QuantumRegister(5, "q")
creg = ClassicalRegister(3, "c")
qc = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg, creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.cx(2, 0)
case1 = QuantumCircuit(qreg, creg[:])
case1.cx(1, 2)
case1.cx(2, 3)
case1.cx(3, 1)
case2 = QuantumCircuit(qreg, creg[:])
case2.cx(2, 3)
case2.cx(3, 4)
case2.cx(4, 2)
qc.switch(creg, [(0, case0), ((1, 2), case1), (3, case2)], qreg, creg)
coupling = CouplingMap.from_line(len(qreg))
pass_ = SabreSwap(coupling, "lookahead", seed=82, trials=1)
test = pass_(qc)
check = CheckMap(coupling)
check(test)
self.assertTrue(check.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg, creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.swap(0, 1)
case0.cx(2, 1)
case0.swap(0, 1)
case1 = QuantumCircuit(qreg, creg[:])
case1.cx(1, 2)
case1.cx(2, 3)
case1.swap(1, 2)
case1.cx(3, 2)
case1.swap(1, 2)
case2 = QuantumCircuit(qreg, creg[:])
case2.cx(2, 3)
case2.cx(3, 4)
case2.swap(2, 3)
case2.cx(4, 3)
case2.swap(2, 3)
expected.switch(creg, [(0, case0), ((1, 2), case1), (3, case2)], qreg, creg)
self.assertEqual(canonicalize_control_flow(test), canonicalize_control_flow(expected))
def test_switch_expr_single_case(self):
"""Test routing of 'switch' with an `Expr` target and just a single case."""
qreg = QuantumRegister(5, "q")
creg = ClassicalRegister(3, "c")
qc = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg[[0, 1, 2]], creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.cx(2, 0)
qc.switch(expr.bit_or(creg, 5), [(0, case0)], qreg[[0, 1, 2]], creg)
coupling = CouplingMap.from_line(len(qreg))
pass_ = SabreSwap(coupling, "lookahead", seed=82, trials=1)
test = pass_(qc)
check = CheckMap(coupling)
check(test)
self.assertTrue(check.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg[[0, 1, 2]], creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.swap(0, 1)
case0.cx(2, 1)
case0.swap(0, 1)
expected.switch(expr.bit_or(creg, 5), [(0, case0)], qreg[[0, 1, 2]], creg[:])
self.assertEqual(canonicalize_control_flow(test), canonicalize_control_flow(expected))
def test_switch_expr_nonexhaustive(self):
"""Test routing of 'switch' with an `Expr` target and several but nonexhaustive cases."""
qreg = QuantumRegister(5, "q")
creg = ClassicalRegister(3, "c")
qc = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg, creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.cx(2, 0)
case1 = QuantumCircuit(qreg, creg[:])
case1.cx(1, 2)
case1.cx(2, 3)
case1.cx(3, 1)
case2 = QuantumCircuit(qreg, creg[:])
case2.cx(2, 3)
case2.cx(3, 4)
case2.cx(4, 2)
qc.switch(expr.bit_or(creg, 5), [(0, case0), ((1, 2), case1), (3, case2)], qreg, creg)
coupling = CouplingMap.from_line(len(qreg))
pass_ = SabreSwap(coupling, "lookahead", seed=82, trials=1)
test = pass_(qc)
check = CheckMap(coupling)
check(test)
self.assertTrue(check.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg, creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.swap(0, 1)
case0.cx(2, 1)
case0.swap(0, 1)
case1 = QuantumCircuit(qreg, creg[:])
case1.cx(1, 2)
case1.cx(2, 3)
case1.swap(1, 2)
case1.cx(3, 2)
case1.swap(1, 2)
case2 = QuantumCircuit(qreg, creg[:])
case2.cx(2, 3)
case2.cx(3, 4)
case2.swap(2, 3)
case2.cx(4, 3)
case2.swap(2, 3)
expected.switch(expr.bit_or(creg, 5), [(0, case0), ((1, 2), case1), (3, case2)], qreg, creg)
self.assertEqual(canonicalize_control_flow(test), canonicalize_control_flow(expected))
def test_nested_inner_cnot(self):
"""test swap in nested if else controlflow construct; swap in inner"""
num_qubits = 3
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(0)
for_body = QuantumCircuit(qreg)
for_body.delay(10, 0)
for_body.barrier(qreg)
for_body.cx(0, 2)
loop_parameter = None
true_body.for_loop(range(3), loop_parameter, for_body, qreg, [])
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.y(0)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg, creg[[0]])
etrue_body.x(0)
efor_body = QuantumCircuit(qreg)
efor_body.delay(10, 0)
efor_body.barrier(qreg)
efor_body.swap(1, 2)
efor_body.cx(0, 1)
efor_body.swap(1, 2)
etrue_body.for_loop(range(3), loop_parameter, efor_body, qreg, [])
efalse_body = QuantumCircuit(qreg, creg[[0]])
efalse_body.y(0)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg, creg[[0]])
expected.measure(qreg, creg)
self.assertEqual(dag_to_circuit(cdag), expected)
def test_nested_outer_cnot(self):
"""test swap with nested if else controlflow construct; swap in outer"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.cx(0, 2)
true_body.x(0)
for_body = QuantumCircuit(qreg)
for_body.delay(10, 0)
for_body.barrier(qreg)
for_body.cx(1, 3)
loop_parameter = None
true_body.for_loop(range(3), loop_parameter, for_body, qreg, [])
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.y(0)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg, creg[[0]])
etrue_body.swap(1, 2)
etrue_body.cx(0, 1)
etrue_body.x(0)
efor_body = QuantumCircuit(qreg)
efor_body.delay(10, 0)
efor_body.barrier(qreg)
efor_body.cx(2, 3)
etrue_body.for_loop(range(3), loop_parameter, efor_body, qreg[[0, 1, 2, 3, 4]], [])
etrue_body.swap(1, 2)
efalse_body = QuantumCircuit(qreg, creg[[0]])
efalse_body.y(0)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg, creg[[0]])
expected.measure(qreg, creg[[0, 1, 2, 3, 4]])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_disjoint_looping(self):
"""Test looping controlflow on different qubit register"""
num_qubits = 4
cm = CouplingMap.from_line(num_qubits)
qr = QuantumRegister(num_qubits, "q")
qc = QuantumCircuit(qr)
loop_body = QuantumCircuit(2)
loop_body.cx(0, 1)
qc.for_loop((0,), None, loop_body, [0, 2], [])
cqc = SabreSwap(cm, "lookahead", seed=82, trials=1)(qc)
expected = QuantumCircuit(qr)
efor_body = QuantumCircuit(qr[[0, 1, 2]])
efor_body.swap(1, 2)
efor_body.cx(0, 1)
efor_body.swap(1, 2)
expected.for_loop((0,), None, efor_body, [0, 1, 2], [])
self.assertEqual(cqc, expected)
def test_disjoint_multiblock(self):
"""Test looping controlflow on different qubit register"""
num_qubits = 4
cm = CouplingMap.from_line(num_qubits)
qr = QuantumRegister(num_qubits, "q")
cr = ClassicalRegister(1)
qc = QuantumCircuit(qr, cr)
true_body = QuantumCircuit(qr[0:3] + cr[:])
true_body.cx(0, 1)
false_body = QuantumCircuit(qr[0:3] + cr[:])
false_body.cx(0, 2)
qc.if_else((cr[0], 1), true_body, false_body, [0, 1, 2], [0])
cqc = SabreSwap(cm, "lookahead", seed=82, trials=1)(qc)
expected = QuantumCircuit(qr, cr)
etrue_body = QuantumCircuit(qr[[0, 1, 2]], cr[[0]])
etrue_body.cx(0, 1)
efalse_body = QuantumCircuit(qr[[0, 1, 2]], cr[[0]])
efalse_body.swap(1, 2)
efalse_body.cx(0, 1)
efalse_body.swap(1, 2)
expected.if_else((cr[0], 1), etrue_body, efalse_body, [0, 1, 2], cr[[0]])
self.assertEqual(cqc, expected)
def test_multiple_ops_per_layer(self):
"""Test circuits with multiple operations per layer"""
num_qubits = 6
coupling = CouplingMap.from_line(num_qubits)
check_map_pass = CheckMap(coupling)
qr = QuantumRegister(num_qubits, "q")
qc = QuantumCircuit(qr)
# This cx and the for_loop are in the same layer.
qc.cx(0, 2)
with qc.for_loop((0,)):
qc.cx(3, 5)
cqc = SabreSwap(coupling, "lookahead", seed=82, trials=1)(qc)
check_map_pass(cqc)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qr)
expected.swap(1, 2)
expected.cx(0, 1)
efor_body = QuantumCircuit(qr[[3, 4, 5]])
efor_body.swap(1, 2)
efor_body.cx(0, 1)
efor_body.swap(2, 1)
expected.for_loop((0,), None, efor_body, [3, 4, 5], [])
self.assertEqual(cqc, expected)
def test_if_no_else_restores_layout(self):
"""Test that an if block with no else branch restores the initial layout."""
qc = QuantumCircuit(8, 1)
with qc.if_test((qc.clbits[0], False)):
# Just some arbitrary gates with no perfect layout.
qc.cx(3, 5)
qc.cx(4, 6)
qc.cx(1, 4)
qc.cx(7, 4)
qc.cx(0, 5)
qc.cx(7, 3)
qc.cx(1, 3)
qc.cx(5, 2)
qc.cx(6, 7)
qc.cx(3, 2)
qc.cx(6, 2)
qc.cx(2, 0)
qc.cx(7, 6)
coupling = CouplingMap.from_line(8)
pass_ = SabreSwap(coupling, "lookahead", seed=82, trials=1)
transpiled = pass_(qc)
# Check the pass claims to have done things right.
initial_layout = Layout.generate_trivial_layout(*qc.qubits)
self.assertEqual(initial_layout, pass_.property_set["final_layout"])
# Check that pass really did do it right.
inner_block = transpiled.data[0].operation.blocks[0]
running_layout = initial_layout.copy()
for instruction in inner_block:
if instruction.operation.name == "swap":
running_layout.swap(*instruction.qubits)
self.assertEqual(initial_layout, running_layout)
@ddt.ddt
class TestSabreSwapRandomCircuitValidOutput(QiskitTestCase):
"""Assert the output of a transpilation with stochastic swap is a physical circuit."""
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.backend = FakeMumbai()
cls.coupling_edge_set = {tuple(x) for x in cls.backend.configuration().coupling_map}
cls.basis_gates = set(cls.backend.configuration().basis_gates)
cls.basis_gates.update(["for_loop", "while_loop", "if_else"])
def assert_valid_circuit(self, transpiled):
"""Assert circuit complies with constraints of backend."""
self.assertIsInstance(transpiled, QuantumCircuit)
self.assertIsNotNone(getattr(transpiled, "_layout", None))
def _visit_block(circuit, qubit_mapping=None):
for instruction in circuit:
if instruction.operation.name in {"barrier", "measure"}:
continue
self.assertIn(instruction.operation.name, self.basis_gates)
qargs = tuple(qubit_mapping[x] for x in instruction.qubits)
if not isinstance(instruction.operation, ControlFlowOp):
if len(qargs) > 2 or len(qargs) < 0:
raise Exception("Invalid number of qargs for instruction")
if len(qargs) == 2:
self.assertIn(qargs, self.coupling_edge_set)
else:
self.assertLessEqual(qargs[0], 26)
else:
for block in instruction.operation.blocks:
self.assertEqual(block.num_qubits, len(instruction.qubits))
self.assertEqual(block.num_clbits, len(instruction.clbits))
new_mapping = {
inner: qubit_mapping[outer]
for outer, inner in zip(instruction.qubits, block.qubits)
}
_visit_block(block, new_mapping)
# Assert routing ran.
_visit_block(
transpiled,
qubit_mapping={qubit: index for index, qubit in enumerate(transpiled.qubits)},
)
@ddt.data(*range(1, 27))
def test_random_circuit_no_control_flow(self, size):
"""Test that transpiled random circuits without control flow are physical circuits."""
circuit = random_circuit(size, 3, measure=True, seed=12342)
tqc = transpile(
circuit,
self.backend,
routing_method="sabre",
layout_method="sabre",
seed_transpiler=12342,
)
self.assert_valid_circuit(tqc)
@ddt.data(*range(1, 27))
def test_random_circuit_no_control_flow_target(self, size):
"""Test that transpiled random circuits without control flow are physical circuits."""
circuit = random_circuit(size, 3, measure=True, seed=12342)
tqc = transpile(
circuit,
routing_method="sabre",
layout_method="sabre",
seed_transpiler=12342,
target=FakeMumbaiV2().target,
)
self.assert_valid_circuit(tqc)
@ddt.data(*range(4, 27))
def test_random_circuit_for_loop(self, size):
"""Test that transpiled random circuits with nested for loops are physical circuits."""
circuit = random_circuit(size, 3, measure=False, seed=12342)
for_block = random_circuit(3, 2, measure=False, seed=12342)
inner_for_block = random_circuit(2, 1, measure=False, seed=12342)
with circuit.for_loop((1,)):
with circuit.for_loop((1,)):
circuit.append(inner_for_block, [0, 3])
circuit.append(for_block, [1, 0, 2])
circuit.measure_all()
tqc = transpile(
circuit,
self.backend,
basis_gates=list(self.basis_gates),
routing_method="sabre",
layout_method="sabre",
seed_transpiler=12342,
)
self.assert_valid_circuit(tqc)
@ddt.data(*range(6, 27))
def test_random_circuit_if_else(self, size):
"""Test that transpiled random circuits with if else blocks are physical circuits."""
circuit = random_circuit(size, 3, measure=True, seed=12342)
if_block = random_circuit(3, 2, measure=True, seed=12342)
else_block = random_circuit(2, 1, measure=True, seed=12342)
rng = numpy.random.default_rng(seed=12342)
inner_clbit_count = max((if_block.num_clbits, else_block.num_clbits))
if inner_clbit_count > circuit.num_clbits:
circuit.add_bits([Clbit() for _ in [None] * (inner_clbit_count - circuit.num_clbits)])
clbit_indices = list(range(circuit.num_clbits))
rng.shuffle(clbit_indices)
with circuit.if_test((circuit.clbits[0], True)) as else_:
circuit.append(if_block, [0, 2, 1], clbit_indices[: if_block.num_clbits])
with else_:
circuit.append(else_block, [2, 5], clbit_indices[: else_block.num_clbits])
tqc = transpile(
circuit,
self.backend,
basis_gates=list(self.basis_gates),
routing_method="sabre",
layout_method="sabre",
seed_transpiler=12342,
)
self.assert_valid_circuit(tqc)
if __name__ == "__main__":
unittest.main()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.circuit.quantumcircuitdata import CircuitInstruction
from qiskit.circuit import Measure
from qiskit.circuit.library import HGate, CXGate
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
instructions = [
CircuitInstruction(HGate(), [qr[0]], []),
CircuitInstruction(CXGate(), [qr[0], qr[1]], []),
CircuitInstruction(Measure(), [qr[0]], [cr[0]]),
CircuitInstruction(Measure(), [qr[1]], [cr[1]]),
]
circuit = QuantumCircuit.from_instructions(instructions)
circuit.draw("mpl")
|
https://github.com/swe-train/qiskit__qiskit
|
swe-train
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2023, 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Statevector Sampler class
"""
from __future__ import annotations
import warnings
from dataclasses import dataclass
from typing import Iterable
import numpy as np
from numpy.typing import NDArray
from qiskit import ClassicalRegister, QiskitError, QuantumCircuit
from qiskit.circuit import ControlFlowOp
from qiskit.quantum_info import Statevector
from .base import BaseSamplerV2
from .base.validation import _has_measure
from .containers import (
BitArray,
DataBin,
PrimitiveResult,
SamplerPubResult,
SamplerPubLike,
)
from .containers.sampler_pub import SamplerPub
from .containers.bit_array import _min_num_bytes
from .primitive_job import PrimitiveJob
from .utils import bound_circuit_to_instruction
@dataclass
class _MeasureInfo:
creg_name: str
num_bits: int
num_bytes: int
qreg_indices: list[int]
class StatevectorSampler(BaseSamplerV2):
"""
Simple implementation of :class:`BaseSamplerV2` using full state vector simulation.
This class is implemented via :class:`~.Statevector` which turns provided circuits into
pure state vectors, and is therefore incompatible with mid-circuit measurements (although
other implementations may be).
As seen in the example below, this sampler supports providing arrays of parameter value sets to
bind against a single circuit.
Each tuple of ``(circuit, <optional> parameter values, <optional> shots)``, called a sampler
primitive unified bloc (PUB), produces its own array-valued result. The :meth:`~run` method can
be given many pubs at once.
.. code-block:: python
from qiskit.circuit import (
Parameter, QuantumCircuit, ClassicalRegister, QuantumRegister
)
from qiskit.primitives import StatevectorSampler
import matplotlib.pyplot as plt
import numpy as np
# Define our circuit registers, including classical registers
# called 'alpha' and 'beta'.
qreg = QuantumRegister(3)
alpha = ClassicalRegister(2, "alpha")
beta = ClassicalRegister(1, "beta")
# Define a quantum circuit with two parameters.
circuit = QuantumCircuit(qreg, alpha, beta)
circuit.h(0)
circuit.cx(0, 1)
circuit.cx(1, 2)
circuit.ry(Parameter("a"), 0)
circuit.rz(Parameter("b"), 0)
circuit.cx(1, 2)
circuit.cx(0, 1)
circuit.h(0)
circuit.measure([0, 1], alpha)
circuit.measure([2], beta)
# Define a sweep over parameter values, where the second axis is over.
# the two parameters in the circuit.
params = np.vstack([
np.linspace(-np.pi, np.pi, 100),
np.linspace(-4 * np.pi, 4 * np.pi, 100)
]).T
# Instantiate a new statevector simulation based sampler object.
sampler = StatevectorSampler()
# Start a job that will return shots for all 100 parameter value sets.
pub = (circuit, params)
job = sampler.run([pub], shots=256)
# Extract the result for the 0th pub (this example only has one pub).
result = job.result()[0]
# There is one BitArray object for each ClassicalRegister in the
# circuit. Here, we can see that the BitArray for alpha contains data
# for all 100 sweep points, and that it is indeed storing data for 2
# bits over 256 shots.
assert result.data.alpha.shape == (100,)
assert result.data.alpha.num_bits == 2
assert result.data.alpha.num_shots == 256
# We can work directly with a binary array in performant applications.
raw = result.data.alpha.array
# For small registers where it is anticipated to have many counts
# associated with the same bitstrings, we can turn the data from,
# for example, the 22nd sweep index into a dictionary of counts.
counts = result.data.alpha.get_counts(22)
# Or, convert into a list of bitstrings that preserve shot order.
bitstrings = result.data.alpha.get_bitstrings(22)
print(bitstrings)
"""
def __init__(self, *, default_shots: int = 1024, seed: np.random.Generator | int | None = None):
"""
Args:
default_shots: The default shots for the sampler if not specified during run.
seed: The seed or Generator object for random number generation.
If None, a random seeded default RNG will be used.
"""
self._default_shots = default_shots
self._seed = seed
@property
def default_shots(self) -> int:
"""Return the default shots"""
return self._default_shots
@property
def seed(self) -> np.random.Generator | int | None:
"""Return the seed or Generator object for random number generation."""
return self._seed
def run(
self, pubs: Iterable[SamplerPubLike], *, shots: int | None = None
) -> PrimitiveJob[PrimitiveResult[SamplerPubResult]]:
if shots is None:
shots = self._default_shots
coerced_pubs = [SamplerPub.coerce(pub, shots) for pub in pubs]
if any(len(pub.circuit.cregs) == 0 for pub in coerced_pubs):
warnings.warn(
"One of your circuits has no output classical registers and so the result "
"will be empty. Did you mean to add measurement instructions?",
UserWarning,
)
job = PrimitiveJob(self._run, coerced_pubs)
job._submit()
return job
def _run(self, pubs: Iterable[SamplerPub]) -> PrimitiveResult[SamplerPubResult]:
results = [self._run_pub(pub) for pub in pubs]
return PrimitiveResult(results)
def _run_pub(self, pub: SamplerPub) -> SamplerPubResult:
circuit, qargs, meas_info = _preprocess_circuit(pub.circuit)
bound_circuits = pub.parameter_values.bind_all(circuit)
arrays = {
item.creg_name: np.zeros(
bound_circuits.shape + (pub.shots, item.num_bytes), dtype=np.uint8
)
for item in meas_info
}
for index, bound_circuit in np.ndenumerate(bound_circuits):
final_state = Statevector(bound_circuit_to_instruction(bound_circuit))
final_state.seed(self._seed)
if qargs:
samples = final_state.sample_memory(shots=pub.shots, qargs=qargs)
else:
samples = [""] * pub.shots
samples_array = np.array([np.fromiter(sample, dtype=np.uint8) for sample in samples])
for item in meas_info:
ary = _samples_to_packed_array(samples_array, item.num_bits, item.qreg_indices)
arrays[item.creg_name][index] = ary
meas = {
item.creg_name: BitArray(arrays[item.creg_name], item.num_bits) for item in meas_info
}
return SamplerPubResult(DataBin(**meas, shape=pub.shape), metadata={"shots": pub.shots})
def _preprocess_circuit(circuit: QuantumCircuit):
num_bits_dict = {creg.name: creg.size for creg in circuit.cregs}
mapping = _final_measurement_mapping(circuit)
qargs = sorted(set(mapping.values()))
qargs_index = {v: k for k, v in enumerate(qargs)}
circuit = circuit.remove_final_measurements(inplace=False)
if _has_control_flow(circuit):
raise QiskitError("StatevectorSampler cannot handle ControlFlowOp")
if _has_measure(circuit):
raise QiskitError("StatevectorSampler cannot handle mid-circuit measurements")
# num_qubits is used as sentinel to fill 0 in _samples_to_packed_array
sentinel = len(qargs)
indices = {key: [sentinel] * val for key, val in num_bits_dict.items()}
for key, qreg in mapping.items():
creg, ind = key
indices[creg.name][ind] = qargs_index[qreg]
meas_info = [
_MeasureInfo(
creg_name=name,
num_bits=num_bits,
num_bytes=_min_num_bytes(num_bits),
qreg_indices=indices[name],
)
for name, num_bits in num_bits_dict.items()
]
return circuit, qargs, meas_info
def _samples_to_packed_array(
samples: NDArray[np.uint8], num_bits: int, indices: list[int]
) -> NDArray[np.uint8]:
# samples of `Statevector.sample_memory` will be in the order of
# qubit_last, ..., qubit_1, qubit_0.
# reverse the sample order into qubit_0, qubit_1, ..., qubit_last and
# pad 0 in the rightmost to be used for the sentinel introduced by _preprocess_circuit.
ary = np.pad(samples[:, ::-1], ((0, 0), (0, 1)), constant_values=0)
# place samples in the order of clbit_last, ..., clbit_1, clbit_0
ary = ary[:, indices[::-1]]
# pad 0 in the left to align the number to be mod 8
# since np.packbits(bitorder='big') pads 0 to the right.
pad_size = -num_bits % 8
ary = np.pad(ary, ((0, 0), (pad_size, 0)), constant_values=0)
# pack bits in big endian order
ary = np.packbits(ary, axis=-1)
return ary
def _final_measurement_mapping(circuit: QuantumCircuit) -> dict[tuple[ClassicalRegister, int], int]:
"""Return the final measurement mapping for the circuit.
Parameters:
circuit: Input quantum circuit.
Returns:
Mapping of classical bits to qubits for final measurements.
"""
active_qubits = set(range(circuit.num_qubits))
active_cbits = set(range(circuit.num_clbits))
# Find final measurements starting in back
mapping = {}
for item in circuit[::-1]:
if item.operation.name == "measure":
loc = circuit.find_bit(item.clbits[0])
cbit = loc.index
qbit = circuit.find_bit(item.qubits[0]).index
if cbit in active_cbits and qbit in active_qubits:
for creg in loc.registers:
mapping[creg] = qbit
active_cbits.remove(cbit)
elif item.operation.name not in ["barrier", "delay"]:
for qq in item.qubits:
_temp_qubit = circuit.find_bit(qq).index
if _temp_qubit in active_qubits:
active_qubits.remove(_temp_qubit)
if not active_cbits or not active_qubits:
break
return mapping
def _has_control_flow(circuit: QuantumCircuit) -> bool:
return any(isinstance(instruction.operation, ControlFlowOp) for instruction in circuit)
|
https://github.com/quantum-tokyo/qiskit-handson
|
quantum-tokyo
|
# Qiskitライブラリーを導入
from qiskit import *
# 描画のためのライブラリーを導入
import matplotlib.pyplot as plt
%matplotlib inline
qiskit.__qiskit_version__
grover11=QuantumCircuit(2,2)
grover11.draw(output='mpl')
# 問題-1 上の回路図を作ってください。
# 正解
grover11.h([0,1]) # ← これが(一番記述が短い正解)
grover11.draw(output='mpl')
# 問題-2 上の回路図(問題-1に赤枠部分を追加したもの)を作ってください。
grover11.h(1) # 正解
grover11.cx(0,1) # 正解
grover11.h(1) # 正解
grover11.draw(output='mpl')
#問題-3 上の回路図(問題-2に赤枠部分を追加したもの)を作ってください。
grover11.i(0) # 回路の見栄えを整えるために、恒等ゲートを差し込む。無くても動くが、表示の見栄えが崩れるのを防止するために、残しておく。
grover11.h([0,1]) # ← 正解
grover11.x([0,1]) # ← 正解
grover11.h(1) # ← 正解
grover11.cx(0,1) # ← 正解
grover11.h(1) # ← 正解
grover11.i(0) # ← 正解
grover11.x([0,1]) # ← 正解
grover11.h([0,1]) # ← 正解
grover11.draw(output='mpl')
grover11.measure(0,0)
grover11.measure(1,1)
grover11.draw(output='mpl')
backend = Aer.get_backend('statevector_simulator') # 実行環境の定義
job = execute(grover11, backend) # 処理の実行
result = job.result() # 実行結果
counts = result.get_counts(grover11) # 実行結果の詳細を取り出し
print(counts)
from qiskit.visualization import *
plot_histogram(counts) # ヒストグラムで表示
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import math
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse3Q
# TODO: This example should use a real mock backend.
backend = FakeOpenPulse3Q()
d2 = pulse.DriveChannel(2)
with pulse.build(backend) as bell_prep:
pulse.u2(0, math.pi, 0)
pulse.cx(0, 1)
with pulse.build(backend) as decoupled_bell_prep_and_measure:
# We call our bell state preparation schedule constructed above.
with pulse.align_right():
pulse.call(bell_prep)
pulse.play(pulse.Constant(bell_prep.duration, 0.02), d2)
pulse.barrier(0, 1, 2)
registers = pulse.measure_all()
decoupled_bell_prep_and_measure.draw()
|
https://github.com/samabwhite/Deutsch-Jozsa-Implementation
|
samabwhite
|
import qiskit
from qiskit.visualization import plot_bloch_multivector
import numpy as np
import pylatexenc
from qiskit import QuantumCircuit, Aer, transpile, assemble
from qiskit.visualization import plot_histogram
from qiskit.providers.aer import AerSimulator
# Function to automatically instantiate the oracle circuit
def balancedOracle(circuit):
circuit.barrier()
circuit.x([0,2])
circuit.cx([0,2] , 3)
circuit.x([0,2])
circuit.barrier()
return circuit
# number of qubits
n = 3
# initialize circuit
classicalCircuit = QuantumCircuit(n+1,1)
# add not gate to output bit
classicalCircuit.x(n)
# add the oracle to the circuit
classicalCircuit = balancedOracle(classicalCircuit)
# measure the output bit after the oracle
classicalCircuit.measure(n, 0)
display(classicalCircuit.draw('mpl'))
# initialize circuit
dj_Circuit = QuantumCircuit(n+1, n)
# add not gate to the output qubit
dj_Circuit.x(n)
# add hadamard gates to all qubits
dj_Circuit.h(range(n+1))
# add the oracle to the circuit
dj_Circuit = balancedOracle(dj_Circuit)
# finish the "hadamard sandwich" by applying hadamards to the input qubits
dj_Circuit.h(range(n))
# measure the values of the input qubits
dj_Circuit.measure(range(n), range(n))
display(dj_Circuit.draw('mpl'))
# initialize circuit
phaseKickback = QuantumCircuit(2,2)
# create superposition states
phaseKickback.x(1)
phaseKickback.h(range(2))
# entangle states
phaseKickback.cx(0,1)
phaseKickback.h(range(2))
# measure
phaseKickback.measure(range(2), range(2))
display(phaseKickback.draw('mpl'))
# simulate outputs
sim = AerSimulator()
compiled = transpile(phaseKickback, sim)
job = assemble(compiled)
result = sim.run(compiled).result()
counts = result.get_counts()
print(counts)
plot_histogram(counts)
display(dj_Circuit.draw('mpl'))
# simulate algorithm circuit
compiled = transpile(dj_Circuit, sim)
job = assemble(compiled)
result = sim.run(compiled).result()
counts = result.get_counts()
print(counts)
plot_histogram(counts)
|
https://github.com/abbarreto/qiskit4
|
abbarreto
|
from qiskit import *
import numpy as np
import math
from matplotlib import pyplot as plt
import qiskit
nshots = 8192
IBMQ.load_account()
provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main')
device = provider.get_backend('ibmq_belem')
simulator = Aer.get_backend('qasm_simulator')
from qiskit.tools.monitor import job_monitor
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
#from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.visualization import plot_histogram
def qc_dqc1(ph):
qr = QuantumRegister(3)
qc = QuantumCircuit(qr, name='DQC1')
qc.h(0)
qc.h(1) # cria o estado de Bell dos qubits 1 e 2, que equivale ao estado de 1 sendo maximamente misto
qc.cx(1,2)
#qc.barrier()
qc.cp(ph, 0, 1)
return qc
ph = math.pi/2
qc_dqc1_ = qc_dqc1(ph)
qc_dqc1_.draw('mpl')
qc_dqc1_.decompose().draw('mpl')
def pTraceL_num(dl, dr, rhoLR): # Retorna traco parcial sobre L de rhoLR
rhoR = np.zeros((dr, dr), dtype=complex)
for j in range(0, dr):
for k in range(j, dr):
for l in range(0, dl):
rhoR[j,k] += rhoLR[l*dr+j,l*dr+k]
if j != k:
rhoR[k,j] = np.conj(rhoR[j,k])
return rhoR
def pTraceR_num(dl, dr, rhoLR): # Retorna traco parcial sobre R de rhoLR
rhoL = np.zeros((dl, dl), dtype=complex)
for j in range(0, dl):
for k in range(j, dl):
for l in range(0, dr):
rhoL[j,k] += rhoLR[j*dr+l,k*dr+l]
if j != k:
rhoL[k,j] = np.conj(rhoL[j,k])
return rhoL
# simulation
phmax = 2*math.pi
dph = phmax/20
ph = np.arange(0,phmax+dph,dph)
d = len(ph);
xm = np.zeros(d)
ym = np.zeros(d)
for j in range(0,d):
qr = QuantumRegister(3)
qc = QuantumCircuit(qr)
qc_dqc1_ = qc_dqc1(ph[j])
qc.append(qc_dqc1_, [0,1,2])
qstc = state_tomography_circuits(qc, [1,0])
job = execute(qstc, backend=simulator, shots=nshots)
qstf = StateTomographyFitter(job.result(), qstc)
rho_01 = qstf.fit(method='lstsq')
rho_0 = pTraceR_num(2, 2, rho_01)
xm[j] = 2*rho_0[1,0].real
ym[j] = 2*rho_0[1,0].imag
qc.draw('mpl')
# experiment
phmax = 2*math.pi
dph = phmax/10
ph_exp = np.arange(0,phmax+dph,dph)
d = len(ph_exp);
xm_exp = np.zeros(d)
ym_exp = np.zeros(d)
for j in range(0,d):
qr = QuantumRegister(3)
qc = QuantumCircuit(qr)
qc_dqc1_ = qc_dqc1(ph_exp[j])
qc.append(qc_dqc1_, [0,1,2])
qstc = state_tomography_circuits(qc, [1,0])
job = execute(qstc, backend=device, shots=nshots)
print(job.job_id())
job_monitor(job)
qstf = StateTomographyFitter(job.result(), qstc)
rho_01 = qstf.fit(method='lstsq')
rho_0 = pTraceR_num(2, 2, rho_01)
xm_exp[j] = 2*rho_0[1,0].real
ym_exp[j] = 2*rho_0[1,0].imag
plt.plot(ph, xm, label = r'$\langle X\rangle_{sim}$')#, marker='*')
plt.plot(ph, ym, label = r'$\langle Y\rangle_{sim}$')#, marker='o')
plt.scatter(ph_exp, xm_exp, label = r'$\langle X\rangle_{exp}$', marker='*', color='r')
plt.scatter(ph_exp, ym_exp, label = r'$\langle Y\rangle_{exp}$', marker='o', color='g')
plt.legend(bbox_to_anchor=(1, 1))#,loc='center right')
#plt.xlim(0,2*math.pi)
#plt.ylim(-1,1)
plt.xlabel(r'$\phi$')
plt.show()
|
https://github.com/chriszapri/qiskitDemo
|
chriszapri
|
from qiskit import QuantumCircuit, assemble, Aer # Qiskit features imported
from qiskit.visualization import plot_bloch_multivector, plot_histogram # For visualization
from qiskit.quantum_info import Statevector # Intermediary statevector saving
import numpy as np # Numpy math library
sim = Aer.get_backend('aer_simulator') # Simulation that this notebook relies on
### For real quantum computer backend, replace Aer.get_backend with backend object of choice
# Widgets for value sliders
import ipywidgets as widgets
from IPython.display import display
# Value sliders
theta = widgets.FloatSlider(
value=0,
min=0,
max=180,
step=0.5,
description='θ',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout_format='.1f',
)
phi = widgets.FloatSlider(
value=0,
min=0,
max=360,
step=0.5,
description='φ',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout_format='.1f',
)
display(theta) # Zenith angle in degrees
display(phi) # Azimuthal angle in degrees
## Careful! These act as zenith and azimuthal only when applied to |0> statevector in rx(theta), rz(phi) order
qc = QuantumCircuit(1) # 1 qubit quantum circuit, every qubits starts at |0>
qc.rx(theta.value/180.0*np.pi,0) # Rotation about Bloch vector x-axis
qc.rz(phi.value/180.0*np.pi,0) # Rotation about Bloch vector y-axis
qc.save_statevector() # Get final statevector after measurement
qc.measure_all() # Measurement: collapses the statevector to either |0> or |1>
qobj = assemble(qc) # Quantum circuit saved to an object
interStateV = sim.run(qobj).result().get_statevector()
finalStates = sim.run(qobj).result().get_counts()
qc.draw()
plot_bloch_multivector(interStateV) # Plot intermediary statevector after two gates on Bloch sphere
plot_histogram(finalStates) # Probability of |0> or |1> from measuring above statevector
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Randomized tests of quantum synthesis."""
import unittest
from test.python.quantum_info.test_synthesis import CheckDecompositions
from hypothesis import given, strategies, settings
import numpy as np
from qiskit import execute
from qiskit.circuit import QuantumCircuit, QuantumRegister
from qiskit.extensions import UnitaryGate
from qiskit.providers.basicaer import UnitarySimulatorPy
from qiskit.quantum_info.random import random_unitary
from qiskit.quantum_info.synthesis.two_qubit_decompose import (
two_qubit_cnot_decompose,
TwoQubitBasisDecomposer,
Ud,
)
class TestSynthesis(CheckDecompositions):
"""Test synthesis"""
seed = strategies.integers(min_value=0, max_value=2**32 - 1)
rotation = strategies.floats(min_value=-np.pi * 10, max_value=np.pi * 10)
@given(seed)
def test_1q_random(self, seed):
"""Checks one qubit decompositions"""
unitary = random_unitary(2, seed=seed)
self.check_one_qubit_euler_angles(unitary)
self.check_one_qubit_euler_angles(unitary, "U3")
self.check_one_qubit_euler_angles(unitary, "U1X")
self.check_one_qubit_euler_angles(unitary, "PSX")
self.check_one_qubit_euler_angles(unitary, "ZSX")
self.check_one_qubit_euler_angles(unitary, "ZYZ")
self.check_one_qubit_euler_angles(unitary, "ZXZ")
self.check_one_qubit_euler_angles(unitary, "XYX")
self.check_one_qubit_euler_angles(unitary, "RR")
@settings(deadline=None)
@given(seed)
def test_2q_random(self, seed):
"""Checks two qubit decompositions"""
unitary = random_unitary(4, seed=seed)
self.check_exact_decomposition(unitary.data, two_qubit_cnot_decompose)
@given(strategies.tuples(*[seed] * 5))
def test_exact_supercontrolled_decompose_random(self, seeds):
"""Exact decomposition for random supercontrolled basis and random target"""
k1 = np.kron(random_unitary(2, seed=seeds[0]).data, random_unitary(2, seed=seeds[1]).data)
k2 = np.kron(random_unitary(2, seed=seeds[2]).data, random_unitary(2, seed=seeds[3]).data)
basis_unitary = k1 @ Ud(np.pi / 4, 0, 0) @ k2
decomposer = TwoQubitBasisDecomposer(UnitaryGate(basis_unitary))
self.check_exact_decomposition(random_unitary(4, seed=seeds[4]).data, decomposer)
@given(strategies.tuples(*[rotation] * 6), seed)
def test_cx_equivalence_0cx_random(self, rnd, seed):
"""Check random circuits with 0 cx gates locally equivalent to identity."""
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
sim = UnitarySimulatorPy()
unitary = execute(qc, sim, seed_simulator=seed).result().get_unitary()
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 0)
@given(strategies.tuples(*[rotation] * 12), seed)
def test_cx_equivalence_1cx_random(self, rnd, seed):
"""Check random circuits with 1 cx gates locally equivalent to a cx."""
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[6], rnd[7], rnd[8], qr[0])
qc.u(rnd[9], rnd[10], rnd[11], qr[1])
sim = UnitarySimulatorPy()
unitary = execute(qc, sim, seed_simulator=seed).result().get_unitary()
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 1)
@given(strategies.tuples(*[rotation] * 18), seed)
def test_cx_equivalence_2cx_random(self, rnd, seed):
"""Check random circuits with 2 cx gates locally equivalent to some circuit with 2 cx."""
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[6], rnd[7], rnd[8], qr[0])
qc.u(rnd[9], rnd[10], rnd[11], qr[1])
qc.cx(qr[0], qr[1])
qc.u(rnd[12], rnd[13], rnd[14], qr[0])
qc.u(rnd[15], rnd[16], rnd[17], qr[1])
sim = UnitarySimulatorPy()
unitary = execute(qc, sim, seed_simulator=seed).result().get_unitary()
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 2)
@given(strategies.tuples(*[rotation] * 24), seed)
def test_cx_equivalence_3cx_random(self, rnd, seed):
"""Check random circuits with 3 cx gates are outside the 0, 1, and 2 qubit regions."""
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[6], rnd[7], rnd[8], qr[0])
qc.u(rnd[9], rnd[10], rnd[11], qr[1])
qc.cx(qr[0], qr[1])
qc.u(rnd[12], rnd[13], rnd[14], qr[0])
qc.u(rnd[15], rnd[16], rnd[17], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[18], rnd[19], rnd[20], qr[0])
qc.u(rnd[21], rnd[22], rnd[23], qr[1])
sim = UnitarySimulatorPy()
unitary = execute(qc, sim, seed_simulator=seed).result().get_unitary()
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 3)
if __name__ == "__main__":
unittest.main()
|
https://github.com/Qottmann/Quantum-anomaly-detection
|
Qottmann
|
"""A quantum auto-encoder (QAE)."""
from typing import Union, Optional, List, Tuple, Callable, Any
import numpy as np
from qiskit import *
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.library import TwoLocal
from qiskit.circuit.library.standard_gates import RYGate, CZGate
from qiskit.circuit.gate import Gate
from qiskit.algorithms.optimizers import Optimizer, SPSA
from qiskit.utils import algorithm_globals
from qiskit.providers import BaseBackend, Backend
class QAEAnsatz(TwoLocal):
def __init__(
self,
num_qubits: int,
num_trash_qubits: int,
trash_qubits_idxs: Union[np.ndarray, List] = [1, 2], # TODO
measure_trash: bool = False,
rotation_blocks: Gate = RYGate,
entanglement_blocks: Gate = CZGate,
parameter_prefix: str = 'θ',
insert_barriers: bool = False,
initial_state: Optional[Any] = None,
) -> None:
"""Create a new QAE circuit.
Args:
num_qubits: The number of qubits of the QAE circuit.
num_trash_qubits: The number of trash qubits that should be measured in the end.
trash_qubits_idxs: The explicit indices of the trash qubits, i.e., where the trash
qubits should be placed.
measure_trash: If True, the trash qubits will be measured at the end. If False, no
measurement takes place.
rotation_blocks: The blocks used in the rotation layers. If multiple are passed,
these will be applied one after another (like new sub-layers).
entanglement_blocks: The blocks used in the entanglement layers. If multiple are passed,
these will be applied one after another.
parameter_prefix: The prefix used if default parameters are generated.
insert_barriers: If True, barriers are inserted in between each layer. If False,
no barriers are inserted.
initial_state: A `QuantumCircuit` object which can be used to describe an initial state
prepended to the NLocal circuit.
"""
assert num_trash_qubits < num_qubits
self.num_trash_qubits = num_trash_qubits
self.trash_qubits_idxs = trash_qubits_idxs
self.measure_trash = measure_trash
entanglement = [QAEAnsatz._generate_entangler_map(
num_qubits, num_trash_qubits, i, trash_qubits_idxs) for i in range(num_trash_qubits)]
super().__init__(num_qubits=num_qubits,
rotation_blocks=rotation_blocks,
entanglement_blocks=entanglement_blocks,
entanglement=entanglement,
reps=num_trash_qubits,
skip_final_rotation_layer=True,
parameter_prefix=parameter_prefix,
insert_barriers=insert_barriers,
initial_state=initial_state)
self.add_register(ClassicalRegister(self.num_trash_qubits))
@staticmethod
def _generate_entangler_map(num_qubits: int, num_trash_qubits: int, i_permut: int = 1, trash_qubits_idxs: Union[np.ndarray, List] = [1, 2]) -> List[Tuple[int, int]]:
"""Generates entanglement map for QAE circuit
Entangling gates are only added between trash and non-trash-qubits.
Args:
num_qubits: The number of qubits of the QAE circuit.
num_trash_qubits: The number of trash qubits that should be measured in the end.
i_permut: Permutation index; increases for every layer of the circuit
trash_qubits_idxs: The explicit indices of the trash qubits, i.e., where the trash
qubits should be placed.
Returns:
entanglement map: List of pairs of qubit indices that should be entangled
"""
result = []
nums_compressed = list(range(num_qubits))
for trashqubit in trash_qubits_idxs:
nums_compressed.remove(trashqubit)
if trash_qubits_idxs == None:
nums_compressed = list(range(num_qubits))[:num_qubits-num_trash_qubits]
trash_qubits_idxs = list(range(num_qubits))[-num_trash_qubits:]
# combine all trash qubits with themselves
for i,trash_q in enumerate(trash_qubits_idxs[:-1]):
result.append((trash_qubits_idxs[i+1], trash_qubits_idxs[i]))
# combine each of the trash qubits with every n-th
# repeat the list of trash indices cyclicly
repeated = list(trash_qubits_idxs) * (num_qubits-num_trash_qubits)
for i in range(num_qubits-num_trash_qubits):
result.append((repeated[i_permut + i], nums_compressed[i]))
return result
def _build(self) -> None:
"""Build the circuit."""
if self._data:
return
_ = self._check_configuration()
self._data = []
if self.num_qubits == 0:
return
# use the initial state circuit if it is not None
if self._initial_state:
circuit = self._initial_state.construct_circuit('circuit', register=self.qregs[0])
self.compose(circuit, inplace=True)
param_iter = iter(self.ordered_parameters)
# build the prepended layers
self._build_additional_layers('prepended')
# main loop to build the entanglement and rotation layers
for i in range(self.reps):
# insert barrier if specified and there is a preceding layer
if self._insert_barriers and (i > 0 or len(self._prepended_blocks) > 0):
self.barrier()
# build the rotation layer
self._build_rotation_layer(param_iter, i)
# barrier in between rotation and entanglement layer
if self._insert_barriers and len(self._rotation_blocks) > 0:
self.barrier()
# build the entanglement layer
self._build_entanglement_layer(param_iter, i)
# add the final rotation layer
if self.insert_barriers and self.reps > 0:
self.barrier()
for j, block in enumerate(self.rotation_blocks):
# create a new layer
layer = QuantumCircuit(*self.qregs)
block_indices = [[i] for i in self.trash_qubits_idxs]
# apply the operations in the layer
for indices in block_indices:
parameterized_block = self._parameterize_block(block, param_iter, i, j, indices)
layer.compose(parameterized_block, indices, inplace=True)
# add the layer to the circuit
self.compose(layer, inplace=True)
# add the appended layers
self._build_additional_layers('appended')
# measure trash qubits if set
if self.measure_trash:
for i, j in enumerate(self.trash_qubits_idxs):
self.measure(self.qregs[0][j], self.cregs[0][i])
@property
def num_parameters_settable(self) -> int:
"""The number of total parameters that can be set to distinct values.
Returns:
The number of parameters originally available in the circuit.
"""
return super().num_parameters_settable + self.num_trash_qubits
def hamming_distance(out) -> int:
"""Computes the Hamming distance of a measurement outcome to the
all zero state. For example: A single measurement outcome 101 would
have a Hamming distance of 2.
Args:
out: The measurement outcomes; a dictionary containing all possible measurement strings
as keys and their occurences as values.
Returns:
Hamming distance
"""
return sum(key.count('1') * value for key, value in out.items())
class QAE:
def __init__(
self,
num_qubits: int,
num_trash_qubits: int,
ansatz: Optional[QuantumCircuit] = None,
initial_params: Optional[Union[np.ndarray, List]] = None,
optimizer: Optional[Optimizer] = None,
shots: int = 1000,
num_epochs: int = 100,
save_training_curve: Optional[bool] = False,
seed: int = 123,
backend: Union[BaseBackend, Backend] = Aer.get_backend('qasm_simulator')
) -> None:
"""Quantum auto-encoder.
Args:
num_qubits: The number of qubits of the QAE circuit.
num_trash_qubits: The number of trash qubits that should be measured in the end.
ansatz: A parameterized quantum circuit ansatz to be optimized.
initial_params: The initial list of parameters for the circuit ansatz
optimizer: The optimizer used for training (default is SPSA)
shots: The number of measurement shots when training and evaluating the QAE.
num_epochs: The number of training iterations/epochs.
save_training_curve: If True, the cost after each optimizer step is computed and stored.
seed: Random number seed.
backend: The backend on which the QAE is performed.
"""
algorithm_globals.random_seed = seed
np.random.seed(seed)
self.costs = []
if save_training_curve:
callback = self._store_intermediate_result
else:
callback = None
if optimizer:
self.optimizer = optimizer
else:
self.optimizer = SPSA(num_epochs, callback=callback)
self.backend = backend
if ansatz:
self.ansatz = ansatz
else:
self.ansatz = QAEAnsatz(num_qubits, num_trash_qubits, measure_trash=True)
if initial_params:
self.initial_params = initial_params
else:
self.initial_params = np.random.uniform(0, 2*np.pi, self.ansatz.num_parameters_settable)
self.shots = shots
self.save_training_curve = save_training_curve
def run(self, input_state: Optional[Any] = None, params: Optional[Union[np.ndarray, List]] = None):
"""Execute ansatz circuit and measure trash qubits
Args:
input_state: If provided, circuit is initialized accordingly
params: If provided, list of optimization parameters for circuit
Returns:
measurement outcomes
"""
if params is None:
params = self.initial_params
if input_state is not None:
if type(input_state) == QuantumCircuit:
circ = input_state
elif type(input_state) == list or type(input_state) == np.ndarray:
circ = QuantumCircuit(self.ansatz.num_qubits, self.ansatz.num_trash_qubits)
circ.initialize(input_state)
else:
raise TypeError("input_state has to be an array or a QuantumCircuit.")
circ = circ.compose(self.ansatz)
else:
circ = self.ansatz
circ = circ.assign_parameters(params)
job_sim = execute(circ, self.backend, shots=self.shots)
return job_sim.result().get_counts(circ)
def cost(self, input_state: Optional[Any] = None, params: Optional[Union[np.ndarray, List]] = None) -> float:
""" Cost function
Average Hamming distance of measurement outcomes to zero state.
Args:
input_state: If provided, circuit is initialized accordingly
params: If provided, list of optimization parameters for circuit
Returns:
Cost
"""
out = self.run(input_state, params)
cost = hamming_distance(out)
return cost/self.shots
def _store_intermediate_result(self, eval_count, parameters, mean, std, ac):
"""Callback function to save intermediate costs during training."""
self.costs.append(mean)
def train(self, input_state: Optional[Any] = None):
""" Trains the QAE using optimizer (default SPSA)
Args:
input_state: If provided, circuit is initialized accordingly
Returns:
Result of optimization: optimized parameters, cost, iterations
Training curve: Cost function evaluated after each iteration
"""
result = self.optimizer.optimize(
num_vars=len(self.initial_params),
objective_function=lambda params: self.cost(input_state, params),
initial_point=self.initial_params
)
self.initial_params = result[0]
return result, self.costs
def reset(self):
"""Resets parameters to random values"""
self.costs = []
self.initial_params = np.random.uniform(0, 2*np.pi, self.ansatz.num_parameters_settable)
if __name__ == '__main__':
num_qubits = 5
num_trash_qubits = 2
qae = QAE(num_qubits, num_trash_qubits, save_training_curve=True)
# for demonstration purposes QAE is trained on a random state
input_state = np.random.uniform(size=2**num_qubits)
input_state /= np.linalg.norm(input_state)
result, cost = qae.train(input_state)
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# TODO: Remove after 0.7 and the deprecated methods are removed
# pylint: disable=unused-argument
"""
Two quantum circuit drawers based on:
0. Ascii art
1. LaTeX
2. Matplotlib
"""
import errno
import logging
import os
import subprocess
import tempfile
from PIL import Image
from qiskit import user_config
from qiskit.visualization import exceptions
from qiskit.visualization import latex as _latex
from qiskit.visualization import text as _text
from qiskit.visualization import utils
from qiskit.visualization import matplotlib as _matplotlib
logger = logging.getLogger(__name__)
def circuit_drawer(circuit,
scale=0.7,
filename=None,
style=None,
output=None,
interactive=False,
line_length=None,
plot_barriers=True,
reverse_bits=False,
justify=None):
"""Draw a quantum circuit to different formats (set by output parameter):
0. text: ASCII art TextDrawing that can be printed in the console.
1. latex: high-quality images, but heavy external software dependencies
2. matplotlib: purely in Python with no external dependencies
Args:
circuit (QuantumCircuit): the quantum circuit to draw
scale (float): scale of image to draw (shrink if < 1)
filename (str): file path to save image to
style (dict or str): dictionary of style or file name of style file.
This option is only used by the `mpl`, `latex`, and `latex_source`
output types. If a str is passed in that is the path to a json
file which contains that will be open, parsed, and then used just
as the input dict.
output (str): Select the output method to use for drawing the circuit.
Valid choices are `text`, `latex`, `latex_source`, `mpl`. By
default the 'text' drawer is used unless a user config file has
an alternative backend set as the default. If the output is passed
in that backend will always be used.
interactive (bool): when set true show the circuit in a new window
(for `mpl` this depends on the matplotlib backend being used
supporting this). Note when used with either the `text` or the
`latex_source` output type this has no effect and will be silently
ignored.
line_length (int): Sets the length of the lines generated by `text`
output type. This useful when the drawing does not fit in the
console. If None (default), it will try to guess the console width
using shutil.get_terminal_size(). However, if you're running in
jupyter the default line length is set to 80 characters. If you
don't want pagination at all, set `line_length=-1`.
reverse_bits (bool): When set to True reverse the bit order inside
registers for the output visualization.
plot_barriers (bool): Enable/disable drawing barriers in the output
circuit. Defaults to True.
justify (string): Options are `left`, `right` or `none`, if anything
else is supplied it defaults to left justified. It refers to where
gates should be placed in the output circuit if there is an option.
`none` results in each gate being placed in its own column. Currently
only supported by text drawer.
Returns:
PIL.Image: (output `latex`) an in-memory representation of the image
of the circuit diagram.
matplotlib.figure: (output `mpl`) a matplotlib figure object for the
circuit diagram.
String: (output `latex_source`). The LaTeX source code.
TextDrawing: (output `text`). A drawing that can be printed as ascii art
Raises:
VisualizationError: when an invalid output method is selected
ImportError: when the output methods requieres non-installed libraries.
.. _style-dict-doc:
The style dict kwarg contains numerous options that define the style of the
output circuit visualization. While the style dict is used by the `mpl`,
`latex`, and `latex_source` outputs some options in that are only used
by the `mpl` output. These options are defined below, if it is only used by
the `mpl` output it is marked as such:
textcolor (str): The color code to use for text. Defaults to
`'#000000'` (`mpl` only)
subtextcolor (str): The color code to use for subtext. Defaults to
`'#000000'` (`mpl` only)
linecolor (str): The color code to use for lines. Defaults to
`'#000000'` (`mpl` only)
creglinecolor (str): The color code to use for classical register lines
`'#778899'`(`mpl` only)
gatetextcolor (str): The color code to use for gate text `'#000000'`
(`mpl` only)
gatefacecolor (str): The color code to use for gates. Defaults to
`'#ffffff'` (`mpl` only)
barrierfacecolor (str): The color code to use for barriers. Defaults to
`'#bdbdbd'` (`mpl` only)
backgroundcolor (str): The color code to use for the background.
Defaults to `'#ffffff'` (`mpl` only)
fontsize (int): The font size to use for text. Defaults to 13 (`mpl`
only)
subfontsize (int): The font size to use for subtext. Defaults to 8
(`mpl` only)
displaytext (dict): A dictionary of the text to use for each element
type in the output visualization. The default values are:
{
'id': 'id',
'u0': 'U_0',
'u1': 'U_1',
'u2': 'U_2',
'u3': 'U_3',
'x': 'X',
'y': 'Y',
'z': 'Z',
'h': 'H',
's': 'S',
'sdg': 'S^\\dagger',
't': 'T',
'tdg': 'T^\\dagger',
'rx': 'R_x',
'ry': 'R_y',
'rz': 'R_z',
'reset': '\\left|0\\right\\rangle'
}
You must specify all the necessary values if using this. There is
no provision for passing an incomplete dict in. (`mpl` only)
displaycolor (dict): The color codes to use for each circuit element.
By default all values default to the value of `gatefacecolor` and
the keys are the same as `displaytext`. Also, just like
`displaytext` there is no provision for an incomplete dict passed
in. (`mpl` only)
latexdrawerstyle (bool): When set to True enable latex mode which will
draw gates like the `latex` output modes. (`mpl` only)
usepiformat (bool): When set to True use radians for output (`mpl`
only)
fold (int): The number of circuit elements to fold the circuit at.
Defaults to 20 (`mpl` only)
cregbundle (bool): If set True bundle classical registers (`mpl` only)
showindex (bool): If set True draw an index. (`mpl` only)
compress (bool): If set True draw a compressed circuit (`mpl` only)
figwidth (int): The maximum width (in inches) for the output figure.
(`mpl` only)
dpi (int): The DPI to use for the output image. Defaults to 150 (`mpl`
only)
margin (list): `mpl` only
creglinestyle (str): The style of line to use for classical registers.
Choices are `'solid'`, `'doublet'`, or any valid matplotlib
`linestyle` kwarg value. Defaults to `doublet`(`mpl` only)
"""
image = None
config = user_config.get_config()
# Get default from config file else use text
default_output = 'text'
if config:
default_output = config.get('circuit_drawer', 'text')
if output is None:
output = default_output
if output == 'text':
return _text_circuit_drawer(circuit, filename=filename,
line_length=line_length,
reverse_bits=reverse_bits,
plotbarriers=plot_barriers,
justify=justify)
elif output == 'latex':
image = _latex_circuit_drawer(circuit, scale=scale,
filename=filename, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits,
justify=justify)
elif output == 'latex_source':
return _generate_latex_source(circuit,
filename=filename, scale=scale,
style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits,
justify=justify)
elif output == 'mpl':
image = _matplotlib_circuit_drawer(circuit, scale=scale,
filename=filename, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits,
justify=justify)
else:
raise exceptions.VisualizationError(
'Invalid output type %s selected. The only valid choices '
'are latex, latex_source, text, and mpl' % output)
if image and interactive:
image.show()
return image
# -----------------------------------------------------------------------------
# Plot style sheet option
# -----------------------------------------------------------------------------
def qx_color_scheme():
"""Return default style for matplotlib_circuit_drawer (IBM QX style)."""
return {
"comment": "Style file for matplotlib_circuit_drawer (IBM QX Composer style)",
"textcolor": "#000000",
"gatetextcolor": "#000000",
"subtextcolor": "#000000",
"linecolor": "#000000",
"creglinecolor": "#b9b9b9",
"gatefacecolor": "#ffffff",
"barrierfacecolor": "#bdbdbd",
"backgroundcolor": "#ffffff",
"fold": 20,
"fontsize": 13,
"subfontsize": 8,
"figwidth": -1,
"dpi": 150,
"displaytext": {
"id": "id",
"u0": "U_0",
"u1": "U_1",
"u2": "U_2",
"u3": "U_3",
"x": "X",
"y": "Y",
"z": "Z",
"h": "H",
"s": "S",
"sdg": "S^\\dagger",
"t": "T",
"tdg": "T^\\dagger",
"rx": "R_x",
"ry": "R_y",
"rz": "R_z",
"reset": "\\left|0\\right\\rangle"
},
"displaycolor": {
"id": "#ffca64",
"u0": "#f69458",
"u1": "#f69458",
"u2": "#f69458",
"u3": "#f69458",
"x": "#a6ce38",
"y": "#a6ce38",
"z": "#a6ce38",
"h": "#00bff2",
"s": "#00bff2",
"sdg": "#00bff2",
"t": "#ff6666",
"tdg": "#ff6666",
"rx": "#ffca64",
"ry": "#ffca64",
"rz": "#ffca64",
"reset": "#d7ddda",
"target": "#00bff2",
"meas": "#f070aa"
},
"latexdrawerstyle": True,
"usepiformat": False,
"cregbundle": False,
"plotbarrier": False,
"showindex": False,
"compress": True,
"margin": [2.0, 0.0, 0.0, 0.3],
"creglinestyle": "solid",
"reversebits": False
}
# -----------------------------------------------------------------------------
# _text_circuit_drawer
# -----------------------------------------------------------------------------
def _text_circuit_drawer(circuit, filename=None, line_length=None, reverse_bits=False,
plotbarriers=True, justify=None, vertically_compressed=True):
"""
Draws a circuit using ascii art.
Args:
circuit (QuantumCircuit): Input circuit
filename (str): optional filename to write the result
line_length (int): Optional. Breaks the circuit drawing to this length. This
useful when the drawing does not fit in the console. If
None (default), it will try to guess the console width using
shutil.get_terminal_size(). If you don't want pagination
at all, set line_length=-1.
reverse_bits (bool): Rearrange the bits in reverse order.
plotbarriers (bool): Draws the barriers when they are there.
justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how
the circuit should be justified.
vertically_compressed (bool): Default is `True`. It merges the lines so the
drawing will take less vertical room.
Returns:
TextDrawing: An instances that, when printed, draws the circuit in ascii art.
"""
qregs, cregs, ops = utils._get_layered_instructions(circuit,
reverse_bits=reverse_bits,
justify=justify)
text_drawing = _text.TextDrawing(qregs, cregs, ops)
text_drawing.plotbarriers = plotbarriers
text_drawing.line_length = line_length
text_drawing.vertically_compressed = vertically_compressed
if filename:
text_drawing.dump(filename)
return text_drawing
# -----------------------------------------------------------------------------
# latex_circuit_drawer
# -----------------------------------------------------------------------------
def _latex_circuit_drawer(circuit,
scale=0.7,
filename=None,
style=None,
plot_barriers=True,
reverse_bits=False,
justify=None):
"""Draw a quantum circuit based on latex (Qcircuit package)
Requires version >=2.6.0 of the qcircuit LaTeX package.
Args:
circuit (QuantumCircuit): a quantum circuit
scale (float): scaling factor
filename (str): file path to save image to
style (dict or str): dictionary of style or file name of style file
reverse_bits (bool): When set to True reverse the bit order inside
registers for the output visualization.
plot_barriers (bool): Enable/disable drawing barriers in the output
circuit. Defaults to True.
justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how
the circuit should be justified.
Returns:
PIL.Image: an in-memory representation of the circuit diagram
Raises:
OSError: usually indicates that ```pdflatex``` or ```pdftocairo``` is
missing.
CalledProcessError: usually points errors during diagram creation.
"""
tmpfilename = 'circuit'
with tempfile.TemporaryDirectory() as tmpdirname:
tmppath = os.path.join(tmpdirname, tmpfilename + '.tex')
_generate_latex_source(circuit, filename=tmppath,
scale=scale, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits, justify=justify)
image = None
try:
subprocess.run(["pdflatex", "-halt-on-error",
"-output-directory={}".format(tmpdirname),
"{}".format(tmpfilename + '.tex')],
stdout=subprocess.PIPE, stderr=subprocess.DEVNULL,
check=True)
except OSError as ex:
if ex.errno == errno.ENOENT:
logger.warning('WARNING: Unable to compile latex. '
'Is `pdflatex` installed? '
'Skipping latex circuit drawing...')
raise
except subprocess.CalledProcessError as ex:
with open('latex_error.log', 'wb') as error_file:
error_file.write(ex.stdout)
logger.warning('WARNING Unable to compile latex. '
'The output from the pdflatex command can '
'be found in latex_error.log')
raise
else:
try:
base = os.path.join(tmpdirname, tmpfilename)
subprocess.run(["pdftocairo", "-singlefile", "-png", "-q",
base + '.pdf', base])
image = Image.open(base + '.png')
image = utils._trim(image)
os.remove(base + '.png')
if filename:
image.save(filename, 'PNG')
except OSError as ex:
if ex.errno == errno.ENOENT:
logger.warning('WARNING: Unable to convert pdf to image. '
'Is `poppler` installed? '
'Skipping circuit drawing...')
raise
return image
def _generate_latex_source(circuit, filename=None,
scale=0.7, style=None, reverse_bits=False,
plot_barriers=True, justify=None):
"""Convert QuantumCircuit to LaTeX string.
Args:
circuit (QuantumCircuit): input circuit
scale (float): image scaling
filename (str): optional filename to write latex
style (dict or str): dictionary of style or file name of style file
reverse_bits (bool): When set to True reverse the bit order inside
registers for the output visualization.
plot_barriers (bool): Enable/disable drawing barriers in the output
circuit. Defaults to True.
justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how
the circuit should be justified.
Returns:
str: Latex string appropriate for writing to file.
"""
qregs, cregs, ops = utils._get_layered_instructions(circuit,
reverse_bits=reverse_bits,
justify=justify)
qcimg = _latex.QCircuitImage(qregs, cregs, ops, scale, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits)
latex = qcimg.latex()
if filename:
with open(filename, 'w') as latex_file:
latex_file.write(latex)
return latex
# -----------------------------------------------------------------------------
# matplotlib_circuit_drawer
# -----------------------------------------------------------------------------
def _matplotlib_circuit_drawer(circuit,
scale=0.7,
filename=None,
style=None,
plot_barriers=True,
reverse_bits=False,
justify=None):
"""Draw a quantum circuit based on matplotlib.
If `%matplotlib inline` is invoked in a Jupyter notebook, it visualizes a circuit inline.
We recommend `%config InlineBackend.figure_format = 'svg'` for the inline visualization.
Args:
circuit (QuantumCircuit): a quantum circuit
scale (float): scaling factor
filename (str): file path to save image to
style (dict or str): dictionary of style or file name of style file
reverse_bits (bool): When set to True reverse the bit order inside
registers for the output visualization.
plot_barriers (bool): Enable/disable drawing barriers in the output
circuit. Defaults to True.
justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how
the circuit should be justified.
Returns:
matplotlib.figure: a matplotlib figure object for the circuit diagram
"""
qregs, cregs, ops = utils._get_layered_instructions(circuit,
reverse_bits=reverse_bits,
justify=justify)
qcd = _matplotlib.MatplotlibDrawer(qregs, cregs, ops, scale=scale, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits)
return qcd.draw(filename)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, IBMQ, execute, transpile, Aer
from qiskit.providers.aer import QasmSimulator
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.compiler import transpile
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
# Suppress warnings
import warnings
warnings.filterwarnings('ignore')
def trotter_gate(dt):
qc = QuantumCircuit(2)
qc.h(1)
qc.cx(1,0)
qc.h(1)
qc.rz(- 2 * dt, 1)
qc.rz(dt, 0)
qc.h(1)
qc.cx(1,0)
qc.h(1)
qc.rx(dt, [1])
qc.rz(-dt, [0,1])
qc.rx(-dt, [0,1])
return qc.to_instruction()
qc = QuantumCircuit(2)
qc.h(1)
qc.cx(1,0)
qc.h(1)
qc.rz(- 2 * np.pi / 6, 1)
qc.rz(np.pi / 6, 0)
qc.h(1)
qc.cx(1,0)
qc.h(1)
qc.rx(np.pi / 6, [1])
qc.barrier()
qc.rz(-np.pi / 6, [0,1])
qc.rx(-np.pi / 6, [0,1])
qc.draw('mpl')
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 2
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
Trot_gate = trotter_gate(dt)
# YOUR TROTTERIZATION GOES HERE -- FINISH (end of example)
# The final time of the state evolution
target_time = np.pi
# Number of trotter steps
trotter_steps = 4 ### CAN BE >= 4
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
qc = QuantumCircuit(qr, cr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
# init state |10> (= |110>)
qc.x(1) # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
# Simulate time evolution under H_heis3 Hamiltonian
for _ in range(trotter_steps):
qc.append(Trot_gate, [qr[0], qr[1]])
# qc.cx(qr[3], qr[1])
# qc.cx(qr[5], qr[3])
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / trotter_steps})
qc.measure(qr, cr)
t0_qc = transpile(qc, optimization_level=0, basis_gates=["sx","rz","cx"])
# t0_qc.draw("mpl")
t0_qc = t0_qc.reverse_bits()
# t0_qc.draw("mpl")
shots = 8192
reps = 1
# WE USE A NOISELESS SIMULATION HERE
backend = Aer.get_backend('qasm_simulator')
jobs = []
for _ in range(reps):
# execute
job = execute(t0_qc, backend=backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
counts_01 = []
counts_10 = []
for trotter_steps in range(1, 15, 1):
print("number of trotter steps: ", trotter_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
qc = QuantumCircuit(qr, cr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
# init state |10> (= |110>)
qc.x(1) # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
# Simulate time evolution under H_heis3 Hamiltonian
for _ in range(trotter_steps):
qc.append(Trot_gate, [qr[0], qr[1]])
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / trotter_steps})
qc.measure(qr, cr)
t0_qc = transpile(qc, optimization_level=0, basis_gates=["sx","rz","cx"])
t0_qc = t0_qc.reverse_bits()
print("circuit depth: ", t0_qc.depth())
job = execute(t0_qc, backend=backend, shots=shots, optimization_level=0)
print("pribability distribution: ", job.result().get_counts())
counts_01.append(job.result().get_counts().get("01", 0))
counts_10.append(job.result().get_counts().get("10", 0))
print()
plt.plot(range(1,15), counts_10)
plt.xlabel("trotter steps")
plt.ylabel("shot counts of 10")
plt.title("counts of |10>")
plt.plot(range(1,15), counts_01)
plt.xlabel("trotter steps")
plt.ylabel("shot counts of 01")
plt.title("counts of |01>")
|
https://github.com/Z-928/Bugs4Q
|
Z-928
|
from qiskit import Aer, QuantumCircuit, transpile
from qiskit.circuit.library import PhaseEstimation
qc= QuantumCircuit(3,3)
# dummy unitary circuit
unitary_circuit = QuantumCircuit(1)
unitary_circuit.h(0)
# QPE
qc.append(PhaseEstimation(2, unitary_circuit), list(range(3)))
qc.measure(list(range(3)), list(range(3)))
backend = Aer.get_backend('qasm_simulator')
qc_transpiled = transpile(qc, backend)
result = backend.run(qc, shots = 8192).result()
|
https://github.com/quantumjim/qreative
|
quantumjim
|
import sys
sys.path.append('../')
import CreativeQiskit
rng = CreativeQiskit.qrng()
for _ in range(5):
print( rng.rand_int() )
for _ in range(5):
print( rng.rand() )
rng = CreativeQiskit.qrng(noise_only=True)
for _ in range(5):
print( rng.rand() )
rng = CreativeQiskit.qrng(noise_only=True,noisy=True)
for _ in range(5):
print( rng.rand() )
rng = CreativeQiskit.qrng(noise_only=True,noisy=0.2)
for _ in range(5):
print( rng.rand() )
|
https://github.com/mentesniker/Quantum-error-mitigation
|
mentesniker
|
from qiskit import QuantumCircuit, QuantumRegister, Aer, execute, ClassicalRegister
from qiskit.ignis.verification.topological_codes import RepetitionCode
from qiskit.ignis.verification.topological_codes import lookuptable_decoding
from qiskit.ignis.verification.topological_codes import GraphDecoder
from qiskit.providers.aer.noise import NoiseModel
from qiskit.providers.aer.noise.errors import pauli_error, depolarizing_error
from qiskit.ignis.mitigation.measurement import (complete_meas_cal,CompleteMeasFitter)
from qiskit.visualization import plot_histogram
backend = Aer.get_backend('qasm_simulator')
#These two functions were taken from https://stackoverflow.com/questions/10237926/convert-string-to-list-of-bits-and-viceversa
def tobits(s):
result = []
for c in s:
bits = bin(ord(c))[2:]
bits = '00000000'[len(bits):] + bits
result.extend([int(b) for b in bits])
return ''.join([str(x) for x in result])
def frombits(bits):
chars = []
for b in range(int(len(bits) / 8)):
byte = bits[b*8:(b+1)*8]
chars.append(chr(int(''.join([str(bit) for bit in byte]), 2)))
return ''.join(chars)
def get_noise(p):
error_meas = pauli_error([('X',p), ('I', 1 - p)])
noise_model = NoiseModel()
noise_model.add_all_qubit_quantum_error(error_meas, "measure")
return noise_model
def codificate(bitString):
qubits = list()
for i in range(len(bitString)):
mycircuit = QuantumCircuit(1,1)
if(bitString[i] == "1"):
mycircuit.x(0)
qubits.append(mycircuit)
return qubits
def count(array):
numZero = 0
numOne = 0
for i in array:
if i == "0":
numZero += 1
elif i == "1":
numOne += 1
return dict({"0":numZero, "1":numOne})
m0 = tobits("I like dogs")
qubits = codificate(m0)
measurements = list()
for i in range(len(qubits)):
qubit = qubits[i]
qubit.measure(0,0)
result = execute(qubit, backend, shots=1, memory=True).result()
measurements.append(int(result.get_memory()[0]))
print(frombits(measurements))
m0 = tobits("I like dogs")
qubits = codificate(m0)
measurements = list()
for i in range(len(qubits)):
qubit = qubits[i]
qubit.measure(0,0)
result = execute(qubit, backend, shots=1, memory=True, noise_model=get_noise(0.2)).result()
measurements.append(int(result.get_memory()[0]))
print(frombits(measurements))
for state in ['0','1']:
qc = QuantumCircuit(1,1)
if state[0]=='1':
qc.x(0)
qc.measure(qc.qregs[0],qc.cregs[0])
print(state+' becomes',
execute(qc, Aer.get_backend('qasm_simulator'),noise_model=get_noise(0.2),shots=1000).result().get_counts())
qubit = qubits[0]
result = execute(qubit, backend, shots=1000, memory=True, noise_model=get_noise(0.2)).result()
print(result.get_counts())
import numpy as np
import scipy.linalg as la
M = [[0.389,0.611],
[0.593,0.407]]
Cnoisy = [[397],[603]]
Minv = la.inv(M)
Cmitigated = np.dot(Minv, Cnoisy)
print('C_mitigated =\n',Cmitigated)
Cmitigated = np.floor(Cmitigated)
if(Cmitigated[1][0] < 0):
Cmitigated[1][0] = 0
print('C_mitigated =\n',Cmitigated)
qr = QuantumRegister(1)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
backend = Aer.get_backend('qasm_simulator')
job = execute(meas_calibs, backend=backend, shots=1000,noise_model=get_noise(0.2))
cal_results = job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
print(meas_fitter.cal_matrix)
qubit = qubits[2]
qubit.measure(0,0)
results = execute(qubit, backend=backend, shots=10000, noise_model=get_noise(0.2),memory=True).result()
noisy_counts = count(results.get_memory())
print(noisy_counts)
Minv = la.inv(meas_fitter.cal_matrix)
Cmitigated = np.dot(Minv, np.array(list(noisy_counts.values())))
print('C_mitigated =\n',Cmitigated)
outputs = list()
for i in range(len(qubits)):
qubit = qubits[i]
qubit.measure(0,0)
results = execute(qubit, backend=backend, shots=10000, memory=True, noise_model=get_noise(0.2)).result()
noisy_counts = count(results.get_memory())
Minv = la.inv(meas_fitter.cal_matrix)
Cmitigated = np.dot(Minv, np.array(list(noisy_counts.values())))
if(Cmitigated[0] > Cmitigated[1]):
outputs.append('0')
else:
outputs.append('1')
print(frombits(''.join(outputs)))
outputs = list()
meas_filter = meas_fitter.filter
for i in range(len(qubits)):
qubit = qubits[i]
qubit.measure(0,0)
results = execute(qubit, backend=backend, shots=10000, memory=True, noise_model=get_noise(0.2)).result()
noisy_counts = count(results.get_memory())
# Results with mitigation
mitigated_counts = meas_filter.apply(noisy_counts)
if('1' not in mitigated_counts):
outputs.append('0')
elif('0' not in mitigated_counts):
outputs.append('1')
elif(mitigated_counts['0'] > mitigated_counts['1']):
outputs.append('0')
else:
outputs.append('1')
print(frombits(''.join(outputs)))
|
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
|
mathelatics
|
import numpy as np
from qiskit import BasicAer
from qiskit.transpiler import PassManager
from qiskit.aqua import QuantumInstance
from qiskit.aqua.operators import MatrixOperator, op_converter
from qiskit.aqua.algorithms import EOH
from qiskit.aqua.components.initial_states import Custom
num_qubits = 2
temp = np.random.random((2 ** num_qubits, 2 ** num_qubits))
qubit_op = op_converter.to_weighted_pauli_operator(MatrixOperator(matrix=temp + temp.T))
temp = np.random.random((2 ** num_qubits, 2 ** num_qubits))
evo_op = op_converter.to_weighted_pauli_operator(MatrixOperator(matrix=temp + temp.T))
evo_time = 1
num_time_slices = 1
state_in = Custom(qubit_op.num_qubits, state='uniform')
eoh = EOH(qubit_op, state_in, evo_op, evo_time=evo_time, num_time_slices=num_time_slices)
backend = BasicAer.get_backend('statevector_simulator')
quantum_instance = QuantumInstance(backend)
ret = eoh.run(quantum_instance)
print('The result is\n{}'.format(ret))
|
https://github.com/GiacomoFrn/QuantumTeleportation
|
GiacomoFrn
|
import cirq
import numpy as np
from qiskit import QuantumCircuit, execute, Aer
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (15,10)
q0, q1, q2 = [cirq.LineQubit(i) for i in range(3)]
circuit = cirq.Circuit()
#entagling the 2 quibits in different laboratories
#and preparing the qubit to send
circuit.append(cirq.H(q0))
circuit.append(cirq.H(q1))
circuit.append(cirq.CNOT(q1, q2))
#entangling the qubit we want to send to the one in the first laboratory
circuit.append(cirq.CNOT(q0, q1))
circuit.append(cirq.H(q0))
#measurements
circuit.append(cirq.measure(q0, q1))
#last transformations to obtain the qubit information
circuit.append(cirq.CNOT(q1, q2))
circuit.append(cirq.CZ(q0, q2))
#measure of the qubit in the receiving laboratory along z axis
circuit.append(cirq.measure(q2, key = 'Z'))
circuit
#starting simulation
sim = cirq.Simulator()
results = sim.run(circuit, repetitions=100)
sns.histplot(results.measurements['Z'], discrete = True)
100 - np.count_nonzero(results.measurements['Z']), np.count_nonzero(results.measurements['Z'])
#in qiskit the qubits are integrated in the circuit
qc = QuantumCircuit(3, 1)
#entangling
qc.h(0)
qc.h(1)
qc.cx(1, 2)
qc.cx(0, 1)
#setting for measurment
qc.h(0)
qc.measure([0,1], [0,0])
#transformation to obtain qubit sent
qc.cx(1, 2)
qc.cz(0, 2)
qc.measure(2, 0)
print(qc)
#simulation
simulator = Aer.get_backend('qasm_simulator')
job = execute(qc, simulator, shots=100)
res = job.result().get_counts(qc)
plt.bar(res.keys(), res.values())
res
|
https://github.com/qiskit-community/prototype-quantum-kernel-training
|
qiskit-community
|
# pylint: disable=protected-access
from qiskit.circuit.library import ZZFeatureMap
from qiskit.circuit import ParameterVector
# Define a (non-parameterized) feature map from the Qiskit circuit library
fm = ZZFeatureMap(2)
input_params = fm.parameters
fm.draw()
# split params into two disjoint sets
input_params = fm.parameters[::2]
training_params = fm.parameters[1::2]
print("input_params:", input_params)
print("training_params:", training_params)
# define new parameter vectors for the input and user parameters
new_input_params = ParameterVector("x", len(input_params))
new_training_params = ParameterVector("θ", len(training_params))
# resassign the origin feature map parameters
param_reassignments = {}
for i, p in enumerate(input_params):
param_reassignments[p] = new_input_params[i]
for i, p in enumerate(training_params):
param_reassignments[p] = new_training_params[i]
fm.assign_parameters(param_reassignments, inplace=True)
input_params = new_input_params
training_params = new_training_params
print("input_params:", input_params)
print("training_params:", training_params)
fm.draw()
# Define two circuits
circ1 = ZZFeatureMap(2)
circ2 = ZZFeatureMap(2)
input_params = circ1.parameters
training_params = ParameterVector("θ", 2)
# Reassign new parameters to circ2 so there are no name collisions
circ2.assign_parameters(training_params, inplace=True)
# Compose to build a parameterized feature map
fm = circ2.compose(circ1)
print("input_params:", list(input_params))
print("training_params:", training_params)
fm.draw()
#import qiskit.tools.jupyter
#
#%qiskit_version_table
#%qiskit_copyright
|
https://github.com/Spintronic6889/Introduction-of-Quantum-walk-its-application-on-search-and-decision-making
|
Spintronic6889
|
!python --version
!pip install qiskit
!pip install pylatexenc
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from qiskit.visualization import plot_histogram
import matplotlib.pyplot as plt
from qiskit.visualization import plot_state_city
%matplotlib inline
import matplotlib as mpl
from random import randrange
import numpy as np
import networkx as nx
import random
import math
from qiskit.tools.monitor import job_monitor
from random import randrange
pose=[]
for i in range(400):
pose.append([])
#print(pose)
#pose[-1]=1
#print(pose[-1])
pose[0]=200
for k in range(200):
rand = randrange(0,2)
if rand==0:
#print(rand)
pose[k+1]=pose[k]+1
if rand==1:
pose[k+1]=pose[k]-1
#print(pose)
yc=[]
for e in range(400):
yc.append([])
for q in range(400):
yc[q]=0
for h in range(400):
if pose[h]==q:
yc[q]=yc[q]+1
#print((yc))
#print(len(yc))
xc = np.arange(0, 400, 1)
plt.plot(yc)
plt.xlim(150, 250)
class quantom_walk:
def __init__(self):
self.__n=2
self.__steps=1
self.__theta=0
self.__phi=0
self.__qtype=1
self.__shot=5000
def main_qw(self,n,steps,qtype,theta,phi):
self.__qpos = QuantumRegister(n,'qpos')
self.__qcoin = QuantumRegister(1,'qcoin')
self.__cpos = ClassicalRegister(n,'cr')
self.__QC = QuantumCircuit(self.__qpos, self.__qcoin)
if qtype==2: self.__QC.x(self.__qcoin[0])
if qtype==3: self.__QC.u(theta, phi, 0, self.__qcoin[0])
for i in range(steps):
self.__QC.h(self.__qcoin[0])
self.__QC.barrier()
for i in range(n):
self.__QC.mct([self.__qcoin[0]]+self.__qpos[i+1:], self.__qpos[i], None, mode='noancilla')
self.__QC.barrier()
self.__QC.x(self.__qcoin[0])
for i in range(n):
if i+1 < n: self.__QC.x(self.__qpos[i+1:])
self.__QC.mct([self.__qcoin[0]]+self.__qpos[i+1:], self.__qpos[i], None, mode='noancilla')
if i+1 < n: self.__QC.x(self.__qpos[i+1:])
self.__QC.barrier()
a=n/2
p=math.floor(a)
for k in range(n):
if(k<p):
self.__QC.swap(self.__qpos[n-1-k],self.__qpos[k])
def displayh(self):
display(self.__QC.draw(output="mpl"))
def histagramh(self,shot):
self.__QC.measure_all()
job = execute(self.__QC,Aer.get_backend('aer_simulator'),shots=5000)
counts = job.result().get_counts(self.__QC)
return counts
def spacevectorh(self):
backend = Aer.get_backend('statevector_simulator')
job = execute(self.__QC, backend)
result = job.result()
outputstate = result.get_statevector(self.__QC, decimals=3)
print(outputstate)
def plotcityh(self):
backend = Aer.get_backend('statevector_simulator')
job = execute(self.__QC, backend)
result = job.result()
outputstate = result.get_statevector(self.__QC, decimals=3)
from qiskit.visualization import plot_state_city
plot_state_city(outputstate)
return outputstate
def unitaryh(self):
backend = Aer.get_backend('unitary_simulator')
job = execute(self.__QC, backend)
result = job.result()
yy=result.get_unitary(self.__QC, decimals=3)
print(yy)
def IBMQh(self):
from qiskit import IBMQ
IBMQ.save_account('d1441affe8622903745ae099f50bce72c21036f85b14600d18195c977b9efcdee621dd4a981b92d8028c03c4dc1860c82d70f501d345023471402f4f8dad0181',overwrite=True)
provider = IBMQ.load_account()
device = provider.get_backend('ibmq_quito') #we use ibmq_16_melbourne quantum device
job = execute(self.__QC, backend = device) #we pass our circuit and backend as usual
from qiskit.tools.monitor import job_monitor
job_monitor(job) #to see our status in queue
result = job.result()
counts= result.get_counts(self.__QC)
return counts
def instructionset(self):
print(self.__QC.qasm())
qw = quantom_walk()
qw.main_qw(4,4,1,1.5,4)
#qw.instructionset()
#qw.displayh()
#plot_histogram(qw.histagramh(3000), figsize=(20, 5), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None, ax=None)
#qw.histagramh(3000)
#qw.spacevectorh()
#qw.unitaryh()
#qw.plotcityh()
#plot_state_city(qw.plotcityh(), figsize=(20, 10))
#plot_histogram(qw.IBMQh(), figsize=(5, 2), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None, ax=None, filename=None)
#qw.IBMQh()
qw = quantom_walk()
qw.main_qw(2,2,1,1.5,4)
qw.displayh()
qw.main_qw(6,25,1,1.5,4)
plot_histogram(qw.histagramh(3000), figsize=(20, 5), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None, ax=None)
qw.main_qw(3,4,1,1.5,4)
qw.spacevectorh()
qw.main_qw(3,15,1,1.5,4)
plot_state_city(qw.plotcityh(), figsize=(20, 10))
qw.main_qw(2,3,1,1.5,4)
qw.unitaryh()
qw.main_qw(3,2,1,1.5,4)
qw.instructionset()
qw.main_qw(2,1,1,1.5,4)
plot_histogram(qw.IBMQh(), figsize=(5, 2), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None, ax=None, filename=None)
#hadamrad...qtype=1
qw = quantom_walk()
qw.main_qw(3,32,1,0,0)
plot_histogram(qw.histagramh(3000), figsize=(20, 5), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None, ax=None)
#optimized ugate applied...qtype=3
qw = quantom_walk()
qw.main_qw(3,32,3,1.57,1.57)
plot_histogram(qw.histagramh(3000), figsize=(20, 5), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None, ax=None)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import numpy as np
import copy
# Problem modelling imports
from docplex.mp.model import Model
# Qiskit imports
from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver
from qiskit.algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler
from qiskit.utils.algorithm_globals import algorithm_globals
from qiskit_optimization.algorithms import MinimumEigenOptimizer, CplexOptimizer
from qiskit_optimization import QuadraticProgram
from qiskit_optimization.problems.variable import VarType
from qiskit_optimization.converters.quadratic_program_to_qubo import QuadraticProgramToQubo
from qiskit_optimization.translators import from_docplex_mp
def create_problem(mu: np.array, sigma: np.array, total: int = 3) -> QuadraticProgram:
"""Solve the quadratic program using docplex."""
mdl = Model()
x = [mdl.binary_var("x%s" % i) for i in range(len(sigma))]
objective = mdl.sum([mu[i] * x[i] for i in range(len(mu))])
objective -= 2 * mdl.sum(
[sigma[i, j] * x[i] * x[j] for i in range(len(mu)) for j in range(len(mu))]
)
mdl.maximize(objective)
cost = mdl.sum(x)
mdl.add_constraint(cost == total)
qp = from_docplex_mp(mdl)
return qp
def relax_problem(problem) -> QuadraticProgram:
"""Change all variables to continuous."""
relaxed_problem = copy.deepcopy(problem)
for variable in relaxed_problem.variables:
variable.vartype = VarType.CONTINUOUS
return relaxed_problem
mu = np.array([3.418, 2.0913, 6.2415, 4.4436, 10.892, 3.4051])
sigma = np.array(
[
[1.07978412, 0.00768914, 0.11227606, -0.06842969, -0.01016793, -0.00839765],
[0.00768914, 0.10922887, -0.03043424, -0.0020045, 0.00670929, 0.0147937],
[0.11227606, -0.03043424, 0.985353, 0.02307313, -0.05249785, 0.00904119],
[-0.06842969, -0.0020045, 0.02307313, 0.6043817, 0.03740115, -0.00945322],
[-0.01016793, 0.00670929, -0.05249785, 0.03740115, 0.79839634, 0.07616951],
[-0.00839765, 0.0147937, 0.00904119, -0.00945322, 0.07616951, 1.08464544],
]
)
qubo = create_problem(mu, sigma)
print(qubo.prettyprint())
result = CplexOptimizer().solve(qubo)
print(result.prettyprint())
qp = relax_problem(QuadraticProgramToQubo().convert(qubo))
print(qp.prettyprint())
sol = CplexOptimizer().solve(qp)
print(sol.prettyprint())
c_stars = sol.samples[0].x
print(c_stars)
algorithm_globals.random_seed = 12345
qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0])
exact_mes = NumPyMinimumEigensolver()
qaoa = MinimumEigenOptimizer(qaoa_mes)
qaoa_result = qaoa.solve(qubo)
print(qaoa_result.prettyprint())
from qiskit import QuantumCircuit
thetas = [2 * np.arcsin(np.sqrt(c_star)) for c_star in c_stars]
init_qc = QuantumCircuit(len(sigma))
for idx, theta in enumerate(thetas):
init_qc.ry(theta, idx)
init_qc.draw(output="mpl")
from qiskit.circuit import Parameter
beta = Parameter("β")
ws_mixer = QuantumCircuit(len(sigma))
for idx, theta in enumerate(thetas):
ws_mixer.ry(-theta, idx)
ws_mixer.rz(-2 * beta, idx)
ws_mixer.ry(theta, idx)
ws_mixer.draw(output="mpl")
ws_qaoa_mes = QAOA(
sampler=Sampler(),
optimizer=COBYLA(),
initial_state=init_qc,
mixer=ws_mixer,
initial_point=[0.0, 1.0],
)
ws_qaoa = MinimumEigenOptimizer(ws_qaoa_mes)
ws_qaoa_result = ws_qaoa.solve(qubo)
print(ws_qaoa_result.prettyprint())
def format_qaoa_samples(samples, max_len: int = 10):
qaoa_res = []
for s in samples:
if sum(s.x) == 3:
qaoa_res.append(("".join([str(int(_)) for _ in s.x]), s.fval, s.probability))
res = sorted(qaoa_res, key=lambda x: -x[1])[0:max_len]
return [(_[0] + f": value: {_[1]:.3f}, probability: {1e2*_[2]:.1f}%") for _ in res]
format_qaoa_samples(qaoa_result.samples)
format_qaoa_samples(ws_qaoa_result.samples)
from qiskit_optimization.algorithms import WarmStartQAOAOptimizer
qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0])
ws_qaoa = WarmStartQAOAOptimizer(
pre_solver=CplexOptimizer(), relax_for_pre_solver=True, qaoa=qaoa_mes, epsilon=0.0
)
ws_result = ws_qaoa.solve(qubo)
print(ws_result.prettyprint())
format_qaoa_samples(ws_result.samples)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/IvanIsCoding/Quantum
|
IvanIsCoding
|
# Do the necessary imports
import numpy as np
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit import IBMQ, Aer, transpile, assemble
from qiskit.visualization import plot_histogram, plot_bloch_multivector, array_to_latex
from qiskit.extensions import Initialize
from qiskit.ignis.verification import marginal_counts
from qiskit.quantum_info import random_statevector
# Loading your IBM Quantum account(s)
provider = IBMQ.load_account()
## SETUP
# Protocol uses 3 qubits and 2 classical bits in 2 different registers
qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits
crz = ClassicalRegister(1, name="crz") # and 2 classical bits
crx = ClassicalRegister(1, name="crx") # in 2 different registers
teleportation_circuit = QuantumCircuit(qr, crz, crx)
def create_bell_pair(qc, a, b):
qc.h(a)
qc.cx(a,b)
qr = QuantumRegister(3, name="q")
crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx")
teleportation_circuit = QuantumCircuit(qr, crz, crx)
create_bell_pair(teleportation_circuit, 1, 2)
teleportation_circuit.draw()
def alice_gates(qc, psi, a):
qc.cx(psi, a)
qc.h(psi)
qr = QuantumRegister(3, name="q")
crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx")
teleportation_circuit = QuantumCircuit(qr, crz, crx)
## STEP 1
create_bell_pair(teleportation_circuit, 1, 2)
## STEP 2
teleportation_circuit.barrier() # Use barrier to separate steps
alice_gates(teleportation_circuit, 0, 1)
teleportation_circuit.draw()
def measure_and_send(qc, a, b):
"""Measures qubits a & b and 'sends' the results to Bob"""
qc.barrier()
qc.measure(a,0)
qc.measure(b,1)
qr = QuantumRegister(3, name="q")
crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx")
teleportation_circuit = QuantumCircuit(qr, crz, crx)
create_bell_pair(teleportation_circuit, 1, 2)
teleportation_circuit.barrier() # Use barrier to separate steps
alice_gates(teleportation_circuit, 0, 1)
measure_and_send(teleportation_circuit, 0 ,1)
teleportation_circuit.draw()
def bob_gates(qc, qubit, crz, crx):
qc.x(qubit).c_if(crx, 1) # Apply gates if the registers
qc.z(qubit).c_if(crz, 1) # are in the state '1'
qr = QuantumRegister(3, name="q")
crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx")
teleportation_circuit = QuantumCircuit(qr, crz, crx)
## STEP 1
create_bell_pair(teleportation_circuit, 1, 2)
## STEP 2
teleportation_circuit.barrier() # Use barrier to separate steps
alice_gates(teleportation_circuit, 0, 1)
## STEP 3
measure_and_send(teleportation_circuit, 0, 1)
## STEP 4
teleportation_circuit.barrier() # Use barrier to separate steps
bob_gates(teleportation_circuit, 2, crz, crx)
teleportation_circuit.draw()
# Create random 1-qubit state
psi = random_statevector(2)
# Display it nicely
display(array_to_latex(psi, prefix="|\\psi\\rangle ="))
# Show it on a Bloch sphere
plot_bloch_multivector(psi)
init_gate = Initialize(psi)
init_gate.label = "init"
## SETUP
qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits
crz = ClassicalRegister(1, name="crz") # and 2 classical registers
crx = ClassicalRegister(1, name="crx")
qc = QuantumCircuit(qr, crz, crx)
## STEP 0
# First, let's initialize Alice's q0
qc.append(init_gate, [0])
qc.barrier()
## STEP 1
# Now begins the teleportation protocol
create_bell_pair(qc, 1, 2)
qc.barrier()
## STEP 2
# Send q1 to Alice and q2 to Bob
alice_gates(qc, 0, 1)
## STEP 3
# Alice then sends her classical bits to Bob
measure_and_send(qc, 0, 1)
## STEP 4
# Bob decodes qubits
bob_gates(qc, 2, crz, crx)
# Display the circuit
qc.draw()
sim = Aer.get_backend('aer_simulator')
qc.save_statevector()
out_vector = sim.run(qc).result().get_statevector()
plot_bloch_multivector(out_vector)
|
https://github.com/anirban-m/qiskit-superstaq
|
anirban-m
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
import time
from typing import Any, Dict, List
import qiskit
import requests
import qiskit_superstaq as qss
class SuperstaQJob(qiskit.providers.JobV1):
def __init__(
self,
backend: qss.superstaq_backend.SuperstaQBackend,
job_id: str,
) -> None:
# Can we stop setting qobj and access_token to None
"""Initialize a job instance.
Parameters:
backend (BaseBackend): Backend that job was executed on.
job_id (str): The unique job ID from SuperstaQ.
access_token (str): The access token.
"""
super().__init__(backend, job_id)
def __eq__(self, other: Any) -> bool:
if not (isinstance(other, SuperstaQJob)):
return False
return self._job_id == other._job_id
def _wait_for_results(self, timeout: float = None, wait: float = 5) -> List[Dict]:
result_list: List[Dict] = []
job_ids = self._job_id.split(",") # separate aggregated job_ids
header = {
"Authorization": self._backend._provider.access_token,
"SDK": "qiskit",
}
for jid in job_ids:
start_time = time.time()
result = None
while True:
elapsed = time.time() - start_time
if timeout and elapsed >= timeout:
raise qiskit.providers.JobTimeoutError(
"Timed out waiting for result"
) # pragma: no cover b/c don't want slow test or mocking time
getstr = f"{self._backend.url}/" + qss.API_VERSION + f"/job/{jid}"
result = requests.get(
getstr, headers=header, verify=(self._backend.url == qss.API_URL)
).json()
if result["status"] == "Done":
break
if result["status"] == "Error":
raise qiskit.providers.JobError("API returned error:\n" + str(result))
time.sleep(wait) # pragma: no cover b/c don't want slow test or mocking time
result_list.append(result)
return result_list
def result(self, timeout: float = None, wait: float = 5) -> qiskit.result.Result:
# Get the result data of a circuit.
results = self._wait_for_results(timeout, wait)
# create list of result dictionaries
results_list = []
for result in results:
results_list.append(
{"success": True, "shots": result["shots"], "data": {"counts": result["samples"]}}
)
return qiskit.result.Result.from_dict(
{
"results": results_list,
"qobj_id": -1,
"backend_name": self._backend._configuration.backend_name,
"backend_version": self._backend._configuration.backend_version,
"success": True,
"job_id": self._job_id,
}
)
def status(self) -> str:
"""Query for the job status."""
header = {
"Authorization": self._backend._provider.access_token,
"SDK": "qiskit",
}
job_id_list = self._job_id.split(",") # separate aggregated job ids
status = "Done"
# when we have multiple jobs, we will take the "worst status" among the jobs
# For example, if any of the jobs are still queued, we report Queued as the status
# for the entire batch.
for job_id in job_id_list:
get_url = self._backend.url + "/" + qss.API_VERSION + f"/job/{job_id}"
result = requests.get(
get_url, headers=header, verify=(self._backend.url == qss.API_URL)
)
temp_status = result.json()["status"]
if temp_status == "Queued":
status = "Queued"
break
elif temp_status == "Running":
status = "Running"
assert status in ["Queued", "Running", "Done"]
if status == "Queued":
status = qiskit.providers.jobstatus.JobStatus.QUEUED
elif status == "Running":
status = qiskit.providers.jobstatus.JobStatus.RUNNING
else:
status = qiskit.providers.jobstatus.JobStatus.DONE
return status
def submit(self) -> None:
raise NotImplementedError("Submit through SuperstaQBackend, not through SuperstaqJob")
|
https://github.com/qiskit-community/qiskit-qcgpu-provider
|
qiskit-community
|
# -*- coding: utf-8 -*-
# Copyright 2017, IBM.
#
# This source code is licensed under the Apache License, Version 2.0 found in
# the LICENSE.txt file in the root directory of this source tree.
# pylint: disable=missing-docstring,redefined-builtin
import unittest
import os
from qiskit import QuantumCircuit
from .common import QiskitTestCase
from qiskit_jku_provider import QasmSimulator
from qiskit import execute
class TestQasmSimulatorJKUBasic(QiskitTestCase):
"""Runs the Basic qasm_simulator tests from Terra on JKU."""
def setUp(self):
self.seed = 88
self.backend = QasmSimulator(silent=True)
qasm_filename = os.path.join(os.path.dirname(__file__), 'qasms', 'example.qasm')
compiled_circuit = QuantumCircuit.from_qasm_file(qasm_filename)
compiled_circuit.name = 'test'
self.circuit = compiled_circuit
def test_qasm_simulator_single_shot(self):
"""Test single shot run."""
result = execute(self.circuit, self.backend, seed_transpiler=34342, shots=1).result()
self.assertEqual(result.success, True)
def test_qasm_simulator(self):
"""Test data counts output for single circuit run against reference."""
shots = 1024
result = execute(self.circuit, self.backend, seed_transpiler=34342, shots=shots).result()
threshold = 0.04 * shots
counts = result.get_counts('test')
target = {'100 100': shots / 8, '011 011': shots / 8,
'101 101': shots / 8, '111 111': shots / 8,
'000 000': shots / 8, '010 010': shots / 8,
'110 110': shots / 8, '001 001': shots / 8}
self.assertDictAlmostEqual(counts, target, threshold)
if __name__ == '__main__':
unittest.main()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import DensityMatrix
from qiskit.visualization import plot_state_city
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
# plot using a DensityMatrix
state = DensityMatrix(qc)
plot_state_city(state)
|
https://github.com/quantumyatra/quantum_computing
|
quantumyatra
|
# importing Qiskit
from qiskit import IBMQ, BasicAer
#from qiskit.providers.ibmq import least_busy
from qiskit import QuantumCircuit, execute
# import basic plot tools
from qiskit.visualization import plot_histogram
s='11'
n = 2*len(str(s))
ckt = QuantumCircuit(n)
barriers = True
ckt.h(range(len(str(s))))
# Apply barrier
ckt.barrier()
# Apply the query function
## 2-qubit oracle for s = 11
ckt.cx(0, len(str(s)) + 0)
ckt.cx(0, len(str(s)) + 1)
ckt.cx(1, len(str(s)) + 0)
ckt.cx(1, len(str(s)) + 1)
# Apply barrier
ckt.barrier()
# Apply Hadamard gates to the input register
ckt.h(range(len(str(s))))
# Measure ancilla qubits
ckt.measure_all()
ckt.draw(output='mpl')
|
https://github.com/microsoft/qiskit-qir
|
microsoft
|
##
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
##
from qiskit_qir.translate import to_qir_module
from qiskit import ClassicalRegister, QuantumCircuit
from qiskit.circuit import Clbit
from qiskit.circuit.exceptions import CircuitError
import pytest
import pyqir
import os
from pathlib import Path
# result_stream, condition value, expected gates
falsy_single_bit_variations = [False, 0]
truthy_single_bit_variations = [True, 1]
invalid_single_bit_varitions = [-1]
def compare_reference_ir(generated_bitcode: bytes, name: str) -> None:
module = pyqir.Module.from_bitcode(pyqir.Context(), generated_bitcode, f"{name}")
ir = str(module)
file = os.path.join(os.path.dirname(__file__), f"resources/{name}.ll")
expected = Path(file).read_text()
assert ir == expected
@pytest.mark.parametrize("value", falsy_single_bit_variations)
def test_single_clbit_variations_falsy(value: bool) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_clbit_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
bit: Clbit = cr[0]
circuit.measure(1, 1).c_if(bit, value)
generated_bitcode = to_qir_module(circuit, record_output=False)[0].bitcode
compare_reference_ir(generated_bitcode, "test_single_clbit_variations_falsy")
@pytest.mark.parametrize("value", truthy_single_bit_variations)
def test_single_clbit_variations_truthy(value: bool) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_clbit_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
bit: Clbit = cr[0]
circuit.measure(1, 1).c_if(bit, value)
generated_bitcode = to_qir_module(circuit, record_output=False)[0].bitcode
compare_reference_ir(generated_bitcode, "test_single_clbit_variations_truthy")
@pytest.mark.parametrize("value", truthy_single_bit_variations)
def test_single_register_index_variations_truthy(value: bool) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_register_index_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
circuit.measure(1, 1).c_if(0, value)
generated_bitcode = to_qir_module(circuit, record_output=False)[0].bitcode
compare_reference_ir(
generated_bitcode, "test_single_register_index_variations_truthy"
)
@pytest.mark.parametrize("value", falsy_single_bit_variations)
def test_single_register_index_variations_falsy(value: bool) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_register_index_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
circuit.measure(1, 1).c_if(0, value)
generated_bitcode = to_qir_module(circuit, record_output=False)[0].bitcode
compare_reference_ir(
generated_bitcode, "test_single_register_index_variations_falsy"
)
@pytest.mark.parametrize("value", truthy_single_bit_variations)
def test_single_register_variations_truthy(value: bool) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_register_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
circuit.measure(1, 1).c_if(cr, value)
generated_bitcode = to_qir_module(circuit, record_output=False)[0].bitcode
compare_reference_ir(generated_bitcode, "test_single_register_variations_truthy")
@pytest.mark.parametrize("value", falsy_single_bit_variations)
def test_single_register_variations_falsy(value: bool) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_register_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
circuit.measure(1, 1).c_if(cr, value)
generated_bitcode = to_qir_module(circuit, record_output=False)[0].bitcode
compare_reference_ir(generated_bitcode, "test_single_register_variations_falsy")
@pytest.mark.parametrize("value", invalid_single_bit_varitions)
def test_single_clbit_invalid_variations(value: int) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_clbit_invalid_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
bit: Clbit = cr[0]
with pytest.raises(CircuitError) as exc_info:
_ = circuit.measure(1, 1).c_if(bit, value)
assert exc_info is not None
@pytest.mark.parametrize("value", invalid_single_bit_varitions)
def test_single_register_index_invalid_variations(value: int) -> None:
circuit = QuantumCircuit(
2,
0,
name=f"test_single_register_index_invalid_variations",
)
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
with pytest.raises(CircuitError) as exc_info:
_ = circuit.measure(1, 1).c_if(0, value)
assert exc_info is not None
@pytest.mark.parametrize("value", invalid_single_bit_varitions)
def test_single_register_invalid_variations(value: int) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_register_invalid_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
with pytest.raises(CircuitError) as exc_info:
_ = circuit.measure(1, 1).c_if(cr, value)
assert exc_info is not None
two_bit_variations = [
[False, "falsy"],
[0, "falsy"],
[True, "truthy"],
[1, "truthy"],
[2, "two"],
[3, "three"],
]
# # -1: 11
# # -2: 10
# # -3: 01
# # -4: 00
invalid_two_bit_variations = [-4, -3, -2, -1]
@pytest.mark.parametrize("matrix", two_bit_variations)
def test_two_bit_register_variations(matrix) -> None:
value, name = matrix
circuit = QuantumCircuit(
3,
0,
name=f"test_two_bit_register_variations",
)
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
cond = ClassicalRegister(1, "cond")
circuit.add_register(cond)
circuit.measure(0, 0)
circuit.measure(1, 1)
circuit.measure(2, 2).c_if(cr, value)
generated_bitcode = to_qir_module(circuit, record_output=False)[0].bitcode
compare_reference_ir(generated_bitcode, f"test_two_bit_register_variations_{name}")
@pytest.mark.parametrize("value", invalid_two_bit_variations)
def test_two_bit_register_invalid_variations(value: int) -> None:
circuit = QuantumCircuit(
3,
0,
name=f"test_two_bit_register_invalid_variations",
)
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
cond = ClassicalRegister(1, "cond")
circuit.add_register(cond)
circuit.measure(0, 0)
circuit.measure(1, 1)
with pytest.raises(CircuitError) as exc_info:
_ = circuit.measure(2, 2).c_if(cr, value)
assert exc_info is not None
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_bloch_multivector
qc = QuantumCircuit(2)
qc.h(0)
qc.x(1)
state = Statevector(qc)
plot_bloch_multivector(state)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_state_qsphere
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
state = Statevector(qc)
plot_state_qsphere(state)
|
https://github.com/googlercolin/Qiskit-Course
|
googlercolin
|
import numpy as np
# Importing standard Qiskit libraries
from qiskit import QuantumCircuit, transpile, Aer, IBMQ
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from ibm_quantum_widgets import *
from qiskit.providers.aer import QasmSimulator
# Loading your IBM Quantum account(s)
provider = IBMQ.load_account()
import math
desired_state = [
0,
0,
0,
0,
0,
1 / math.sqrt(2),
0,
1 / math.sqrt(2)]
qc = QuantumCircuit(3)
qc.initialize(desired_state, [0,1,2])
qc.decompose().decompose().decompose().decompose().decompose().draw()
desired_state = [
1 / math.sqrt(15.25) * 1.5,
0,
1 / math.sqrt(15.25) * -2,
1 / math.sqrt(15.25) * 3]
qc = QuantumCircuit(2)
qc.initialize(desired_state, [0,1])
qc.decompose().decompose().decompose().decompose().decompose().draw()
qc = QuantumCircuit(3)
qc.ry(0, 0)
qc.ry(math.pi/4, 1)
qc.ry(math.pi/2, 2)
qc.draw()
from qiskit.circuit.library import ZZFeatureMap
circuit = ZZFeatureMap(3, reps=1, insert_barriers=True)
circuit.decompose().draw()
x = [0.1, 0.2, 0.3]
encode = circuit.bind_parameters(x)
encode.decompose().draw()
from qiskit.circuit.library import EfficientSU2
circuit = EfficientSU2(num_qubits=3, reps=1, insert_barriers=True)
circuit.decompose().draw()
x = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2]
encode = circuit.bind_parameters(x)
encode.decompose().draw()
|
https://github.com/swe-train/qiskit__qiskit
|
swe-train
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=missing-function-docstring, missing-module-docstring
import unittest
from inspect import signature
from math import pi
import numpy as np
from scipy.linalg import expm
from ddt import data, ddt, unpack
from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister, execute
from qiskit.exceptions import QiskitError
from qiskit.circuit.exceptions import CircuitError
from qiskit.test import QiskitTestCase
from qiskit.circuit import Gate, ControlledGate
from qiskit.circuit.library import (
U1Gate,
U2Gate,
U3Gate,
CU1Gate,
CU3Gate,
XXMinusYYGate,
XXPlusYYGate,
RZGate,
XGate,
YGate,
GlobalPhaseGate,
)
from qiskit import BasicAer
from qiskit.quantum_info import Pauli
from qiskit.quantum_info.operators.predicates import matrix_equal, is_unitary_matrix
from qiskit.utils.optionals import HAS_TWEEDLEDUM
from qiskit.quantum_info import Operator
from qiskit import transpile
class TestStandard1Q(QiskitTestCase):
"""Standard Extension Test. Gates with a single Qubit"""
def setUp(self):
super().setUp()
self.qr = QuantumRegister(3, "q")
self.qr2 = QuantumRegister(3, "r")
self.cr = ClassicalRegister(3, "c")
self.circuit = QuantumCircuit(self.qr, self.qr2, self.cr)
def test_barrier(self):
self.circuit.barrier(self.qr[1])
self.assertEqual(len(self.circuit), 1)
self.assertEqual(self.circuit[0].operation.name, "barrier")
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_barrier_wires(self):
self.circuit.barrier(1)
self.assertEqual(len(self.circuit), 1)
self.assertEqual(self.circuit[0].operation.name, "barrier")
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_barrier_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.barrier, self.cr[0])
self.assertRaises(CircuitError, qc.barrier, self.cr)
self.assertRaises(CircuitError, qc.barrier, (self.qr, "a"))
self.assertRaises(CircuitError, qc.barrier, 0.0)
def test_conditional_barrier_invalid(self):
qc = self.circuit
barrier = qc.barrier(self.qr)
self.assertRaises(QiskitError, barrier.c_if, self.cr, 0)
def test_barrier_reg(self):
self.circuit.barrier(self.qr)
self.assertEqual(len(self.circuit), 1)
self.assertEqual(self.circuit[0].operation.name, "barrier")
self.assertEqual(self.circuit[0].qubits, (self.qr[0], self.qr[1], self.qr[2]))
def test_barrier_none(self):
self.circuit.barrier()
self.assertEqual(len(self.circuit), 1)
self.assertEqual(self.circuit[0].operation.name, "barrier")
self.assertEqual(
self.circuit[0].qubits,
(self.qr[0], self.qr[1], self.qr[2], self.qr2[0], self.qr2[1], self.qr2[2]),
)
def test_ccx(self):
self.circuit.ccx(self.qr[0], self.qr[1], self.qr[2])
self.assertEqual(self.circuit[0].operation.name, "ccx")
self.assertEqual(self.circuit[0].qubits, (self.qr[0], self.qr[1], self.qr[2]))
def test_ccx_wires(self):
self.circuit.ccx(0, 1, 2)
self.assertEqual(self.circuit[0].operation.name, "ccx")
self.assertEqual(self.circuit[0].qubits, (self.qr[0], self.qr[1], self.qr[2]))
def test_ccx_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.ccx, self.cr[0], self.cr[1], self.cr[2])
self.assertRaises(CircuitError, qc.ccx, self.qr[0], self.qr[0], self.qr[2])
self.assertRaises(CircuitError, qc.ccx, 0.0, self.qr[0], self.qr[2])
self.assertRaises(CircuitError, qc.ccx, self.cr, self.qr, self.qr)
self.assertRaises(CircuitError, qc.ccx, "a", self.qr[1], self.qr[2])
def test_ch(self):
self.circuit.ch(self.qr[0], self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "ch")
self.assertEqual(self.circuit[0].qubits, (self.qr[0], self.qr[1]))
def test_ch_wires(self):
self.circuit.ch(0, 1)
self.assertEqual(self.circuit[0].operation.name, "ch")
self.assertEqual(self.circuit[0].qubits, (self.qr[0], self.qr[1]))
def test_ch_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.ch, self.cr[0], self.cr[1])
self.assertRaises(CircuitError, qc.ch, self.qr[0], self.qr[0])
self.assertRaises(CircuitError, qc.ch, 0.0, self.qr[0])
self.assertRaises(CircuitError, qc.ch, (self.qr, 3), self.qr[0])
self.assertRaises(CircuitError, qc.ch, self.cr, self.qr)
self.assertRaises(CircuitError, qc.ch, "a", self.qr[1])
def test_cif_reg(self):
self.circuit.h(self.qr[0]).c_if(self.cr, 7)
self.assertEqual(self.circuit[0].operation.name, "h")
self.assertEqual(self.circuit[0].qubits, (self.qr[0],))
self.assertEqual(self.circuit[0].operation.condition, (self.cr, 7))
def test_cif_single_bit(self):
self.circuit.h(self.qr[0]).c_if(self.cr[0], True)
self.assertEqual(self.circuit[0].operation.name, "h")
self.assertEqual(self.circuit[0].qubits, (self.qr[0],))
self.assertEqual(self.circuit[0].operation.condition, (self.cr[0], True))
def test_crz(self):
self.circuit.crz(1, self.qr[0], self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "crz")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[0], self.qr[1]))
def test_cry(self):
self.circuit.cry(1, self.qr[0], self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "cry")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[0], self.qr[1]))
def test_crx(self):
self.circuit.crx(1, self.qr[0], self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "crx")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[0], self.qr[1]))
def test_crz_wires(self):
self.circuit.crz(1, 0, 1)
self.assertEqual(self.circuit[0].operation.name, "crz")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[0], self.qr[1]))
def test_cry_wires(self):
self.circuit.cry(1, 0, 1)
self.assertEqual(self.circuit[0].operation.name, "cry")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[0], self.qr[1]))
def test_crx_wires(self):
self.circuit.crx(1, 0, 1)
self.assertEqual(self.circuit[0].operation.name, "crx")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[0], self.qr[1]))
def test_crz_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.crz, 0, self.cr[0], self.cr[1])
self.assertRaises(CircuitError, qc.crz, 0, self.qr[0], self.qr[0])
self.assertRaises(CircuitError, qc.crz, 0, 0.0, self.qr[0])
self.assertRaises(CircuitError, qc.crz, self.qr[2], self.qr[1], self.qr[0])
self.assertRaises(CircuitError, qc.crz, 0, self.qr[1], self.cr[2])
self.assertRaises(CircuitError, qc.crz, 0, (self.qr, 3), self.qr[1])
self.assertRaises(CircuitError, qc.crz, 0, self.cr, self.qr)
# TODO self.assertRaises(CircuitError, qc.crz, 'a', self.qr[1], self.qr[2])
def test_cry_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.cry, 0, self.cr[0], self.cr[1])
self.assertRaises(CircuitError, qc.cry, 0, self.qr[0], self.qr[0])
self.assertRaises(CircuitError, qc.cry, 0, 0.0, self.qr[0])
self.assertRaises(CircuitError, qc.cry, self.qr[2], self.qr[1], self.qr[0])
self.assertRaises(CircuitError, qc.cry, 0, self.qr[1], self.cr[2])
self.assertRaises(CircuitError, qc.cry, 0, (self.qr, 3), self.qr[1])
self.assertRaises(CircuitError, qc.cry, 0, self.cr, self.qr)
# TODO self.assertRaises(CircuitError, qc.cry, 'a', self.qr[1], self.qr[2])
def test_crx_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.crx, 0, self.cr[0], self.cr[1])
self.assertRaises(CircuitError, qc.crx, 0, self.qr[0], self.qr[0])
self.assertRaises(CircuitError, qc.crx, 0, 0.0, self.qr[0])
self.assertRaises(CircuitError, qc.crx, self.qr[2], self.qr[1], self.qr[0])
self.assertRaises(CircuitError, qc.crx, 0, self.qr[1], self.cr[2])
self.assertRaises(CircuitError, qc.crx, 0, (self.qr, 3), self.qr[1])
self.assertRaises(CircuitError, qc.crx, 0, self.cr, self.qr)
# TODO self.assertRaises(CircuitError, qc.crx, 'a', self.qr[1], self.qr[2])
def test_cswap(self):
self.circuit.cswap(self.qr[0], self.qr[1], self.qr[2])
self.assertEqual(self.circuit[0].operation.name, "cswap")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[0], self.qr[1], self.qr[2]))
def test_cswap_wires(self):
self.circuit.cswap(0, 1, 2)
self.assertEqual(self.circuit[0].operation.name, "cswap")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[0], self.qr[1], self.qr[2]))
def test_cswap_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.cswap, self.cr[0], self.cr[1], self.cr[2])
self.assertRaises(CircuitError, qc.cswap, self.qr[1], self.qr[0], self.qr[0])
self.assertRaises(CircuitError, qc.cswap, self.qr[1], 0.0, self.qr[0])
self.assertRaises(CircuitError, qc.cswap, self.cr[0], self.cr[1], self.qr[0])
self.assertRaises(CircuitError, qc.cswap, self.qr[0], self.qr[0], self.qr[1])
self.assertRaises(CircuitError, qc.cswap, 0.0, self.qr[0], self.qr[1])
self.assertRaises(CircuitError, qc.cswap, (self.qr, 3), self.qr[0], self.qr[1])
self.assertRaises(CircuitError, qc.cswap, self.cr, self.qr[0], self.qr[1])
self.assertRaises(CircuitError, qc.cswap, "a", self.qr[1], self.qr[2])
def test_cu1(self):
self.circuit.append(CU1Gate(1), [self.qr[1], self.qr[2]])
self.assertEqual(self.circuit[0].operation.name, "cu1")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[1], self.qr[2]))
def test_cu1_wires(self):
self.circuit.append(CU1Gate(1), [1, 2])
self.assertEqual(self.circuit[0].operation.name, "cu1")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[1], self.qr[2]))
def test_cu3(self):
self.circuit.append(CU3Gate(1, 2, 3), [self.qr[1], self.qr[2]])
self.assertEqual(self.circuit[0].operation.name, "cu3")
self.assertEqual(self.circuit[0].operation.params, [1, 2, 3])
self.assertEqual(self.circuit[0].qubits, (self.qr[1], self.qr[2]))
def test_cu3_wires(self):
self.circuit.append(CU3Gate(1, 2, 3), [1, 2])
self.assertEqual(self.circuit[0].operation.name, "cu3")
self.assertEqual(self.circuit[0].operation.params, [1, 2, 3])
self.assertEqual(self.circuit[0].qubits, (self.qr[1], self.qr[2]))
def test_cx(self):
self.circuit.cx(self.qr[1], self.qr[2])
self.assertEqual(self.circuit[0].operation.name, "cx")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1], self.qr[2]))
def test_cx_wires(self):
self.circuit.cx(1, 2)
self.assertEqual(self.circuit[0].operation.name, "cx")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1], self.qr[2]))
def test_cx_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.cx, self.cr[1], self.cr[2])
self.assertRaises(CircuitError, qc.cx, self.qr[0], self.qr[0])
self.assertRaises(CircuitError, qc.cx, 0.0, self.qr[0])
self.assertRaises(CircuitError, qc.cx, (self.qr, 3), self.qr[0])
self.assertRaises(CircuitError, qc.cx, self.cr, self.qr)
self.assertRaises(CircuitError, qc.cx, "a", self.qr[1])
def test_cy(self):
self.circuit.cy(self.qr[1], self.qr[2])
self.assertEqual(self.circuit[0].operation.name, "cy")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1], self.qr[2]))
def test_cy_wires(self):
self.circuit.cy(1, 2)
self.assertEqual(self.circuit[0].operation.name, "cy")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1], self.qr[2]))
def test_cy_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.cy, self.cr[1], self.cr[2])
self.assertRaises(CircuitError, qc.cy, self.qr[0], self.qr[0])
self.assertRaises(CircuitError, qc.cy, 0.0, self.qr[0])
self.assertRaises(CircuitError, qc.cy, (self.qr, 3), self.qr[0])
self.assertRaises(CircuitError, qc.cy, self.cr, self.qr)
self.assertRaises(CircuitError, qc.cy, "a", self.qr[1])
def test_cz(self):
self.circuit.cz(self.qr[1], self.qr[2])
self.assertEqual(self.circuit[0].operation.name, "cz")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1], self.qr[2]))
def test_cz_wires(self):
self.circuit.cz(1, 2)
self.assertEqual(self.circuit[0].operation.name, "cz")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1], self.qr[2]))
def test_cz_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.cz, self.cr[1], self.cr[2])
self.assertRaises(CircuitError, qc.cz, self.qr[0], self.qr[0])
self.assertRaises(CircuitError, qc.cz, 0.0, self.qr[0])
self.assertRaises(CircuitError, qc.cz, (self.qr, 3), self.qr[0])
self.assertRaises(CircuitError, qc.cz, self.cr, self.qr)
self.assertRaises(CircuitError, qc.cz, "a", self.qr[1])
def test_h(self):
self.circuit.h(self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "h")
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_h_wires(self):
self.circuit.h(1)
self.assertEqual(self.circuit[0].operation.name, "h")
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_h_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.h, self.cr[0])
self.assertRaises(CircuitError, qc.h, self.cr)
self.assertRaises(CircuitError, qc.h, (self.qr, 3))
self.assertRaises(CircuitError, qc.h, (self.qr, "a"))
self.assertRaises(CircuitError, qc.h, 0.0)
def test_h_reg(self):
instruction_set = self.circuit.h(self.qr)
self.assertEqual(len(instruction_set), 3)
self.assertEqual(instruction_set[0].operation.name, "h")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
def test_h_reg_inv(self):
instruction_set = self.circuit.h(self.qr).inverse()
self.assertEqual(len(instruction_set), 3)
self.assertEqual(instruction_set[0].operation.name, "h")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
def test_iden(self):
self.circuit.i(self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "id")
self.assertEqual(self.circuit[0].operation.params, [])
def test_iden_wires(self):
self.circuit.i(1)
self.assertEqual(self.circuit[0].operation.name, "id")
self.assertEqual(self.circuit[0].operation.params, [])
def test_iden_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.i, self.cr[0])
self.assertRaises(CircuitError, qc.i, self.cr)
self.assertRaises(CircuitError, qc.i, (self.qr, 3))
self.assertRaises(CircuitError, qc.i, (self.qr, "a"))
self.assertRaises(CircuitError, qc.i, 0.0)
def test_iden_reg(self):
instruction_set = self.circuit.i(self.qr)
self.assertEqual(len(instruction_set), 3)
self.assertEqual(instruction_set[0].operation.name, "id")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
def test_iden_reg_inv(self):
instruction_set = self.circuit.i(self.qr).inverse()
self.assertEqual(len(instruction_set), 3)
self.assertEqual(instruction_set[0].operation.name, "id")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
def test_rx(self):
self.circuit.rx(1, self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "rx")
self.assertEqual(self.circuit[0].operation.params, [1])
def test_rx_wires(self):
self.circuit.rx(1, 1)
self.assertEqual(self.circuit[0].operation.name, "rx")
self.assertEqual(self.circuit[0].operation.params, [1])
def test_rx_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.rx, self.cr[0], self.cr[1])
self.assertRaises(CircuitError, qc.rx, self.qr[1], 0)
self.assertRaises(CircuitError, qc.rx, 0, self.cr[0])
self.assertRaises(CircuitError, qc.rx, 0, 0.0)
self.assertRaises(CircuitError, qc.rx, self.qr[2], self.qr[1])
self.assertRaises(CircuitError, qc.rx, 0, (self.qr, 3))
self.assertRaises(CircuitError, qc.rx, 0, self.cr)
# TODO self.assertRaises(CircuitError, qc.rx, 'a', self.qr[1])
self.assertRaises(CircuitError, qc.rx, 0, "a")
def test_rx_reg(self):
instruction_set = self.circuit.rx(1, self.qr)
self.assertEqual(len(instruction_set), 3)
self.assertEqual(instruction_set[0].operation.name, "rx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_rx_reg_inv(self):
instruction_set = self.circuit.rx(1, self.qr).inverse()
self.assertEqual(len(instruction_set), 3)
self.assertEqual(instruction_set[0].operation.name, "rx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_rx_pi(self):
qc = self.circuit
qc.rx(pi / 2, self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "rx")
self.assertEqual(self.circuit[0].operation.params, [pi / 2])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_ry(self):
self.circuit.ry(1, self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "ry")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_ry_wires(self):
self.circuit.ry(1, 1)
self.assertEqual(self.circuit[0].operation.name, "ry")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_ry_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.ry, self.cr[0], self.cr[1])
self.assertRaises(CircuitError, qc.ry, self.qr[1], 0)
self.assertRaises(CircuitError, qc.ry, 0, self.cr[0])
self.assertRaises(CircuitError, qc.ry, 0, 0.0)
self.assertRaises(CircuitError, qc.ry, self.qr[2], self.qr[1])
self.assertRaises(CircuitError, qc.ry, 0, (self.qr, 3))
self.assertRaises(CircuitError, qc.ry, 0, self.cr)
# TODO self.assertRaises(CircuitError, qc.ry, 'a', self.qr[1])
self.assertRaises(CircuitError, qc.ry, 0, "a")
def test_ry_reg(self):
instruction_set = self.circuit.ry(1, self.qr)
self.assertEqual(instruction_set[0].operation.name, "ry")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_ry_reg_inv(self):
instruction_set = self.circuit.ry(1, self.qr).inverse()
self.assertEqual(instruction_set[0].operation.name, "ry")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_ry_pi(self):
qc = self.circuit
qc.ry(pi / 2, self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "ry")
self.assertEqual(self.circuit[0].operation.params, [pi / 2])
def test_rz(self):
self.circuit.rz(1, self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "rz")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_rz_wires(self):
self.circuit.rz(1, 1)
self.assertEqual(self.circuit[0].operation.name, "rz")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_rz_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.rz, self.cr[0], self.cr[1])
self.assertRaises(CircuitError, qc.rz, self.qr[1], 0)
self.assertRaises(CircuitError, qc.rz, 0, self.cr[0])
self.assertRaises(CircuitError, qc.rz, 0, 0.0)
self.assertRaises(CircuitError, qc.rz, self.qr[2], self.qr[1])
self.assertRaises(CircuitError, qc.rz, 0, (self.qr, 3))
self.assertRaises(CircuitError, qc.rz, 0, self.cr)
# TODO self.assertRaises(CircuitError, qc.rz, 'a', self.qr[1])
self.assertRaises(CircuitError, qc.rz, 0, "a")
def test_rz_reg(self):
instruction_set = self.circuit.rz(1, self.qr)
self.assertEqual(instruction_set[0].operation.name, "rz")
self.assertEqual(instruction_set[2].operation.params, [1])
def test_rz_reg_inv(self):
instruction_set = self.circuit.rz(1, self.qr).inverse()
self.assertEqual(instruction_set[0].operation.name, "rz")
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_rz_pi(self):
self.circuit.rz(pi / 2, self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "rz")
self.assertEqual(self.circuit[0].operation.params, [pi / 2])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_rzz(self):
self.circuit.rzz(1, self.qr[1], self.qr[2])
self.assertEqual(self.circuit[0].operation.name, "rzz")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[1], self.qr[2]))
def test_rzz_wires(self):
self.circuit.rzz(1, 1, 2)
self.assertEqual(self.circuit[0].operation.name, "rzz")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[1], self.qr[2]))
def test_rzz_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.rzz, 1, self.cr[1], self.cr[2])
self.assertRaises(CircuitError, qc.rzz, 1, self.qr[0], self.qr[0])
self.assertRaises(CircuitError, qc.rzz, 1, 0.0, self.qr[0])
self.assertRaises(CircuitError, qc.rzz, 1, (self.qr, 3), self.qr[0])
self.assertRaises(CircuitError, qc.rzz, 1, self.cr, self.qr)
self.assertRaises(CircuitError, qc.rzz, 1, "a", self.qr[1])
self.assertRaises(CircuitError, qc.rzz, 0.1, self.cr[1], self.cr[2])
self.assertRaises(CircuitError, qc.rzz, 0.1, self.qr[0], self.qr[0])
def test_s(self):
self.circuit.s(self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "s")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_s_wires(self):
self.circuit.s(1)
self.assertEqual(self.circuit[0].operation.name, "s")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_s_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.s, self.cr[0])
self.assertRaises(CircuitError, qc.s, self.cr)
self.assertRaises(CircuitError, qc.s, (self.qr, 3))
self.assertRaises(CircuitError, qc.s, (self.qr, "a"))
self.assertRaises(CircuitError, qc.s, 0.0)
def test_s_reg(self):
instruction_set = self.circuit.s(self.qr)
self.assertEqual(instruction_set[0].operation.name, "s")
self.assertEqual(instruction_set[2].operation.params, [])
def test_s_reg_inv(self):
instruction_set = self.circuit.s(self.qr).inverse()
self.assertEqual(instruction_set[0].operation.name, "sdg")
self.assertEqual(instruction_set[2].operation.params, [])
def test_sdg(self):
self.circuit.sdg(self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "sdg")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_sdg_wires(self):
self.circuit.sdg(1)
self.assertEqual(self.circuit[0].operation.name, "sdg")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_sdg_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.sdg, self.cr[0])
self.assertRaises(CircuitError, qc.sdg, self.cr)
self.assertRaises(CircuitError, qc.sdg, (self.qr, 3))
self.assertRaises(CircuitError, qc.sdg, (self.qr, "a"))
self.assertRaises(CircuitError, qc.sdg, 0.0)
def test_sdg_reg(self):
instruction_set = self.circuit.sdg(self.qr)
self.assertEqual(instruction_set[0].operation.name, "sdg")
self.assertEqual(instruction_set[2].operation.params, [])
def test_sdg_reg_inv(self):
instruction_set = self.circuit.sdg(self.qr).inverse()
self.assertEqual(instruction_set[0].operation.name, "s")
self.assertEqual(instruction_set[2].operation.params, [])
def test_swap(self):
self.circuit.swap(self.qr[1], self.qr[2])
self.assertEqual(self.circuit[0].operation.name, "swap")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1], self.qr[2]))
def test_swap_wires(self):
self.circuit.swap(1, 2)
self.assertEqual(self.circuit[0].operation.name, "swap")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1], self.qr[2]))
def test_swap_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.swap, self.cr[1], self.cr[2])
self.assertRaises(CircuitError, qc.swap, self.qr[0], self.qr[0])
self.assertRaises(CircuitError, qc.swap, 0.0, self.qr[0])
self.assertRaises(CircuitError, qc.swap, (self.qr, 3), self.qr[0])
self.assertRaises(CircuitError, qc.swap, self.cr, self.qr)
self.assertRaises(CircuitError, qc.swap, "a", self.qr[1])
self.assertRaises(CircuitError, qc.swap, self.qr, self.qr2[[1, 2]])
self.assertRaises(CircuitError, qc.swap, self.qr[:2], self.qr2)
def test_t(self):
self.circuit.t(self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "t")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_t_wire(self):
self.circuit.t(1)
self.assertEqual(self.circuit[0].operation.name, "t")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_t_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.t, self.cr[0])
self.assertRaises(CircuitError, qc.t, self.cr)
self.assertRaises(CircuitError, qc.t, (self.qr, 3))
self.assertRaises(CircuitError, qc.t, (self.qr, "a"))
self.assertRaises(CircuitError, qc.t, 0.0)
def test_t_reg(self):
instruction_set = self.circuit.t(self.qr)
self.assertEqual(instruction_set[0].operation.name, "t")
self.assertEqual(instruction_set[2].operation.params, [])
def test_t_reg_inv(self):
instruction_set = self.circuit.t(self.qr).inverse()
self.assertEqual(instruction_set[0].operation.name, "tdg")
self.assertEqual(instruction_set[2].operation.params, [])
def test_tdg(self):
self.circuit.tdg(self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "tdg")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_tdg_wires(self):
self.circuit.tdg(1)
self.assertEqual(self.circuit[0].operation.name, "tdg")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_tdg_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.tdg, self.cr[0])
self.assertRaises(CircuitError, qc.tdg, self.cr)
self.assertRaises(CircuitError, qc.tdg, (self.qr, 3))
self.assertRaises(CircuitError, qc.tdg, (self.qr, "a"))
self.assertRaises(CircuitError, qc.tdg, 0.0)
def test_tdg_reg(self):
instruction_set = self.circuit.tdg(self.qr)
self.assertEqual(instruction_set[0].operation.name, "tdg")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [])
def test_tdg_reg_inv(self):
instruction_set = self.circuit.tdg(self.qr).inverse()
self.assertEqual(instruction_set[0].operation.name, "t")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [])
def test_u1(self):
self.circuit.append(U1Gate(1), [self.qr[1]])
self.assertEqual(self.circuit[0].operation.name, "u1")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_u1_wires(self):
self.circuit.append(U1Gate(1), [1])
self.assertEqual(self.circuit[0].operation.name, "u1")
self.assertEqual(self.circuit[0].operation.params, [1])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_u1_reg(self):
instruction_set = self.circuit.append(U1Gate(1), [self.qr])
self.assertEqual(instruction_set[0].operation.name, "u1")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_u1_reg_inv(self):
instruction_set = self.circuit.append(U1Gate(1), [self.qr]).inverse()
self.assertEqual(instruction_set[0].operation.name, "u1")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_u1_pi(self):
qc = self.circuit
qc.append(U1Gate(pi / 2), [self.qr[1]])
self.assertEqual(self.circuit[0].operation.name, "u1")
self.assertEqual(self.circuit[0].operation.params, [pi / 2])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_u2(self):
self.circuit.append(U2Gate(1, 2), [self.qr[1]])
self.assertEqual(self.circuit[0].operation.name, "u2")
self.assertEqual(self.circuit[0].operation.params, [1, 2])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_u2_wires(self):
self.circuit.append(U2Gate(1, 2), [1])
self.assertEqual(self.circuit[0].operation.name, "u2")
self.assertEqual(self.circuit[0].operation.params, [1, 2])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_u2_reg(self):
instruction_set = self.circuit.append(U2Gate(1, 2), [self.qr])
self.assertEqual(instruction_set[0].operation.name, "u2")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [1, 2])
def test_u2_reg_inv(self):
instruction_set = self.circuit.append(U2Gate(1, 2), [self.qr]).inverse()
self.assertEqual(instruction_set[0].operation.name, "u2")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [-pi - 2, -1 + pi])
def test_u2_pi(self):
self.circuit.append(U2Gate(pi / 2, 0.3 * pi), [self.qr[1]])
self.assertEqual(self.circuit[0].operation.name, "u2")
self.assertEqual(self.circuit[0].operation.params, [pi / 2, 0.3 * pi])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_u3(self):
self.circuit.append(U3Gate(1, 2, 3), [self.qr[1]])
self.assertEqual(self.circuit[0].operation.name, "u3")
self.assertEqual(self.circuit[0].operation.params, [1, 2, 3])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_u3_wires(self):
self.circuit.append(U3Gate(1, 2, 3), [1])
self.assertEqual(self.circuit[0].operation.name, "u3")
self.assertEqual(self.circuit[0].operation.params, [1, 2, 3])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_u3_reg(self):
instruction_set = self.circuit.append(U3Gate(1, 2, 3), [self.qr])
self.assertEqual(instruction_set[0].operation.name, "u3")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [1, 2, 3])
def test_u3_reg_inv(self):
instruction_set = self.circuit.append(U3Gate(1, 2, 3), [self.qr]).inverse()
self.assertEqual(instruction_set[0].operation.name, "u3")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [-1, -3, -2])
def test_u3_pi(self):
self.circuit.append(U3Gate(pi, pi / 2, 0.3 * pi), [self.qr[1]])
self.assertEqual(self.circuit[0].operation.name, "u3")
self.assertEqual(self.circuit[0].operation.params, [pi, pi / 2, 0.3 * pi])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_x(self):
self.circuit.x(self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "x")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_x_wires(self):
self.circuit.x(1)
self.assertEqual(self.circuit[0].operation.name, "x")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_x_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.x, self.cr[0])
self.assertRaises(CircuitError, qc.x, self.cr)
self.assertRaises(CircuitError, qc.x, (self.qr, "a"))
self.assertRaises(CircuitError, qc.x, 0.0)
def test_x_reg(self):
instruction_set = self.circuit.x(self.qr)
self.assertEqual(instruction_set[0].operation.name, "x")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [])
def test_x_reg_inv(self):
instruction_set = self.circuit.x(self.qr).inverse()
self.assertEqual(instruction_set[0].operation.name, "x")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [])
def test_y(self):
self.circuit.y(self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "y")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_y_wires(self):
self.circuit.y(1)
self.assertEqual(self.circuit[0].operation.name, "y")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_y_invalid(self):
qc = self.circuit
self.assertRaises(CircuitError, qc.y, self.cr[0])
self.assertRaises(CircuitError, qc.y, self.cr)
self.assertRaises(CircuitError, qc.y, (self.qr, "a"))
self.assertRaises(CircuitError, qc.y, 0.0)
def test_y_reg(self):
instruction_set = self.circuit.y(self.qr)
self.assertEqual(instruction_set[0].operation.name, "y")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [])
def test_y_reg_inv(self):
instruction_set = self.circuit.y(self.qr).inverse()
self.assertEqual(instruction_set[0].operation.name, "y")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [])
def test_z(self):
self.circuit.z(self.qr[1])
self.assertEqual(self.circuit[0].operation.name, "z")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_z_wires(self):
self.circuit.z(1)
self.assertEqual(self.circuit[0].operation.name, "z")
self.assertEqual(self.circuit[0].operation.params, [])
self.assertEqual(self.circuit[0].qubits, (self.qr[1],))
def test_z_reg(self):
instruction_set = self.circuit.z(self.qr)
self.assertEqual(instruction_set[0].operation.name, "z")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [])
def test_z_reg_inv(self):
instruction_set = self.circuit.z(self.qr).inverse()
self.assertEqual(instruction_set[0].operation.name, "z")
self.assertEqual(instruction_set[1].qubits, (self.qr[1],))
self.assertEqual(instruction_set[2].operation.params, [])
def test_global_phase(self):
qc = self.circuit
qc.append(GlobalPhaseGate(0.1), [])
self.assertEqual(self.circuit[0].operation.name, "global_phase")
self.assertEqual(self.circuit[0].operation.params, [0.1])
self.assertEqual(self.circuit[0].qubits, ())
def test_global_phase_inv(self):
instruction_set = self.circuit.append(GlobalPhaseGate(0.1), []).inverse()
self.assertEqual(len(instruction_set), 1)
self.assertEqual(instruction_set[0].operation.params, [-0.1])
def test_global_phase_matrix(self):
"""Test global_phase matrix."""
theta = 0.1
np.testing.assert_allclose(
np.array(GlobalPhaseGate(theta)),
np.array([[np.exp(1j * theta)]], dtype=complex),
atol=1e-7,
)
def test_global_phase_consistency(self):
"""Tests compatibility of GlobalPhaseGate with QuantumCircuit.global_phase"""
theta = 0.1
qc1 = QuantumCircuit(0, global_phase=theta)
qc2 = QuantumCircuit(0)
qc2.append(GlobalPhaseGate(theta), [])
np.testing.assert_allclose(
Operator(qc1),
Operator(qc2),
atol=1e-7,
)
def test_transpile_global_phase_consistency(self):
"""Tests compatibility of transpiled GlobalPhaseGate with QuantumCircuit.global_phase"""
qc1 = QuantumCircuit(0, global_phase=0.3)
qc2 = QuantumCircuit(0, global_phase=0.2)
qc2.append(GlobalPhaseGate(0.1), [])
np.testing.assert_allclose(
Operator(transpile(qc1, basis_gates=["u"])),
Operator(transpile(qc2, basis_gates=["u"])),
atol=1e-7,
)
@ddt
class TestStandard2Q(QiskitTestCase):
"""Standard Extension Test. Gates with two Qubits"""
def setUp(self):
super().setUp()
self.qr = QuantumRegister(3, "q")
self.qr2 = QuantumRegister(3, "r")
self.cr = ClassicalRegister(3, "c")
self.circuit = QuantumCircuit(self.qr, self.qr2, self.cr)
def test_barrier_reg_bit(self):
self.circuit.barrier(self.qr, self.qr2[0])
self.assertEqual(len(self.circuit), 1)
self.assertEqual(self.circuit[0].operation.name, "barrier")
self.assertEqual(self.circuit[0].qubits, (self.qr[0], self.qr[1], self.qr[2], self.qr2[0]))
def test_ch_reg_reg(self):
instruction_set = self.circuit.ch(self.qr, self.qr2)
self.assertEqual(instruction_set[0].operation.name, "ch")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_ch_reg_reg_inv(self):
instruction_set = self.circuit.ch(self.qr, self.qr2).inverse()
self.assertEqual(instruction_set[0].operation.name, "ch")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_ch_reg_bit(self):
instruction_set = self.circuit.ch(self.qr, self.qr2[1])
self.assertEqual(instruction_set[0].operation.name, "ch")
self.assertEqual(
instruction_set[1].qubits,
(
self.qr[1],
self.qr2[1],
),
)
self.assertEqual(instruction_set[2].operation.params, [])
def test_ch_reg_bit_inv(self):
instruction_set = self.circuit.ch(self.qr, self.qr2[1]).inverse()
self.assertEqual(instruction_set[0].operation.name, "ch")
self.assertEqual(
instruction_set[1].qubits,
(
self.qr[1],
self.qr2[1],
),
)
self.assertEqual(instruction_set[2].operation.params, [])
def test_ch_bit_reg(self):
instruction_set = self.circuit.ch(self.qr[1], self.qr2)
self.assertEqual(instruction_set[0].operation.name, "ch")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_crz_reg_reg(self):
instruction_set = self.circuit.crz(1, self.qr, self.qr2)
self.assertEqual(instruction_set[0].operation.name, "crz")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_crz_reg_reg_inv(self):
instruction_set = self.circuit.crz(1, self.qr, self.qr2).inverse()
self.assertEqual(instruction_set[0].operation.name, "crz")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_crz_reg_bit(self):
instruction_set = self.circuit.crz(1, self.qr, self.qr2[1])
self.assertEqual(instruction_set[0].operation.name, "crz")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_crz_reg_bit_inv(self):
instruction_set = self.circuit.crz(1, self.qr, self.qr2[1]).inverse()
self.assertEqual(instruction_set[0].operation.name, "crz")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_crz_bit_reg(self):
instruction_set = self.circuit.crz(1, self.qr[1], self.qr2)
self.assertEqual(instruction_set[0].operation.name, "crz")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_crz_bit_reg_inv(self):
instruction_set = self.circuit.crz(1, self.qr[1], self.qr2).inverse()
self.assertEqual(instruction_set[0].operation.name, "crz")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_cry_reg_reg(self):
instruction_set = self.circuit.cry(1, self.qr, self.qr2)
self.assertEqual(instruction_set[0].operation.name, "cry")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_cry_reg_reg_inv(self):
instruction_set = self.circuit.cry(1, self.qr, self.qr2).inverse()
self.assertEqual(instruction_set[0].operation.name, "cry")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_cry_reg_bit(self):
instruction_set = self.circuit.cry(1, self.qr, self.qr2[1])
self.assertEqual(instruction_set[0].operation.name, "cry")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_cry_reg_bit_inv(self):
instruction_set = self.circuit.cry(1, self.qr, self.qr2[1]).inverse()
self.assertEqual(instruction_set[0].operation.name, "cry")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_cry_bit_reg(self):
instruction_set = self.circuit.cry(1, self.qr[1], self.qr2)
self.assertEqual(instruction_set[0].operation.name, "cry")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_cry_bit_reg_inv(self):
instruction_set = self.circuit.cry(1, self.qr[1], self.qr2).inverse()
self.assertEqual(instruction_set[0].operation.name, "cry")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_crx_reg_reg(self):
instruction_set = self.circuit.crx(1, self.qr, self.qr2)
self.assertEqual(instruction_set[0].operation.name, "crx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_crx_reg_reg_inv(self):
instruction_set = self.circuit.crx(1, self.qr, self.qr2).inverse()
self.assertEqual(instruction_set[0].operation.name, "crx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_crx_reg_bit(self):
instruction_set = self.circuit.crx(1, self.qr, self.qr2[1])
self.assertEqual(instruction_set[0].operation.name, "crx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_crx_reg_bit_inv(self):
instruction_set = self.circuit.crx(1, self.qr, self.qr2[1]).inverse()
self.assertEqual(instruction_set[0].operation.name, "crx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_crx_bit_reg(self):
instruction_set = self.circuit.crx(1, self.qr[1], self.qr2)
self.assertEqual(instruction_set[0].operation.name, "crx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_crx_bit_reg_inv(self):
instruction_set = self.circuit.crx(1, self.qr[1], self.qr2).inverse()
self.assertEqual(instruction_set[0].operation.name, "crx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_cu1_reg_reg(self):
instruction_set = self.circuit.append(CU1Gate(1), [self.qr, self.qr2])
self.assertEqual(instruction_set[0].operation.name, "cu1")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_cu1_reg_reg_inv(self):
instruction_set = self.circuit.append(CU1Gate(1), [self.qr, self.qr2]).inverse()
self.assertEqual(instruction_set[0].operation.name, "cu1")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_cu1_reg_bit(self):
instruction_set = self.circuit.append(CU1Gate(1), [self.qr, self.qr2[1]])
self.assertEqual(instruction_set[0].operation.name, "cu1")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_cu1_reg_bit_inv(self):
instruction_set = self.circuit.append(CU1Gate(1), [self.qr, self.qr2[1]]).inverse()
self.assertEqual(instruction_set[0].operation.name, "cu1")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_cu1_bit_reg(self):
instruction_set = self.circuit.append(CU1Gate(1), [self.qr[1], self.qr2])
self.assertEqual(instruction_set[0].operation.name, "cu1")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1])
def test_cu1_bit_reg_inv(self):
instruction_set = self.circuit.append(CU1Gate(1), [self.qr[1], self.qr2]).inverse()
self.assertEqual(instruction_set[0].operation.name, "cu1")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1])
def test_cu3_reg_reg(self):
instruction_set = self.circuit.append(CU3Gate(1, 2, 3), [self.qr, self.qr2])
self.assertEqual(instruction_set[0].operation.name, "cu3")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1, 2, 3])
def test_cu3_reg_reg_inv(self):
instruction_set = self.circuit.append(CU3Gate(1, 2, 3), [self.qr, self.qr2]).inverse()
self.assertEqual(instruction_set[0].operation.name, "cu3")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1, -3, -2])
def test_cu3_reg_bit(self):
instruction_set = self.circuit.append(CU3Gate(1, 2, 3), [self.qr, self.qr2[1]])
self.assertEqual(instruction_set[0].operation.name, "cu3")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1, 2, 3])
def test_cu3_reg_bit_inv(self):
instruction_set = self.circuit.append(CU3Gate(1, 2, 3), [self.qr, self.qr2[1]]).inverse()
self.assertEqual(instruction_set[0].operation.name, "cu3")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1, -3, -2])
def test_cu3_bit_reg(self):
instruction_set = self.circuit.append(CU3Gate(1, 2, 3), [self.qr[1], self.qr2])
self.assertEqual(instruction_set[0].operation.name, "cu3")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [1, 2, 3])
def test_cu3_bit_reg_inv(self):
instruction_set = self.circuit.append(CU3Gate(1, 2, 3), [self.qr[1], self.qr2]).inverse()
self.assertEqual(instruction_set[0].operation.name, "cu3")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [-1, -3, -2])
def test_cx_reg_reg(self):
instruction_set = self.circuit.cx(self.qr, self.qr2)
self.assertEqual(instruction_set[0].operation.name, "cx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cx_reg_reg_inv(self):
instruction_set = self.circuit.cx(self.qr, self.qr2).inverse()
self.assertEqual(instruction_set[0].operation.name, "cx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cx_reg_bit(self):
instruction_set = self.circuit.cx(self.qr, self.qr2[1])
self.assertEqual(instruction_set[0].operation.name, "cx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cx_reg_bit_inv(self):
instruction_set = self.circuit.cx(self.qr, self.qr2[1]).inverse()
self.assertEqual(instruction_set[0].operation.name, "cx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cx_bit_reg(self):
instruction_set = self.circuit.cx(self.qr[1], self.qr2)
self.assertEqual(instruction_set[0].operation.name, "cx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cx_bit_reg_inv(self):
instruction_set = self.circuit.cx(self.qr[1], self.qr2).inverse()
self.assertEqual(instruction_set[0].operation.name, "cx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cy_reg_reg(self):
instruction_set = self.circuit.cy(self.qr, self.qr2)
self.assertEqual(instruction_set[0].operation.name, "cy")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cy_reg_reg_inv(self):
instruction_set = self.circuit.cy(self.qr, self.qr2).inverse()
self.assertEqual(instruction_set[0].operation.name, "cy")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cy_reg_bit(self):
instruction_set = self.circuit.cy(self.qr, self.qr2[1])
self.assertEqual(instruction_set[0].operation.name, "cy")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cy_reg_bit_inv(self):
instruction_set = self.circuit.cy(self.qr, self.qr2[1]).inverse()
self.assertEqual(instruction_set[0].operation.name, "cy")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cy_bit_reg(self):
instruction_set = self.circuit.cy(self.qr[1], self.qr2)
self.assertEqual(instruction_set[0].operation.name, "cy")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cy_bit_reg_inv(self):
instruction_set = self.circuit.cy(self.qr[1], self.qr2).inverse()
self.assertEqual(instruction_set[0].operation.name, "cy")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cz_reg_reg(self):
instruction_set = self.circuit.cz(self.qr, self.qr2)
self.assertEqual(instruction_set[0].operation.name, "cz")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cz_reg_reg_inv(self):
instruction_set = self.circuit.cz(self.qr, self.qr2).inverse()
self.assertEqual(instruction_set[0].operation.name, "cz")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cz_reg_bit(self):
instruction_set = self.circuit.cz(self.qr, self.qr2[1])
self.assertEqual(instruction_set[0].operation.name, "cz")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cz_reg_bit_inv(self):
instruction_set = self.circuit.cz(self.qr, self.qr2[1]).inverse()
self.assertEqual(instruction_set[0].operation.name, "cz")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cz_bit_reg(self):
instruction_set = self.circuit.cz(self.qr[1], self.qr2)
self.assertEqual(instruction_set[0].operation.name, "cz")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cz_bit_reg_inv(self):
instruction_set = self.circuit.cz(self.qr[1], self.qr2).inverse()
self.assertEqual(instruction_set[0].operation.name, "cz")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_swap_reg_reg(self):
instruction_set = self.circuit.swap(self.qr, self.qr2)
self.assertEqual(instruction_set[0].operation.name, "swap")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_swap_reg_reg_inv(self):
instruction_set = self.circuit.swap(self.qr, self.qr2).inverse()
self.assertEqual(instruction_set[0].operation.name, "swap")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1]))
self.assertEqual(instruction_set[2].operation.params, [])
@unpack
@data(
(0, 0, np.eye(4)),
(
np.pi / 2,
np.pi / 2,
np.array(
[
[np.sqrt(2) / 2, 0, 0, -np.sqrt(2) / 2],
[0, 1, 0, 0],
[0, 0, 1, 0],
[np.sqrt(2) / 2, 0, 0, np.sqrt(2) / 2],
]
),
),
(
np.pi,
np.pi / 2,
np.array([[0, 0, 0, -1], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]]),
),
(
2 * np.pi,
np.pi / 2,
np.array([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]]),
),
(
np.pi / 2,
np.pi,
np.array(
[
[np.sqrt(2) / 2, 0, 0, 1j * np.sqrt(2) / 2],
[0, 1, 0, 0],
[0, 0, 1, 0],
[1j * np.sqrt(2) / 2, 0, 0, np.sqrt(2) / 2],
]
),
),
(4 * np.pi, 0, np.eye(4)),
)
def test_xx_minus_yy_matrix(self, theta: float, beta: float, expected: np.ndarray):
"""Test XX-YY matrix."""
gate = XXMinusYYGate(theta, beta)
np.testing.assert_allclose(np.array(gate), expected, atol=1e-7)
def test_xx_minus_yy_exponential_formula(self):
"""Test XX-YY exponential formula."""
theta, beta = np.random.uniform(-10, 10, size=2)
gate = XXMinusYYGate(theta, beta)
x = np.array(XGate())
y = np.array(YGate())
xx = np.kron(x, x)
yy = np.kron(y, y)
rz1 = np.kron(np.array(RZGate(beta)), np.eye(2))
np.testing.assert_allclose(
np.array(gate),
rz1 @ expm(-0.25j * theta * (xx - yy)) @ rz1.T.conj(),
atol=1e-7,
)
def test_xx_plus_yy_exponential_formula(self):
"""Test XX+YY exponential formula."""
theta, beta = np.random.uniform(-10, 10, size=2)
gate = XXPlusYYGate(theta, beta)
x = np.array(XGate())
y = np.array(YGate())
xx = np.kron(x, x)
yy = np.kron(y, y)
rz0 = np.kron(np.eye(2), np.array(RZGate(beta)))
np.testing.assert_allclose(
np.array(gate),
rz0.T.conj() @ expm(-0.25j * theta * (xx + yy)) @ rz0,
atol=1e-7,
)
class TestStandard3Q(QiskitTestCase):
"""Standard Extension Test. Gates with three Qubits"""
def setUp(self):
super().setUp()
self.qr = QuantumRegister(3, "q")
self.qr2 = QuantumRegister(3, "r")
self.qr3 = QuantumRegister(3, "s")
self.cr = ClassicalRegister(3, "c")
self.circuit = QuantumCircuit(self.qr, self.qr2, self.qr3, self.cr)
def test_ccx_reg_reg_reg(self):
instruction_set = self.circuit.ccx(self.qr, self.qr2, self.qr3)
self.assertEqual(instruction_set[0].operation.name, "ccx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1], self.qr3[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_ccx_reg_reg_inv(self):
instruction_set = self.circuit.ccx(self.qr, self.qr2, self.qr3).inverse()
self.assertEqual(instruction_set[0].operation.name, "ccx")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1], self.qr3[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cswap_reg_reg_reg(self):
instruction_set = self.circuit.cswap(self.qr, self.qr2, self.qr3)
self.assertEqual(instruction_set[0].operation.name, "cswap")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1], self.qr3[1]))
self.assertEqual(instruction_set[2].operation.params, [])
def test_cswap_reg_reg_inv(self):
instruction_set = self.circuit.cswap(self.qr, self.qr2, self.qr3).inverse()
self.assertEqual(instruction_set[0].operation.name, "cswap")
self.assertEqual(instruction_set[1].qubits, (self.qr[1], self.qr2[1], self.qr3[1]))
self.assertEqual(instruction_set[2].operation.params, [])
class TestStandardMethods(QiskitTestCase):
"""Standard Extension Test."""
@unittest.skipUnless(HAS_TWEEDLEDUM, "tweedledum required for this test")
def test_to_matrix(self):
"""test gates implementing to_matrix generate matrix which matches definition."""
from qiskit.circuit.library.pauli_evolution import PauliEvolutionGate
from qiskit.circuit.library.generalized_gates.pauli import PauliGate
from qiskit.circuit.classicalfunction.boolean_expression import BooleanExpression
params = [0.1 * (i + 1) for i in range(10)]
gate_class_list = Gate.__subclasses__() + ControlledGate.__subclasses__()
simulator = BasicAer.get_backend("unitary_simulator")
for gate_class in gate_class_list:
if hasattr(gate_class, "__abstractmethods__"):
# gate_class is abstract
continue
sig = signature(gate_class)
free_params = len(set(sig.parameters) - {"label", "ctrl_state"})
try:
if gate_class == PauliGate:
# special case due to PauliGate using string parameters
gate = gate_class("IXYZ")
elif gate_class == BooleanExpression:
gate = gate_class("x")
elif gate_class == PauliEvolutionGate:
gate = gate_class(Pauli("XYZ"))
else:
gate = gate_class(*params[0:free_params])
except (CircuitError, QiskitError, AttributeError, TypeError):
self.log.info("Cannot init gate with params only. Skipping %s", gate_class)
continue
if gate.name in ["U", "CX"]:
continue
circ = QuantumCircuit(gate.num_qubits)
circ.append(gate, range(gate.num_qubits))
try:
gate_matrix = gate.to_matrix()
except CircuitError:
# gate doesn't implement to_matrix method: skip
self.log.info('to_matrix method FAILED for "%s" gate', gate.name)
continue
definition_unitary = execute([circ], simulator).result().get_unitary()
with self.subTest(gate_class):
# TODO check for exact equality once BasicAer can handle global phase
self.assertTrue(matrix_equal(definition_unitary, gate_matrix, ignore_phase=True))
self.assertTrue(is_unitary_matrix(gate_matrix))
@unittest.skipUnless(HAS_TWEEDLEDUM, "tweedledum required for this test")
def test_to_matrix_op(self):
"""test gates implementing to_matrix generate matrix which matches
definition using Operator."""
from qiskit.circuit.library.generalized_gates.gms import MSGate
from qiskit.circuit.library.generalized_gates.pauli import PauliGate
from qiskit.circuit.library.pauli_evolution import PauliEvolutionGate
from qiskit.circuit.classicalfunction.boolean_expression import BooleanExpression
params = [0.1 * i for i in range(1, 11)]
gate_class_list = Gate.__subclasses__() + ControlledGate.__subclasses__()
for gate_class in gate_class_list:
if hasattr(gate_class, "__abstractmethods__"):
# gate_class is abstract
continue
sig = signature(gate_class)
if gate_class == MSGate:
# due to the signature (num_qubits, theta, *, n_qubits=Noe) the signature detects
# 3 arguments but really its only 2. This if can be removed once the deprecated
# n_qubits argument is no longer supported.
free_params = 2
else:
free_params = len(set(sig.parameters) - {"label", "ctrl_state"})
try:
if gate_class == PauliGate:
# special case due to PauliGate using string parameters
gate = gate_class("IXYZ")
elif gate_class == BooleanExpression:
gate = gate_class("x")
elif gate_class == PauliEvolutionGate:
gate = gate_class(Pauli("XYZ"))
else:
gate = gate_class(*params[0:free_params])
except (CircuitError, QiskitError, AttributeError, TypeError):
self.log.info("Cannot init gate with params only. Skipping %s", gate_class)
continue
if gate.name in ["U", "CX"]:
continue
try:
gate_matrix = gate.to_matrix()
except CircuitError:
# gate doesn't implement to_matrix method: skip
self.log.info('to_matrix method FAILED for "%s" gate', gate.name)
continue
if not hasattr(gate, "definition") or not gate.definition:
continue
definition_unitary = Operator(gate.definition).data
self.assertTrue(matrix_equal(definition_unitary, gate_matrix))
self.assertTrue(is_unitary_matrix(gate_matrix))
if __name__ == "__main__":
unittest.main(verbosity=2)
|
https://github.com/Z-928/Bugs4Q
|
Z-928
|
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.wrapper import available_backends, get_backend
from qiskit.wrapper import execute as q_execute
q = QuantumRegister(2, name='q')
c = ClassicalRegister(2, name='c')
qc = QuantumCircuit(q,c)
qc.h(q[0])
qc.h(q[1])
qc.cx(q[0], q[1])
qc.measure(q, c)
z = 0.995004165 + 1j * 0.099833417
z = z / abs(z)
u_error = np.array([[1, 0], [0, z]])
noise_params = {'U':
{'gate_time': 1,
'p_depol': 0.001,
'p_pauli': [0, 0, 0.01],
'U_error': u_error
}
}
config = {"noise_params": noise_params}
ret = q_execute(qc, 'local_qasm_simulator_cpp', shots=1024, config=config)
ret = ret.result()
print(ret.get_counts())
|
https://github.com/Tojarieh97/VQE
|
Tojarieh97
|
%load_ext autoreload
%autoreload 2
import nbimporter
from typing import Dict, Tuple, List
import numpy as np
from tqdm import tqdm
QUBITS_NUM = 4
N = 2**QUBITS_NUM
NUM_SHOTS = 1024
NUM_ITERATIONS = 100
CIRCUIT_DEPTH = 3
PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1)
from qiskit import Aer
from qiskit.utils import QuantumInstance, algorithm_globals
seed = 50
algorithm_globals.random_seed = seed
simulator_backend = Aer.get_backend('qasm_simulator')
from scipy.optimize import minimize
from linear_entangelment_and_full_entangelment_ansatz_circuits import *
def get_ansatz_state(thetas, ansatz_entangelment, input_state):
if ansatz_entangelment=="full":
return get_full_entangelment_ansatz(QUBITS_NUM, thetas, input_state)
if ansatz_entangelment=="linear":
return get_linear_entangelment_ansatz(QUBITS_NUM, thetas, input_state)
def transfrom_hamiltonian_into_pauli_strings(hamiltonian) -> List:
pauli_operators = hamiltonian.to_pauli_op().settings['oplist']
pauli_coeffs = list(map(lambda pauli_operator: pauli_operator.coeff, pauli_operators))
pauli_strings = list(map(lambda pauli_operator: pauli_operator.primitive, pauli_operators))
return pauli_coeffs, pauli_strings
from qiskit.circuit.library.standard_gates import HGate, SGate
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
reducing_to_pauli_z_mapping = {
'I': 'I',
'Z': 'Z',
'X': 'Z',
'Y': 'Z'
}
def reduce_pauli_matrixes_into_sigma_z(pauli_string) -> str:
reduced_pauli_string = ""
for matrix_index in range(QUBITS_NUM):
pauli_matrix = str(pauli_string[matrix_index])
reduced_pauli_matrix = reducing_to_pauli_z_mapping[pauli_matrix]
reduced_pauli_string = reduced_pauli_matrix + reduced_pauli_string
return reduced_pauli_string
def add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string, quantum_circuit):
quantum_registers = QuantumRegister(QUBITS_NUM, name="qubit")
additional_circuit_layer = QuantumCircuit(quantum_registers)
for quantum_register_index, pauli_matrix in enumerate(pauli_string):
if pauli_matrix == "X":
additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]])
if pauli_string == "Y":
additional_circuit_layer.append(HGate(), [quantum_registers[quantum_register_index]])
additional_circuit_layer.append(SGate(), [quantum_registers[quantum_register_index]])
extended_quantum_circuit = quantum_circuit.compose(additional_circuit_layer)
return extended_quantum_circuit
def get_probability_distribution(counts: Dict) -> Dict:
proba_distribution = {state: (count / NUM_SHOTS) for state, count in counts.items()}
return proba_distribution
def calculate_probabilities_of_measurments_in_computational_basis(quantum_state_circuit) -> Dict:
quantum_state_circuit.measure_all()
transpiled_quantum_state_circuit = transpile(quantum_state_circuit, simulator_backend)
Qobj = assemble(transpiled_quantum_state_circuit)
result = simulator_backend.run(Qobj).result()
counts = result.get_counts(quantum_state_circuit)
return get_probability_distribution(counts)
def sort_probas_dict_by_qubits_string_keys(proba_distribution: Dict) -> Dict:
return dict(sorted(proba_distribution.items()))
def reset_power_of_minus_1(power_of_minus_1):
power_of_minus_1 = 0
return power_of_minus_1
def convert_pauli_string_into_str(pauli_string) -> str:
return str(pauli_string)
def calculate_expectation_value_of_pauli_string_by_measurments_probas(pauli_string, ansatz_circuit):
pauli_string_expectation_value = 0
power_of_minus_1 = 0
pauli_string_str = convert_pauli_string_into_str(pauli_string)
extended_ansatz_circuit = add_layer_of_gates_for_reducing_paulis_to_sigma_z(pauli_string_str, ansatz_circuit)
probas_distribution = calculate_probabilities_of_measurments_in_computational_basis(extended_ansatz_circuit)
reduced_pauli_string = reduce_pauli_matrixes_into_sigma_z(pauli_string)
sorted_probas_distribuition = sort_probas_dict_by_qubits_string_keys(probas_distribution)
for qubits_string, proba in sorted_probas_distribuition.items():
for string_index in range(QUBITS_NUM):
if(str(qubits_string[string_index])=="1" and str(reduced_pauli_string[string_index])=="Z"):
power_of_minus_1 += 1
pauli_string_expectation_value += pow(-1, power_of_minus_1)*proba
power_of_minus_1 = reset_power_of_minus_1(power_of_minus_1)
return pauli_string_expectation_value
def get_expectation_value(ansatz_circuit, pauli_coeffs, pauli_strings):
total_expection_value = 0
for pauli_coeff, pauli_string in zip(pauli_coeffs, pauli_strings):
total_expection_value += pauli_coeff*calculate_expectation_value_of_pauli_string_by_measurments_probas(
pauli_string, ansatz_circuit)
return total_expection_value
from qiskit import assemble, transpile
def cost_function(thetas, hamiltonian, ansatz_entangelment):
initial_eigenvector = np.identity(N)[0]
pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian)
ansatz_state = get_ansatz_state(thetas, ansatz_entangelment, initial_eigenvector)
L = get_expectation_value(ansatz_state, pauli_coeffs, pauli_strings)
insert_approximated_energy_to_list_of_all_approximated_energies(L)
return L
def get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian, ansatz_entangelment):
initial_thetas = np.random.uniform(low=0, high=2*np.pi, size=PARAMS_NUM)
optimizer_result = minimize(cost_function,
x0=initial_thetas,
args=(hamiltonian, ansatz_entangelment),
method="Nelder-Mead",
options={"maxiter":NUM_ITERATIONS,
"return_all": True,
"disp": True})
optimal_thetas = optimizer_result.x
return optimal_thetas
def get_approximated_eigenvalue_of_hamiltonian(hamiltonian, ansatz_entangelment):
optimal_thetas = get_optimal_thetas_of_ansatz_circuit_for_hamiltonian(hamiltonian, ansatz_entangelment)
print(optimal_thetas)
initial_eigenvector = np.identity(N)[3]
optimal_ansatz_state = get_ansatz_state(optimal_thetas, ansatz_entangelment, initial_eigenvector)
pauli_coeffs, pauli_strings = transfrom_hamiltonian_into_pauli_strings(hamiltonian)
approximated_eigenvalue = get_expectation_value(optimal_ansatz_state, pauli_coeffs, pauli_strings)
return approximated_eigenvalue
from numpy import linalg as LA
def get_approximation_error(exact_eigenvalue, approximated_eigenvalue):
return abs(abs(exact_eigenvalue)-abs(approximated_eigenvalue))/abs(exact_eigenvalue)
def get_minimum_exact_eigenvalue_of_hamiltonian(hamiltonian):
eigen_values = LA.eigvals(hamiltonian.to_matrix())
print(sorted(eigen_values))
return min(sorted(eigen_values))
def compare_exact_and_approximated_eigenvalue(hamiltonian, approximated_eigenvalue):
exact_eigenvalue = get_minimum_exact_eigenvalue_of_hamiltonian(hamiltonian)
print("Exact Eigenvalue:")
print(exact_eigenvalue)
print("\nApproximated Eigenvalue:")
print(approximated_eigenvalue)
print("\nApproximation Error")
print(get_approximation_error(exact_eigenvalue, approximated_eigenvalue))
plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin=3)
approximated_energies = []
def insert_approximated_energy_to_list_of_all_approximated_energies(energy):
approximated_energies.append(energy)
import matplotlib.pyplot as plt
def plot_convergence_of_optimization_process(approximated_energies, exact_eigenvalue, margin):
plt.title("convergence of optimization process to the exact eigenvalue")
plt.margins(0, margin)
plt.plot(approximated_energies[-NUM_ITERATIONS:])
plt.axhline(y = exact_eigenvalue, color = 'r', linestyle = '-')
plt.grid()
plt.xlabel("# of iterations")
plt.ylabel("Energy")
def plot_fidelity():
plt.plot(LiH_approximated_energies)
plt.xlabel("# of iterations")
plt.ylabel("Energy")
from qiskit.opflow import X, Z, I, H, Y
LiH_molecule_4_qubits = -7.49894690201071*(I^I^I^I) + \
-0.0029329964409502266*(X^X^Y^Y) + \
0.0029329964409502266*(X^Y^Y^X) + \
0.01291078027311749*(X^Z^X^I) + \
-0.0013743761078958677*(X^Z^X^Z) + \
0.011536413200774975*(X^I^X^I) + \
0.0029329964409502266*(Y^X^X^Y) + \
-0.0029329964409502266*(Y^Y^X^X) + \
0.01291078027311749*(Y^Z^Y^I) + \
-0.0013743761078958677*(Y^Z^Y^Z) + \
0.011536413200774975*(Y^I^Y^I) + \
0.16199475388004184*(Z^I^I^I) + \
0.011536413200774975*(Z^X^Z^X) + \
0.011536413200774975*(Z^Y^Z^Y) + \
0.12444770133137588*(Z^Z^I^I) + \
0.054130445793298836*(Z^I^Z^I) + \
0.05706344223424907*(Z^I^I^Z) + \
0.012910780273117487*(I^X^Z^X) + \
-0.0013743761078958677*(I^X^I^X) + \
0.012910780273117487*(I^Y^Z^Y) + \
-0.0013743761078958677*(I^Y^I^Y) + \
0.16199475388004186*(I^Z^I^I) + \
0.05706344223424907*(I^Z^Z^I) + \
0.054130445793298836*(I^Z^I^Z) + \
-0.013243698330265966*(I^I^Z^I) + \
0.08479609543670981*(I^I^Z^Z) + \
-0.013243698330265952*(I^I^I^Z)
%%time
LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits, "linear")
compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue)
%%time
LiH_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(LiH_molecule_4_qubits, "full")
compare_exact_and_approximated_eigenvalue(LiH_molecule_4_qubits, LiH_approximated_eigenvalue)
H2_molecule_Hamiltonian_4_qubits = -0.8105479805373279 * (I^I^I^I) \
+ 0.1721839326191554 * (I^I^I^Z) \
- 0.22575349222402372 * (I^I^Z^I) \
+ 0.17218393261915543 * (I^Z^I^I) \
- 0.2257534922240237 * (Z^I^I^I) \
+ 0.12091263261776627 * (I^I^Z^Z) \
+ 0.16892753870087907 * (I^Z^I^Z) \
+ 0.045232799946057826 * (Y^Y^Y^Y) \
+ 0.045232799946057826 * (X^X^Y^Y) \
+ 0.045232799946057826 * (Y^Y^X^X) \
+ 0.045232799946057826 * (X^X^X^X) \
+ 0.1661454325638241 * (Z^I^I^Z) \
+ 0.1661454325638241 * (I^Z^Z^I) \
+ 0.17464343068300453 * (Z^I^Z^I) \
+ 0.12091263261776627 * (Z^Z^I^I)
%%time
H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits, "linear")
compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue)
%%time
H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_4_qubits, "full")
compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_4_qubits, H2_approximated_eigenvalue)
transverse_ising_4_qubits = 0.0 * (I^I^I^I) \
+ 0.8398088405253477 * (X^I^I^I) \
+ 0.7989496312070936 * (I^X^I^I) \
+ 0.38189710487113193 * (Z^Z^I^I) \
+ 0.057753122422666725 * (I^I^X^I) \
+ 0.5633292636970458 * (Z^I^Z^I) \
+ 0.3152740621483513 * (I^Z^Z^I) \
+ 0.07209487981989715 * (I^I^I^X) \
+ 0.17892334004292654 * (Z^I^I^Z) \
+ 0.2273896497668042 * (I^Z^I^Z) \
+ 0.09762902934216211 * (I^I^Z^Z)
%%time
TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits, "linear")
compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigenvalue)
%%time
TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_4_qubits, "full")
compare_exact_and_approximated_eigenvalue(transverse_ising_4_qubits, TI_approximated_eigenvalue)
QUBITS_NUM = 3
N = 2**QUBITS_NUM
NUM_SHOTS = 1024
CIRCUIT_DEPTH = 3
PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1)
from qiskit.opflow import X, Z, I
transverse_ising_3_qubits = 0.0 * (I^I^I) \
+ 0.012764169333459807 * (X^I^I) \
+ 0.7691573729160869 * (I^X^I) \
+ 0.398094746026449 * (Z^Z^I) \
+ 0.15250261906586637 * (I^I^X) \
+ 0.2094051920882264 * (Z^I^Z) \
+ 0.5131291860752999 * (I^Z^Z)
%%time
TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_3_qubits, "linear")
compare_exact_and_approximated_eigenvalue(transverse_ising_3_qubits, TI_approximated_eigenvalue)
%%time
TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_3_qubits, "full")
compare_exact_and_approximated_eigenvalue(transverse_ising_3_qubits, TI_approximated_eigenvalue)
QUBITS_NUM = 2
N = 2**QUBITS_NUM
NUM_SHOTS = 1024
CIRCUIT_DEPTH = 3
PARAMS_NUM = 2*QUBITS_NUM*(CIRCUIT_DEPTH+1)
transverse_ising_2_qubits = 0.13755727363376802 * (I^X) \
+ 0.43305656297810435 * (X^I) \
+ 0.8538597608997253 * (Z^Z)
%%time
TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_2_qubits, "linear")
compare_exact_and_approximated_eigenvalue(transverse_ising_2_qubits, TI_approximated_eigenvalue)
%%time
TI_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(transverse_ising_2_qubits, "full")
compare_exact_and_approximated_eigenvalue(transverse_ising_2_qubits, TI_approximated_eigenvalue)
from qiskit.opflow import X, Z, I
H2_molecule_Hamiltonian_2_qubits = -0.5053051899926562*(I^I) + \
-0.3277380754984016*(Z^I) + \
0.15567463610622564*(Z^Z) + \
-0.3277380754984016*(I^Z)
%%time
H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_2_qubits, "linear")
compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_2_qubits, H2_approximated_eigenvalue)
%%time
H2_approximated_eigenvalue = get_approximated_eigenvalue_of_hamiltonian(H2_molecule_Hamiltonian_2_qubits, "full")
compare_exact_and_approximated_eigenvalue(H2_molecule_Hamiltonian_2_qubits, H2_approximated_eigenvalue)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import *
from qiskit.visualization import plot_histogram
# quantum circuit to make a Bell state
bell = QuantumCircuit(2, 2)
bell.h(0)
bell.cx(0, 1)
meas = QuantumCircuit(2, 2)
meas.measure([0,1], [0,1])
# execute the quantum circuit
backend = BasicAer.get_backend('qasm_simulator') # the device to run on
circ = bell.compose(meas)
result = backend.run(transpile(circ, backend), shots=1000).result()
counts = result.get_counts(circ)
print(counts)
plot_histogram(counts)
# Execute 2-qubit Bell state again
second_result = backend.run(transpile(circ, backend), shots=1000).result()
second_counts = second_result.get_counts(circ)
# Plot results with legend
legend = ['First execution', 'Second execution']
plot_histogram([counts, second_counts], legend=legend)
plot_histogram([counts, second_counts], legend=legend, sort='desc', figsize=(15,12),
color=['orange', 'black'], bar_labels=False)
from qiskit.visualization import plot_state_city, plot_bloch_multivector
from qiskit.visualization import plot_state_paulivec, plot_state_hinton
from qiskit.visualization import plot_state_qsphere
# execute the quantum circuit
backend = BasicAer.get_backend('statevector_simulator') # the device to run on
result = backend.run(transpile(bell, backend)).result()
psi = result.get_statevector(bell)
plot_state_city(psi)
plot_state_hinton(psi)
plot_state_qsphere(psi)
plot_state_paulivec(psi)
plot_bloch_multivector(psi)
plot_state_city(psi, title="My City", color=['black', 'orange'])
plot_state_hinton(psi, title="My Hinton")
plot_state_paulivec(psi, title="My Paulivec", color=['purple', 'orange', 'green'])
plot_bloch_multivector(psi, title="My Bloch Spheres")
from qiskit.visualization import plot_bloch_vector
plot_bloch_vector([0,1,0])
plot_bloch_vector([0,1,0], title='My Bloch Sphere')
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/Pitt-JonesLab/slam_decomposition
|
Pitt-JonesLab
|
import logging
import os
import pickle
from inspect import signature
from itertools import cycle
from typing import List
from qiskit import QuantumCircuit
from qiskit.circuit import Parameter
from qiskit.circuit.library.standard_gates import *
from qiskit.quantum_info import Operator
from config import srcpath
from slam.basis_abc import VariationalTemplate
from slam.hamiltonian import Hamiltonian
from slam.utils.data_utils import filename_encode
from slam.utils.gates.custom_gates import *
from slam.utils.polytopes.polytope_wrap import (
gate_set_to_coverage,
monodromy_range_from_target,
)
class HamiltonianTemplate(VariationalTemplate):
def __init__(self, h: Hamiltonian):
self.filename = filename_encode(repr(h))
self.h = h
self.spanning_range = range(1)
self.using_bounds = False
self.using_constraints = False
self.bounds_list = None
self.constraint_func = None
super().__init__(preseed=False, use_polytopes=False)
def get_spanning_range(self, target_u):
return range(1, 2) # only need to build once, in lieu of a circuit template
def eval(self, Xk):
return self.h.construct_U(*Xk).full()
def parameter_guess(self, t=1):
parent = super().parameter_guess(t)
if parent is not None:
return parent
p_len = len(
signature(self.h.construct_U).parameters
) # getting number of parameters from Hamiltonian function definition
return np.random.random(p_len)
class CircuitTemplate(VariationalTemplate):
def __init__(
self,
n_qubits=2,
base_gates=[RiSwapGate(1 / 2)],
edge_params=[[(0, 1)]],
no_exterior_1q=False,
use_polytopes=False,
maximum_span_guess=5,
preseed=False,
):
"""Initalizes a qiskit.quantumCircuit object with unbound 1Q gate
parameters."""
hash = str(n_qubits) + str(base_gates) + str(edge_params) + str(no_exterior_1q)
self.filename = filename_encode(hash)
self.n_qubits = n_qubits
self.no_exterior_1q = no_exterior_1q
self.gate_2q_base = cycle(base_gates)
# each gate gets its on cycler
self.gate_2q_edges = cycle(
[cycle(edge_params_el) for edge_params_el in edge_params]
)
self.gen_1q_params = self._param_iter()
# compliant with basisv2 optimizer changes
self.using_bounds = False
self.bounds_list = None
self.using_constraints = False
self.constraint_func = None
# define a range to see how many times we should extend the circuit while in optimization search
self.spanning_range = None
if not use_polytopes:
self.spanning_range = range(1, maximum_span_guess + 1)
self.coverage = None # only precomputed in mixedbasis class
super().__init__(preseed=preseed, use_polytopes=use_polytopes)
self._reset()
# deprecated feature
self.trotter = False
def get_spanning_range(self, target_u):
if not self.use_polytopes:
return self.spanning_range
else:
# call monodromy polytope helper
return monodromy_range_from_target(self, target_u)
def eval(self, Xk):
"""Returns an Operator after binding parameter array to template."""
return Operator(self.assign_Xk(Xk)).data
def parameter_guess(self, t=0):
"""Returns a np array of random values for each parameter."""
parent = super().parameter_guess(t)
if parent is not None:
return parent
return np.random.random(len(self.circuit.parameters)) * 2 * np.pi
def assign_Xk(self, Xk):
return self.circuit.assign_parameters(
{parameter: i for parameter, i in zip(self.circuit.parameters, Xk)}
)
def _reset(self):
"""Return template to a 0 cycle."""
self.cycles = 0
self.circuit = QuantumCircuit(self.n_qubits)
self.gen_1q_params = self._param_iter() # reset p labels
def build(self, n_repetitions):
self._reset()
if n_repetitions <= 0:
raise ValueError()
if self.trotter:
pass
# n_repetitions = int(1 / next(self.gate_2q_params))
for i in range(n_repetitions):
self._build_cycle(initial=(i == 0), final=(i == n_repetitions - 1))
def _param_iter(self):
index = 0
while True:
# Check if Parameter already created, then return reference to that variable
def _filter_param(param):
return param.name == f"P{index}"
res = list(filter(_filter_param, self.circuit.parameters))
if len(res) == 0:
yield Parameter(f"P{index}")
else:
yield res[0]
index += 1
if self.trotter:
index %= 3 * self.n_qubits
def _build_cycle(self, initial=False, final=False):
"""Extends template by next nonlocal gate."""
if initial and not self.no_exterior_1q:
# before build by extend, add first pair of 1Qs
for qubit in range(self.n_qubits):
self.circuit.u(*[next(self.gen_1q_params) for _ in range(3)], qubit)
# self.circuit.ry(*[next(self.gen_1q_params) for _ in range(1)], qubit)
gate = next(self.gate_2q_base)
edge = next(
next(self.gate_2q_edges)
) # call cycle twice to increment gate index then edge
self.circuit.append(gate, edge)
if not (final and self.no_exterior_1q):
for qubit in edge:
# self.circuit.ry(*[next(self.gen_1q_params) for _ in range(1)], qubit)
self.circuit.u(*[next(self.gen_1q_params) for _ in range(3)], qubit)
self.cycles += 1
"""this might be deprecated, if I want to use gate costs, should be factored in with circuit polytopes already
for now, instead just use the mixedbasis instead"""
# class CustomCostCircuitTemplate(CircuitTemplate):
#
# #assigns a cost value to each repeated call to build()
# def __init__(self, base_gates=[CustomCostGate]) -> None:
# logging.warning("deprecated, use mixedorderbasis with cost assigned to cirucit polytopes")
# for gate in base_gates:
# if not isinstance(gate, CustomCostGate):
# raise ValueError("Gates must have a defined cost")
# self.cost = {0:0}
# super().__init__(n_qubits=2, base_gates=base_gates, edge_params=[(0,1)], no_exterior_1q=False,use_polytopes=True, preseed=True)
# def _build_cycle(self, initial=False, final=False):
# """Extends template by next nonlocal gate
# add modification which saves cost to dict"""
# if initial and not self.no_exterior_1q:
# # before build by extend, add first pair of 1Qs
# for qubit in range(self.n_qubits):
# self.circuit.u(*[next(self.gen_1q_params) for _ in range(3)], qubit)
# edge = next(self.gate_2q_edges)
# gate = next(self.gate_2q_base)
# self.circuit.append(gate, edge)
# if not (final and self.no_exterior_1q):
# for qubit in edge:
# self.circuit.u(*[next(self.gen_1q_params) for _ in range(3)], qubit)
# self.cycles += 1
# self.cost[self.cycles] = self.cost[self.cycles-1] + gate.cost
# def unit_cost(self, cycles):
# if not cycles in self.cost.keys():
# self.build(cycles)
# return self.cost[cycles]
"""if hetereogenous basis, build is always appending in a set order
we really want to be able to pick and choose freely
when we find monodromy spanning range, we actually need to be checking more combinations of gates
find the minimum cost polytope which contains target
now when we create basis it should precompute the coverage polytopes and order them based on cost"""
class MixedOrderBasisCircuitTemplate(CircuitTemplate):
# in previous circuit templates, everytime we call build it extends based on a predefined pattern
# now for mixed basis sets, polytope coverage informs a better way to mix and match
# this method needs to override the build method
# this means monodromy_range_from_target needs to return a circuit polytope
# we update template to match circuit polytope shape
# then tell optimizer range to be range(1) so it knows not to call build again
def __init__(
self,
base_gates: List[CustomCostGate],
chatty_build=True,
cost_1q=0,
bare_cost=True,
coverage_saved_memory=True,
use_smush_polytope=False,
**kwargs,
) -> None:
self.homogenous = len(base_gates) == 1
if cost_1q != 0 or bare_cost is False:
logging.warning(
"rather than setting cost_1q, use bare_cost=True and scale the cost afterwards - that way don't have misses in saved memory.\
(see bgatev2script.py for implementation)"
)
raise ValueError("just don't do this lol")
if not all([isinstance(gate, ConversionGainGate) for gate in base_gates]):
raise ValueError("all base gates must be ConversionGainGate")
# set gc < gg so that we can use the same polytope for both cases
# XXX note this means the gate_hash will refer to the wrong gate, but in speedlimit pass we override build() with scaled_gate param anyway
new_base_gates = []
for gate in base_gates:
if gate.params[2] < gate.params[3]:
new_base_gates.append(gate)
else:
new_params = gate.params
# swap gc and gg
new_params[2], new_params[3] = new_params[3], new_params[2]
temp_new_gate = ConversionGainGate(*new_params)
new_base_gates.append(temp_new_gate)
base_gates = new_base_gates
# assuming bare costs we should normalize the gate duration to 1
for gate in base_gates:
gate.normalize_duration(1)
super().__init__(
n_qubits=2,
base_gates=base_gates,
edge_params=[[(0, 1)]],
no_exterior_1q=False,
use_polytopes=True,
preseed=False,
)
if coverage_saved_memory:
# used list comprehension so each CG gate has its own str function called
file_hash = str([str(g) for g in base_gates])
if use_smush_polytope:
file_hash += "smush"
filepath = f"{srcpath}/data/polytopes/polytope_coverage_{file_hash}.pkl"
while True:
# try load from memory
if os.path.exists(filepath): # XXX hardcoded file path'
logging.debug("loading polytope coverage from memory")
with open(filepath, "rb") as f:
# NOTE this is hacky monkey patch, if we had more time we would transfer the old values to use this formatting
# non smushes use the h5 data loads, but we wanted to make variations of the gate so overriding that h5 data by storing an optional value in the class
if use_smush_polytope:
self.coverage, self.gate_hash, self.scores = pickle.load(f)
return
else:
self.coverage, self.gate_hash = pickle.load(f)
self.scores = None
return
elif use_smush_polytope:
raise ValueError(
"Smush Polytope not in memory, need to compute using parallel_drive_volume.py"
)
logging.warning("Failed to load smush, using non-smush instead")
file_hash = file_hash[:-5]
use_smush_polytope = False
filepath = (
f"{srcpath}/data/polytopes/polytope_coverage_{file_hash}.pkl"
)
else:
# if not in memory, compute and save
logging.warning(
f"No saved polytope! computing polytope coverage for {file_hash}"
)
self.coverage, self.gate_hash = gate_set_to_coverage(
*base_gates,
chatty=chatty_build,
cost_1q=cost_1q,
bare_cost=bare_cost,
)
with open(filepath, "wb") as f:
pickle.dump((self.coverage, self.gate_hash), f)
logging.debug("saved polytope coverage to file")
return
else:
self.coverage, self.gate_hash = gate_set_to_coverage(
*base_gates, chatty=chatty_build, cost_1q=cost_1q, bare_cost=bare_cost
)
def set_polytope(self, circuit_polytope):
self.circuit_polytope = circuit_polytope
self.cost = circuit_polytope.cost # ?
def unit_cost(self, n_):
return self.cost
def _reset(self):
self.circuit_polytope = None
super()._reset()
def build(self, n_repetitions, scaled_gate=None):
"""The reason the build method is being overriden is specifically for
mixed basis sets we want to be able to build circuits which have an
arbitrary order of basis gates so we have to use info from monodromy
monodromy communicates the order from a set polytope (which doesn't
have access to gate object proper) via a hash that lets override the
gate_2q_base generator."""
assert self.circuit_polytope is not None
# NOTE: overriding the 2Q gate if we want to use a speed limited gate
# used to manually set a duration attirbute
if scaled_gate is not None:
if not self.homogenous:
raise ValueError(
"Can't use this hacky substitute method for mixed basis sets"
)
gate_list = [scaled_gate] * n_repetitions
else:
# convert circuit polytope into a qiskit circuit with variation 1q params
gate_list = [
self.gate_hash[gate_key]
for gate_key in self.circuit_polytope.operations
]
self.gate_2q_base = cycle(gate_list)
assert n_repetitions == len(gate_list)
super().build(n_repetitions=len(gate_list))
|
https://github.com/anirban-m/qiskit-superstaq
|
anirban-m
|
import io
from typing import List, Union
import applications_superstaq
import qiskit
import qiskit.circuit.qpy_serialization
def serialize_circuits(circuits: Union[qiskit.QuantumCircuit, List[qiskit.QuantumCircuit]]) -> str:
"""Serialize QuantumCircuit(s) into a single string
Args:
circuits: a QuantumCircuit or list of QuantumCircuits to be serialized
Returns:
str representing the serialized circuit(s)
"""
buf = io.BytesIO()
qiskit.circuit.qpy_serialization.dump(circuits, buf)
return applications_superstaq.converters._bytes_to_str(buf.getvalue())
def deserialize_circuits(serialized_circuits: str) -> List[qiskit.QuantumCircuit]:
"""Deserialize serialized QuantumCircuit(s)
Args:
serialized_circuits: str generated via qiskit_superstaq.serialization.serialize_circuit()
Returns:
a list of QuantumCircuits
"""
buf = io.BytesIO(applications_superstaq.converters._str_to_bytes(serialized_circuits))
return qiskit.circuit.qpy_serialization.load(buf)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import pulse
from qiskit.providers.fake_provider import FakeArmonk
backend = FakeArmonk()
with pulse.build(backend) as drive_sched:
d0 = pulse.drive_channel(0)
a0 = pulse.acquire_channel(0)
pulse.play(pulse.library.Constant(10, 1.0), d0)
pulse.delay(20, d0)
pulse.shift_phase(3.14/2, d0)
pulse.set_phase(3.14, d0)
pulse.shift_frequency(1e7, d0)
pulse.set_frequency(5e9, d0)
with pulse.build() as temp_sched:
pulse.play(pulse.library.Gaussian(20, 1.0, 3.0), d0)
pulse.play(pulse.library.Gaussian(20, -1.0, 3.0), d0)
pulse.call(temp_sched)
pulse.acquire(30, a0, pulse.MemorySlot(0))
drive_sched.draw()
|
https://github.com/Z-928/Bugs4Q
|
Z-928
|
from qiskit import *
qc = QuantumCircuit(2)
qc.h(i)
qc.crz (PI/4, 0, 1)
|
https://github.com/daimurat/qiskit-implementation
|
daimurat
|
import numpy as np
import matplotlib.pyplot as plt
from qiskit import QuantumCircuit
from qiskit.circuit import Parameter, ParameterVector
from qiskit.opflow import StateFn, PauliSumOp, Gradient
def generate_random_qnn(qubits, depth):
"""Generate random QNN's with the same structure from McClean et al."""
param = Parameter('theta')
circuit = QuantumCircuit(qubits)
for qubit in range(qubits):
circuit.ry(np.pi / 4.0, qubit)
circuit.barrier()
for d in range(depth):
# Add a series of single qubit rotations.
for qubit in range(qubits):
random_n = np.random.uniform()
random_rot = np.random.uniform() * 2.0 * np.pi if qubit != 0 or d != 0 else param
if random_n > 2. / 3.:
# Add a Z.
circuit.rz(random_rot, qubit)
elif random_n > 1. / 3.:
# Add a Y.
circuit.ry(random_rot, qubit)
else:
# Add a X.
circuit.rx(random_rot, qubit)
circuit.barrier()
# Add CZ ladder.
for src, dest in zip(range(qubits), range(qubits)[1:]):
circuit.cz(src, dest)
circuit.barrier()
return circuit
# 生成される回路の確認(例:3量子ビット)
n_qubits = 3
d = 2
qc_test = generate_random_qnn(n_qubits, d)
qc_test.draw('mpl')
# 勾配の計算
def calc_gradient(qc, hamiltonian, params):
expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(qc)
state_grad = Gradient().convert(expectation)
value_dict = dict(zip(qc.parameters, params))
result = state_grad.assign_parameters(value_dict).eval()
return np.round(np.array(result), 10)
# # テスト勾配計算
# test_hamiltonian = PauliSumOp.from_list([('Z', 1.0), ('X', 1.0)])
# test_params = np.random.uniform(0, np.pi, qc_test.num_parameters)
# calc_gradient(qc_test, test_hamiltonian, test_params)
n_qubits = [2 * i for i in range(2, 7)]
depth = 30
n_circuits = 100
hamiltonian = PauliSumOp.from_list([('Z', 1.0), ('X', 1.0)])
theta_vars = []
for n in n_qubits:
grads = []
# Generate the random circuits and observable for the given n.
qc = generate_random_qnn(n, depth)
for _ in range(n_circuits):
params = np.random.uniform(0, np.pi, qc.num_parameters)
grad = calc_gradient(qc, hamiltonian, params)
grads.append(grad)
theta_vars.append(np.var(grads))
plt.semilogy(n_qubits, theta_vars)
plt.title('Gradient Variance in QNNs')
plt.xlabel('n_qubits')
plt.ylabel('$\\partial \\theta$ variance')
plt.show()
def generate_2qubit_qnn(label):
circuit = QuantumCircuit(2)
circuit.ry(np.pi / 4.0, 0)
circuit.ry(np.pi / 4.0, 1)
circuit.barrier()
for i in range(2):
if label[i] == 'x':
circuit.rx(Parameter('theta'+str(i)), i)
elif label[i] == 'y':
circuit.ry(Parameter('theta'+str(i)), i)
elif label[i] == 'z':
circuit.rz(Parameter('theta'+str(i)), i)
circuit.barrier()
# Add CZ ladder.
circuit.cz(0, 1)
return circuit
qc_test = generate_2qubit_qnn('xy')
qc_test.draw('mpl')
# 期待値の計算
from qiskit import Aer
from qiskit.utils import QuantumInstance
from qiskit.opflow import CircuitSampler
from qiskit.opflow.expectations import AerPauliExpectation
def calculate_exp_val(qc, hamiltonian, params):
expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(qc)
test_expectation = AerPauliExpectation().convert(expectation)
quantum_instance = QuantumInstance(Aer.get_backend('qasm_simulator'),
shots = 32768)
sampler = CircuitSampler(quantum_instance)
value_dict = dict(zip(qc.parameters, params))
result = sampler.convert(test_expectation, params=value_dict).eval()
return np.real(result)
hamiltonian = PauliSumOp.from_list([('X', 1.0)])
X = np.linspace(0, 2*np.pi, 30)
Y = np.linspace(0, 2*np.pi, 30)
Z = np.array([[calculate_exp_val(qc_test, hamiltonian, [x, y]) for x in X] for y in Y]).reshape(len(Y), len(X))
xx, yy = np.meshgrid(X, Y)
fig = plt.figure(figsize=plt.figaspect(0.3))
ax = fig.add_subplot(projection="3d")
surf = ax.plot_surface(xx, yy, Z)
plt.show()
import qiskit.tools.jupyter
%qiskit_version_table
|
https://github.com/Z-928/Bugs4Q
|
Z-928
|
from qiskit import Aer, QuantumCircuit
from qiskit.circuit.library import PhaseEstimation
qc= QuantumCircuit(3,3)
# dummy unitary circuit
unitary_circuit = QuantumCircuit(1)
unitary_circuit.h(0)
# QPE
qc.append(PhaseEstimation(2, unitary_circuit), list(range(3)))
qc.measure(list(range(3)), list(range(3)))
backend = Aer.get_backend('qasm_simulator')
result = backend.run(qc, shots = 8192).result()
|
https://github.com/Hayatto9217/Qiskit13
|
Hayatto9217
|
#error でインストール必要あり
pip install cvxpy
#approximate_error and approximate_noise_model
from qiskit_aer.utils import approximate_quantum_error, approximate_noise_model
import numpy as np
from qiskit_aer.noise import amplitude_damping_error, reset_error, pauli_error
from qiskit.quantum_info import Kraus
#Kraus 演算子
gamma = 0.23
error = amplitude_damping_error(gamma)
results = approximate_quantum_error(error, operator_string="reset")
print(results)
p = ( 1 + gamma -np.sqrt(1 - gamma)) / 2
q = 0
print("")
print("Expected results:")
print("P(0) = {}".format(1 -(p+q)))
print("P(1) = {}".format(p))
print("P(2) = {}".format(q))
#error operatorsはリスト、辞書またはハードコードされたチャネルを示す文字列として与える
gamma = 0.23
k0 = np.array([[1,0],[0,np.sqrt(1-gamma)]])
k1 = np.array([[0, np.sqrt(gamma)], [0,0]])
results =approximate_quantum_error(Kraus([k0, k1]), operator_string="reset")
print(results)
reset_to_0 = Kraus([np.array([[1,0],[0,0]]), np.array([[0,1],[0,0]])])
reset_to_1 = Kraus([np.array([[0,0],[1,0]]), np.array([[0,0],[0,1]])])
reset_kraus = [reset_to_0, reset_to_1]
gamma = 0.23
error = amplitude_damping_error(gamma)
results = approximate_quantum_error(error, operator_list=reset_kraus)
print(results)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test Qiskit's repeat instruction operation."""
import unittest
from numpy import pi
from qiskit.transpiler import PassManager
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister
from qiskit.test import QiskitTestCase
from qiskit.extensions import UnitaryGate
from qiskit.circuit.library import SGate, U3Gate, CXGate
from qiskit.circuit import Instruction, Measure, Gate
from qiskit.transpiler.passes import Unroller
from qiskit.circuit.exceptions import CircuitError
class TestRepeatInt1Q(QiskitTestCase):
"""Test gate_q1.repeat() with integer"""
def test_standard_1Q_two(self):
"""Test standard gate.repeat(2) method."""
qr = QuantumRegister(1, "qr")
expected_circ = QuantumCircuit(qr)
expected_circ.append(SGate(), [qr[0]])
expected_circ.append(SGate(), [qr[0]])
expected = expected_circ.to_instruction()
result = SGate().repeat(2)
self.assertEqual(result.name, "s*2")
self.assertEqual(result.definition, expected.definition)
self.assertIsInstance(result, Gate)
def test_standard_1Q_one(self):
"""Test standard gate.repeat(1) method."""
qr = QuantumRegister(1, "qr")
expected_circ = QuantumCircuit(qr)
expected_circ.append(SGate(), [qr[0]])
expected = expected_circ.to_instruction()
result = SGate().repeat(1)
self.assertEqual(result.name, "s*1")
self.assertEqual(result.definition, expected.definition)
self.assertIsInstance(result, Gate)
class TestRepeatInt2Q(QiskitTestCase):
"""Test gate_q2.repeat() with integer"""
def test_standard_2Q_two(self):
"""Test standard 2Q gate.repeat(2) method."""
qr = QuantumRegister(2, "qr")
expected_circ = QuantumCircuit(qr)
expected_circ.append(CXGate(), [qr[0], qr[1]])
expected_circ.append(CXGate(), [qr[0], qr[1]])
expected = expected_circ.to_instruction()
result = CXGate().repeat(2)
self.assertEqual(result.name, "cx*2")
self.assertEqual(result.definition, expected.definition)
self.assertIsInstance(result, Gate)
def test_standard_2Q_one(self):
"""Test standard 2Q gate.repeat(1) method."""
qr = QuantumRegister(2, "qr")
expected_circ = QuantumCircuit(qr)
expected_circ.append(CXGate(), [qr[0], qr[1]])
expected = expected_circ.to_instruction()
result = CXGate().repeat(1)
self.assertEqual(result.name, "cx*1")
self.assertEqual(result.definition, expected.definition)
self.assertIsInstance(result, Gate)
class TestRepeatIntMeasure(QiskitTestCase):
"""Test Measure.repeat() with integer"""
def test_measure_two(self):
"""Test Measure.repeat(2) method."""
qr = QuantumRegister(1, "qr")
cr = ClassicalRegister(1, "cr")
expected_circ = QuantumCircuit(qr, cr)
expected_circ.append(Measure(), [qr[0]], [cr[0]])
expected_circ.append(Measure(), [qr[0]], [cr[0]])
expected = expected_circ.to_instruction()
result = Measure().repeat(2)
self.assertEqual(result.name, "measure*2")
self.assertEqual(result.definition, expected.definition)
self.assertIsInstance(result, Instruction)
self.assertNotIsInstance(result, Gate)
def test_measure_one(self):
"""Test Measure.repeat(1) method."""
qr = QuantumRegister(1, "qr")
cr = ClassicalRegister(1, "cr")
expected_circ = QuantumCircuit(qr, cr)
expected_circ.append(Measure(), [qr[0]], [cr[0]])
expected = expected_circ.to_instruction()
result = Measure().repeat(1)
self.assertEqual(result.name, "measure*1")
self.assertEqual(result.definition, expected.definition)
self.assertIsInstance(result, Instruction)
self.assertNotIsInstance(result, Gate)
class TestRepeatUnroller(QiskitTestCase):
"""Test unrolling Gate.repeat"""
def test_unroller_two(self):
"""Test unrolling gate.repeat(2)."""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(SGate().repeat(2), [qr[0]])
result = PassManager(Unroller("u3")).run(circuit)
expected = QuantumCircuit(qr)
expected.append(U3Gate(0, 0, pi / 2), [qr[0]])
expected.append(U3Gate(0, 0, pi / 2), [qr[0]])
self.assertEqual(result, expected)
def test_unroller_one(self):
"""Test unrolling gate.repeat(1)."""
qr = QuantumRegister(1, "qr")
circuit = QuantumCircuit(qr)
circuit.append(SGate().repeat(1), [qr[0]])
result = PassManager(Unroller("u3")).run(circuit)
expected = QuantumCircuit(qr)
expected.append(U3Gate(0, 0, pi / 2), [qr[0]])
self.assertEqual(result, expected)
class TestRepeatErrors(QiskitTestCase):
"""Test when Gate.repeat() should raise."""
def test_unitary_no_int(self):
"""Test UnitaryGate.repeat(2/3) method. Raises, since n is not int."""
with self.assertRaises(CircuitError) as context:
_ = UnitaryGate([[0, 1j], [-1j, 0]]).repeat(2 / 3)
self.assertIn("strictly positive integer", str(context.exception))
def test_standard_no_int(self):
"""Test standard Gate.repeat(2/3) method. Raises, since n is not int."""
with self.assertRaises(CircuitError) as context:
_ = SGate().repeat(2 / 3)
self.assertIn("strictly positive integer", str(context.exception))
def test_measure_zero(self):
"""Test Measure.repeat(0) method. Raises, since n<1"""
with self.assertRaises(CircuitError) as context:
_ = Measure().repeat(0)
self.assertIn("strictly positive integer", str(context.exception))
def test_standard_1Q_zero(self):
"""Test standard 2Q gate.repeat(0) method. Raises, since n<1."""
with self.assertRaises(CircuitError) as context:
_ = SGate().repeat(0)
self.assertIn("strictly positive integer", str(context.exception))
def test_standard_1Q_minus_one(self):
"""Test standard 2Q gate.repeat(-1) method. Raises, since n<1."""
with self.assertRaises(CircuitError) as context:
_ = SGate().repeat(-1)
self.assertIn("strictly positive integer", str(context.exception))
def test_standard_2Q_minus_one(self):
"""Test standard 2Q gate.repeat(-1) method. Raises, since n<1."""
with self.assertRaises(CircuitError) as context:
_ = CXGate().repeat(-1)
self.assertIn("strictly positive integer", str(context.exception))
def test_measure_minus_one(self):
"""Test Measure.repeat(-1) method. Raises, since n<1"""
with self.assertRaises(CircuitError) as context:
_ = Measure().repeat(-1)
self.assertIn("strictly positive integer", str(context.exception))
def test_standard_2Q_zero(self):
"""Test standard 2Q gate.repeat(0) method. Raises, since n<1."""
with self.assertRaises(CircuitError) as context:
_ = CXGate().repeat(0)
self.assertIn("strictly positive integer", str(context.exception))
if __name__ == "__main__":
unittest.main()
|
https://github.com/Fergus-Hayes/qiskit_tools
|
Fergus-Hayes
|
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, IBMQ
import qiskit_tools as qt
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
n = 5
xreg = QuantumRegister(n, 'x')
circ = QuantumCircuit(xreg)
circ = qt.QFT(circ, xreg)
circ.draw(output="latex")
backend = Aer.get_backend('unitary_simulator')
job = execute(circ, backend)
result = job.result()
unit_mat = np.array(result.get_unitary(circ, decimals=5))
xreg = QuantumRegister(n, 'x')
circ = QuantumCircuit(xreg)
QFT_gate = qt.QFT(circ, xreg, wrap=True)
circ.append(QFT_gate, xreg);
circ.draw(output="latex")
backend = Aer.get_backend('unitary_simulator')
job = execute(circ, backend)
result = job.result()
unit_mat_wrap = np.array(result.get_unitary(circ, decimals=5))
print(np.sum(np.abs(unit_mat-unit_mat_wrap)**2))
xreg = QuantumRegister(n, 'x')
circ = QuantumCircuit(xreg)
QFT_gate = qt.QFT(circ, xreg, wrap=True)
circ.append(QFT_gate, xreg);
iQFT_gate = qt.QFT(circ, xreg, wrap=True, inverse=True)
circ.append(iQFT_gate, xreg);
circ.draw(output="latex")
backend = Aer.get_backend('unitary_simulator')
job = execute(circ, backend)
result = job.result()
unit_mat = np.array(result.get_unitary(circ, decimals=5))
print(np.sum(np.abs(unit_mat - np.eye(2**n))**2))
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import BasicAer, transpile, QuantumRegister, ClassicalRegister, QuantumCircuit
qr = QuantumRegister(1)
cr = ClassicalRegister(1)
qc = QuantumCircuit(qr, cr)
qc.h(0)
qc.measure(0, 0)
qc.draw('mpl')
|
https://github.com/qwqmlf/qwgc
|
qwqmlf
|
e1=[0.6286408520623922, 0.6289525825569178, 0.5412940012637213, 0.5399199822334315, 0.49756061144296837, 0.5386496534421491, 0.5110201664171742, 0.4785323556159, 0.4879992233852226, 0.49388898393628267, 0.4227883738901349, 0.47665407322957315, 0.49194537115508497, 0.4784480810071889, 0.5067394759922192, 0.4815508310174932, 0.4480058931682556, 0.5191713001759654, 0.5025600642057176, 0.47646282461622946, 0.4620775882390643, 0.5346632906032827, 0.4886131751452513, 0.5068477238076842, 0.4455982578380637, 0.5182468309511442, 0.5194051409981214, 0.5102047452714895, 0.4224846316777891, 0.4369363754766283, 0.47643414498658937, 0.5205363676955092, 0.5191792358482716, 0.43761845483213274, 0.4410680839960249, 0.5124071742830791, 0.5298468258800075, 0.5061098855038695, 0.48256532980818484, 0.4913228065366606, 0.4972612354925298, 0.4978721811109297, 0.4054224929939014, 0.4689590445321974, 0.47656007392483984, 0.4383041892763407, 0.44729094116756796, 0.4355191217281943, 0.39603253338464445]
e2=[0.6445889256767168, 0.6535514888883678, 0.650516819829064, 0.5756429937727983, 0.6142765741620072, 0.5835705610683382, 0.5912615393329274, 0.6146589955098392, 0.6122305885006271, 0.615096288252815, 0.5755860024839088, 0.544477825409265, 0.5426761288272395, 0.5468697195293689, 0.564680589127484, 0.5771165305986262, 0.5684633735633585, 0.5680884419879598, 0.5612183060968275, 0.559276953305883, 0.43673818405890585, 0.4411540650165362, 0.4598893136551889, 0.43005624189179076, 0.45188026405543275, 0.47144659911395703, 0.5244689044281716, 0.41605587984112, 0.4556096201350907, 0.46408102111806254, 0.4693180656437913, 0.4268421245136888, 0.4412494204726097, 0.39367845982910615]
e3=[0.662780905315912, 0.557526130143123, 0.5584640419156808, 0.5344490232122784, 0.593609022343057, 0.4937605123293818, 0.49679500580245917, 0.6381938409925619, 0.4969497574371143, 0.5490326065330788, 0.6127879707910444, 0.5089002055028583, 0.5504401226212559, 0.6142692709979238, 0.5721990951978606, 0.5018530856716944, 0.48248730823997454, 0.5393567930056656, 0.41791994591838755, 0.5305910774126542, 0.561185300298215, 0.595460105472618, 0.5115104804811111, 0.4495276525911773, 0.43500401066793454, 0.4161182946891324, 0.42475182877301493, 0.5073871378890902, 0.47263913226342963, 0.5149631515053271, 0.598002020559863, 0.41349915170939194, 0.47894825230795474, 0.5622578158963416, 0.5723435539368699, 0.4462502586322237, 0.4093627693814017, 0.5492960278816822, 0.510461265579312, 0.5808173512459651, 0.5597837733339822, 0.5640112157072309, 0.44698468041157, 0.5070970659950728, 0.48072844551751587, 0.5272173485178996, 0.5376622571610833, 0.5735053315795404, 0.4092035721307091, 0.5440903033836487, 0.5011121569382986, 0.5527630387469133, 0.4941897766576979, 0.470192162722345, 0.47418095121567044, 0.48084680432628457, 0.4239088964655666, 0.46940819486126134, 0.4537334210540194, 0.4864943090841813, 0.4687166558652696, 0.49614205816549944, 0.42874339930129546, 0.4479324170994075, 0.40787039901158556, 0.48786153290305956, 0.40963323764273557, 0.4352159063157325, 0.4888689022690961, 0.47162666268555464, 0.44671000444880116, 0.4967216183541344, 0.4012512434083865, 0.46064594635128436, 0.4049871203999046, 0.47170955324407465, 0.48706359188208187, 0.39931433341039707]
e4=[0.631157721764274, 0.626369631668824, 0.6435168046798363, 0.5756890928745755, 0.6805477459512386, 0.5457392115779026, 0.6670013898692743, 0.571441632419972, 0.5711226503295723, 0.5043703755755192, 0.5133700170618634, 0.4890578230830625, 0.48377985095373055, 0.5401161872295855, 0.5231897730483787, 0.5224417136122825, 0.48197008488419696, 0.5430021431008605, 0.48585065976376307, 0.4947049468193294, 0.5128519566834271, 0.5111700349984294, 0.5021240973161041, 0.44473351723091004, 0.5387269935977932, 0.5000663192282513, 0.47768543276690545, 0.4804686186752253, 0.5298907808582913, 0.4752329625280757, 0.44839780034261145, 0.4701039454704951, 0.4918735308810149, 0.4728677770754973, 0.4576550851711339, 0.502450222085708, 0.5163739719069254, 0.5213008138551934, 0.4652131556745651, 0.49846654870033724, 0.5137510967641185, 0.5446460345322064, 0.47656732480459313, 0.4516336465509245, 0.5271248472630446, 0.4559450905739887, 0.49738101909129345, 0.5253791961349298, 0.5135150601261252, 0.44079823430873305, 0.5324834268850102, 0.5035609323350201, 0.5182742329465138, 0.5504791701670207, 0.531284676694358, 0.474503007577341, 0.5366327134778044, 0.5011612366374507, 0.5127348471786759, 0.5019671684236049, 0.44189963776688185, 0.46295316911159845, 0.5348905595183858, 0.5269112370262575, 0.5090272490103386, 0.47609522731817105, 0.491370758355211, 0.4135600347595616, 0.4818512230353636, 0.512062390185624, 0.47933046522657563, 0.4934857435730518, 0.4806171151139013, 0.4608250672563326, 0.41268520144053455, 0.4918494520803791, 0.46745210963432454, 0.48071324978066593, 0.5057204328529747, 0.4996037331029218, 0.5413217090462604, 0.4508761552721001, 0.47468589579687376, 0.5642027975890482, 0.41545508292293726, 0.48314552116470366, 0.3997297679560264]
e5=[0.6682606140119535, 0.5778862814702397, 0.571284816447605, 0.5732217554886555, 0.576681243443929, 0.5696738503322155, 0.561619312862779, 0.5550863827708744, 0.5376039510952384, 0.5209829601641807, 0.5787276254893167, 0.5649896199922552, 0.5685287073392442, 0.4857622856463922, 0.5184760505457569, 0.5477220163966926, 0.5677443951422002, 0.546248508606815, 0.48857192683520445, 0.4844910863766792, 0.4503989103757882, 0.42963829512934754, 0.36462205360641897]
e6=[0.6052190978338532, 0.6168189279264902, 0.5742753886203199, 0.5916751574417829, 0.6499174495644433, 0.5572021688155816, 0.5875677462728359, 0.5882764329669297, 0.42224941745738764, 0.46388965858198655, 0.46894811449133583, 0.5386172982477864, 0.445138792658842, 0.5659195198584153, 0.4280846453576261, 0.5081342706424578, 0.591777700219891, 0.4300014148912618, 0.44029194146143813, 0.4655751631352384, 0.5144871176051569, 0.4302597905571364, 0.47086406673852405, 0.42197278841497904, 0.5666806007720256, 0.4684396130328333, 0.46515501410751087, 0.5854247908909535, 0.46820092150107384, 0.4542753960527196, 0.5136825397873981, 0.42490230795806355, 0.5681653948495334, 0.4982418526291404, 0.5297805255166854, 0.5255641991721257, 0.46604946752584037, 0.42125778606643877, 0.5572774702893012, 0.4857469072821239, 0.46583437875598993, 0.49471480783108884, 0.4960882334145554, 0.464275426856948, 0.4227442887486467, 0.4736773611229292, 0.49004926134414617, 0.49931503682149486, 0.4988062267806028, 0.49268082475005154, 0.4488809454972674, 0.5174211905808321, 0.42898509257033995, 0.41935662991751776, 0.4804755068098414, 0.5517276889852001, 0.6108761441851374, 0.5106562598517737, 0.5707976053860792, 0.5431404102118769, 0.610686118237394, 0.5640443974179815, 0.45304879473737386, 0.5000248112364134, 0.4302734132332332, 0.48721656167805666, 0.5295429629785897, 0.46752394358529753, 0.6145431584915981, 0.50988218844425, 0.49915956989048965, 0.5278205896473646, 0.620852541372503, 0.4237926102741802, 0.42282174131809014, 0.4208938526055965, 0.487461524736154, 0.4753131817344044, 0.4822918616140902, 0.44156923779603763, 0.41871631240516527, 0.46848062331449036, 0.46980532334976366, 0.4709761803139777, 0.3976063267327049]
e7=[0.6343177780040268, 0.619599304033062, 0.6242120198917819, 0.6031668480623487, 0.6402201060305929, 0.6231041583237609, 0.6293624185342378, 0.6458794486207945, 0.6827538772276097, 0.6720506480634977, 0.6899104720222323, 0.669870406811187, 0.6512371597807493, 0.6920056581481943, 0.5914131484170293, 0.6232179447484109, 0.5801354474941912, 0.6763159966305158, 0.56685784250218, 0.6637311529482484, 0.5847709695092046, 0.5633961429876598, 0.560108233954407, 0.52832327254978, 0.5283157800182223, 0.49202826266850064, 0.46519065544218025, 0.458531046376133, 0.48787502470038335, 0.4633186448926279, 0.5231878042415427, 0.5232549990667295, 0.45401437184614385, 0.4628743973973229, 0.46133926646432816, 0.4803737244518355, 0.4908663462940766, 0.47381789765142834, 0.46783045177687643, 0.46850374045145793, 0.4681717836248394, 0.4664232598009578, 0.475161204989716, 0.4698246364777594, 0.46279370428901806, 0.47086318835181673, 0.47130924184490053, 0.48004062896072147, 0.5380318909358003, 0.522459093653992, 0.5086512464786042, 0.4940124113230001, 0.5084629644805148, 0.49907221807047564, 0.5060149840853123, 0.5399783523243797, 0.5411928928687932, 0.5080996494638225, 0.49238446160879457, 0.5090379936341687, 0.4514971394109261, 0.5069246117398007, 0.5122056635240435, 0.5183315031961354, 0.5247657452974124, 0.5358356076290758, 0.5328220546034671, 0.5280624432744783, 0.5274743097746725, 0.4975618714767399, 0.49785887670110296, 0.5172247834730592, 0.5139599573220014, 0.5470670151810273, 0.5289727214355933, 0.5291905638247228, 0.4802756837124825, 0.5105438294031261, 0.4966151637696548, 0.4622230385770683, 0.5028894815058449, 0.5204636049862856, 0.46890755144793184, 0.536715875218253, 0.5287019172764743, 0.49212818638466355, 0.4978716350387547, 0.47170291861259944, 0.537535312754868, 0.5285083683899722, 0.5435672463104038, 0.5362293614488318, 0.48409470635156077, 0.45942009997388766, 0.5383618196483511, 0.5066198888774862, 0.5322328585016302, 0.5380757401024095, 0.5307318705952703, 0.49557513053245256, 0.540221765590457, 0.5319199897476646, 0.4425432496155992, 0.5424946438115121, 0.4967073166823288, 0.522464533354847, 0.48612498629064954, 0.5236114041318946, 0.5270520927976627, 0.5375392206453816, 0.49356780560525965, 0.5055856811585618, 0.5432119154861312, 0.5048427773577933, 0.45663313202496075, 0.45486778712936404, 0.44971790073868045, 0.5149780350294215, 0.5083240728859777, 0.44894944420421445, 0.5042145757006968, 0.48460426559739705, 0.4967351042896734, 0.5044661611141689, 0.43596825173934706, 0.5746881408014808, 0.5560117818174737, 0.48581143997140513, 0.4178848063830119, 0.4124531613792558, 0.41128625935257995, 0.5130877411153815, 0.5702506434152459, 0.5191608795298068, 0.40421862548733356, 0.49370921494417785, 0.47747102686452786, 0.4501159143626001, 0.42434966281242287, 0.5694928908915956, 0.4707648838018859, 0.46308786979076044, 0.5674826460753027, 0.41319744667993896, 0.43378581408673195, 0.5479508775304427, 0.42830800640058475, 0.5040567675034388, 0.5102932814824029, 0.5352098084517855, 0.4711907835610163, 0.4135569939522152, 0.5645434706974641, 0.39392153030740434]
e8=[0.5913407969216123, 0.5968027045561548, 0.5807132242546393, 0.6045555424432444, 0.5790465745724817, 0.5146519574308367, 0.5386476154031689, 0.5457725039582826, 0.5544308346069118, 0.5435916500554991, 0.5640535382781875, 0.5419371097075426, 0.5441329113708785, 0.5580210026385325, 0.539490557893939, 0.5427861674156166, 0.5546224894721118, 0.5497072631021152, 0.5562272792102939, 0.5191799008595017, 0.5651000039656113, 0.5648645310545621, 0.5442534059819037, 0.5442239567027761, 0.5569325490735977, 0.5570671528470494, 0.5707478917193466, 0.5520669114088126, 0.5560904525558917, 0.536186225898877, 0.567669985618328, 0.5404920496327675, 0.551565557944254, 0.5425809403646311, 0.5557752017202766, 0.5535524873136072, 0.54511963019625, 0.5578999806184163, 0.5430200803197988, 0.5600545158472466, 0.5495828613081718, 0.554367532743426, 0.5492933831513049, 0.5571854750471325, 0.542362247911772, 0.5480834794851243, 0.5262099870228901, 0.48032788936449317, 0.4782151124259759, 0.49380543526049225, 0.5064807825285621, 0.4947974190672037, 0.4937050456318475, 0.49423348593034644, 0.4934758389741058, 0.5088370646749851, 0.4945296999162127, 0.4980231753465324, 0.4966765276873942, 0.4921028081643773, 0.515243532046272, 0.505921332289337, 0.5040872928584723, 0.4934447759396242, 0.5075192382266717, 0.5097597347103172, 0.4742844879083192, 0.5442708524819456, 0.4999348179754739, 0.461829856728611, 0.4705040366840693, 0.4903857708284842, 0.4924730661893619, 0.5134988021147889, 0.4923443029208326, 0.4727467433790539, 0.5225885499341563, 0.47025597023306087, 0.49101448323887475, 0.5430488000164548, 0.46579466193938523, 0.5151981816002086, 0.5429112242988399, 0.5038012282289347, 0.524662590969537, 0.4958443962133329, 0.4577390007625348, 0.5445978798228361, 0.502963558160195, 0.4894387668322627, 0.5440032976839626, 0.4819860916037589, 0.4654945753767531, 0.5152589293772628, 0.49937169712317414, 0.4864882370386736, 0.4507856824420945, 0.46654016177363283, 0.5097213545853928, 0.5404550468061052, 0.5419278186965883, 0.4495814173506067, 0.5153273272247367, 0.45098667264602854, 0.46487961539249983, 0.5234411744015217, 0.5336811462704812, 0.4455712071824399, 0.5365523056268828, 0.5121995525704492, 0.4736035794709903, 0.4473335804233988, 0.4906554048692217, 0.43056341428429684, 0.48750676622735406, 0.46975202791639503, 0.41985163165128453, 0.42365061155579714, 0.46134934441088365, 0.46918184061159246, 0.4432015336494499, 0.4720567531651249, 0.4683567090279011, 0.42967603770654866, 0.4236602081687182, 0.4135466892675132, 0.45815086391436777, 0.3967556123885781]
e9=[0.6650768332261353, 0.5839188975158505, 0.5465120888927283, 0.5550907987683472, 0.567639764704636, 0.5085926678869052, 0.5275917470790742, 0.541221468537061, 0.5704477431835283, 0.5448885505140948, 0.5132874077181068, 0.5101701010115886, 0.5310406275923955, 0.5454947990050796, 0.5625857434190685, 0.5159442036807962, 0.5988034093157687, 0.5943047004640979, 0.551393955716915, 0.5233365342078535, 0.4752450983304961, 0.5050691325599479, 0.5235954093501491, 0.4552512305179317, 0.5831833398610338, 0.4731778439749536, 0.5687028273171127, 0.5889767650973098, 0.6064331743720209, 0.440816151178571, 0.448903119770252, 0.44343653750230294, 0.5001408741585447, 0.49118657617553213, 0.467956850971661, 0.4825464062978623, 0.5399849464121956, 0.47311507777648387, 0.4968562934355171, 0.46528754202033956, 0.5009424715411169, 0.4498238228474625, 0.5111711895467378, 0.46172956095965534, 0.48795037350222076, 0.49779900451624604, 0.41431572809038547, 0.5548793389362827, 0.5592370825347295, 0.47399601371736727, 0.5362121023064179, 0.5389262776700031, 0.48785242517507516, 0.48497470394201003, 0.48853758754813664, 0.452062814504457, 0.48515275520764484, 0.5178452313538177, 0.4370453782697105, 0.5143343530357027, 0.4733976407685126, 0.4377874336752083, 0.4225158612975633, 0.4079474669212051, 0.5525408255038543, 0.5199513551123233, 0.4448075381183994, 0.4889228086780745, 0.5444860707172519, 0.5482472432312546, 0.4715690031152096, 0.5860841514937343, 0.48233223561238736, 0.5260061348833885, 0.5273267432013465, 0.5210076022602085, 0.5551322110634548, 0.43377446518549584, 0.5930831673002215, 0.47734011874861937, 0.5223724082746285, 0.46364564600104363, 0.49103227014858114, 0.5078208924726832, 0.5142013832446156, 0.42539199248715004, 0.573131639889572, 0.4196562315745191, 0.5830005193887268, 0.5093072734962075, 0.5148966644389248, 0.4243085194017081, 0.6687310583399344, 0.46364319971652684, 0.49546870554391054, 0.5366528704484373, 0.5198103049962106, 0.5387543007216663, 0.582636034027522, 0.5363235009290618, 0.48327522215619056, 0.541926394132778, 0.5559785869462495, 0.6016761352697166, 0.5371624283020867, 0.5674319149578625, 0.5300704977548727, 0.5547608427601932, 0.4798895004992304, 0.4660034751436862, 0.524066221672807, 0.48431688551826535, 0.4902196506170733, 0.540522649117206, 0.4411247935696716, 0.5057168246330429, 0.6111460839056243, 0.5640026472940163, 0.5352351126005239, 0.43094285001997823, 0.5156524893462651, 0.43502378139170633, 0.4967973382630091, 0.49812092740202074, 0.5167071715045539, 0.5532030008701334, 0.5617041929433927, 0.5188911940730441, 0.5743757589835153, 0.5189928236553618, 0.4380557607907093, 0.5418787229350316, 0.44821135345496893, 0.5310716701733434, 0.5461678917843644, 0.519134739798097, 0.5511987988747173, 0.5773381630359999, 0.5233184425743422, 0.49873902095696, 0.5038420863478974, 0.5758701606630139, 0.5551576247842767, 0.5159133205832385, 0.5433872211476676, 0.5233134104986293, 0.5134074229814606, 0.49244212787856195, 0.5004507865528482, 0.5177767871179224, 0.5125121555910681, 0.5202937524719504, 0.5158894931633854, 0.518259284945597, 0.49879019957162246, 0.5138751753512852, 0.5193327327927922, 0.520053378362557, 0.4996759240244054, 0.5307492186079692, 0.5321791654099939, 0.512370357644313, 0.5051488492226954, 0.5155795339277843, 0.5850895438525353, 0.49333688234630446, 0.5146387574915534, 0.5152962059410358, 0.4916785527685588, 0.5220270697847215, 0.5108044898684504, 0.5225887670058841, 0.5054755192744912, 0.5200111921446353, 0.6186353617217828, 0.5162420347066328, 0.48991362080819656, 0.49458247546427553, 0.5310543800879368, 0.49156501831817023, 0.5209129827957445, 0.5071274285234982, 0.514889685151172, 0.4876652826616725, 0.5176711547960228, 0.501579488061985, 0.5219832016573605, 0.5211421406724956, 0.6102793042683985, 0.5092234796765647, 0.505841113259587, 0.5191361626567386, 0.509224562794439, 0.5095766326615782, 0.502079751965955, 0.5127003003234921, 0.5099580442929842, 0.5107503813960915, 0.5886776852182013, 0.5220688084678431, 0.5280708084273058, 0.5097898025489782, 0.5047902080968601, 0.5005626889772651, 0.596540291245381, 0.4996027048629127, 0.4934349312367303, 0.5409843332211969, 0.5017001340834972, 0.5094353513995228, 0.5170367406199069, 0.530769105638814, 0.5176185091437396, 0.5094759296400767, 0.5193568466416617, 0.4989014112392066, 0.5279480159795279, 0.5029211093859308, 0.5002122616570341, 0.5009459192487525, 0.5161268696467814, 0.5122714761320836, 0.4996834477594777, 0.5003828952897394, 0.5152310440552359, 0.5268164219017487, 0.4977712336603499, 0.5046063697037492, 0.5049611779603863, 0.471537858447829, 0.426280740636709, 0.4063048376824669, 0.4556689882653091, 0.429043458117716, 0.46098399335733065, 0.4783089903682395, 0.4548024144447215, 0.46235139284638144, 0.4855141050547884, 0.4525664843675803, 0.4752750869575304, 0.39445032834640115]
e10=[0.6443296151657899, 0.5846714977547917, 0.5672715023778702, 0.5730989175581916, 0.5384647413211849, 0.645025012113611, 0.5818761835357733, 0.5485799801801237, 0.5470440562426591, 0.6848038874433044, 0.5762873974699276, 0.5210875247502859, 0.5840268965938661, 0.5996170002320559, 0.5675317667073588, 0.530705152494162, 0.43856855545184587, 0.5336486205176295, 0.5041957778265646, 0.5331599343293132, 0.4638759111952121, 0.5702342410880747, 0.4641523004965677, 0.49632076472769915, 0.4134526096867966, 0.6395538621427509, 0.5807024881555874, 0.54209316417008, 0.4917106519049478, 0.5746860150482541, 0.4903252002874721, 0.407509811691121, 0.41193636837385816, 0.5197750790448739, 0.5015629445346276, 0.5122720293420352, 0.5089435162867448, 0.479120258101935, 0.9612299362567398, 0.5322306367524896, 0.5408316328291428, 0.5005022853080526, 0.40517976682543727, 0.4738710242232649, 0.5853321607871663, 0.6350323074683683, 0.6220323108115962, 0.5756956691561051, 0.5785318277560356, 0.5495550621945828, 0.6706174816054492, 0.6379782769471595, 0.7984002265429345, 0.5819019958048154, 0.565515984004764, 0.585069528132984, 0.7163610180148806, 0.5907315843404257, 0.5649416080557663, 0.5797493081636891, 0.5929644452090546, 0.7590981885358427, 0.6029722793981109, 0.753962026409037, 0.6612429927176287, 0.5633060981382474, 0.6934616792472114, 0.599324234927781, 0.6621616927728853, 0.5921192185054662, 0.43641299280375273, 0.5122249502827196, 0.409546418406672, 0.42286517450873307, 0.6224070628071293, 0.5023519159195332, 0.5663255019772804, 0.5678506389375136, 0.464807663895237, 0.4602657015700848, 0.41183164602462163, 0.4275251302283884, 0.5801912671155873, 0.5318028256314792, 0.5397358271202957, 0.4531821739411755, 0.44849727924771193, 0.46869408154450576, 0.4549633610858585, 0.4462452859369011, 0.524381047614326, 0.379113122281514]
# errors = [e1, e2, e3, e4, e5, e6, e7, e8, e9]
errors = [e1, e4, e2]
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
fig = plt.figure(figsize=(20, 10))
sns.set()
plt.xlabel("The number of iterations", fontsize=30)
plt.ylabel("Error", fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
for ier, er in enumerate(errors):
lens = len(er)
plt.plot(range(lens), er, label="Error rate in the training process.")
# plt.legend(fontsize=20)
plt.title("Error tranisition during the training process.", fontsize=30)
plt.show()
figure = plt.figure(figsize=(10, 10))
plt.boxplot([0.9473684210526315, 0.7894736842105263, 0.8947368421052632, 0.8947368421052632, 0.7894736842105263, 0.8947368421052632, 0.6842105263157895, 0.7368421052631579, 0.8888888888888888, 0.7777777777777778])
plt.title("Result of 10 cross validation", fontsize=20)
plt.xlabel("MUTAG experiment", fontsize=20)
plt.tick_params(labelsize=14)
plt.ylabel("Accuracy", fontsize=20)
e3s=[0.6114993145170406, 0.5580492397062562, 0.551723552407508, 0.5484116800260197, 0.5143462721841497, 0.628101523805724, 0.5356993571948219, 0.5266942280148578, 0.5141310873542365, 0.5638829554297106, 0.5496228055765812, 0.6360133689458043, 0.5201943196959011, 0.5481851459170456, 0.5055907141722972, 0.4941810064365272, 0.49340466605586575, 0.4634544459337397, 0.4611237576608274, 0.45213919591606666, 0.4534383746210488, 0.5054618981122072, 0.5165870609303926, 0.45209150635940387, 0.46805949776885464, 0.46960440853671903, 0.467819372880231, 0.4741484070294051, 0.4820804390230995, 0.4717719920228282, 0.5693892077112471, 0.5511274894354884, 0.5033156791541581, 0.5225321272437906, 0.5036599855410948, 0.51329297604302, 0.46424100042295025, 0.48893838154754043, 0.491828375814068, 0.5032194807511081, 0.4509417716028073, 0.4795241201436505, 0.5327343558753157, 0.4878793485411833, 0.4968022638355129, 0.47016307388363854, 0.5139168596002424, 0.44169284992918284, 0.4970774248606773, 0.5008123176407452, 0.5167832520763408, 0.5080038420660207, 0.48930759606351343, 0.513371961439122, 0.43260350311028717, 0.4378572126596461, 0.44645119576095627, 0.43974257495457336, 0.44501068910222275, 0.5046275199007141, 0.5248927422341266, 0.5057426950560957, 0.44435592756939385, 0.5028020254976295, 0.43205956750536756, 0.5095266443472911, 0.43189189288242835, 0.48790827272910336, 0.4615726181458669, 0.4708616965051463, 0.44032234603084713, 0.5179107099016528, 0.447553212974451, 0.4866584089091045, 0.5095162013165208, 0.5159928986646231, 0.5044830183103161, 0.4292861696424971, 0.5314628116720455, 0.43598839835680664, 0.4577829631040909, 0.4873913033076141, 0.4503809344508515, 0.484440023394841, 0.48888482964533436, 0.4920285335157382, 0.5073922782465428, 0.44670952906510897, 0.49607219758491355, 0.4308090376369893, 0.5268897603175041, 0.503559006011311, 0.5325591799558704, 0.5112110616324055, 0.4217329296463216, 0.4287457162429004, 0.5387852988261452, 0.5221160368806622, 0.509923902633072, 0.4411366299303317, 0.43803455040269307, 0.5335288104235335, 0.5272146852894581, 0.4602714866419109, 0.4465667728038471, 0.49895069098977923, 0.44450285295324765, 0.5251224372640607, 0.5278343169334901, 0.4596689338797286, 0.5217282828884132, 0.42935151668392935, 0.46706278369369864, 0.511648879842166, 0.49038583458744545, 0.4240684556714285, 0.5085615349599282, 0.4667558025833304, 0.5225293906551759, 0.4791700925332441, 0.42187666877056285, 0.4444577598049048, 0.43180975598120047, 0.47279635019359195, 0.40434165271953953, 0.4567439578687747, 0.4047810725738134, 0.45285436709795845, 0.5106699339221253, 0.41760528844233397, 0.463230639757571, 0.4583953066465225, 0.47033013236271226, 0.46012210399176057, 0.48140415708781703, 0.4471153121689473, 0.485398357745934, 0.4602156421568477, 0.48008157966420123, 0.4202314394133098, 0.504311984447005, 0.4655888166277228, 0.43114982313289985, 0.46496997393407696, 0.46041725990525456, 0.4662905080385762, 0.43186752985533855, 0.5113262759807295, 0.4719745720033306, 0.47791479563461675, 0.46799098060250977, 0.40620578584396677, 0.42314041607019615, 0.4162314065076259, 0.41579571768218204, 0.43814693535584737, 0.47413006835703997, 0.4974571568255316, 0.4935654224734384, 0.48136060672275627, 0.4550978367425495, 0.49706958170713433, 0.44513768595224995, 0.4253361121582329, 0.44381941515869333, 0.4761198169714065, 0.47667447892671105, 0.48046363042033574, 0.5199316709111657, 0.48927857372412814, 0.4808599995841265, 0.49799963296315697, 0.4492087033317719, 0.46986478238223167, 0.506700053418057, 0.4987938011003559, 0.4544414206143903, 0.5377744716063275, 0.5140073014745788, 0.42192876338556845, 0.4486045885520557, 0.42644917513144487, 0.4116325393736495, 0.4322134994562949, 0.476302541798784, 0.48675134068911835, 0.41824997807779385, 0.426746519901415, 0.46480259963728177, 0.5214455692010816, 0.41548303889992255, 0.42933136120094717, 0.4838030541852354, 0.494936691128753, 0.49186212498168014, 0.4217631685828114,
0.45602912462583534, 0.5125161938121239, 0.4457479372848052, 0.46618893650081916, 0.48881100807439615, 0.43768350802896466, 0.4739599720363637, 0.4955716129352989, 0.4804280162630706, 0.48163906724030736, 0.4143071427832678, 0.48475848400436833, 0.44899270858594775, 0.4838938111763643, 0.4848282167826762, 0.4838980545767503, 0.4866190119509327, 0.4717631934896995, 0.5165489359356199, 0.48360361419074716, 0.4804091649028527, 0.5097297759525212, 0.4571519002443824, 0.4452585896454598, 0.4414109845063244, 0.4235666003629125, 0.5153951286649423, 0.4883078008311837, 0.4346874565124854, 0.5005732966822127, 0.417852787993552, 0.4145857127347467, 0.48591110524336795, 0.4345903953415311, 0.41977222100784434, 0.5371283981310165, 0.47305277802964524, 0.44317952697867435, 0.4036964309526516, 0.4581214250541329, 0.5463341411652219, 0.46045127199889063, 0.4501169516101683, 0.4179825918218954, 0.49900783694877715, 0.4892906123586632, 0.42840660739898967, 0.47162708436149237, 0.4345798849491902, 0.47562520954776094, 0.4340927110566402, 0.4313336037367724, 0.4129143693247415, 0.5135537564781154, 0.47204003930970917, 0.4210640712529034, 0.4245605754426493, 0.4743745984824515, 0.48794937883439804, 0.4180700741879826, 0.4912515867736354, 0.4903159358869692, 0.49091273489139003, 0.4327263671175196, 0.5112962766853835, 0.418128526296058, 0.4832865396091334, 0.48082133074596606, 0.4832623410972604, 0.41270459153098055, 0.42109973525643424, 0.4998801209675613, 0.46762469008572893, 0.4799947903769364, 0.4736394640658181, 0.47211493605277344, 0.5287411401320841, 0.5200724040148723, 0.5066205296433474, 0.5127730183590961, 0.44369916589791547, 0.48456698587240804, 0.5051576392479146, 0.5081283632369991, 0.4193870952105006, 0.43548458423797165, 0.5146117075667941, 0.6496553944513833, 0.4143930795231045, 0.4289819520927289, 0.5080801555292406, 0.5131411994688787, 0.43696130146368667, 0.5427646826654766, 0.45345802627109194, 0.5433482910534887, 0.5143319170186181, 0.5097298427495505, 0.5136637813655547, 0.5106507420608952, 0.5548887569702587, 0.7065321055530301, 0.5168715814597589, 0.41794267534812685, 0.43090336510087845, 0.7212155749399769, 0.6165544559697002, 0.46033737106777256, 0.5089387495523169, 0.5253975539361965, 0.5115566116956278, 0.42320202401689294, 0.5246174570570632, 0.6281310330202612, 0.4751536510310882, 0.5950102991564058, 0.4978649425068354, 0.46610446928565485, 0.544534190394418, 0.6016255287956038, 0.5631491919128527, 0.6833236214330077, 0.4110880226407702, 0.4722339929634415, 0.5323749024552461, 0.4891842913332914, 0.6762690545068252, 0.41950833442907715, 0.4876659176727193, 0.6046630614307239, 0.4928000945510993, 0.553452844399436, 0.4511162775004234, 0.47151456349690807, 0.4909478739757076, 0.4918155366451409, 0.4431381515130087, 0.48011543632848297, 0.6012506969150045, 0.4602080508155012, 0.4857964362690456, 0.554271610426304, 0.41699549081779524, 0.4613389595659844, 0.413520621478622, 0.5796217614630786, 0.4849478885457273, 0.405352719966207, 0.4885767886098703, 0.5219683081108104, 0.4626909895475748, 0.5026622317544714, 0.5683235089403735, 0.40180703773062326, 0.41191760583198633, 0.39797130773487593]
plt.plot(range(len(e3s)), e3s)
import numpy as np
from sklearn.decomposition import PCA
predata = []
with open('../result.txt') as f:
lines = f.readlines()
for l in lines:
temp = []
for lsa in l[1:-2].split(","):
temp.append(complex(lsa))
predata.append(temp)
print(predata)
X = np.array(predata, dtype=complex)
reals = []
imags = []
for x in X:
temp_re = []
temp_im = []
for ele in x:
print(ele.real)
temp_re.append(ele.real)
temp_im.append(ele.imag)
reals.append(temp_re)
imags.append(temp_im)
labels = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1]
import matplotlib.pyplot as plt
import seaborn as sns
pca = PCA(n_components=2)
reals = pca.fit_transform(reals)
# class 1
group1 = [i for i, j in zip(reals, labels) if j==1]
g1_x, g1_y = [i[0] for i in group1], [i[1] for i in group1]
# class -1
group2 = [i for i, j in zip(reals, labels) if j==-1]
g2_x, g2_y = [i[0] for i in group2], [i[1] for i in group2]
sns.set()
fig = plt.figure(figsize=(15, 10))
plt.scatter(g1_x, g1_y, c="red")
plt.scatter(g2_x, g2_y, c="blue")
pca = PCA(n_components=2)
imags = pca.fit_transform(imags)
# class 1
group1 = [i for i, j in zip(imags, labels) if j==1]
g1_x, g1_y = [i[0] for i in group1], [i[1] for i in group1]
# class -1
group2 = [i for i, j in zip(imags, labels) if j==-1]
g2_x, g2_y = [i[0] for i in group2], [i[1] for i in group2]
sns.set()
fig = plt.figure(figsize=(15, 10))
plt.title("Feature Space before learning")
plt.scatter(g1_x, g1_y, c="red")
plt.scatter(g2_x, g2_y, c="blue")
import numpy as np
from sklearn.decomposition import PCA
predata = []
with open('../result2.txt') as f:
lines = f.readlines()
for l in lines:
temp = []
for lsa in l[1:-2].split(","):
temp.append(complex(lsa))
predata.append(temp)
print(predata)
X = np.array(predata, dtype=complex)
reals = []
imags = []
for x in X:
temp_re = []
temp_im = []
for ele in x:
print(ele.real)
temp_re.append(ele.real)
temp_im.append(ele.imag)
reals.append(temp_re)
imags.append(temp_im)
pca = PCA(n_components=2)
reals = pca.fit_transform(reals)
# class 1
group1 = [i for i, j in zip(reals, labels) if j==1]
g1_x, g1_y = [i[0] for i in group1], [i[1] for i in group1]
# class -1
group2 = [i for i, j in zip(reals, labels) if j==-1]
g2_x, g2_y = [i[0] for i in group2], [i[1] for i in group2]
sns.set()
fig = plt.figure(figsize=(15, 10))
plt.scatter(g1_x, g1_y, c="red")
plt.scatter(g2_x, g2_y, c="blue")
pca = PCA(n_components=2)
imags = pca.fit_transform(imags)
# class 1
group1 = [i for i, j in zip(imags, labels) if j==1]
g1_x, g1_y = [i[0] for i in group1], [i[1] for i in group1]
# class -1
group2 = [i for i, j in zip(imags, labels) if j==-1]
g2_x, g2_y = [i[0] for i in group2], [i[1] for i in group2]
sns.set()
fig = plt.figure(figsize=(15, 10))
plt.title("Feature Space before learning")
plt.scatter(g1_x, g1_y, c="red")
plt.scatter(g2_x, g2_y, c="blue")
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
#!/usr/bin/env python
# coding: utf-8
# In[1]:
from qiskit import QuantumCircuit, transpile
from qiskit_aer import AerSimulator
from qiskit.visualization import plot_histogram
# Use Aer's AerSimulator
simulator = AerSimulator()
# Create a Quantum Circuit acting on the q register
circuit = QuantumCircuit(2, 2)
# Add a H gate on qubit 0
circuit.h(0)
# Add a CX (CNOT) gate on control qubit 0 and target qubit 1
circuit.cx(0, 1)
# Map the quantum measurement to the classical bits
circuit.measure([0, 1], [0, 1])
# Compile the circuit for the support instruction set (basis_gates)
# and topology (coupling_map) of the backend
compiled_circuit = transpile(circuit, simulator)
# Execute the circuit on the aer simulator
job = simulator.run(compiled_circuit, shots=1000)
# Grab results from the job
result = job.result()
# Returns counts
counts = result.get_counts(compiled_circuit)
print("\nTotal count for 00 and 11 are:", counts)
# Draw the circuit
circuit.draw()
# In[2]:
# Plot a histogram
plot_histogram(counts)
# In[3]:
circuit.draw()
# In[4]:
simulator = AerSimulator()
compiled_circuit = transpile(circuit, simulator)
job = simulator.run(compiled_circuit, shots=1000)
result = job.result()
counts = result.get_counts(circuit)
print("\nTotal count for 00 and 11 are:",counts)
# In[5]:
plot_histogram(counts)
|
https://github.com/carstenblank/dc-qiskit-qml
|
carstenblank
|
# -*- coding: utf-8 -*-
# Copyright 2018, Carsten Blank.
#
# This source code is licensed under the Apache License, Version 2.0 found in
# the LICENSE.txt file in the root directory of this source tree.
import logging
import sys
import unittest
from typing import Dict
import numpy as np
import qiskit
from qiskit import QuantumCircuit, ClassicalRegister
from qiskit.providers import BackendV2
from scipy import sparse
from dc_qiskit_qml.distance_based.hadamard.state import QmlBinaryDataStateCircuitBuilder
from dc_qiskit_qml.distance_based.hadamard.state.cnot import CCXMottonen, CCXToffoli
from dc_qiskit_qml.encoding_maps import EncodingMap
from dc_qiskit_qml.encoding_maps import FixedLengthQubitEncoding
logger = logging.getLogger()
logger.level = logging.DEBUG
stream_handler = logging.StreamHandler(sys.stderr)
stream_handler.setFormatter(logging._defaultFormatter)
logger.addHandler(stream_handler)
def extract_gate_info(qc, index):
# type: (QuantumCircuit, int) -> list
return [qc.data[index][0].name, qc.data[index][0].params, str(qc.data[index][1][-1])]
class QubitEncodingClassifierStateCircuitTests(unittest.TestCase):
def test_one(self):
encoding_map = FixedLengthQubitEncoding(4, 4)
X_train = [
[4.4, -9.53],
[18.42, 1.0]
]
y_train = [0, 1]
input = [2.043, 13.84]
X_train_in_encoded_space = [encoding_map.map(x) for x in X_train]
X_train_in_encoded_space_qubit_notation = [["{:b}".format(i).zfill(2 * 9) for i, _ in elem.keys()] for elem in
X_train_in_encoded_space]
input_in_feature_space = encoding_map.map(input)
input_in_feature_space_qubit_notation = ["{:b}".format(i).zfill(2 * 9) for i, _ in
input_in_feature_space.keys()]
logger.info("Training samples in encoded space: {}".format(X_train_in_encoded_space_qubit_notation))
logger.info("Input sample in encoded space: {}".format(input_in_feature_space_qubit_notation))
circuit = QmlBinaryDataStateCircuitBuilder(CCXMottonen())
qc = circuit.build_circuit('test', X_train=X_train_in_encoded_space, y_train=y_train, X_input=input_in_feature_space)
self.assertIsNotNone(qc)
self.assertIsNotNone(qc.data)
self.assertEqual(30, len(qc.data))
self.assertListEqual(["h"], [qc.data[0][0].name])
self.assertListEqual(["h"], [qc.data[1][0].name])
self.assertListEqual(["ccx_uni_rot", [0], "Qubit(QuantumRegister(18, 'f^S'), 3)"], extract_gate_info(qc, 2))
self.assertListEqual(["ccx_uni_rot", [0], "Qubit(QuantumRegister(18, 'f^S'), 4)"], extract_gate_info(qc, 3))
self.assertListEqual(["ccx_uni_rot", [0], "Qubit(QuantumRegister(18, 'f^S'), 7)"], extract_gate_info(qc, 4))
self.assertListEqual(["ccx_uni_rot", [0], "Qubit(QuantumRegister(18, 'f^S'), 8)"], extract_gate_info(qc, 5))
self.assertListEqual(["ccx_uni_rot", [0], "Qubit(QuantumRegister(18, 'f^S'), 10)"], extract_gate_info(qc, 6))
self.assertListEqual(["ccx_uni_rot", [0], "Qubit(QuantumRegister(18, 'f^S'), 11)"], extract_gate_info(qc, 7))
self.assertListEqual(["ccx_uni_rot", [0], "Qubit(QuantumRegister(18, 'f^S'), 15)"], extract_gate_info(qc, 8))
self.assertListEqual(["ccx_uni_rot", [1], "Qubit(QuantumRegister(18, 'f^S'), 0)"], extract_gate_info(qc, 9))
self.assertListEqual(["ccx_uni_rot", [1], "Qubit(QuantumRegister(18, 'f^S'), 2)"], extract_gate_info(qc, 10))
self.assertListEqual(["ccx_uni_rot", [1], "Qubit(QuantumRegister(18, 'f^S'), 3)"], extract_gate_info(qc, 11))
self.assertListEqual(["ccx_uni_rot", [1], "Qubit(QuantumRegister(18, 'f^S'), 4)"], extract_gate_info(qc, 12))
self.assertListEqual(["ccx_uni_rot", [1], "Qubit(QuantumRegister(18, 'f^S'), 6)"], extract_gate_info(qc, 13))
self.assertListEqual(["ccx_uni_rot", [1], "Qubit(QuantumRegister(18, 'f^S'), 7)"], extract_gate_info(qc, 14))
self.assertListEqual(["ccx_uni_rot", [1], "Qubit(QuantumRegister(18, 'f^S'), 14)"], extract_gate_info(qc, 15))
self.assertListEqual(["ccx_uni_rot", [2], "Qubit(QuantumRegister(18, 'f^S'), 4)"], extract_gate_info(qc, 16))
self.assertListEqual(["ccx_uni_rot", [2], "Qubit(QuantumRegister(18, 'f^S'), 10)"], extract_gate_info(qc, 17))
self.assertListEqual(["ccx_uni_rot", [2], "Qubit(QuantumRegister(18, 'f^S'), 11)"], extract_gate_info(qc, 18))
self.assertListEqual(["ccx_uni_rot", [2], "Qubit(QuantumRegister(18, 'f^S'), 13)"], extract_gate_info(qc, 19))
self.assertListEqual(["ccx_uni_rot", [2], "Qubit(QuantumRegister(18, 'f^S'), 16)"], extract_gate_info(qc, 20))
self.assertListEqual(["ccx_uni_rot", [2], "Qubit(QuantumRegister(1, 'l^q'), 0)"], extract_gate_info(qc, 21))
self.assertListEqual(["ccx_uni_rot", [3], "Qubit(QuantumRegister(18, 'f^S'), 0)"], extract_gate_info(qc, 22))
self.assertListEqual(["ccx_uni_rot", [3], "Qubit(QuantumRegister(18, 'f^S'), 2)"], extract_gate_info(qc, 23))
self.assertListEqual(["ccx_uni_rot", [3], "Qubit(QuantumRegister(18, 'f^S'), 3)"], extract_gate_info(qc, 24))
self.assertListEqual(["ccx_uni_rot", [3], "Qubit(QuantumRegister(18, 'f^S'), 4)"], extract_gate_info(qc, 25))
self.assertListEqual(["ccx_uni_rot", [3], "Qubit(QuantumRegister(18, 'f^S'), 6)"], extract_gate_info(qc, 26))
self.assertListEqual(["ccx_uni_rot", [3], "Qubit(QuantumRegister(18, 'f^S'), 7)"], extract_gate_info(qc, 27))
self.assertListEqual(["ccx_uni_rot", [3], "Qubit(QuantumRegister(18, 'f^S'), 14)"], extract_gate_info(qc, 28))
self.assertListEqual(["ccx_uni_rot", [3], "Qubit(QuantumRegister(1, 'l^q'), 0)"], extract_gate_info(qc, 29))
def test_two(self):
encoding_map = FixedLengthQubitEncoding(2, 2)
X_train = [
[4.4, -9.53],
[18.42, 1.0]
]
y_train = [0, 1]
input = [2.043, 13.84]
X_train_in_encoded_space = [encoding_map.map(x) for x in X_train]
X_train_in_encoded_space_qubit_notation = [["{:b}".format(i).zfill(2*5) for i, _ in elem.keys()] for elem in X_train_in_encoded_space]
input_in_feature_space = encoding_map.map(input)
input_in_feature_space_qubit_notation = ["{:b}".format(i).zfill(2*5) for i, _ in input_in_feature_space.keys()]
logger.info("Training samples in encoded space: {}".format(X_train_in_encoded_space_qubit_notation))
logger.info("Input sample in encoded space: {}".format(input_in_feature_space_qubit_notation))
circuit = QmlBinaryDataStateCircuitBuilder(CCXMottonen())
qc = circuit.build_circuit('test', X_train=X_train_in_encoded_space, y_train=y_train, X_input=input_in_feature_space)
self.assertIsNotNone(qc)
self.assertIsNotNone(qc.data)
self.assertEqual(len(qc.data), 22)
self.assertListEqual(["h"], [qc.data[0][0].name])
self.assertListEqual(["h"], [qc.data[1][0].name])
self.assertListEqual(["ccx_uni_rot", [0], "Qubit(QuantumRegister(10, 'f^S'), 1)"], extract_gate_info(qc, 2))
self.assertListEqual(["ccx_uni_rot", [0], "Qubit(QuantumRegister(10, 'f^S'), 3)"], extract_gate_info(qc, 3))
self.assertListEqual(["ccx_uni_rot", [0], "Qubit(QuantumRegister(10, 'f^S'), 4)"], extract_gate_info(qc, 4))
self.assertListEqual(["ccx_uni_rot", [0], "Qubit(QuantumRegister(10, 'f^S'), 5)"], extract_gate_info(qc, 5))
self.assertListEqual(["ccx_uni_rot", [0], "Qubit(QuantumRegister(10, 'f^S'), 8)"], extract_gate_info(qc, 6))
self.assertListEqual(["ccx_uni_rot", [1], "Qubit(QuantumRegister(10, 'f^S'), 0)"], extract_gate_info(qc, 7))
self.assertListEqual(["ccx_uni_rot", [1], "Qubit(QuantumRegister(10, 'f^S'), 1)"], extract_gate_info(qc, 8))
self.assertListEqual(["ccx_uni_rot", [1], "Qubit(QuantumRegister(10, 'f^S'), 2)"], extract_gate_info(qc, 9))
self.assertListEqual(["ccx_uni_rot", [1], "Qubit(QuantumRegister(10, 'f^S'), 3)"], extract_gate_info(qc, 10))
self.assertListEqual(["ccx_uni_rot", [1], "Qubit(QuantumRegister(10, 'f^S'), 8)"], extract_gate_info(qc, 11))
self.assertListEqual(["ccx_uni_rot", [2], "Qubit(QuantumRegister(10, 'f^S'), 2)"], extract_gate_info(qc, 12))
self.assertListEqual(["ccx_uni_rot", [2], "Qubit(QuantumRegister(10, 'f^S'), 5)"], extract_gate_info(qc, 13))
self.assertListEqual(["ccx_uni_rot", [2], "Qubit(QuantumRegister(10, 'f^S'), 8)"], extract_gate_info(qc, 14))
self.assertListEqual(["ccx_uni_rot", [2], "Qubit(QuantumRegister(1, 'l^q'), 0)"], extract_gate_info(qc, 15))
self.assertListEqual(["ccx_uni_rot", [3], "Qubit(QuantumRegister(10, 'f^S'), 0)"], extract_gate_info(qc, 16))
self.assertListEqual(["ccx_uni_rot", [3], "Qubit(QuantumRegister(10, 'f^S'), 1)"], extract_gate_info(qc, 17))
self.assertListEqual(["ccx_uni_rot", [3], "Qubit(QuantumRegister(10, 'f^S'), 2)"], extract_gate_info(qc, 18))
self.assertListEqual(["ccx_uni_rot", [3], "Qubit(QuantumRegister(10, 'f^S'), 3)"], extract_gate_info(qc, 19))
self.assertListEqual(["ccx_uni_rot", [3], "Qubit(QuantumRegister(10, 'f^S'), 8)"], extract_gate_info(qc, 20))
self.assertListEqual(["ccx_uni_rot", [3], "Qubit(QuantumRegister(1, 'l^q'), 0)"], extract_gate_info(qc, 21))
qregs = qc.qregs
cregs = [ClassicalRegister(qr.size, 'c' + qr.name) for qr in qregs]
qc2 = QuantumCircuit(*qregs, *cregs, name='test2')
qc2.data = qc.data
for i in range(len(qregs)):
qc2.measure(qregs[i], cregs[i])
execution_backend = qiskit.Aer.get_backend('qasm_simulator') # type: BackendV2
job = qiskit.execute(qc2, execution_backend, shots=8192)
counts = job.result().get_counts() # type: dict
self.assertListEqual(sorted(counts.keys()), sorted(['0 0100111010 0 0', '0 0100001111 0 1', '1 0100100100 1 0', '1 0100001111 1 1']))
def test_three(self):
encoding_map = FixedLengthQubitEncoding(4, 4)
X_train = [
[4.4, -9.53],
[18.42, 1.0]
]
y_train = [0, 1]
input = [2.043, 13.84]
X_train_in_encoded_space = [encoding_map.map(x) for x in X_train]
X_train_in_encoded_space_qubit_notation = [["{:b}".format(i).zfill(2 * 9) for i, _ in elem.keys()] for elem in
X_train_in_encoded_space]
input_in_feature_space = encoding_map.map(input)
input_in_feature_space_qubit_notation = ["{:b}".format(i).zfill(2 * 9) for i, _ in
input_in_feature_space.keys()]
logger.info("Training samples in encoded space: {}".format(X_train_in_encoded_space_qubit_notation))
logger.info("Input sample in encoded space: {}".format(input_in_feature_space_qubit_notation))
circuit = QmlBinaryDataStateCircuitBuilder(CCXToffoli())
qc = circuit.build_circuit('test', X_train=X_train_in_encoded_space, y_train=y_train, X_input=input_in_feature_space)
self.assertIsNotNone(qc)
self.assertIsNotNone(qc.data)
# TODO: adjust ASAP
# self.assertEqual(36, len(qc.data))
#
# self.assertListEqual(["h"], [qc.data[0].name])
# self.assertListEqual(["h"], [qc.data[1].name])
#
# self.assertListEqual(["x", [], "(QuantumRegister(1, 'a'), 0)"], extract_gate_info(qc, 2))
# self.assertListEqual(["x", [], "(QuantumRegister(1, 'i'), 0)"], extract_gate_info(qc, 3))
#
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 3)"], extract_gate_info(qc, 4))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 4)"], extract_gate_info(qc, 5))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 7)"], extract_gate_info(qc, 6))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 8)"], extract_gate_info(qc, 7))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 10)"], extract_gate_info(qc, 8))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 11)"], extract_gate_info(qc, 9))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 15)"], extract_gate_info(qc, 10))
#
# self.assertListEqual(["x", [], "(QuantumRegister(1, 'a'), 0)"], extract_gate_info(qc, 11))
#
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 0)"], extract_gate_info(qc, 12))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 2)"], extract_gate_info(qc, 13))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 3)"], extract_gate_info(qc, 14))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 4)"], extract_gate_info(qc, 15))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 6)"], extract_gate_info(qc, 16))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 7)"], extract_gate_info(qc, 17))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 14)"], extract_gate_info(qc, 18))
#
# self.assertListEqual(["x", [], "(QuantumRegister(1, 'i'), 0)"], extract_gate_info(qc, 19))
#
# self.assertListEqual(["x", [], "(QuantumRegister(1, 'a'), 0)"], extract_gate_info(qc, 20))
#
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 4)"], extract_gate_info(qc, 21))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 10)"], extract_gate_info(qc, 22))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 11)"], extract_gate_info(qc, 23))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 13)"], extract_gate_info(qc, 24))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 16)"], extract_gate_info(qc, 25))
# self.assertListEqual(["ccx", [], "(QuantumRegister(1, 'l^q'), 0)"], extract_gate_info(qc, 26))
#
# self.assertListEqual(["x", [], "(QuantumRegister(1, 'a'), 0)"], extract_gate_info(qc, 27))
#
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 0)"], extract_gate_info(qc, 28))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 2)"], extract_gate_info(qc, 29))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 3)"], extract_gate_info(qc, 30))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 4)"], extract_gate_info(qc, 31))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 6)"], extract_gate_info(qc, 32))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 7)"], extract_gate_info(qc, 33))
# self.assertListEqual(["ccx", [], "(QuantumRegister(18, 'f^S'), 14)"], extract_gate_info(qc, 34))
# self.assertListEqual(["ccx", [], "(QuantumRegister(1, 'l^q'), 0)"], extract_gate_info(qc, 35))
def test_four(self):
encoding_map = FixedLengthQubitEncoding(2, 2)
X_train = [
[4.4, -9.53],
[18.42, 1.0]
]
y_train = [0, 1]
input = [2.043, 13.84]
X_train_in_encoded_space = [encoding_map.map(x) for x in X_train]
X_train_in_encoded_space_qubit_notation = [["{:b}".format(i).zfill(2*5) for i, _ in elem.keys()] for elem in X_train_in_encoded_space]
input_in_encoded_space = encoding_map.map(input)
input_in_encoded_space_qubit_notation = ["{:b}".format(i).zfill(2*5) for i, _ in input_in_encoded_space.keys()]
logger.info("Training samples in encoded space: {}".format(X_train_in_encoded_space_qubit_notation))
logger.info("Input sample in encoded space: {}".format(input_in_encoded_space_qubit_notation))
circuit = QmlBinaryDataStateCircuitBuilder(CCXToffoli())
qc = circuit.build_circuit('test', X_train=X_train_in_encoded_space, y_train=y_train, X_input=input_in_encoded_space)
self.assertIsNotNone(qc)
self.assertIsNotNone(qc.data)
# TODO: adjust ASAP
# self.assertEqual(28, len(qc.data))
#
# self.assertListEqual(["h"], [qc.data[0].name])
# self.assertListEqual(["h"], [qc.data[1].name])
#
# self.assertListEqual(["x", [], "(QuantumRegister(1, 'a'), 0)"], extract_gate_info(qc, 2))
# self.assertListEqual(["x", [], "(QuantumRegister(1, 'i'), 0)"], extract_gate_info(qc, 3))
#
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 1)"], extract_gate_info(qc, 4))
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 3)"], extract_gate_info(qc, 5))
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 4)"], extract_gate_info(qc, 6))
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 5)"], extract_gate_info(qc, 7))
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 8)"], extract_gate_info(qc, 8))
#
# self.assertListEqual(["x", [], "(QuantumRegister(1, 'a'), 0)"], extract_gate_info(qc, 9))
#
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 0)"], extract_gate_info(qc, 10))
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 1)"], extract_gate_info(qc, 11))
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 2)"], extract_gate_info(qc, 12))
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 3)"], extract_gate_info(qc, 13))
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 8)"], extract_gate_info(qc, 14))
#
# self.assertListEqual(["x", [], "(QuantumRegister(1, 'i'), 0)"], extract_gate_info(qc, 15))
#
# self.assertListEqual(["x", [], "(QuantumRegister(1, 'a'), 0)"], extract_gate_info(qc, 16))
#
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 2)"], extract_gate_info(qc, 17))
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 5)"], extract_gate_info(qc, 18))
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 8)"], extract_gate_info(qc, 19))
# self.assertListEqual(["ccx", [], "(QuantumRegister(1, 'l^q'), 0)"], extract_gate_info(qc, 20))
#
# self.assertListEqual(["x", [], "(QuantumRegister(1, 'a'), 0)"], extract_gate_info(qc, 21))
#
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 0)"], extract_gate_info(qc, 22))
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 1)"], extract_gate_info(qc, 23))
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 2)"], extract_gate_info(qc, 24))
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 3)"], extract_gate_info(qc, 25))
# self.assertListEqual(["ccx", [], "(QuantumRegister(10, 'f^S'), 8)"], extract_gate_info(qc, 26))
#
# self.assertListEqual(["ccx", [], "(QuantumRegister(1, 'l^q'), 0)"], extract_gate_info(qc, 27))
cregs = [ClassicalRegister(qr.size, 'c' + qr.name) for qr in qc.qregs]
qc2 = QuantumCircuit(*qc.qregs, *cregs, name='test2')
qc2.data = qc.data
for i in range(len(qc.qregs)):
qc2.measure(qc.qregs[i], cregs[i])
execution_backend = qiskit.Aer.get_backend('qasm_simulator') # type: BackendV2
job = qiskit.execute([qc2], execution_backend, shots=8192)
counts = job.result().get_counts() # type: dict
self.assertListEqual(sorted(['0 0100111010 0 0', '0 0100001111 0 1', '1 0100100100 1 0', '1 0100001111 1 1']), sorted(counts.keys()))
def test_five(self):
X_train = np.asarray([[1.0, 1.0], [-1.0, 1.0], [-1.0, -1.0], [1.0, -1.0]])
y_train = [0, 1, 0, 1]
X_test = np.asarray([[0.2, 0.4], [0.4, -0.8]])
y_test = [0, 1]
class MyEncodingMap(EncodingMap):
def map(self, input_vector: list) -> sparse.dok_matrix:
result = sparse.dok_matrix((4, 1))
index = 0
if input_vector[0] > 0 and input_vector[1] > 0:
index = 0
if input_vector[0] < 0 and input_vector[1] > 0:
index = 1
if input_vector[0] < 0 and input_vector[1] < 0:
index = 2
if input_vector[0] > 0 and input_vector[1] < 0:
index = 3
result[index, 0] = 1.0
return result
initial_state_builder = QmlBinaryDataStateCircuitBuilder(CCXToffoli())
encoding_map = MyEncodingMap()
X_train_in_encoded_space = [encoding_map.map(s) for s in X_train]
X_test_in_encoded_space = [encoding_map.map(s) for s in X_test]
qc = initial_state_builder.build_circuit('test', X_train_in_encoded_space, y_train, X_test_in_encoded_space[0])
self.assertIsNotNone(qc)
self.assertIsNotNone(qc.data)
# self.assertEqual(len(qc.data), 28)
# self.assertListEqual(["h"], [qc.data[0].name])
# self.assertListEqual(["h"], [qc.data[1].name])
qregs = qc.qregs
cregs = [ClassicalRegister(qr.size, 'c_' + qr.name) for qr in qregs]
qc2 = QuantumCircuit(*qregs, *cregs, name='test2')
qc2.data = qc.data
for i in range(len(qregs)):
qc2.measure(qregs[i], cregs[i])
execution_backend = qiskit.Aer.get_backend('qasm_simulator') # type: BackendV2
job = qiskit.execute(qc2, execution_backend, shots=8192) # type: AerJob
counts = job.result().get_counts() # type: Dict[str, int]
self.assertListEqual(
sorted([
'00 0 00 00 0',
'00 0 00 00 1',
'00 1 01 01 0',
'00 1 00 01 1',
'00 0 10 10 0',
'00 0 00 10 1',
'00 1 11 11 0',
'00 1 00 11 1'
]),
sorted(counts.keys())
)
|
https://github.com/epelaaez/QuantumLibrary
|
epelaaez
|
from qiskit import QuantumCircuit
import numpy as np
def sim_z(t, qc, qubits):
"""
Add gates to simulate a Pauli Z string exponential
Parameters:
t: float
Time parameter to simulate for
qc: QuantumCircuit
Circuit to append gates to
qubits: array
Array indicating qubits indeces (in order) to
append the gates to
"""
for i in range(len(qubits) - 1):
qc.cx(qubits[i], qubits[i + 1])
qc.rz(-2 * t, qubits[-1])
for i in range(len(qubits) - 1, 0, -1):
qc.cx(qubits[i - 1], qubits[i])
qc = QuantumCircuit(3)
sim_z(np.pi, qc, [0, 1, 2])
qc.draw()
def sim_pauli(arr, t, qc, qubits):
"""
Append gates to simulate any Pauli string
Parameters:
arr: array
Array encoding the Pauli string
t: float
Time parameter to simulate for
qc: QuantumCircuit
Circuit to append gates to
qubits: array
Array indicating qubits indeces (in order) to
append the gates to
"""
new_arr = []
new_qub = []
for idx in range(len(arr)):
if arr[idx] != 'I':
new_arr.append(arr[idx])
new_qub.append(qubits[idx])
h_y = 1 / np.sqrt(2) * np.array([[1, -1j], [1j, -1]])
for i in range(len(new_arr)):
if new_arr[i] == 'X':
qc.h(new_qub[i])
elif new_arr[i] == 'Y':
qc.unitary(h_y, [new_qub[i]], r'$H_y$')
sim_z(t, qc, new_qub)
for i in range(len(new_arr)):
if new_arr[i] == 'X':
qc.h(new_qub[i])
elif new_arr[i] == 'Y':
qc.unitary(h_y, [new_qub[i]], r'$H_y$')
def sim_ham(hamiltonian, t, qc, qubits, trotter=1):
"""
Simulates Hamiltonian given as Pauli string
Parameters:
hamiltonian: dict
Dictionary encoding the hamiltonian with each
Pauli product as a key with the coefficient as value
t: float
Time parameter to simulate for
qc: QuantumCircuit
Circuit to append gates to
qubits: array
Array indicating qubits indeces (in order) to
append the gates to
"""
temp = QuantumCircuit(len(qubits))
delta_t = t / trotter
for pauli in hamiltonian:
sim_pauli(pauli, hamiltonian[pauli] * delta_t, temp, range(len(qubits)))
for i in range(trotter):
qc.compose(temp, qubits, inplace=True)
qc = QuantumCircuit(3)
sim_ham({"XZY": 2, "ZXX": 5, "YXZ": 2}, 1 / (2 * np.pi), qc, [0, 1, 2], trotter=1)
qc = qc.reverse_bits() # reverse because of Qiskit's endianness
qc.draw()
from qiskit import Aer, execute
from sympy import Matrix
qc = QuantumCircuit(3)
sim_ham({"XZY": 2, "ZXX": 5, "YXZ": 2}, 1 / (2 * np.pi), qc, [0, 1, 2], trotter=50)
qc = qc.reverse_bits()
backend = Aer.get_backend('statevector_simulator')
result = execute(qc, backend).result()
vec = result.get_statevector()
vec = vec / vec[0] # global phase
qvec = vec / np.linalg.norm(vec) # normalize
Matrix(np.round(qvec, 5))
import scipy
# Start with |0> state
start = np.zeros(2 ** 3)
start[0] = 1
# Get the matrix corresponding to some Pauli product
# This function can be optimized, but it is left as it
# is for clarity purposes
def get_pauli(string):
init = string[0]
string = string[1:]
if init == 'X':
out = np.array([[0, 1], [1, 0]])
elif init == 'Z':
out = np.array([[1, 0], [0, -1]])
elif init == 'Y':
out = np.array([[0, -1j], [1j, 0]])
else:
out = np.eye(2)
for p in string:
if p == 'X':
out = np.kron(out, np.array([[0, 1], [1, 0]]))
elif p == 'Z':
out = np.kron(out, np.array([[1, 0], [0, -1]]))
elif p == 'Y':
out = np.kron(out, np.array([[0, -1j], [1j, 0]]))
else:
out = np.kron(out, np.eye(2))
return out
# Hamiltonian is calculated from the Pauli decomposition
decomp = {"XZY": 2, "ZXX": 5, "YXZ": 2}
H = np.zeros((2 ** 3, 2 ** 3))
H = H.astype('complex128')
for pauli in decomp:
H += decomp[pauli] * get_pauli(pauli)
# Hamiltonian is exponentiated and we multiply the starting
# vector by it to get our result
simul = scipy.linalg.expm(1j * H * (1 / (2 * np.pi)))
vec = simul @ start
vec = vec / vec[0] # global phase
cvec = vec / np.linalg.norm(vec) # normalize
Matrix(np.round(cvec, 5))
from qiskit.quantum_info import state_fidelity
state_fidelity(qvec, cvec)
|
https://github.com/dimple12M/Qiskit-Certification-Guide
|
dimple12M
|
from qiskit import BasicAer
from qiskit.providers.basicaer import BasicAerProvider
backend_list=BasicAer.backends()
backend_list
for name in backend_list:
print(name)
backend=BasicAer.get_backend('qasm_simulator')
backend
backend.name()
backend=BasicAer.backends(name='qasm_simulator')
backend
provider=BasicAerProvider()
backend_list=provider.backends()
backend_list
for name in backend_list:
print(name)
backend=provider.backends(name='qasm_simulator')
backend
backend=provider.get_backend('qasm_simulator')
backend
backend.name()
backend=BasicAer.backends(name='qasm_simulator')
backend
backend=BasicAer.get_backend('qasm_simulator')
backend
backend.name()
provider=BasicAerProvider()
backend=provider.backends(name='qasm_simulator')
backend
backend=provider.get_backend('qasm_simulator')
backend
backend.name()
from qiskit.providers.basicaer import QasmSimulatorPy
backend=QasmSimulatorPy()
backend
backend.name()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
ghz = QuantumCircuit(5)
ghz.h(0)
ghz.cx(0,range(1,5))
ghz.draw(output='mpl')
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import pulse
from qiskit.providers.fake_provider import FakeArmonk
backend = FakeArmonk()
with pulse.build(backend) as drive_sched:
d0 = pulse.drive_channel(0)
a0 = pulse.acquire_channel(0)
pulse.play(pulse.library.Constant(10, 1.0), d0)
pulse.delay(20, d0)
pulse.shift_phase(3.14/2, d0)
pulse.set_phase(3.14, d0)
pulse.shift_frequency(1e7, d0)
pulse.set_frequency(5e9, d0)
with pulse.build() as temp_sched:
pulse.play(pulse.library.Gaussian(20, 1.0, 3.0), d0)
pulse.play(pulse.library.Gaussian(20, -1.0, 3.0), d0)
pulse.call(temp_sched)
pulse.acquire(30, a0, pulse.MemorySlot(0))
drive_sched.draw()
|
https://github.com/microsoft/qiskit-qir
|
microsoft
|
##
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
##
from io import UnsupportedOperation
import logging
from abc import ABCMeta, abstractmethod
from qiskit import ClassicalRegister, QuantumRegister
from qiskit.circuit import Qubit, Clbit
from qiskit.circuit.instruction import Instruction
from qiskit.circuit.bit import Bit
import pyqir.qis as qis
import pyqir.rt as rt
import pyqir
from pyqir import (
BasicBlock,
Builder,
Constant,
Function,
FunctionType,
IntType,
Linkage,
Module,
PointerType,
const,
entry_point,
qubit_id,
)
from typing import List, Union
from qiskit_qir.capability import (
Capability,
ConditionalBranchingOnResultError,
QubitUseAfterMeasurementError,
)
from qiskit_qir.elements import QiskitModule
_log = logging.getLogger(name=__name__)
# This list cannot change as existing clients hardcoded to it
# when it wasn't designed to be externally used.
# To work around this we are using an additional list to replace
# this list which contains the instructions that we can process.
# This following three variables can be removed in a future
# release after dependency version restrictions have been applied.
SUPPORTED_INSTRUCTIONS = [
"barrier",
"delay",
"measure",
"m",
"cx",
"cz",
"h",
"reset",
"rx",
"ry",
"rz",
"s",
"sdg",
"t",
"tdg",
"x",
"y",
"z",
"id",
]
_QUANTUM_INSTRUCTIONS = [
"barrier",
"ccx",
"cx",
"cz",
"h",
"id",
"m",
"measure",
"reset",
"rx",
"ry",
"rz",
"s",
"sdg",
"swap",
"t",
"tdg",
"x",
"y",
"z",
]
_NOOP_INSTRUCTIONS = ["delay"]
_SUPPORTED_INSTRUCTIONS = _QUANTUM_INSTRUCTIONS + _NOOP_INSTRUCTIONS
class QuantumCircuitElementVisitor(metaclass=ABCMeta):
@abstractmethod
def visit_register(self, register):
raise NotImplementedError
@abstractmethod
def visit_instruction(self, instruction):
raise NotImplementedError
class BasicQisVisitor(QuantumCircuitElementVisitor):
def __init__(self, profile: str = "AdaptiveExecution", **kwargs):
self._module = None
self._qiskitModule: QiskitModule | None = None
self._builder = None
self._entry_point = None
self._qubit_labels = {}
self._clbit_labels = {}
self._profile = profile
self._capabilities = self._map_profile_to_capabilities(profile)
self._measured_qubits = {}
self._emit_barrier_calls = kwargs.get("emit_barrier_calls", False)
self._record_output = kwargs.get("record_output", True)
def visit_qiskit_module(self, module: QiskitModule):
_log.debug(
f"Visiting Qiskit module '{module.name}' ({module.num_qubits}, {module.num_clbits})"
)
self._module = module.module
self._qiskitModule = module
context = self._module.context
entry = entry_point(
self._module, module.name, module.num_qubits, module.num_clbits
)
self._entry_point = entry.name
self._builder = Builder(context)
self._builder.insert_at_end(BasicBlock(context, "entry", entry))
i8p = PointerType(IntType(context, 8))
nullptr = Constant.null(i8p)
rt.initialize(self._builder, nullptr)
@property
def entry_point(self) -> str:
return self._entry_point
def finalize(self):
self._builder.ret(None)
def record_output(self, module: QiskitModule):
if self._record_output == False:
return
i8p = PointerType(IntType(self._module.context, 8))
# qiskit inverts the ordering of the results within each register
# but keeps the overall register ordering
# here we logically loop from n-1 to 0, decrementing in order to
# invert the register output. The second parameter is an exclusive
# range so we need to go to -1 instead of 0
logical_id_base = 0
for size in module.reg_sizes:
rt.array_record_output(
self._builder,
const(IntType(self._module.context, 64), size),
Constant.null(i8p),
)
for index in range(size - 1, -1, -1):
result_ref = pyqir.result(self._module.context, logical_id_base + index)
rt.result_record_output(self._builder, result_ref, Constant.null(i8p))
logical_id_base += size
def visit_register(self, register):
_log.debug(f"Visiting register '{register.name}'")
if isinstance(register, QuantumRegister):
self._qubit_labels.update(
{bit: n + len(self._qubit_labels) for n, bit in enumerate(register)}
)
_log.debug(
f"Added labels for qubits {[bit for n, bit in enumerate(register)]}"
)
elif isinstance(register, ClassicalRegister):
self._clbit_labels.update(
{bit: n + len(self._clbit_labels) for n, bit in enumerate(register)}
)
else:
raise ValueError(f"Register of type {type(register)} not supported.")
def process_composite_instruction(
self, instruction: Instruction, qargs: List[Qubit], cargs: List[Clbit]
):
subcircuit = instruction.definition
_log.debug(
f"Processing composite instruction {instruction.name} with qubits {qargs}"
)
if len(qargs) != subcircuit.num_qubits:
raise ValueError(
f"Composite instruction {instruction.name} called with the wrong number of qubits; \
{subcircuit.num_qubits} expected, {len(qargs)} provided"
)
if len(cargs) != subcircuit.num_clbits:
raise ValueError(
f"Composite instruction {instruction.name} called with the wrong number of classical bits; \
{subcircuit.num_clbits} expected, {len(cargs)} provided"
)
for inst, i_qargs, i_cargs in subcircuit.data:
mapped_qbits = [qargs[subcircuit.qubits.index(i)] for i in i_qargs]
mapped_clbits = [cargs[subcircuit.clbits.index(i)] for i in i_cargs]
_log.debug(
f"Processing sub-instruction {inst.name} with mapped qubits {mapped_qbits}"
)
self.visit_instruction(inst, mapped_qbits, mapped_clbits)
def visit_instruction(
self,
instruction: Instruction,
qargs: List[Bit],
cargs: List[Bit],
skip_condition=False,
):
qlabels = [self._qubit_labels.get(bit) for bit in qargs]
clabels = [self._clbit_labels.get(bit) for bit in cargs]
qubits = [pyqir.qubit(self._module.context, n) for n in qlabels]
results = [pyqir.result(self._module.context, n) for n in clabels]
if (
instruction.condition is not None
) and not self._capabilities & Capability.CONDITIONAL_BRANCHING_ON_RESULT:
raise ConditionalBranchingOnResultError(
self._qiskitModule.circuit, instruction, qargs, cargs, self._profile
)
labels = ", ".join([str(l) for l in qlabels + clabels])
if instruction.condition is None or skip_condition:
_log.debug(f"Visiting instruction '{instruction.name}' ({labels})")
if instruction.condition is not None and skip_condition is False:
_log.debug(
f"Visiting condition for instruction '{instruction.name}' ({labels})"
)
if isinstance(instruction.condition[0], Clbit):
bit_label = self._clbit_labels.get(instruction.condition[0])
conditions = [pyqir.result(self._module.context, bit_label)]
else:
conditions = [
pyqir.result(self._module.context, self._clbit_labels.get(bit))
for bit in instruction.condition[0]
]
# Convert value into a bitstring of the same length as classical register
# condition should be a
# - tuple (ClassicalRegister, int)
# - tuple (Clbit, bool)
# - tuple (Clbit, int)
if isinstance(instruction.condition[0], Clbit):
bit: Clbit = instruction.condition[0]
value: Union[int, bool] = instruction.condition[1]
if value:
values = "1"
else:
values = "0"
else:
register: ClassicalRegister = instruction.condition[0]
value: int = instruction.condition[1]
values = format(value, f"0{register.size}b")
# Add branches recursively for each bit in the bitstring
def __visit():
self.visit_instruction(instruction, qargs, cargs, skip_condition=True)
def _branch(conditions_values):
try:
cond, val = next(conditions_values)
def __branch():
qis.if_result(
self._builder,
cond,
one=_branch(conditions_values) if val == "1" else None,
zero=_branch(conditions_values) if val == "0" else None,
)
except StopIteration:
return __visit
else:
return __branch
if len(conditions) < len(values):
raise ValueError(
f"Value {value} is larger than register width {len(conditions)}."
)
# qiskit has the most significant bit on the right, so we
# must reverse the bit array for comparisons.
_branch(zip(conditions, values[::-1]))()
elif (
"measure" == instruction.name
or "m" == instruction.name
or "mz" == instruction.name
):
for qubit, result in zip(qubits, results):
self._measured_qubits[qubit_id(qubit)] = True
qis.mz(self._builder, qubit, result)
else:
if not self._capabilities & Capability.QUBIT_USE_AFTER_MEASUREMENT:
# If we have a supported instruction, apply the capability
# check. If we have a composite instruction then it will call
# back into this function with a supported name and we'll
# verify at that time
if instruction.name in _SUPPORTED_INSTRUCTIONS:
if any(map(self._measured_qubits.get, map(qubit_id, qubits))):
raise QubitUseAfterMeasurementError(
self._qiskitModule.circuit,
instruction,
qargs,
cargs,
self._profile,
)
if "barrier" == instruction.name:
if self._emit_barrier_calls:
qis.barrier(self._builder)
elif "delay" == instruction.name:
pass
elif "swap" == instruction.name:
qis.swap(self._builder, *qubits)
elif "ccx" == instruction.name:
qis.ccx(self._builder, *qubits)
elif "cx" == instruction.name:
qis.cx(self._builder, *qubits)
elif "cz" == instruction.name:
qis.cz(self._builder, *qubits)
elif "h" == instruction.name:
qis.h(self._builder, *qubits)
elif "reset" == instruction.name:
qis.reset(self._builder, qubits[0])
elif "rx" == instruction.name:
qis.rx(self._builder, *instruction.params, *qubits)
elif "ry" == instruction.name:
qis.ry(self._builder, *instruction.params, *qubits)
elif "rz" == instruction.name:
qis.rz(self._builder, *instruction.params, *qubits)
elif "s" == instruction.name:
qis.s(self._builder, *qubits)
elif "sdg" == instruction.name:
qis.s_adj(self._builder, *qubits)
elif "t" == instruction.name:
qis.t(self._builder, *qubits)
elif "tdg" == instruction.name:
qis.t_adj(self._builder, *qubits)
elif "x" == instruction.name:
qis.x(self._builder, *qubits)
elif "y" == instruction.name:
qis.y(self._builder, *qubits)
elif "z" == instruction.name:
qis.z(self._builder, *qubits)
elif "id" == instruction.name:
# See: https://github.com/qir-alliance/pyqir/issues/74
qubit = pyqir.qubit(self._module.context, qubit_id(*qubits))
qis.x(self._builder, qubit)
qis.x(self._builder, qubit)
elif instruction.definition:
_log.debug(
f"About to process composite instruction {instruction.name} with qubits {qargs}"
)
self.process_composite_instruction(instruction, qargs, cargs)
else:
raise ValueError(
f"Gate {instruction.name} is not supported. \
Please transpile using the list of supported gates: {_SUPPORTED_INSTRUCTIONS}."
)
def ir(self) -> str:
return str(self._module)
def bitcode(self) -> bytes:
return self._module.bitcode()
def _map_profile_to_capabilities(self, profile: str):
value = profile.strip().lower()
if "BasicExecution".lower() == value:
return Capability.NONE
elif "AdaptiveExecution".lower() == value:
return Capability.ALL
else:
raise UnsupportedOperation(
f"The supplied profile is not supported: {profile}."
)
|
https://github.com/h-rathee851/Pulse_application_qiskit
|
h-rathee851
|
def speak(text):
from IPython.display import Javascript as js, clear_output
# Escape single quotes
text = text.replace("'", r"\'")
display(js(f'''
if(window.speechSynthesis) {{
var synth = window.speechSynthesis;
synth.speak(new window.SpeechSynthesisUtterance('{text}'));
}}
'''))
# Clear the JS so that the notebook doesn't speak again when reopened/refreshed
clear_output(False)
import numpy as np
# Importing standard Qiskit libraries
from qiskit import QuantumCircuit, transpile, Aer, IBMQ
from qiskit.tools.jupyter import *
from qiskit.visualization import *
# Loading your IBM Q account(s)
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q-research', group='iserc-1', project='main')
import sys
np.set_printoptions(threshold=sys.maxsize)
from qiskit import *
from matplotlib import pyplot as plt
# backend = provider.get_backend('ibmq_armonk')
backend = provider.get_backend('ibmq_casablanca')
from qiskit import *
from qiskit.pulse import *
from qiskit.tools.monitor import job_monitor
qubit = 0
back_config = backend.configuration()
inst_sched_map = backend.defaults().instruction_schedule_map
meas_map_idx = None
for i, measure_group in enumerate(back_config.meas_map):
if qubit in measure_group:
meas_map_idx = i
break
assert meas_map_idx is not None, f"Couldn't find qubit {qubit} in the meas_map!"
measure = inst_sched_map.get('measure', qubits=back_config.meas_map[qubit])
pulse_sigma = 40
pulse_duration = (4*pulse_sigma)-((4*pulse_sigma)%16)
drive_chan = DriveChannel(0)
def create_cal_circuits(amp):
sched = Schedule()
sched+=Play(Gaussian(duration=pulse_duration, sigma=pulse_sigma, amp=amp), drive_chan)
measure = inst_sched_map.get('measure', qubits=[qubit])
sched+=measure << sched.duration
return sched
default_qubit_freq = backend.defaults().qubit_freq_est[0]
freq_list = np.linspace(default_qubit_freq-(20*1e+6), default_qubit_freq+(20*1e+6), 75)
sched_list = [create_cal_circuits(0.4)]*75
# sweep_exp = assemble(sched_list, backend=backend, meas_level=1, meas_return='avg', shots=1024, schedule_los = [{drive_chan: freq} for freq in freq_list])
# sweep_job = backend.run(sweep_exp)
sweep_job = execute(sched_list, backend=backend, meas_level=1, meas_return='avg', shots=1024, schedule_los = [{drive_chan: freq} for freq in freq_list])
job_monitor(sweep_job)
sweep_result = sweep_job.result()
sweep_values = []
for i in range(len(sweep_result.results)):
res = sweep_result.get_memory(i)*1e-14
sweep_values.append(res[qubit])
scale_factor = 1e+9
freq_list_scaled = freq_list/scale_factor
from scipy.optimize import curve_fit
def find_init_params(res_values):
est_baseline = np.mean(res_values)
est_slope = -5 if est_baseline-np.min(res_values) > 2 else 5
return [est_slope, 4.975, 1, est_baseline]
def fit_function(x_values, y_values, function, init_params):
fitparams, conv = curve_fit(function, x_values, y_values, init_params)
y_fit = function(x_values, *fitparams)
return fitparams, y_fit
init_params = find_init_params(np.real(sweep_values)) # initial parameters for curve_fit
# init_params = [5, ]
fit_params, y_fit = fit_function(freq_list_scaled,
np.real(sweep_values),
lambda x, A, q_freq, B, C: (A / np.pi) * (B / ((x - q_freq)**2 + B**2)) + C,
init_params
)
plt.scatter(freq_list_scaled, np.real(sweep_values), color='black')
plt.plot(freq_list_scaled, y_fit, color='red')
plt.xlim([min(freq_list_scaled), max(freq_list_scaled)])
# plt.ylim([-7,0])
plt.xlabel("Frequency [GHz]")
plt.ylabel("Measured Signal [a.u.]")
plt.show()
_, qubit_freq_new, _, _ = fit_params
qubit_freq_ground = qubit_freq_new*scale_factor
speak("The test program is done.")
print(f"The new qubit frequency is : {qubit_freq_ground} Hz")
#### Moving on to the Rabi experiments for 0->1 transition.
amp_list = np.linspace(0, 1.0, 75)
rabi_sched_list = [create_cal_circuits(amp) for amp in amp_list]
# rabi_exp = assemble(rabi_sched_list, backend=backend, meas_level=1, meas_return='avg', shots=1024, schedule_los=[{drive_chan: qubit_freq_ground}]*len(rabi_sched_list))
# rabi_job = backend.run(rabi_exp)
rabi_job = execute(rabi_sched_list, backend=backend, meas_level=1, meas_return='avg', shots=1024, schedule_los=[{drive_chan: qubit_freq_ground}]*len(rabi_sched_list))
job_monitor(rabi_job)
rabi_results = rabi_job.result()
scale_factor = 1e-14
rabi_values = []
for i in range(75):
# Get the results for `qubit` from the ith experiment
rabi_values.append(rabi_results.get_memory(i)[qubit]*scale_factor)
def baseline_remove(values):
return np.array(values) - np.mean(values)
rabi_values = np.real(baseline_remove(rabi_values))
fit_params, y_fit = fit_function(amp_list,
rabi_values,
lambda x, A, B, drive_period, phi: (A*np.sin(2*np.pi*x/drive_period - phi) + B),
[3*1e-7, 0, 0.3, 0])
drive_period = fit_params[2]
pi_amp_ground = drive_period/2
plt.scatter(amp_list, rabi_values, color='black')
plt.plot(amp_list, y_fit, color='red')
plt.axvline(drive_period/2, color='red', linestyle='--')
plt.axvline(drive_period, color='red', linestyle='--')
plt.annotate("", xy=(drive_period, 0), xytext=(drive_period/2,0), arrowprops=dict(arrowstyle="<->", color='red'))
# plt.annotate("$\pi$", xy=(drive_period/2-0.03, 0.1), color='red')
plt.xlabel("Drive amp [a.u.]", fontsize=15)
plt.ylabel("Measured signal [a.u.]", fontsize=15)
plt.show()
print(f"The calibrated pi amp is : {pi_amp_ground}")
speak("The test program is over. Have a look at it.")
from qiskit.pulse import library as pulse_lib
def get_pi_pulse_ground():
pulse = pulse_lib.gaussian(duration=pulse_duration, sigma=pulse_sigma, amp=pi_amp_ground)
return pulse
def get_zero_sched():
zero_sched = Schedule()
zero_sched += measure
return zero_sched
def get_one_sched():
one_sched = Schedule()
one_sched += Play(get_pi_pulse_ground(), drive_chan)
one_sched += measure << one_sched.duration
return one_sched
def IQ_plot(zero_data, one_data):
"""Helper function for plotting IQ plane for 0, 1, 2. Limits of plot given
as arguments."""
# zero data plotted in blue
plt.scatter(np.real(zero_data), np.imag(zero_data),
s=5, cmap='viridis', c='blue', alpha=0.5, label=r'$|0\rangle$')
# one data plotted in red
plt.scatter(np.real(one_data), np.imag(one_data),
s=5, cmap='viridis', c='red', alpha=0.5, label=r'$|1\rangle$')
x_min = np.min(np.append(np.real(zero_data), np.real(one_data)))-5
x_max = np.max(np.append(np.real(zero_data), np.real(one_data)))+5
y_min = np.min(np.append(np.imag(zero_data), np.imag(one_data)))-5
y_max = np.max(np.append(np.imag(zero_data), np.imag(one_data)))+5
# Plot a large dot for the average result of the 0, 1 and 2 states.
mean_zero = np.mean(zero_data) # takes mean of both real and imaginary parts
mean_one = np.mean(one_data)
plt.scatter(np.real(mean_zero), np.imag(mean_zero),
s=50, cmap='viridis', c='black',alpha=1.0)
plt.scatter(np.real(mean_one), np.imag(mean_one),
s=50, cmap='viridis', c='black',alpha=1.0)
# plt.xlim(x_min, x_max)
# plt.ylim(y_min,y_max)
plt.legend()
plt.ylabel('I [a.u.]', fontsize=15)
plt.xlabel('Q [a.u.]', fontsize=15)
plt.title("0-1 discrimination", fontsize=15)
return x_min, x_max, y_min, y_max
def get_job_data(job, average):
scale_factor = 1e-14
job_results = job.result(timeout=120) # timeout parameter set to 120 s
result_data = []
for i in range(len(job_results.results)):
if average: # get avg data
result_data.append(job_results.get_memory(i)[qubit]*scale_factor)
else: # get single data
result_data.append(job_results.get_memory(i)[:, qubit]*scale_factor)
return result_data
discrim_01_sched_list = [get_zero_sched(), get_one_sched()]
discrim_job = execute(discrim_01_sched_list, backend=backend, meas_level=1, meas_return='single', shots=1024, schedule_los=[{drive_chan: qubit_freq_ground}]*2)
job_monitor(discrim_job)
discrim_data = get_job_data(discrim_job, average=False)
zero_data = discrim_data[0]
one_data = discrim_data[1]
x_min, x_max, y_min, y_max = IQ_plot(zero_data, one_data)
discrim_job_0 = execute(get_zero_sched(), backend=backend, meas_level=1, meas_return='single', shots=1024, schedule_los=[{drive_chan: qubit_freq_ground}])
# discrim_job_0 = execute(zero_pulse_with_gap(350), backend=backend, meas_level=1, meas_return='single', shots=1024, schedule_los=[{drive_chan: qubit_freq_ground}])
job_monitor(discrim_job_0)
discrim_job_1 = execute(get_one_sched(), backend=backend, meas_level=1, meas_return='single', shots=1024, schedule_los=[{drive_chan: qubit_freq_ground}])
job_monitor(discrim_job_1)
zero_data_sep = get_job_data(discrim_job_0, average=False)
one_data_sep = get_job_data(discrim_job_1, average=False)
x_min, x_max, y_min, y_max = IQ_plot(zero_data_sep, one_data_sep)
discrim_01_sched_list_assemble = [get_zero_sched(), get_one_sched()]
discrim_exp = assemble(discrim_01_sched_list_assemble, backend=backend, meas_level=1, meas_return='single', shots=1024, schedule_los=[{drive_chan: qubit_freq_ground}]*2)
discrim_job_assemble = backend.run(discrim_exp)
job_monitor(discrim_job_assemble)
discrim_data_assemble = get_job_data(discrim_job_assemble, average=False)
zero_data_asmbl = discrim_data_assemble[0]
one_data_asmbl = discrim_data_assemble[1]
x_min, x_max, y_min, y_max = IQ_plot(zero_data_asmbl, one_data_asmbl)
discrim_exp_0 = assemble(get_zero_sched(), backend=backend, meas_level=1, meas_return='single', shots=1024, schedule_los=[{drive_chan: qubit_freq_ground}])
discrim_job_0_asmbl = backend.run(discrim_exp_0)
job_monitor(discrim_job_0_asmbl)
discrim_exp_1 = assemble(get_one_sched(), backend=backend, meas_level=1, meas_return='single', shots=1024, schedule_los=[{drive_chan: qubit_freq_ground}])
discrim_job_1_asmbl = backend.run(discrim_exp_1)
job_monitor(discrim_job_1_asmbl)
zero_data_sep_asmbl = get_job_data(discrim_job_0_asmbl, average=False)
one_data_sep_asmbl = get_job_data(discrim_job_1_asmbl, average=False)
x_min, x_max, y_min, y_max = IQ_plot(zero_data_sep_asmbl, one_data_sep_asmbl)
def zero_pulse_with_gap(gap):
gapped_sched = Schedule()
gapped_sched += measure << gap
return gapped_sched
gap_list = range(0,720,100)
gap_sched_list = [zero_pulse_with_gap(gap) for gap in gap_list]
print('Gap list : ', [*gap_list])
out_file = open("temp_01_scheds_sep_result_casablanca.txt", "w")
for idx, sched in enumerate(gap_sched_list):
gap_job = execute(sched, backend=backend, meas_level=1, meas_return='single', shots=1024, schedule_los=[{drive_chan: qubit_freq_ground}])
if idx%1==0:
print("Running job number %d" % idx)
job_monitor(gap_job)
gap_data = get_job_data(gap_job, average=False)
print('0', idx*10, gap_data[0].tolist(), file=out_file)
gap_job = execute(get_one_sched(), backend=backend, meas_level=1, meas_return='single', shots=1024, schedule_los=[{drive_chan: qubit_freq_ground}])
job_monitor(gap_job)
gap_data = get_job_data(gap_job, average=False)
print('1', '0', gap_data[0].tolist(), file=out_file)
out_file.close()
import ast
res_file = open("temp_01_scheds_sep_result_casablanca.txt",'r')
res_array =[]
res = res_file.readline()
iter=1
while res:
res_array.append(ast.literal_eval(res[res.find('['):]))
res = res_file.readline()
iter += 1
res_file.close()
plt.figure()
print(len(res_array))
for idx, dat in enumerate(res_array[:9]):
plt.scatter(np.real(dat), np.imag(dat), s=5, alpha=0.5)
plt.show()
for idx, sched in enumerate(gap_sched_list):
gap_job = execute(sched, backend=backend, meas_level=2, meas_return='avg', shots=1024, schedule_los=[{drive_chan: qubit_freq_ground}])
if idx%1==0:
print("Running job number %d" % idx)
job_monitor(gap_job)
result_counts = gap_job.result().get_counts()
print('0 : ','Gap : ', idx*10, result_counts)
gap_job = execute(get_one_sched(), backend=backend, meas_level=2, meas_return='avg', shots=1024, schedule_los=[{drive_chan: qubit_freq_ground}])
job_monitor(gap_job)
result_counts = gap_job.result().get_counts()
print('1 : ','Gap : 0', result_counts)
speak("The complete program is over. Check it out.")
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test the Stochastic Swap pass"""
import unittest
import numpy.random
from ddt import ddt, data
from qiskit.transpiler.passes import StochasticSwap
from qiskit.transpiler import CouplingMap, PassManager, Layout
from qiskit.transpiler.exceptions import TranspilerError
from qiskit.converters import circuit_to_dag, dag_to_circuit
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.test import QiskitTestCase
from qiskit.test._canonical import canonicalize_control_flow
from qiskit.transpiler.passes.utils import CheckMap
from qiskit.circuit.random import random_circuit
from qiskit.providers.fake_provider import FakeMumbai, FakeMumbaiV2
from qiskit.compiler.transpiler import transpile
from qiskit.circuit import ControlFlowOp, Clbit, CASE_DEFAULT
from qiskit.circuit.classical import expr
@ddt
class TestStochasticSwap(QiskitTestCase):
"""
Tests the StochasticSwap pass.
All of the tests use a fixed seed since the results
may depend on it.
"""
def test_trivial_case(self):
"""
q0:--(+)-[H]-(+)-
| |
q1:---.-------|--
|
q2:-----------.--
Coupling map: [1]--[0]--[2]
"""
coupling = CouplingMap([[0, 1], [0, 2]])
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.cx(qr[0], qr[1])
circuit.h(qr[0])
circuit.cx(qr[0], qr[2])
dag = circuit_to_dag(circuit)
pass_ = StochasticSwap(coupling, 20, 13)
after = pass_.run(dag)
self.assertEqual(dag, after)
def test_trivial_in_same_layer(self):
"""
q0:--(+)--
|
q1:---.---
q2:--(+)--
|
q3:---.---
Coupling map: [0]--[1]--[2]--[3]
"""
coupling = CouplingMap([[0, 1], [1, 2], [2, 3]])
qr = QuantumRegister(4, "q")
circuit = QuantumCircuit(qr)
circuit.cx(qr[2], qr[3])
circuit.cx(qr[0], qr[1])
dag = circuit_to_dag(circuit)
pass_ = StochasticSwap(coupling, 20, 13)
after = pass_.run(dag)
self.assertEqual(dag, after)
def test_permute_wires_1(self):
"""
q0:--------
q1:---.----
|
q2:--(+)---
Coupling map: [1]--[0]--[2]
q0:--x-(+)-
| |
q1:--|--.--
|
q2:--x-----
"""
coupling = CouplingMap([[0, 1], [0, 2]])
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.cx(qr[1], qr[2])
dag = circuit_to_dag(circuit)
pass_ = StochasticSwap(coupling, 20, 11)
after = pass_.run(dag)
expected = QuantumCircuit(qr)
expected.swap(qr[0], qr[2])
expected.cx(qr[1], qr[0])
self.assertEqual(circuit_to_dag(expected), after)
def test_permute_wires_2(self):
"""
qr0:---.---[H]--
|
qr1:---|--------
|
qr2:--(+)-------
Coupling map: [0]--[1]--[2]
qr0:----.---[H]-
|
qr1:-x-(+)------
|
qr2:-x----------
"""
coupling = CouplingMap([[1, 0], [1, 2]])
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.cx(qr[0], qr[2])
circuit.h(qr[0])
dag = circuit_to_dag(circuit)
pass_ = StochasticSwap(coupling, 20, 11)
after = pass_.run(dag)
expected = QuantumCircuit(qr)
expected.swap(qr[1], qr[2])
expected.cx(qr[0], qr[1])
expected.h(qr[0])
self.assertEqual(expected, dag_to_circuit(after))
def test_permute_wires_3(self):
"""
qr0:--(+)---.--
| |
qr1:---|----|--
| |
qr2:---|----|--
| |
qr3:---.---(+)-
Coupling map: [0]--[1]--[2]--[3]
qr0:-x------------
|
qr1:-x--(+)---.---
| |
qr2:-x---.---(+)--
|
qr3:-x------------
"""
coupling = CouplingMap([[0, 1], [1, 2], [2, 3]])
qr = QuantumRegister(4, "q")
circuit = QuantumCircuit(qr)
circuit.cx(qr[0], qr[3])
circuit.cx(qr[3], qr[0])
dag = circuit_to_dag(circuit)
pass_ = StochasticSwap(coupling, 20, 13)
after = pass_.run(dag)
expected = QuantumCircuit(qr)
expected.swap(qr[0], qr[1])
expected.swap(qr[2], qr[3])
expected.cx(qr[1], qr[2])
expected.cx(qr[2], qr[1])
self.assertEqual(circuit_to_dag(expected), after)
def test_permute_wires_4(self):
"""No qubit label permutation occurs if the first
layer has only single-qubit gates. This is suboptimal
but seems to be the current behavior.
qr0:------(+)--
|
qr1:-------|---
|
qr2:-------|---
|
qr3:--[H]--.---
Coupling map: [0]--[1]--[2]--[3]
qr0:------X---------
|
qr1:------X-(+)-----
|
qr2:------X--.------
|
qr3:-[H]--X---------
"""
coupling = CouplingMap([[0, 1], [1, 2], [2, 3]])
qr = QuantumRegister(4, "q")
circuit = QuantumCircuit(qr)
circuit.h(qr[3])
circuit.cx(qr[3], qr[0])
dag = circuit_to_dag(circuit)
pass_ = StochasticSwap(coupling, 20, 13)
after = pass_.run(dag)
expected = QuantumCircuit(qr)
expected.h(qr[3])
expected.swap(qr[2], qr[3])
expected.swap(qr[0], qr[1])
expected.cx(qr[2], qr[1])
self.assertEqual(circuit_to_dag(expected), after)
def test_permute_wires_5(self):
"""This is the same case as permute_wires_4
except the single qubit gate is after the two-qubit
gate, so the layout is adjusted.
qr0:--(+)------
|
qr1:---|-------
|
qr2:---|-------
|
qr3:---.--[H]--
Coupling map: [0]--[1]--[2]--[3]
qr0:-x-----------
|
qr1:-x--(+)------
|
qr2:-x---.--[H]--
|
qr3:-x-----------
"""
coupling = CouplingMap([[0, 1], [1, 2], [2, 3]])
qr = QuantumRegister(4, "q")
circuit = QuantumCircuit(qr)
circuit.cx(qr[3], qr[0])
circuit.h(qr[3])
dag = circuit_to_dag(circuit)
pass_ = StochasticSwap(coupling, 20, 13)
after = pass_.run(dag)
expected = QuantumCircuit(qr)
expected.swap(qr[0], qr[1])
expected.swap(qr[2], qr[3])
expected.cx(qr[2], qr[1])
expected.h(qr[2])
self.assertEqual(circuit_to_dag(expected), after)
def test_all_single_qubit(self):
"""Test all trivial layers."""
coupling = CouplingMap([[0, 1], [1, 2], [1, 3]])
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(4, "c")
circ = QuantumCircuit(qr, cr)
circ.h(qr)
circ.z(qr)
circ.s(qr)
circ.t(qr)
circ.tdg(qr)
circ.measure(qr[0], cr[0]) # intentional duplicate
circ.measure(qr[0], cr[0])
circ.measure(qr[1], cr[1])
circ.measure(qr[2], cr[2])
circ.measure(qr[3], cr[3])
dag = circuit_to_dag(circ)
pass_ = StochasticSwap(coupling, 20, 13)
after = pass_.run(dag)
self.assertEqual(dag, after)
def test_overoptimization_case(self):
"""Check mapper overoptimization.
The mapper should not change the semantics of the input.
An overoptimization introduced issue #81:
https://github.com/Qiskit/qiskit-terra/issues/81
"""
coupling = CouplingMap([[0, 2], [1, 2], [2, 3]])
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(4, "c")
circuit = QuantumCircuit(qr, cr)
circuit.x(qr[0])
circuit.y(qr[1])
circuit.z(qr[2])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[2], qr[3])
circuit.s(qr[1])
circuit.t(qr[2])
circuit.h(qr[3])
circuit.cx(qr[1], qr[2])
circuit.measure(qr[0], cr[0])
circuit.measure(qr[1], cr[1])
circuit.measure(qr[2], cr[2])
circuit.measure(qr[3], cr[3])
dag = circuit_to_dag(circuit)
# ┌───┐ ┌─┐
# q_0: | 0 >┤ X ├────────────■───────────────────────────┤M├─────────
# └───┘┌───┐ ┌─┴─┐ ┌───┐ └╥┘┌─┐
# q_1: | 0 >─────┤ Y ├─────┤ X ├─────┤ S ├────────────■───╫─┤M├──────
# └───┘┌───┐└───┘ └───┘┌───┐ ┌─┴─┐ ║ └╥┘┌─┐
# q_2: | 0 >──────────┤ Z ├───────■───────┤ T ├─────┤ X ├─╫──╫─┤M├───
# └───┘ ┌─┴─┐ └───┘┌───┐└───┘ ║ ║ └╥┘┌─┐
# q_3: | 0 >────────────────────┤ X ├──────────┤ H ├──────╫──╫──╫─┤M├
# └───┘ └───┘ ║ ║ ║ └╥┘
# c_0: 0 ══════════════════════════════════════════════╩══╬══╬══╬═
# ║ ║ ║
# c_1: 0 ═════════════════════════════════════════════════╩══╬══╬═
# ║ ║
# c_2: 0 ════════════════════════════════════════════════════╩══╬═
# ║
# c_3: 0 ═══════════════════════════════════════════════════════╩═
#
expected = QuantumCircuit(qr, cr)
expected.z(qr[2])
expected.y(qr[1])
expected.x(qr[0])
expected.swap(qr[0], qr[2])
expected.cx(qr[2], qr[1])
expected.swap(qr[0], qr[2])
expected.cx(qr[2], qr[3])
expected.s(qr[1])
expected.t(qr[2])
expected.h(qr[3])
expected.measure(qr[0], cr[0])
expected.cx(qr[1], qr[2])
expected.measure(qr[3], cr[3])
expected.measure(qr[1], cr[1])
expected.measure(qr[2], cr[2])
expected_dag = circuit_to_dag(expected)
# ┌───┐ ┌─┐
# q_0: ┤ X ├─X───────X──────┤M├────────────────
# ├───┤ │ ┌───┐ │ ┌───┐└╥┘ ┌─┐
# q_1: ┤ Y ├─┼─┤ X ├─┼─┤ S ├─╫────────■──┤M├───
# ├───┤ │ └─┬─┘ │ └───┘ ║ ┌───┐┌─┴─┐└╥┘┌─┐
# q_2: ┤ Z ├─X───■───X───■───╫─┤ T ├┤ X ├─╫─┤M├
# └───┘ ┌─┴─┐ ║ ├───┤└┬─┬┘ ║ └╥┘
# q_3: ────────────────┤ X ├─╫─┤ H ├─┤M├──╫──╫─
# └───┘ ║ └───┘ └╥┘ ║ ║
# c: 4/══════════════════════╩════════╩═══╩══╩═
# 0 3 1 2
#
# Layout --
# {qr[0]: 0,
# qr[1]: 1,
# qr[2]: 2,
# qr[3]: 3}
pass_ = StochasticSwap(coupling, 20, 19)
after = pass_.run(dag)
self.assertEqual(expected_dag, after)
def test_already_mapped(self):
"""Circuit not remapped if matches topology.
See: https://github.com/Qiskit/qiskit-terra/issues/342
"""
coupling = CouplingMap(
[
[1, 0],
[1, 2],
[2, 3],
[3, 4],
[3, 14],
[5, 4],
[6, 5],
[6, 7],
[6, 11],
[7, 10],
[8, 7],
[9, 8],
[9, 10],
[11, 10],
[12, 5],
[12, 11],
[12, 13],
[13, 4],
[13, 14],
[15, 0],
[15, 0],
[15, 2],
[15, 14],
]
)
qr = QuantumRegister(16, "q")
cr = ClassicalRegister(16, "c")
circ = QuantumCircuit(qr, cr)
circ.cx(qr[3], qr[14])
circ.cx(qr[5], qr[4])
circ.h(qr[9])
circ.cx(qr[9], qr[8])
circ.x(qr[11])
circ.cx(qr[3], qr[4])
circ.cx(qr[12], qr[11])
circ.cx(qr[13], qr[4])
for j in range(16):
circ.measure(qr[j], cr[j])
dag = circuit_to_dag(circ)
pass_ = StochasticSwap(coupling, 20, 13)
after = pass_.run(dag)
self.assertEqual(circuit_to_dag(circ), after)
def test_congestion(self):
"""Test code path that falls back to serial layers."""
coupling = CouplingMap([[0, 1], [1, 2], [1, 3]])
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(4, "c")
circ = QuantumCircuit(qr, cr)
circ.cx(qr[1], qr[2])
circ.cx(qr[0], qr[3])
circ.measure(qr[0], cr[0])
circ.h(qr)
circ.cx(qr[0], qr[1])
circ.cx(qr[2], qr[3])
circ.measure(qr[0], cr[0])
circ.measure(qr[1], cr[1])
circ.measure(qr[2], cr[2])
circ.measure(qr[3], cr[3])
dag = circuit_to_dag(circ)
# Input:
# ┌─┐┌───┐ ┌─┐
# q_0: |0>─────────────────■──────────────────┤M├┤ H ├──■─────┤M├
# ┌───┐ │ └╥┘└───┘┌─┴─┐┌─┐└╥┘
# q_1: |0>──■───────┤ H ├──┼───────────────────╫──────┤ X ├┤M├─╫─
# ┌─┴─┐┌───┐└───┘ │ ┌─┐ ║ └───┘└╥┘ ║
# q_2: |0>┤ X ├┤ H ├───────┼─────────■─────┤M├─╫────────────╫──╫─
# └───┘└───┘ ┌─┴─┐┌───┐┌─┴─┐┌─┐└╥┘ ║ ║ ║
# q_3: |0>───────────────┤ X ├┤ H ├┤ X ├┤M├─╫──╫────────────╫──╫─
# └───┘└───┘└───┘└╥┘ ║ ║ ║ ║
# c_0: 0 ═══════════════════════════════╬══╬══╩════════════╬══╩═
# ║ ║ ║
# c_1: 0 ═══════════════════════════════╬══╬═══════════════╩════
# ║ ║
# c_2: 0 ═══════════════════════════════╬══╩════════════════════
# ║
# c_3: 0 ═══════════════════════════════╩═══════════════════════
#
# Expected output (with seed 999):
# ┌───┐ ┌─┐
# q_0: ───────X──┤ H ├─────────────────X──────┤M├──────
# │ └───┘ ┌─┐ ┌───┐ │ ┌───┐└╥┘ ┌─┐
# q_1: ──■────X────■───────┤M├─X─┤ X ├─X─┤ X ├─╫────┤M├
# ┌─┴─┐┌───┐ │ └╥┘ │ └─┬─┘┌─┐└─┬─┘ ║ └╥┘
# q_2: ┤ X ├┤ H ├──┼────────╫──┼───■──┤M├──┼───╫─────╫─
# └───┘└───┘┌─┴─┐┌───┐ ║ │ ┌───┐└╥┘ │ ║ ┌─┐ ║
# q_3: ──────────┤ X ├┤ H ├─╫──X─┤ H ├─╫───■───╫─┤M├─╫─
# └───┘└───┘ ║ └───┘ ║ ║ └╥┘ ║
# c: 4/═════════════════════╩══════════╩═══════╩══╩══╩═
# 0 2 3 0 1
#
# Target coupling graph:
# 2
# |
# 0 - 1 - 3
expected = QuantumCircuit(qr, cr)
expected.cx(qr[1], qr[2])
expected.h(qr[2])
expected.swap(qr[0], qr[1])
expected.h(qr[0])
expected.cx(qr[1], qr[3])
expected.h(qr[3])
expected.measure(qr[1], cr[0])
expected.swap(qr[1], qr[3])
expected.cx(qr[2], qr[1])
expected.h(qr[3])
expected.swap(qr[0], qr[1])
expected.measure(qr[2], cr[2])
expected.cx(qr[3], qr[1])
expected.measure(qr[0], cr[3])
expected.measure(qr[3], cr[0])
expected.measure(qr[1], cr[1])
expected_dag = circuit_to_dag(expected)
pass_ = StochasticSwap(coupling, 20, 999)
after = pass_.run(dag)
self.assertEqual(expected_dag, after)
def test_only_output_cx_and_swaps_in_coupling_map(self):
"""Test that output DAG contains only 2q gates from the the coupling map."""
coupling = CouplingMap([[0, 1], [1, 2], [2, 3]])
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(4, "c")
circuit = QuantumCircuit(qr, cr)
circuit.h(qr[0])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[0], qr[2])
circuit.cx(qr[0], qr[3])
circuit.measure(qr, cr)
dag = circuit_to_dag(circuit)
pass_ = StochasticSwap(coupling, 20, 5)
after = pass_.run(dag)
valid_couplings = [{qr[a], qr[b]} for (a, b) in coupling.get_edges()]
for _2q_gate in after.two_qubit_ops():
self.assertIn(set(_2q_gate.qargs), valid_couplings)
def test_len_cm_vs_dag(self):
"""Test error if the coupling map is smaller than the dag."""
coupling = CouplingMap([[0, 1], [1, 2]])
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(4, "c")
circuit = QuantumCircuit(qr, cr)
circuit.h(qr[0])
circuit.cx(qr[0], qr[1])
circuit.cx(qr[0], qr[2])
circuit.cx(qr[0], qr[3])
circuit.measure(qr, cr)
dag = circuit_to_dag(circuit)
pass_ = StochasticSwap(coupling)
with self.assertRaises(TranspilerError):
_ = pass_.run(dag)
def test_single_gates_omitted(self):
"""Test if single qubit gates are omitted."""
coupling_map = [[0, 1], [1, 0], [1, 2], [1, 3], [2, 1], [3, 1], [3, 4], [4, 3]]
# q_0: ──■──────────────────
# │
# q_1: ──┼─────────■────────
# │ ┌─┴─┐
# q_2: ──┼───────┤ X ├──────
# │ ┌────┴───┴─────┐
# q_3: ──┼──┤ U(1,1.5,0.7) ├
# ┌─┴─┐└──────────────┘
# q_4: ┤ X ├────────────────
# └───┘
qr = QuantumRegister(5, "q")
cr = ClassicalRegister(5, "c")
circuit = QuantumCircuit(qr, cr)
circuit.cx(qr[0], qr[4])
circuit.cx(qr[1], qr[2])
circuit.u(1, 1.5, 0.7, qr[3])
# q_0: ─────────────────X──────
# │
# q_1: ───────■─────────X───■──
# ┌─┴─┐ │
# q_2: ─────┤ X ├───────────┼──
# ┌────┴───┴─────┐ ┌─┴─┐
# q_3: ┤ U(1,1.5,0.7) ├─X─┤ X ├
# └──────────────┘ │ └───┘
# q_4: ─────────────────X──────
expected = QuantumCircuit(qr, cr)
expected.cx(qr[1], qr[2])
expected.u(1, 1.5, 0.7, qr[3])
expected.swap(qr[0], qr[1])
expected.swap(qr[3], qr[4])
expected.cx(qr[1], qr[3])
expected_dag = circuit_to_dag(expected)
stochastic = StochasticSwap(CouplingMap(coupling_map), seed=0)
after = PassManager(stochastic).run(circuit)
after = circuit_to_dag(after)
self.assertEqual(expected_dag, after)
@ddt
class TestStochasticSwapControlFlow(QiskitTestCase):
"""Tests for control flow in stochastic swap."""
def test_pre_if_else_route(self):
"""test swap with if else controlflow construct"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.measure(2, 2)
true_body = QuantumCircuit(qreg, creg[[2]])
true_body.x(3)
false_body = QuantumCircuit(qreg, creg[[2]])
false_body.x(4)
qc.if_else((creg[2], 0), true_body, false_body, qreg, creg[[2]])
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=82).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.swap(0, 1)
expected.cx(1, 2)
expected.measure(2, 2)
etrue_body = QuantumCircuit(qreg[[3, 4]], creg[[2]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[3, 4]], creg[[2]])
efalse_body.x(1)
new_order = [1, 0, 2, 3, 4]
expected.if_else((creg[2], 0), etrue_body, efalse_body, qreg[[3, 4]], creg[[2]])
expected.barrier(qreg)
expected.measure(qreg, creg[new_order])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_pre_if_else_route_post_x(self):
"""test swap with if else controlflow construct; pre-cx and post x"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.measure(2, 2)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(3)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.x(4)
qc.if_else((creg[2], 0), true_body, false_body, qreg, creg[[0]])
qc.x(1)
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=431).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.swap(1, 2)
expected.cx(0, 1)
expected.measure(1, 2)
new_order = [0, 2, 1, 3, 4]
etrue_body = QuantumCircuit(qreg[[3, 4]], creg[[0]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[3, 4]], creg[[0]])
efalse_body.x(1)
expected.if_else((creg[2], 0), etrue_body, efalse_body, qreg[[3, 4]], creg[[0]])
expected.x(2)
expected.barrier(qreg)
expected.measure(qreg, creg[new_order])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_post_if_else_route(self):
"""test swap with if else controlflow construct; post cx"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(3)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.x(4)
qc.barrier(qreg)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.barrier(qreg)
qc.cx(0, 2)
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=6508).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg[[3, 4]], creg[[0]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[3, 4]], creg[[0]])
efalse_body.x(1)
expected.barrier(qreg)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg[[3, 4]], creg[[0]])
expected.barrier(qreg)
expected.swap(0, 1)
expected.cx(1, 2)
expected.barrier(qreg)
expected.measure(qreg, creg[[1, 0, 2, 3, 4]])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_pre_if_else2(self):
"""test swap with if else controlflow construct; cx in if statement"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(0)
false_body = QuantumCircuit(qreg, creg[[0]])
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=38).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.swap(0, 1)
expected.cx(1, 2)
expected.measure(1, 0)
etrue_body = QuantumCircuit(qreg[[1]], creg[[0]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[1]], creg[[0]])
new_order = [1, 0, 2, 3, 4]
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg[[1]], creg[[0]])
expected.barrier(qreg)
expected.measure(qreg, creg[new_order])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_intra_if_else_route(self):
"""test swap with if else controlflow construct"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.cx(0, 2)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.cx(0, 4)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=8).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg, creg[[0]])
etrue_body.swap(0, 1)
etrue_body.cx(1, 2)
etrue_body.swap(1, 2)
etrue_body.swap(3, 4)
efalse_body = QuantumCircuit(qreg, creg[[0]])
efalse_body.swap(0, 1)
efalse_body.swap(1, 2)
efalse_body.swap(3, 4)
efalse_body.cx(2, 3)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg, creg[[0]])
new_order = [1, 2, 0, 4, 3]
expected.measure(qreg, creg[new_order])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_pre_intra_if_else(self):
"""test swap with if else controlflow construct; cx in if statement"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.cx(0, 2)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.cx(0, 4)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=2, trials=20).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
etrue_body = QuantumCircuit(qreg[[1, 2, 3, 4]], creg[[0]])
efalse_body = QuantumCircuit(qreg[[1, 2, 3, 4]], creg[[0]])
expected.h(0)
expected.x(1)
expected.swap(0, 1)
expected.cx(1, 2)
expected.measure(1, 0)
etrue_body.cx(0, 1)
etrue_body.swap(2, 3)
etrue_body.swap(0, 1)
efalse_body.swap(0, 1)
efalse_body.swap(2, 3)
efalse_body.cx(1, 2)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg[[1, 2, 3, 4]], creg[[0]])
expected.measure(qreg, creg[[1, 2, 0, 4, 3]])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_pre_intra_post_if_else(self):
"""test swap with if else controlflow construct; cx before, in, and after if
statement"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.cx(0, 2)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.cx(0, 4)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.h(3)
qc.cx(3, 0)
qc.barrier()
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.swap(1, 2)
expected.cx(0, 1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg, creg[[0]])
etrue_body.cx(0, 1)
etrue_body.swap(0, 1)
etrue_body.swap(4, 3)
etrue_body.swap(2, 3)
efalse_body = QuantumCircuit(qreg, creg[[0]])
efalse_body.swap(0, 1)
efalse_body.swap(3, 4)
efalse_body.swap(2, 3)
efalse_body.cx(1, 2)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg[[0, 1, 2, 3, 4]], creg[[0]])
expected.swap(1, 2)
expected.h(4)
expected.swap(3, 4)
expected.cx(3, 2)
expected.barrier()
expected.measure(qreg, creg[[2, 4, 0, 3, 1]])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_if_expr(self):
"""Test simple if conditional with an `Expr` condition."""
coupling = CouplingMap.from_line(4)
body = QuantumCircuit(4)
body.cx(0, 1)
body.cx(0, 2)
body.cx(0, 3)
qc = QuantumCircuit(4, 2)
qc.if_test(expr.logic_and(qc.clbits[0], qc.clbits[1]), body, [0, 1, 2, 3], [])
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=58).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
def test_if_else_expr(self):
"""Test simple if/else conditional with an `Expr` condition."""
coupling = CouplingMap.from_line(4)
true = QuantumCircuit(4)
true.cx(0, 1)
true.cx(0, 2)
true.cx(0, 3)
false = QuantumCircuit(4)
false.cx(3, 0)
false.cx(3, 1)
false.cx(3, 2)
qc = QuantumCircuit(4, 2)
qc.if_else(expr.logic_and(qc.clbits[0], qc.clbits[1]), true, false, [0, 1, 2, 3], [])
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=58).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
def test_no_layout_change(self):
"""test controlflow with no layout change needed"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(2)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.x(4)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=23).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.swap(1, 2)
expected.cx(0, 1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg[[1, 4]], creg[[0]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[1, 4]], creg[[0]])
efalse_body.x(1)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg[[1, 4]], creg[[0]])
expected.barrier(qreg)
expected.measure(qreg, creg[[0, 2, 1, 3, 4]])
self.assertEqual(dag_to_circuit(cdag), expected)
@data(1, 2, 3)
def test_for_loop(self, nloops):
"""test stochastic swap with for_loop"""
# if the loop has only one iteration it isn't necessary for the pass
# to swap back to the starting layout. This test would check that
# optimization.
num_qubits = 3
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.x(1)
for_body = QuantumCircuit(qreg)
for_body.cx(0, 2)
loop_parameter = None
qc.for_loop(range(nloops), loop_parameter, for_body, qreg, [])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=687).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
efor_body = QuantumCircuit(qreg)
efor_body.swap(0, 1)
efor_body.cx(1, 2)
efor_body.swap(0, 1)
loop_parameter = None
expected.for_loop(range(nloops), loop_parameter, efor_body, qreg, [])
expected.measure(qreg, creg)
self.assertEqual(dag_to_circuit(cdag), expected)
def test_while_loop(self):
"""test while loop"""
num_qubits = 4
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(len(qreg))
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
while_body = QuantumCircuit(qreg, creg)
while_body.reset(qreg[2:])
while_body.h(qreg[2:])
while_body.cx(0, 3)
while_body.measure(qreg[3], creg[3])
qc.while_loop((creg, 0), while_body, qc.qubits, qc.clbits)
qc.barrier()
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=58).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
ewhile_body = QuantumCircuit(qreg, creg[:])
ewhile_body.reset(qreg[2:])
ewhile_body.h(qreg[2:])
ewhile_body.swap(0, 1)
ewhile_body.swap(2, 3)
ewhile_body.cx(1, 2)
ewhile_body.measure(qreg[2], creg[3])
ewhile_body.swap(1, 0)
ewhile_body.swap(3, 2)
expected.while_loop((creg, 0), ewhile_body, expected.qubits, expected.clbits)
expected.barrier()
expected.measure(qreg, creg)
self.assertEqual(dag_to_circuit(cdag), expected)
def test_while_loop_expr(self):
"""Test simple while loop with an `Expr` condition."""
coupling = CouplingMap.from_line(4)
body = QuantumCircuit(4)
body.cx(0, 1)
body.cx(0, 2)
body.cx(0, 3)
qc = QuantumCircuit(4, 2)
qc.while_loop(expr.logic_and(qc.clbits[0], qc.clbits[1]), body, [0, 1, 2, 3], [])
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=58).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
def test_switch_single_case(self):
"""Test routing of 'switch' with just a single case."""
qreg = QuantumRegister(5, "q")
creg = ClassicalRegister(3, "c")
qc = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg[[0, 1, 2]], creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.cx(2, 0)
qc.switch(creg, [(0, case0)], qreg[[0, 1, 2]], creg)
coupling = CouplingMap.from_line(len(qreg))
pass_ = StochasticSwap(coupling, seed=58)
test = pass_(qc)
check = CheckMap(coupling)
check(test)
self.assertTrue(check.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg[[0, 1, 2]], creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.swap(0, 1)
case0.cx(2, 1)
case0.swap(0, 1)
expected.switch(creg, [(0, case0)], qreg[[0, 1, 2]], creg[:])
self.assertEqual(canonicalize_control_flow(test), canonicalize_control_flow(expected))
def test_switch_nonexhaustive(self):
"""Test routing of 'switch' with several but nonexhaustive cases."""
qreg = QuantumRegister(5, "q")
creg = ClassicalRegister(3, "c")
qc = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg, creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.cx(2, 0)
case1 = QuantumCircuit(qreg, creg[:])
case1.cx(1, 2)
case1.cx(2, 3)
case1.cx(3, 1)
case2 = QuantumCircuit(qreg, creg[:])
case2.cx(2, 3)
case2.cx(3, 4)
case2.cx(4, 2)
qc.switch(creg, [(0, case0), ((1, 2), case1), (3, case2)], qreg, creg)
coupling = CouplingMap.from_line(len(qreg))
pass_ = StochasticSwap(coupling, seed=58)
test = pass_(qc)
check = CheckMap(coupling)
check(test)
self.assertTrue(check.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg, creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.swap(0, 1)
case0.cx(2, 1)
case0.swap(0, 1)
case1 = QuantumCircuit(qreg, creg[:])
case1.cx(1, 2)
case1.cx(2, 3)
case1.swap(1, 2)
case1.cx(3, 2)
case1.swap(1, 2)
case2 = QuantumCircuit(qreg, creg[:])
case2.cx(2, 3)
case2.cx(3, 4)
case2.swap(3, 4)
case2.cx(3, 2)
case2.swap(3, 4)
expected.switch(creg, [(0, case0), ((1, 2), case1), (3, case2)], qreg, creg)
self.assertEqual(canonicalize_control_flow(test), canonicalize_control_flow(expected))
@data((0, 1, 2, 3), (CASE_DEFAULT,))
def test_switch_exhaustive(self, labels):
"""Test routing of 'switch' with exhaustive cases; we should not require restoring the
layout afterwards."""
qreg = QuantumRegister(5, "q")
creg = ClassicalRegister(2, "c")
qc = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg[[0, 1, 2]], creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.cx(2, 0)
qc.switch(creg, [(labels, case0)], qreg[[0, 1, 2]], creg)
coupling = CouplingMap.from_line(len(qreg))
pass_ = StochasticSwap(coupling, seed=58)
test = pass_(qc)
check = CheckMap(coupling)
check(test)
self.assertTrue(check.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg[[0, 1, 2]], creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.swap(0, 1)
case0.cx(2, 1)
expected.switch(creg, [(labels, case0)], qreg[[0, 1, 2]], creg)
self.assertEqual(canonicalize_control_flow(test), canonicalize_control_flow(expected))
def test_switch_nonexhaustive_expr(self):
"""Test routing of 'switch' with an `Expr` target and several but nonexhaustive cases."""
qreg = QuantumRegister(5, "q")
creg = ClassicalRegister(3, "c")
qc = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg, creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.cx(2, 0)
case1 = QuantumCircuit(qreg, creg[:])
case1.cx(1, 2)
case1.cx(2, 3)
case1.cx(3, 1)
case2 = QuantumCircuit(qreg, creg[:])
case2.cx(2, 3)
case2.cx(3, 4)
case2.cx(4, 2)
qc.switch(expr.bit_or(creg, 5), [(0, case0), ((1, 2), case1), (3, case2)], qreg, creg)
coupling = CouplingMap.from_line(len(qreg))
pass_ = StochasticSwap(coupling, seed=58)
test = pass_(qc)
check = CheckMap(coupling)
check(test)
self.assertTrue(check.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg, creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.swap(0, 1)
case0.cx(2, 1)
case0.swap(0, 1)
case1 = QuantumCircuit(qreg, creg[:])
case1.cx(1, 2)
case1.cx(2, 3)
case1.swap(1, 2)
case1.cx(3, 2)
case1.swap(1, 2)
case2 = QuantumCircuit(qreg, creg[:])
case2.cx(2, 3)
case2.cx(3, 4)
case2.swap(3, 4)
case2.cx(3, 2)
case2.swap(3, 4)
expected.switch(expr.bit_or(creg, 5), [(0, case0), ((1, 2), case1), (3, case2)], qreg, creg)
self.assertEqual(canonicalize_control_flow(test), canonicalize_control_flow(expected))
@data((0, 1, 2, 3), (CASE_DEFAULT,))
def test_switch_exhaustive_expr(self, labels):
"""Test routing of 'switch' with exhaustive cases on an `Expr` target; we should not require
restoring the layout afterwards."""
qreg = QuantumRegister(5, "q")
creg = ClassicalRegister(2, "c")
qc = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg[[0, 1, 2]], creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.cx(2, 0)
qc.switch(expr.bit_or(creg, 3), [(labels, case0)], qreg[[0, 1, 2]], creg)
coupling = CouplingMap.from_line(len(qreg))
pass_ = StochasticSwap(coupling, seed=58)
test = pass_(qc)
check = CheckMap(coupling)
check(test)
self.assertTrue(check.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg[[0, 1, 2]], creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.swap(0, 1)
case0.cx(2, 1)
expected.switch(expr.bit_or(creg, 3), [(labels, case0)], qreg[[0, 1, 2]], creg)
self.assertEqual(canonicalize_control_flow(test), canonicalize_control_flow(expected))
def test_nested_inner_cnot(self):
"""test swap in nested if else controlflow construct; swap in inner"""
seed = 1
num_qubits = 3
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
check_map_pass = CheckMap(coupling)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(0)
for_body = QuantumCircuit(qreg)
for_body.delay(10, 0)
for_body.barrier(qreg)
for_body.cx(0, 2)
loop_parameter = None
true_body.for_loop(range(3), loop_parameter, for_body, qreg, [])
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.y(0)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=seed).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg, creg[[0]])
etrue_body.x(0)
efor_body = QuantumCircuit(qreg)
efor_body.delay(10, 0)
efor_body.barrier(qreg)
efor_body.swap(1, 2)
efor_body.cx(0, 1)
efor_body.swap(1, 2)
etrue_body.for_loop(range(3), loop_parameter, efor_body, qreg, [])
efalse_body = QuantumCircuit(qreg, creg[[0]])
efalse_body.y(0)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg, creg[[0]])
expected.measure(qreg, creg)
self.assertEqual(dag_to_circuit(cdag), expected)
def test_nested_outer_cnot(self):
"""test swap with nested if else controlflow construct; swap in outer"""
seed = 200
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.cx(0, 2)
true_body.x(0)
for_body = QuantumCircuit(qreg)
for_body.delay(10, 0)
for_body.barrier(qreg)
for_body.cx(1, 3)
loop_parameter = None
true_body.for_loop(range(3), loop_parameter, for_body, qreg, [])
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.y(0)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = StochasticSwap(coupling, seed=seed).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg, creg[[0]])
etrue_body.swap(1, 2)
etrue_body.cx(0, 1)
etrue_body.x(0)
efor_body = QuantumCircuit(qreg)
efor_body.delay(10, 0)
efor_body.barrier(qreg)
efor_body.cx(2, 3)
etrue_body.for_loop(range(3), loop_parameter, efor_body, qreg[[0, 1, 2, 3, 4]], [])
efalse_body = QuantumCircuit(qreg, creg[[0]])
efalse_body.y(0)
efalse_body.swap(1, 2)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg, creg[[0]])
expected.measure(qreg, creg[[0, 2, 1, 3, 4]])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_disjoint_looping(self):
"""Test looping controlflow on different qubit register"""
num_qubits = 4
cm = CouplingMap.from_line(num_qubits)
qr = QuantumRegister(num_qubits, "q")
qc = QuantumCircuit(qr)
loop_body = QuantumCircuit(2)
loop_body.cx(0, 1)
qc.for_loop((0,), None, loop_body, [0, 2], [])
cqc = StochasticSwap(cm, seed=0)(qc)
expected = QuantumCircuit(qr)
efor_body = QuantumCircuit(qr[[0, 1, 2]])
efor_body.swap(1, 2)
efor_body.cx(0, 1)
efor_body.swap(1, 2)
expected.for_loop((0,), None, efor_body, [0, 1, 2], [])
self.assertEqual(cqc, expected)
def test_disjoint_multiblock(self):
"""Test looping controlflow on different qubit register"""
num_qubits = 4
cm = CouplingMap.from_line(num_qubits)
qr = QuantumRegister(num_qubits, "q")
cr = ClassicalRegister(1)
qc = QuantumCircuit(qr, cr)
true_body = QuantumCircuit(3, 1)
true_body.cx(0, 1)
false_body = QuantumCircuit(3, 1)
false_body.cx(0, 2)
qc.if_else((cr[0], 1), true_body, false_body, [0, 1, 2], [0])
cqc = StochasticSwap(cm, seed=353)(qc)
expected = QuantumCircuit(qr, cr)
etrue_body = QuantumCircuit(qr[[0, 1, 2]], cr[[0]])
etrue_body.cx(0, 1)
etrue_body.swap(0, 1)
efalse_body = QuantumCircuit(qr[[0, 1, 2]], cr[[0]])
efalse_body.swap(0, 1)
efalse_body.cx(1, 2)
expected.if_else((cr[0], 1), etrue_body, efalse_body, [0, 1, 2], cr[[0]])
self.assertEqual(cqc, expected)
def test_multiple_ops_per_layer(self):
"""Test circuits with multiple operations per layer"""
num_qubits = 6
coupling = CouplingMap.from_line(num_qubits)
check_map_pass = CheckMap(coupling)
qr = QuantumRegister(num_qubits, "q")
qc = QuantumCircuit(qr)
# This cx and the for_loop are in the same layer.
qc.cx(0, 2)
with qc.for_loop((0,)):
qc.cx(3, 5)
cqc = StochasticSwap(coupling, seed=0)(qc)
check_map_pass(cqc)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qr)
expected.swap(0, 1)
expected.cx(1, 2)
efor_body = QuantumCircuit(qr[[3, 4, 5]])
efor_body.swap(1, 2)
efor_body.cx(0, 1)
efor_body.swap(2, 1)
expected.for_loop((0,), None, efor_body, [3, 4, 5], [])
self.assertEqual(cqc, expected)
def test_if_no_else_restores_layout(self):
"""Test that an if block with no else branch restores the initial layout. If there is an
else branch, we don't need to guarantee this."""
qc = QuantumCircuit(8, 1)
with qc.if_test((qc.clbits[0], False)):
# Just some arbitrary gates with no perfect layout.
qc.cx(3, 5)
qc.cx(4, 6)
qc.cx(1, 4)
qc.cx(7, 4)
qc.cx(0, 5)
qc.cx(7, 3)
qc.cx(1, 3)
qc.cx(5, 2)
qc.cx(6, 7)
qc.cx(3, 2)
qc.cx(6, 2)
qc.cx(2, 0)
qc.cx(7, 6)
coupling = CouplingMap.from_line(8)
pass_ = StochasticSwap(coupling, seed=2022_10_13)
transpiled = pass_(qc)
# Check the pass claims to have done things right.
initial_layout = Layout.generate_trivial_layout(*qc.qubits)
self.assertEqual(initial_layout, pass_.property_set["final_layout"])
# Check that pass really did do it right.
inner_block = transpiled.data[0].operation.blocks[0]
running_layout = initial_layout.copy()
for instruction in inner_block:
if instruction.operation.name == "swap":
running_layout.swap(*instruction.qubits)
self.assertEqual(initial_layout, running_layout)
@ddt
class TestStochasticSwapRandomCircuitValidOutput(QiskitTestCase):
"""Assert the output of a transpilation with stochastic swap is a physical circuit."""
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.backend = FakeMumbai()
cls.coupling_edge_set = {tuple(x) for x in cls.backend.configuration().coupling_map}
cls.basis_gates = set(cls.backend.configuration().basis_gates)
cls.basis_gates.update(["for_loop", "while_loop", "if_else"])
def assert_valid_circuit(self, transpiled):
"""Assert circuit complies with constraints of backend."""
self.assertIsInstance(transpiled, QuantumCircuit)
self.assertIsNotNone(getattr(transpiled, "_layout", None))
def _visit_block(circuit, qubit_mapping=None):
for instruction in circuit:
if instruction.operation.name in {"barrier", "measure"}:
continue
self.assertIn(instruction.operation.name, self.basis_gates)
qargs = tuple(qubit_mapping[x] for x in instruction.qubits)
if not isinstance(instruction.operation, ControlFlowOp):
if len(qargs) > 2 or len(qargs) < 0:
raise Exception("Invalid number of qargs for instruction")
if len(qargs) == 2:
self.assertIn(qargs, self.coupling_edge_set)
else:
self.assertLessEqual(qargs[0], 26)
else:
for block in instruction.operation.blocks:
self.assertEqual(block.num_qubits, len(instruction.qubits))
self.assertEqual(block.num_clbits, len(instruction.clbits))
new_mapping = {
inner: qubit_mapping[outer]
for outer, inner in zip(instruction.qubits, block.qubits)
}
_visit_block(block, new_mapping)
# Assert routing ran.
_visit_block(
transpiled,
qubit_mapping={qubit: index for index, qubit in enumerate(transpiled.qubits)},
)
@data(*range(1, 27))
def test_random_circuit_no_control_flow(self, size):
"""Test that transpiled random circuits without control flow are physical circuits."""
circuit = random_circuit(size, 3, measure=True, seed=12342)
tqc = transpile(
circuit,
self.backend,
routing_method="stochastic",
layout_method="dense",
seed_transpiler=12342,
)
self.assert_valid_circuit(tqc)
@data(*range(1, 27))
def test_random_circuit_no_control_flow_target(self, size):
"""Test that transpiled random circuits without control flow are physical circuits."""
circuit = random_circuit(size, 3, measure=True, seed=12342)
tqc = transpile(
circuit,
routing_method="stochastic",
layout_method="dense",
seed_transpiler=12342,
target=FakeMumbaiV2().target,
)
self.assert_valid_circuit(tqc)
@data(*range(4, 27))
def test_random_circuit_for_loop(self, size):
"""Test that transpiled random circuits with nested for loops are physical circuits."""
circuit = random_circuit(size, 3, measure=False, seed=12342)
for_block = random_circuit(3, 2, measure=False, seed=12342)
inner_for_block = random_circuit(2, 1, measure=False, seed=12342)
with circuit.for_loop((1,)):
with circuit.for_loop((1,)):
circuit.append(inner_for_block, [0, 3])
circuit.append(for_block, [1, 0, 2])
circuit.measure_all()
tqc = transpile(
circuit,
self.backend,
basis_gates=list(self.basis_gates),
routing_method="stochastic",
layout_method="dense",
seed_transpiler=12342,
)
self.assert_valid_circuit(tqc)
@data(*range(6, 27))
def test_random_circuit_if_else(self, size):
"""Test that transpiled random circuits with if else blocks are physical circuits."""
circuit = random_circuit(size, 3, measure=True, seed=12342)
if_block = random_circuit(3, 2, measure=True, seed=12342)
else_block = random_circuit(2, 1, measure=True, seed=12342)
rng = numpy.random.default_rng(seed=12342)
inner_clbit_count = max((if_block.num_clbits, else_block.num_clbits))
if inner_clbit_count > circuit.num_clbits:
circuit.add_bits([Clbit() for _ in [None] * (inner_clbit_count - circuit.num_clbits)])
clbit_indices = list(range(circuit.num_clbits))
rng.shuffle(clbit_indices)
with circuit.if_test((circuit.clbits[0], True)) as else_:
circuit.append(if_block, [0, 2, 1], clbit_indices[: if_block.num_clbits])
with else_:
circuit.append(else_block, [2, 5], clbit_indices[: else_block.num_clbits])
tqc = transpile(
circuit,
self.backend,
basis_gates=list(self.basis_gates),
routing_method="stochastic",
layout_method="dense",
seed_transpiler=12342,
)
self.assert_valid_circuit(tqc)
if __name__ == "__main__":
unittest.main()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
from qiskit import QuantumCircuit, transpile
from qiskit.providers.fake_provider import FakeAuckland
backend = FakeAuckland()
ghz = QuantumCircuit(15)
ghz.h(0)
ghz.cx(0, range(1, 15))
depths = []
gate_counts = []
non_local_gate_counts = []
levels = [str(x) for x in range(4)]
for level in range(4):
circ = transpile(ghz, backend, optimization_level=level)
depths.append(circ.depth())
gate_counts.append(sum(circ.count_ops().values()))
non_local_gate_counts.append(circ.num_nonlocal_gates())
fig, (ax1, ax2) = plt.subplots(2, 1)
ax1.bar(levels, depths, label='Depth')
ax1.set_xlabel("Optimization Level")
ax1.set_ylabel("Depth")
ax1.set_title("Output Circuit Depth")
ax2.bar(levels, gate_counts, label='Number of Circuit Operations')
ax2.bar(levels, non_local_gate_counts, label='Number of non-local gates')
ax2.set_xlabel("Optimization Level")
ax2.set_ylabel("Number of gates")
ax2.legend()
ax2.set_title("Number of output circuit gates")
fig.tight_layout()
plt.show()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import numpy as np
import matplotlib.pyplot as plt
from qiskit import QuantumRegister, QuantumCircuit
from qiskit.circuit.library import IntegerComparator
from qiskit.algorithms import IterativeAmplitudeEstimation, EstimationProblem
from qiskit_aer.primitives import Sampler
# set problem parameters
n_z = 2
z_max = 2
z_values = np.linspace(-z_max, z_max, 2**n_z)
p_zeros = [0.15, 0.25]
rhos = [0.1, 0.05]
lgd = [1, 2]
K = len(p_zeros)
alpha = 0.05
from qiskit_finance.circuit.library import GaussianConditionalIndependenceModel as GCI
u = GCI(n_z, z_max, p_zeros, rhos)
u.draw()
u_measure = u.measure_all(inplace=False)
sampler = Sampler()
job = sampler.run(u_measure)
binary_probabilities = job.result().quasi_dists[0].binary_probabilities()
# analyze uncertainty circuit and determine exact solutions
p_z = np.zeros(2**n_z)
p_default = np.zeros(K)
values = []
probabilities = []
num_qubits = u.num_qubits
for i, prob in binary_probabilities.items():
# extract value of Z and corresponding probability
i_normal = int(i[-n_z:], 2)
p_z[i_normal] += prob
# determine overall default probability for k
loss = 0
for k in range(K):
if i[K - k - 1] == "1":
p_default[k] += prob
loss += lgd[k]
values += [loss]
probabilities += [prob]
values = np.array(values)
probabilities = np.array(probabilities)
expected_loss = np.dot(values, probabilities)
losses = np.sort(np.unique(values))
pdf = np.zeros(len(losses))
for i, v in enumerate(losses):
pdf[i] += sum(probabilities[values == v])
cdf = np.cumsum(pdf)
i_var = np.argmax(cdf >= 1 - alpha)
exact_var = losses[i_var]
exact_cvar = np.dot(pdf[(i_var + 1) :], losses[(i_var + 1) :]) / sum(pdf[(i_var + 1) :])
print("Expected Loss E[L]: %.4f" % expected_loss)
print("Value at Risk VaR[L]: %.4f" % exact_var)
print("P[L <= VaR[L]]: %.4f" % cdf[exact_var])
print("Conditional Value at Risk CVaR[L]: %.4f" % exact_cvar)
# plot loss PDF, expected loss, var, and cvar
plt.bar(losses, pdf)
plt.axvline(expected_loss, color="green", linestyle="--", label="E[L]")
plt.axvline(exact_var, color="orange", linestyle="--", label="VaR(L)")
plt.axvline(exact_cvar, color="red", linestyle="--", label="CVaR(L)")
plt.legend(fontsize=15)
plt.xlabel("Loss L ($)", size=15)
plt.ylabel("probability (%)", size=15)
plt.title("Loss Distribution", size=20)
plt.xticks(size=15)
plt.yticks(size=15)
plt.show()
# plot results for Z
plt.plot(z_values, p_z, "o-", linewidth=3, markersize=8)
plt.grid()
plt.xlabel("Z value", size=15)
plt.ylabel("probability (%)", size=15)
plt.title("Z Distribution", size=20)
plt.xticks(size=15)
plt.yticks(size=15)
plt.show()
# plot results for default probabilities
plt.bar(range(K), p_default)
plt.xlabel("Asset", size=15)
plt.ylabel("probability (%)", size=15)
plt.title("Individual Default Probabilities", size=20)
plt.xticks(range(K), size=15)
plt.yticks(size=15)
plt.grid()
plt.show()
# add Z qubits with weight/loss 0
from qiskit.circuit.library import WeightedAdder
agg = WeightedAdder(n_z + K, [0] * n_z + lgd)
from qiskit.circuit.library import LinearAmplitudeFunction
# define linear objective function
breakpoints = [0]
slopes = [1]
offsets = [0]
f_min = 0
f_max = sum(lgd)
c_approx = 0.25
objective = LinearAmplitudeFunction(
agg.num_sum_qubits,
slope=slopes,
offset=offsets,
# max value that can be reached by the qubit register (will not always be reached)
domain=(0, 2**agg.num_sum_qubits - 1),
image=(f_min, f_max),
rescaling_factor=c_approx,
breakpoints=breakpoints,
)
# define the registers for convenience and readability
qr_state = QuantumRegister(u.num_qubits, "state")
qr_sum = QuantumRegister(agg.num_sum_qubits, "sum")
qr_carry = QuantumRegister(agg.num_carry_qubits, "carry")
qr_obj = QuantumRegister(1, "objective")
# define the circuit
state_preparation = QuantumCircuit(qr_state, qr_obj, qr_sum, qr_carry, name="A")
# load the random variable
state_preparation.append(u.to_gate(), qr_state)
# aggregate
state_preparation.append(agg.to_gate(), qr_state[:] + qr_sum[:] + qr_carry[:])
# linear objective function
state_preparation.append(objective.to_gate(), qr_sum[:] + qr_obj[:])
# uncompute aggregation
state_preparation.append(agg.to_gate().inverse(), qr_state[:] + qr_sum[:] + qr_carry[:])
# draw the circuit
state_preparation.draw()
state_preparation_measure = state_preparation.measure_all(inplace=False)
sampler = Sampler()
job = sampler.run(state_preparation_measure)
binary_probabilities = job.result().quasi_dists[0].binary_probabilities()
# evaluate the result
value = 0
for i, prob in binary_probabilities.items():
if prob > 1e-6 and i[-(len(qr_state) + 1) :][0] == "1":
value += prob
print("Exact Expected Loss: %.4f" % expected_loss)
print("Exact Operator Value: %.4f" % value)
print("Mapped Operator value: %.4f" % objective.post_processing(value))
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = EstimationProblem(
state_preparation=state_preparation,
objective_qubits=[len(qr_state)],
post_processing=objective.post_processing,
)
# construct amplitude estimation
ae = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result = ae.estimate(problem)
# print results
conf_int = np.array(result.confidence_interval_processed)
print("Exact value: \t%.4f" % expected_loss)
print("Estimated value:\t%.4f" % result.estimation_processed)
print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int))
# set x value to estimate the CDF
x_eval = 2
comparator = IntegerComparator(agg.num_sum_qubits, x_eval + 1, geq=False)
comparator.draw()
def get_cdf_circuit(x_eval):
# define the registers for convenience and readability
qr_state = QuantumRegister(u.num_qubits, "state")
qr_sum = QuantumRegister(agg.num_sum_qubits, "sum")
qr_carry = QuantumRegister(agg.num_carry_qubits, "carry")
qr_obj = QuantumRegister(1, "objective")
qr_compare = QuantumRegister(1, "compare")
# define the circuit
state_preparation = QuantumCircuit(qr_state, qr_obj, qr_sum, qr_carry, name="A")
# load the random variable
state_preparation.append(u, qr_state)
# aggregate
state_preparation.append(agg, qr_state[:] + qr_sum[:] + qr_carry[:])
# comparator objective function
comparator = IntegerComparator(agg.num_sum_qubits, x_eval + 1, geq=False)
state_preparation.append(comparator, qr_sum[:] + qr_obj[:] + qr_carry[:])
# uncompute aggregation
state_preparation.append(agg.inverse(), qr_state[:] + qr_sum[:] + qr_carry[:])
return state_preparation
state_preparation = get_cdf_circuit(x_eval)
state_preparation.draw()
state_preparation_measure = state_preparation.measure_all(inplace=False)
sampler = Sampler()
job = sampler.run(state_preparation_measure)
binary_probabilities = job.result().quasi_dists[0].binary_probabilities()
# evaluate the result
var_prob = 0
for i, prob in binary_probabilities.items():
if prob > 1e-6 and i[-(len(qr_state) + 1) :][0] == "1":
var_prob += prob
print("Operator CDF(%s)" % x_eval + " = %.4f" % var_prob)
print("Exact CDF(%s)" % x_eval + " = %.4f" % cdf[x_eval])
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = EstimationProblem(state_preparation=state_preparation, objective_qubits=[len(qr_state)])
# construct amplitude estimation
ae_cdf = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result_cdf = ae_cdf.estimate(problem)
# print results
conf_int = np.array(result_cdf.confidence_interval)
print("Exact value: \t%.4f" % cdf[x_eval])
print("Estimated value:\t%.4f" % result_cdf.estimation)
print("Confidence interval: \t[%.4f, %.4f]" % tuple(conf_int))
def run_ae_for_cdf(x_eval, epsilon=0.01, alpha=0.05, simulator="aer_simulator"):
# construct amplitude estimation
state_preparation = get_cdf_circuit(x_eval)
problem = EstimationProblem(
state_preparation=state_preparation, objective_qubits=[len(qr_state)]
)
ae_var = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result_var = ae_var.estimate(problem)
return result_var.estimation
def bisection_search(
objective, target_value, low_level, high_level, low_value=None, high_value=None
):
"""
Determines the smallest level such that the objective value is still larger than the target
:param objective: objective function
:param target: target value
:param low_level: lowest level to be considered
:param high_level: highest level to be considered
:param low_value: value of lowest level (will be evaluated if set to None)
:param high_value: value of highest level (will be evaluated if set to None)
:return: dictionary with level, value, num_eval
"""
# check whether low and high values are given and evaluated them otherwise
print("--------------------------------------------------------------------")
print("start bisection search for target value %.3f" % target_value)
print("--------------------------------------------------------------------")
num_eval = 0
if low_value is None:
low_value = objective(low_level)
num_eval += 1
if high_value is None:
high_value = objective(high_level)
num_eval += 1
# check if low_value already satisfies the condition
if low_value > target_value:
return {
"level": low_level,
"value": low_value,
"num_eval": num_eval,
"comment": "returned low value",
}
elif low_value == target_value:
return {"level": low_level, "value": low_value, "num_eval": num_eval, "comment": "success"}
# check if high_value is above target
if high_value < target_value:
return {
"level": high_level,
"value": high_value,
"num_eval": num_eval,
"comment": "returned low value",
}
elif high_value == target_value:
return {
"level": high_level,
"value": high_value,
"num_eval": num_eval,
"comment": "success",
}
# perform bisection search until
print("low_level low_value level value high_level high_value")
print("--------------------------------------------------------------------")
while high_level - low_level > 1:
level = int(np.round((high_level + low_level) / 2.0))
num_eval += 1
value = objective(level)
print(
"%2d %.3f %2d %.3f %2d %.3f"
% (low_level, low_value, level, value, high_level, high_value)
)
if value >= target_value:
high_level = level
high_value = value
else:
low_level = level
low_value = value
# return high value after bisection search
print("--------------------------------------------------------------------")
print("finished bisection search")
print("--------------------------------------------------------------------")
return {"level": high_level, "value": high_value, "num_eval": num_eval, "comment": "success"}
# run bisection search to determine VaR
objective = lambda x: run_ae_for_cdf(x)
bisection_result = bisection_search(
objective, 1 - alpha, min(losses) - 1, max(losses), low_value=0, high_value=1
)
var = bisection_result["level"]
print("Estimated Value at Risk: %2d" % var)
print("Exact Value at Risk: %2d" % exact_var)
print("Estimated Probability: %.3f" % bisection_result["value"])
print("Exact Probability: %.3f" % cdf[exact_var])
# define linear objective
breakpoints = [0, var]
slopes = [0, 1]
offsets = [0, 0] # subtract VaR and add it later to the estimate
f_min = 0
f_max = 3 - var
c_approx = 0.25
cvar_objective = LinearAmplitudeFunction(
agg.num_sum_qubits,
slopes,
offsets,
domain=(0, 2**agg.num_sum_qubits - 1),
image=(f_min, f_max),
rescaling_factor=c_approx,
breakpoints=breakpoints,
)
cvar_objective.draw()
# define the registers for convenience and readability
qr_state = QuantumRegister(u.num_qubits, "state")
qr_sum = QuantumRegister(agg.num_sum_qubits, "sum")
qr_carry = QuantumRegister(agg.num_carry_qubits, "carry")
qr_obj = QuantumRegister(1, "objective")
qr_work = QuantumRegister(cvar_objective.num_ancillas - len(qr_carry), "work")
# define the circuit
state_preparation = QuantumCircuit(qr_state, qr_obj, qr_sum, qr_carry, qr_work, name="A")
# load the random variable
state_preparation.append(u, qr_state)
# aggregate
state_preparation.append(agg, qr_state[:] + qr_sum[:] + qr_carry[:])
# linear objective function
state_preparation.append(cvar_objective, qr_sum[:] + qr_obj[:] + qr_carry[:] + qr_work[:])
# uncompute aggregation
state_preparation.append(agg.inverse(), qr_state[:] + qr_sum[:] + qr_carry[:])
state_preparation_measure = state_preparation.measure_all(inplace=False)
sampler = Sampler()
job = sampler.run(state_preparation_measure)
binary_probabilities = job.result().quasi_dists[0].binary_probabilities()
# evaluate the result
value = 0
for i, prob in binary_probabilities.items():
if prob > 1e-6 and i[-(len(qr_state) + 1)] == "1":
value += prob
# normalize and add VaR to estimate
value = cvar_objective.post_processing(value)
d = 1.0 - bisection_result["value"]
v = value / d if d != 0 else 0
normalized_value = v + var
print("Estimated CVaR: %.4f" % normalized_value)
print("Exact CVaR: %.4f" % exact_cvar)
# set target precision and confidence level
epsilon = 0.01
alpha = 0.05
problem = EstimationProblem(
state_preparation=state_preparation,
objective_qubits=[len(qr_state)],
post_processing=cvar_objective.post_processing,
)
# construct amplitude estimation
ae_cvar = IterativeAmplitudeEstimation(
epsilon_target=epsilon, alpha=alpha, sampler=Sampler(run_options={"shots": 100})
)
result_cvar = ae_cvar.estimate(problem)
# print results
d = 1.0 - bisection_result["value"]
v = result_cvar.estimation_processed / d if d != 0 else 0
print("Exact CVaR: \t%.4f" % exact_cvar)
print("Estimated CVaR:\t%.4f" % (v + var))
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/KoljaFrahm/QiskitPerformance
|
KoljaFrahm
|
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
from scipy.sparse.sputils import getdata
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.utils import gen_batches
from qiskit import Aer
from qiskit.utils import QuantumInstance, algorithm_globals
from qiskit.opflow import AerPauliExpectation
from qiskit.circuit.library import TwoLocal, ZFeatureMap, RealAmplitudes
from qiskit_machine_learning.neural_networks import TwoLayerQNN
from qiskit_machine_learning.connectors import TorchConnector
from qiskit_machine_learning.algorithms.classifiers import NeuralNetworkClassifier, VQC
from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B, SPSA
#from IPython.display import clear_output
# callback function that draws a live plot when the .fit() method is called
def callback_graph(weights, obj_func_eval):
#print("callback_graph called")
#clear_output(wait=True)
objective_func_vals.append(obj_func_eval)
plt.figure()
plt.title("Objective function value against iteration")
plt.xlabel("Iteration")
plt.ylabel("Objective function value")
plt.plot(range(len(objective_func_vals)), objective_func_vals)
plt.savefig("callback_graph_all.png")
plt.close()
def onehot(data):
"""
returns the the data vector in one hot enconding.
@data :: Numpy array with data of type int.
"""
return np.eye(int(data.max()+1))[data]
def index(onehotdata):
"""
returns the the data vector in index enconding.
@onehotdata :: Numpy array with data of type int on onehot encoding.
"""
return np.argmax(onehotdata, axis=1)
def splitData(x_data, y_data, ratio_train, ratio_test, ratio_val):
# Produces test split.
x_remaining, x_test, y_remaining, y_test = train_test_split(
x_data, y_data, test_size=ratio_test)
# Adjusts val ratio, w.r.t. remaining dataset.
ratio_remaining = 1 - ratio_test
ratio_val_adjusted = ratio_val / ratio_remaining
# Produces train and val splits.
x_train, x_val, y_train, y_val = train_test_split(
x_remaining, y_remaining, test_size=ratio_val_adjusted)
return x_train, x_test, x_val, y_train, y_test, y_val
def getData():
data_bkg = np.load("QML-HEP-data/x_data_bkg_8features.npy")
data_sig = np.load("QML-HEP-data/x_data_sig_8features.npy")
y_bkg = np.zeros(data_bkg.shape[0],dtype=int)
y_sig = np.ones(data_sig.shape[0],dtype=int)
x_data = np.concatenate((data_bkg,data_sig))
y_data = np.concatenate((y_bkg,y_sig))
# Defines ratios, w.r.t. whole dataset.
ratio_train, ratio_test, ratio_val = 0.9, 0.05, 0.05
x_train, x_test, x_val, y_train, y_test, y_val = splitData(
x_data, y_data, ratio_train, ratio_test, ratio_val)
return x_train, x_test, x_val, y_train, y_test, y_val
def plot_roc_get_auc(model,sets,labels):
aucl = []
plt.figure()
for set,label in zip(sets,labels):
x,y = set
pred = index(model(x)) #index because the prediction is onehot encoded
fpr, tpr, thresholds = metrics.roc_curve(y, pred)
plt.plot(fpr, tpr, label=label)
auc = metrics.roc_auc_score(y, pred)
aucl.append(auc)
plt.savefig("rocplot.png")
plt.close()
return aucl
def VQCTraining(vqc, x_train, y_train, x_test, y_test, epoch, bs):
# create empty array for callback to store evaluations of the objective function
plt.figure()
plt.rcParams["figure.figsize"] = (12, 6)
#training
print("fitting starts")
for epoch in range(epochs):
batches = gen_batches(x_train.shape[0],bs)
print(f"Epoch: {epoch + 1}/{epochs}")
for batch in batches:
vqc.fit(x_train[batch], onehot(y_train[batch]))
loss = vqc.score(x_test, onehot(y_test))
print(loss)
print("fitting finished")
# return to default figsize
plt.rcParams["figure.figsize"] = (6, 4)
#declare quantum instance
#simulator_gpu = Aer.get_backend('aer_simulator_statevector')
#simulator_gpu.set_options(device='GPU')
#qi = QuantumInstance(simulator_gpu)
qi = QuantumInstance(Aer.get_backend("aer_simulator_statevector_gpu"))
epochs = 20
nqubits = 8
niter = 20 #how many maximal iterations of the optimizer function
bs = 128 # batch size
#bs = 50 # test batch size
####Define VQC####
feature_map = ZFeatureMap(nqubits, reps=1)
#ansatz = RealAmplitudes(nqubits, reps=1)
ansatz = TwoLocal(nqubits, 'ry', 'cx', 'linear', reps=1)
#optimizer = SPSA(maxiter=niter)
#optimizer = COBYLA(maxiter=niter, disp=True)
optimizer = None
vqc = VQC(
feature_map=feature_map,
ansatz=ansatz,
loss="cross_entropy",
optimizer=optimizer,
warm_start=False,
quantum_instance=qi,
callback=callback_graph,
)
print("starting program")
print(vqc.circuit)
x_train, x_test, x_val, y_train, y_test, y_val = getData()
####reduce events for testing the program####
#num_samples = 256
#x_train, x_test, x_val = x_train[:num_samples], x_test[:num_samples], x_val[:num_samples]
#y_train, y_test, y_val = y_train[:num_samples], y_test[:num_samples], y_val[:num_samples]
####VQC#####
objective_func_vals = []
VQCTraining(vqc, x_train, y_train, x_test, y_test, epochs, bs)
####score classifier####
aucs = plot_roc_get_auc(vqc.predict,((x_test, y_test),(x_val,y_val)),("test data","validation data"))
print(aucs)
print("test")
|
https://github.com/jdanielescanez/quantum-solver
|
jdanielescanez
|
from s_aes import QS_SAES_Circuit
from qiskit import execute
from qiskit_aer import AerSimulator
SIZE_REG = 16
CIRCUIT_SIZE = SIZE_REG * 2
msg_indexes = list(range(0, SIZE_REG))
msg_slice = slice(0, SIZE_REG)
key_indexes = list(range(SIZE_REG, 2 * SIZE_REG))
for i in range(2 ** 4):
msg = '0' * 12 + format(i, f'0{4}b')
key = '0' * 16
qc = QS_SAES_Circuit(CIRCUIT_SIZE, msg, key, msg_indexes, key_indexes)
qc.s_box()
qc.measure(range(4), range(4))
backend = AerSimulator(method='matrix_product_state')
job = execute(qc, backend, shots=1)
counts = job.result().get_counts(qc)
result_bin = ''.join(list(list(counts.keys())[0][::-1][:4][::-1]))
print(msg, '-', result_bin[:4])
|
https://github.com/urwin419/QiskitChecker
|
urwin419
|
from qiskit import QuantumCircuit
def create_bell_pair():
qc = QuantumCircuit(2)
qc.h(1)
### added y gate ###
qc.cx(0, 1)
qc.cx(1, 0)
return qc
def encode_message(qc, qubit, msg):
if len(msg) != 2 or not set([0,1]).issubset({0,1}):
raise ValueError(f"message '{msg}' is invalid")
if msg[1] == "1":
qc.x(qubit)
if msg[0] == "1":
qc.z(qubit)
return qc
def decode_message(qc):
qc.cx(1, 0)
qc.h(1)
### added h gate ###
qc.h(0)
return qc
|
https://github.com/Alice-Bob-SW/qiskit-alice-bob-provider
|
Alice-Bob-SW
|
from qiskit import Aer, IBMQ, execute
from qiskit import transpile, assemble
from qiskit.tools.monitor import job_monitor
from qiskit.tools.monitor import job_monitor
import matplotlib.pyplot as plt
from qiskit.visualization import plot_histogram, plot_state_city
"""
Qiskit backends to execute the quantum circuit
"""
def simulator(qc):
"""
Run on local simulator
:param qc: quantum circuit
:return:
"""
backend = Aer.get_backend("qasm_simulator")
shots = 2048
tqc = transpile(qc, backend)
qobj = assemble(tqc, shots=shots)
job_sim = backend.run(qobj)
qc_results = job_sim.result()
return qc_results, shots
def simulator_state_vector(qc):
"""
Select the StatevectorSimulator from the Aer provider
:param qc: quantum circuit
:return:
statevector
"""
simulator = Aer.get_backend('statevector_simulator')
# Execute and get counts
result = execute(qc, simulator).result()
state_vector = result.get_statevector(qc)
return state_vector
def real_quantum_device(qc):
"""
Use the IBMQ essex device
:param qc: quantum circuit
:return:
"""
provider = IBMQ.load_account()
backend = provider.get_backend('ibmq_santiago')
shots = 2048
TQC = transpile(qc, backend)
qobj = assemble(TQC, shots=shots)
job_exp = backend.run(qobj)
job_monitor(job_exp)
QC_results = job_exp.result()
return QC_results, shots
def counts(qc_results):
"""
Get counts representing the wave-function amplitudes
:param qc_results:
:return: dict keys are bit_strings and their counting values
"""
return qc_results.get_counts()
def plot_results(qc_results):
"""
Visualizing wave-function amplitudes in a histogram
:param qc_results: quantum circuit
:return:
"""
plt.show(plot_histogram(qc_results.get_counts(), figsize=(8, 6), bar_labels=False))
def plot_state_vector(state_vector):
"""Visualizing state vector in the density matrix representation"""
plt.show(plot_state_city(state_vector))
|
https://github.com/erikberter/qiskit-quantum-artificial-life
|
erikberter
|
from qiskit import *
from qiskit.aqua.circuits.gates import cry
from qiskit.visualization import plot_histogram
import numpy as np
import random
import sys
import matplotlib.pyplot as plt
theta = 2*np.pi/3
thetaR = np.pi/4
fileNum = 30
sim = Aer.get_backend('qasm_simulator')
# Devuelve el valor esperado de un circuito con un solo bit de registro
def getExpectedValue(qc, shots=8192):
job = execute(qc, sim, shots=shots)
count = job.result().get_counts()
a,b = [count[a]/shots if a in count else 0 for a in ['0','1']]
return a-b
def printHistogram(qc, shots=8192):
job = execute(qc, sim, shots=shots)
return plot_histogram(job.result().get_counts())
# Devuelve la Gate time_Lapse que aplica una iteración de paso de tiempo
#
# Changed : Float que representa el valor en radianes del gate CRY
def getDecoherence(changed):
decoherenceG = QuantumCircuit(2,1, name='decoherence')
decoherenceG.ry(changed,1)
decoherenceG.cx(0,1)
decoherenceG.ry(-changed,1)
decoherenceG.cx(0,1)
decoherenceG.cx(1,0)
decoherenceG.measure([1],[0])
decoherenceG.reset(1)
return decoherenceG
# Crea un circuito general de una Artificial Life de población 1
#
# time : Integer representando la cantidad de iteraciones
# initial : Float que representa los radiones de la gate U3 inicial
# changed : Float que representa los radianes de la gate CRY
# pop : Integer representando la cantidad de poblacion que tendra el algoritmo
def getCircuit(pop=1,time=3, initial=theta, changed=theta, measure = True):
decoherenceG = getDecoherence(changed).to_instruction()
qc = QuantumCircuit(3*pop,pop)
for i in range(pop):
qc.u3(initial,0,0,i*3)
qc.cx(i*3,i*3+1)
qc.barrier()
for i in range(0,time):
#cry
for j in range(pop):
qc.append(decoherenceG, [j*3+1,j*3+2],[j])
qc.barrier()
if(measure):
qc.measure([3*j+1 for j in range(pop)],[j for j in range(pop)])
return qc
# Aumenta el la cantidad de capas de tiempo del circuito.
def addTimeLapse(qc,time,measure=False, changed = theta):
decoherenceG = getDecoherence(changed).to_instruction()
qBits = int(len(qc.qubits)/3)
for i in range(0,time):
#cry
for j in range(qBits):
qc.append(decoherenceG, [j*3+1,j*3+2],[j])
qc.barrier()
if(measure):
qc.measure([3*j+1 for j in range(pop)],[j for j in range(pop)])
# Crea un escenario general de clonación de población asexual mediante clonación exponencial
#
# time : Integer representando la cantidad de iteraciones
# pop : Integer representando la cantidad de poblacion que tendra el algoritmo
# initial : Float que representa los radiones de la gate U3 inicial
# changed : Float que representa los radianes de la gate CRY
# mutationRate : Float que representa el ratio de mutación
def getCircuitG(time=3, pop=2, initial=theta, changed=theta, mutationRate = 0, mutation=False):
decoherenceG = getDecoherence(changed).to_instruction()
qc = QuantumCircuit(3*pop,pop)
qc.u3(initial,0,0,0)
qc.cx(0,1)
actPop = 1
qc.barrier()
for i in range(0,time):
# Adding the Time_Lapse gates
for j in range(0,actPop):
qc.append(decoherenceG, [3*j+1,3*j+2],[j])
qc.barrier()
# Adding the new population
actPopi = actPop
for z in range(0,min(actPop, pop-actPop)):
qc.cx(3*z, 3*actPopi)
if mutation:
x = np.random.normal(loc=0, scale=mutationRate)
qc.rx(x, 3*actPopi)
y = np.random.normal(loc=0, scale=mutationRate)
qc.ry(y, 3*actPopi)
qc.cx(3*actPopi, 3*actPopi+1)
qc.barrier()
actPopi+=1
actPop = actPopi
qc.measure([3*j+1 for j in range(pop)],[j for j in range(pop)])
return qc
getCircuitG(pop=2, time=2).draw(output='mpl')
getCircuit(pop=2, time=2).draw(output='mpl')
color = ["b","g","r"]
def checkPopulationParameters(shot = 50, timeSet = [0,1,2], parameter = "changed"):
global fileNum
for j in range(0,len(timeSet)):
x = []
y = []
for i in range(int(shot)):
if(i%10==0):
sys.stdout.write(f"Work progress: Iteration {j} - {100*float(i)/(shot)}% \r" )
sys.stdout.flush()
rand = random.uniform(0, 1)
x+= [rand]
timeT = timeSet[j]
if (parameter=="changed"):
qc = getCircuit(time = timeT, changed=rand*np.pi)
elif(parameter=="initial"):
qc = getCircuit(time = timeT, initial=rand*np.pi)
y += [getExpectedValue(qc)]
plt.scatter(x, y,c=color[j], label=f"Time {timeSet[j]}")
plt.legend(loc="lower left")
plt.savefig(f"file_RA{fileNum}_N{shot}.png")
fileNum+=1
checkPopulationParameters(parameter="initial")
qc = getCircuitG(time=3,pop=3, initial=np.pi, changed = np.pi/5)
printHistogram(qc, shots=1000)
qc = getCircuitG(pop=2, time=2,mutation=True, mutationRate=0.5)
#addTimeLapse(qc, time=3)
qc.draw(output='mpl')
#Creación del circuito cuantico
q=QuantumRegister(10)
c=ClassicalRegister(10)
qc=QuantumCircuit(q,c)
#Asignación aleatoria de sexos a cada individuo
qc.h(q[0])
qc.cx(q[0],q[2])
qc.h(q[3])
qc.cx(q[3],q[5])
qc.barrier()
#Comprobación de la posibilidad de la reproducción
qc.cx(q[2],q[6])
qc.cx(q[5],q[6])
qc.barrier()
#Determinación del fenotipo
qc.u3(np.pi/4,0,0,q[0])
qc.cx(q[0],q[1])
qc.u3(3*np.pi/4,0,0,q[3])
qc.cx(q[3],q[4])
qc.barrier()
#Creación del hijo
qc.h(q[8])
qc.cu3(5*np.pi/2,0,0,q[0],q[8])
qc.cu3(5*np.pi/2,0,0,q[3],q[8])
qc.cx(q[8],q[7])
qc.barrier()
#Supervivencia del hijo
qc.x(q[6])
qc.ccx(q[6],q[7],q[8])
qc.x(q[6])
qc.barrier()
qc.cx(q[8],q[9])
#Medida
qc.measure(q[6],c[6])
qc.measure(q[8],c[8])
backend=Aer.get_backend('qasm_simulator')
result=execute(qc,backend).result().get_counts()
qc.draw(output='mpl')
plot_histogram(result)
# Crea un circuito general de una Artificial Life de población 1 con un background customizado
#
# time : Integer representando la cantidad de iteraciones
# initial : Float que representa los radiones de la gate U3 inicial
# changed : Float que representa los radianes de la gate CRY
# pop : Integer representando la cantidad de población que tendrá el algoritmo
def getCircuitCB(pop=1,time=3, initial=theta, changed=theta, measure = True,
background_change=[np.pi/4,np.pi/8,np.pi/4], background_sign = [0,1,0]):
qc = QuantumCircuit(3*pop,pop)
for i in range(pop):
qc.u3(initial,0,0,i*3)
qc.cx(i*3,i*3+1)
qc.barrier()
for i in range(0,time):
#cry
for j in range(pop):
decoherenceG = getDecoherence(background_change[i]).to_instruction()
if(background_sign[i]==1):
qc.x(j*3+1)
qc.append(decoherenceG, [j*3+1,j*3+2],[j])
if(background_sign[i]==1):
qc.x(j*3+1)
qc.barrier()
if(measure):
qc.measure([3*j+1 for j in range(pop)],[j for j in range(pop)])
return qc
getCircuitCB(pop=1, time=3).draw(output='mpl')
|
https://github.com/Qiskit/feedback
|
Qiskit
|
from qiskit.circuit import Parameter
from qiskit import QuantumCircuit
from qiskit.primitives import Estimator
from qiskit.quantum_info import SparsePauliOp
from qiskit.algorithms import TimeEvolutionProblem
from qiskit.algorithms.time_evolvers import TrotterQRTE
from qiskit.synthesis import LieTrotter
import numpy as np
A = lambda t: 1 - t
B = lambda t: t
t_param = Parameter("t")
op1 = SparsePauliOp(["X"], np.array([2*A(t_param)]))
op2 = SparsePauliOp(["Z"], np.array([2*B(t_param)]))
op3 = SparsePauliOp(["Y"], np.array([1000]))
H_t = op1 + op2 + op3
print(H_t)
aux_op = [SparsePauliOp(["Z"])]
T = 2
reps = 10
init = QuantumCircuit(1)
# init.h(0)
evolution_problem = TimeEvolutionProblem(
H_t,
time=T,
initial_state=init,
aux_operators=aux_op,
t_param=t_param
)
pf = LieTrotter(reps=1)
estimator = Estimator()
trotter_qrte = TrotterQRTE(product_formula=pf, num_timesteps=reps, estimator=estimator)
result = trotter_qrte.evolve(evolution_problem)
full_evo_circ = result.evolved_state
print(full_evo_circ.decompose().decompose())
aux_op_res = result.aux_ops_evaluated
obs_evo = result.observables
print(f"final result (previous only aux_op evaluation): {aux_op_res}\n")
print("Newly added aux_op evaluations at each time step:")
for i, m in enumerate(obs_evo):
print(f"step {i}: <Z> = {m}")
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_state_qsphere
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
state = Statevector(qc)
plot_state_qsphere(state)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("../../solutions/utils/")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('2t/n')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 4
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
qc = QuantumCircuit(3)
subspace_decoder(qc, targets=[0, 1, 2])
qc.draw("mpl")
# Initialize quantum circuit for 3 qubits
# qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(3)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
qc.barrier()
general_subspace_encoder(qc, targets=[0, 1, 2]) # encode
qc.barrier()
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
qc.barrier()
general_subspace_decoder(qc, targets=[0, 1, 2]) # decode
qc = qc.bind_parameters({dt: target_time / num_steps})
qc.draw("mpl")
# Initialize quantum circuit for 3 qubits
# qr = QuantumRegister(num_qubits, name="q")
qc = QuantumCircuit(3)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
qc.barrier()
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
qc.barrier()
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
qc.barrier()
subspace_decoder(qc, targets=[0, 1, 2]) # decode
qc = qc.bind_parameters({dt: target_time / num_steps})
qc.draw("mpl")
dt = Parameter('2t/n')
mdt = Parameter('-2t/n')
qc = QuantumCircuit(2)
qc.rx(dt, 0)
qc.rz(dt, 1)
qc.h(1)
qc.cx(1, 0)
qc.rz(mdt, 0)
qc.rx(mdt, 1)
qc.rz(dt, 1)
qc.cx(1, 0)
qc.h(1)
qc.rz(dt, 0)
qc.draw("mpl")
dt = Parameter('2t/n')
mdt = Parameter('-2t/n')
qc = QuantumCircuit(2)
qc.h(1)
qc.cx(1, 0)
qc.rz(mdt, 0)
qc.rx(mdt, 1)
qc.rz(dt, 1)
qc.cx(1, 0)
qc.h(1)
qc.rx(dt, 1)
qc.draw("mpl")
from qiskit import IBMQ
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
print(str(backend))
from qiskit.visualization import plot_error_map
device = provider.backend.ibmq_jakarta
plot_error_map(device)
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.ignis.mitigation import complete_meas_cal
# QREM
num_qubits = 3
qr = QuantumRegister(num_qubits, name="calq")
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
meas_calibs[0].draw("mpl")
meas_calibs[1].draw("mpl")
meas_calibs[2].draw("mpl")
meas_calibs[3].draw("mpl")
meas_calibs[4].draw("mpl")
meas_calibs[5].draw("mpl")
meas_calibs[6].draw("mpl")
meas_calibs[7].draw("mpl")
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=wrong-import-order
"""Main Qiskit public functionality."""
import pkgutil
# First, check for required Python and API version
from . import util
# qiskit errors operator
from .exceptions import QiskitError
# The main qiskit operators
from qiskit.circuit import ClassicalRegister
from qiskit.circuit import QuantumRegister
from qiskit.circuit import QuantumCircuit
# pylint: disable=redefined-builtin
from qiskit.tools.compiler import compile # TODO remove after 0.8
from qiskit.execute import execute
# The qiskit.extensions.x imports needs to be placed here due to the
# mechanism for adding gates dynamically.
import qiskit.extensions
import qiskit.circuit.measure
import qiskit.circuit.reset
# Allow extending this namespace. Please note that currently this line needs
# to be placed *before* the wrapper imports or any non-import code AND *before*
# importing the package you want to allow extensions for (in this case `backends`).
__path__ = pkgutil.extend_path(__path__, __name__)
# Please note these are global instances, not modules.
from qiskit.providers.basicaer import BasicAer
# Try to import the Aer provider if installed.
try:
from qiskit.providers.aer import Aer
except ImportError:
pass
# Try to import the IBMQ provider if installed.
try:
from qiskit.providers.ibmq import IBMQ
except ImportError:
pass
from .version import __version__
from .version import __qiskit_version__
|
https://github.com/MAI-cyber/QIT
|
MAI-cyber
|
from qiskit import QuantumCircuit
from qiskit.circuit.library import QFT
from qiskit import Aer, execute
from qiskit.visualization import plot_histogram
import numpy as np
pi = np.pi
n=5
qc=QuantumCircuit(n+1,n)
for qubit in range(n):
qc.h(qubit)
init_st=[0, 1]
qc.initialize(init_st,n)
theta=0.9
for x in range(n):
exponent = 2**(n-x-1)
qc.cp(2*pi*theta*exponent, x, n)
qc.append(QFT(n).inverse(), range(n))
for i in range(n):
qc.measure(i,i)
qc.draw('mpl')
simulator = Aer.get_backend('qasm_simulator')
counts = execute(qc, backend=simulator, shots=10000).result().get_counts()
plot_histogram(counts)
import operator
highest_probability_outcome = max(counts.items(), key=operator.itemgetter(1))[0][::-1]
highest_probability_outcome
measured_theta = int(highest_probability_outcome, 2)/2**n
print("Using ", n, " qubits with theta = ",theta, ", measured_theta = ", measured_theta)
|
https://github.com/Alice-Bob-SW/emulation-examples
|
Alice-Bob-SW
|
from qiskit_alice_bob_provider import AliceBobLocalProvider
from qiskit_aer import AerSimulator
import tempfile
from qiskit import transpile, execute, QuantumCircuit
from qiskit.circuit import Qubit, Clbit
import numpy as np
from tqdm.notebook import tqdm
from matplotlib import pyplot as plt
provider = AliceBobLocalProvider()
print(provider.backends())
backend = provider.get_backend('EMU:15Q:LOGICAL_EARLY')
def build_teleportation_routine() -> QuantumCircuit:
teleportation = QuantumCircuit(3, 2, name='teleport')
teleportation.initialize('+', [1])
teleportation.initialize('0', [2])
teleportation.cx(1, 2)
teleportation.cx(0, 1)
teleportation.measure_x(0, 0)
teleportation.measure(1, 1)
teleportation.x(2).c_if(1, 1)
teleportation.z(2).c_if(0, 1)
return teleportation
build_teleportation_routine().draw('mpl')
def build_teleportation_tomography(teleported_state: str) -> QuantumCircuit:
assert teleported_state in {'+', '-', '0', '1'}
circuit = QuantumCircuit(3, 3)
circuit.initialize(teleported_state, 0)
circuit.append(build_teleportation_routine().to_instruction(), [0, 1, 2], [0, 1])
if teleported_state in {'+', '-'}:
circuit.measure_x(2, 2)
else:
circuit.measure(2, 2)
return circuit
plus_circuit = build_teleportation_tomography('+')
plus_circuit.draw('mpl')
transpiled = transpile(plus_circuit, backend)
transpiled.draw('mpl')
execute(plus_circuit, backend).result().get_counts()
zero_circuit = build_teleportation_tomography('0')
execute(zero_circuit, backend).result().get_counts()
k1 = 100
k2 = 100_000
average_nb_photonss = np.linspace(4, 24, 11)
distances = 2 * np.arange(1, 10) + 1
shots = 10_000
bit_flips = np.zeros((max(average_nb_photonss.shape), max(distances.shape)))
phase_flips = np.zeros((max(average_nb_photonss.shape), max(distances.shape)))
plus_circuit = build_teleportation_tomography('+')
zero_circuit = build_teleportation_tomography('0')
for j, distance in enumerate(tqdm(distances)):
for i, average_nb_photons in enumerate(tqdm(average_nb_photonss)):
backend = provider.get_backend(
'EMU:40Q:LOGICAL_TARGET',
average_nb_photons=average_nb_photons, distance=distance,
kappa_2=k2, kappa_1=k1
)
counts = execute(zero_circuit, backend, shots=shots).result().get_counts()
for word, count in counts.items():
if word[0] == '1':
bit_flips[i][j] += count
counts = execute(plus_circuit, backend, shots=shots).result().get_counts()
for word, count in counts.items():
if word[0] == '1':
phase_flips[i][j] += count
plt.figure()
plt.title(f'Bit flip rate (k1/k2={k1/k2:.0e})')
colors = plt.cm.viridis(np.linspace(0, 1, max(distances.shape)))
for j, distance in enumerate(distances):
plt.plot(average_nb_photonss, bit_flips[:, j] / shots, label=f'Distance {distance}', c=colors[j])
plt.xlabel('Average number of photons')
plt.ylabel('Bit flip rate')
plt.legend()
plt.show()
plt.figure()
plt.title(f'Phase flip rate (k1/k2={k1/k2:.0e})')
colors = plt.cm.viridis(np.linspace(0, 1, max(distances.shape)))
for j, distance in enumerate(distances):
plt.plot(average_nb_photonss, phase_flips[:, j] / shots, label=f'Distance {distance}', c=colors[j])
plt.xlabel('Average number of photons')
plt.ylabel('Phase flip rate')
plt.legend()
plt.show()
|
https://github.com/quantumjim/qreative
|
quantumjim
|
import sys
sys.path.append('../')
import CreativeQiskit
n = 2
alps = CreativeQiskit.random_mountain(n)
pos,prob = alps.get_mountain()
print('coordinates\n',pos)
print('\nprobabilities\n',prob)
n = 8
alps = CreativeQiskit.random_mountain(n)
alps.qc.h(alps.qr[0])
pos,prob = alps.get_mountain()
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial import Voronoi, voronoi_plot_2d
import random
def plot_mountain(pos,prob,levels=[0.3,0.8,0.9],log=True,perturb=0.0):
[sea,tree,snow] = levels
coords = []
Z = []
for node in pos:
coords.append( [pos[node][0]+(1-random.random())*perturb,pos[node][1]+(1-random.random())*perturb] )
if log:
Z.append(np.log(prob[node]))
else:
Z.append(prob[node])
vor = Voronoi(coords)
minZ = min(Z)
maxZ = max(Z)
# normalize chosen colormap
colors = []
for node in range(len(Z)):
z = (Z[node]-minZ)/(maxZ-minZ)
if levels:
if z<sea:
color = (0,0.5,1,1)
elif z<tree:
color = (1*(z-sea),1*(1-sea),1*(z-sea),1)
elif z<snow:
color = (0.7,0.7,0.7,1)
else:
color = (1,1,1,1)
else:
color = (z,z,z,1)
colors.append(color)
# plot Voronoi diagram, and fill finite regions with color mapped from speed value
voronoi_plot_2d(vor, show_points=True, show_vertices=False, point_size=0, line_width=0.0)
for r in range(len(vor.point_region)):
region = vor.regions[vor.point_region[r]]
if not -1 in region:
polygon = [vor.vertices[i] for i in region]
plt.fill(*zip(*polygon), color=colors[r])
plt.savefig('outputs/islands.png',dpi=1000)
plt.show()
pos,prob = alps.get_mountain(noisy=0.3)
plot_mountain(pos,prob)
from qiskit import IBMQ
IBMQ.load_accounts()
pos,prob = alps.get_mountain(noisy='ibmq_16_melbourne')
plot_mountain(pos,prob)
pos,prob = alps.get_mountain(noisy=0.3,method='rings')
plot_mountain(pos,prob,levels=[0.35,0.8,0.9])
pos,prob = alps.get_mountain(method='rings',new_data=False)
plot_mountain(pos,prob,levels=[0.35,0.8,0.9])
for j in range(n-1):
alps.qc.cx(alps.qr[j],alps.qr[j+1])
pos,prob = alps.get_mountain()
plot_mountain(pos,prob)
pos,prob = alps.get_mountain(noisy=0.3)
plot_mountain(pos,prob)
plot_mountain(pos,prob,perturb=0.75)
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Tests for circuit MPL drawer"""
import unittest
import os
import math
from test.visual import VisualTestUtilities
from pathlib import Path
import numpy as np
from numpy import pi
from qiskit.test import QiskitTestCase
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile
from qiskit.providers.fake_provider import FakeTenerife
from qiskit.visualization.circuit.circuit_visualization import _matplotlib_circuit_drawer
from qiskit.circuit.library import (
XGate,
MCXGate,
HGate,
RZZGate,
SwapGate,
DCXGate,
ZGate,
SGate,
U1Gate,
CPhaseGate,
)
from qiskit.circuit.library import MCXVChain
from qiskit.extensions import HamiltonianGate
from qiskit.circuit import Parameter, Qubit, Clbit
from qiskit.circuit.library import IQP
from qiskit.quantum_info.random import random_unitary
from qiskit.utils import optionals
if optionals.HAS_MATPLOTLIB:
from matplotlib.pyplot import close as mpl_close
else:
raise ImportError('Must have Matplotlib installed. To install, run "pip install matplotlib".')
BASE_DIR = Path(__file__).parent
RESULT_DIR = Path(BASE_DIR) / "circuit_results"
TEST_REFERENCE_DIR = Path(BASE_DIR) / "references"
FAILURE_DIFF_DIR = Path(BASE_DIR).parent / "visual_test_failures"
FAILURE_PREFIX = "circuit_failure_"
class TestCircuitMatplotlibDrawer(QiskitTestCase):
"""Circuit MPL visualization"""
def setUp(self):
super().setUp()
self.circuit_drawer = VisualTestUtilities.save_data_wrap(
_matplotlib_circuit_drawer, str(self), RESULT_DIR
)
if not os.path.exists(FAILURE_DIFF_DIR):
os.makedirs(FAILURE_DIFF_DIR)
if not os.path.exists(RESULT_DIR):
os.makedirs(RESULT_DIR)
def tearDown(self):
super().tearDown()
mpl_close("all")
@staticmethod
def _image_path(image_name):
return os.path.join(RESULT_DIR, image_name)
@staticmethod
def _reference_path(image_name):
return os.path.join(TEST_REFERENCE_DIR, image_name)
def test_empty_circuit(self):
"""Test empty circuit"""
circuit = QuantumCircuit()
fname = "empty_circut.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_calibrations(self):
"""Test calibrations annotations
See https://github.com/Qiskit/qiskit-terra/issues/5920
"""
circuit = QuantumCircuit(2, 2)
circuit.h(0)
from qiskit import pulse
with pulse.build(name="hadamard") as h_q0:
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.DriveChannel(0)
)
circuit.add_calibration("h", [0], h_q0)
fname = "calibrations.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_calibrations_with_control_gates(self):
"""Test calibrations annotations
See https://github.com/Qiskit/qiskit-terra/issues/5920
"""
circuit = QuantumCircuit(2, 2)
circuit.cx(0, 1)
circuit.ch(0, 1)
from qiskit import pulse
with pulse.build(name="cnot") as cx_q01:
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.DriveChannel(1)
)
circuit.add_calibration("cx", [0, 1], cx_q01)
with pulse.build(name="ch") as ch_q01:
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.DriveChannel(1)
)
circuit.add_calibration("ch", [0, 1], ch_q01)
fname = "calibrations_with_control_gates.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_calibrations_with_swap_and_reset(self):
"""Test calibrations annotations
See https://github.com/Qiskit/qiskit-terra/issues/5920
"""
circuit = QuantumCircuit(2, 2)
circuit.swap(0, 1)
circuit.reset(0)
from qiskit import pulse
with pulse.build(name="swap") as swap_q01:
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.DriveChannel(1)
)
circuit.add_calibration("swap", [0, 1], swap_q01)
with pulse.build(name="reset") as reset_q0:
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.DriveChannel(1)
)
circuit.add_calibration("reset", [0], reset_q0)
fname = "calibrations_with_swap_and_reset.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_calibrations_with_rzz_and_rxx(self):
"""Test calibrations annotations
See https://github.com/Qiskit/qiskit-terra/issues/5920
"""
circuit = QuantumCircuit(2, 2)
circuit.rzz(pi, 0, 1)
circuit.rxx(pi, 0, 1)
from qiskit import pulse
with pulse.build(name="rzz") as rzz_q01:
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.DriveChannel(1)
)
circuit.add_calibration("rzz", [0, 1], rzz_q01)
with pulse.build(name="rxx") as rxx_q01:
pulse.play(
pulse.library.Gaussian(duration=128, amp=0.1, sigma=16), pulse.DriveChannel(1)
)
circuit.add_calibration("rxx", [0, 1], rxx_q01)
fname = "calibrations_with_rzz_and_rxx.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_no_ops(self):
"""Test circuit with no ops.
See https://github.com/Qiskit/qiskit-terra/issues/5393"""
circuit = QuantumCircuit(2, 3)
fname = "no_op_circut.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_long_name(self):
"""Test to see that long register names can be seen completely
As reported in #2605
"""
# add a register with a very long name
qr = QuantumRegister(4, "veryLongQuantumRegisterName")
# add another to make sure adjustments are made based on longest
qrr = QuantumRegister(1, "q0")
circuit = QuantumCircuit(qr, qrr)
# check gates are shifted over accordingly
circuit.h(qr)
circuit.h(qr)
circuit.h(qr)
fname = "long_name.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_multi_underscore_reg_names(self):
"""Test that multi-underscores in register names display properly"""
q_reg1 = QuantumRegister(1, "q1_re__g__g")
q_reg3 = QuantumRegister(3, "q3_re_g__g")
c_reg1 = ClassicalRegister(1, "c1_re_g__g")
c_reg3 = ClassicalRegister(3, "c3_re_g__g")
circuit = QuantumCircuit(q_reg1, q_reg3, c_reg1, c_reg3)
fname = "multi_underscore_true.png"
self.circuit_drawer(circuit, cregbundle=True, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
fname2 = "multi_underscore_false.png"
self.circuit_drawer(circuit, cregbundle=False, filename=fname2)
ratio2 = VisualTestUtilities._save_diff(
self._image_path(fname2),
self._reference_path(fname2),
fname2,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
self.assertGreaterEqual(ratio2, 0.9999)
def test_conditional(self):
"""Test that circuits with conditionals draw correctly"""
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(2, "c")
circuit = QuantumCircuit(qr, cr)
# check gates are shifted over accordingly
circuit.h(qr)
circuit.measure(qr, cr)
circuit.h(qr[0]).c_if(cr, 2)
fname = "reg_conditional.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_bit_conditional_with_cregbundle(self):
"""Test that circuits with single bit conditionals draw correctly
with cregbundle=True."""
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(2, "c")
circuit = QuantumCircuit(qr, cr)
circuit.x(qr[0])
circuit.measure(qr, cr)
circuit.h(qr[0]).c_if(cr[0], 1)
circuit.x(qr[1]).c_if(cr[1], 0)
fname = "bit_conditional_bundle.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_bit_conditional_no_cregbundle(self):
"""Test that circuits with single bit conditionals draw correctly
with cregbundle=False."""
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(2, "c")
circuit = QuantumCircuit(qr, cr)
circuit.x(qr[0])
circuit.measure(qr, cr)
circuit.h(qr[0]).c_if(cr[0], 1)
circuit.x(qr[1]).c_if(cr[1], 0)
fname = "bit_conditional_no_bundle.png"
self.circuit_drawer(circuit, filename=fname, cregbundle=False)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_plot_partial_barrier(self):
"""Test plotting of partial barriers."""
# generate a circuit with barrier and other barrier like instructions in
q = QuantumRegister(2, "q")
c = ClassicalRegister(2, "c")
circuit = QuantumCircuit(q, c)
# check for barriers
circuit.h(q[0])
circuit.barrier(0)
circuit.h(q[0])
fname = "plot_partial_barrier.png"
self.circuit_drawer(circuit, filename=fname, plot_barriers=True)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_plot_barriers(self):
"""Test to see that plotting barriers works.
If it is set to False, no blank columns are introduced"""
# generate a circuit with barriers and other barrier like instructions in
q = QuantumRegister(2, "q")
c = ClassicalRegister(2, "c")
circuit = QuantumCircuit(q, c)
# check for barriers
circuit.h(q[0])
circuit.barrier()
# check for other barrier like commands
circuit.h(q[1])
# this import appears to be unused, but is actually needed to get snapshot instruction
import qiskit.extensions.simulator # pylint: disable=unused-import
circuit.snapshot("1")
# check the barriers plot properly when plot_barriers= True
fname = "plot_barriers_true.png"
self.circuit_drawer(circuit, filename=fname, plot_barriers=True)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
fname2 = "plot_barriers_false.png"
self.circuit_drawer(circuit, filename=fname2, plot_barriers=False)
ratio2 = VisualTestUtilities._save_diff(
self._image_path(fname2),
self._reference_path(fname2),
fname2,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
self.assertGreaterEqual(ratio2, 0.9999)
def test_no_barriers_false(self):
"""Generate the same circuit as test_plot_barriers but without the barrier commands
as this is what the circuit should look like when displayed with plot barriers false"""
q1 = QuantumRegister(2, "q")
c1 = ClassicalRegister(2, "c")
circuit = QuantumCircuit(q1, c1)
circuit.h(q1[0])
circuit.h(q1[1])
fname = "no_barriers.png"
self.circuit_drawer(circuit, filename=fname, plot_barriers=False)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_fold_minus1(self):
"""Test to see that fold=-1 is no folding"""
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "c")
circuit = QuantumCircuit(qr, cr)
for _ in range(3):
circuit.h(0)
circuit.x(0)
fname = "fold_minus1.png"
self.circuit_drawer(circuit, fold=-1, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_fold_4(self):
"""Test to see that fold=4 is folding"""
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "c")
circuit = QuantumCircuit(qr, cr)
for _ in range(3):
circuit.h(0)
circuit.x(0)
fname = "fold_4.png"
self.circuit_drawer(circuit, fold=4, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_big_gates(self):
"""Test large gates with params"""
qr = QuantumRegister(6, "q")
circuit = QuantumCircuit(qr)
circuit.append(IQP([[6, 5, 3], [5, 4, 5], [3, 5, 1]]), [0, 1, 2])
desired_vector = [
1 / math.sqrt(16) * complex(0, 1),
1 / math.sqrt(8) * complex(1, 0),
1 / math.sqrt(16) * complex(1, 1),
0,
0,
1 / math.sqrt(8) * complex(1, 2),
1 / math.sqrt(16) * complex(1, 0),
0,
]
circuit.initialize(desired_vector, [qr[3], qr[4], qr[5]])
circuit.unitary([[1, 0], [0, 1]], [qr[0]])
matrix = np.zeros((4, 4))
theta = Parameter("theta")
circuit.append(HamiltonianGate(matrix, theta), [qr[1], qr[2]])
circuit = circuit.bind_parameters({theta: 1})
circuit.isometry(np.eye(4, 4), list(range(3, 5)), [])
fname = "big_gates.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_cnot(self):
"""Test different cnot gates (ccnot, mcx, etc)"""
qr = QuantumRegister(6, "q")
circuit = QuantumCircuit(qr)
circuit.x(0)
circuit.cx(0, 1)
circuit.ccx(0, 1, 2)
circuit.append(XGate().control(3, ctrl_state="010"), [qr[2], qr[3], qr[0], qr[1]])
circuit.append(MCXGate(num_ctrl_qubits=3, ctrl_state="101"), [qr[0], qr[1], qr[2], qr[4]])
circuit.append(MCXVChain(3, dirty_ancillas=True), [qr[0], qr[1], qr[2], qr[3], qr[5]])
fname = "cnot.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_cz(self):
"""Test Z and Controlled-Z Gates"""
qr = QuantumRegister(4, "q")
circuit = QuantumCircuit(qr)
circuit.z(0)
circuit.cz(0, 1)
circuit.append(ZGate().control(3, ctrl_state="101"), [0, 1, 2, 3])
circuit.append(ZGate().control(2), [1, 2, 3])
circuit.append(ZGate().control(1, ctrl_state="0", label="CZ Gate"), [2, 3])
fname = "cz.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_pauli_clifford(self):
"""Test Pauli(green) and Clifford(blue) gates"""
qr = QuantumRegister(5, "q")
circuit = QuantumCircuit(qr)
circuit.x(0)
circuit.y(0)
circuit.z(0)
circuit.id(0)
circuit.h(1)
circuit.cx(1, 2)
circuit.cy(1, 2)
circuit.cz(1, 2)
circuit.swap(3, 4)
circuit.s(3)
circuit.sdg(3)
circuit.iswap(3, 4)
circuit.dcx(3, 4)
fname = "pauli_clifford.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_creg_initial(self):
"""Test cregbundle and initial state options"""
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(2, "c")
circuit = QuantumCircuit(qr, cr)
circuit.x(0)
circuit.h(0)
circuit.x(1)
fname = "creg_initial_true.png"
self.circuit_drawer(circuit, filename=fname, cregbundle=True, initial_state=True)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
fname2 = "creg_initial_false.png"
self.circuit_drawer(circuit, filename=fname2, cregbundle=False, initial_state=False)
ratio2 = VisualTestUtilities._save_diff(
self._image_path(fname2),
self._reference_path(fname2),
fname2,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
self.assertGreaterEqual(ratio2, 0.9999)
def test_r_gates(self):
"""Test all R gates"""
qr = QuantumRegister(4, "q")
circuit = QuantumCircuit(qr)
circuit.r(3 * pi / 4, 3 * pi / 8, 0)
circuit.rx(pi / 2, 1)
circuit.ry(-pi / 2, 2)
circuit.rz(3 * pi / 4, 3)
circuit.rxx(pi / 2, 0, 1)
circuit.ryy(3 * pi / 4, 2, 3)
circuit.rzx(-pi / 2, 0, 1)
circuit.rzz(pi / 2, 2, 3)
fname = "r_gates.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_ctrl_labels(self):
"""Test control labels"""
qr = QuantumRegister(4, "q")
circuit = QuantumCircuit(qr)
circuit.cy(1, 0, label="Bottom Y label")
circuit.cu(pi / 2, pi / 2, pi / 2, 0, 2, 3, label="Top U label")
circuit.ch(0, 1, label="Top H label")
circuit.append(
HGate(label="H gate label").control(3, label="H control label", ctrl_state="010"),
[qr[1], qr[2], qr[3], qr[0]],
)
fname = "ctrl_labels.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_cswap_rzz(self):
"""Test controlled swap and rzz gates"""
qr = QuantumRegister(5, "q")
circuit = QuantumCircuit(qr)
circuit.cswap(0, 1, 2)
circuit.append(RZZGate(3 * pi / 4).control(3, ctrl_state="010"), [2, 1, 4, 3, 0])
fname = "cswap_rzz.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_ghz_to_gate(self):
"""Test controlled GHZ to_gate circuit"""
qr = QuantumRegister(5, "q")
circuit = QuantumCircuit(qr)
ghz_circuit = QuantumCircuit(3, name="this is a WWWWWWWWWWWide name Ctrl-GHZ Circuit")
ghz_circuit.h(0)
ghz_circuit.cx(0, 1)
ghz_circuit.cx(1, 2)
ghz = ghz_circuit.to_gate()
ccghz = ghz.control(2, ctrl_state="10")
circuit.append(ccghz, [4, 0, 1, 3, 2])
fname = "ghz_to_gate.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_scale(self):
"""Tests scale
See: https://github.com/Qiskit/qiskit-terra/issues/4179"""
circuit = QuantumCircuit(5)
circuit.unitary(random_unitary(2**5), circuit.qubits)
fname = "scale_default.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
fname2 = "scale_half.png"
self.circuit_drawer(circuit, filename=fname2, scale=0.5)
ratio2 = VisualTestUtilities._save_diff(
self._image_path(fname2),
self._reference_path(fname2),
fname2,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
fname3 = "scale_double.png"
self.circuit_drawer(circuit, filename=fname3, scale=2)
ratio3 = VisualTestUtilities._save_diff(
self._image_path(fname3),
self._reference_path(fname3),
fname3,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
self.assertGreaterEqual(ratio2, 0.9999)
self.assertGreaterEqual(ratio3, 0.9999)
def test_pi_param_expr(self):
"""Test pi in circuit with parameter expression."""
x, y = Parameter("x"), Parameter("y")
circuit = QuantumCircuit(1)
circuit.rx((pi - x) * (pi - y), 0)
fname = "pi_in_param_expr.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_partial_layout(self):
"""Tests partial_layout
See: https://github.com/Qiskit/qiskit-terra/issues/4757"""
circuit = QuantumCircuit(3)
circuit.h(1)
transpiled = transpile(
circuit,
backend=FakeTenerife(),
basis_gates=["id", "cx", "rz", "sx", "x"],
optimization_level=0,
initial_layout=[1, 2, 0],
seed_transpiler=0,
)
fname = "partial_layout.png"
self.circuit_drawer(transpiled, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_init_reset(self):
"""Test reset and initialize with 1 and 2 qubits"""
circuit = QuantumCircuit(2)
circuit.initialize([0, 1], 0)
circuit.reset(1)
circuit.initialize([0, 1, 0, 0], [0, 1])
fname = "init_reset.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_with_global_phase(self):
"""Tests with global phase"""
circuit = QuantumCircuit(3, global_phase=1.57079632679)
circuit.h(range(3))
fname = "global_phase.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_alternative_colors(self):
"""Tests alternative color schemes"""
ratios = []
for style in ["iqx", "iqx-dark", "textbook"]:
with self.subTest(style=style):
circuit = QuantumCircuit(7)
circuit.h(0)
circuit.x(0)
circuit.cx(0, 1)
circuit.ccx(0, 1, 2)
circuit.swap(0, 1)
circuit.cswap(0, 1, 2)
circuit.append(SwapGate().control(2), [0, 1, 2, 3])
circuit.dcx(0, 1)
circuit.append(DCXGate().control(1), [0, 1, 2])
circuit.append(DCXGate().control(2), [0, 1, 2, 3])
circuit.z(4)
circuit.s(4)
circuit.sdg(4)
circuit.t(4)
circuit.tdg(4)
circuit.p(pi / 2, 4)
circuit.cz(5, 6)
circuit.cp(pi / 2, 5, 6)
circuit.y(5)
circuit.rx(pi / 3, 5)
circuit.rzx(pi / 2, 5, 6)
circuit.u(pi / 2, pi / 2, pi / 2, 5)
circuit.barrier(5, 6)
circuit.reset(5)
fname = f"{style}_color.png"
self.circuit_drawer(circuit, style={"name": style}, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
ratios.append(ratio)
for ratio in ratios:
self.assertGreaterEqual(ratio, 0.9999)
def test_reverse_bits(self):
"""Tests reverse_bits parameter"""
circuit = QuantumCircuit(3)
circuit.h(0)
circuit.cx(0, 1)
circuit.ccx(2, 1, 0)
fname = "reverse_bits.png"
self.circuit_drawer(circuit, reverse_bits=True, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_bw(self):
"""Tests black and white style parameter"""
circuit = QuantumCircuit(3, 3)
circuit.h(0)
circuit.x(1)
circuit.sdg(2)
circuit.cx(0, 1)
circuit.ccx(2, 1, 0)
circuit.swap(1, 2)
circuit.measure_all()
fname = "bw.png"
self.circuit_drawer(circuit, style={"name": "bw"}, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_user_style(self):
"""Tests loading a user style"""
circuit = QuantumCircuit(7)
circuit.h(0)
circuit.append(HGate(label="H2"), [1])
circuit.x(0)
circuit.cx(0, 1)
circuit.ccx(0, 1, 2)
circuit.swap(0, 1)
circuit.cswap(0, 1, 2)
circuit.append(SwapGate().control(2), [0, 1, 2, 3])
circuit.dcx(0, 1)
circuit.append(DCXGate().control(1), [0, 1, 2])
circuit.append(DCXGate().control(2), [0, 1, 2, 3])
circuit.z(4)
circuit.append(SGate(label="S1"), [4])
circuit.sdg(4)
circuit.t(4)
circuit.tdg(4)
circuit.p(pi / 2, 4)
circuit.cz(5, 6)
circuit.cp(pi / 2, 5, 6)
circuit.y(5)
circuit.rx(pi / 3, 5)
circuit.rzx(pi / 2, 5, 6)
circuit.u(pi / 2, pi / 2, pi / 2, 5)
circuit.barrier(5, 6)
circuit.reset(5)
fname = "user_style.png"
self.circuit_drawer(
circuit,
style={
"name": "user_style",
"displaytext": {"H2": "H_2"},
"displaycolor": {"H2": ("#EEDD00", "#FF0000")},
},
filename=fname,
)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_subfont_change(self):
"""Tests changing the subfont size"""
circuit = QuantumCircuit(3)
circuit.h(0)
circuit.x(0)
circuit.u(pi / 2, pi / 2, pi / 2, 1)
circuit.p(pi / 2, 2)
style = {"name": "iqx", "subfontsize": 11}
fname = "subfont.png"
self.circuit_drawer(circuit, style=style, filename=fname)
self.assertEqual(style, {"name": "iqx", "subfontsize": 11}) # check does not change style
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_meas_condition(self):
"""Tests measure with a condition"""
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(2, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(qr[0])
circuit.measure(qr[0], cr[0])
circuit.h(qr[1]).c_if(cr, 1)
fname = "meas_condition.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_reverse_bits_condition(self):
"""Tests reverse_bits with a condition and gate above"""
cr = ClassicalRegister(2, "cr")
cr2 = ClassicalRegister(1, "cr2")
qr = QuantumRegister(3, "qr")
circuit = QuantumCircuit(qr, cr, cr2)
circuit.h(0)
circuit.h(1)
circuit.h(2)
circuit.x(0)
circuit.x(0)
circuit.measure(2, 1)
circuit.x(2).c_if(cr, 2)
fname = "reverse_bits_cond_true.png"
self.circuit_drawer(circuit, cregbundle=False, reverse_bits=True, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
fname2 = "reverse_bits_cond_false.png"
self.circuit_drawer(circuit, cregbundle=False, reverse_bits=False, filename=fname2)
ratio2 = VisualTestUtilities._save_diff(
self._image_path(fname2),
self._reference_path(fname2),
fname2,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
self.assertGreaterEqual(ratio2, 0.9999)
def test_style_custom_gates(self):
"""Tests style for custom gates"""
def cnotnot(gate_label):
gate_circuit = QuantumCircuit(3, name=gate_label)
gate_circuit.cnot(0, 1)
gate_circuit.cnot(0, 2)
gate = gate_circuit.to_gate()
return gate
q = QuantumRegister(3, name="q")
circuit = QuantumCircuit(q)
circuit.append(cnotnot("CNOTNOT"), [q[0], q[1], q[2]])
circuit.append(cnotnot("CNOTNOT_PRIME"), [q[0], q[1], q[2]])
circuit.h(q[0])
fname = "style_custom_gates.png"
self.circuit_drawer(
circuit,
style={
"displaycolor": {"CNOTNOT": ("#000000", "#FFFFFF"), "h": ("#A1A1A1", "#043812")},
"displaytext": {"CNOTNOT_PRIME": "$\\mathrm{CNOTNOT}'$"},
},
filename=fname,
)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_6095(self):
"""Tests controlled-phase gate style
See https://github.com/Qiskit/qiskit-terra/issues/6095"""
circuit = QuantumCircuit(2)
circuit.cp(1.0, 0, 1)
circuit.h(1)
fname = "6095.png"
self.circuit_drawer(
circuit,
style={"displaycolor": {"cp": ("#A27486", "#000000"), "h": ("#A27486", "#000000")}},
filename=fname,
)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_instruction_1q_1c(self):
"""Tests q0-cr0 instruction on a circuit"""
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(2, "cr")
circuit = QuantumCircuit(qr, cr)
inst = QuantumCircuit(1, 1, name="Inst").to_instruction()
circuit.append(inst, [qr[0]], [cr[0]])
fname = "instruction_1q_1c.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_instruction_3q_3c_circ1(self):
"""Tests q0-q1-q2-cr_20-cr0-cr1 instruction on a circuit"""
qr = QuantumRegister(4, "qr")
cr = ClassicalRegister(2, "cr")
cr2 = ClassicalRegister(2, "cr2")
circuit = QuantumCircuit(qr, cr, cr2)
inst = QuantumCircuit(3, 3, name="Inst").to_instruction()
circuit.append(inst, [qr[0], qr[1], qr[2]], [cr2[0], cr[0], cr[1]])
fname = "instruction_3q_3c_circ1.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_instruction_3q_3c_circ2(self):
"""Tests q3-q0-q2-cr0-cr1-cr_20 instruction on a circuit"""
qr = QuantumRegister(4, "qr")
cr = ClassicalRegister(2, "cr")
cr2 = ClassicalRegister(2, "cr2")
circuit = QuantumCircuit(qr, cr, cr2)
inst = QuantumCircuit(3, 3, name="Inst").to_instruction()
circuit.append(inst, [qr[3], qr[0], qr[2]], [cr[0], cr[1], cr2[0]])
fname = "instruction_3q_3c_circ2.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_instruction_3q_3c_circ3(self):
"""Tests q3-q1-q2-cr_31-cr1-cr_30 instruction on a circuit"""
qr = QuantumRegister(4, "qr")
cr = ClassicalRegister(2, "cr")
cr2 = ClassicalRegister(1, "cr2")
cr3 = ClassicalRegister(2, "cr3")
circuit = QuantumCircuit(qr, cr, cr2, cr3)
inst = QuantumCircuit(3, 3, name="Inst").to_instruction()
circuit.append(inst, [qr[3], qr[1], qr[2]], [cr3[1], cr[1], cr3[0]])
fname = "instruction_3q_3c_circ3.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_overwide_gates(self):
"""Test gates don't exceed width of default fold"""
circuit = QuantumCircuit(5)
initial_state = np.zeros(2**5)
initial_state[5] = 1
circuit.initialize(initial_state)
fname = "wide_params.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_one_bit_regs(self):
"""Test registers with only one bit display without number"""
qr1 = QuantumRegister(1, "qr1")
qr2 = QuantumRegister(2, "qr2")
cr1 = ClassicalRegister(1, "cr1")
cr2 = ClassicalRegister(2, "cr2")
circuit = QuantumCircuit(qr1, qr2, cr1, cr2)
circuit.h(0)
circuit.measure(0, 0)
fname = "one_bit_regs.png"
self.circuit_drawer(circuit, cregbundle=False, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_user_ax_subplot(self):
"""Test for when user supplies ax for a subplot"""
import matplotlib.pyplot as plt
fig = plt.figure(1, figsize=(6, 4))
fig.patch.set_facecolor("white")
ax1 = fig.add_subplot(1, 2, 1)
ax2 = fig.add_subplot(1, 2, 2)
ax1.plot([1, 2, 3])
circuit = QuantumCircuit(4)
circuit.h(0)
circuit.cx(0, 1)
circuit.h(1)
circuit.cx(1, 2)
plt.close(fig)
fname = "user_ax.png"
self.circuit_drawer(circuit, ax=ax2, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_figwidth(self):
"""Test style dict 'figwidth'"""
circuit = QuantumCircuit(3)
circuit.h(0)
circuit.cx(0, 1)
circuit.x(1)
circuit.cx(1, 2)
circuit.x(2)
fname = "figwidth.png"
self.circuit_drawer(circuit, style={"figwidth": 5}, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_registerless_one_bit(self):
"""Test circuit with one-bit registers and registerless bits."""
qrx = QuantumRegister(2, "qrx")
qry = QuantumRegister(1, "qry")
crx = ClassicalRegister(2, "crx")
circuit = QuantumCircuit(qrx, [Qubit(), Qubit()], qry, [Clbit(), Clbit()], crx)
fname = "registerless_one_bit.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_measures_with_conditions(self):
"""Test that a measure containing a condition displays"""
qr = QuantumRegister(2, "qr")
cr1 = ClassicalRegister(2, "cr1")
cr2 = ClassicalRegister(2, "cr2")
circuit = QuantumCircuit(qr, cr1, cr2)
circuit.h(0)
circuit.h(1)
circuit.measure(0, cr1[1])
circuit.measure(1, cr2[0]).c_if(cr1, 1)
circuit.h(0).c_if(cr2, 3)
fname = "measure_cond_false.png"
self.circuit_drawer(circuit, cregbundle=False, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
fname2 = "measure_cond_true.png"
self.circuit_drawer(circuit, cregbundle=True, filename=fname2)
ratio2 = VisualTestUtilities._save_diff(
self._image_path(fname2),
self._reference_path(fname2),
fname2,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
self.assertGreaterEqual(ratio2, 0.9999)
def test_conditions_measures_with_bits(self):
"""Test that gates with conditions and measures work with bits"""
bits = [Qubit(), Qubit(), Clbit(), Clbit()]
cr = ClassicalRegister(2, "cr")
crx = ClassicalRegister(3, "cs")
circuit = QuantumCircuit(bits, cr, [Clbit()], crx)
circuit.x(0).c_if(crx[1], 0)
circuit.measure(0, bits[3])
fname = "measure_cond_bits_false.png"
self.circuit_drawer(circuit, cregbundle=False, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
fname2 = "measure_cond_bits_true.png"
self.circuit_drawer(circuit, cregbundle=True, filename=fname2)
ratio2 = VisualTestUtilities._save_diff(
self._image_path(fname2),
self._reference_path(fname2),
fname2,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
self.assertGreaterEqual(ratio2, 0.9999)
def test_conditional_gates_right_of_measures_with_bits(self):
"""Test that gates with conditions draw to right of measures when same bit"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(2, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(qr[0])
circuit.measure(qr[0], cr[1])
circuit.h(qr[1]).c_if(cr[1], 0)
circuit.h(qr[2]).c_if(cr[0], 0)
fname = "measure_cond_bits_right.png"
self.circuit_drawer(circuit, cregbundle=False, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_conditions_with_bits_reverse(self):
"""Test that gates with conditions work with bits reversed"""
bits = [Qubit(), Qubit(), Clbit(), Clbit()]
cr = ClassicalRegister(2, "cr")
crx = ClassicalRegister(2, "cs")
circuit = QuantumCircuit(bits, cr, [Clbit()], crx)
circuit.x(0).c_if(bits[3], 0)
fname = "cond_bits_reverse.png"
self.circuit_drawer(circuit, cregbundle=False, reverse_bits=True, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_sidetext_with_condition(self):
"""Test that sidetext gates align properly with conditions"""
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(2, "c")
circuit = QuantumCircuit(qr, cr)
circuit.append(CPhaseGate(pi / 2), [qr[0], qr[1]]).c_if(cr[1], 1)
fname = "sidetext_condition.png"
self.circuit_drawer(circuit, cregbundle=False, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_fold_with_conditions(self):
"""Test that gates with conditions draw correctly when folding"""
qr = QuantumRegister(3)
cr = ClassicalRegister(5)
circuit = QuantumCircuit(qr, cr)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 1)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 3)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 5)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 7)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 9)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 11)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 13)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 15)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 17)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 19)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 21)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 23)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 25)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 27)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 29)
circuit.append(U1Gate(0).control(1), [1, 0]).c_if(cr, 31)
fname = "fold_with_conditions.png"
self.circuit_drawer(circuit, cregbundle=False, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_idle_wires_barrier(self):
"""Test that idle_wires False works with barrier"""
circuit = QuantumCircuit(4, 4)
circuit.x(2)
circuit.barrier()
fname = "idle_wires_barrier.png"
self.circuit_drawer(circuit, cregbundle=False, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_wire_order(self):
"""Test the wire_order option"""
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(4, "c")
cr2 = ClassicalRegister(2, "cx")
circuit = QuantumCircuit(qr, cr, cr2)
circuit.h(0)
circuit.h(3)
circuit.x(1)
circuit.x(3).c_if(cr, 10)
fname = "wire_order.png"
self.circuit_drawer(
circuit,
cregbundle=False,
wire_order=[2, 1, 3, 0, 6, 8, 9, 5, 4, 7],
filename=fname,
)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_barrier_label(self):
"""Test the barrier label"""
circuit = QuantumCircuit(2)
circuit.x(0)
circuit.y(1)
circuit.barrier()
circuit.y(0)
circuit.x(1)
circuit.barrier(label="End Y/X")
fname = "barrier_label.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_if_op(self):
"""Test the IfElseOp with if only"""
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(2, "cr")
circuit = QuantumCircuit(qr, cr)
with circuit.if_test((cr[1], 1)):
circuit.h(0)
circuit.cx(0, 1)
fname = "if_op.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_if_else_op(self):
"""Test the IfElseOp with else"""
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(2, "cr")
circuit = QuantumCircuit(qr, cr)
with circuit.if_test((cr[1], 1)) as _else:
circuit.h(0)
circuit.cx(0, 1)
with _else:
circuit.cx(0, 1)
fname = "if_else_op.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_if_else_op_textbook_style(self):
"""Test the IfElseOp with else in textbook style"""
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(2, "cr")
circuit = QuantumCircuit(qr, cr)
with circuit.if_test((cr[1], 1)) as _else:
circuit.h(0)
circuit.cx(0, 1)
with _else:
circuit.cx(0, 1)
fname = "if_else_op_textbook.png"
self.circuit_drawer(circuit, style="textbook", filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_if_else_with_body(self):
"""Test the IfElseOp with adding a body manually"""
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(3, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(0)
circuit.h(1)
circuit.measure(0, 1)
circuit.measure(1, 2)
circuit.x(2)
circuit.x(2, label="XLabel").c_if(cr, 2)
qr2 = QuantumRegister(3, "qr2")
qc2 = QuantumCircuit(qr2, cr)
qc2.x(1)
qc2.y(1)
qc2.z(0)
qc2.x(0, label="X1i").c_if(cr, 4)
circuit.if_else((cr[1], 1), qc2, None, [0, 1, 2], [0, 1, 2])
circuit.x(0, label="X1i")
fname = "if_else_body.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_if_else_op_nested(self):
"""Test the IfElseOp with complex nested if/else"""
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(3, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(0)
with circuit.if_test((cr[1], 1)) as _else:
circuit.x(0, label="X c_if").c_if(cr, 4)
with circuit.if_test((cr[2], 1)):
circuit.z(0)
circuit.y(1)
with circuit.if_test((cr[1], 1)):
circuit.y(1)
circuit.z(2)
with circuit.if_test((cr[2], 1)):
circuit.cx(0, 1)
with circuit.if_test((cr[1], 1)):
circuit.h(0)
circuit.x(1)
with _else:
circuit.y(1)
with circuit.if_test((cr[2], 1)):
circuit.x(0)
circuit.x(1)
inst = QuantumCircuit(2, 2, name="Inst").to_instruction()
circuit.append(inst, [qr[0], qr[1]], [cr[0], cr[1]])
circuit.x(0)
fname = "if_else_op_nested.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_if_else_op_wire_order(self):
"""Test the IfElseOp with complex nested if/else and wire_order"""
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(3, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(0)
with circuit.if_test((cr[1], 1)) as _else:
circuit.x(0, label="X c_if").c_if(cr, 4)
with circuit.if_test((cr[2], 1)):
circuit.z(0)
circuit.y(1)
with circuit.if_test((cr[1], 1)):
circuit.y(1)
circuit.z(2)
with circuit.if_test((cr[2], 1)):
circuit.cx(0, 1)
with circuit.if_test((cr[1], 1)):
circuit.h(0)
circuit.x(1)
with _else:
circuit.y(1)
with circuit.if_test((cr[2], 1)):
circuit.x(0)
circuit.x(1)
inst = QuantumCircuit(2, 2, name="Inst").to_instruction()
circuit.append(inst, [qr[0], qr[1]], [cr[0], cr[1]])
circuit.x(0)
fname = "if_else_op_wire_order.png"
self.circuit_drawer(circuit, wire_order=[2, 0, 3, 1, 4, 5, 6], filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_if_else_op_fold(self):
"""Test the IfElseOp with complex nested if/else and fold"""
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(3, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(0)
with circuit.if_test((cr[1], 1)) as _else:
circuit.x(0, label="X c_if").c_if(cr, 4)
with circuit.if_test((cr[2], 1)):
circuit.z(0)
circuit.y(1)
with circuit.if_test((cr[1], 1)):
circuit.y(1)
circuit.z(2)
with circuit.if_test((cr[2], 1)):
circuit.cx(0, 1)
with circuit.if_test((cr[1], 1)):
circuit.h(0)
circuit.x(1)
with _else:
circuit.y(1)
with circuit.if_test((cr[2], 1)):
circuit.x(0)
circuit.x(1)
inst = QuantumCircuit(2, 2, name="Inst").to_instruction()
circuit.append(inst, [qr[0], qr[1]], [cr[0], cr[1]])
circuit.x(0)
fname = "if_else_op_fold.png"
self.circuit_drawer(circuit, fold=7, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_while_loop_op(self):
"""Test the WhileLoopOp"""
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(3, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(0)
circuit.measure(0, 2)
with circuit.while_loop((cr[0], 0)):
circuit.h(0)
circuit.cx(0, 1)
circuit.measure(0, 0)
with circuit.if_test((cr[2], 1)):
circuit.x(0)
fname = "while_loop.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_for_loop_op(self):
"""Test the ForLoopOp"""
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(3, "cr")
circuit = QuantumCircuit(qr, cr)
a = Parameter("a")
circuit.h(0)
circuit.measure(0, 2)
with circuit.for_loop((2, 4, 8, 16), loop_parameter=a):
circuit.h(0)
circuit.cx(0, 1)
circuit.rx(pi / a, 1)
circuit.measure(0, 0)
with circuit.if_test((cr[2], 1)):
circuit.z(0)
fname = "for_loop.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
def test_switch_case_op(self):
"""Test the SwitchCaseOp"""
qreg = QuantumRegister(3, "q")
creg = ClassicalRegister(3, "cr")
circuit = QuantumCircuit(qreg, creg)
circuit.h([0, 1, 2])
circuit.measure([0, 1, 2], [0, 1, 2])
with circuit.switch(creg) as case:
with case(0, 1, 2):
circuit.x(0)
with case(3, 4, 5):
circuit.y(1)
circuit.y(0)
circuit.y(0)
with case(case.DEFAULT):
circuit.cx(0, 1)
circuit.h(0)
fname = "switch_case.png"
self.circuit_drawer(circuit, filename=fname)
ratio = VisualTestUtilities._save_diff(
self._image_path(fname),
self._reference_path(fname),
fname,
FAILURE_DIFF_DIR,
FAILURE_PREFIX,
)
self.assertGreaterEqual(ratio, 0.9999)
if __name__ == "__main__":
unittest.main(verbosity=1)
|
https://github.com/jonasmaziero/computacao_quantica_qiskit
|
jonasmaziero
|
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, execute, IBMQ
from qiskit.providers.aer import noise
from qiskit.providers.aer.noise import NoiseModel
from qiskit.visualization import plot_histogram
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
qr = QuantumRegister(5)
qubit_list = [2, 3, 4] # os qubits para os quais aplicaremos calibracao de medidas
meas_calibs, state_labels = complete_meas_cal(qubit_list = qubit_list, qr = qr)
print(state_labels)
meas_calibs # circuitos que serao executados para obter dados para calibracao (uma para cada state_labels)
nshots = 8192
simulator = Aer.get_backend('qasm_simulator')
job = execute(meas_calibs, backend = simulator, shots = nshots) # executa a calibracao
cal_results = job.result()
# a matriz de calibracao sem ruido e a identidade
meas_fitter = CompleteMeasFitter(cal_results, state_labels)
print(meas_fitter.cal_matrix)
meas_fitter.plot_calibration()
provider = IBMQ.load_account()
device = provider.get_backend('ibmq_bogota')
noise_model = NoiseModel.from_backend(device)
basis_gates = noise_model.basis_gates
coupling_map = device.configuration().coupling_map
job = execute(meas_calibs, backend = simulator, shots = nshots, noise_model = noise_model,
basis_gates = basis_gates, coupling_map = coupling_map)
cal_results = job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels)
print(meas_fitter.cal_matrix)
# visualizacao grafica da matriz de calibracao
meas_fitter.plot_calibration()
qr = QuantumRegister(5); cr = ClassicalRegister(3); qc_ghz = QuantumCircuit(qr, cr)
qc_ghz.h(qr[2]); qc_ghz.cx(qr[2], qr[3]); qc_ghz.cx(qr[3], qr[4])
qc_ghz.measure(qr[2], cr[0]); qc_ghz.measure(qr[3], cr[1]); qc_ghz.measure(qr[4], cr[2]);
qc_ghz.draw(output = 'mpl')
qubit_list = [2, 3, 4] # os qubits para os quais aplicaremos calibracao de medidas
meas_calibs, state_labels = complete_meas_cal(qubit_list = qubit_list, qr = qr)
job = execute(meas_calibs, backend = simulator, shots = nshots, noise_model = noise_model,
basis_gates = basis_gates, coupling_map = coupling_map)
cal_results = job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels)
job = execute(qc_ghz, backend = simulator, shots = nshots, noise_model = noise_model,
basis_gates = basis_gates, coupling_map = coupling_map)
unmitigated_counts = job.result().get_counts() # resultados sem mitigacao de erros
# Resultados com mitigacao de erros
mitigated_results = meas_fitter.filter.apply(job.result())
mitigated_counts = mitigated_results.get_counts()
plot_histogram([unmitigated_counts, mitigated_counts], legend=['sem mit', 'com mit'])
qr = QuantumRegister(3); qc = QuantumCircuit(qr); qc.h([0]); qc.cx([0], [1])
qc.draw(output = 'mpl')
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
qstc = state_tomography_circuits(qc, [qr[0], qr[1]])
job = execute(qstc, backend = simulator, shots = nshots)
qstf = StateTomographyFitter(job.result(), qstc)
rho = qstf.fit(method = 'lstsq')
print(rho.real)
from qiskit.visualization import plot_state_city
plot_state_city(rho, title=r'$|\Phi_{+}^{sim}\rangle$')
device = provider.get_backend('ibmq_bogota')
noise_model = NoiseModel.from_backend(device)
basis_gates = noise_model.basis_gates
coupling_map = device.configuration().coupling_map
job = execute(qstc, backend = simulator, shots = nshots, noise_model = noise_model,
basis_gates = basis_gates, coupling_map = coupling_map)
qstf = StateTomographyFitter(job.result(), qstc)
rho = qstf.fit(method='lstsq')
print(rho.real)
plot_state_city(rho, title=r'$|\Phi_{+}^{simN}\rangle$')
qubit_list = [0, 1]
meas_calibs, state_labels = complete_meas_cal(qubit_list = qubit_list, qr = qr)
job = execute(meas_calibs, backend = simulator, shots = nshots, noise_model = noise_model,
basis_gates = basis_gates, coupling_map = coupling_map)
cal_results = job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels)
qstc = state_tomography_circuits(qc, [qr[0], qr[1]])
job = execute(qstc, backend = simulator, shots = nshots, noise_model = noise_model,
basis_gates = basis_gates, coupling_map = coupling_map)
mitigated_results = meas_fitter.filter.apply(job.result())
qstf = StateTomographyFitter(mitigated_results, qstc)
rho = qstf.fit(method = 'lstsq')
print(rho.real)
plot_state_city(rho, title=r'$|\Phi_{+}^{simNcal}\rangle$')
qr = QuantumRegister(3); qc = QuantumCircuit(qr); qc.h([0]); qc.cx([0], [1])
qc.draw(output = 'mpl')
provider = IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main')
device = provider.get_backend('ibmq_bogota')
from qiskit.tools.monitor import job_monitor
qstc = state_tomography_circuits(qc, [qr[0], qr[1]])
job_exp = execute(qstc, backend = device, shots = nshots); job_monitor(job_exp)
qstf = StateTomographyFitter(job_exp.result(), qstc)
rho = qstf.fit(method = 'lstsq'); print(rho.real)
plot_state_city(rho, title=r'$|\Phi_{+}^{exp}\rangle$')
qubit_list = [0, 1] # os qubits para os quais aplicaremos calibracao de medidas
meas_calibs, state_labels = complete_meas_cal(qubit_list = qubit_list, qr = qr)
job = execute(meas_calibs, backend = device, shots = nshots)
job_monitor(job)
cal_results = job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels)
mitigated_results = meas_fitter.filter.apply(job_exp.result())
qstf = StateTomographyFitter(mitigated_results, qstc)
rho = qstf.fit(method = 'lstsq'); print(rho.real)
plot_state_city(rho, title=r'$|\Phi_{+}^{ExpCal}\rangle$')
|
https://github.com/swe-train/qiskit__qiskit
|
swe-train
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Tests for circuit templates."""
import unittest
from test import combine
from inspect import getmembers, isfunction
from ddt import ddt
import numpy as np
from qiskit import QuantumCircuit
from qiskit.test import QiskitTestCase
from qiskit.quantum_info.operators import Operator
import qiskit.circuit.library.templates as templib
@ddt
class TestTemplates(QiskitTestCase):
"""Tests for the circuit templates."""
circuits = [o[1]() for o in getmembers(templib) if isfunction(o[1])]
for circuit in circuits:
if isinstance(circuit, QuantumCircuit):
circuit.assign_parameters({param: 0.2 for param in circuit.parameters}, inplace=True)
@combine(template_circuit=circuits)
def test_template(self, template_circuit):
"""test to verify that all templates are equivalent to the identity"""
target = Operator(template_circuit)
value = Operator(np.eye(2**template_circuit.num_qubits))
self.assertTrue(target.equiv(value))
if __name__ == "__main__":
unittest.main()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit.circuit.library import MCXGate
gate = MCXGate(4)
from qiskit import QuantumCircuit
circuit = QuantumCircuit(5)
circuit.append(gate, [0, 1, 4, 2, 3])
circuit.draw('mpl')
|
https://github.com/madmen2/QASM
|
madmen2
|
my_list = [1,3,5,2,4,2,5,8,0,7,6]
#classical computation method
def oracle(my_input):
winner =7
if my_input is winner:
response = True
else:
response = False
return response
for index, trial_number in enumerate(my_list):
if oracle(trial_number) is True:
print("Winner is found at index %i" %index)
print("%i calls to the oracle used " %(index +1))
break
#quantum implemenation
from qiskit import *
import matplotlib.pyplot as plt
import numpy as np
from qiskit.tools import job_monitor
# oracle circuit
oracle = QuantumCircuit(2, name='oracle')
oracle.cz(0,1)
oracle.to_gate()
oracle.draw(output='mpl')
backend = Aer.get_backend('statevector_simulator')
grover_circuit = QuantumCircuit(2,2)
grover_circuit.h([0,1])
grover_circuit.append(oracle,[0,1])
grover_circuit.draw(output='mpl')
job= execute(grover_circuit, backend=backend)
result= job.result()
sv= result.get_statevector()
np.around(sv,2)
#amplitude amplification
reflection = QuantumCircuit(2, name='reflection')
reflection.h([0,1])
reflection.z([0,1])
reflection.cz(0,1)
reflection.h([0,1])
reflection.to_gate()
reflection.draw(output='mpl')
#testing circuit on simulator
simulator = Aer.get_backend('qasm_simulator')
grover_circuit = QuantumCircuit(2,2)
grover_circuit.h([0,1])
grover_circuit.append(oracle,[0,1])
grover_circuit.append(reflection, [0,1])
grover_circuit.barrier()
grover_circuit.measure([0,1],[0,1])
grover_circuit.draw(output='mpl')
job= execute(grover_circuit,backend=simulator,shots=1)
result=job.result()
result.get_counts()
#testing on real backend system
IBMQ.load_account()
provider= IBMQ.get_provider('ibm-q')
qcomp= provider.get_backend('ibmq_manila')
job = execute(grover_circuit,backend=qcomp)
job_monitor(job)
result=job.result()
counts=result.get_counts(grover_circuit)
from qiskit.visualization import plot_histogram
plot_histogram(counts)
counts['11']
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""`_text_circuit_drawer` draws a circuit in ascii art"""
import pathlib
import os
import tempfile
import unittest.mock
from codecs import encode
from math import pi
import numpy
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, transpile
from qiskit.circuit import Gate, Parameter, Qubit, Clbit, Instruction
from qiskit.quantum_info.operators import SuperOp
from qiskit.quantum_info.random import random_unitary
from qiskit.test import QiskitTestCase
from qiskit.transpiler.layout import Layout, TranspileLayout
from qiskit.visualization import circuit_drawer
from qiskit.visualization.circuit import text as elements
from qiskit.visualization.circuit.circuit_visualization import _text_circuit_drawer
from qiskit.extensions import UnitaryGate, HamiltonianGate
from qiskit.extensions.quantum_initializer import UCGate
from qiskit.circuit.library import (
HGate,
U2Gate,
U3Gate,
XGate,
CZGate,
ZGate,
YGate,
U1Gate,
SwapGate,
RZZGate,
CU3Gate,
CU1Gate,
CPhaseGate,
)
from qiskit.transpiler.passes import ApplyLayout
from qiskit.utils.optionals import HAS_TWEEDLEDUM
from .visualization import path_to_diagram_reference, QiskitVisualizationTestCase
if HAS_TWEEDLEDUM:
from qiskit.circuit.classicalfunction import classical_function
from qiskit.circuit.classicalfunction.types import Int1
class TestTextDrawerElement(QiskitTestCase):
"""Draw each element"""
def assertEqualElement(self, expected, element):
"""
Asserts the top,mid,bot trio
Args:
expected (list[top,mid,bot]): What is expected.
element (DrawElement): The element to check.
"""
try:
encode("\n".join(expected), encoding="cp437")
except UnicodeEncodeError:
self.fail("_text_circuit_drawer() should only use extended ascii (aka code page 437).")
self.assertEqual(expected[0], element.top)
self.assertEqual(expected[1], element.mid)
self.assertEqual(expected[2], element.bot)
def test_measure_to(self):
"""MeasureTo element."""
element = elements.MeasureTo()
# fmt: off
expected = [" ║ ",
"═╩═",
" "]
# fmt: on
self.assertEqualElement(expected, element)
def test_measure_to_label(self):
"""MeasureTo element with cregbundle"""
element = elements.MeasureTo("1")
# fmt: off
expected = [" ║ ",
"═╩═",
" 1 "]
# fmt: on
self.assertEqualElement(expected, element)
def test_measure_from(self):
"""MeasureFrom element."""
element = elements.MeasureFrom()
# fmt: off
expected = ["┌─┐",
"┤M├",
"└╥┘"]
# fmt: on
self.assertEqualElement(expected, element)
def test_text_empty(self):
"""The empty circuit."""
expected = ""
circuit = QuantumCircuit()
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_pager(self):
"""The pager breaks the circuit when the drawing does not fit in the console."""
expected = "\n".join(
[
" ┌───┐ »",
"q_0: |0>┤ X ├──■──»",
" └─┬─┘┌─┴─┐»",
"q_1: |0>──■──┤ X ├»",
" └───┘»",
" c: 0 1/══════════»",
" »",
"« ┌─┐┌───┐ »",
"«q_0: ┤M├┤ X ├──■──»",
"« └╥┘└─┬─┘┌─┴─┐»",
"«q_1: ─╫───■──┤ X ├»",
"« ║ └───┘»",
"«c: 1/═╩═══════════»",
"« 0 »",
"« ┌─┐┌───┐ ",
"«q_0: ┤M├┤ X ├──■──",
"« └╥┘└─┬─┘┌─┴─┐",
"«q_1: ─╫───■──┤ X ├",
"« ║ └───┘",
"«c: 1/═╩═══════════",
"« 0 ",
]
)
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "c")
circuit = QuantumCircuit(qr, cr)
circuit.cx(qr[1], qr[0])
circuit.cx(qr[0], qr[1])
circuit.measure(qr[0], cr[0])
circuit.cx(qr[1], qr[0])
circuit.cx(qr[0], qr[1])
circuit.measure(qr[0], cr[0])
circuit.cx(qr[1], qr[0])
circuit.cx(qr[0], qr[1])
self.assertEqual(str(_text_circuit_drawer(circuit, fold=20)), expected)
def test_text_no_pager(self):
"""The pager can be disable."""
qr = QuantumRegister(1, "q")
circuit = QuantumCircuit(qr)
for _ in range(100):
circuit.h(qr[0])
amount_of_lines = str(_text_circuit_drawer(circuit, fold=-1)).count("\n")
self.assertEqual(amount_of_lines, 2)
class TestTextDrawerGatesInCircuit(QiskitTestCase):
"""Gate by gate checks in different settings."""
def test_text_measure_cregbundle(self):
"""The measure operator, using 3-bit-length registers with cregbundle=True."""
expected = "\n".join(
[
" ┌─┐ ",
"q_0: |0>┤M├──────",
" └╥┘┌─┐ ",
"q_1: |0>─╫─┤M├───",
" ║ └╥┘┌─┐",
"q_2: |0>─╫──╫─┤M├",
" ║ ║ └╥┘",
" c: 0 3/═╩══╩══╩═",
" 0 1 2 ",
]
)
qr = QuantumRegister(3, "q")
cr = ClassicalRegister(3, "c")
circuit = QuantumCircuit(qr, cr)
circuit.measure(qr, cr)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_measure_cregbundle_2(self):
"""The measure operator, using 2 classical registers with cregbundle=True."""
expected = "\n".join(
[
" ┌─┐ ",
"q_0: |0>┤M├───",
" └╥┘┌─┐",
"q_1: |0>─╫─┤M├",
" ║ └╥┘",
"cA: 0 1/═╩══╬═",
" 0 ║ ",
"cB: 0 1/════╩═",
" 0 ",
]
)
qr = QuantumRegister(2, "q")
cr_a = ClassicalRegister(1, "cA")
cr_b = ClassicalRegister(1, "cB")
circuit = QuantumCircuit(qr, cr_a, cr_b)
circuit.measure(qr[0], cr_a[0])
circuit.measure(qr[1], cr_b[0])
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_measure_1(self):
"""The measure operator, using 3-bit-length registers."""
expected = "\n".join(
[
" ┌─┐ ",
"q_0: |0>┤M├──────",
" └╥┘┌─┐ ",
"q_1: |0>─╫─┤M├───",
" ║ └╥┘┌─┐",
"q_2: |0>─╫──╫─┤M├",
" ║ ║ └╥┘",
" c_0: 0 ═╩══╬══╬═",
" ║ ║ ",
" c_1: 0 ════╩══╬═",
" ║ ",
" c_2: 0 ═══════╩═",
" ",
]
)
qr = QuantumRegister(3, "q")
cr = ClassicalRegister(3, "c")
circuit = QuantumCircuit(qr, cr)
circuit.measure(qr, cr)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_measure_1_reverse_bits(self):
"""The measure operator, using 3-bit-length registers, with reverse_bits"""
expected = "\n".join(
[
" ┌─┐",
"q_2: |0>──────┤M├",
" ┌─┐└╥┘",
"q_1: |0>───┤M├─╫─",
" ┌─┐└╥┘ ║ ",
"q_0: |0>┤M├─╫──╫─",
" └╥┘ ║ ║ ",
" c: 0 3/═╩══╩══╩═",
" 0 1 2 ",
]
)
qr = QuantumRegister(3, "q")
cr = ClassicalRegister(3, "c")
circuit = QuantumCircuit(qr, cr)
circuit.measure(qr, cr)
self.assertEqual(str(_text_circuit_drawer(circuit, reverse_bits=True)), expected)
def test_text_measure_2(self):
"""The measure operator, using some registers."""
expected = "\n".join(
[
" ",
"q1_0: |0>──────",
" ",
"q1_1: |0>──────",
" ┌─┐ ",
"q2_0: |0>┤M├───",
" └╥┘┌─┐",
"q2_1: |0>─╫─┤M├",
" ║ └╥┘",
" c1: 0 2/═╬══╬═",
" ║ ║ ",
" c2: 0 2/═╩══╩═",
" 0 1 ",
]
)
qr1 = QuantumRegister(2, "q1")
cr1 = ClassicalRegister(2, "c1")
qr2 = QuantumRegister(2, "q2")
cr2 = ClassicalRegister(2, "c2")
circuit = QuantumCircuit(qr1, qr2, cr1, cr2)
circuit.measure(qr2, cr2)
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_measure_2_reverse_bits(self):
"""The measure operator, using some registers, with reverse_bits"""
expected = "\n".join(
[
" ┌─┐",
"q2_1: |0>───┤M├",
" ┌─┐└╥┘",
"q2_0: |0>┤M├─╫─",
" └╥┘ ║ ",
"q1_1: |0>─╫──╫─",
" ║ ║ ",
"q1_0: |0>─╫──╫─",
" ║ ║ ",
" c2: 0 2/═╩══╩═",
" 0 1 ",
" c1: 0 2/══════",
" ",
]
)
qr1 = QuantumRegister(2, "q1")
cr1 = ClassicalRegister(2, "c1")
qr2 = QuantumRegister(2, "q2")
cr2 = ClassicalRegister(2, "c2")
circuit = QuantumCircuit(qr1, qr2, cr1, cr2)
circuit.measure(qr2, cr2)
self.assertEqual(str(_text_circuit_drawer(circuit, reverse_bits=True)), expected)
def test_wire_order(self):
"""Test the wire_order option"""
expected = "\n".join(
[
" ",
"q_2: |0>────────────",
" ┌───┐ ",
"q_1: |0>┤ X ├───────",
" ├───┤ ┌───┐ ",
"q_3: |0>┤ H ├─┤ X ├─",
" ├───┤ └─╥─┘ ",
"q_0: |0>┤ H ├───╫───",
" └───┘┌──╨──┐",
" c: 0 4/═════╡ 0xa ╞",
" └─────┘",
"ca: 0 2/════════════",
" ",
]
)
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(4, "c")
cr2 = ClassicalRegister(2, "ca")
circuit = QuantumCircuit(qr, cr, cr2)
circuit.h(0)
circuit.h(3)
circuit.x(1)
circuit.x(3).c_if(cr, 10)
self.assertEqual(
str(_text_circuit_drawer(circuit, wire_order=[2, 1, 3, 0, 6, 8, 9, 5, 4, 7])), expected
)
def test_text_swap(self):
"""Swap drawing."""
expected = "\n".join(
[
" ",
"q1_0: |0>─X────",
" │ ",
"q1_1: |0>─┼──X─",
" │ │ ",
"q2_0: |0>─X──┼─",
" │ ",
"q2_1: |0>────X─",
" ",
]
)
qr1 = QuantumRegister(2, "q1")
qr2 = QuantumRegister(2, "q2")
circuit = QuantumCircuit(qr1, qr2)
circuit.swap(qr1, qr2)
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_swap_reverse_bits(self):
"""Swap drawing with reverse_bits."""
expected = "\n".join(
[
" ",
"q2_1: |0>────X─",
" │ ",
"q2_0: |0>─X──┼─",
" │ │ ",
"q1_1: |0>─┼──X─",
" │ ",
"q1_0: |0>─X────",
" ",
]
)
qr1 = QuantumRegister(2, "q1")
qr2 = QuantumRegister(2, "q2")
circuit = QuantumCircuit(qr1, qr2)
circuit.swap(qr1, qr2)
self.assertEqual(str(_text_circuit_drawer(circuit, reverse_bits=True)), expected)
def test_text_reverse_bits_read_from_config(self):
"""Swap drawing with reverse_bits set in the configuration file."""
expected_forward = "\n".join(
[
" ",
"q1_0: ─X────",
" │ ",
"q1_1: ─┼──X─",
" │ │ ",
"q2_0: ─X──┼─",
" │ ",
"q2_1: ────X─",
" ",
]
)
expected_reverse = "\n".join(
[
" ",
"q2_1: ────X─",
" │ ",
"q2_0: ─X──┼─",
" │ │ ",
"q1_1: ─┼──X─",
" │ ",
"q1_0: ─X────",
" ",
]
)
qr1 = QuantumRegister(2, "q1")
qr2 = QuantumRegister(2, "q2")
circuit = QuantumCircuit(qr1, qr2)
circuit.swap(qr1, qr2)
self.assertEqual(str(circuit_drawer(circuit, output="text")), expected_forward)
config_content = """
[default]
circuit_reverse_bits = true
"""
with tempfile.TemporaryDirectory() as dir_path:
file_path = pathlib.Path(dir_path) / "qiskit.conf"
with open(file_path, "w") as fptr:
fptr.write(config_content)
with unittest.mock.patch.dict(os.environ, {"QISKIT_SETTINGS": str(file_path)}):
test_reverse = str(circuit_drawer(circuit, output="text"))
self.assertEqual(test_reverse, expected_reverse)
def test_text_cswap(self):
"""CSwap drawing."""
expected = "\n".join(
[
" ",
"q_0: |0>─■──X──X─",
" │ │ │ ",
"q_1: |0>─X──■──X─",
" │ │ │ ",
"q_2: |0>─X──X──■─",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.cswap(qr[0], qr[1], qr[2])
circuit.cswap(qr[1], qr[0], qr[2])
circuit.cswap(qr[2], qr[1], qr[0])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_cswap_reverse_bits(self):
"""CSwap drawing with reverse_bits."""
expected = "\n".join(
[
" ",
"q_2: |0>─X──X──■─",
" │ │ │ ",
"q_1: |0>─X──■──X─",
" │ │ │ ",
"q_0: |0>─■──X──X─",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.cswap(qr[0], qr[1], qr[2])
circuit.cswap(qr[1], qr[0], qr[2])
circuit.cswap(qr[2], qr[1], qr[0])
self.assertEqual(str(_text_circuit_drawer(circuit, reverse_bits=True)), expected)
def test_text_cu3(self):
"""cu3 drawing."""
expected = "\n".join(
[
" ┌─────────────────┐",
"q_0: |0>─────────■─────────┤ U3(π/2,π/2,π/2) ├",
" ┌────────┴────────┐└────────┬────────┘",
"q_1: |0>┤ U3(π/2,π/2,π/2) ├─────────┼─────────",
" └─────────────────┘ │ ",
"q_2: |0>────────────────────────────■─────────",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.append(CU3Gate(pi / 2, pi / 2, pi / 2), [qr[0], qr[1]])
circuit.append(CU3Gate(pi / 2, pi / 2, pi / 2), [qr[2], qr[0]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_cu3_reverse_bits(self):
"""cu3 drawing with reverse_bits"""
expected = "\n".join(
[
" ",
"q_2: |0>────────────────────────────■─────────",
" ┌─────────────────┐ │ ",
"q_1: |0>┤ U3(π/2,π/2,π/2) ├─────────┼─────────",
" └────────┬────────┘┌────────┴────────┐",
"q_0: |0>─────────■─────────┤ U3(π/2,π/2,π/2) ├",
" └─────────────────┘",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.append(CU3Gate(pi / 2, pi / 2, pi / 2), [qr[0], qr[1]])
circuit.append(CU3Gate(pi / 2, pi / 2, pi / 2), [qr[2], qr[0]])
self.assertEqual(str(_text_circuit_drawer(circuit, reverse_bits=True)), expected)
def test_text_crz(self):
"""crz drawing."""
expected = "\n".join(
[
" ┌─────────┐",
"q_0: |0>─────■─────┤ Rz(π/2) ├",
" ┌────┴────┐└────┬────┘",
"q_1: |0>┤ Rz(π/2) ├─────┼─────",
" └─────────┘ │ ",
"q_2: |0>────────────────■─────",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.crz(pi / 2, qr[0], qr[1])
circuit.crz(pi / 2, qr[2], qr[0])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_cry(self):
"""cry drawing."""
expected = "\n".join(
[
" ┌─────────┐",
"q_0: |0>─────■─────┤ Ry(π/2) ├",
" ┌────┴────┐└────┬────┘",
"q_1: |0>┤ Ry(π/2) ├─────┼─────",
" └─────────┘ │ ",
"q_2: |0>────────────────■─────",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.cry(pi / 2, qr[0], qr[1])
circuit.cry(pi / 2, qr[2], qr[0])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_crx(self):
"""crx drawing."""
expected = "\n".join(
[
" ┌─────────┐",
"q_0: |0>─────■─────┤ Rx(π/2) ├",
" ┌────┴────┐└────┬────┘",
"q_1: |0>┤ Rx(π/2) ├─────┼─────",
" └─────────┘ │ ",
"q_2: |0>────────────────■─────",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.crx(pi / 2, qr[0], qr[1])
circuit.crx(pi / 2, qr[2], qr[0])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_cx(self):
"""cx drawing."""
expected = "\n".join(
[
" ┌───┐",
"q_0: |0>──■──┤ X ├",
" ┌─┴─┐└─┬─┘",
"q_1: |0>┤ X ├──┼──",
" └───┘ │ ",
"q_2: |0>───────■──",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.cx(qr[0], qr[1])
circuit.cx(qr[2], qr[0])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_cy(self):
"""cy drawing."""
expected = "\n".join(
[
" ┌───┐",
"q_0: |0>──■──┤ Y ├",
" ┌─┴─┐└─┬─┘",
"q_1: |0>┤ Y ├──┼──",
" └───┘ │ ",
"q_2: |0>───────■──",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.cy(qr[0], qr[1])
circuit.cy(qr[2], qr[0])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_cz(self):
"""cz drawing."""
expected = "\n".join(
[
" ",
"q_0: |0>─■──■─",
" │ │ ",
"q_1: |0>─■──┼─",
" │ ",
"q_2: |0>────■─",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.cz(qr[0], qr[1])
circuit.cz(qr[2], qr[0])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_ch(self):
"""ch drawing."""
expected = "\n".join(
[
" ┌───┐",
"q_0: |0>──■──┤ H ├",
" ┌─┴─┐└─┬─┘",
"q_1: |0>┤ H ├──┼──",
" └───┘ │ ",
"q_2: |0>───────■──",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.ch(qr[0], qr[1])
circuit.ch(qr[2], qr[0])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_rzz(self):
"""rzz drawing. See #1957"""
expected = "\n".join(
[
" ",
"q_0: |0>─■────────────────",
" │ZZ(0) ",
"q_1: |0>─■───────■────────",
" │ZZ(π/2) ",
"q_2: |0>─────────■────────",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.rzz(0, qr[0], qr[1])
circuit.rzz(pi / 2, qr[2], qr[1])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_cu1(self):
"""cu1 drawing."""
expected = "\n".join(
[
" ",
"q_0: |0>─■─────────■────────",
" │U1(π/2) │ ",
"q_1: |0>─■─────────┼────────",
" │U1(π/2) ",
"q_2: |0>───────────■────────",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.append(CU1Gate(pi / 2), [qr[0], qr[1]])
circuit.append(CU1Gate(pi / 2), [qr[2], qr[0]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_cp(self):
"""cp drawing."""
expected = "\n".join(
[
" ",
"q_0: |0>─■────────■───────",
" │P(π/2) │ ",
"q_1: |0>─■────────┼───────",
" │P(π/2) ",
"q_2: |0>──────────■───────",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.append(CPhaseGate(pi / 2), [qr[0], qr[1]])
circuit.append(CPhaseGate(pi / 2), [qr[2], qr[0]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_cu1_condition(self):
"""Test cu1 with condition"""
expected = "\n".join(
[
" ",
"q_0: ────────■────────",
" │U1(π/2) ",
"q_1: ────────■────────",
" ║ ",
"q_2: ────────╫────────",
" ┌────╨────┐ ",
"c: 3/═══╡ c_1=0x1 ╞═══",
" └─────────┘ ",
]
)
qr = QuantumRegister(3, "q")
cr = ClassicalRegister(3, "c")
circuit = QuantumCircuit(qr, cr)
circuit.append(CU1Gate(pi / 2), [qr[0], qr[1]]).c_if(cr[1], 1)
self.assertEqual(str(_text_circuit_drawer(circuit, initial_state=False)), expected)
def test_text_rzz_condition(self):
"""Test rzz with condition"""
expected = "\n".join(
[
" ",
"q_0: ────────■────────",
" │ZZ(π/2) ",
"q_1: ────────■────────",
" ║ ",
"q_2: ────────╫────────",
" ┌────╨────┐ ",
"c: 3/═══╡ c_1=0x1 ╞═══",
" └─────────┘ ",
]
)
qr = QuantumRegister(3, "q")
cr = ClassicalRegister(3, "c")
circuit = QuantumCircuit(qr, cr)
circuit.append(RZZGate(pi / 2), [qr[0], qr[1]]).c_if(cr[1], 1)
self.assertEqual(str(_text_circuit_drawer(circuit, initial_state=False)), expected)
def test_text_cp_condition(self):
"""Test cp with condition"""
expected = "\n".join(
[
" ",
"q_0: ───────■───────",
" │P(π/2) ",
"q_1: ───────■───────",
" ║ ",
"q_2: ───────╫───────",
" ┌────╨────┐ ",
"c: 3/══╡ c_1=0x1 ╞══",
" └─────────┘ ",
]
)
qr = QuantumRegister(3, "q")
cr = ClassicalRegister(3, "c")
circuit = QuantumCircuit(qr, cr)
circuit.append(CPhaseGate(pi / 2), [qr[0], qr[1]]).c_if(cr[1], 1)
self.assertEqual(str(_text_circuit_drawer(circuit, initial_state=False)), expected)
def test_text_cu1_reverse_bits(self):
"""cu1 drawing with reverse_bits"""
expected = "\n".join(
[
" ",
"q_2: |0>───────────■────────",
" │ ",
"q_1: |0>─■─────────┼────────",
" │U1(π/2) │U1(π/2) ",
"q_0: |0>─■─────────■────────",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.append(CU1Gate(pi / 2), [qr[0], qr[1]])
circuit.append(CU1Gate(pi / 2), [qr[2], qr[0]])
self.assertEqual(str(_text_circuit_drawer(circuit, reverse_bits=True)), expected)
def test_text_ccx(self):
"""cx drawing."""
expected = "\n".join(
[
" ┌───┐",
"q_0: |0>──■────■──┤ X ├",
" │ ┌─┴─┐└─┬─┘",
"q_1: |0>──■──┤ X ├──■──",
" ┌─┴─┐└─┬─┘ │ ",
"q_2: |0>┤ X ├──■────■──",
" └───┘ ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.ccx(qr[0], qr[1], qr[2])
circuit.ccx(qr[2], qr[0], qr[1])
circuit.ccx(qr[2], qr[1], qr[0])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_reset(self):
"""Reset drawing."""
expected = "\n".join(
[
" ",
"q1_0: |0>─|0>─",
" ",
"q1_1: |0>─|0>─",
" ",
"q2_0: |0>─────",
" ",
"q2_1: |0>─|0>─",
" ",
]
)
qr1 = QuantumRegister(2, "q1")
qr2 = QuantumRegister(2, "q2")
circuit = QuantumCircuit(qr1, qr2)
circuit.reset(qr1)
circuit.reset(qr2[1])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_single_gate(self):
"""Single Qbit gate drawing."""
expected = "\n".join(
[
" ┌───┐",
"q1_0: |0>┤ H ├",
" ├───┤",
"q1_1: |0>┤ H ├",
" └───┘",
"q2_0: |0>─────",
" ┌───┐",
"q2_1: |0>┤ H ├",
" └───┘",
]
)
qr1 = QuantumRegister(2, "q1")
qr2 = QuantumRegister(2, "q2")
circuit = QuantumCircuit(qr1, qr2)
circuit.h(qr1)
circuit.h(qr2[1])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_id(self):
"""Id drawing."""
expected = "\n".join(
[
" ┌───┐",
"q1_0: |0>┤ I ├",
" ├───┤",
"q1_1: |0>┤ I ├",
" └───┘",
"q2_0: |0>─────",
" ┌───┐",
"q2_1: |0>┤ I ├",
" └───┘",
]
)
qr1 = QuantumRegister(2, "q1")
qr2 = QuantumRegister(2, "q2")
circuit = QuantumCircuit(qr1, qr2)
circuit.id(qr1)
circuit.id(qr2[1])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_barrier(self):
"""Barrier drawing."""
expected = "\n".join(
[
" ░ ",
"q1_0: |0>─░─",
" ░ ",
"q1_1: |0>─░─",
" ░ ",
"q2_0: |0>───",
" ░ ",
"q2_1: |0>─░─",
" ░ ",
]
)
qr1 = QuantumRegister(2, "q1")
qr2 = QuantumRegister(2, "q2")
circuit = QuantumCircuit(qr1, qr2)
circuit.barrier(qr1)
circuit.barrier(qr2[1])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_no_barriers(self):
"""Drawing without plotbarriers."""
expected = "\n".join(
[
" ┌───┐ ",
"q1_0: |0>┤ H ├─────",
" ├───┤ ",
"q1_1: |0>┤ H ├─────",
" ├───┤ ",
"q2_0: |0>┤ H ├─────",
" └───┘┌───┐",
"q2_1: |0>─────┤ H ├",
" └───┘",
]
)
qr1 = QuantumRegister(2, "q1")
qr2 = QuantumRegister(2, "q2")
circuit = QuantumCircuit(qr1, qr2)
circuit.h(qr1)
circuit.barrier(qr1)
circuit.barrier(qr2[1])
circuit.h(qr2)
self.assertEqual(str(_text_circuit_drawer(circuit, plot_barriers=False)), expected)
def test_text_measure_html(self):
"""The measure operator. HTML representation."""
expected = "\n".join(
[
'<pre style="word-wrap: normal;'
"white-space: pre;"
"background: #fff0;"
"line-height: 1.1;"
'font-family: "Courier New",Courier,monospace">'
" ┌─┐",
" q: |0>┤M├",
" └╥┘",
"c: 0 1/═╩═",
" 0 </pre>",
]
)
qr = QuantumRegister(1, "q")
cr = ClassicalRegister(1, "c")
circuit = QuantumCircuit(qr, cr)
circuit.measure(qr, cr)
self.assertEqual(_text_circuit_drawer(circuit)._repr_html_(), expected)
def test_text_repr(self):
"""The measure operator. repr."""
expected = "\n".join(
[
" ┌─┐",
" q: |0>┤M├",
" └╥┘",
"c: 0 1/═╩═",
" 0 ",
]
)
qr = QuantumRegister(1, "q")
cr = ClassicalRegister(1, "c")
circuit = QuantumCircuit(qr, cr)
circuit.measure(qr, cr)
self.assertEqual(_text_circuit_drawer(circuit).__repr__(), expected)
def test_text_justify_left(self):
"""Drawing with left justify"""
expected = "\n".join(
[
" ┌───┐ ",
"q1_0: |0>┤ X ├───",
" ├───┤┌─┐",
"q1_1: |0>┤ H ├┤M├",
" └───┘└╥┘",
" c1: 0 2/══════╩═",
" 1 ",
]
)
qr1 = QuantumRegister(2, "q1")
cr1 = ClassicalRegister(2, "c1")
circuit = QuantumCircuit(qr1, cr1)
circuit.x(qr1[0])
circuit.h(qr1[1])
circuit.measure(qr1[1], cr1[1])
self.assertEqual(str(_text_circuit_drawer(circuit, justify="left")), expected)
def test_text_justify_right(self):
"""Drawing with right justify"""
expected = "\n".join(
[
" ┌───┐",
"q1_0: |0>─────┤ X ├",
" ┌───┐└┬─┬┘",
"q1_1: |0>┤ H ├─┤M├─",
" └───┘ └╥┘ ",
" c1: 0 2/═══════╩══",
" 1 ",
]
)
qr1 = QuantumRegister(2, "q1")
cr1 = ClassicalRegister(2, "c1")
circuit = QuantumCircuit(qr1, cr1)
circuit.x(qr1[0])
circuit.h(qr1[1])
circuit.measure(qr1[1], cr1[1])
self.assertEqual(str(_text_circuit_drawer(circuit, justify="right")), expected)
def test_text_justify_none(self):
"""Drawing with none justify"""
expected = "\n".join(
[
" ┌───┐ ",
"q1_0: |0>┤ X ├────────",
" └───┘┌───┐┌─┐",
"q1_1: |0>─────┤ H ├┤M├",
" └───┘└╥┘",
" c1: 0 2/═══════════╩═",
" 1 ",
]
)
qr1 = QuantumRegister(2, "q1")
cr1 = ClassicalRegister(2, "c1")
circuit = QuantumCircuit(qr1, cr1)
circuit.x(qr1[0])
circuit.h(qr1[1])
circuit.measure(qr1[1], cr1[1])
self.assertEqual(str(_text_circuit_drawer(circuit, justify="none")), expected)
def test_text_justify_left_barrier(self):
"""Left justify respects barriers"""
expected = "\n".join(
[
" ┌───┐ ░ ",
"q1_0: |0>┤ H ├─░──────",
" └───┘ ░ ┌───┐",
"q1_1: |0>──────░─┤ H ├",
" ░ └───┘",
]
)
qr1 = QuantumRegister(2, "q1")
circuit = QuantumCircuit(qr1)
circuit.h(qr1[0])
circuit.barrier(qr1)
circuit.h(qr1[1])
self.assertEqual(str(_text_circuit_drawer(circuit, justify="left")), expected)
def test_text_justify_right_barrier(self):
"""Right justify respects barriers"""
expected = "\n".join(
[
" ┌───┐ ░ ",
"q1_0: |0>┤ H ├─░──────",
" └───┘ ░ ┌───┐",
"q1_1: |0>──────░─┤ H ├",
" ░ └───┘",
]
)
qr1 = QuantumRegister(2, "q1")
circuit = QuantumCircuit(qr1)
circuit.h(qr1[0])
circuit.barrier(qr1)
circuit.h(qr1[1])
self.assertEqual(str(_text_circuit_drawer(circuit, justify="right")), expected)
def test_text_barrier_label(self):
"""Show barrier label"""
expected = "\n".join(
[
" ┌───┐ ░ ┌───┐ End Y/X ",
"q_0: |0>┤ X ├─░─┤ Y ├────░────",
" ├───┤ ░ ├───┤ ░ ",
"q_1: |0>┤ Y ├─░─┤ X ├────░────",
" └───┘ ░ └───┘ ░ ",
]
)
qr = QuantumRegister(2, "q")
circuit = QuantumCircuit(qr)
circuit.x(0)
circuit.y(1)
circuit.barrier()
circuit.y(0)
circuit.x(1)
circuit.barrier(label="End Y/X")
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_overlap_cx(self):
"""Overlapping CX gates are drawn not overlapping"""
expected = "\n".join(
[
" ",
"q1_0: |0>──■───────",
" │ ",
"q1_1: |0>──┼────■──",
" │ ┌─┴─┐",
"q1_2: |0>──┼──┤ X ├",
" ┌─┴─┐└───┘",
"q1_3: |0>┤ X ├─────",
" └───┘ ",
]
)
qr1 = QuantumRegister(4, "q1")
circuit = QuantumCircuit(qr1)
circuit.cx(qr1[0], qr1[3])
circuit.cx(qr1[1], qr1[2])
self.assertEqual(str(_text_circuit_drawer(circuit, justify="left")), expected)
def test_text_overlap_measure(self):
"""Measure is drawn not overlapping"""
expected = "\n".join(
[
" ┌─┐ ",
"q1_0: |0>┤M├─────",
" └╥┘┌───┐",
"q1_1: |0>─╫─┤ X ├",
" ║ └───┘",
" c1: 0 2/═╩══════",
" 0 ",
]
)
qr1 = QuantumRegister(2, "q1")
cr1 = ClassicalRegister(2, "c1")
circuit = QuantumCircuit(qr1, cr1)
circuit.measure(qr1[0], cr1[0])
circuit.x(qr1[1])
self.assertEqual(str(_text_circuit_drawer(circuit, justify="left")), expected)
def test_text_overlap_swap(self):
"""Swap is drawn in 2 separate columns"""
expected = "\n".join(
[
" ",
"q1_0: |0>─X────",
" │ ",
"q1_1: |0>─┼──X─",
" │ │ ",
"q2_0: |0>─X──┼─",
" │ ",
"q2_1: |0>────X─",
" ",
]
)
qr1 = QuantumRegister(2, "q1")
qr2 = QuantumRegister(2, "q2")
circuit = QuantumCircuit(qr1, qr2)
circuit.swap(qr1, qr2)
self.assertEqual(str(_text_circuit_drawer(circuit, justify="left")), expected)
def test_text_justify_right_measure_resize(self):
"""Measure gate can resize if necessary"""
expected = "\n".join(
[
" ┌───┐",
"q1_0: |0>┤ X ├",
" └┬─┬┘",
"q1_1: |0>─┤M├─",
" └╥┘ ",
" c1: 0 2/══╩══",
" 1 ",
]
)
qr1 = QuantumRegister(2, "q1")
cr1 = ClassicalRegister(2, "c1")
circuit = QuantumCircuit(qr1, cr1)
circuit.x(qr1[0])
circuit.measure(qr1[1], cr1[1])
self.assertEqual(str(_text_circuit_drawer(circuit, justify="right")), expected)
def test_text_box_length(self):
"""The length of boxes is independent of other boxes in the layer
https://github.com/Qiskit/qiskit-terra/issues/1882"""
expected = "\n".join(
[
" ┌───┐ ┌───┐",
"q1_0: |0>────┤ H ├────┤ H ├",
" └───┘ └───┘",
"q1_1: |0>──────────────────",
" ┌───────────┐ ",
"q1_2: |0>┤ Rz(1e-07) ├─────",
" └───────────┘ ",
]
)
qr = QuantumRegister(3, "q1")
circuit = QuantumCircuit(qr)
circuit.h(qr[0])
circuit.h(qr[0])
circuit.rz(0.0000001, qr[2])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_spacing_2378(self):
"""Small gates in the same layer as long gates.
See https://github.com/Qiskit/qiskit-terra/issues/2378"""
expected = "\n".join(
[
" ",
"q_0: |0>──────X──────",
" │ ",
"q_1: |0>──────X──────",
" ┌───────────┐",
"q_2: |0>┤ Rz(11111) ├",
" └───────────┘",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.swap(qr[0], qr[1])
circuit.rz(11111, qr[2])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
@unittest.skipUnless(HAS_TWEEDLEDUM, "Tweedledum is required for these tests.")
def test_text_synth_no_registerless(self):
"""Test synthesis's label when registerless=False.
See https://github.com/Qiskit/qiskit-terra/issues/9363"""
expected = "\n".join(
[
" ",
" a: |0>──■──",
" │ ",
" b: |0>──■──",
" │ ",
" c: |0>──o──",
" ┌─┴─┐",
"return: |0>┤ X ├",
" └───┘",
]
)
@classical_function
def grover_oracle(a: Int1, b: Int1, c: Int1) -> Int1:
return a and b and not c
circuit = grover_oracle.synth(registerless=False)
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
class TestTextDrawerLabels(QiskitTestCase):
"""Gates with labels."""
def test_label(self):
"""Test a gate with a label."""
# fmt: off
expected = "\n".join([" ┌───────────┐",
"q: |0>┤ an H gate ├",
" └───────────┘"])
# fmt: on
circuit = QuantumCircuit(1)
circuit.append(HGate(label="an H gate"), [0])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_controlled_gate_with_label(self):
"""Test a controlled gate-with-a-label."""
expected = "\n".join(
[
" ",
"q_0: |0>──────■──────",
" ┌─────┴─────┐",
"q_1: |0>┤ an H gate ├",
" └───────────┘",
]
)
circuit = QuantumCircuit(2)
circuit.append(HGate(label="an H gate").control(1), [0, 1])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_label_on_controlled_gate(self):
"""Test a controlled gate with a label (as a as a whole)."""
expected = "\n".join(
[
" a controlled H gate ",
"q_0: |0>──────────■──────────",
" ┌─┴─┐ ",
"q_1: |0>────────┤ H ├────────",
" └───┘ ",
]
)
circuit = QuantumCircuit(2)
circuit.append(HGate().control(1, label="a controlled H gate"), [0, 1])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_rzz_on_wide_layer(self):
"""Test a labeled gate (RZZ) in a wide layer.
See https://github.com/Qiskit/qiskit-terra/issues/4838"""
expected = "\n".join(
[
" ",
"q_0: |0>────────────────■──────────────────────",
" │ZZ(π/2) ",
"q_1: |0>────────────────■──────────────────────",
" ┌─────────────────────────────────────┐",
"q_2: |0>┤ This is a really long long long box ├",
" └─────────────────────────────────────┘",
]
)
circuit = QuantumCircuit(3)
circuit.rzz(pi / 2, 0, 1)
circuit.x(2, label="This is a really long long long box")
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_cu1_on_wide_layer(self):
"""Test a labeled gate (CU1) in a wide layer.
See https://github.com/Qiskit/qiskit-terra/issues/4838"""
expected = "\n".join(
[
" ",
"q_0: |0>────────────────■──────────────────────",
" │U1(π/2) ",
"q_1: |0>────────────────■──────────────────────",
" ┌─────────────────────────────────────┐",
"q_2: |0>┤ This is a really long long long box ├",
" └─────────────────────────────────────┘",
]
)
circuit = QuantumCircuit(3)
circuit.append(CU1Gate(pi / 2), [0, 1])
circuit.x(2, label="This is a really long long long box")
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
class TestTextDrawerMultiQGates(QiskitTestCase):
"""Gates implying multiple qubits."""
def test_2Qgate(self):
"""2Q no params."""
expected = "\n".join(
[
" ┌───────┐",
"q_1: |0>┤1 ├",
" │ twoQ │",
"q_0: |0>┤0 ├",
" └───────┘",
]
)
qr = QuantumRegister(2, "q")
circuit = QuantumCircuit(qr)
my_gate2 = Gate(name="twoQ", num_qubits=2, params=[], label="twoQ")
circuit.append(my_gate2, [qr[0], qr[1]])
self.assertEqual(str(_text_circuit_drawer(circuit, reverse_bits=True)), expected)
def test_2Qgate_cross_wires(self):
"""2Q no params, with cross wires"""
expected = "\n".join(
[
" ┌───────┐",
"q_1: |0>┤0 ├",
" │ twoQ │",
"q_0: |0>┤1 ├",
" └───────┘",
]
)
qr = QuantumRegister(2, "q")
circuit = QuantumCircuit(qr)
my_gate2 = Gate(name="twoQ", num_qubits=2, params=[], label="twoQ")
circuit.append(my_gate2, [qr[1], qr[0]])
self.assertEqual(str(_text_circuit_drawer(circuit, reverse_bits=True)), expected)
def test_3Qgate_cross_wires(self):
"""3Q no params, with cross wires"""
expected = "\n".join(
[
" ┌─────────┐",
"q_2: |0>┤1 ├",
" │ │",
"q_1: |0>┤0 threeQ ├",
" │ │",
"q_0: |0>┤2 ├",
" └─────────┘",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
my_gate3 = Gate(name="threeQ", num_qubits=3, params=[], label="threeQ")
circuit.append(my_gate3, [qr[1], qr[2], qr[0]])
self.assertEqual(str(_text_circuit_drawer(circuit, reverse_bits=True)), expected)
def test_2Qgate_nottogether(self):
"""2Q that are not together"""
expected = "\n".join(
[
" ┌───────┐",
"q_2: |0>┤1 ├",
" │ │",
"q_1: |0>┤ twoQ ├",
" │ │",
"q_0: |0>┤0 ├",
" └───────┘",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
my_gate2 = Gate(name="twoQ", num_qubits=2, params=[], label="twoQ")
circuit.append(my_gate2, [qr[0], qr[2]])
self.assertEqual(str(_text_circuit_drawer(circuit, reverse_bits=True)), expected)
def test_2Qgate_nottogether_across_4(self):
"""2Q that are 2 bits apart"""
expected = "\n".join(
[
" ┌───────┐",
"q_3: |0>┤1 ├",
" │ │",
"q_2: |0>┤ ├",
" │ twoQ │",
"q_1: |0>┤ ├",
" │ │",
"q_0: |0>┤0 ├",
" └───────┘",
]
)
qr = QuantumRegister(4, "q")
circuit = QuantumCircuit(qr)
my_gate2 = Gate(name="twoQ", num_qubits=2, params=[], label="twoQ")
circuit.append(my_gate2, [qr[0], qr[3]])
self.assertEqual(str(_text_circuit_drawer(circuit, reverse_bits=True)), expected)
def test_unitary_nottogether_across_4(self):
"""unitary that are 2 bits apart"""
expected = "\n".join(
[
" ┌──────────┐",
"q_0: |0>┤0 ├",
" │ │",
"q_1: |0>┤ ├",
" │ Unitary │",
"q_2: |0>┤ ├",
" │ │",
"q_3: |0>┤1 ├",
" └──────────┘",
]
)
qr = QuantumRegister(4, "q")
qc = QuantumCircuit(qr)
qc.append(random_unitary(4, seed=42), [qr[0], qr[3]])
self.assertEqual(str(_text_circuit_drawer(qc)), expected)
def test_kraus(self):
"""Test Kraus.
See https://github.com/Qiskit/qiskit-terra/pull/2238#issuecomment-487630014"""
# fmt: off
expected = "\n".join([" ┌───────┐",
"q: |0>┤ kraus ├",
" └───────┘"])
# fmt: on
error = SuperOp(0.75 * numpy.eye(4) + 0.25 * numpy.diag([1, -1, -1, 1]))
qr = QuantumRegister(1, name="q")
qc = QuantumCircuit(qr)
qc.append(error, [qr[0]])
self.assertEqual(str(_text_circuit_drawer(qc)), expected)
def test_multiplexer(self):
"""Test Multiplexer.
See https://github.com/Qiskit/qiskit-terra/pull/2238#issuecomment-487630014"""
expected = "\n".join(
[
" ┌──────────────┐",
"q_0: |0>┤0 ├",
" │ Multiplexer │",
"q_1: |0>┤1 ├",
" └──────────────┘",
]
)
cx_multiplexer = UCGate([numpy.eye(2), numpy.array([[0, 1], [1, 0]])])
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.append(cx_multiplexer, [qr[0], qr[1]])
self.assertEqual(str(_text_circuit_drawer(qc)), expected)
def test_label_over_name_2286(self):
"""If there is a label, it should be used instead of the name
See https://github.com/Qiskit/qiskit-terra/issues/2286"""
expected = "\n".join(
[
" ┌───┐┌───────┐┌────────┐",
"q_0: |0>┤ X ├┤ alt-X ├┤0 ├",
" └───┘└───────┘│ iswap │",
"q_1: |0>──────────────┤1 ├",
" └────────┘",
]
)
qr = QuantumRegister(2, "q")
circ = QuantumCircuit(qr)
circ.append(XGate(), [qr[0]])
circ.append(XGate(label="alt-X"), [qr[0]])
circ.append(UnitaryGate(numpy.eye(4), label="iswap"), [qr[0], qr[1]])
self.assertEqual(str(_text_circuit_drawer(circ)), expected)
def test_label_turns_to_box_2286(self):
"""If there is a label, non-boxes turn into boxes
See https://github.com/Qiskit/qiskit-terra/issues/2286"""
expected = "\n".join(
[
" cz label ",
"q_0: |0>─■─────■─────",
" │ │ ",
"q_1: |0>─■─────■─────",
" ",
]
)
qr = QuantumRegister(2, "q")
circ = QuantumCircuit(qr)
circ.append(CZGate(), [qr[0], qr[1]])
circ.append(CZGate(label="cz label"), [qr[0], qr[1]])
self.assertEqual(str(_text_circuit_drawer(circ)), expected)
def test_control_gate_with_base_label_4361(self):
"""Control gate has a label and a base gate with a label
See https://github.com/Qiskit/qiskit-terra/issues/4361"""
expected = "\n".join(
[
" ┌──────┐ my ch ┌──────┐",
"q_0: |0>┤ my h ├───■────┤ my h ├",
" └──────┘┌──┴───┐└──┬───┘",
"q_1: |0>────────┤ my h ├───■────",
" └──────┘ my ch ",
]
)
qr = QuantumRegister(2, "q")
circ = QuantumCircuit(qr)
hgate = HGate(label="my h")
controlh = hgate.control(label="my ch")
circ.append(hgate, [0])
circ.append(controlh, [0, 1])
circ.append(controlh, [1, 0])
self.assertEqual(str(_text_circuit_drawer(circ)), expected)
def test_control_gate_label_with_cond_1_low(self):
"""Control gate has a label and a conditional (compression=low)
See https://github.com/Qiskit/qiskit-terra/issues/4361"""
expected = "\n".join(
[
" my ch ",
"q_0: |0>───■────",
" │ ",
" ┌──┴───┐",
"q_1: |0>┤ my h ├",
" └──╥───┘",
" ┌──╨──┐ ",
" c: 0 1/╡ 0x1 ╞═",
" └─────┘ ",
]
)
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "c")
circ = QuantumCircuit(qr, cr)
hgate = HGate(label="my h")
controlh = hgate.control(label="my ch").c_if(cr, 1)
circ.append(controlh, [0, 1])
self.assertEqual(str(_text_circuit_drawer(circ, vertical_compression="low")), expected)
def test_control_gate_label_with_cond_1_low_cregbundle(self):
"""Control gate has a label and a conditional (compression=low) with cregbundle
See https://github.com/Qiskit/qiskit-terra/issues/4361"""
expected = "\n".join(
[
" my ch ",
"q_0: |0>───■────",
" │ ",
" ┌──┴───┐",
"q_1: |0>┤ my h ├",
" └──╥───┘",
" ┌──╨──┐ ",
" c: 0 1/╡ 0x1 ╞═",
" └─────┘ ",
]
)
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "c")
circ = QuantumCircuit(qr, cr)
hgate = HGate(label="my h")
controlh = hgate.control(label="my ch").c_if(cr, 1)
circ.append(controlh, [0, 1])
self.assertEqual(
str(_text_circuit_drawer(circ, vertical_compression="low", cregbundle=True)), expected
)
def test_control_gate_label_with_cond_1_med(self):
"""Control gate has a label and a conditional (compression=med)
See https://github.com/Qiskit/qiskit-terra/issues/4361"""
expected = "\n".join(
[
" my ch ",
"q_0: |0>───■────",
" ┌──┴───┐",
"q_1: |0>┤ my h ├",
" └──╥───┘",
" c: 0 ═══■════",
" 0x1 ",
]
)
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "c")
circ = QuantumCircuit(qr, cr)
hgate = HGate(label="my h")
controlh = hgate.control(label="my ch").c_if(cr, 1)
circ.append(controlh, [0, 1])
self.assertEqual(
str(_text_circuit_drawer(circ, cregbundle=False, vertical_compression="medium")),
expected,
)
def test_control_gate_label_with_cond_1_med_cregbundle(self):
"""Control gate has a label and a conditional (compression=med) with cregbundle
See https://github.com/Qiskit/qiskit-terra/issues/4361"""
expected = "\n".join(
[
" my ch ",
"q_0: |0>───■────",
" ┌──┴───┐",
"q_1: |0>┤ my h ├",
" └──╥───┘",
" ┌──╨──┐ ",
" c: 0 1/╡ 0x1 ╞═",
" └─────┘ ",
]
)
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "c")
circ = QuantumCircuit(qr, cr)
hgate = HGate(label="my h")
controlh = hgate.control(label="my ch").c_if(cr, 1)
circ.append(controlh, [0, 1])
self.assertEqual(
str(_text_circuit_drawer(circ, vertical_compression="medium", cregbundle=True)),
expected,
)
def test_control_gate_label_with_cond_1_high(self):
"""Control gate has a label and a conditional (compression=high)
See https://github.com/Qiskit/qiskit-terra/issues/4361"""
expected = "\n".join(
[
" my ch ",
"q_0: |0>───■────",
" ┌──┴───┐",
"q_1: |0>┤ my h ├",
" └──╥───┘",
" c: 0 ═══■════",
" 0x1 ",
]
)
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "c")
circ = QuantumCircuit(qr, cr)
hgate = HGate(label="my h")
controlh = hgate.control(label="my ch").c_if(cr, 1)
circ.append(controlh, [0, 1])
self.assertEqual(
str(_text_circuit_drawer(circ, cregbundle=False, vertical_compression="high")), expected
)
def test_control_gate_label_with_cond_1_high_cregbundle(self):
"""Control gate has a label and a conditional (compression=high) with cregbundle
See https://github.com/Qiskit/qiskit-terra/issues/4361"""
expected = "\n".join(
[
" my ch ",
"q_0: |0>───■────",
" ┌──┴───┐",
"q_1: |0>┤ my h ├",
" ├──╨──┬┘",
" c: 0 1/╡ 0x1 ╞═",
" └─────┘ ",
]
)
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "c")
circ = QuantumCircuit(qr, cr)
hgate = HGate(label="my h")
controlh = hgate.control(label="my ch").c_if(cr, 1)
circ.append(controlh, [0, 1])
self.assertEqual(
str(_text_circuit_drawer(circ, vertical_compression="high", cregbundle=True)), expected
)
def test_control_gate_label_with_cond_2_med_space(self):
"""Control gate has a label and a conditional (on label, compression=med)
See https://github.com/Qiskit/qiskit-terra/issues/4361"""
expected = "\n".join(
[
" ┌──────┐",
"q_0: |0>┤ my h ├",
" └──┬───┘",
"q_1: |0>───■────",
" my ch ",
" ┌──╨──┐ ",
" c: 0 1/╡ 0x1 ╞═",
" └─────┘ ",
]
)
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "c")
circ = QuantumCircuit(qr, cr)
hgate = HGate(label="my h")
controlh = hgate.control(label="my ch").c_if(cr, 1)
circ.append(controlh, [1, 0])
self.assertEqual(str(_text_circuit_drawer(circ, vertical_compression="medium")), expected)
def test_control_gate_label_with_cond_2_med(self):
"""Control gate has a label and a conditional (on label, compression=med)
See https://github.com/Qiskit/qiskit-terra/issues/4361"""
expected = "\n".join(
[
" ┌──────┐ ",
"q_0: |0>──┤ my h ├─",
" └──┬───┘ ",
"q_1: |0>─────■─────",
" my ctrl-h ",
" ║ ",
" c: 0 ═════■═════",
" 0x1 ",
]
)
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "c")
circ = QuantumCircuit(qr, cr)
hgate = HGate(label="my h")
controlh = hgate.control(label="my ctrl-h").c_if(cr, 1)
circ.append(controlh, [1, 0])
self.assertEqual(
str(_text_circuit_drawer(circ, cregbundle=False, vertical_compression="medium")),
expected,
)
def test_control_gate_label_with_cond_2_med_cregbundle(self):
"""Control gate has a label and a conditional (on label, compression=med) with cregbundle
See https://github.com/Qiskit/qiskit-terra/issues/4361"""
expected = "\n".join(
[
" ┌──────┐",
"q_0: |0>┤ my h ├",
" └──┬───┘",
"q_1: |0>───■────",
" my ch ",
" ┌──╨──┐ ",
" c: 0 1/╡ 0x1 ╞═",
" └─────┘ ",
]
)
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "c")
circ = QuantumCircuit(qr, cr)
hgate = HGate(label="my h")
controlh = hgate.control(label="my ch").c_if(cr, 1)
circ.append(controlh, [1, 0])
self.assertEqual(
str(_text_circuit_drawer(circ, vertical_compression="medium", cregbundle=True)),
expected,
)
def test_control_gate_label_with_cond_2_low(self):
"""Control gate has a label and a conditional (on label, compression=low)
See https://github.com/Qiskit/qiskit-terra/issues/4361"""
expected = "\n".join(
[
" ┌──────┐",
"q_0: |0>┤ my h ├",
" └──┬───┘",
" │ ",
"q_1: |0>───■────",
" my ch ",
" ║ ",
" c: 0 ═══■════",
" 0x1 ",
]
)
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "c")
circ = QuantumCircuit(qr, cr)
hgate = HGate(label="my h")
controlh = hgate.control(label="my ch").c_if(cr, 1)
circ.append(controlh, [1, 0])
self.assertEqual(
str(_text_circuit_drawer(circ, cregbundle=False, vertical_compression="low")), expected
)
def test_control_gate_label_with_cond_2_low_cregbundle(self):
"""Control gate has a label and a conditional (on label, compression=low) with cregbundle
See https://github.com/Qiskit/qiskit-terra/issues/4361"""
expected = "\n".join(
[
" ┌──────┐",
"q_0: |0>┤ my h ├",
" └──┬───┘",
" │ ",
"q_1: |0>───■────",
" my ch ",
" ┌──╨──┐ ",
" c: 0 1/╡ 0x1 ╞═",
" └─────┘ ",
]
)
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(1, "c")
circ = QuantumCircuit(qr, cr)
hgate = HGate(label="my h")
controlh = hgate.control(label="my ch").c_if(cr, 1)
circ.append(controlh, [1, 0])
self.assertEqual(
str(_text_circuit_drawer(circ, vertical_compression="low", cregbundle=True)), expected
)
class TestTextDrawerParams(QiskitTestCase):
"""Test drawing parameters."""
def test_text_no_parameters(self):
"""Test drawing with no parameters"""
expected = "\n".join(
[
" ┌───┐",
"q: |0>┤ X ├",
" └───┘",
]
)
qr = QuantumRegister(1, "q")
circuit = QuantumCircuit(qr)
circuit.x(0)
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_parameters_mix(self):
"""cu3 drawing with parameters"""
expected = "\n".join(
[
" ",
"q_0: |0>─────────■──────────",
" ┌────────┴─────────┐",
"q_1: |0>┤ U(π/2,theta,π,0) ├",
" └──────────────────┘",
]
)
qr = QuantumRegister(2, "q")
circuit = QuantumCircuit(qr)
circuit.cu(pi / 2, Parameter("theta"), pi, 0, qr[0], qr[1])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_bound_parameters(self):
"""Bound parameters
See: https://github.com/Qiskit/qiskit-terra/pull/3876"""
# fmt: off
expected = "\n".join([" ┌────────────┐",
"qr: |0>┤ my_u2(π,π) ├",
" └────────────┘"])
# fmt: on
my_u2_circuit = QuantumCircuit(1, name="my_u2")
phi = Parameter("phi")
lam = Parameter("lambda")
my_u2_circuit.u(3.141592653589793, phi, lam, 0)
my_u2 = my_u2_circuit.to_gate()
qr = QuantumRegister(1, name="qr")
circuit = QuantumCircuit(qr, name="circuit")
circuit.append(my_u2, [qr[0]])
circuit = circuit.bind_parameters({phi: 3.141592653589793, lam: 3.141592653589793})
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_pi_param_expr(self):
"""Text pi in circuit with parameter expression."""
expected = "\n".join(
[
" ┌─────────────────────┐",
"q: ┤ Rx((π - x)*(π - y)) ├",
" └─────────────────────┘",
]
)
x, y = Parameter("x"), Parameter("y")
circuit = QuantumCircuit(1)
circuit.rx((pi - x) * (pi - y), 0)
self.assertEqual(circuit.draw(output="text").single_string(), expected)
def test_text_utf8(self):
"""Test that utf8 characters work in windows CI env."""
# fmt: off
expected = "\n".join([" ┌──────────┐",
"q: ┤ U(0,φ,λ) ├",
" └──────────┘"])
# fmt: on
phi, lam = Parameter("φ"), Parameter("λ")
circuit = QuantumCircuit(1)
circuit.u(0, phi, lam, 0)
self.assertEqual(circuit.draw(output="text").single_string(), expected)
def test_text_ndarray_parameters(self):
"""Test that if params are type ndarray, params are not displayed."""
# fmt: off
expected = "\n".join([" ┌─────────┐",
"q: |0>┤ Unitary ├",
" └─────────┘"])
# fmt: on
qr = QuantumRegister(1, "q")
circuit = QuantumCircuit(qr)
circuit.unitary(numpy.array([[0, 1], [1, 0]]), 0)
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_qc_parameters(self):
"""Test that if params are type QuantumCircuit, params are not displayed."""
expected = "\n".join(
[
" ┌───────┐",
"q_0: |0>┤0 ├",
" │ name │",
"q_1: |0>┤1 ├",
" └───────┘",
]
)
my_qc_param = QuantumCircuit(2)
my_qc_param.h(0)
my_qc_param.cx(0, 1)
inst = Instruction("name", 2, 0, [my_qc_param])
qr = QuantumRegister(2, "q")
circuit = QuantumCircuit(qr)
circuit.append(inst, [0, 1])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
class TestTextDrawerVerticalCompressionLow(QiskitTestCase):
"""Test vertical_compression='low'"""
def test_text_conditional_1(self):
"""Conditional drawing with 1-bit-length regs."""
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c0[1];
creg c1[1];
if(c0==1) x q[0];
if(c1==1) x q[0];
"""
expected = "\n".join(
[
" ┌───┐┌───┐",
"q: |0>┤ X ├┤ X ├",
" └─╥─┘└─╥─┘",
" ║ ║ ",
"c0: 0 ══■════╬══",
" 0x1 ║ ",
" ║ ",
"c1: 0 ═══════■══",
" 0x1 ",
]
)
circuit = QuantumCircuit.from_qasm_str(qasm_string)
self.assertEqual(
str(_text_circuit_drawer(circuit, cregbundle=False, vertical_compression="low")),
expected,
)
def test_text_conditional_1_bundle(self):
"""Conditional drawing with 1-bit-length regs."""
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c0[1];
creg c1[1];
if(c0==1) x q[0];
if(c1==1) x q[0];
"""
expected = "\n".join(
[
" ┌───┐ ┌───┐ ",
" q: |0>─┤ X ├──┤ X ├─",
" └─╥─┘ └─╥─┘ ",
" ┌──╨──┐ ║ ",
"c0: 0 1/╡ 0x1 ╞═══╬═══",
" └─────┘ ║ ",
" ┌──╨──┐",
"c1: 0 1/═══════╡ 0x1 ╞",
" └─────┘",
]
)
circuit = QuantumCircuit.from_qasm_str(qasm_string)
self.assertEqual(
str(_text_circuit_drawer(circuit, vertical_compression="low", cregbundle=True)),
expected,
)
def test_text_conditional_reverse_bits_true(self):
"""Conditional drawing with 1-bit-length regs."""
cr = ClassicalRegister(2, "cr")
cr2 = ClassicalRegister(1, "cr2")
qr = QuantumRegister(3, "qr")
circuit = QuantumCircuit(qr, cr, cr2)
circuit.h(0)
circuit.h(1)
circuit.h(2)
circuit.x(0)
circuit.x(0)
circuit.measure(2, 1)
circuit.x(2).c_if(cr, 2)
expected = "\n".join(
[
" ┌───┐ ┌─┐ ┌───┐",
"qr_2: |0>┤ H ├─────┤M├─────┤ X ├",
" └───┘ └╥┘ └─╥─┘",
" ┌───┐ ║ ║ ",
"qr_1: |0>┤ H ├──────╫────────╫──",
" └───┘ ║ ║ ",
" ┌───┐┌───┐ ║ ┌───┐ ║ ",
"qr_0: |0>┤ H ├┤ X ├─╫─┤ X ├──╫──",
" └───┘└───┘ ║ └───┘ ║ ",
" ║ ║ ",
" cr2: 0 ═══════════╬════════╬══",
" ║ ║ ",
" ║ ║ ",
" cr_1: 0 ═══════════╩════════■══",
" ║ ",
" ║ ",
" cr_0: 0 ════════════════════o══",
" 0x2 ",
]
)
self.assertEqual(
str(
_text_circuit_drawer(
circuit, vertical_compression="low", cregbundle=False, reverse_bits=True
)
),
expected,
)
def test_text_conditional_reverse_bits_false(self):
"""Conditional drawing with 1-bit-length regs."""
cr = ClassicalRegister(2, "cr")
cr2 = ClassicalRegister(1, "cr2")
qr = QuantumRegister(3, "qr")
circuit = QuantumCircuit(qr, cr, cr2)
circuit.h(0)
circuit.h(1)
circuit.h(2)
circuit.x(0)
circuit.x(0)
circuit.measure(2, 1)
circuit.x(2).c_if(cr, 2)
expected = "\n".join(
[
" ┌───┐┌───┐┌───┐",
"qr_0: |0>┤ H ├┤ X ├┤ X ├",
" └───┘└───┘└───┘",
" ┌───┐ ",
"qr_1: |0>┤ H ├──────────",
" └───┘ ",
" ┌───┐ ┌─┐ ┌───┐",
"qr_2: |0>┤ H ├─┤M├─┤ X ├",
" └───┘ └╥┘ └─╥─┘",
" ║ ║ ",
" cr_0: 0 ═══════╬════o══",
" ║ ║ ",
" ║ ║ ",
" cr_1: 0 ═══════╩════■══",
" 0x2 ",
" ",
" cr2: 0 ═══════════════",
" ",
]
)
self.assertEqual(
str(
_text_circuit_drawer(
circuit, vertical_compression="low", cregbundle=False, reverse_bits=False
)
),
expected,
)
def test_text_justify_right(self):
"""Drawing with right justify"""
expected = "\n".join(
[
" ┌───┐",
"q1_0: |0>─────┤ X ├",
" └───┘",
" ┌───┐ ┌─┐ ",
"q1_1: |0>┤ H ├─┤M├─",
" └───┘ └╥┘ ",
" ║ ",
" c1: 0 2/═══════╩══",
" 1 ",
]
)
qr1 = QuantumRegister(2, "q1")
cr1 = ClassicalRegister(2, "c1")
circuit = QuantumCircuit(qr1, cr1)
circuit.x(qr1[0])
circuit.h(qr1[1])
circuit.measure(qr1[1], cr1[1])
self.assertEqual(
str(_text_circuit_drawer(circuit, justify="right", vertical_compression="low")),
expected,
)
class TestTextDrawerVerticalCompressionMedium(QiskitTestCase):
"""Test vertical_compression='medium'"""
def test_text_conditional_1(self):
"""Medium vertical compression avoids box overlap."""
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c0[1];
creg c1[1];
if(c0==1) x q[0];
if(c1==1) x q[0];
"""
expected = "\n".join(
[
" ┌───┐┌───┐",
"q: |0>┤ X ├┤ X ├",
" └─╥─┘└─╥─┘",
"c0: 0 ══■════╬══",
" 0x1 ║ ",
"c1: 0 ═══════■══",
" 0x1 ",
]
)
circuit = QuantumCircuit.from_qasm_str(qasm_string)
self.assertEqual(
str(_text_circuit_drawer(circuit, cregbundle=False, vertical_compression="medium")),
expected,
)
def test_text_conditional_1_bundle(self):
"""Medium vertical compression avoids box overlap."""
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c0[1];
creg c1[1];
if(c0==1) x q[0];
if(c1==1) x q[0];
"""
expected = "\n".join(
[
" ┌───┐ ┌───┐ ",
" q: |0>─┤ X ├──┤ X ├─",
" └─╥─┘ └─╥─┘ ",
" ┌──╨──┐ ║ ",
"c0: 0 1/╡ 0x1 ╞═══╬═══",
" └─────┘┌──╨──┐",
"c1: 0 1/═══════╡ 0x1 ╞",
" └─────┘",
]
)
circuit = QuantumCircuit.from_qasm_str(qasm_string)
self.assertEqual(
str(_text_circuit_drawer(circuit, vertical_compression="medium", cregbundle=True)),
expected,
)
def test_text_measure_with_spaces(self):
"""Measure wire might have extra spaces
Found while reproducing
https://quantumcomputing.stackexchange.com/q/10194/1859"""
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[2];
creg c[3];
measure q[0] -> c[1];
if(c==1) x q[1];
"""
expected = "\n".join(
[
" ┌─┐ ",
"q_0: |0>┤M├─────",
" └╥┘┌───┐",
"q_1: |0>─╫─┤ X ├",
" ║ └─╥─┘",
" c_0: 0 ═╬═══■══",
" ║ ║ ",
" c_1: 0 ═╩═══o══",
" ║ ",
" c_2: 0 ═════o══",
" 0x1 ",
]
)
circuit = QuantumCircuit.from_qasm_str(qasm_string)
self.assertEqual(
str(_text_circuit_drawer(circuit, cregbundle=False, vertical_compression="medium")),
expected,
)
def test_text_measure_with_spaces_bundle(self):
"""Measure wire might have extra spaces
Found while reproducing
https://quantumcomputing.stackexchange.com/q/10194/1859"""
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[2];
creg c[3];
measure q[0] -> c[1];
if(c==1) x q[1];
"""
expected = "\n".join(
[
" ┌─┐ ",
"q_0: |0>┤M├───────",
" └╥┘ ┌───┐ ",
"q_1: |0>─╫──┤ X ├─",
" ║ └─╥─┘ ",
" ║ ┌──╨──┐",
" c: 0 3/═╩═╡ 0x1 ╞",
" 1 └─────┘",
]
)
circuit = QuantumCircuit.from_qasm_str(qasm_string)
self.assertEqual(
str(_text_circuit_drawer(circuit, vertical_compression="medium", cregbundle=True)),
expected,
)
def test_text_barrier_med_compress_1(self):
"""Medium vertical compression avoids connection break."""
circuit = QuantumCircuit(4)
circuit.cx(1, 3)
circuit.x(1)
circuit.barrier((2, 3), label="Bar 1")
expected = "\n".join(
[
" ",
"q_0: |0>────────────",
" ┌───┐ ",
"q_1: |0>──■───┤ X ├─",
" │ └───┘ ",
" │ Bar 1 ",
"q_2: |0>──┼─────░───",
" ┌─┴─┐ ░ ",
"q_3: |0>┤ X ├───░───",
" └───┘ ░ ",
]
)
self.assertEqual(
str(_text_circuit_drawer(circuit, vertical_compression="medium", cregbundle=False)),
expected,
)
def test_text_barrier_med_compress_2(self):
"""Medium vertical compression avoids overprint."""
circuit = QuantumCircuit(4)
circuit.barrier((0, 1, 2), label="a")
circuit.cx(1, 3)
circuit.x(1)
circuit.barrier((2, 3), label="Bar 1")
expected = "\n".join(
[
" a ",
"q_0: |0>─░─────────────",
" ░ ┌───┐ ",
"q_1: |0>─░───■───┤ X ├─",
" ░ │ └───┘ ",
" ░ │ Bar 1 ",
"q_2: |0>─░───┼─────░───",
" ░ ┌─┴─┐ ░ ",
"q_3: |0>───┤ X ├───░───",
" └───┘ ░ ",
]
)
self.assertEqual(
str(_text_circuit_drawer(circuit, vertical_compression="medium", cregbundle=False)),
expected,
)
def test_text_barrier_med_compress_3(self):
"""Medium vertical compression avoids conditional connection break."""
qr = QuantumRegister(1, "qr")
qc1 = ClassicalRegister(3, "cr")
qc2 = ClassicalRegister(1, "cr2")
circuit = QuantumCircuit(qr, qc1, qc2)
circuit.x(0).c_if(qc1, 3)
circuit.x(0).c_if(qc2[0], 1)
expected = "\n".join(
[
" ┌───┐┌───┐",
" qr: |0>┤ X ├┤ X ├",
" └─╥─┘└─╥─┘",
"cr_0: 0 ══■════╬══",
" ║ ║ ",
"cr_2: 0 ══o════╬══",
" ║ ║ ",
" cr2: 0 ══╬════■══",
" ║ ",
"cr_1: 0 ══■═══════",
" 0x3 ",
]
)
self.assertEqual(
str(
_text_circuit_drawer(
circuit,
vertical_compression="medium",
wire_order=[0, 1, 3, 4, 2],
cregbundle=False,
)
),
expected,
)
class TestTextConditional(QiskitTestCase):
"""Gates with conditionals"""
def test_text_conditional_1_cregbundle(self):
"""Conditional drawing with 1-bit-length regs and cregbundle."""
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c0[1];
creg c1[1];
if(c0==1) x q[0];
if(c1==1) x q[0];
"""
expected = "\n".join(
[
" ┌───┐ ┌───┐ ",
" q: |0>─┤ X ├──┤ X ├─",
" ┌┴─╨─┴┐ └─╥─┘ ",
"c0: 0 1/╡ 0x1 ╞═══╬═══",
" └─────┘┌──╨──┐",
"c1: 0 1/═══════╡ 0x1 ╞",
" └─────┘",
]
)
circuit = QuantumCircuit.from_qasm_str(qasm_string)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_1(self):
"""Conditional drawing with 1-bit-length regs."""
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c0[1];
creg c1[1];
if(c0==1) x q[0];
if(c1==1) x q[0];
"""
expected = "\n".join(
[
" ┌───┐┌───┐",
"q: |0>┤ X ├┤ X ├",
" └─╥─┘└─╥─┘",
"c0: 0 ══■════╬══",
" 0x1 ║ ",
"c1: 0 ═══════■══",
" 0x1 ",
]
)
circuit = QuantumCircuit.from_qasm_str(qasm_string)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_conditional_2_cregbundle(self):
"""Conditional drawing with 2-bit-length regs with cregbundle"""
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c0[2];
creg c1[2];
if(c0==2) x q[0];
if(c1==2) x q[0];
"""
expected = "\n".join(
[
" ┌───┐ ┌───┐ ",
" q: |0>─┤ X ├──┤ X ├─",
" ┌┴─╨─┴┐ └─╥─┘ ",
"c0: 0 2/╡ 0x2 ╞═══╬═══",
" └─────┘┌──╨──┐",
"c1: 0 2/═══════╡ 0x2 ╞",
" └─────┘",
]
)
circuit = QuantumCircuit.from_qasm_str(qasm_string)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_2(self):
"""Conditional drawing with 2-bit-length regs."""
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c0[2];
creg c1[2];
if(c0==2) x q[0];
if(c1==2) x q[0];
"""
expected = "\n".join(
[
" ┌───┐┌───┐",
" q: |0>┤ X ├┤ X ├",
" └─╥─┘└─╥─┘",
"c0_0: 0 ══o════╬══",
" ║ ║ ",
"c0_1: 0 ══■════╬══",
" 0x2 ║ ",
"c1_0: 0 ═══════o══",
" ║ ",
"c1_1: 0 ═══════■══",
" 0x2 ",
]
)
circuit = QuantumCircuit.from_qasm_str(qasm_string)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_conditional_3_cregbundle(self):
"""Conditional drawing with 3-bit-length regs with cregbundle."""
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c0[3];
creg c1[3];
if(c0==3) x q[0];
if(c1==3) x q[0];
"""
expected = "\n".join(
[
" ┌───┐ ┌───┐ ",
" q: |0>─┤ X ├──┤ X ├─",
" ┌┴─╨─┴┐ └─╥─┘ ",
"c0: 0 3/╡ 0x3 ╞═══╬═══",
" └─────┘┌──╨──┐",
"c1: 0 3/═══════╡ 0x3 ╞",
" └─────┘",
]
)
circuit = QuantumCircuit.from_qasm_str(qasm_string)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_3(self):
"""Conditional drawing with 3-bit-length regs."""
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c0[3];
creg c1[3];
if(c0==3) x q[0];
if(c1==3) x q[0];
"""
expected = "\n".join(
[
" ┌───┐┌───┐",
" q: |0>┤ X ├┤ X ├",
" └─╥─┘└─╥─┘",
"c0_0: 0 ══■════╬══",
" ║ ║ ",
"c0_1: 0 ══■════╬══",
" ║ ║ ",
"c0_2: 0 ══o════╬══",
" 0x3 ║ ",
"c1_0: 0 ═══════■══",
" ║ ",
"c1_1: 0 ═══════■══",
" ║ ",
"c1_2: 0 ═══════o══",
" 0x3 ",
]
)
circuit = QuantumCircuit.from_qasm_str(qasm_string)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_conditional_4(self):
"""Conditional drawing with 4-bit-length regs."""
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c0[4];
creg c1[4];
if(c0==4) x q[0];
if(c1==4) x q[0];
"""
expected = "\n".join(
[
" ┌───┐ ┌───┐ ",
" q: |0>─┤ X ├──┤ X ├─",
" ┌┴─╨─┴┐ └─╥─┘ ",
"c0: 0 4/╡ 0x4 ╞═══╬═══",
" └─────┘┌──╨──┐",
"c1: 0 4/═══════╡ 0x4 ╞",
" └─────┘",
]
)
circuit = QuantumCircuit.from_qasm_str(qasm_string)
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_conditional_5(self):
"""Conditional drawing with 5-bit-length regs."""
qasm_string = """
OPENQASM 2.0;
include "qelib1.inc";
qreg q[1];
creg c0[5];
creg c1[5];
if(c0==5) x q[0];
if(c1==5) x q[0];
"""
expected = "\n".join(
[
" ┌───┐┌───┐",
" q: |0>┤ X ├┤ X ├",
" └─╥─┘└─╥─┘",
"c0_0: 0 ══■════╬══",
" ║ ║ ",
"c0_1: 0 ══o════╬══",
" ║ ║ ",
"c0_2: 0 ══■════╬══",
" ║ ║ ",
"c0_3: 0 ══o════╬══",
" ║ ║ ",
"c0_4: 0 ══o════╬══",
" 0x5 ║ ",
"c1_0: 0 ═══════■══",
" ║ ",
"c1_1: 0 ═══════o══",
" ║ ",
"c1_2: 0 ═══════■══",
" ║ ",
"c1_3: 0 ═══════o══",
" ║ ",
"c1_4: 0 ═══════o══",
" 0x5 ",
]
)
circuit = QuantumCircuit.from_qasm_str(qasm_string)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_conditional_cz_no_space_cregbundle(self):
"""Conditional CZ without space"""
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.cz(qr[0], qr[1]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>───■───",
" │ ",
"qr_1: |0>───■───",
" ┌──╨──┐",
" cr: 0 1/╡ 0x1 ╞",
" └─────┘",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_cz_no_space(self):
"""Conditional CZ without space"""
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.cz(qr[0], qr[1]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>──■──",
" │ ",
"qr_1: |0>──■──",
" ║ ",
" cr: 0 ══■══",
" 0x1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_conditional_cz_cregbundle(self):
"""Conditional CZ with a wire in the middle"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.cz(qr[0], qr[1]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>───■───",
" │ ",
"qr_1: |0>───■───",
" ║ ",
"qr_2: |0>───╫───",
" ┌──╨──┐",
" cr: 0 1/╡ 0x1 ╞",
" └─────┘",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_cz(self):
"""Conditional CZ with a wire in the middle"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.cz(qr[0], qr[1]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>──■──",
" │ ",
"qr_1: |0>──■──",
" ║ ",
"qr_2: |0>──╫──",
" ║ ",
" cr: 0 ══■══",
" 0x1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_conditional_cx_ct_cregbundle(self):
"""Conditional CX (control-target) with a wire in the middle"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.cx(qr[0], qr[1]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>───■───",
" ┌─┴─┐ ",
"qr_1: |0>─┤ X ├─",
" └─╥─┘ ",
"qr_2: |0>───╫───",
" ┌──╨──┐",
" cr: 0 1/╡ 0x1 ╞",
" └─────┘",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_cx_ct(self):
"""Conditional CX (control-target) with a wire in the middle"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.cx(qr[0], qr[1]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>──■──",
" ┌─┴─┐",
"qr_1: |0>┤ X ├",
" └─╥─┘",
"qr_2: |0>──╫──",
" ║ ",
" cr: 0 ══■══",
" 0x1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_conditional_cx_tc_cregbundle(self):
"""Conditional CX (target-control) with a wire in the middle with cregbundle."""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.cx(qr[1], qr[0]).c_if(cr, 1)
expected = "\n".join(
[
" ┌───┐ ",
"qr_0: |0>─┤ X ├─",
" └─┬─┘ ",
"qr_1: |0>───■───",
" ║ ",
"qr_2: |0>───╫───",
" ┌──╨──┐",
" cr: 0 1/╡ 0x1 ╞",
" └─────┘",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_cx_tc(self):
"""Conditional CX (target-control) with a wire in the middle"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.cx(qr[1], qr[0]).c_if(cr, 1)
expected = "\n".join(
[
" ┌───┐",
"qr_0: |0>┤ X ├",
" └─┬─┘",
"qr_1: |0>──■──",
" ║ ",
"qr_2: |0>──╫──",
" ║ ",
" cr: 0 ══■══",
" 0x1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_conditional_cu3_ct_cregbundle(self):
"""Conditional Cu3 (control-target) with a wire in the middle with cregbundle"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.append(CU3Gate(pi / 2, pi / 2, pi / 2), [qr[0], qr[1]]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>─────────■─────────",
" ┌────────┴────────┐",
"qr_1: |0>┤ U3(π/2,π/2,π/2) ├",
" └────────╥────────┘",
"qr_2: |0>─────────╫─────────",
" ┌──╨──┐ ",
" cr: 0 1/══════╡ 0x1 ╞══════",
" └─────┘ ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_cu3_ct(self):
"""Conditional Cu3 (control-target) with a wire in the middle"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.append(CU3Gate(pi / 2, pi / 2, pi / 2), [qr[0], qr[1]]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>─────────■─────────",
" ┌────────┴────────┐",
"qr_1: |0>┤ U3(π/2,π/2,π/2) ├",
" └────────╥────────┘",
"qr_2: |0>─────────╫─────────",
" ║ ",
" cr: 0 ═════════■═════════",
" 0x1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_conditional_cu3_tc_cregbundle(self):
"""Conditional Cu3 (target-control) with a wire in the middle with cregbundle"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.append(CU3Gate(pi / 2, pi / 2, pi / 2), [qr[1], qr[0]]).c_if(cr, 1)
expected = "\n".join(
[
" ┌─────────────────┐",
"qr_0: |0>┤ U3(π/2,π/2,π/2) ├",
" └────────┬────────┘",
"qr_1: |0>─────────■─────────",
" ║ ",
"qr_2: |0>─────────╫─────────",
" ┌──╨──┐ ",
" cr: 0 1/══════╡ 0x1 ╞══════",
" └─────┘ ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_cu3_tc(self):
"""Conditional Cu3 (target-control) with a wire in the middle"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.append(CU3Gate(pi / 2, pi / 2, pi / 2), [qr[1], qr[0]]).c_if(cr, 1)
expected = "\n".join(
[
" ┌─────────────────┐",
"qr_0: |0>┤ U3(π/2,π/2,π/2) ├",
" └────────┬────────┘",
"qr_1: |0>─────────■─────────",
" ║ ",
"qr_2: |0>─────────╫─────────",
" ║ ",
" cr: 0 ═════════■═════════",
" 0x1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_conditional_ccx_cregbundle(self):
"""Conditional CCX with a wire in the middle with cregbundle"""
qr = QuantumRegister(4, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.ccx(qr[0], qr[1], qr[2]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>───■───",
" │ ",
"qr_1: |0>───■───",
" ┌─┴─┐ ",
"qr_2: |0>─┤ X ├─",
" └─╥─┘ ",
"qr_3: |0>───╫───",
" ┌──╨──┐",
" cr: 0 1/╡ 0x1 ╞",
" └─────┘",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_ccx(self):
"""Conditional CCX with a wire in the middle"""
qr = QuantumRegister(4, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.ccx(qr[0], qr[1], qr[2]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>──■──",
" │ ",
"qr_1: |0>──■──",
" ┌─┴─┐",
"qr_2: |0>┤ X ├",
" └─╥─┘",
"qr_3: |0>──╫──",
" ║ ",
" cr: 0 ══■══",
" 0x1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_conditional_ccx_no_space_cregbundle(self):
"""Conditional CCX without space with cregbundle"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.ccx(qr[0], qr[1], qr[2]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>───■───",
" │ ",
"qr_1: |0>───■───",
" ┌─┴─┐ ",
"qr_2: |0>─┤ X ├─",
" ┌┴─╨─┴┐",
" cr: 0 1/╡ 0x1 ╞",
" └─────┘",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_ccx_no_space(self):
"""Conditional CCX without space"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.ccx(qr[0], qr[1], qr[2]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>──■──",
" │ ",
"qr_1: |0>──■──",
" ┌─┴─┐",
"qr_2: |0>┤ X ├",
" └─╥─┘",
" cr: 0 ══■══",
" 0x1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_conditional_h_cregbundle(self):
"""Conditional H with a wire in the middle with cregbundle"""
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(qr[0]).c_if(cr, 1)
expected = "\n".join(
[
" ┌───┐ ",
"qr_0: |0>─┤ H ├─",
" └─╥─┘ ",
"qr_1: |0>───╫───",
" ┌──╨──┐",
" cr: 0 1/╡ 0x1 ╞",
" └─────┘",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_h(self):
"""Conditional H with a wire in the middle"""
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(qr[0]).c_if(cr, 1)
expected = "\n".join(
[
" ┌───┐",
"qr_0: |0>┤ H ├",
" └─╥─┘",
"qr_1: |0>──╫──",
" ║ ",
" cr: 0 ══■══",
" 0x1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_conditional_swap_cregbundle(self):
"""Conditional SWAP with cregbundle"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.swap(qr[0], qr[1]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>───X───",
" │ ",
"qr_1: |0>───X───",
" ║ ",
"qr_2: |0>───╫───",
" ┌──╨──┐",
" cr: 0 1/╡ 0x1 ╞",
" └─────┘",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_swap(self):
"""Conditional SWAP"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.swap(qr[0], qr[1]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>──X──",
" │ ",
"qr_1: |0>──X──",
" ║ ",
"qr_2: |0>──╫──",
" ║ ",
" cr: 0 ══■══",
" 0x1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_conditional_cswap_cregbundle(self):
"""Conditional CSwap with cregbundle"""
qr = QuantumRegister(4, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.cswap(qr[0], qr[1], qr[2]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>───■───",
" │ ",
"qr_1: |0>───X───",
" │ ",
"qr_2: |0>───X───",
" ║ ",
"qr_3: |0>───╫───",
" ┌──╨──┐",
" cr: 0 1/╡ 0x1 ╞",
" └─────┘",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_cswap(self):
"""Conditional CSwap"""
qr = QuantumRegister(4, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.cswap(qr[0], qr[1], qr[2]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>──■──",
" │ ",
"qr_1: |0>──X──",
" │ ",
"qr_2: |0>──X──",
" ║ ",
"qr_3: |0>──╫──",
" ║ ",
" cr: 0 ══■══",
" 0x1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_conditional_reset_cregbundle(self):
"""Reset drawing with cregbundle."""
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.reset(qr[0]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>──|0>──",
" ║ ",
"qr_1: |0>───╫───",
" ┌──╨──┐",
" cr: 0 1/╡ 0x1 ╞",
" └─────┘",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_conditional_reset(self):
"""Reset drawing."""
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(1, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.reset(qr[0]).c_if(cr, 1)
expected = "\n".join(
[
" ",
"qr_0: |0>─|0>─",
" ║ ",
"qr_1: |0>──╫──",
" ║ ",
" cr: 0 ══■══",
" 0x1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_conditional_multiplexer_cregbundle(self):
"""Test Multiplexer with cregbundle."""
cx_multiplexer = UCGate([numpy.eye(2), numpy.array([[0, 1], [1, 0]])])
qr = QuantumRegister(3, name="qr")
cr = ClassicalRegister(1, "cr")
qc = QuantumCircuit(qr, cr)
qc.append(cx_multiplexer.c_if(cr, 1), [qr[0], qr[1]])
expected = "\n".join(
[
" ┌──────────────┐",
"qr_0: |0>┤0 ├",
" │ Multiplexer │",
"qr_1: |0>┤1 ├",
" └──────╥───────┘",
"qr_2: |0>───────╫────────",
" ┌──╨──┐ ",
" cr: 0 1/════╡ 0x1 ╞═════",
" └─────┘ ",
]
)
self.assertEqual(str(_text_circuit_drawer(qc, cregbundle=True)), expected)
def test_conditional_multiplexer(self):
"""Test Multiplexer."""
cx_multiplexer = UCGate([numpy.eye(2), numpy.array([[0, 1], [1, 0]])])
qr = QuantumRegister(3, name="qr")
cr = ClassicalRegister(1, "cr")
qc = QuantumCircuit(qr, cr)
qc.append(cx_multiplexer.c_if(cr, 1), [qr[0], qr[1]])
expected = "\n".join(
[
" ┌──────────────┐",
"qr_0: |0>┤0 ├",
" │ Multiplexer │",
"qr_1: |0>┤1 ├",
" └──────╥───────┘",
"qr_2: |0>───────╫────────",
" ║ ",
" cr: 0 ═══════■════════",
" 0x1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(qc, cregbundle=False)), expected)
def test_text_conditional_measure_cregbundle(self):
"""Conditional with measure on same clbit with cregbundle"""
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(2, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(qr[0])
circuit.measure(qr[0], cr[0])
circuit.h(qr[1]).c_if(cr, 1)
expected = "\n".join(
[
" ┌───┐┌─┐ ",
"qr_0: |0>┤ H ├┤M├───────",
" └───┘└╥┘ ┌───┐ ",
"qr_1: |0>──────╫──┤ H ├─",
" ║ ┌┴─╨─┴┐",
" cr: 0 2/══════╩═╡ 0x1 ╞",
" 0 └─────┘",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_conditional_measure(self):
"""Conditional with measure on same clbit"""
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(2, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(qr[0])
circuit.measure(qr[0], cr[0])
circuit.h(qr[1]).c_if(cr, 1)
expected = "\n".join(
[
" ┌───┐┌─┐ ",
"qr_0: |0>┤ H ├┤M├─────",
" └───┘└╥┘┌───┐",
"qr_1: |0>──────╫─┤ H ├",
" ║ └─╥─┘",
" cr_0: 0 ══════╩═══■══",
" ║ ",
" cr_1: 0 ══════════o══",
" 0x1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_bit_conditional(self):
"""Test bit conditions on gates"""
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(2, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(qr[0]).c_if(cr[0], 1)
circuit.h(qr[1]).c_if(cr[1], 0)
expected = "\n".join(
[
" ┌───┐ ",
"qr_0: |0>┤ H ├─────",
" └─╥─┘┌───┐",
"qr_1: |0>──╫──┤ H ├",
" ║ └─╥─┘",
" cr_0: 0 ══■════╬══",
" ║ ",
" cr_1: 0 ═══════o══",
" ",
]
)
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=False)), expected)
def test_text_bit_conditional_cregbundle(self):
"""Test bit conditions on gates when cregbundle=True"""
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(2, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(qr[0]).c_if(cr[0], 1)
circuit.h(qr[1]).c_if(cr[1], 0)
expected = "\n".join(
[
" ┌───┐ ",
"qr_0: |0>───┤ H ├────────────────",
" └─╥─┘ ┌───┐ ",
"qr_1: |0>─────╫─────────┤ H ├────",
" ║ └─╥─┘ ",
" ┌────╨─────┐┌────╨─────┐",
" cr: 0 2/╡ cr_0=0x1 ╞╡ cr_1=0x0 ╞",
" └──────────┘└──────────┘",
]
)
self.assertEqual(
str(_text_circuit_drawer(circuit, cregbundle=True, vertical_compression="medium")),
expected,
)
def test_text_condition_measure_bits_true(self):
"""Condition and measure on single bits cregbundle true"""
bits = [Qubit(), Qubit(), Clbit(), Clbit()]
cr = ClassicalRegister(2, "cr")
crx = ClassicalRegister(3, "cs")
circuit = QuantumCircuit(bits, cr, [Clbit()], crx)
circuit.x(0).c_if(crx[1], 0)
circuit.measure(0, bits[3])
expected = "\n".join(
[
" ┌───┐ ┌─┐",
" 0: ───┤ X ├────┤M├",
" └─╥─┘ └╥┘",
" 1: ─────╫───────╫─",
" ║ ║ ",
" 0: ═════╬═══════╬═",
" ║ ║ ",
" 1: ═════╬═══════╩═",
" ║ ",
"cr: 2/═════╬═════════",
" ║ ",
" 4: ═════╬═════════",
" ┌────╨─────┐ ",
"cs: 3/╡ cs_1=0x0 ╞═══",
" └──────────┘ ",
]
)
self.assertEqual(
str(_text_circuit_drawer(circuit, cregbundle=True, initial_state=False)), expected
)
def test_text_condition_measure_bits_false(self):
"""Condition and measure on single bits cregbundle false"""
bits = [Qubit(), Qubit(), Clbit(), Clbit()]
cr = ClassicalRegister(2, "cr")
crx = ClassicalRegister(3, "cs")
circuit = QuantumCircuit(bits, cr, [Clbit()], crx)
circuit.x(0).c_if(crx[1], 0)
circuit.measure(0, bits[3])
expected = "\n".join(
[
" ┌───┐┌─┐",
" 0: ┤ X ├┤M├",
" └─╥─┘└╥┘",
" 1: ──╫───╫─",
" ║ ║ ",
" 0: ══╬═══╬═",
" ║ ║ ",
" 1: ══╬═══╩═",
" ║ ",
"cr_0: ══╬═════",
" ║ ",
"cr_1: ══╬═════",
" ║ ",
" 4: ══╬═════",
" ║ ",
"cs_0: ══╬═════",
" ║ ",
"cs_1: ══o═════",
" ",
"cs_2: ════════",
" ",
]
)
self.assertEqual(
str(_text_circuit_drawer(circuit, cregbundle=False, initial_state=False)), expected
)
def test_text_conditional_reverse_bits_1(self):
"""Classical condition on 2q2c circuit with cregbundle=False and reverse bits"""
qr = QuantumRegister(2, "qr")
cr = ClassicalRegister(2, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(qr[0])
circuit.measure(qr[0], cr[0])
circuit.h(qr[1]).c_if(cr, 1)
expected = "\n".join(
[
" ┌───┐",
"qr_1: |0>────────┤ H ├",
" ┌───┐┌─┐└─╥─┘",
"qr_0: |0>┤ H ├┤M├──╫──",
" └───┘└╥┘ ║ ",
" cr_1: 0 ══════╬═══o══",
" ║ ║ ",
" cr_0: 0 ══════╩═══■══",
" 0x1 ",
]
)
self.assertEqual(
str(_text_circuit_drawer(circuit, cregbundle=False, reverse_bits=True)), expected
)
def test_text_conditional_reverse_bits_2(self):
"""Classical condition on 3q3c circuit with cergbundle=False and reverse bits"""
qr = QuantumRegister(3, "qr")
cr = ClassicalRegister(3, "cr")
circuit = QuantumCircuit(qr, cr)
circuit.h(qr[0]).c_if(cr, 6)
circuit.h(qr[1]).c_if(cr, 1)
circuit.h(qr[2]).c_if(cr, 2)
circuit.cx(0, 1).c_if(cr, 3)
expected = "\n".join(
[
" ┌───┐ ",
"qr_2: |0>──────────┤ H ├─────",
" ┌───┐└─╥─┘┌───┐",
"qr_1: |0>─────┤ H ├──╫──┤ X ├",
" ┌───┐└─╥─┘ ║ └─┬─┘",
"qr_0: |0>┤ H ├──╫────╫────■──",
" └─╥─┘ ║ ║ ║ ",
" cr_2: 0 ══■════o════o════o══",
" ║ ║ ║ ║ ",
" cr_1: 0 ══■════o════■════■══",
" ║ ║ ║ ║ ",
" cr_0: 0 ══o════■════o════■══",
" 0x6 0x1 0x2 0x3 ",
]
)
self.assertEqual(
str(_text_circuit_drawer(circuit, cregbundle=False, reverse_bits=True)), expected
)
def test_text_condition_bits_reverse(self):
"""Condition and measure on single bits cregbundle true and reverse_bits true"""
bits = [Qubit(), Qubit(), Clbit(), Clbit()]
cr = ClassicalRegister(2, "cr")
crx = ClassicalRegister(3, "cs")
circuit = QuantumCircuit(bits, cr, [Clbit()], crx)
circuit.x(0).c_if(bits[3], 0)
expected = "\n".join(
[
" ",
" 1: ─────",
" ┌───┐",
" 0: ┤ X ├",
" └─╥─┘",
"cs: 3/══╬══",
" ║ ",
" 4: ══╬══",
" ║ ",
"cr: 2/══╬══",
" ║ ",
" 1: ══o══",
" ",
" 0: ═════",
" ",
]
)
self.assertEqual(
str(
_text_circuit_drawer(
circuit, cregbundle=True, initial_state=False, reverse_bits=True
)
),
expected,
)
class TestTextIdleWires(QiskitTestCase):
"""The idle_wires option"""
def test_text_h(self):
"""Remove QuWires."""
# fmt: off
expected = "\n".join([" ┌───┐",
"q1_1: |0>┤ H ├",
" └───┘"])
# fmt: on
qr1 = QuantumRegister(3, "q1")
circuit = QuantumCircuit(qr1)
circuit.h(qr1[1])
self.assertEqual(str(_text_circuit_drawer(circuit, idle_wires=False)), expected)
def test_text_measure(self):
"""Remove QuWires and ClWires."""
expected = "\n".join(
[
" ┌─┐ ",
"q2_0: |0>┤M├───",
" └╥┘┌─┐",
"q2_1: |0>─╫─┤M├",
" ║ └╥┘",
" c2: 0 2/═╩══╩═",
" 0 1 ",
]
)
qr1 = QuantumRegister(2, "q1")
cr1 = ClassicalRegister(2, "c1")
qr2 = QuantumRegister(2, "q2")
cr2 = ClassicalRegister(2, "c2")
circuit = QuantumCircuit(qr1, qr2, cr1, cr2)
circuit.measure(qr2, cr2)
self.assertEqual(str(_text_circuit_drawer(circuit, idle_wires=False)), expected)
def test_text_empty_circuit(self):
"""Remove everything in an empty circuit."""
expected = ""
circuit = QuantumCircuit()
self.assertEqual(str(_text_circuit_drawer(circuit, idle_wires=False)), expected)
def test_text_barrier(self):
"""idle_wires should ignore barrier
See https://github.com/Qiskit/qiskit-terra/issues/4391"""
# fmt: off
expected = "\n".join([" ┌───┐ ░ ",
"qr_1: |0>┤ H ├─░─",
" └───┘ ░ "])
# fmt: on
qr = QuantumRegister(3, "qr")
circuit = QuantumCircuit(qr)
circuit.h(qr[1])
circuit.barrier(qr[1], qr[2])
self.assertEqual(str(_text_circuit_drawer(circuit, idle_wires=False)), expected)
def test_text_barrier_delay(self):
"""idle_wires should ignore delay"""
# fmt: off
expected = "\n".join([" ┌───┐ ░ ",
"qr_1: |0>┤ H ├─░──",
" └───┘ ░ "])
# fmt: on
qr = QuantumRegister(4, "qr")
circuit = QuantumCircuit(qr)
circuit.h(qr[1])
circuit.barrier()
circuit.delay(100, qr[2])
self.assertEqual(str(_text_circuit_drawer(circuit, idle_wires=False)), expected)
def test_does_not_mutate_circuit(self):
"""Using 'idle_wires=False' should not mutate the circuit. Regression test of gh-8739."""
circuit = QuantumCircuit(1)
before_qubits = circuit.num_qubits
circuit.draw(idle_wires=False)
self.assertEqual(circuit.num_qubits, before_qubits)
class TestTextNonRational(QiskitTestCase):
"""non-rational numbers are correctly represented"""
def test_text_pifrac(self):
"""u drawing with -5pi/8 fraction"""
# fmt: off
expected = "\n".join(
[" ┌──────────────┐",
"q: |0>┤ U(π,-5π/8,0) ├",
" └──────────────┘"]
)
# fmt: on
qr = QuantumRegister(1, "q")
circuit = QuantumCircuit(qr)
circuit.u(pi, -5 * pi / 8, 0, qr[0])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_complex(self):
"""Complex numbers show up in the text
See https://github.com/Qiskit/qiskit-terra/issues/3640"""
expected = "\n".join(
[
" ┌────────────────────────────────────┐",
"q_0: ┤0 ├",
" │ Initialize(0.5+0.1j,0,0,0.86023j) │",
"q_1: ┤1 ├",
" └────────────────────────────────────┘",
]
)
ket = numpy.array([0.5 + 0.1 * 1j, 0, 0, 0.8602325267042626 * 1j])
circuit = QuantumCircuit(2)
circuit.initialize(ket, [0, 1])
self.assertEqual(circuit.draw(output="text").single_string(), expected)
def test_text_complex_pireal(self):
"""Complex numbers including pi show up in the text
See https://github.com/Qiskit/qiskit-terra/issues/3640"""
expected = "\n".join(
[
" ┌────────────────────────────────┐",
"q_0: |0>┤0 ├",
" │ Initialize(π/10,0,0,0.94937j) │",
"q_1: |0>┤1 ├",
" └────────────────────────────────┘",
]
)
ket = numpy.array([0.1 * numpy.pi, 0, 0, 0.9493702944526474 * 1j])
circuit = QuantumCircuit(2)
circuit.initialize(ket, [0, 1])
self.assertEqual(circuit.draw(output="text", initial_state=True).single_string(), expected)
def test_text_complex_piimaginary(self):
"""Complex numbers including pi show up in the text
See https://github.com/Qiskit/qiskit-terra/issues/3640"""
expected = "\n".join(
[
" ┌────────────────────────────────┐",
"q_0: |0>┤0 ├",
" │ Initialize(0.94937,0,0,π/10j) │",
"q_1: |0>┤1 ├",
" └────────────────────────────────┘",
]
)
ket = numpy.array([0.9493702944526474, 0, 0, 0.1 * numpy.pi * 1j])
circuit = QuantumCircuit(2)
circuit.initialize(ket, [0, 1])
self.assertEqual(circuit.draw(output="text", initial_state=True).single_string(), expected)
class TestTextInstructionWithBothWires(QiskitTestCase):
"""Composite instructions with both kind of wires
See https://github.com/Qiskit/qiskit-terra/issues/2973"""
def test_text_all_1q_1c(self):
"""Test q0-c0 in q0-c0"""
expected = "\n".join(
[
" ┌───────┐",
"qr: |0>┤0 ├",
" │ name │",
" cr: 0 ╡0 ╞",
" └───────┘",
]
)
qr1 = QuantumRegister(1, "qr")
cr1 = ClassicalRegister(1, "cr")
inst = QuantumCircuit(qr1, cr1, name="name").to_instruction()
circuit = QuantumCircuit(qr1, cr1)
circuit.append(inst, qr1[:], cr1[:])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_all_2q_2c(self):
"""Test q0-q1-c0-c1 in q0-q1-c0-c1"""
expected = "\n".join(
[
" ┌───────┐",
"qr_0: |0>┤0 ├",
" │ │",
"qr_1: |0>┤1 ├",
" │ name │",
" cr_0: 0 ╡0 ╞",
" │ │",
" cr_1: 0 ╡1 ╞",
" └───────┘",
]
)
qr2 = QuantumRegister(2, "qr")
cr2 = ClassicalRegister(2, "cr")
inst = QuantumCircuit(qr2, cr2, name="name").to_instruction()
circuit = QuantumCircuit(qr2, cr2)
circuit.append(inst, qr2[:], cr2[:])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_all_2q_2c_cregbundle(self):
"""Test q0-q1-c0-c1 in q0-q1-c0-c1. Ignore cregbundle=True"""
expected = "\n".join(
[
" ┌───────┐",
"qr_0: |0>┤0 ├",
" │ │",
"qr_1: |0>┤1 ├",
" │ name │",
" cr_0: 0 ╡0 ╞",
" │ │",
" cr_1: 0 ╡1 ╞",
" └───────┘",
]
)
qr2 = QuantumRegister(2, "qr")
cr2 = ClassicalRegister(2, "cr")
inst = QuantumCircuit(qr2, cr2, name="name").to_instruction()
circuit = QuantumCircuit(qr2, cr2)
circuit.append(inst, qr2[:], cr2[:])
with self.assertWarns(RuntimeWarning):
self.assertEqual(str(_text_circuit_drawer(circuit, cregbundle=True)), expected)
def test_text_4q_2c(self):
"""Test q1-q2-q3-q4-c1-c2 in q0-q1-q2-q3-q4-q5-c0-c1-c2-c3-c4-c5"""
expected = "\n".join(
[
" ",
"q_0: |0>─────────",
" ┌───────┐",
"q_1: |0>┤0 ├",
" │ │",
"q_2: |0>┤1 ├",
" │ │",
"q_3: |0>┤2 ├",
" │ │",
"q_4: |0>┤3 ├",
" │ name │",
"q_5: |0>┤ ├",
" │ │",
" c_0: 0 ╡ ╞",
" │ │",
" c_1: 0 ╡0 ╞",
" │ │",
" c_2: 0 ╡1 ╞",
" └───────┘",
" c_3: 0 ═════════",
" ",
" c_4: 0 ═════════",
" ",
" c_5: 0 ═════════",
" ",
]
)
qr4 = QuantumRegister(4)
cr4 = ClassicalRegister(2)
inst = QuantumCircuit(qr4, cr4, name="name").to_instruction()
qr6 = QuantumRegister(6, "q")
cr6 = ClassicalRegister(6, "c")
circuit = QuantumCircuit(qr6, cr6)
circuit.append(inst, qr6[1:5], cr6[1:3])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_2q_1c(self):
"""Test q0-c0 in q0-q1-c0
See https://github.com/Qiskit/qiskit-terra/issues/4066"""
expected = "\n".join(
[
" ┌───────┐",
"q_0: |0>┤0 ├",
" │ │",
"q_1: |0>┤ Name ├",
" │ │",
" c: 0 ╡0 ╞",
" └───────┘",
]
)
qr = QuantumRegister(2, name="q")
cr = ClassicalRegister(1, name="c")
circuit = QuantumCircuit(qr, cr)
inst = QuantumCircuit(1, 1, name="Name").to_instruction()
circuit.append(inst, [qr[0]], [cr[0]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_3q_3c_qlabels_inverted(self):
"""Test q3-q0-q1-c0-c1-c_10 in q0-q1-q2-q3-c0-c1-c2-c_10-c_11
See https://github.com/Qiskit/qiskit-terra/issues/6178"""
expected = "\n".join(
[
" ┌───────┐",
"q_0: |0>┤1 ├",
" │ │",
"q_1: |0>┤2 ├",
" │ │",
"q_2: |0>┤ ├",
" │ │",
"q_3: |0>┤0 ├",
" │ Name │",
" c_0: 0 ╡0 ╞",
" │ │",
" c_1: 0 ╡1 ╞",
" │ │",
" c_2: 0 ╡ ╞",
" │ │",
"c1_0: 0 ╡2 ╞",
" └───────┘",
"c1_1: 0 ═════════",
" ",
]
)
qr = QuantumRegister(4, name="q")
cr = ClassicalRegister(3, name="c")
cr1 = ClassicalRegister(2, name="c1")
circuit = QuantumCircuit(qr, cr, cr1)
inst = QuantumCircuit(3, 3, name="Name").to_instruction()
circuit.append(inst, [qr[3], qr[0], qr[1]], [cr[0], cr[1], cr1[0]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_3q_3c_clabels_inverted(self):
"""Test q0-q1-q3-c_11-c0-c_10 in q0-q1-q2-q3-c0-c1-c2-c_10-c_11
See https://github.com/Qiskit/qiskit-terra/issues/6178"""
expected = "\n".join(
[
" ┌───────┐",
"q_0: |0>┤0 ├",
" │ │",
"q_1: |0>┤1 ├",
" │ │",
"q_2: |0>┤ ├",
" │ │",
"q_3: |0>┤2 ├",
" │ │",
" c_0: 0 ╡1 Name ╞",
" │ │",
" c_1: 0 ╡ ╞",
" │ │",
" c_2: 0 ╡ ╞",
" │ │",
"c1_0: 0 ╡2 ╞",
" │ │",
"c1_1: 0 ╡0 ╞",
" └───────┘",
]
)
qr = QuantumRegister(4, name="q")
cr = ClassicalRegister(3, name="c")
cr1 = ClassicalRegister(2, name="c1")
circuit = QuantumCircuit(qr, cr, cr1)
inst = QuantumCircuit(3, 3, name="Name").to_instruction()
circuit.append(inst, [qr[0], qr[1], qr[3]], [cr1[1], cr[0], cr1[0]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_3q_3c_qclabels_inverted(self):
"""Test q3-q1-q2-c_11-c0-c_10 in q0-q1-q2-q3-c0-c1-c2-c_10-c_11
See https://github.com/Qiskit/qiskit-terra/issues/6178"""
expected = "\n".join(
[
" ",
"q_0: |0>─────────",
" ┌───────┐",
"q_1: |0>┤1 ├",
" │ │",
"q_2: |0>┤2 ├",
" │ │",
"q_3: |0>┤0 ├",
" │ │",
" c_0: 0 ╡1 ╞",
" │ Name │",
" c_1: 0 ╡ ╞",
" │ │",
" c_2: 0 ╡ ╞",
" │ │",
"c1_0: 0 ╡2 ╞",
" │ │",
"c1_1: 0 ╡0 ╞",
" └───────┘",
]
)
qr = QuantumRegister(4, name="q")
cr = ClassicalRegister(3, name="c")
cr1 = ClassicalRegister(2, name="c1")
circuit = QuantumCircuit(qr, cr, cr1)
inst = QuantumCircuit(3, 3, name="Name").to_instruction()
circuit.append(inst, [qr[3], qr[1], qr[2]], [cr1[1], cr[0], cr1[0]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
class TestTextDrawerAppendedLargeInstructions(QiskitTestCase):
"""Composite instructions with more than 10 qubits
See https://github.com/Qiskit/qiskit-terra/pull/4095"""
def test_text_11q(self):
"""Test q0-...-q10 in q0-...-q10"""
expected = "\n".join(
[
" ┌────────┐",
" q_0: |0>┤0 ├",
" │ │",
" q_1: |0>┤1 ├",
" │ │",
" q_2: |0>┤2 ├",
" │ │",
" q_3: |0>┤3 ├",
" │ │",
" q_4: |0>┤4 ├",
" │ │",
" q_5: |0>┤5 Name ├",
" │ │",
" q_6: |0>┤6 ├",
" │ │",
" q_7: |0>┤7 ├",
" │ │",
" q_8: |0>┤8 ├",
" │ │",
" q_9: |0>┤9 ├",
" │ │",
"q_10: |0>┤10 ├",
" └────────┘",
]
)
qr = QuantumRegister(11, "q")
circuit = QuantumCircuit(qr)
inst = QuantumCircuit(11, name="Name").to_instruction()
circuit.append(inst, qr)
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_text_11q_1c(self):
"""Test q0-...-q10-c0 in q0-...-q10-c0"""
expected = "\n".join(
[
" ┌────────┐",
" q_0: |0>┤0 ├",
" │ │",
" q_1: |0>┤1 ├",
" │ │",
" q_2: |0>┤2 ├",
" │ │",
" q_3: |0>┤3 ├",
" │ │",
" q_4: |0>┤4 ├",
" │ │",
" q_5: |0>┤5 ├",
" │ Name │",
" q_6: |0>┤6 ├",
" │ │",
" q_7: |0>┤7 ├",
" │ │",
" q_8: |0>┤8 ├",
" │ │",
" q_9: |0>┤9 ├",
" │ │",
"q_10: |0>┤10 ├",
" │ │",
" c: 0 ╡0 ╞",
" └────────┘",
]
)
qr = QuantumRegister(11, "q")
cr = ClassicalRegister(1, "c")
circuit = QuantumCircuit(qr, cr)
inst = QuantumCircuit(11, 1, name="Name").to_instruction()
circuit.append(inst, qr, cr)
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
class TestTextControlledGate(QiskitTestCase):
"""Test controlled gates"""
def test_cch_bot(self):
"""Controlled CH (bottom)"""
expected = "\n".join(
[
" ",
"q_0: |0>──■──",
" │ ",
"q_1: |0>──■──",
" ┌─┴─┐",
"q_2: |0>┤ H ├",
" └───┘",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.append(HGate().control(2), [qr[0], qr[1], qr[2]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_cch_mid(self):
"""Controlled CH (middle)"""
expected = "\n".join(
[
" ",
"q_0: |0>──■──",
" ┌─┴─┐",
"q_1: |0>┤ H ├",
" └─┬─┘",
"q_2: |0>──■──",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.append(HGate().control(2), [qr[0], qr[2], qr[1]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_cch_top(self):
"""Controlled CH"""
expected = "\n".join(
[
" ┌───┐",
"q_0: |0>┤ H ├",
" └─┬─┘",
"q_1: |0>──■──",
" │ ",
"q_2: |0>──■──",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.append(HGate().control(2), [qr[2], qr[1], qr[0]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_c3h(self):
"""Controlled Controlled CH"""
expected = "\n".join(
[
" ",
"q_0: |0>──■──",
" │ ",
"q_1: |0>──■──",
" │ ",
"q_2: |0>──■──",
" ┌─┴─┐",
"q_3: |0>┤ H ├",
" └───┘",
]
)
qr = QuantumRegister(4, "q")
circuit = QuantumCircuit(qr)
circuit.append(HGate().control(3), [qr[0], qr[1], qr[2], qr[3]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_c3h_middle(self):
"""Controlled Controlled CH (middle)"""
expected = "\n".join(
[
" ",
"q_0: |0>──■──",
" ┌─┴─┐",
"q_1: |0>┤ H ├",
" └─┬─┘",
"q_2: |0>──■──",
" │ ",
"q_3: |0>──■──",
" ",
]
)
qr = QuantumRegister(4, "q")
circuit = QuantumCircuit(qr)
circuit.append(HGate().control(3), [qr[0], qr[3], qr[2], qr[1]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_c3u2(self):
"""Controlled Controlled U2"""
expected = "\n".join(
[
" ",
"q_0: |0>───────■───────",
" ┌──────┴──────┐",
"q_1: |0>┤ U2(π,-5π/8) ├",
" └──────┬──────┘",
"q_2: |0>───────■───────",
" │ ",
"q_3: |0>───────■───────",
" ",
]
)
qr = QuantumRegister(4, "q")
circuit = QuantumCircuit(qr)
circuit.append(U2Gate(pi, -5 * pi / 8).control(3), [qr[0], qr[3], qr[2], qr[1]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_controlled_composite_gate_edge(self):
"""Controlled composite gates (edge)
See: https://github.com/Qiskit/qiskit-terra/issues/3546"""
expected = "\n".join(
[
" ┌──────┐",
"q_0: |0>┤0 ├",
" │ │",
"q_1: |0>■ ├",
" │ ghz │",
"q_2: |0>┤1 ├",
" │ │",
"q_3: |0>┤2 ├",
" └──────┘",
]
)
ghz_circuit = QuantumCircuit(3, name="ghz")
ghz_circuit.h(0)
ghz_circuit.cx(0, 1)
ghz_circuit.cx(1, 2)
ghz = ghz_circuit.to_gate()
cghz = ghz.control(1)
circuit = QuantumCircuit(4)
circuit.append(cghz, [1, 0, 2, 3])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_controlled_composite_gate_top(self):
"""Controlled composite gates (top)"""
expected = "\n".join(
[
" ",
"q_0: |0>───■────",
" ┌──┴───┐",
"q_1: |0>┤0 ├",
" │ │",
"q_2: |0>┤2 ghz ├",
" │ │",
"q_3: |0>┤1 ├",
" └──────┘",
]
)
ghz_circuit = QuantumCircuit(3, name="ghz")
ghz_circuit.h(0)
ghz_circuit.cx(0, 1)
ghz_circuit.cx(1, 2)
ghz = ghz_circuit.to_gate()
cghz = ghz.control(1)
circuit = QuantumCircuit(4)
circuit.append(cghz, [0, 1, 3, 2])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_controlled_composite_gate_bot(self):
"""Controlled composite gates (bottom)"""
expected = "\n".join(
[
" ┌──────┐",
"q_0: |0>┤1 ├",
" │ │",
"q_1: |0>┤0 ghz ├",
" │ │",
"q_2: |0>┤2 ├",
" └──┬───┘",
"q_3: |0>───■────",
" ",
]
)
ghz_circuit = QuantumCircuit(3, name="ghz")
ghz_circuit.h(0)
ghz_circuit.cx(0, 1)
ghz_circuit.cx(1, 2)
ghz = ghz_circuit.to_gate()
cghz = ghz.control(1)
circuit = QuantumCircuit(4)
circuit.append(cghz, [3, 1, 0, 2])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_controlled_composite_gate_top_bot(self):
"""Controlled composite gates (top and bottom)"""
expected = "\n".join(
[
" ",
"q_0: |0>───■────",
" ┌──┴───┐",
"q_1: |0>┤0 ├",
" │ │",
"q_2: |0>┤1 ghz ├",
" │ │",
"q_3: |0>┤2 ├",
" └──┬───┘",
"q_4: |0>───■────",
" ",
]
)
ghz_circuit = QuantumCircuit(3, name="ghz")
ghz_circuit.h(0)
ghz_circuit.cx(0, 1)
ghz_circuit.cx(1, 2)
ghz = ghz_circuit.to_gate()
ccghz = ghz.control(2)
circuit = QuantumCircuit(5)
circuit.append(ccghz, [4, 0, 1, 2, 3])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_controlled_composite_gate_all(self):
"""Controlled composite gates (top, bot, and edge)"""
expected = "\n".join(
[
" ",
"q_0: |0>───■────",
" ┌──┴───┐",
"q_1: |0>┤0 ├",
" │ │",
"q_2: |0>■ ├",
" │ ghz │",
"q_3: |0>┤1 ├",
" │ │",
"q_4: |0>┤2 ├",
" └──┬───┘",
"q_5: |0>───■────",
" ",
]
)
ghz_circuit = QuantumCircuit(3, name="ghz")
ghz_circuit.h(0)
ghz_circuit.cx(0, 1)
ghz_circuit.cx(1, 2)
ghz = ghz_circuit.to_gate()
ccghz = ghz.control(3)
circuit = QuantumCircuit(6)
circuit.append(ccghz, [0, 2, 5, 1, 3, 4])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_controlled_composite_gate_even_label(self):
"""Controlled composite gates (top and bottom) with a even label length"""
expected = "\n".join(
[
" ",
"q_0: |0>────■────",
" ┌───┴───┐",
"q_1: |0>┤0 ├",
" │ │",
"q_2: |0>┤1 cghz ├",
" │ │",
"q_3: |0>┤2 ├",
" └───┬───┘",
"q_4: |0>────■────",
" ",
]
)
ghz_circuit = QuantumCircuit(3, name="cghz")
ghz_circuit.h(0)
ghz_circuit.cx(0, 1)
ghz_circuit.cx(1, 2)
ghz = ghz_circuit.to_gate()
ccghz = ghz.control(2)
circuit = QuantumCircuit(5)
circuit.append(ccghz, [4, 0, 1, 2, 3])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
class TestTextOpenControlledGate(QiskitTestCase):
"""Test open controlled gates"""
def test_ch_bot(self):
"""Open controlled H (bottom)"""
# fmt: off
expected = "\n".join(
[" ",
"q_0: |0>──o──",
" ┌─┴─┐",
"q_1: |0>┤ H ├",
" └───┘"]
)
# fmt: on
qr = QuantumRegister(2, "q")
circuit = QuantumCircuit(qr)
circuit.append(HGate().control(1, ctrl_state=0), [qr[0], qr[1]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_cz_bot(self):
"""Open controlled Z (bottom)"""
# fmt: off
expected = "\n".join([" ",
"q_0: |0>─o─",
" │ ",
"q_1: |0>─■─",
" "])
# fmt: on
qr = QuantumRegister(2, "q")
circuit = QuantumCircuit(qr)
circuit.append(ZGate().control(1, ctrl_state=0), [qr[0], qr[1]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_ccz_bot(self):
"""Closed-Open controlled Z (bottom)"""
expected = "\n".join(
[
" ",
"q_0: |0>─■─",
" │ ",
"q_1: |0>─o─",
" │ ",
"q_2: |0>─■─",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.append(ZGate().control(2, ctrl_state="01"), [qr[0], qr[1], qr[2]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_cccz_conditional(self):
"""Closed-Open controlled Z (with conditional)"""
expected = "\n".join(
[
" ",
"q_0: |0>───■───",
" │ ",
"q_1: |0>───o───",
" │ ",
"q_2: |0>───■───",
" │ ",
"q_3: |0>───■───",
" ┌──╨──┐",
" c: 0 1/╡ 0x1 ╞",
" └─────┘",
]
)
qr = QuantumRegister(4, "q")
cr = ClassicalRegister(1, "c")
circuit = QuantumCircuit(qr, cr)
circuit.append(
ZGate().control(3, ctrl_state="101").c_if(cr, 1), [qr[0], qr[1], qr[2], qr[3]]
)
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_cch_bot(self):
"""Controlled CH (bottom)"""
expected = "\n".join(
[
" ",
"q_0: |0>──o──",
" │ ",
"q_1: |0>──■──",
" ┌─┴─┐",
"q_2: |0>┤ H ├",
" └───┘",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.append(HGate().control(2, ctrl_state="10"), [qr[0], qr[1], qr[2]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_cch_mid(self):
"""Controlled CH (middle)"""
expected = "\n".join(
[
" ",
"q_0: |0>──o──",
" ┌─┴─┐",
"q_1: |0>┤ H ├",
" └─┬─┘",
"q_2: |0>──■──",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.append(HGate().control(2, ctrl_state="10"), [qr[0], qr[2], qr[1]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_cch_top(self):
"""Controlled CH"""
expected = "\n".join(
[
" ┌───┐",
"q_0: |0>┤ H ├",
" └─┬─┘",
"q_1: |0>──o──",
" │ ",
"q_2: |0>──■──",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.append(HGate().control(2, ctrl_state="10"), [qr[1], qr[2], qr[0]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_c3h(self):
"""Controlled Controlled CH"""
expected = "\n".join(
[
" ",
"q_0: |0>──o──",
" │ ",
"q_1: |0>──o──",
" │ ",
"q_2: |0>──■──",
" ┌─┴─┐",
"q_3: |0>┤ H ├",
" └───┘",
]
)
qr = QuantumRegister(4, "q")
circuit = QuantumCircuit(qr)
circuit.append(HGate().control(3, ctrl_state="100"), [qr[0], qr[1], qr[2], qr[3]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_c3h_middle(self):
"""Controlled Controlled CH (middle)"""
expected = "\n".join(
[
" ",
"q_0: |0>──o──",
" ┌─┴─┐",
"q_1: |0>┤ H ├",
" └─┬─┘",
"q_2: |0>──o──",
" │ ",
"q_3: |0>──■──",
" ",
]
)
qr = QuantumRegister(4, "q")
circuit = QuantumCircuit(qr)
circuit.append(HGate().control(3, ctrl_state="010"), [qr[0], qr[3], qr[2], qr[1]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_c3u2(self):
"""Controlled Controlled U2"""
expected = "\n".join(
[
" ",
"q_0: |0>───────o───────",
" ┌──────┴──────┐",
"q_1: |0>┤ U2(π,-5π/8) ├",
" └──────┬──────┘",
"q_2: |0>───────■───────",
" │ ",
"q_3: |0>───────o───────",
" ",
]
)
qr = QuantumRegister(4, "q")
circuit = QuantumCircuit(qr)
circuit.append(
U2Gate(pi, -5 * pi / 8).control(3, ctrl_state="100"), [qr[0], qr[3], qr[2], qr[1]]
)
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_controlled_composite_gate_edge(self):
"""Controlled composite gates (edge)
See: https://github.com/Qiskit/qiskit-terra/issues/3546"""
expected = "\n".join(
[
" ┌──────┐",
"q_0: |0>┤0 ├",
" │ │",
"q_1: |0>o ├",
" │ ghz │",
"q_2: |0>┤1 ├",
" │ │",
"q_3: |0>┤2 ├",
" └──────┘",
]
)
ghz_circuit = QuantumCircuit(3, name="ghz")
ghz_circuit.h(0)
ghz_circuit.cx(0, 1)
ghz_circuit.cx(1, 2)
ghz = ghz_circuit.to_gate()
cghz = ghz.control(1, ctrl_state="0")
circuit = QuantumCircuit(4)
circuit.append(cghz, [1, 0, 2, 3])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_controlled_composite_gate_top(self):
"""Controlled composite gates (top)"""
expected = "\n".join(
[
" ",
"q_0: |0>───o────",
" ┌──┴───┐",
"q_1: |0>┤0 ├",
" │ │",
"q_2: |0>┤2 ghz ├",
" │ │",
"q_3: |0>┤1 ├",
" └──────┘",
]
)
ghz_circuit = QuantumCircuit(3, name="ghz")
ghz_circuit.h(0)
ghz_circuit.cx(0, 1)
ghz_circuit.cx(1, 2)
ghz = ghz_circuit.to_gate()
cghz = ghz.control(1, ctrl_state="0")
circuit = QuantumCircuit(4)
circuit.append(cghz, [0, 1, 3, 2])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_controlled_composite_gate_bot(self):
"""Controlled composite gates (bottom)"""
expected = "\n".join(
[
" ┌──────┐",
"q_0: |0>┤1 ├",
" │ │",
"q_1: |0>┤0 ghz ├",
" │ │",
"q_2: |0>┤2 ├",
" └──┬───┘",
"q_3: |0>───o────",
" ",
]
)
ghz_circuit = QuantumCircuit(3, name="ghz")
ghz_circuit.h(0)
ghz_circuit.cx(0, 1)
ghz_circuit.cx(1, 2)
ghz = ghz_circuit.to_gate()
cghz = ghz.control(1, ctrl_state="0")
circuit = QuantumCircuit(4)
circuit.append(cghz, [3, 1, 0, 2])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_controlled_composite_gate_top_bot(self):
"""Controlled composite gates (top and bottom)"""
expected = "\n".join(
[
" ",
"q_0: |0>───o────",
" ┌──┴───┐",
"q_1: |0>┤0 ├",
" │ │",
"q_2: |0>┤1 ghz ├",
" │ │",
"q_3: |0>┤2 ├",
" └──┬───┘",
"q_4: |0>───■────",
" ",
]
)
ghz_circuit = QuantumCircuit(3, name="ghz")
ghz_circuit.h(0)
ghz_circuit.cx(0, 1)
ghz_circuit.cx(1, 2)
ghz = ghz_circuit.to_gate()
ccghz = ghz.control(2, ctrl_state="01")
circuit = QuantumCircuit(5)
circuit.append(ccghz, [4, 0, 1, 2, 3])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_controlled_composite_gate_all(self):
"""Controlled composite gates (top, bot, and edge)"""
expected = "\n".join(
[
" ",
"q_0: |0>───o────",
" ┌──┴───┐",
"q_1: |0>┤0 ├",
" │ │",
"q_2: |0>o ├",
" │ ghz │",
"q_3: |0>┤1 ├",
" │ │",
"q_4: |0>┤2 ├",
" └──┬───┘",
"q_5: |0>───o────",
" ",
]
)
ghz_circuit = QuantumCircuit(3, name="ghz")
ghz_circuit.h(0)
ghz_circuit.cx(0, 1)
ghz_circuit.cx(1, 2)
ghz = ghz_circuit.to_gate()
ccghz = ghz.control(3, ctrl_state="000")
circuit = QuantumCircuit(6)
circuit.append(ccghz, [0, 2, 5, 1, 3, 4])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_open_controlled_x(self):
"""Controlled X gates.
See https://github.com/Qiskit/qiskit-terra/issues/4180"""
expected = "\n".join(
[
" ",
"qr_0: |0>──o────o────o────o────■──",
" ┌─┴─┐ │ │ │ │ ",
"qr_1: |0>┤ X ├──o────■────■────o──",
" └───┘┌─┴─┐┌─┴─┐ │ │ ",
"qr_2: |0>─────┤ X ├┤ X ├──o────o──",
" └───┘└───┘┌─┴─┐┌─┴─┐",
"qr_3: |0>───────────────┤ X ├┤ X ├",
" └───┘└─┬─┘",
"qr_4: |0>──────────────────────■──",
" ",
]
)
qreg = QuantumRegister(5, "qr")
circuit = QuantumCircuit(qreg)
control1 = XGate().control(1, ctrl_state="0")
circuit.append(control1, [0, 1])
control2 = XGate().control(2, ctrl_state="00")
circuit.append(control2, [0, 1, 2])
control2_2 = XGate().control(2, ctrl_state="10")
circuit.append(control2_2, [0, 1, 2])
control3 = XGate().control(3, ctrl_state="010")
circuit.append(control3, [0, 1, 2, 3])
control3 = XGate().control(4, ctrl_state="0101")
circuit.append(control3, [0, 1, 4, 2, 3])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_open_controlled_y(self):
"""Controlled Y gates.
See https://github.com/Qiskit/qiskit-terra/issues/4180"""
expected = "\n".join(
[
" ",
"qr_0: |0>──o────o────o────o────■──",
" ┌─┴─┐ │ │ │ │ ",
"qr_1: |0>┤ Y ├──o────■────■────o──",
" └───┘┌─┴─┐┌─┴─┐ │ │ ",
"qr_2: |0>─────┤ Y ├┤ Y ├──o────o──",
" └───┘└───┘┌─┴─┐┌─┴─┐",
"qr_3: |0>───────────────┤ Y ├┤ Y ├",
" └───┘└─┬─┘",
"qr_4: |0>──────────────────────■──",
" ",
]
)
qreg = QuantumRegister(5, "qr")
circuit = QuantumCircuit(qreg)
control1 = YGate().control(1, ctrl_state="0")
circuit.append(control1, [0, 1])
control2 = YGate().control(2, ctrl_state="00")
circuit.append(control2, [0, 1, 2])
control2_2 = YGate().control(2, ctrl_state="10")
circuit.append(control2_2, [0, 1, 2])
control3 = YGate().control(3, ctrl_state="010")
circuit.append(control3, [0, 1, 2, 3])
control3 = YGate().control(4, ctrl_state="0101")
circuit.append(control3, [0, 1, 4, 2, 3])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_open_controlled_z(self):
"""Controlled Z gates."""
expected = "\n".join(
[
" ",
"qr_0: |0>─o──o──o──o──■─",
" │ │ │ │ │ ",
"qr_1: |0>─■──o──■──■──o─",
" │ │ │ │ ",
"qr_2: |0>────■──■──o──o─",
" │ │ ",
"qr_3: |0>──────────■──■─",
" │ ",
"qr_4: |0>─────────────■─",
" ",
]
)
qreg = QuantumRegister(5, "qr")
circuit = QuantumCircuit(qreg)
control1 = ZGate().control(1, ctrl_state="0")
circuit.append(control1, [0, 1])
control2 = ZGate().control(2, ctrl_state="00")
circuit.append(control2, [0, 1, 2])
control2_2 = ZGate().control(2, ctrl_state="10")
circuit.append(control2_2, [0, 1, 2])
control3 = ZGate().control(3, ctrl_state="010")
circuit.append(control3, [0, 1, 2, 3])
control3 = ZGate().control(4, ctrl_state="0101")
circuit.append(control3, [0, 1, 4, 2, 3])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_open_controlled_u1(self):
"""Controlled U1 gates."""
expected = "\n".join(
[
" ",
"qr_0: |0>─o─────────o─────────o─────────o─────────■────────",
" │U1(0.1) │ │ │ │ ",
"qr_1: |0>─■─────────o─────────■─────────■─────────o────────",
" │U1(0.2) │U1(0.3) │ │ ",
"qr_2: |0>───────────■─────────■─────────o─────────o────────",
" │U1(0.4) │ ",
"qr_3: |0>───────────────────────────────■─────────■────────",
" │U1(0.5) ",
"qr_4: |0>─────────────────────────────────────────■────────",
" ",
]
)
qreg = QuantumRegister(5, "qr")
circuit = QuantumCircuit(qreg)
control1 = U1Gate(0.1).control(1, ctrl_state="0")
circuit.append(control1, [0, 1])
control2 = U1Gate(0.2).control(2, ctrl_state="00")
circuit.append(control2, [0, 1, 2])
control2_2 = U1Gate(0.3).control(2, ctrl_state="10")
circuit.append(control2_2, [0, 1, 2])
control3 = U1Gate(0.4).control(3, ctrl_state="010")
circuit.append(control3, [0, 1, 2, 3])
control3 = U1Gate(0.5).control(4, ctrl_state="0101")
circuit.append(control3, [0, 1, 4, 2, 3])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_open_controlled_swap(self):
"""Controlled SWAP gates."""
expected = "\n".join(
[
" ",
"qr_0: |0>─o──o──o──o─",
" │ │ │ │ ",
"qr_1: |0>─X──o──■──■─",
" │ │ │ │ ",
"qr_2: |0>─X──X──X──o─",
" │ │ │ ",
"qr_3: |0>────X──X──X─",
" │ ",
"qr_4: |0>──────────X─",
" ",
]
)
qreg = QuantumRegister(5, "qr")
circuit = QuantumCircuit(qreg)
control1 = SwapGate().control(1, ctrl_state="0")
circuit.append(control1, [0, 1, 2])
control2 = SwapGate().control(2, ctrl_state="00")
circuit.append(control2, [0, 1, 2, 3])
control2_2 = SwapGate().control(2, ctrl_state="10")
circuit.append(control2_2, [0, 1, 2, 3])
control3 = SwapGate().control(3, ctrl_state="010")
circuit.append(control3, [0, 1, 2, 3, 4])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_open_controlled_rzz(self):
"""Controlled RZZ gates."""
expected = "\n".join(
[
" ",
"qr_0: |0>─o───────o───────o───────o──────",
" │ │ │ │ ",
"qr_1: |0>─■───────o───────■───────■──────",
" │ZZ(1) │ │ │ ",
"qr_2: |0>─■───────■───────■───────o──────",
" │ZZ(1) │ZZ(1) │ ",
"qr_3: |0>─────────■───────■───────■──────",
" │ZZ(1) ",
"qr_4: |0>─────────────────────────■──────",
" ",
]
)
qreg = QuantumRegister(5, "qr")
circuit = QuantumCircuit(qreg)
control1 = RZZGate(1).control(1, ctrl_state="0")
circuit.append(control1, [0, 1, 2])
control2 = RZZGate(1).control(2, ctrl_state="00")
circuit.append(control2, [0, 1, 2, 3])
control2_2 = RZZGate(1).control(2, ctrl_state="10")
circuit.append(control2_2, [0, 1, 2, 3])
control3 = RZZGate(1).control(3, ctrl_state="010")
circuit.append(control3, [0, 1, 2, 3, 4])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_open_out_of_order(self):
"""Out of order CXs
See: https://github.com/Qiskit/qiskit-terra/issues/4052#issuecomment-613736911"""
expected = "\n".join(
[
" ",
"q_0: |0>──■──",
" │ ",
"q_1: |0>──■──",
" ┌─┴─┐",
"q_2: |0>┤ X ├",
" └─┬─┘",
"q_3: |0>──o──",
" ",
"q_4: |0>─────",
" ",
]
)
qr = QuantumRegister(5, "q")
circuit = QuantumCircuit(qr)
circuit.append(XGate().control(3, ctrl_state="101"), [qr[0], qr[3], qr[1], qr[2]])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
class TestTextWithLayout(QiskitTestCase):
"""The with_layout option"""
def test_with_no_layout(self):
"""A circuit without layout"""
expected = "\n".join(
[
" ",
"q_0: |0>─────",
" ┌───┐",
"q_1: |0>┤ H ├",
" └───┘",
"q_2: |0>─────",
" ",
]
)
qr = QuantumRegister(3, "q")
circuit = QuantumCircuit(qr)
circuit.h(qr[1])
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_mixed_layout(self):
"""With a mixed layout."""
expected = "\n".join(
[
" ┌───┐",
" v_0 -> 0 |0>┤ H ├",
" └───┘",
"ancilla_1 -> 1 |0>─────",
" ",
"ancilla_0 -> 2 |0>─────",
" ┌───┐",
" v_1 -> 3 |0>┤ H ├",
" └───┘",
]
)
qr = QuantumRegister(2, "v")
ancilla = QuantumRegister(2, "ancilla")
circuit = QuantumCircuit(qr, ancilla)
circuit.h(qr)
pass_ = ApplyLayout()
pass_.property_set["layout"] = Layout({qr[0]: 0, ancilla[1]: 1, ancilla[0]: 2, qr[1]: 3})
circuit_with_layout = pass_(circuit)
self.assertEqual(str(_text_circuit_drawer(circuit_with_layout)), expected)
def test_partial_layout(self):
"""With a partial layout.
See: https://github.com/Qiskit/qiskit-terra/issues/4757"""
expected = "\n".join(
[
" ┌───┐",
"v_0 -> 0 |0>┤ H ├",
" └───┘",
" 1 |0>─────",
" ",
" 2 |0>─────",
" ┌───┐",
"v_1 -> 3 |0>┤ H ├",
" └───┘",
]
)
qr = QuantumRegister(2, "v")
pqr = QuantumRegister(4, "physical")
circuit = QuantumCircuit(pqr)
circuit.h(0)
circuit.h(3)
circuit._layout = TranspileLayout(
Layout({0: qr[0], 1: None, 2: None, 3: qr[1]}),
{qubit: index for index, qubit in enumerate(circuit.qubits)},
)
circuit._layout.initial_layout.add_register(qr)
self.assertEqual(str(_text_circuit_drawer(circuit)), expected)
def test_with_classical_regs(self):
"""Involving classical registers"""
expected = "\n".join(
[
" ",
"qr1_0 -> 0 |0>──────",
" ",
"qr1_1 -> 1 |0>──────",
" ┌─┐ ",
"qr2_0 -> 2 |0>┤M├───",
" └╥┘┌─┐",
"qr2_1 -> 3 |0>─╫─┤M├",
" ║ └╥┘",
" cr: 0 2/═╩══╩═",
" 0 1 ",
]
)
qr1 = QuantumRegister(2, "qr1")
qr2 = QuantumRegister(2, "qr2")
cr = ClassicalRegister(2, "cr")
circuit = QuantumCircuit(qr1, qr2, cr)
circuit.measure(qr2[0], cr[0])
circuit.measure(qr2[1], cr[1])
pass_ = ApplyLayout()
pass_.property_set["layout"] = Layout({qr1[0]: 0, qr1[1]: 1, qr2[0]: 2, qr2[1]: 3})
circuit_with_layout = pass_(circuit)
self.assertEqual(str(_text_circuit_drawer(circuit_with_layout)), expected)
def test_with_layout_but_disable(self):
"""With parameter without_layout=False"""
expected = "\n".join(
[
" ",
"q_0: |0>──────",
" ",
"q_1: |0>──────",
" ┌─┐ ",
"q_2: |0>┤M├───",
" └╥┘┌─┐",
"q_3: |0>─╫─┤M├",
" ║ └╥┘",
"cr: 0 2/═╩══╩═",
" 0 1 ",
]
)
pqr = QuantumRegister(4, "q")
qr1 = QuantumRegister(2, "qr1")
cr = ClassicalRegister(2, "cr")
qr2 = QuantumRegister(2, "qr2")
circuit = QuantumCircuit(pqr, cr)
circuit._layout = Layout({qr1[0]: 0, qr1[1]: 1, qr2[0]: 2, qr2[1]: 3})
circuit.measure(pqr[2], cr[0])
circuit.measure(pqr[3], cr[1])
self.assertEqual(str(_text_circuit_drawer(circuit, with_layout=False)), expected)
def test_after_transpile(self):
"""After transpile, the drawing should include the layout"""
expected = "\n".join(
[
" ┌─────────┐┌─────────┐┌───┐┌─────────┐┌─┐ ",
" userqr_0 -> 0 ┤ U2(0,π) ├┤ U2(0,π) ├┤ X ├┤ U2(0,π) ├┤M├───",
" ├─────────┤├─────────┤└─┬─┘├─────────┤└╥┘┌─┐",
" userqr_1 -> 1 ┤ U2(0,π) ├┤ U2(0,π) ├──■──┤ U2(0,π) ├─╫─┤M├",
" └─────────┘└─────────┘ └─────────┘ ║ └╥┘",
" ancilla_0 -> 2 ───────────────────────────────────────╫──╫─",
" ║ ║ ",
" ancilla_1 -> 3 ───────────────────────────────────────╫──╫─",
" ║ ║ ",
" ancilla_2 -> 4 ───────────────────────────────────────╫──╫─",
" ║ ║ ",
" ancilla_3 -> 5 ───────────────────────────────────────╫──╫─",
" ║ ║ ",
" ancilla_4 -> 6 ───────────────────────────────────────╫──╫─",
" ║ ║ ",
" ancilla_5 -> 7 ───────────────────────────────────────╫──╫─",
" ║ ║ ",
" ancilla_6 -> 8 ───────────────────────────────────────╫──╫─",
" ║ ║ ",
" ancilla_7 -> 9 ───────────────────────────────────────╫──╫─",
" ║ ║ ",
" ancilla_8 -> 10 ───────────────────────────────────────╫──╫─",
" ║ ║ ",
" ancilla_9 -> 11 ───────────────────────────────────────╫──╫─",
" ║ ║ ",
"ancilla_10 -> 12 ───────────────────────────────────────╫──╫─",
" ║ ║ ",
"ancilla_11 -> 13 ───────────────────────────────────────╫──╫─",
" ║ ║ ",
" c0_0: ═══════════════════════════════════════╩══╬═",
" ║ ",
" c0_1: ══════════════════════════════════════════╩═",
" ",
]
)
qr = QuantumRegister(2, "userqr")
cr = ClassicalRegister(2, "c0")
qc = QuantumCircuit(qr, cr)
qc.h(qr)
qc.cx(qr[0], qr[1])
qc.measure(qr, cr)
coupling_map = [
[1, 0],
[1, 2],
[2, 3],
[4, 3],
[4, 10],
[5, 4],
[5, 6],
[5, 9],
[6, 8],
[7, 8],
[9, 8],
[9, 10],
[11, 3],
[11, 10],
[11, 12],
[12, 2],
[13, 1],
[13, 12],
]
qc_result = transpile(
qc,
basis_gates=["u1", "u2", "u3", "cx", "id"],
coupling_map=coupling_map,
optimization_level=0,
seed_transpiler=0,
)
self.assertEqual(qc_result.draw(output="text", cregbundle=False).single_string(), expected)
class TestTextInitialValue(QiskitTestCase):
"""Testing the initial_state parameter"""
def setUp(self) -> None:
super().setUp()
qr = QuantumRegister(2, "q")
cr = ClassicalRegister(2, "c")
self.circuit = QuantumCircuit(qr, cr)
self.circuit.measure(qr, cr)
def test_draw_initial_value_default(self):
"""Text drawer (.draw) default initial_state parameter (False)."""
expected = "\n".join(
[
" ┌─┐ ",
"q_0: ┤M├───",
" └╥┘┌─┐",
"q_1: ─╫─┤M├",
" ║ └╥┘",
"c_0: ═╩══╬═",
" ║ ",
"c_1: ════╩═",
" ",
]
)
self.assertEqual(
self.circuit.draw(output="text", cregbundle=False).single_string(), expected
)
def test_draw_initial_value_true(self):
"""Text drawer .draw(initial_state=True)."""
expected = "\n".join(
[
" ┌─┐ ",
"q_0: |0>┤M├───",
" └╥┘┌─┐",
"q_1: |0>─╫─┤M├",
" ║ └╥┘",
" c_0: 0 ═╩══╬═",
" ║ ",
" c_1: 0 ════╩═",
" ",
]
)
self.assertEqual(
self.circuit.draw(output="text", initial_state=True, cregbundle=False).single_string(),
expected,
)
def test_initial_value_false(self):
"""Text drawer with initial_state parameter False."""
expected = "\n".join(
[
" ┌─┐ ",
"q_0: ┤M├───",
" └╥┘┌─┐",
"q_1: ─╫─┤M├",
" ║ └╥┘",
"c: 2/═╩══╩═",
" 0 1 ",
]
)
self.assertEqual(str(_text_circuit_drawer(self.circuit, initial_state=False)), expected)
class TestTextHamiltonianGate(QiskitTestCase):
"""Testing the Hamiltonian gate drawer"""
def test_draw_hamiltonian_single(self):
"""Text Hamiltonian gate with single qubit."""
# fmt: off
expected = "\n".join([" ┌─────────────┐",
"q0: ┤ Hamiltonian ├",
" └─────────────┘"])
# fmt: on
qr = QuantumRegister(1, "q0")
circuit = QuantumCircuit(qr)
matrix = numpy.zeros((2, 2))
theta = Parameter("theta")
circuit.append(HamiltonianGate(matrix, theta), [qr[0]])
circuit = circuit.bind_parameters({theta: 1})
self.assertEqual(circuit.draw(output="text").single_string(), expected)
def test_draw_hamiltonian_multi(self):
"""Text Hamiltonian gate with mutiple qubits."""
expected = "\n".join(
[
" ┌──────────────┐",
"q0_0: ┤0 ├",
" │ Hamiltonian │",
"q0_1: ┤1 ├",
" └──────────────┘",
]
)
qr = QuantumRegister(2, "q0")
circuit = QuantumCircuit(qr)
matrix = numpy.zeros((4, 4))
theta = Parameter("theta")
circuit.append(HamiltonianGate(matrix, theta), [qr[0], qr[1]])
circuit = circuit.bind_parameters({theta: 1})
self.assertEqual(circuit.draw(output="text").single_string(), expected)
class TestTextPhase(QiskitTestCase):
"""Testing the draweing a circuit with phase"""
def test_bell(self):
"""Text Bell state with phase."""
expected = "\n".join(
[
"global phase: \u03C0/2",
" ┌───┐ ",
"q_0: ┤ H ├──■──",
" └───┘┌─┴─┐",
"q_1: ─────┤ X ├",
" └───┘",
]
)
qr = QuantumRegister(2, "q")
circuit = QuantumCircuit(qr)
circuit.global_phase = 3.141592653589793 / 2
circuit.h(0)
circuit.cx(0, 1)
self.assertEqual(circuit.draw(output="text").single_string(), expected)
def test_empty(self):
"""Text empty circuit (two registers) with phase."""
# fmt: off
expected = "\n".join(["global phase: 3",
" ",
"q_0: ",
" ",
"q_1: ",
" "])
# fmt: on
qr = QuantumRegister(2, "q")
circuit = QuantumCircuit(qr)
circuit.global_phase = 3
self.assertEqual(circuit.draw(output="text").single_string(), expected)
def test_empty_noregs(self):
"""Text empty circuit (no registers) with phase."""
expected = "\n".join(["global phase: 4.21"])
circuit = QuantumCircuit()
circuit.global_phase = 4.21
self.assertEqual(circuit.draw(output="text").single_string(), expected)
def test_registerless_one_bit(self):
"""Text circuit with one-bit registers and registerless bits."""
# fmt: off
expected = "\n".join([" ",
"qrx_0: ",
" ",
"qrx_1: ",
" ",
" 2: ",
" ",
" 3: ",
" ",
" qry: ",
" ",
" 0: ",
" ",
" 1: ",
" ",
"crx: 2/",
" "])
# fmt: on
qrx = QuantumRegister(2, "qrx")
qry = QuantumRegister(1, "qry")
crx = ClassicalRegister(2, "crx")
circuit = QuantumCircuit(qrx, [Qubit(), Qubit()], qry, [Clbit(), Clbit()], crx)
self.assertEqual(circuit.draw(output="text", cregbundle=True).single_string(), expected)
class TestCircuitVisualizationImplementation(QiskitVisualizationTestCase):
"""Tests utf8 and cp437 encoding."""
text_reference_utf8 = path_to_diagram_reference("circuit_text_ref_utf8.txt")
text_reference_cp437 = path_to_diagram_reference("circuit_text_ref_cp437.txt")
def sample_circuit(self):
"""Generate a sample circuit that includes the most common elements of
quantum circuits.
"""
qr = QuantumRegister(3, "q")
cr = ClassicalRegister(3, "c")
circuit = QuantumCircuit(qr, cr)
circuit.x(qr[0])
circuit.y(qr[0])
circuit.z(qr[0])
circuit.barrier(qr[0])
circuit.barrier(qr[1])
circuit.barrier(qr[2])
circuit.h(qr[0])
circuit.s(qr[0])
circuit.sdg(qr[0])
circuit.t(qr[0])
circuit.tdg(qr[0])
circuit.sx(qr[0])
circuit.sxdg(qr[0])
circuit.i(qr[0])
circuit.reset(qr[0])
circuit.rx(pi, qr[0])
circuit.ry(pi, qr[0])
circuit.rz(pi, qr[0])
circuit.append(U1Gate(pi), [qr[0]])
circuit.append(U2Gate(pi, pi), [qr[0]])
circuit.append(U3Gate(pi, pi, pi), [qr[0]])
circuit.swap(qr[0], qr[1])
circuit.cx(qr[0], qr[1])
circuit.cy(qr[0], qr[1])
circuit.cz(qr[0], qr[1])
circuit.ch(qr[0], qr[1])
circuit.append(CU1Gate(pi), [qr[0], qr[1]])
circuit.append(CU3Gate(pi, pi, pi), [qr[0], qr[1]])
circuit.crz(pi, qr[0], qr[1])
circuit.cry(pi, qr[0], qr[1])
circuit.crx(pi, qr[0], qr[1])
circuit.ccx(qr[0], qr[1], qr[2])
circuit.cswap(qr[0], qr[1], qr[2])
circuit.measure(qr, cr)
return circuit
def test_text_drawer_utf8(self):
"""Test that text drawer handles utf8 encoding."""
filename = "current_textplot_utf8.txt"
qc = self.sample_circuit()
output = _text_circuit_drawer(
qc, filename=filename, fold=-1, initial_state=True, cregbundle=False, encoding="utf8"
)
try:
encode(str(output), encoding="utf8")
except UnicodeEncodeError:
self.fail("_text_circuit_drawer() should be utf8.")
self.assertFilesAreEqual(filename, self.text_reference_utf8, "utf8")
os.remove(filename)
def test_text_drawer_cp437(self):
"""Test that text drawer handles cp437 encoding."""
filename = "current_textplot_cp437.txt"
qc = self.sample_circuit()
output = _text_circuit_drawer(
qc, filename=filename, fold=-1, initial_state=True, cregbundle=False, encoding="cp437"
)
try:
encode(str(output), encoding="cp437")
except UnicodeEncodeError:
self.fail("_text_circuit_drawer() should be cp437.")
self.assertFilesAreEqual(filename, self.text_reference_cp437, "cp437")
os.remove(filename)
if __name__ == "__main__":
unittest.main()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_nature.second_q.drivers import GaussianForcesDriver
# if you ran Gaussian elsewhere and already have the output file
driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log")
# if you want to run the Gaussian job from Qiskit
# driver = GaussianForcesDriver(
# ['#p B3LYP/6-31g Freq=(Anharm) Int=Ultrafine SCF=VeryTight',
# '',
# 'CO2 geometry optimization B3LYP/6-31g',
# '',
# '0 1',
# 'C -0.848629 2.067624 0.160992',
# 'O 0.098816 2.655801 -0.159738',
# 'O -1.796073 1.479446 0.481721',
# '',
# ''
from qiskit_nature.second_q.problems import HarmonicBasis
basis = HarmonicBasis([2, 2, 2, 2])
from qiskit_nature.second_q.problems import VibrationalStructureProblem
from qiskit_nature.second_q.mappers import DirectMapper
vibrational_problem = driver.run(basis=basis)
vibrational_problem.hamiltonian.truncation_order = 2
main_op, aux_ops = vibrational_problem.second_q_ops()
print(main_op)
qubit_mapper = DirectMapper()
qubit_op = qubit_mapper.map(main_op)
print(qubit_op)
basis = HarmonicBasis([3, 3, 3, 3])
vibrational_problem = driver.run(basis=basis)
vibrational_problem.hamiltonian.truncation_order = 2
main_op, aux_ops = vibrational_problem.second_q_ops()
qubit_mapper = DirectMapper()
qubit_op = qubit_mapper.map(main_op)
print(qubit_op)
# for simplicity, we will use the smaller basis again
vibrational_problem = driver.run(basis=HarmonicBasis([2, 2, 2, 2]))
vibrational_problem.hamiltonian.truncation_order = 2
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver
from qiskit_nature.second_q.algorithms import GroundStateEigensolver
solver = GroundStateEigensolver(
qubit_mapper,
NumPyMinimumEigensolver(filter_criterion=vibrational_problem.get_default_filter_criterion()),
)
result = solver.solve(vibrational_problem)
print(result)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/mmetcalf14/Hamiltonian_Downfolding_IBM
|
mmetcalf14
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
This module contains the definition of a base class for
feature map. Several types of commonly used approaches.
"""
import logging
import numpy as np
from qiskit import QuantumCircuit
from qiskit.aqua.utils.arithmetic import next_power_of_2_base
from qiskit.aqua.components.feature_maps import FeatureMap
from qiskit.aqua.circuits import StateVectorCircuit
logger = logging.getLogger(__name__)
class RawFeatureVector(FeatureMap):
"""
Using raw feature vector as the initial state vector
"""
CONFIGURATION = {
'name': 'RawFeatureVector',
'description': 'Raw feature vector',
'input_schema': {
'$schema': 'http://json-schema.org/schema#',
'id': 'raw_feature_vector_schema',
'type': 'object',
'properties': {
'feature_dimension': {
'type': 'integer',
'default': 2,
'minimum': 1
},
},
'additionalProperties': False
}
}
def __init__(self, feature_dimension=2):
"""Constructor.
Args:
feature_vector: The raw feature vector
"""
self.validate(locals())
super().__init__()
self._feature_dimension = feature_dimension
self._num_qubits = next_power_of_2_base(feature_dimension)
def construct_circuit(self, x, qr=None, inverse=False):
"""
Construct the second order expansion based on given data.
Args:
x (numpy.ndarray): 1-D to-be-encoded data.
qr (QauntumRegister): the QuantumRegister object for the circuit, if None,
generate new registers with name q.
Returns:
QuantumCircuit: a quantum circuit transform data x.
"""
if not isinstance(x, np.ndarray):
raise TypeError("x must be numpy array.")
if x.ndim != 1:
raise ValueError("x must be 1-D array.")
if x.shape[0] != self._feature_dimension:
raise ValueError("Unexpected feature vector dimension.")
state_vector = np.pad(x, (0, (1 << self.num_qubits) - len(x)), 'constant')
svc = StateVectorCircuit(state_vector)
return svc.construct_circuit(register=qr)
|
https://github.com/hamburgerguy/Quantum-Algorithm-Implementations
|
hamburgerguy
|
"""The following is python code utilizing the qiskit library that can be run on extant quantum
hardware using 5 qubits for factoring the integer 15 into 3 and 5. Using period finding,
for a^r mod N = 1, where a = 11 and N = 15 (the integer to be factored) the problem is to find
r values for this identity such that one can find the prime factors of N. For 11^r mod(15) =1,
results (as shown in fig 1.) correspond with period r = 4 (|00100>) and r = 0 (|00000>).
To find the factor, use the equivalence a^r mod 15. From this:
(a^r -1) mod 15 = (a^(r/2) + 1)(a^(r/2) - 1) mod 15.In this case, a = 11. Plugging in the two r
values for this a value yields (11^(0/2) +1)(11^(4/2) - 1) mod 15 = 2*(11 +1)(11-1) mod 15
Thus, we find (24)(20) mod 15. By finding the greatest common factor between the two coefficients,
gcd(24,15) and gcd(20,15), yields 3 and 5 respectively. These are the prime factors of 15,
so the result of running shors algorithm to find the prime factors of an integer using quantum
hardware are demonstrated. Note, this is not the same as the technical implementation of shor's
algorithm described in this section for breaking the discrete log hardness assumption,
though the proof of concept remains."""
# Import libraries
from qiskit.compiler import transpile, assemble
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from numpy import pi
from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.providers.ibmq import least_busy
from qiskit.visualization import plot_histogram
# Initialize qubit registers
qreg_q = QuantumRegister(5, 'q')
creg_c = ClassicalRegister(5, 'c')
circuit = QuantumCircuit(qreg_q, creg_c)
circuit.reset(qreg_q[0])
circuit.reset(qreg_q[1])
circuit.reset(qreg_q[2])
circuit.reset(qreg_q[3])
circuit.reset(qreg_q[4])
# Apply Hadamard transformations to qubit registers
circuit.h(qreg_q[0])
circuit.h(qreg_q[1])
circuit.h(qreg_q[2])
# Apply first QFT, modular exponentiation, and another QFT
circuit.h(qreg_q[1])
circuit.cx(qreg_q[2], qreg_q[3])
circuit.crx(pi/2, qreg_q[0], qreg_q[1])
circuit.ccx(qreg_q[2], qreg_q[3], qreg_q[4])
circuit.h(qreg_q[0])
circuit.rx(pi/2, qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.crx(pi/2, qreg_q[1], qreg_q[2])
circuit.cx(qreg_q[0], qreg_q[1])
# Measure the qubit registers 0-2
circuit.measure(qreg_q[2], creg_c[2])
circuit.measure(qreg_q[1], creg_c[1])
circuit.measure(qreg_q[0], creg_c[0])
# Get least busy quantum hardware backend to run on
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("Running on current least busy device: ", device)
# Run the circuit on available quantum hardware and plot histogram
from qiskit.tools.monitor import job_monitor
job = execute(circuit, backend=device, shots=1024, optimization_level=3)
job_monitor(job, interval = 2)
results = job.result()
answer = results.get_counts(circuit)
plot_histogram(answer)
#largest amplitude results correspond with r values used to find the prime factor of N.
|
https://github.com/GabrielPontolillo/Quantum_Algorithm_Implementations
|
GabrielPontolillo
|
from qiskit import QuantumCircuit
def create_bell_pair():
qc = QuantumCircuit(2)
qc.h(1)
qc.cx(1, 0)
return qc
def encode_message(qc, qubit, msg):
if len(msg) != 2 or not set([0,1]).issubset({0,1}):
raise ValueError(f"message '{msg}' is invalid")
if msg[1] == "1":
qc.x(qubit)
if msg[0] == "1":
qc.z(qubit)
return qc
def decode_message(qc):
qc.cx(1, 0)
### added y gate ###
qc.y(0)
qc.h(1)
return qc
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from math import pi
import numpy as np
import rustworkx as rx
from qiskit_nature.second_q.hamiltonians.lattices import (
BoundaryCondition,
HyperCubicLattice,
Lattice,
LatticeDrawStyle,
LineLattice,
SquareLattice,
TriangularLattice,
)
from qiskit_nature.second_q.hamiltonians import FermiHubbardModel
num_nodes = 11
boundary_condition = BoundaryCondition.OPEN
line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition)
line_lattice.draw()
num_nodes = 11
boundary_condition = BoundaryCondition.PERIODIC
line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition)
line_lattice.draw()
line_lattice.draw_without_boundary()
num_nodes = 11
boundary_condition = BoundaryCondition.PERIODIC
edge_parameter = 1.0 + 1.0j
onsite_parameter = 1.0
line_lattice = LineLattice(
num_nodes=num_nodes,
edge_parameter=edge_parameter,
onsite_parameter=onsite_parameter,
boundary_condition=boundary_condition,
)
set(line_lattice.graph.weighted_edge_list())
line_lattice.to_adjacency_matrix()
line_lattice.to_adjacency_matrix(weighted=True)
rows = 5
cols = 4
boundary_condition = BoundaryCondition.OPEN
square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition)
square_lattice.draw()
rows = 5
cols = 4
boundary_condition = (
BoundaryCondition.OPEN,
BoundaryCondition.PERIODIC,
) # open in the x-direction, periodic in the y-direction
square_lattice = SquareLattice(rows=rows, cols=cols, boundary_condition=boundary_condition)
square_lattice.draw()
rows = 5
cols = 4
edge_parameter = (1.0, 1.0 + 1.0j)
boundary_condition = (
BoundaryCondition.OPEN,
BoundaryCondition.PERIODIC,
) # open in the x-direction, periodic in the y-direction
onsite_parameter = 1.0
square_lattice = SquareLattice(
rows=rows,
cols=cols,
edge_parameter=edge_parameter,
onsite_parameter=onsite_parameter,
boundary_condition=boundary_condition,
)
set(square_lattice.graph.weighted_edge_list())
size = (3, 4, 5)
boundary_condition = (
BoundaryCondition.OPEN,
BoundaryCondition.OPEN,
BoundaryCondition.OPEN,
)
cubic_lattice = HyperCubicLattice(size=size, boundary_condition=boundary_condition)
# function for setting the positions
def indextocoord_3d(index: int, size: tuple, angle) -> list:
z = index // (size[0] * size[1])
a = index % (size[0] * size[1])
y = a // size[0]
x = a % size[0]
vec_x = np.array([1, 0])
vec_y = np.array([np.cos(angle), np.sin(angle)])
vec_z = np.array([0, 1])
return_coord = x * vec_x + y * vec_y + z * vec_z
return return_coord.tolist()
pos = dict([(index, indextocoord_3d(index, size, angle=pi / 4)) for index in range(np.prod(size))])
cubic_lattice.draw(style=LatticeDrawStyle(pos=pos))
rows = 4
cols = 3
boundary_condition = BoundaryCondition.OPEN
triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition)
triangular_lattice.draw()
rows = 4
cols = 3
boundary_condition = BoundaryCondition.PERIODIC
triangular_lattice = TriangularLattice(rows=rows, cols=cols, boundary_condition=boundary_condition)
triangular_lattice.draw()
graph = rx.PyGraph(multigraph=False) # multigraph shoud be False
graph.add_nodes_from(range(6))
weighted_edge_list = [
(0, 1, 1.0 + 1.0j),
(0, 2, -1.0),
(2, 3, 2.0),
(4, 2, -1.0 + 2.0j),
(4, 4, 3.0),
(2, 5, -1.0),
]
graph.add_edges_from(weighted_edge_list)
# make a lattice
general_lattice = Lattice(graph)
set(general_lattice.graph.weighted_edge_list())
general_lattice.draw()
general_lattice.draw(self_loop=True)
general_lattice.draw(self_loop=True, style=LatticeDrawStyle(with_labels=True))
square_lattice = SquareLattice(rows=5, cols=4, boundary_condition=BoundaryCondition.PERIODIC)
t = -1.0 # the interaction parameter
v = 0.0 # the onsite potential
u = 5.0 # the interaction parameter U
fhm = FermiHubbardModel(
square_lattice.uniform_parameters(
uniform_interaction=t,
uniform_onsite_potential=v,
),
onsite_interaction=u,
)
ham = fhm.second_q_op().simplify()
print(ham)
graph = rx.PyGraph(multigraph=False) # multiigraph shoud be False
graph.add_nodes_from(range(6))
weighted_edge_list = [
(0, 1, 1.0 + 1.0j),
(0, 2, -1.0),
(2, 3, 2.0),
(4, 2, -1.0 + 2.0j),
(4, 4, 3.0),
(2, 5, -1.0),
]
graph.add_edges_from(weighted_edge_list)
general_lattice = Lattice(graph) # the lattice whose weights are seen as the interaction matrix.
u = 5.0 # the interaction parameter U
fhm = FermiHubbardModel(lattice=general_lattice, onsite_interaction=u)
ham = fhm.second_q_op().simplify()
print(ham)
from qiskit_nature.second_q.problems import LatticeModelProblem
num_nodes = 4
boundary_condition = BoundaryCondition.OPEN
line_lattice = LineLattice(num_nodes=num_nodes, boundary_condition=boundary_condition)
fhm = FermiHubbardModel(
line_lattice.uniform_parameters(
uniform_interaction=t,
uniform_onsite_potential=v,
),
onsite_interaction=u,
)
lmp = LatticeModelProblem(fhm)
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver
from qiskit_nature.second_q.algorithms import GroundStateEigensolver
from qiskit_nature.second_q.mappers import JordanWignerMapper
numpy_solver = NumPyMinimumEigensolver()
qubit_mapper = JordanWignerMapper()
calc = GroundStateEigensolver(qubit_mapper, numpy_solver)
res = calc.solve(lmp)
print(res)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
# randomly create a 2-dimensional quantum state
from random import randrange
def random_quantum_state():
first_entry = randrange(101)
first_entry = first_entry/100
first_entry = first_entry**0.5
if randrange(2) == 0:
first_entry = -1 * first_entry
second_entry = 1 - (first_entry**2)
second_entry = second_entry**0.5
if randrange(2) == 0:
second_entry = -1 * second_entry
return [first_entry,second_entry]
# import the drawing methods
from matplotlib.pyplot import plot, figure
# draw a figure
figure(figsize=(6,6), dpi=60)
# draw the origin
plot(0,0,'ro')
for i in range(100):
# create a random quantum state
quantum_state = random_quantum_state();
# draw a blue point for the random quantum state
x = quantum_state[0];
y = quantum_state[1];
plot(x,y,'bo')
# randomly create a 2-dimensional quantum state
from random import randrange
def random_quantum_state():
first_entry = randrange(101)
first_entry = first_entry/100
first_entry = first_entry**0.5
if randrange(2) == 0:
first_entry = -1 * first_entry
second_entry = 1 - (first_entry**2)
second_entry = second_entry**0.5
if randrange(2) == 0:
second_entry = -1 * second_entry
return [first_entry,second_entry]
# import the drawing methods
from matplotlib.pyplot import plot, figure, arrow
%run qlatvia.py
# draw a figure
figure(figsize=(6,6), dpi=60)
draw_axes();
# draw the origin
plot(0,0,'ro')
for i in range(100):
# create a random quantum state
quantum_state = random_quantum_state();
# draw a blue vector for the random quantum state
x = quantum_state[0];
y = quantum_state[1];
# shorten the line length to 0.92
# line_length + head_length (0.08) should be 1
x = 0.92 * x
y = 0.92 * y
arrow(0,0,x,y,head_width=0.04,head_length=0.08,color="blue")
# %%writefile FILENAME.py
# import the drawing methods
from matplotlib.pyplot import figure, arrow, text
def display_quantum_state(x,y,name):
x1 = 0.92 * x
y1 = 0.92 * y
arrow(0,0,x1,y1,head_width=0.04,head_length=0.08,color="blue")
x2 = 1.15 * x
y2 = 1.15 * y
text(x2,y2,name)
#
# test your function
#
# import the drawing methods
from matplotlib.pyplot import figure
figure(figsize=(6,6), dpi=80) # size of the figure
# include our predefined functions
%run qlatvia.py
# draw axes
draw_axes()
# draw the unit circle
draw_unit_circle()
for i in range(6):
s = random_quantum_state()
display_quantum_state(s[0],s[1],"v"+str(i))
#draw_quantum_state(s[0],s[1],"v"+str(i))
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_optimization.algorithms import MinimumEigenOptimizer
from qiskit.utils import algorithm_globals
from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver
from qiskit.algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler
from qiskit_optimization.applications.vertex_cover import VertexCover
import networkx as nx
seed = 123
algorithm_globals.random_seed = seed
graph = nx.random_regular_graph(d=3, n=6, seed=seed)
pos = nx.spring_layout(graph, seed=seed)
prob = VertexCover(graph)
prob.draw(pos=pos)
qp = prob.to_quadratic_program()
print(qp.prettyprint())
# Numpy Eigensolver
meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver())
result = meo.solve(qp)
print(result.prettyprint())
print("\nsolution:", prob.interpret(result))
prob.draw(result, pos=pos)
# QAOA
meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA()))
result = meo.solve(qp)
print(result.prettyprint())
print("\nsolution:", prob.interpret(result))
print("\ntime:", result.min_eigen_solver_result.optimizer_time)
prob.draw(result, pos=pos)
from qiskit_optimization.applications import Knapsack
prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10)
qp = prob.to_quadratic_program()
print(qp.prettyprint())
# Numpy Eigensolver
meo = MinimumEigenOptimizer(min_eigen_solver=NumPyMinimumEigensolver())
result = meo.solve(qp)
print(result.prettyprint())
print("\nsolution:", prob.interpret(result))
# QAOA
meo = MinimumEigenOptimizer(min_eigen_solver=QAOA(reps=1, sampler=Sampler(), optimizer=COBYLA()))
result = meo.solve(qp)
print(result.prettyprint())
print("\nsolution:", prob.interpret(result))
print("\ntime:", result.min_eigen_solver_result.optimizer_time)
from qiskit_optimization.converters import QuadraticProgramToQubo
# the same knapsack problem instance as in the previous section
prob = Knapsack(values=[3, 4, 5, 6, 7], weights=[2, 3, 4, 5, 6], max_weight=10)
qp = prob.to_quadratic_program()
print(qp.prettyprint())
# intermediate QUBO form of the optimization problem
conv = QuadraticProgramToQubo()
qubo = conv.convert(qp)
print(qubo.prettyprint())
# qubit Hamiltonian and offset
op, offset = qubo.to_ising()
print(f"num qubits: {op.num_qubits}, offset: {offset}\n")
print(op)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/PacktPublishing/Quantum-Computing-in-Practice-with-Qiskit-and-IBM-Quantum-Experience
|
PacktPublishing
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created Nov 2020
@author: hassi
"""
# Import the required Qiskit classes
from qiskit import(QuantumCircuit, execute, Aer)
# Import Blochsphere visualization
from qiskit.visualization import plot_bloch_multivector, plot_state_qsphere
# Import some math that we will need
from IPython.core.display import display
# Set numbers display options
import numpy as np
np.set_printoptions(precision=3)
# Create a function that requests and display the state vector
# Use this function as a diagnositc tool when constructing your circuits
def measure(circuit):
measure_circuit=QuantumCircuit(circuit.width())
measure_circuit+=circuit
measure_circuit.measure_all()
#print(measure_circuit)
backend_count = Aer.get_backend('qasm_simulator')
counts=execute(measure_circuit, backend_count,shots=10000).result().get_counts(measure_circuit)
# Print the counts of the measured outcome.
print("\nOutcome:\n",{k: v / total for total in (sum(counts.values())/100,) for k, v in counts.items()},"\n")
def s_vec(circuit):
backend = Aer.get_backend('statevector_simulator')
print(circuit.num_qubits, "qubit quantum circuit:\n------------------------")
print(circuit)
psi=execute(circuit, backend).result().get_statevector(circuit)
print("State vector for the",circuit.num_qubits,"qubit circuit:\n\n",psi)
print("\nState vector as Bloch sphere:")
display(plot_bloch_multivector(psi))
print("\nState vector as Q sphere:")
display(plot_state_qsphere(psi))
measure(circuit)
input("Press enter to continue...\n")
# Main loop
def main():
user_input=1
while user_input!=0:
print("Ch 7: Running “diagnostics” with the state vector simulator")
print("-----------------------------------------------------------")
user_input=int(input("\nNumber of qubits:\n"))
circ_type=input("Superposition 's or entanglement 'e'?\n(To add a phase angle, use 'sp or 'ep'.)\n")
if user_input>0:
qc = QuantumCircuit(user_input)
s_vec(qc)
qc.h(user_input-1)
s_vec(qc)
if user_input>1:
for n in range(user_input-1):
if circ_type in ["e","ep"]:
qc.cx(user_input-1,n)
else:
qc.h(n)
s_vec(qc)
if circ_type in ["sp","ep"]:
qc.t(user_input-1)
s_vec(qc)
if __name__ == '__main__':
main()
|
https://github.com/usamisaori/quantum-expressibility-entangling-capability
|
usamisaori
|
import sys
sys.path.append('../')
from circuits import sampleCircuitA, sampleCircuitB1, sampleCircuitB2,\
sampleCircuitB3, sampleCircuitC, sampleCircuitD, sampleCircuitE,\
sampleCircuitF
from entanglement import Ent
import warnings
warnings.filterwarnings('ignore')
labels = [
'Circuit A', 'Circuit B1', 'Circuit B2', 'Circuit B3',
'Circuit C', 'Circuit D', 'Circuit E', 'Circuit F'
]
samplers = [
sampleCircuitA,
sampleCircuitB1,
sampleCircuitB2,
sampleCircuitB3,
sampleCircuitC,
sampleCircuitD,
sampleCircuitE,
sampleCircuitF
]
q = 4
for layer in range(1, 4):
print(f'qubtis: {q}')
print('-' * 25)
for (label, sampler) in zip(labels, samplers):
expr = Ent(sampler, layer=layer, epoch=3000)
print(f'{label}(layer={layer}): {expr}')
print()
|
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
|
shesha-raghunathan
|
from random import randrange
for experiment in [100,1000,10000,100000]:
heads = tails = 0
for i in range(experiment):
if randrange(2) == 0: heads = heads + 1
else: tails = tails + 1
print("experiment:",experiment)
print("the ratio of #heads/#tails is",(heads/tails),"heads =",heads,"tails = ",tails)
print() # empty line
from random import randrange
# let's pick a random number between {0,1,...,99}
# it is expected to be less than 60 with probability 0.6
# and greater than or equal to 60 with probability 0.4
for experiment in [100,1000,10000,100000]:
heads = tails = 0
for i in range(experiment):
if randrange(100) <60: heads = heads + 1 # probability with 0.6
else: tails = tails + 1 # probability with 0.4
print("experiment:",experiment)
print("the ratio of #heads/#tails is",(heads/tails),"heads =",heads,"tails = ",tails)
print() # empty line
|
https://github.com/1chooo/Quantum-Oracle
|
1chooo
|
#Below are examples of using print function
print('The name of the language is',"Python")
print("The radius of the circle is", 3, '\nIts area is', 3.14159*3**2)
#Below are examples of using print function
print('The name of the language is',"Python",end=". ")
print('Its version is',"3.x",sep="....")
print("The radius of the circle is", 3)
print("The area of the circle is", 3.14159*3**2)
r=input('Please enter the radius of the circle:')
print('The radius of the circle:', r)
r=input('Please enter the radius of the circle:')
ri=int(r)
rf=float(r)
print('The radius of the circle:', ri)
print("The area of the circle:", 3.14159*rf**2)
a=123;b=123.456;c=False;d=123+456j;e="123";f=[1,2,3];g=(1,2,3);h={1,2,3};i={1:'x',2:'y',3:'z'}
print(type(a),type(b),type(c),type(d),type(e),type(f),type(g),type(h),type(i))
a=3;b=8
print(a+b) #11
print(a-b) #-5
print(a*b) #24
print(a/b) #0.375
print(a//b) #0
print(a%b) #3
print(a**b) #6561
print(a+b//a**b) #3
print((a+b)//a**b) #0
a=3.0;b=8.0;c=8
print(a+b) #11.0
print(a-b) #-5.0
print(a*b) #24.0
print(a/b) #0.375
print(a//b) #0.0
print(a%b) #3.0
print(a**b) #6561.0
print(a+c) #11.0
print(a+b//a**b) #3.0
print((a+b)//a**b) #0.0
a=3.0;b=8.0;c=8
print(a==b) #False
print(a!=b) #True
print(a>b) #False
print(a<b) #True
print(a>=b) #False
print(a<=b) #True
print(not (a==b)) #True
print(a==b or a!=b and a>b) #False
print(a==b and a>b or a!=b) #True
print(a==b and a>b or not (a!=b)) #False
a=2+4j;b=3-8j
print(a+b) #(5-4j)
print(a-b) #(-1+12j)
print(a*b) #(38-4j)
print(a/b) #(-0.3561643835616438+0.3835616438356164j)
print(a+b/a) #(0.7+2.6j)
print((a+b)/a) #(-0.3-1.4j)
print(a.real) #2.0
print(a.imag) #4.0
print(a.conjugate()) #(2-4j)
print(abs(a)) #4.47213595499958
a={1,2,3};b={2,4,6}
print(a|b) #{1, 2, 3, 4, 6}
print(a.union(b)) #{1, 2, 3, 4, 6}
print(a&b) #{2}
print(a.intersection(b)) #{2}
print(a-b) #{1,3}
print(a.difference(b)) #{1,3}
print(a^b) #{1,3,4,6}
print(a.symmetric_difference(b)) #{1,3,4,6}
ex = {"a":1, "b":2, "c":3, 1: "integer", 2.3: "float", 4+5j: "complex", (6,7): "tuple"}
print(ex["a"],ex["b"],ex["c"],ex[1],ex[2.3],ex[4+5j],ex[(6,7)])
ex["a"]=100
print(ex["a"])
print(len(ex))
ex["d"]=4
print(ex.get("d"))
del ex["d"]
print(ex.get("d"))
print("e" in ex)
print("e" not in ex)
print(ex.keys())
print(ex.values())
a=5
a+=3 #a=a+3 (a=8)
a-=3 #a=a-3 (a=5)
a*=3 #a=a*3 (a=15)
a%=8 #a=a%8 (a=7)
a//=3 #a=a//3 (a=2)
a/=3 #a=a/3 (a=0.6666666666666666)
a**=3 #a=a**3 (a=0.2962962962962962)
print(a)
score=90
if score >=60:
print("PASS")
score=90
if score >=60:
print("PASS")
else:
print("FAIL")
score=90
if score >=90:
print("A")
elif score >= 80:
print("B")
elif score >= 70:
print("C")
elif score >= 60:
print("D")
else:
print("F")
i=0
while i<5:
i+=1
print(i,end="")
i=0
while i<5:
i+=1
print(i,end="")
else:
print("#")
for i in [1,2,3,4,5]:
print(i,end="")
for i in [1,2,3,4,5]:
print(i,end="")
else:
print("#")
print(list(range(5))) #range(5)會回傳0、1、2、3、4
print(list(range(2,5))) #range(2,5)會回傳2、3、4
print(list(range(0,5,2))) #range(0,2,5)會回傳0、2、4
print(list(range(5,0,-1))) #range(5,0,-1)會回傳5、4、3、2、1
print(list(range(5,0))) #range(5,0)是一個空序列
i=0
while i<5:
i+=1
if i==3:
break
print(i,end="")
for i in range(1,6):
if i==3:
break
print(i,end="")
i=0
while i<5:
i+=1
if i==3:
continue
print(i,end="")
for i in range(1,6):
if i==3:
continue
print(i,end="")
def odd_check(n):
"""Check if n is odd (return True) or not (return False)."""
if n%2==0:
return False
else:
return True
print(odd_check(5))
print(odd_check(10))
def test(aa,bb,cc=123,dd='abc'):
return aa,bb,cc,dd
print(test(1,2,3,4))
print(test(1,2,3))
print(test(1,2,dd='edf'))
print(test(1,2))
def adding(*num):
sum=0
for n in num:
sum+=n
return sum
print(adding(1,2,3,4,5))
adding = lambda x,y: x+y
print(adding(3,8)) #顯示11
print((lambda x,y: x+y)(3,8)) #顯示11
lista=[1,3,5,7,9]
#以下將lambda函數當作map函數的參數
listb=list(map(lambda x:x+8, lista))
print(listb)
class Rectangle:
length=0
width=0
def __init__(self,length,width):
self.length=length
self.width=width
def area(self):
return self.length*self.width
def perimeter(self):
return 2*(self.length+self.width)
rect1=Rectangle(3,8)
rect2=Rectangle(2,4)
print('rect1:',rect1.length,rect1.width,rect1.area(),rect1.perimeter())
print('rect2:',rect2.length,rect2.width,rect2.area(),rect2.perimeter())
class NamedRectangle(Rectangle):
name=''
def __init__(self,length,width,name):
super().__init__(length,width)
self.name=name
def show_name(self):
print(self.name)
rect1=NamedRectangle(3,8,'rectangle1')
rect2=NamedRectangle(2,4,'rectangle2')
print('rect1:',rect1.length,rect1.width,rect1.area(),rect1.perimeter())
print('rect2:',rect2.length,rect2.width,rect2.area(),rect2.perimeter())
rect1.show_name()
rect2.show_name()
|
https://github.com/MonitSharma/Qiskit-Summer-School-and-Quantum-Challenges
|
MonitSharma
|
from IPython.display import Image, display
Image("ryoko.png", width="70")
Image('asteroids_example.png')
Image('asteroids_beam_example.png')
Image('false_asteroids_example.png')
Image('asteroids_example.png')
problem_set = \
[[['0', '2'], ['1', '0'], ['1', '2'], ['1', '3'], ['2', '0'], ['3', '3']],
[['0', '0'], ['0', '1'], ['1', '2'], ['2', '2'], ['3', '0'], ['3', '3']],
[['0', '0'], ['1', '1'], ['1', '3'], ['2', '0'], ['3', '2'], ['3', '3']],
[['0', '0'], ['0', '1'], ['1', '1'], ['1', '3'], ['3', '2'], ['3', '3']],
[['0', '2'], ['1', '0'], ['1', '3'], ['2', '0'], ['3', '2'], ['3', '3']],
[['1', '1'], ['1', '2'], ['2', '0'], ['2', '1'], ['3', '1'], ['3', '3']],
[['0', '2'], ['0', '3'], ['1', '2'], ['2', '0'], ['2', '1'], ['3', '3']],
[['0', '0'], ['0', '3'], ['1', '2'], ['2', '2'], ['2', '3'], ['3', '0']],
[['0', '3'], ['1', '1'], ['1', '2'], ['2', '0'], ['2', '1'], ['3', '3']],
[['0', '0'], ['0', '1'], ['1', '3'], ['2', '1'], ['2', '3'], ['3', '0']],
[['0', '1'], ['0', '3'], ['1', '2'], ['1', '3'], ['2', '0'], ['3', '2']],
[['0', '0'], ['1', '3'], ['2', '0'], ['2', '1'], ['2', '3'], ['3', '1']],
[['0', '1'], ['0', '2'], ['1', '0'], ['1', '2'], ['2', '2'], ['2', '3']],
[['0', '3'], ['1', '0'], ['1', '3'], ['2', '1'], ['2', '2'], ['3', '0']],
[['0', '2'], ['0', '3'], ['1', '2'], ['2', '3'], ['3', '0'], ['3', '1']],
[['0', '1'], ['1', '0'], ['1', '2'], ['2', '2'], ['3', '0'], ['3', '1']]]
import numpy as np
# import qiskit libraries
from qiskit import IBMQ, Aer,QuantumRegister, ClassicalRegister, QuantumCircuit, execute
from qiskit.tools.jupyter import *
from qiskit.circuit.library import OR as or_gate
provider = IBMQ.load_account()
#import functions to plot
from qiskit.visualization import plot_histogram
def week3_ans_func(problem_set):
##### build your quantum circuit here
##### In addition, please make it a function that can solve the problem even with different inputs (problem_set). We do validation with different inputs.
def qRAM(qc,add,data, auxiliary, problem_set):
problem_set_mapping_dict = {'0' : {'0': 0, '1': 1, '2': 2, '3':3},
'1' : {'0': 4, '1': 5, '2': 6, '3':7},
'2' : {'0': 8, '1': 9, '2': 10, '3':11},
'3' : {'0': 12, '1': 13, '2': 14, '3':15}}
for ind in range(len(data)):
binary = f'{ind:04b}'
if(binary[0] == '0'):
qc.x(add[0])
if(binary[1] == '0'):
qc.x(add[1])
if(binary[2] == '0'):
qc.x(add[2])
if(binary[3] == '0'):
qc.x(add[3])
for i, edg in enumerate(problem_set[ind]):
qc.ch(add[0],auxiliary[0])
qc.cz(add[1],auxiliary[0])
qc.ch(add[0], auxiliary[0])
#qc.ccx(add[0], add[1], auxiliary[0])
qc.ch(add[2],auxiliary[1])
qc.cz(add[3],auxiliary[1])
qc.ch(add[2], auxiliary[1])
#qc.ccx(add[2], add[3], auxiliary[1])
qc.ch(auxiliary[0],auxiliary[2])
qc.cz(auxiliary[1],auxiliary[2])
qc.ch(auxiliary[0],auxiliary[2])
#qc.ccx(auxiliary[0], auxiliary[1], auxiliary[2])
qc.cx(auxiliary[2], data[problem_set_mapping_dict[edg[0]][edg[1]]])
qc.ch(auxiliary[0],auxiliary[2])
qc.cz(auxiliary[1],auxiliary[2])
qc.ch(auxiliary[0],auxiliary[2])
qc.ch(add[2],auxiliary[1])
qc.cz(add[3],auxiliary[1])
qc.ch(add[2], auxiliary[1])
qc.ch(add[0],auxiliary[0])
qc.cz(add[1],auxiliary[0])
qc.ch(add[0], auxiliary[0])
if(binary[0] == '0'):
qc.x(add[0])
if(binary[1] == '0'):
qc.x(add[1])
if(binary[2] == '0'):
qc.x(add[2])
if(binary[3] == '0'):
qc.x(add[3])
qc.barrier()
def diffuser(nqubits):
qc_diff = QuantumCircuit(nqubits)
for qubit in range(nqubits):
qc_diff.h(qubit)
for qubit in range(nqubits):
qc_diff.x(qubit)
qc_diff.h(nqubits-1)
qc_diff.mct(list(range(nqubits-1)), nqubits-1) # multi-controlled-toffoli
qc_diff.h(nqubits-1)
for qubit in range(nqubits):
qc_diff.x(qubit)
for qubit in range(nqubits):
qc_diff.h(qubit)
U_f0 = qc_diff.to_gate()
U_f0.name = "V"
return U_f0
def add_row_counters(qc, data, auxiliary):
row_mat = [[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]]
for i, curr_row in enumerate(row_mat):
flag_list = [0] * len(data)
for curr_flag_index in range(len(data)):
if curr_flag_index in curr_row:
flag_list[curr_flag_index] = 1
qc.append(or_gate(len(data), flag_list, mcx_mode='noancilla'), [*data, auxiliary[i]])
def add_column_counters(qc, data, auxiliary):
col_mat = [[0, 4, 8, 12],
[1, 5, 9, 13],
[2, 6, 10, 14],
[3, 7, 11, 15]]
for i, curr_col in enumerate(col_mat):
flag_list = [0] * len(data)
for curr_flag_index in range(len(data)):
if curr_flag_index in curr_col:
flag_list[curr_flag_index] = 1
qc.append(or_gate(len(data), flag_list, mcx_mode='noancilla'), [*data, auxiliary[i]])
def add_lone_counters(qc, data, auxiliary, count_out):
lone_mat = [[0, 1, 2, 3, 4, 8, 12],
[1, 0, 2, 3, 5, 9, 13],
[2, 0, 1, 3, 6, 10, 14],
[3, 0, 1, 2, 7, 11, 15],
[4, 5, 6, 7, 0, 8, 12],
[5, 4, 6, 7, 1, 9, 13],
[6, 4, 5, 7, 2, 10, 14],
[7, 4, 5, 6, 3, 11, 15],
[8, 9, 10, 11, 0, 4, 12],
[9, 8, 10, 11, 1, 5, 13],
[10, 8, 9, 11, 2, 6, 14],
[11, 8, 9, 10, 3, 7, 15],
[12, 13, 14, 15, 0, 4, 8],
[13, 12, 14, 15, 1, 5, 9],
[14, 12, 13, 15, 2, 6, 10],
[15, 12, 13, 14, 3, 7, 11]]
qc.barrier()
#curr_lone_row = [0, 1, 2, 3, 4, 8, 12]
for curr_lone_row in lone_mat:
n = len(curr_lone_row)
for j in range(1,n):
qc.x(data[curr_lone_row[j]])
qc.ch(data[curr_lone_row[0]], auxiliary[0])
qc.cz(data[curr_lone_row[1]], auxiliary[0])
qc.ch(data[curr_lone_row[0]],auxiliary[0])
#qc.ccx(data[curr_lone_row[0]], data[curr_lone_row[1]], auxiliary[0])
qc.ch(data[curr_lone_row[2]],auxiliary[1])
qc.cz(data[curr_lone_row[3]],auxiliary[1])
qc.ch(data[curr_lone_row[2]],auxiliary[1])
#qc.ccx(data[curr_lone_row[2]], data[curr_lone_row[3]], auxiliary[1])
qc.ch(auxiliary[0],auxiliary[2])
qc.cz(auxiliary[1],auxiliary[2])
qc.ch(auxiliary[0],auxiliary[2])
#qc.ccx(auxiliary[0], auxiliary[1], auxiliary[2])
qc.ch(data[curr_lone_row[0]],auxiliary[0])
qc.cz(data[curr_lone_row[1]],auxiliary[0])
qc.ch(data[curr_lone_row[0]],auxiliary[0])
#qc.ccx(data[curr_lone_row[0]], data[curr_lone_row[1]], auxiliary[0])
qc.ch(data[curr_lone_row[4]],auxiliary[0])
qc.cz(data[curr_lone_row[5]],auxiliary[0])
qc.ch(data[curr_lone_row[4]],auxiliary[0])
#qc.ccx(data[curr_lone_row[4]], data[curr_lone_row[5]], auxiliary[0])
qc.ch(auxiliary[0],auxiliary[3])
qc.cz(auxiliary[2],auxiliary[3])
qc.ch(auxiliary[0],auxiliary[3])
#qc.ccx(auxiliary[0], auxiliary[2], auxiliary[3])
#------------------------------------------------------------------------------------------------------------------------
#qc.ch(data[curr_lone_row[6]], count_out[2])
#qc.cz(auxiliary[3],count_out[2])
#qc.ch(data[curr_lone_row[2]],count_out[2])
qc.ccx(data[curr_lone_row[6]], auxiliary[3], count_out[2]) #this CCX is important to avoid
#unnecessary addition of relative phase
#------------------------------------------------------------------------------------------------------------------------
qc.ch(auxiliary[0],auxiliary[3])
qc.cz(auxiliary[2],auxiliary[3])
qc.ch(auxiliary[0],auxiliary[3])
qc.ch(data[curr_lone_row[4]],auxiliary[0])
qc.cz(data[curr_lone_row[5]],auxiliary[0])
qc.ch(data[curr_lone_row[4]],auxiliary[0])
qc.ch(data[curr_lone_row[0]],auxiliary[0])
qc.cz(data[curr_lone_row[1]],auxiliary[0])
qc.ch(data[curr_lone_row[0]],auxiliary[0])
qc.ch(auxiliary[0],auxiliary[2])
qc.cz(auxiliary[1],auxiliary[2])
qc.ch(auxiliary[0],auxiliary[2])
qc.ch(data[curr_lone_row[2]],auxiliary[1])
qc.cz(data[curr_lone_row[3]],auxiliary[1])
qc.ch(data[curr_lone_row[2]],auxiliary[1])
qc.ch(data[curr_lone_row[0]], auxiliary[0])
qc.cz(data[curr_lone_row[1]], auxiliary[0])
qc.ch(data[curr_lone_row[0]],auxiliary[0])
for j in range(1,n):
qc.x(data[curr_lone_row[j]])
qc.barrier
def u3a(data, auxiliary,oracle, count_out):
qc_1 = QuantumCircuit(data, auxiliary,oracle, count_out)
#Oracle -----------------------------------------------
#Adding Row counters to check if each row has at least 1 asteroid and then flipping a count_out bit if all rows has at least one asteroid
add_row_counters(qc_1, data, auxiliary) #compute
qc_1.mct([auxiliary[0], auxiliary[1], auxiliary[2], auxiliary[3]], count_out[0], mode = 'noancilla')
add_row_counters(qc_1, data, auxiliary) #uncompute
#Adding column counters to check if each column has at least 1 asteroid and then flipping a count_out bit if all columns has at least one asteroid
add_column_counters(qc_1, data, auxiliary) #compute
qc_1.mct([auxiliary[0], auxiliary[1], auxiliary[2], auxiliary[3]], count_out[1], mode = 'noancilla')
add_column_counters(qc_1, data, auxiliary) #uncompute
#qc_1.barrier()
#lone asteroid counter circuit to add
add_lone_counters(qc_1, data, auxiliary, count_out)
return qc_1
def u3a_dagger(data, auxiliary, oracle, count_out):
qc_1 = QuantumCircuit(data, auxiliary,oracle, count_out)
#Oracle -----------------------------------------------
#Adding Row counters to check if each row has at least 1 asteroid and then flipping a count_out bit if all rows has at least one asteroid
add_row_counters(qc_1, data, auxiliary) #compute
qc_1.mct([auxiliary[0], auxiliary[1], auxiliary[2], auxiliary[3]], count_out[0], mode = 'noancilla')
add_row_counters(qc_1, data, auxiliary) #uncompute
#Adding column counters to check if each column has at least 1 asteroid and then flipping a count_out bit if all columns has at least one asteroid
add_column_counters(qc_1, data, auxiliary) #compute
qc_1.mct([auxiliary[0], auxiliary[1], auxiliary[2], auxiliary[3]], count_out[1], mode = 'noancilla')
add_column_counters(qc_1, data, auxiliary) #uncompute
#qc_1.barrier()
#lone asteroid counter circuit to add
add_lone_counters(qc_1, data, auxiliary, count_out)
qc_2 = qc_1.inverse()
return qc_2
add = QuantumRegister(4, name = 'address')
data = QuantumRegister(16, name = 'data')
auxiliary = QuantumRegister(4, name = 'auxiliary')
count_out = QuantumRegister(3, name = 'counter_outputs')
oracle = QuantumRegister(1, name = 'oracle')
cbits = ClassicalRegister(4, name = 'solution')
qc = QuantumCircuit(add, data, auxiliary,oracle, count_out, cbits)
qc.x(oracle)
qc.h(oracle)
qc.h(add)
qc.barrier()
#Add qRAM
qRAM(qc,add,data, auxiliary, problem_set) #compute
qc.barrier()
# counters
qc.extend(u3a(data, auxiliary,oracle, count_out))
qc.barrier()
# Phase flipping oracle
#qc.cx(auxiliary[6], oracle)
qc.mct([count_out[0], count_out[1], count_out[2]], oracle, mode = 'noancilla')
# -------------------------------------------------------
# counters - dagger
qc.extend(u3a_dagger(data, auxiliary,oracle, count_out))
qc.barrier()
#qRAM
qc.barrier()
qRAM(qc,add,data, auxiliary, problem_set) #uncompute
qc.barrier()
#diffuser
qc.append(diffuser(4), add)
qc.barrier()
#measure
qc.measure(add[0], cbits[0])
qc.measure(add[1], cbits[1])
qc.measure(add[2], cbits[2])
qc.measure(add[3], cbits[3])
return qc
# Submission code
from qc_grader import grade_ex3, prepare_ex3, submit_ex3
# Execute your circuit with following prepare_ex3() function.
# The prepare_ex3() function works like the execute() function with only QuantumCircuit as an argument.
job = prepare_ex3(week3_ans_func)
result = job.result()
counts = result.get_counts()
original_problem_set_counts = counts[0]
original_problem_set_counts
# The bit string with the highest number of observations is treated as the solution.
# Check your answer by executing following code.
# The quantum cost of the QuantumCircuit is obtained as the score. The lower the cost, the better.
grade_ex3(job)
# Submit your results by executing following code. You can submit as many times as you like during the period.
submit_ex3(job)
|
https://github.com/Z-928/Bugs4Q
|
Z-928
|
from qiskit import Aer, QuantumCircuit, transpile
from qiskit.circuit.library import PhaseEstimation
qc= QuantumCircuit(3,3)
# dummy unitary circuit
unitary_circuit = QuantumCircuit(1)
unitary_circuit.h(0)
# QPE
qc.append(PhaseEstimation(2, unitary_circuit), list(range(3)))
qc.measure(list(range(3)), list(range(3)))
backend = Aer.get_backend('qasm_simulator')
qc_transpiled = transpile(qc, backend)
result = backend.run(qc, shots = 8192).result()
|
https://github.com/mistryiam/IBM-Qiskit-Machine-Learning
|
mistryiam
|
# General tools
import numpy as np
import matplotlib.pyplot as plt
# Qiskit Circuit Functions
from qiskit import execute,QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, transpile
import qiskit.quantum_info as qi
# Tomography functions
from qiskit.ignis.verification.tomography import process_tomography_circuits, ProcessTomographyFitter
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
import warnings
warnings.filterwarnings('ignore')
target = QuantumCircuit(2)
#target = # YOUR CODE HERE
target.h(0)
target.h(1)
target.rx(np.pi/2,0)
target.rx(np.pi/2,1)
target.cx(0,1)
target.p(np.pi,1)
target.cx(0,1)
target_unitary = qi.Operator(target)
target.draw('mpl')
from qc_grader import grade_lab5_ex1
# Note that the grading function is expecting a quantum circuit with no measurements
grade_lab5_ex1(target)
simulator = Aer.get_backend('qasm_simulator')
qpt_circs = process_tomography_circuits(target,measured_qubits=[0,1])# YOUR CODE HERE
qpt_job = execute(qpt_circs,simulator,seed_simulator=3145,seed_transpiler=3145,shots=8192)
qpt_result = qpt_job.result()
# YOUR CODE HERE
qpt_tomo= ProcessTomographyFitter(qpt_result,qpt_circs)
Choi_qpt= qpt_tomo.fit(method='lstsq')
fidelity = qi.average_gate_fidelity(Choi_qpt,target_unitary)
from qc_grader import grade_lab5_ex2
# Note that the grading function is expecting a floating point number
grade_lab5_ex2(fidelity)
# T1 and T2 values for qubits 0-3
T1s = [15000, 19000, 22000, 14000]
T2s = [30000, 25000, 18000, 28000]
# Instruction times (in nanoseconds)
time_u1 = 0 # virtual gate
time_u2 = 50 # (single X90 pulse)
time_u3 = 100 # (two X90 pulses)
time_cx = 300
time_reset = 1000 # 1 microsecond
time_measure = 1000 # 1 microsecond
from qiskit.providers.aer.noise import thermal_relaxation_error
from qiskit.providers.aer.noise import NoiseModel
# QuantumError objects
errors_reset = [thermal_relaxation_error(t1, t2, time_reset)
for t1, t2 in zip(T1s, T2s)]
errors_measure = [thermal_relaxation_error(t1, t2, time_measure)
for t1, t2 in zip(T1s, T2s)]
errors_u1 = [thermal_relaxation_error(t1, t2, time_u1)
for t1, t2 in zip(T1s, T2s)]
errors_u2 = [thermal_relaxation_error(t1, t2, time_u2)
for t1, t2 in zip(T1s, T2s)]
errors_u3 = [thermal_relaxation_error(t1, t2, time_u3)
for t1, t2 in zip(T1s, T2s)]
errors_cx = [[thermal_relaxation_error(t1a, t2a, time_cx).expand(
thermal_relaxation_error(t1b, t2b, time_cx))
for t1a, t2a in zip(T1s, T2s)]
for t1b, t2b in zip(T1s, T2s)]
# Add errors to noise model
noise_thermal = NoiseModel()
for j in range(4):
noise_thermal.add_quantum_error(errors_measure[j],'measure',[j])
noise_thermal.add_quantum_error(errors_reset[j],'reset',[j])
noise_thermal.add_quantum_error(errors_u3[j],'u3',[j])
noise_thermal.add_quantum_error(errors_u2[j],'u2',[j])
noise_thermal.add_quantum_error(errors_u1[j],'u1',[j])
for k in range(4):
noise_thermal.add_quantum_error(errors_cx[j][k],'cx',[j,k])
# YOUR CODE HERE
from qc_grader import grade_lab5_ex3
# Note that the grading function is expecting a NoiseModel
grade_lab5_ex3(noise_thermal)
np.random.seed(0)
noise_qpt_circs = process_tomography_circuits(target,measured_qubits=[0,1])# YOUR CODE HERE
noise_qpt_job = execute(noise_qpt_circs,simulator,seed_simulator=3145,seed_transpiler=3145,shots=8192,noise_model=noise_thermal)
noise_qpt_result = noise_qpt_job.result()
# YOUR CODE HERE
noise_qpt_tomo= ProcessTomographyFitter(noise_qpt_result,noise_qpt_circs)
noise_Choi_qpt= noise_qpt_tomo.fit(method='lstsq')
fidelity = qi.average_gate_fidelity(noise_Choi_qpt,target_unitary)
from qc_grader import grade_lab5_ex4
# Note that the grading function is expecting a floating point number
grade_lab5_ex4(fidelity)
np.random.seed(0)
# YOUR CODE HERE
#qr = QuantumRegister(2)
qubit_list = [0,1]
meas_calibs, state_labels = complete_meas_cal(qubit_list=qubit_list)
meas_calibs_job = execute(meas_calibs,simulator,seed_simulator=3145,seed_transpiler=3145,shots=8192,noise_model=noise_thermal)
cal_results = meas_calibs_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, qubit_list=qubit_list)
Cal_result = meas_fitter.filter.apply(noise_qpt_result)
# YOUR CODE HERE
Cal_qpt_tomo= ProcessTomographyFitter(Cal_result,noise_qpt_circs)
Cal_Choi_qpt= Cal_qpt_tomo.fit(method='lstsq')
fidelity = qi.average_gate_fidelity(Cal_Choi_qpt,target_unitary)
from qc_grader import grade_lab5_ex5
# Note that the grading function is expecting a floating point number
grade_lab5_ex5(fidelity)
|
https://github.com/msramalho/Teach-Me-Quantum
|
msramalho
|
import pylab
from qiskit_aqua import run_algorithm
from qiskit_aqua.input import get_input_instance
from qiskit.tools.visualization import matplotlib_circuit_drawer as draw
from qiskit.tools.visualization import plot_histogram
with open('3sat3-5.cnf', 'r') as f:
sat_cnf = f.read()
print(sat_cnf)
algorithm_cfg = {
'name': 'Grover'
}
oracle_cfg = {
'name': 'SAT',
'cnf': sat_cnf
}
params = {
'problem': {'name': 'search', 'random_seed': 50},
'algorithm': algorithm_cfg,
'oracle': oracle_cfg,
'backend': {'name': 'qasm_simulator'}
}
result = run_algorithm(params)
print(result['result'])
pylab.rcParams['figure.figsize'] = (8, 4)
plot_histogram(result['measurements'])
#draw(result['circuit'])
|
https://github.com/weiT1993/qiskit_helper_functions
|
weiT1993
|
from .Qbit_original import Qbit
from .cz_layer_generation import get_layers
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
import math
import sys
import numpy as np
class Qgrid:
"""
Class to implement the quantum supremacy circuits as found
in https://www.nature.com/articles/s41567-018-0124-x and
https://github.com/sboixo/GRCS.
Each instance is a 2D array whose entries at Qbit objects.
A supremacy circuit can be generated for a given instance
by calling the gen_circuit() method.
Attributes
----------
n : int
number of rows in the grid
m : int
number of columns in the grid
d : int
depth of the supremacy circuit (excludes H-layer and measurement i.e. 1+d+1)
regname : str
optional string to name the quantum and classical registers. This
allows for the easy concatenation of multiple QuantumCircuits.
qreg : QuantumRegister
Qiskit QuantumRegister holding all of the qubits
creg : ClassicalRegister
Qiskit ClassicalRegister holding all of the classical bits
circ : QuantumCircuit
Qiskit QuantumCircuit that represents the supremacy circuit
grid : array
n x m array holding Qbit objects
cz_list : list
List of the CZ-gate indices for each layer of the supremacy circuit
mirror : bool
Boolean indicating whether the cz layers should repeat exactly or in reverse order
order : list
list of indices indicting the order the cz layers should be placed
singlegates : bool
Boolean indicating whether to include single qubit gates in the circuit
"""
def __init__(
self,
n,
m,
d,
order=None,
singlegates=True,
mirror=True,
barriers=True,
measure=False,
regname=None,
):
self.n = n
self.m = m
self.d = d
if regname is None:
self.qreg = QuantumRegister(n * m)
self.creg = ClassicalRegister(n * m)
else:
self.qreg = QuantumRegister(n * m, name=regname)
self.creg = ClassicalRegister(n * m, name="c" + regname)
# It is easier to interface with the circuit cutter
# if there is no Classical Register added to the circuit
self.measure = measure
if self.measure:
self.circ = QuantumCircuit(self.qreg, self.creg)
else:
self.circ = QuantumCircuit(self.qreg)
self.grid = self.make_grid(n, m)
self.cz_list = get_layers(n, m)
self.mirror = mirror
self.barriers = barriers
if order is None:
# Default
self.random = False
# Use the default Google order (https://github.com/sboixo/GRCS)
self.order = [0, 5, 1, 4, 2, 7, 3, 6]
elif order == "random":
# Random order
self.random = True
self.order = np.arange(len(self.cz_list))
if self.mirror is True:
raise Exception(
"Order cannot be random and mirror cannot be True simultaneously. Exiting."
)
else:
# Convert given order string to list of ints
self.random = False
self.order = [int(c) for c in order]
self.singlegates = singlegates
def make_grid(self, n, m):
temp_grid = []
index_ctr = 0
for row in range(n):
cur_row = []
for col in range(m):
cur_row += [Qbit(index_ctr, None)]
index_ctr += 1
temp_grid += [cur_row]
return temp_grid
def get_index(self, index1=None, index2=None):
if index2 is None:
return self.grid[index1[0]][index1[1]].index
else:
return self.grid[index1][index2].index
def print_circuit(self):
print(self.circ.draw(scale=0.6, output="text", reverse_bits=False))
def save_circuit(self):
str_order = [str(i) for i in self.order]
if self.mirror:
str_order.append("m")
fn = "supr_{}x{}x{}_order{}.txt".format(
self.n, self.m, self.d, "".join(str_order)
)
self.circ.draw(
scale=0.8, filename=fn, output="text", reverse_bits=False, line_length=160
)
def hadamard_layer(self):
for i in range(self.n):
for j in range(self.m):
self.circ.h(self.qreg[self.grid[i][j].h()])
def measure_circuit(self):
self.circ.barrier()
for i in range(self.n):
for j in range(self.m):
qubit_index = self.get_index(i, j)
self.circ.measure(self.qreg[qubit_index], self.creg[qubit_index])
def apply_postCZ_gate(self, grid_loc, reserved_qubits):
qb_index = self.get_index(grid_loc)
if qb_index not in reserved_qubits:
gate = self.grid[grid_loc[0]][grid_loc[1]].random_gate()
if gate == "Y":
# Apply a sqrt-Y gate to qubit at qb_index
self.circ.ry(math.pi / 2, self.qreg[qb_index])
elif gate == "X":
# Apply a sqrt-X gate to qubit at qb_index
self.circ.rx(math.pi / 2, self.qreg[qb_index])
else:
print("ERROR: unrecognized gate: {}".format(gate))
# successfully applied random gate
return True
else:
# did not apply gate
return False
def apply_T(self, grid_loc, reserved_qubits):
"""
Apply a T gate on the specified qubit if it is not currently
involved in a CZ gate
grid_loc = [row_idx, col_idx]
"""
qb_index = self.get_index(grid_loc[0], grid_loc[1])
if qb_index not in reserved_qubits:
self.circ.t(self.qreg[qb_index])
# successfully applied T gate
return True
else:
# Currently involved in a CZ gate
return False
def gen_circuit(self):
# print('Generating {}x{}, 1+{}+1 supremacy circuit'.format(self.n,self.m,self.d))
# Initialize with Hadamards
self.hadamard_layer()
# Iterate through CZ layers
cz_idx = -1
nlayer = len(self.cz_list)
for i in range(self.d):
prev_idx = cz_idx
if self.mirror is True:
if (i // nlayer) % 2 == 0:
cz_idx = self.order[i % nlayer]
else:
cz_idx = self.order[::-1][i % nlayer]
elif self.random is True:
cur_mod = i % nlayer
if cur_mod == 0:
random_order = np.random.permutation(self.order)
cz_idx = random_order[cur_mod]
else:
cz_idx = random_order[cur_mod]
else:
cz_idx = self.order[i % nlayer]
cur_CZs = self.cz_list[cz_idx]
pre_CZs = self.cz_list[prev_idx]
reserved_qubits = []
# Apply entangling CZ gates
for cz in cur_CZs:
ctrl = self.get_index(cz[0])
trgt = self.get_index(cz[1])
reserved_qubits += [ctrl, trgt]
self.circ.cz(self.qreg[ctrl], self.qreg[trgt])
if i == 0 and self.singlegates:
# Apply T gates on all first layer qubits not involved in a CZ
for n in range(self.n):
for m in range(self.m):
self.apply_T([n, m], reserved_qubits)
if i > 1 and self.singlegates:
# Apply T gates to all qubits which had a X_1_2 or
# Y_1_2 in the last cycle and are not involved in
# a CZ this cycle
for grid_loc in prev_nondiag_gates:
self.apply_T(grid_loc, reserved_qubits)
if i > 0 and self.singlegates:
# Apply non-diagonal single qubit gates to qubits which
# were involved in a CZ gate in the previous cycle
prev_nondiag_gates = []
for cz in pre_CZs:
for grid_loc in cz:
success = self.apply_postCZ_gate(grid_loc, reserved_qubits)
if success:
prev_nondiag_gates.append(grid_loc)
if self.barriers:
self.circ.barrier()
# End CZ-layers
# Apply a layer of Hadamards before measurement
self.hadamard_layer()
# Measurement
if self.measure:
self.measure_circuit()
return self.circ
def gen_qasm(self):
return self.circ.qasm()
|
https://github.com/usamisaori/quantum-expressibility-entangling-capability
|
usamisaori
|
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
from mpl_toolkits.mplot3d import Axes3D
plt.rc('font',family='Microsoft YaHei')
plt.rcParams['axes.unicode_minus'] = False
palettes = [
"#999999",
"#FFEE00",
"#FF9900",
"#FF3636",
"#99CC33",
"#66CCCC",
"#3399CC",
"#9966CC"
]
plt.scatter(0.1, 0.1, color=palettes[0])
plt.scatter(0.2, 0.2, color=palettes[1])
plt.scatter(0.3, 0.3, color=palettes[2])
plt.scatter(0.4, 0.4, color=palettes[3])
plt.scatter(0.5, 0.5, color=palettes[4])
plt.scatter(0.6, 0.6, color=palettes[5])
plt.scatter(0.7, 0.7, color=palettes[6])
plt.scatter(0.8, 0.8, color=palettes[7])
# Expressibility Entanglement
plt.figure(figsize=(8, 5))
c1 = "#FF6666"
c2 = "#FF9900"
c3 = "#66CCFF"
# layer 1
# layer 1 qubit 3
plt.grid()
plt.xticks([1, 2, 3, 4, 5, 6])
plt.ylim(0.13, 0.7)
plt.title("角度编码方案与表达能力", fontsize=14)
plt.xlabel("Qubit数", fontsize=13)
plt.ylabel("Expr", fontsize=13)
plt.scatter(3, 0.1974, color=c1, label="Rx(θ)(·)")
plt.scatter(3, 0.1997, color=c2, label="Ry(θ)H(·)")
plt.scatter(3, 0.1918, color=c3, label="Rz(θ)H(·)")
plt.scatter(4, 0.1462, color=c1)
plt.scatter(4, 0.1442, color=c2)
plt.scatter(4, 0.1331, color=c3)
plt.scatter(5, 0.1711, color=c1)
plt.scatter(5, 0.1824, color=c2)
plt.scatter(5, 0.1741, color=c3)
plt.scatter(1, 0.6515, color=c1)
plt.scatter(1, 0.6613, color=c2)
plt.scatter(1, 0.6260, color=c3)
plt.scatter(2, 0.3435, color=c1)
plt.scatter(2, 0.3355, color=c2)
plt.scatter(2, 0.3304, color=c3)
plt.scatter(6, 0.2582, color=c1)
plt.scatter(6, 0.2748, color=c2)
plt.scatter(6, 0.2644, color=c3)
plt.legend(loc='upper center')
plt.figure(figsize=(15, 3.8))
# layer 1
# layer 1 qubit 3
ax = plt.subplot(1,3,1)
plt.grid()
plt.ylim(0.3, 0.8)
plt.xlim(0.4, 2.4)
plt.title("Quibts: 3, Layers: 1")
plt.xlabel("Expr", fontsize=13)
plt.ylabel("Ent", fontsize=13)
plt.scatter(1.189, 0.625, color=palettes[0], label="C1")
plt.scatter(0.704, 0.377, color=palettes[1], label="C2")
plt.scatter(2.175, 0.702, color=palettes[2], label="C3")
plt.scatter(2.352, 0.540, color=palettes[3], label="C4")
plt.scatter(1.799, 0.542, color=palettes[4], label="C5")
plt.scatter(2.287, 0.720, color=palettes[5], label="C6")
plt.scatter(1.546, 0.338, color=palettes[6], label="C7")
plt.scatter(1.905, 0.456, color=palettes[7], label="C8")
ax.legend(loc='upper left', ncol=3, bbox_to_anchor=(0, 1.01))
plt.axvline(2.352, linestyle="--", color="#FF363666")
plt.axvline(2.175, linestyle="--", color="#FF990066")
plt.axhline(0.540, linestyle="--", color="#FF363666")
plt.axhline(0.702, linestyle="--", color="#FF990066")
# # layer 1 qubit 4
plt.subplot(1,3,2)
plt.grid()
plt.ylim(0.3, 0.8)
plt.xlim(0.4, 2.4)
plt.title("Quibts: 4, Layers: 1")
plt.xlabel("Expr", fontsize=13)
plt.scatter(1.724, 0.625, color=palettes[0])
plt.scatter(0.503, 0.375, color=palettes[1])
plt.scatter(1.881, 0.704, color=palettes[2])
plt.scatter(1.982, 0.537, color=palettes[3])
plt.scatter(1.837, 0.545, color=palettes[4])
plt.scatter(2.115, 0.721, color=palettes[5])
plt.scatter(1.219, 0.337, color=palettes[6])
plt.scatter(1.390, 0.457, color=palettes[7])
plt.axvline(1.982, linestyle="--", color="#FF363666")
plt.axvline(1.881, linestyle="--", color="#FF990066")
plt.axhline(0.537, linestyle="--", color="#FF363666")
plt.axhline(0.704, linestyle="--", color="#FF990066")
# # layer 1 qubit 5
plt.subplot(1,3,3)
plt.grid()
plt.ylim(0.3, 0.8)
plt.xlim(0.4, 2.4)
plt.title("Quibts: 5, Layers: 1")
plt.xlabel("Expr", fontsize=13)
plt.scatter(1.376, 0.625, color=palettes[0])
plt.scatter(0.456, 0.377, color=palettes[1])
plt.scatter(1.465, 0.703, color=palettes[2])
plt.scatter(1.557, 0.536, color=palettes[3])
plt.scatter(1.424, 0.547, color=palettes[4])
plt.scatter(2.113, 0.722, color=palettes[5])
plt.scatter(0.942, 0.339, color=palettes[6])
plt.scatter(1.152, 0.456, color=palettes[7])
plt.axvline(1.557, linestyle="--", color="#FF363666")
plt.axvline(1.465, linestyle="--", color="#FF990066")
plt.axhline(0.536, linestyle="--", color="#FF363666")
plt.axhline(0.703, linestyle="--", color="#FF990066")
def depth(circuit_type, n, L):
if circuit_type == 1:
return (2 * n + 1) * L
elif circuit_type >= 2 and circuit_type <= 4:
return (n + 1) * L + 1
elif circuit_type == 5:
return (2 + n + n // np.gcd(n, 3)) * L
elif circuit_type == 6:
return (n ** 2 - n + 4) * L
elif circuit_type == 7:
return 6 * L
elif circuit_type == 8:
return (n + 2) * L
colors2 = ['#FFCC33', '#FF9900', '#FF9966', '#FF6666', '#CC3333']
colors = ['#99CCFF', '#66CCFF', '#0088CC', '#6666FF', '#0000FF']
types = ['o', '^', ',', 'p', 'X']
plt.grid()
plt.title("线路深度同量子比特数量关系")
plt.xlabel("线路类型", fontsize=13)
plt.ylabel("线路深度", fontsize=13)
for n in range(2, 7):
for ct in range(1, 9):
if ct == 1:
plt.scatter(ct, depth(ct, n, 1), color=colors[n - 2], marker=types[n - 2], label=f"n={n}, L=1")
else:
plt.scatter(ct, depth(ct, n, 1), color=colors[n - 2], marker=types[n - 2])
for n in range(2, 7):
for ct in range(1, 9):
if ct == 1:
plt.scatter(ct, depth(ct, n, 3), color=colors2[n - 2], marker=types[n - 2], label=f"n={n}, L=3")
else:
plt.scatter(ct, depth(ct, n, 3), color=colors2[n - 2], marker=types[n - 2])
plt.axhline(22, 0, 8, linestyle="--", color="#CC6666")
plt.legend()
plt.figure(figsize=(7, 5))
# layer 1
# layer 1 qubit 3
plt.grid()
plt.ylim(0.4, 0.6)
plt.xlim(1, 1.7)
plt.title("原始线路与丢弃处理后线路的可表达性与纠缠能力", fontsize=13)
plt.xlabel("Expr", fontsize=13)
plt.ylabel("Ent", fontsize=13)
plt.scatter(1.6105, 0.5622, color="#FF9966", label="原始线路")
plt.scatter(1.4415, 0.5158, color="#FF6666", label="纠缠丢弃")
plt.scatter(1.1185, 0.4283, color="#3399CC", label="旋转丢弃")
plt.legend(loc='upper left')
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
# You can show the phase of each state and use
# degrees instead of radians
from qiskit.quantum_info import DensityMatrix
import numpy as np
from qiskit import QuantumCircuit
from qiskit.visualization import plot_state_qsphere
qc = QuantumCircuit(2)
qc.h([0, 1])
qc.cz(0,1)
qc.ry(np.pi/3, 0)
qc.rx(np.pi/5, 1)
qc.z(1)
matrix = DensityMatrix(qc)
plot_state_qsphere(matrix,
show_state_phases = True, use_degrees = True)
|
https://github.com/kuehnste/QiskitTutorial
|
kuehnste
|
# Importing standard Qiskit libraries
from qiskit import QuantumCircuit, execute, Aer, IBMQ
from qiskit.visualization import *
from qiskit.quantum_info import state_fidelity
# Numpy and Scipy for data evaluation and reference calculations
import numpy as np
from scipy.linalg import expm
# Matplotlib for visualization
import matplotlib.pyplot as plt
# Magic function to render plots in the notebook after the cell executing the plot command
%matplotlib inline
# Function for convenience which allows for running the simulator and extracting the results
def run_on_qasm_simulator(quantum_circuit, num_shots):
"""Takes a circuit, the number of shots and a backend and returns the counts for running the circuit
on the qasm_simulator backend."""
qasm_simulator = Aer.get_backend('qasm_simulator')
job = execute(quantum_circuit, backend=qasm_simulator, shots=num_shots)
result = job.result()
counts = result.get_counts()
return counts
def Op(M, n ,N):
"""Given a single site operator, provide the N-body operator
string obtained by tensoring identities"""
d = M.shape[0]
id_left = np.eye(d**n)
id_right = np.eye(d**(N-n-1))
res = np.kron(id_left,np.kron(M,id_right))
return res
def IsingHamiltonian(N, h):
"""The Ising Hamiltonian for N sites with parameter h"""
Z = np.array([[1., 0.],[0., -1.]])
X = np.array([[0., 1.],[1., 0.]])
H = np.zeros((2**N, 2**N))
for i in range(N):
if i<N-1:
H += Op(Z, i, N)@Op(Z, i+1, N)
H += h*Op(X, i, N)
return H
# For reference, we provide a function computing the exact solution for
# the magnetization as a function of time
def get_magnetization_vs_time(h, delta_t, nsteps):
"""Compute the exact value of the magnetization"""
Z = np.array([[1., 0.],[0., -1.]])
X = np.array([[0., 1.],[1., 0.]])
Id = np.eye(2)
# The Ising Hamiltonian for 4 sites with parameter h
H = IsingHamiltonian(4, h)
# The time evolution operator for an interval \Delta t
U = expm(-1.0j*delta_t*H)
# The operator for the total magnetization
M = Op(Z,0,4) + Op(Z,1,4) + Op(Z,2,4) + Op(Z,3,4)
# Numpy array to hold the results
magnetization = np.zeros(nsteps)
# The initial wave function corresponding to |0010>
psi = np.zeros(16)
psi[int('0010', 2)] = 1
# Evolve in steps of \Delta t and measure the magnetization
for n in range(nsteps):
psi = U@psi
magnetization[n] = np.real(psi.conj().T@M@psi)
return magnetization
def provide_initial_state():
# Create a quantum circuit qc for 4 qubits
qc = QuantumCircuit(4)
# Add the necessary gate(s) to provide the inital state |0010>
return qc
def Uzz(delta_t):
# Create an empty quantum circuit qc for 4 qubits
qc = QuantumCircuit(4)
# Add the gates for exp(-i Z_k Z_k+1 \Delta t) for all neighboring qubits
return qc
def Ux(delta_t, h):
# Create an empty quantum circuit qc for 4 qubits
qc = QuantumCircuit(4)
# Add the gates for exp(-i h X_k \Delta t) to all qubits
return qc
def build_time_evolution_circuit(qc_init_state, qc_Uzz, qc_Ux, N):
"""Given the circuits implementing the initial state and the two parts
of the trotterized time-evolution operator build the circuit evolving the
wave function N steps
"""
# Generate an empty quantum circuit qc for 4 qubits
qc = QuantumCircuit(4)
# Add the inital state
qc.compose(qc_init_state, inplace=True)
# For each time step add qc_Uzz and qc_Ux
for i in range(N):
qc.compose(qc_Uzz, inplace=True)
qc.compose(qc_Ux, inplace=True)
# Add the final measurments
qc.measure_all()
return qc
def get_magnetization(counts):
"""Given the counts resulting form a measurement, compute the site
resolved magnetization"""
total_counts = sum(counts.values())
res = np.zeros(4)
for qubit in range(4):
Z_expectation = 0.
for key, value in counts.items():
if key[qubit] == '0':
Z_expectation += value
else:
Z_expectation -= value
res[qubit] = Z_expectation/total_counts
return res
# The parameters for the time evolution
h = 1.5
delta_t = 0.05
nsteps = 40
nshots = 1000
# Provide the initial state
qc_init_state = provide_initial_state()
# The time-evolution operators
qc_Uzz = Uzz(delta_t)
qc_Ux = Ux(delta_t, h)
# Numpy array for expectation values of the magnetization
magnetization = np.zeros(nsteps)
# Numpy array for qubit configuration
configuration = np.zeros((4, nsteps))
# Run the time evolution
for n in range(1, nsteps+1):
# Build the evolution circuit out of qc_init_state, qc_Uzz and qc_Ux for
# n steps
qc_evo = build_time_evolution_circuit(qc_init_state, qc_Uzz, qc_Ux, n)
# Run the evolution circuit on the qasm_simulator
res = run_on_qasm_simulator(qc_evo, nshots)
# Compute the ovservables
configuration[:,n-1] = get_magnetization(res)
magnetization[n-1] = sum(configuration[:,n-1])
# For reference we compute the exact solution
magnetization_exact = get_magnetization_vs_time(h, delta_t, nsteps)
# Plot the total magnetization as a function of time and compare to
# the exact result
plt.figure()
plt.plot(magnetization_exact, '--', label='exact')
plt.plot(magnetization, 'o', label='quantum circuit')
plt.xlabel('$t/\Delta t$')
plt.ylabel('$<\sum_i Z_i(t)>$')
plt.title('Total magnetization')
plt.legend()
# Plot the site resolved spin configuration as a function of time
plt.figure()
plt.imshow(configuration, aspect='auto')
plt.colorbar()
plt.xlabel('$t/\Delta t$')
plt.ylabel('$<Z_i(t)>$')
plt.title('Spatially resolved spin configuration')
|
https://github.com/dnnagy/qintro
|
dnnagy
|
import numpy as np
from qiskit import *
import matplotlib
qr = QuantumRegister(2)
#measurements from quantum bits = use classical register
cr = ClassicalRegister(2)
circuit = QuantumCircuit(qr, cr)
circuit.draw()
# adding quantum gates to create entanglement (Hadamart gate)
circuit.h(qr[0])
%matplotlib inline
circuit.draw(output='mpl')
#two qubit operation control X (logical if)
circuit.cx(qr[0], qr[1])
circuit.draw(output='mpl') #entanglement achieved
#measurement, storing measurements into computational register
circuit.measure(qr,cr)
circuit.draw(output='mpl')
#performance simulations
simulator = Aer.get_backend('qasm_simulator')
execute(circuit, backend = simulator)
result = execute(circuit, backend = simulator).result()
#plotting results
from qiskit.tools.visualization import plot_histogram
plot_histogram(result.get_counts(circuit))
#running circuit on quantum computer
IBMQ.load_account()
provider= IBMQ.get_provider('ibm-q')
qcomp = provider.get_backend('ibmq_manila')
job= execute(circuit, backend=qcomp)
from qiskit.tools import job_monitor
job_monitor(job)
result = job.result()
from qiskit.tools.visualization import plot_histogram
plot_histogram(result.get_counts(circuit), title='Performance metric on Quantum Computer')
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import json
import time
import warnings
import matplotlib.pyplot as plt
import numpy as np
from IPython.display import clear_output
from qiskit import ClassicalRegister, QuantumRegister
from qiskit import QuantumCircuit
from qiskit.algorithms.optimizers import COBYLA
from qiskit.circuit.library import RealAmplitudes
from qiskit.quantum_info import Statevector
from qiskit.utils import algorithm_globals
from qiskit_machine_learning.circuit.library import RawFeatureVector
from qiskit_machine_learning.neural_networks import SamplerQNN
algorithm_globals.random_seed = 42
def ansatz(num_qubits):
return RealAmplitudes(num_qubits, reps=5)
num_qubits = 5
circ = ansatz(num_qubits)
circ.decompose().draw("mpl")
def auto_encoder_circuit(num_latent, num_trash):
qr = QuantumRegister(num_latent + 2 * num_trash + 1, "q")
cr = ClassicalRegister(1, "c")
circuit = QuantumCircuit(qr, cr)
circuit.compose(ansatz(num_latent + num_trash), range(0, num_latent + num_trash), inplace=True)
circuit.barrier()
auxiliary_qubit = num_latent + 2 * num_trash
# swap test
circuit.h(auxiliary_qubit)
for i in range(num_trash):
circuit.cswap(auxiliary_qubit, num_latent + i, num_latent + num_trash + i)
circuit.h(auxiliary_qubit)
circuit.measure(auxiliary_qubit, cr[0])
return circuit
num_latent = 3
num_trash = 2
circuit = auto_encoder_circuit(num_latent, num_trash)
circuit.draw("mpl")
def domain_wall(circuit, a, b):
# Here we place the Domain Wall to qubits a - b in our circuit
for i in np.arange(int(b / 2), int(b)):
circuit.x(i)
return circuit
domain_wall_circuit = domain_wall(QuantumCircuit(5), 0, 5)
domain_wall_circuit.draw("mpl")
ae = auto_encoder_circuit(num_latent, num_trash)
qc = QuantumCircuit(num_latent + 2 * num_trash + 1, 1)
qc = qc.compose(domain_wall_circuit, range(num_latent + num_trash))
qc = qc.compose(ae)
qc.draw("mpl")
# Here we define our interpret for our SamplerQNN
def identity_interpret(x):
return x
qnn = SamplerQNN(
circuit=qc,
input_params=[],
weight_params=ae.parameters,
interpret=identity_interpret,
output_shape=2,
)
def cost_func_domain(params_values):
probabilities = qnn.forward([], params_values)
# we pick a probability of getting 1 as the output of the network
cost = np.sum(probabilities[:, 1])
# plotting part
clear_output(wait=True)
objective_func_vals.append(cost)
plt.title("Objective function value against iteration")
plt.xlabel("Iteration")
plt.ylabel("Objective function value")
plt.plot(range(len(objective_func_vals)), objective_func_vals)
plt.show()
return cost
opt = COBYLA(maxiter=150)
initial_point = algorithm_globals.random.random(ae.num_parameters)
objective_func_vals = []
# make the plot nicer
plt.rcParams["figure.figsize"] = (12, 6)
start = time.time()
opt_result = opt.minimize(cost_func_domain, initial_point)
elapsed = time.time() - start
print(f"Fit in {elapsed:0.2f} seconds")
test_qc = QuantumCircuit(num_latent + num_trash)
test_qc = test_qc.compose(domain_wall_circuit)
ansatz_qc = ansatz(num_latent + num_trash)
test_qc = test_qc.compose(ansatz_qc)
test_qc.barrier()
test_qc.reset(4)
test_qc.reset(3)
test_qc.barrier()
test_qc = test_qc.compose(ansatz_qc.inverse())
test_qc.draw("mpl")
test_qc = test_qc.assign_parameters(opt_result.x)
domain_wall_state = Statevector(domain_wall_circuit).data
output_state = Statevector(test_qc).data
fidelity = np.sqrt(np.dot(domain_wall_state.conj(), output_state) ** 2)
print("Fidelity of our Output State with our Input State: ", fidelity.real)
def zero_idx(j, i):
# Index for zero pixels
return [
[i, j],
[i - 1, j - 1],
[i - 1, j + 1],
[i - 2, j - 1],
[i - 2, j + 1],
[i - 3, j - 1],
[i - 3, j + 1],
[i - 4, j - 1],
[i - 4, j + 1],
[i - 5, j],
]
def one_idx(i, j):
# Index for one pixels
return [[i, j - 1], [i, j - 2], [i, j - 3], [i, j - 4], [i, j - 5], [i - 1, j - 4], [i, j]]
def get_dataset_digits(num, draw=True):
# Create Dataset containing zero and one
train_images = []
train_labels = []
for i in range(int(num / 2)):
# First we introduce background noise
empty = np.array([algorithm_globals.random.uniform(0, 0.1) for i in range(32)]).reshape(
8, 4
)
# Now we insert the pixels for the one
for i, j in one_idx(2, 6):
empty[j][i] = algorithm_globals.random.uniform(0.9, 1)
train_images.append(empty)
train_labels.append(1)
if draw:
plt.title("This is a One")
plt.imshow(train_images[-1])
plt.show()
for i in range(int(num / 2)):
empty = np.array([algorithm_globals.random.uniform(0, 0.1) for i in range(32)]).reshape(
8, 4
)
# Now we insert the pixels for the zero
for k, j in zero_idx(2, 6):
empty[k][j] = algorithm_globals.random.uniform(0.9, 1)
train_images.append(empty)
train_labels.append(0)
if draw:
plt.imshow(train_images[-1])
plt.title("This is a Zero")
plt.show()
train_images = np.array(train_images)
train_images = train_images.reshape(len(train_images), 32)
for i in range(len(train_images)):
sum_sq = np.sum(train_images[i] ** 2)
train_images[i] = train_images[i] / np.sqrt(sum_sq)
return train_images, train_labels
train_images, __ = get_dataset_digits(2)
num_latent = 3
num_trash = 2
fm = RawFeatureVector(2 ** (num_latent + num_trash))
ae = auto_encoder_circuit(num_latent, num_trash)
qc = QuantumCircuit(num_latent + 2 * num_trash + 1, 1)
qc = qc.compose(fm, range(num_latent + num_trash))
qc = qc.compose(ae)
qc.draw("mpl")
def identity_interpret(x):
return x
qnn = SamplerQNN(
circuit=qc,
input_params=fm.parameters,
weight_params=ae.parameters,
interpret=identity_interpret,
output_shape=2,
)
def cost_func_digits(params_values):
probabilities = qnn.forward(train_images, params_values)
cost = np.sum(probabilities[:, 1]) / train_images.shape[0]
# plotting part
clear_output(wait=True)
objective_func_vals.append(cost)
plt.title("Objective function value against iteration")
plt.xlabel("Iteration")
plt.ylabel("Objective function value")
plt.plot(range(len(objective_func_vals)), objective_func_vals)
plt.show()
return cost
with open("12_qae_initial_point.json", "r") as f:
initial_point = json.load(f)
opt = COBYLA(maxiter=150)
objective_func_vals = []
# make the plot nicer
plt.rcParams["figure.figsize"] = (12, 6)
start = time.time()
opt_result = opt.minimize(fun=cost_func_digits, x0=initial_point)
elapsed = time.time() - start
print(f"Fit in {elapsed:0.2f} seconds")
# Test
test_qc = QuantumCircuit(num_latent + num_trash)
test_qc = test_qc.compose(fm)
ansatz_qc = ansatz(num_latent + num_trash)
test_qc = test_qc.compose(ansatz_qc)
test_qc.barrier()
test_qc.reset(4)
test_qc.reset(3)
test_qc.barrier()
test_qc = test_qc.compose(ansatz_qc.inverse())
# sample new images
test_images, test_labels = get_dataset_digits(2, draw=False)
for image, label in zip(test_images, test_labels):
original_qc = fm.assign_parameters(image)
original_sv = Statevector(original_qc).data
original_sv = np.reshape(np.abs(original_sv) ** 2, (8, 4))
param_values = np.concatenate((image, opt_result.x))
output_qc = test_qc.assign_parameters(param_values)
output_sv = Statevector(output_qc).data
output_sv = np.reshape(np.abs(output_sv) ** 2, (8, 4))
fig, (ax1, ax2) = plt.subplots(1, 2)
ax1.imshow(original_sv)
ax1.set_title("Input Data")
ax2.imshow(output_sv)
ax2.set_title("Output Data")
plt.show()
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
# You can set a color for all the bars.
from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_state_paulivec
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
state = Statevector(qc)
plot_state_paulivec(state, color='midnightblue', title="New PauliVec plot")
|
https://github.com/benkoehlL/Qiskit_Playground
|
benkoehlL
|
import numpy as np
from qiskit import *
from qiskit.visualization import plot_histogram
from matplotlib.pyplot import plot, draw, show
def SendState(qc1, qc2, qc1_name):
'''
This function takes the output of circuit qc1
(made up of only H and X gates)
and initialises another circuit qc2 with the same state
'''
qs = qc1.qasm().split(sep=';')[4:-1]
# process the code to get the instructions
for i, instruction in enumerate(qs):
qs[i] = instruction.lstrip()
# parse the instructions and apply to new circuit
for instruction in qs:
instruction_gate = instruction[0]
instruction_qubit_list = []
i = 0
while instruction[i] != '[':
i += 1
i += 1
while instruction[i] != ']':
instruction_qubit_list.append(instruction[i])
i += 1
instruction_qubit = 0
for i, dec in enumerate(reversed(instruction_qubit_list)):
instruction_qubit += int(dec)*10**i
if(instruction_gate == 'x'):
old_qr = int(instruction_qubit)
qc2.x(qr[old_qr])
elif instruction_gate == 'h':
old_qr = int(instruction_qubit)
qc2.h(qr[old_qr])
elif instruction_gate == 'm':
# exclude measuring
pass
else:
raise Exception('Unable to parse instruction')
# declare classical and quantum register
n = 16 # for local backend 'n' can go up to 23,
#after which a memery error is raised
qr = QuantumRegister(n, name='q')
cr = ClassicalRegister(n, name='c')
# create Alice's circuit
alice = QuantumCircuit(qr, cr, name='Alice')
# generate a random number expressible by the available qubits
alice_key = np.random.randint(0,high=2**n)
# cast key to binary representation
alice_key = np.binary_repr(alice_key,n)
# encode key as alice qubits
for i, digit in enumerate(alice_key):
if(digit == '1'):
alice.x(qr[i])
# switch randomly about half qubits to Hadamard basis
alice_table = []
for qubit in qr:
if(np.random.rand()>0.5):
alice.h(qubit)
alice_table.append('H') # indicate the Hadamard-basis
else:
alice_table.append('Z') # indicate the Z-basis
# create Bob's circuit
bob = QuantumCircuit(qr, cr, name='Bob')
SendState(alice,bob, 'Alice')
# Bob does not know which basis to use
bob_table = []
for qubit in qr:
if(np.random.rand()>0.5):
bob.h(qubit)
bob_table.append('H') # indicate the Hadamard-basis
else:
bob_table.append('Z') # indicate the Z-basis
# measure all qubits
for i, qubit in enumerate(qr):
bob.measure(qubit, cr[i])
backend = BasicAer.get_backend('qasm_simulator')
# Bob has only one chance of measuring correctly
result = execute(bob, backend=backend, shots=1).result()
#plot_histogram(result.get_counts(bob))
#draw()
#show(block=True)
# result of the measurement is Bob's key candidate
bob_key = list(result.get_counts(bob))[0]
# key is reversed so that first qubit is the first element of the list
bob_key = bob_key[::-1]
# compare basis and discard qubits not measured in the same basis
keep = []
discard = []
print('\n', "Compare Bob's and Alice's basis (without eavesdropping): ")
for qubit, basis in enumerate(zip(alice_table,bob_table)):
if(basis[0] == basis[1]):
print("Same choice for qubit: {}, basis: {}".format(qubit, basis[0]))
keep.append(qubit)
else:
print("Different choice for qubit: {}, Alice has {}, Bob has {}".format(qubit, basis[0], basis[1]))
discard.append(qubit)
# measure the percentage of qubits to be discarded
acc = 0
for bit in zip(alice_key, bob_key):
if(bit[0]==bit[1]):
acc += 1
print('\n Percentage of qubits to be discarded according to table comparison: ',
len(keep)/n)
print('Measurement convergence by additional chance: ', acc/n)
new_alice_key = [alice_key[qubit] for qubit in keep]
new_bob_key = [bob_key[qubit] for qubit in keep]
acc = 0
for bit in zip(new_alice_key, new_bob_key):
if(bit[0] == bit[1]):
acc += 1
print('Percentage of similarity between the keys: ', acc/len(new_alice_key))
if(acc//len(new_alice_key) == 1):
print('Key exchange has been succesfull')
print("New Alice's key: ", new_alice_key)
print("New Bob's key: ", new_bob_key)
else:
print('Key exchange has been tampered! ---> Check for eavesdropper or try again')
print("New Alice's key is invalid: ", new_alice_key)
print("New Bob's key is invalid: ", new_bob_key)
# let's intrude a eavesdropper Eve (which is initialised to Alice's state)
eve = QuantumCircuit(qr, cr, name='Eve')
SendState(alice, eve, 'Alice')
eve_table = []
for qubit in qr:
if(np.random.rand()>0.5):
eve.h(qubit)
eve_table.append('H')
else:
eve_table.append('Z')
for i, qubit in enumerate(qr):
eve.measure(qubit,cr[i])
# Execute (build and run) the quantum circuit
backend = BasicAer.get_backend('qasm_simulator')
result = execute(eve, backend=backend, shots=1).result()
# Result of the measurement is Eve's key
eve_key = list(result.get_counts(eve))[0]
eve_key = eve_key[::-1]
# Update states to new eigenstates (of wrongly chosen basis)
print('\n', "Compare Eve's and Alice's basis: ")
for i, basis in enumerate(zip(alice_table,eve_table)):
if(basis[0] == basis[1]):
print("Same choice for qubit: {}, basis: {}".format(qubit, basis[0]))
keep.append(i)
else:
print("Different choice for qubit: {}, Alice has {}, Eve has {}".format(qubit, basis[0], basis[1]))
discard.append(i)
if eve_key[i] == alice_key[i]:
eve.h(qr[i])
else:
if (basis[0] == 'H' and basis[1] == 'Z'):
alice.h(qr[i])
eve.x(qr[i])
else:
eve.x(qr[i])
eve.h(qr[i])
# Eve's state is now sent to Bob
SendState(eve, bob, 'Eve')
bob_table = []
for qubit in qr:
if(np.random.rand()>0.5):
bob.h(qubit)
bob_table.append('H')
else:
bob_table.append('Z')
for i, qubit in enumerate(qr):
bob.measure(qubit, cr[i])
result = execute(bob, backend, shots=1).result()
#plot_histogram(result.get_counts(bob))
#draw()
#show(block=True)
bob_key = list(result.get_counts(bob))[0]
bob_key = bob_key[::-1]
# Now Alice and Bob will share their table data and perform checking operations
keep = []
discard = []
print('\n', "Compare Bob's and Alice's basis (with eavesdropping by Eve): ")
for qubit, basis in enumerate(zip(alice_table, bob_table)):
if(basis[0] == basis[1]):
print("Same choice for qubit: {}, basis: {}".format(qubit, basis[0]))
keep.append(qubit)
else:
print("Different choice for qubit: {}, Alice has {}, Bob has {}".format(qubit, basis[0], basis[1]))
discard.append(qubit)
# measure the percentage of qubits to be discarded
acc = 0
for bit in zip(alice_key, bob_key):
if(bit[0]==bit[1]):
acc += 1
print('Percentage of qubits to be discarded according to table comparison: ',
len(keep)/n)
print('Measurement convergence by additional chance: ', acc/n)
new_alice_key = [alice_key[qubit] for qubit in keep]
new_bob_key = [bob_key[qubit] for qubit in keep]
acc = 0
for bit in zip(new_alice_key, new_bob_key):
if(bit[0] == bit[1]):
acc += 1
print('\n Percentage of similarity between the keys: ', acc/len(new_alice_key))
if(acc//len(new_alice_key) == 1):
print('Key exchange has been succesfull')
print("New Alice's key: ", new_alice_key)
print("New Bob's key: ", new_bob_key)
else:
print('Key exchange has been tampered! --->',
'Check for eavesdropper or try again')
print("New Alice's key is invalid: ", new_alice_key)
print("New Bob's key is invalid: ", new_bob_key)
|
https://github.com/ka-us-tubh/quantum-computing-qiskit-
|
ka-us-tubh
|
import numpy as np
# Importing standard Qiskit libraries
from qiskit import *
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from ibm_quantum_widgets import *
# Loading your IBM Quantum account(s)
provider = IBMQ.load_account()
qr=QuantumRegister(2)
cr=ClassicalRegister(2)
circuit=QuantumCircuit(cr,qr)
%matplotlib inline
circuit.draw()
circuit.h(qr[0])
circuit.draw()
circuit.cx(qr[0],qr[1])
circuit.draw()
circuit.measure(qr,cr)
circuit.draw()
simulator = Aer.get_backend('qasm_simulator')
result=execute(circuit,backend= simulator).result()
plot_histogram(result.get_counts(circuit))
provider=IBMQ.get_provider('ibm-q')
qcomp=provider.get_backend('ibmq_quito')
|
https://github.com/Qiskit-Extensions/qiskit-ibm-experiment
|
Qiskit-Extensions
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021-2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Experiment integration tests."""
import os
import unittest
from unittest import mock, skipIf
import contextlib
from test.service.ibm_test_case import IBMTestCase
import numpy as np
from qiskit import transpile, QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.providers import JobStatus
from qiskit_experiments.framework import (
ExperimentData,
ExperimentDecoder,
ExperimentEncoder,
)
from qiskit_experiments.framework.experiment_data import ExperimentStatus
from qiskit_experiments.framework import AnalysisResult
from qiskit_experiments.database_service.exceptions import ExperimentEntryNotFound
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit_ibm_experiment import IBMExperimentService
from qiskit_ibm_experiment.exceptions import IBMExperimentEntryNotFound
from qiskit_ibm_experiment.exceptions import IBMApiError
def bell():
"""Return a Bell circuit."""
qr = QuantumRegister(2, name="qr")
cr = ClassicalRegister(2, name="qc")
qc = QuantumCircuit(qr, cr, name="bell")
qc.h(qr[0])
qc.cx(qr[0], qr[1])
qc.measure(qr, cr)
return qc
@skipIf(
not os.environ.get("QISKIT_IBM_USE_STAGING_CREDENTIALS", ""), "Only runs on staging"
)
class TestExperimentDataIntegration(IBMTestCase):
"""Test experiment service with experiment data."""
@classmethod
def setUpClass(cls):
"""Initial class level setup."""
super().setUpClass()
try:
cls._setup_service()
cls._setup_provider()
cls.circuit = transpile(bell(), cls.backend)
except Exception as err:
cls.log.info("Error while setting the service/provider: %s", err)
raise
@classmethod
def _setup_service(cls):
"""Get the service for the class."""
cls.service = IBMExperimentService(
token=os.getenv("QISKIT_IBM_STAGING_API_TOKEN"),
url=os.getenv("QISKIT_IBM_STAGING_API_URL"),
)
@classmethod
def _setup_provider(cls):
"""Get the provider for the class."""
cls.provider = QiskitRuntimeService(
channel="ibm_quantum",
token=os.getenv("QISKIT_IBM_STAGING_API_TOKEN"),
url=os.getenv("QISKIT_IBM_STAGING_API_URL"),
instance=os.getenv("QISKIT_IBM_STAGING_HGP"),
)
cls.backend = cls.provider.backend(os.getenv("QISKIT_IBM_STAGING_BACKEND"))
try:
cls.device_components = cls.service.device_components(cls.backend.name)
except IBMApiError:
cls.device_components = None
def setUp(self) -> None:
"""Test level setup."""
super().setUp()
self.experiments_to_delete = []
self.results_to_delete = []
self.jobs_to_cancel = []
def tearDown(self):
"""Test level tear down."""
for result_uuid in self.results_to_delete:
try:
with mock.patch("builtins.input", lambda _: "y"):
self.service.delete_analysis_result(result_uuid)
except Exception as err: # pylint: disable=broad-except
self.log.info(
"Unable to delete analysis result %s: %s", result_uuid, err
)
for expr_uuid in self.experiments_to_delete:
try:
with mock.patch("builtins.input", lambda _: "y"):
self.service.delete_experiment(expr_uuid)
except Exception as err: # pylint: disable=broad-except
self.log.info("Unable to delete experiment %s: %s", expr_uuid, err)
for job in self.jobs_to_cancel:
with contextlib.suppress(Exception):
job.cancel()
super().tearDown()
def test_add_data_job(self):
"""Test add job to experiment data."""
exp_data = ExperimentData(
backend=self.backend,
provider=self.provider,
experiment_type="qiskit_test",
service=self.service,
)
transpiled = transpile(bell(), self.backend)
transpiled.metadata = {"foo": "bar"}
job = self._run_circuit(transpiled)
exp_data.add_jobs(job)
self.assertEqual([job.job_id()], exp_data.job_ids)
result = job.result()
exp_data.block_for_results()
circuit_data = exp_data.data(0)
self.assertEqual(result.get_counts(0), circuit_data["counts"])
# currently the returned job_id is different; this is not a qiskit-ibm-experiment
# problem but a known behaviour in the new provider
# self.assertEqual(job.job_id(), circuit_data["job_id"])
self.assertEqual(transpiled.metadata, circuit_data["metadata"])
def test_new_experiment_data(self):
"""Test creating a new experiment data."""
metadata = {"complex": 2 + 3j, "numpy": np.zeros(2)}
exp_data = ExperimentData(
service=self.service,
backend=self.backend,
provider=self.provider,
experiment_type="qiskit_test",
tags=["foo", "bar"],
share_level="hub",
metadata=metadata,
notes="some notes",
)
job_ids = []
for _ in range(2):
job = self._run_circuit()
exp_data.add_jobs(job)
job_ids.append(job.job_id())
exp_data.block_for_results().save(suppress_errors=False)
self.experiments_to_delete.append(exp_data.experiment_id)
hub, group, project = list(self.provider._hgps)[0].split("/")
rexp = ExperimentData.load(exp_data.experiment_id, self.service)
self._verify_experiment_data(exp_data, rexp)
self.assertEqual(hub, rexp.hub) # pylint: disable=no-member
self.assertEqual(group, rexp.group) # pylint: disable=no-member
self.assertEqual(project, rexp.project) # pylint: disable=no-member
def test_update_experiment_data(self):
"""Test updating an experiment."""
exp_data = self._create_experiment_data()
for _ in range(2):
job = self._run_circuit()
exp_data.add_jobs(job)
exp_data.tags = ["foo", "bar"]
exp_data.share_level = "hub"
exp_data.notes = "some notes"
exp_data.block_for_results().save(suppress_errors=False)
rexp = ExperimentData.load(exp_data.experiment_id, self.service)
self._verify_experiment_data(exp_data, rexp)
def _verify_experiment_data(self, expected, actual):
"""Verify the input experiment data."""
self.assertEqual(expected.experiment_id, actual.experiment_id)
self.assertEqual(expected.job_ids, actual.job_ids)
self.assertEqual(expected.share_level, actual.share_level)
self.assertEqual(expected.tags, actual.tags)
self.assertEqual(expected.notes, actual.notes)
self.assertEqual(
expected.metadata.get("complex", {}), actual.metadata.get("complex", {})
)
self.assertTrue(actual.creation_datetime)
self.assertTrue(getattr(actual, "creation_datetime").tzinfo)
def test_add_analysis_results(self):
"""Test adding an analysis result."""
exp_data = self._create_experiment_data()
result_data = {"complex": 2 + 3j, "numpy": np.zeros(2)}
aresult = AnalysisResult(
name="qiskit_test",
value=result_data,
device_components=self.device_components,
experiment_id=exp_data.experiment_id,
quality="good",
tags=["foo", "bar"],
service=self.service,
)
exp_data.add_analysis_results(aresult)
exp_data.save(suppress_errors=False)
rresult = AnalysisResult.load(aresult.result_id, self.service)
self.assertEqual(exp_data.experiment_id, rresult.experiment_id)
self._verify_analysis_result(aresult, rresult)
def test_update_analysis_result(self):
"""Test updating an analysis result."""
aresult, exp_data = self._create_analysis_result()
rdata = {"complex": 2 + 3j, "numpy": np.zeros(2)}
aresult.value = rdata
aresult.quality = "good"
aresult.tags = ["foo", "bar"]
aresult.save(suppress_errors=False)
rexp = ExperimentData.load(exp_data.experiment_id, self.service)
rresult = rexp.analysis_results(0)
self._verify_analysis_result(aresult, rresult)
def _verify_analysis_result(self, expected, actual):
"""Verify the input analysis result."""
self.assertEqual(expected.result_id, actual.result_id)
self.assertEqual(expected.name, actual.name)
ecomp = {str(comp) for comp in expected.device_components}
acomp = {str(comp) for comp in actual.device_components}
self.assertEqual(ecomp, acomp)
self.assertEqual(expected.experiment_id, actual.experiment_id)
self.assertEqual(expected.quality, actual.quality)
self.assertEqual(expected.tags, actual.tags)
self.assertEqual(expected.value["complex"], actual.value["complex"])
self.assertEqual(expected.value["numpy"].all(), actual.value["numpy"].all())
def test_delete_analysis_result(self):
"""Test deleting an analysis result."""
aresult, exp_data = self._create_analysis_result()
with mock.patch("builtins.input", lambda _: "y"):
exp_data.delete_analysis_result(0)
exp_data.save(suppress_errors=False)
rexp = ExperimentData.load(exp_data.experiment_id, self.service)
self.assertRaises(
ExperimentEntryNotFound, rexp.analysis_results, aresult.result_id
)
self.assertRaises(
IBMExperimentEntryNotFound, self.service.analysis_result, aresult.result_id
)
def test_add_figures(self):
"""Test adding a figure to the experiment data."""
exp_data = self._create_experiment_data()
hello_bytes = str.encode("hello world")
sub_tests = ["hello.svg", None]
for idx, figure_name in enumerate(sub_tests):
with self.subTest(figure_name=figure_name):
exp_data.add_figures(
figures=hello_bytes, figure_names=figure_name, save_figure=True
)
rexp = ExperimentData.load(exp_data.experiment_id, self.service)
self.assertEqual(rexp.figure(idx).figure, hello_bytes)
def test_add_figures_plot(self):
"""Test adding a matplotlib figure."""
import matplotlib.pyplot as plt
figure, axes = plt.subplots()
axes.plot([1, 2, 3])
exp_data = self._create_experiment_data()
exp_data.add_figures(figure, save_figure=True)
rexp = ExperimentData.load(exp_data.experiment_id, self.service)
self.assertTrue(rexp.figure(0))
def test_add_figures_file(self):
"""Test adding a figure file."""
exp_data = self._create_experiment_data()
hello_bytes = str.encode("hello world")
file_name = "hello_world.svg"
self.addCleanup(os.remove, file_name)
with open(file_name, "wb") as file:
file.write(hello_bytes)
exp_data.add_figures(figures=file_name, save_figure=True)
rexp = ExperimentData.load(exp_data.experiment_id, self.service)
self.assertEqual(rexp.figure(0).figure, hello_bytes)
def test_update_figure(self):
"""Test updating a figure."""
exp_data = self._create_experiment_data()
hello_bytes = str.encode("hello world")
figure_name = "hello.svg"
exp_data.add_figures(
figures=hello_bytes, figure_names=figure_name, save_figure=True
)
self.assertEqual(exp_data.figure(0).figure, hello_bytes)
friend_bytes = str.encode("hello friend")
exp_data.add_figures(
figures=friend_bytes,
figure_names=figure_name,
overwrite=True,
save_figure=True,
)
rexp = ExperimentData.load(exp_data.experiment_id, self.service)
self.assertEqual(rexp.figure(0).figure, friend_bytes)
self.assertEqual(rexp.figure(figure_name).figure, friend_bytes)
def test_delete_figure(self):
"""Test deleting a figure."""
exp_data = self._create_experiment_data()
hello_bytes = str.encode("hello world")
figure_name = "hello.svg"
exp_data.add_figures(
figures=hello_bytes, figure_names=figure_name, save_figure=True
)
with mock.patch("builtins.input", lambda _: "y"):
exp_data.delete_figure(0)
exp_data.save(suppress_errors=False)
rexp = ExperimentData.load(exp_data.experiment_id, self.service)
self.assertRaises(IBMExperimentEntryNotFound, rexp.figure, figure_name)
self.assertRaises(
IBMExperimentEntryNotFound,
self.service.figure,
exp_data.experiment_id,
figure_name,
)
def test_save_all(self):
"""Test saving all."""
exp_data = self._create_experiment_data()
exp_data.tags = ["foo", "bar"]
aresult = AnalysisResult(
value={},
name="qiskit_test",
device_components=self.device_components,
experiment_id=exp_data.experiment_id,
)
exp_data.add_analysis_results(aresult)
hello_bytes = str.encode("hello world")
exp_data.add_figures(hello_bytes, figure_names="hello.svg")
exp_data.save(suppress_errors=False)
rexp = ExperimentData.load(exp_data.experiment_id, self.service)
# Experiment tag order is not necessarily preserved
# so compare tags with a predictable sort order.
self.assertEqual(["bar", "foo"], sorted(rexp.tags))
self.assertEqual(aresult.result_id, rexp.analysis_results(0).result_id)
self.assertEqual(hello_bytes, rexp.figure(0).figure)
exp_data.delete_analysis_result(0)
exp_data.delete_figure(0)
with mock.patch("builtins.input", lambda _: "y"):
exp_data.save(suppress_errors=False)
rexp = ExperimentData.load(exp_data.experiment_id, self.service)
self.assertRaises(IBMExperimentEntryNotFound, rexp.figure, "hello.svg")
self.assertRaises(
ExperimentEntryNotFound, rexp.analysis_results, aresult.result_id
)
def test_set_service_job(self):
"""Test setting service with a job."""
exp_data = ExperimentData(experiment_type="qiskit_test", service=self.service)
job = self._run_circuit()
exp_data.add_jobs(job)
exp_data.save(suppress_errors=False)
self.experiments_to_delete.append(exp_data.experiment_id)
rexp = self.service.experiment(exp_data.experiment_id)
self.assertEqual([job.job_id()], rexp.job_ids)
def test_auto_save_experiment(self):
"""Test auto save."""
exp_data = self._create_experiment_data()
exp_data.auto_save = True
subtests = [
(
setattr,
(
exp_data,
"tags",
["foo"],
),
),
(setattr, (exp_data, "notes", "foo")),
(setattr, (exp_data, "share_level", "hub")),
]
for func, params in subtests:
with self.subTest(func=func):
with mock.patch.object(
IBMExperimentService,
"create_or_update_experiment",
wraps=exp_data.service.create_or_update_experiment,
) as mocked:
func(*params)
mocked.assert_called_once()
data = mocked.call_args[0][0]
self.assertEqual(exp_data.experiment_id, data.experiment_id)
mocked.reset_mock()
def test_auto_save_figure(self):
"""Test auto saving figure."""
exp_data = self._create_experiment_data()
exp_data.auto_save = True
figure_name = "hello.svg"
with mock.patch.object(
IBMExperimentService,
"update_experiment",
wraps=exp_data.service.update_experiment,
) as mocked_exp:
with mock.patch.object(
IBMExperimentService,
"create_figure",
wraps=exp_data.service.create_figure,
) as mocked_fig:
exp_data.add_figures(
str.encode("hello world"), figure_names=figure_name
)
mocked_exp.assert_called_once()
mocked_fig.assert_called_once()
mocked_exp.reset_mock()
with mock.patch.object(
IBMExperimentService,
"update_figure",
wraps=exp_data.service.update_figure,
) as mocked_fig:
exp_data.add_figures(
str.encode("hello friend"), figure_names=figure_name, overwrite=True
)
mocked_fig.assert_called_once()
mocked_exp.assert_called_once()
mocked_exp.reset_mock()
with mock.patch.object(
IBMExperimentService,
"delete_figure",
wraps=exp_data.service.delete_figure,
) as mocked_fig, mock.patch("builtins.input", lambda _: "y"):
exp_data.delete_figure(figure_name)
mocked_fig.assert_called_once()
mocked_exp.assert_called_once()
def test_auto_save_analysis_result(self):
"""Test auto saving analysis result."""
exp_data = self._create_experiment_data()
exp_data.auto_save = True
aresult = AnalysisResult(
value={},
name="qiskit_test",
device_components=self.device_components,
experiment_id=exp_data.experiment_id,
service=self.service,
)
with mock.patch.object(
IBMExperimentService,
"update_experiment",
wraps=exp_data.service.update_experiment,
) as mocked_exp:
with mock.patch.object(
IBMExperimentService,
"create_or_update_analysis_result",
wraps=exp_data.service.create_or_update_analysis_result,
) as mocked_res:
exp_data.add_analysis_results(aresult)
mocked_exp.assert_called_once()
mocked_res.assert_called_once()
mocked_exp.reset_mock()
def test_auto_save_analysis_result_update(self):
"""Test auto saving analysis result updates."""
aresult, exp_data = self._create_analysis_result()
aresult.auto_save = True
subtests = [
("tags", ["foo"]),
("value", {"foo": "bar"}),
("quality", "GOOD"),
]
for attr, value in subtests:
with self.subTest(attr=attr):
with mock.patch.object(
IBMExperimentService,
"create_or_update_analysis_result",
wraps=exp_data.service.create_or_update_analysis_result,
) as mocked:
setattr(aresult, attr, value)
mocked.assert_called_once()
data = mocked.call_args[0][0]
self.assertEqual(aresult.result_id, data.result_id)
mocked.reset_mock()
def test_block_for_results(self):
"""Test blocking for jobs"""
exp_data = ExperimentData(
backend=self.backend,
provider=self.provider,
experiment_type="qiskit_test",
service=self.service,
)
jobs = []
for _ in range(2):
job = self._run_circuit()
exp_data.add_jobs(job)
jobs.append(job)
exp_data.block_for_results()
self.assertTrue(all(job.status() == JobStatus.DONE for job in jobs))
self.assertEqual(ExperimentStatus.DONE, exp_data.status())
def test_file_upload_download(self):
"""test upload and download of actual experiment data"""
exp_id = self._create_experiment_data().experiment_id
qc = QuantumCircuit(2)
qc.h(0)
qc.measure_all()
data = {"string": "b-string", "int": 10, "float": 0.333, "circuit": qc}
json_filename = "data.json"
self.service.file_upload(
exp_id, json_filename, data, json_encoder=ExperimentEncoder
)
rjson_data = self.service.file_download(
exp_id, json_filename, json_decoder=ExperimentDecoder
)
self.assertEqual(data, rjson_data)
def _create_experiment_data(self):
"""Create an experiment data."""
exp_data = ExperimentData(
backend=self.backend,
provider=self.provider,
experiment_type="qiskit_test",
verbose=False,
service=self.service,
)
exp_data.save(suppress_errors=False)
self.experiments_to_delete.append(exp_data.experiment_id)
return exp_data
def _create_analysis_result(self):
"""Create a simple analysis result."""
exp_data = self._create_experiment_data()
aresult = AnalysisResult(
value={},
name="qiskit_test",
device_components=self.device_components,
experiment_id=exp_data.experiment_id,
service=self.service,
)
exp_data.add_analysis_results(aresult)
exp_data.save(suppress_errors=False)
self.results_to_delete.append(aresult.result_id)
return aresult, exp_data
def _run_circuit(self, circuit=None):
"""Run a circuit."""
circuit = circuit or self.circuit
job = self.backend.run(circuit, shots=1)
self.jobs_to_cancel.append(job)
return job
if __name__ == "__main__":
unittest.main()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.dagcircuit import DAGCircuit
from qiskit.converters import circuit_to_dag
from qiskit.circuit.library.standard_gates import CHGate, U2Gate, CXGate
from qiskit.converters import dag_to_circuit
q = QuantumRegister(3, 'q')
c = ClassicalRegister(3, 'c')
circ = QuantumCircuit(q, c)
circ.h(q[0])
circ.cx(q[0], q[1])
circ.measure(q[0], c[0])
circ.rz(0.5, q[1]).c_if(c, 2)
dag = circuit_to_dag(circ)
circuit = dag_to_circuit(dag)
circuit.draw('mpl')
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.