The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 10 new columns ({'education', 'looks_at', 'initial_focus_time', 'age', 'paper_type', 'visual_acuity', 'font_size', 'reading_speed', 'text_density', 'gender'}) and 9 missing columns ({'LeaveOrNot', 'PaymentTier', 'EverBenched', 'Gender', 'JoiningYear', 'Age', 'Education', 'City', 'ExperienceInCurrentDomain'}). This happened while the csv dataset builder was generating data using hf://datasets/dekomin/TabAdap/processed/classification/first_glance/looks_at_downsampled_2048.csv (at revision 1583e72db1f8f4634d4f460a842f2bfdbd0be30c) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast age: int64 gender: string education: string visual_acuity: string reading_speed: string text_density: string font_size: string paper_type: string initial_focus_time: string looks_at: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1461 to {'Education': Value(dtype='string', id=None), 'JoiningYear': Value(dtype='int64', id=None), 'City': Value(dtype='string', id=None), 'PaymentTier': Value(dtype='int64', id=None), 'Age': Value(dtype='int64', id=None), 'Gender': Value(dtype='string', id=None), 'EverBenched': Value(dtype='string', id=None), 'ExperienceInCurrentDomain': Value(dtype='int64', id=None), 'LeaveOrNot': Value(dtype='int64', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1420, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1052, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 10 new columns ({'education', 'looks_at', 'initial_focus_time', 'age', 'paper_type', 'visual_acuity', 'font_size', 'reading_speed', 'text_density', 'gender'}) and 9 missing columns ({'LeaveOrNot', 'PaymentTier', 'EverBenched', 'Gender', 'JoiningYear', 'Age', 'Education', 'City', 'ExperienceInCurrentDomain'}). This happened while the csv dataset builder was generating data using hf://datasets/dekomin/TabAdap/processed/classification/first_glance/looks_at_downsampled_2048.csv (at revision 1583e72db1f8f4634d4f460a842f2bfdbd0be30c) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Education
string | JoiningYear
int64 | City
string | PaymentTier
int64 | Age
int64 | Gender
string | EverBenched
string | ExperienceInCurrentDomain
int64 | LeaveOrNot
int64 |
---|---|---|---|---|---|---|---|---|
Bachelors | 2,017 | Pune | 2 | 35 | Female | No | 5 | 1 |
Bachelors | 2,014 | Bangalore | 3 | 38 | Female | No | 2 | 0 |
Bachelors | 2,014 | Bangalore | 3 | 27 | Male | No | 5 | 0 |
Bachelors | 2,018 | Bangalore | 3 | 38 | Male | No | 0 | 1 |
Bachelors | 2,018 | Bangalore | 3 | 28 | Male | No | 1 | 1 |
Masters | 2,017 | Bangalore | 2 | 27 | Male | No | 5 | 0 |
Bachelors | 2,015 | Bangalore | 3 | 31 | Male | No | 1 | 0 |
Bachelors | 2,012 | Pune | 3 | 28 | Male | No | 3 | 0 |
Bachelors | 2,014 | Pune | 3 | 36 | Female | No | 5 | 0 |
Masters | 2,013 | New Delhi | 2 | 24 | Male | No | 2 | 1 |
Bachelors | 2,014 | Bangalore | 3 | 22 | Female | No | 0 | 0 |
Bachelors | 2,015 | Bangalore | 3 | 28 | Male | No | 1 | 0 |
PHD | 2,017 | Bangalore | 3 | 27 | Male | No | 5 | 0 |
Masters | 2,018 | New Delhi | 3 | 24 | Male | No | 2 | 1 |
Bachelors | 2,016 | Pune | 3 | 33 | Male | No | 2 | 0 |
Bachelors | 2,015 | Bangalore | 3 | 24 | Female | No | 2 | 0 |
Bachelors | 2,017 | New Delhi | 3 | 25 | Female | No | 3 | 0 |
Bachelors | 2,014 | Pune | 3 | 29 | Male | No | 3 | 0 |
Bachelors | 2,013 | Pune | 3 | 25 | Male | No | 3 | 0 |
Bachelors | 2,013 | Pune | 3 | 28 | Female | No | 2 | 1 |
Bachelors | 2,015 | Bangalore | 3 | 36 | Male | No | 3 | 0 |
Masters | 2,017 | New Delhi | 2 | 24 | Male | Yes | 2 | 1 |
Masters | 2,017 | New Delhi | 2 | 27 | Female | No | 5 | 0 |
Masters | 2,017 | New Delhi | 2 | 34 | Female | No | 4 | 0 |
Bachelors | 2,016 | Bangalore | 3 | 27 | Female | No | 5 | 0 |
Masters | 2,012 | Pune | 3 | 24 | Male | No | 2 | 0 |
Bachelors | 2,015 | Pune | 3 | 26 | Female | Yes | 4 | 1 |
Bachelors | 2,014 | Pune | 2 | 27 | Female | No | 5 | 1 |
Bachelors | 2,016 | Bangalore | 3 | 26 | Female | No | 4 | 1 |
Bachelors | 2,017 | New Delhi | 3 | 28 | Male | No | 2 | 0 |
Bachelors | 2,016 | Bangalore | 3 | 28 | Male | No | 1 | 0 |
Bachelors | 2,014 | Bangalore | 3 | 34 | Male | No | 1 | 0 |
Bachelors | 2,017 | New Delhi | 2 | 26 | Male | No | 4 | 0 |
Masters | 2,013 | Bangalore | 3 | 30 | Male | No | 1 | 1 |
Bachelors | 2,017 | Bangalore | 1 | 28 | Female | No | 0 | 1 |
Masters | 2,012 | New Delhi | 3 | 35 | Female | No | 4 | 1 |
Bachelors | 2,017 | New Delhi | 3 | 37 | Male | No | 0 | 0 |
Bachelors | 2,016 | Pune | 2 | 28 | Female | No | 0 | 1 |
Masters | 2,014 | Pune | 3 | 39 | Male | No | 2 | 0 |
Bachelors | 2,013 | Pune | 3 | 27 | Female | No | 5 | 1 |
Masters | 2,014 | New Delhi | 3 | 28 | Female | No | 3 | 0 |
Bachelors | 2,016 | Bangalore | 3 | 26 | Female | No | 4 | 0 |
Bachelors | 2,016 | Bangalore | 3 | 32 | Male | No | 1 | 0 |
Bachelors | 2,016 | Bangalore | 1 | 34 | Male | Yes | 2 | 1 |
Bachelors | 2,013 | New Delhi | 3 | 38 | Female | No | 4 | 1 |
Bachelors | 2,017 | New Delhi | 3 | 28 | Female | No | 3 | 0 |
Bachelors | 2,017 | Bangalore | 3 | 29 | Female | No | 1 | 0 |
Bachelors | 2,012 | Bangalore | 3 | 24 | Male | No | 2 | 0 |
Bachelors | 2,013 | Pune | 3 | 32 | Male | No | 2 | 0 |
Bachelors | 2,018 | Bangalore | 3 | 26 | Female | Yes | 4 | 1 |
Bachelors | 2,016 | Pune | 3 | 38 | Male | No | 0 | 0 |
Bachelors | 2,017 | Bangalore | 3 | 41 | Male | No | 1 | 0 |
Bachelors | 2,018 | Pune | 3 | 25 | Male | No | 3 | 1 |
Masters | 2,017 | Pune | 2 | 39 | Female | No | 3 | 0 |
Bachelors | 2,014 | Bangalore | 3 | 35 | Female | No | 2 | 0 |
Masters | 2,017 | New Delhi | 2 | 24 | Female | No | 2 | 0 |
Masters | 2,017 | New Delhi | 3 | 26 | Male | No | 4 | 0 |
Masters | 2,018 | New Delhi | 3 | 23 | Female | No | 1 | 1 |
Bachelors | 2,015 | Pune | 3 | 35 | Female | No | 1 | 1 |
Bachelors | 2,018 | Pune | 3 | 28 | Male | No | 2 | 1 |
PHD | 2,018 | New Delhi | 3 | 33 | Female | No | 4 | 1 |
Bachelors | 2,018 | Bangalore | 3 | 24 | Male | No | 2 | 1 |
Bachelors | 2,015 | Bangalore | 3 | 32 | Female | No | 4 | 0 |
Masters | 2,013 | New Delhi | 3 | 31 | Male | No | 2 | 1 |
PHD | 2,014 | New Delhi | 3 | 28 | Female | No | 0 | 0 |
Bachelors | 2,014 | Pune | 2 | 38 | Female | No | 3 | 1 |
Masters | 2,018 | New Delhi | 3 | 35 | Male | No | 2 | 1 |
Bachelors | 2,014 | Bangalore | 3 | 27 | Female | No | 5 | 0 |
Masters | 2,016 | New Delhi | 3 | 24 | Male | No | 2 | 1 |
Bachelors | 2,012 | Pune | 2 | 35 | Female | No | 2 | 1 |
Masters | 2,014 | New Delhi | 3 | 39 | Male | No | 2 | 0 |
Bachelors | 2,014 | New Delhi | 3 | 23 | Male | No | 1 | 0 |
Bachelors | 2,017 | New Delhi | 3 | 26 | Male | No | 4 | 0 |
Bachelors | 2,013 | Pune | 3 | 28 | Male | No | 1 | 0 |
Bachelors | 2,016 | Pune | 3 | 29 | Male | No | 5 | 0 |
Bachelors | 2,013 | Bangalore | 3 | 35 | Male | No | 5 | 0 |
PHD | 2,013 | New Delhi | 3 | 27 | Male | No | 5 | 0 |
Masters | 2,017 | New Delhi | 2 | 26 | Female | No | 4 | 0 |
Bachelors | 2,017 | New Delhi | 3 | 24 | Female | No | 2 | 0 |
Masters | 2,012 | Bangalore | 3 | 40 | Female | No | 5 | 0 |
Bachelors | 2,012 | Bangalore | 3 | 23 | Male | Yes | 1 | 0 |
Masters | 2,017 | New Delhi | 1 | 26 | Female | No | 4 | 0 |
Bachelors | 2,015 | Pune | 3 | 28 | Male | Yes | 2 | 0 |
Bachelors | 2,017 | Bangalore | 3 | 27 | Male | No | 5 | 0 |
Bachelors | 2,012 | Bangalore | 3 | 25 | Male | No | 3 | 0 |
Masters | 2,013 | Pune | 2 | 28 | Male | No | 2 | 1 |
Bachelors | 2,016 | New Delhi | 2 | 26 | Female | No | 4 | 1 |
Bachelors | 2,017 | New Delhi | 2 | 40 | Male | No | 5 | 0 |
Bachelors | 2,015 | New Delhi | 3 | 26 | Female | Yes | 4 | 0 |
Masters | 2,015 | New Delhi | 3 | 26 | Male | No | 4 | 1 |
Bachelors | 2,017 | Bangalore | 3 | 27 | Male | No | 5 | 0 |
Bachelors | 2,014 | Bangalore | 3 | 27 | Male | No | 5 | 0 |
Bachelors | 2,016 | Bangalore | 1 | 30 | Male | No | 4 | 1 |
Masters | 2,017 | Pune | 2 | 39 | Male | No | 2 | 0 |
Masters | 2,017 | New Delhi | 2 | 24 | Male | No | 2 | 1 |
Bachelors | 2,016 | Bangalore | 3 | 33 | Male | No | 6 | 0 |
Bachelors | 2,016 | Bangalore | 3 | 37 | Female | No | 1 | 0 |
Bachelors | 2,014 | Bangalore | 3 | 25 | Male | No | 3 | 0 |
Bachelors | 2,017 | New Delhi | 2 | 28 | Male | No | 0 | 0 |
Bachelors | 2,013 | Pune | 3 | 24 | Female | No | 2 | 0 |
End of preview.
Subsets and Splits