The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'reward'}) and 3 missing columns ({'index', 'action', 'next'}).

This happened while the json dataset builder was generating data using

hf://datasets/compsciencelab/BricksRL-Datasets/2Wheeler/RunAway/expert_data/next/meta.json (at revision c7b763b99755b944b0db92728f078360f3ef6543)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              observation: struct<device: string, shape: list<item: int64>, dtype: string, is_nested: bool>
                child 0, device: string
                child 1, shape: list<item: int64>
                    child 0, item: int64
                child 2, dtype: string
                child 3, is_nested: bool
              reward: struct<device: string, shape: list<item: int64>, dtype: string, is_nested: bool>
                child 0, device: string
                child 1, shape: list<item: int64>
                    child 0, item: int64
                child 2, dtype: string
                child 3, is_nested: bool
              done: struct<device: string, shape: list<item: int64>, dtype: string, is_nested: bool>
                child 0, device: string
                child 1, shape: list<item: int64>
                    child 0, item: int64
                child 2, dtype: string
                child 3, is_nested: bool
              distance: struct<device: string, shape: list<item: int64>, dtype: string, is_nested: bool>
                child 0, device: string
                child 1, shape: list<item: int64>
                    child 0, item: int64
                child 2, dtype: string
                child 3, is_nested: bool
              terminated: struct<device: string, shape: list<item: int64>, dtype: string, is_nested: bool>
                child 0, device: string
                child 1, shape: list<item: int64>
                    child 0, item: int64
                child 2, dtype: string
                child 3, is_nested: bool
              shape: list<item: int64>
                child 0, item: int64
              device: string
              _type: string
              to
              {'observation': {'device': Value(dtype='string', id=None), 'shape': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'dtype': Value(dtype='string', id=None), 'is_nested': Value(dtype='bool', id=None)}, 'distance': {'device': Value(dtype='string', id=None), 'shape': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'dtype': Value(dtype='string', id=None), 'is_nested': Value(dtype='bool', id=None)}, 'done': {'device': Value(dtype='string', id=None), 'shape': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'dtype': Value(dtype='string', id=None), 'is_nested': Value(dtype='bool', id=None)}, 'terminated': {'device': Value(dtype='string', id=None), 'shape': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'dtype': Value(dtype='string', id=None), 'is_nested': Value(dtype='bool', id=None)}, 'action': {'device': Value(dtype='string', id=None), 'shape': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'dtype': Value(dtype='string', id=None), 'is_nested': Value(dtype='bool', id=None)}, 'next': {'type': Value(dtype='string', id=None)}, 'index': {'device': Value(dtype='string', id=None), 'shape': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'dtype': Value(dtype='string', id=None), 'is_nested': Value(dtype='bool', id=None)}, 'shape': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'device': Value(dtype='string', id=None), '_type': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1396, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1045, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1029, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1124, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1884, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2015, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'reward'}) and 3 missing columns ({'index', 'action', 'next'}).
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/compsciencelab/BricksRL-Datasets/2Wheeler/RunAway/expert_data/next/meta.json (at revision c7b763b99755b944b0db92728f078360f3ef6543)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

observation
dict
distance
dict
done
dict
terminated
dict
action
dict
next
dict
index
dict
shape
sequence
device
string
_type
string
reward
dict
{ "device": "cpu", "shape": [ 1987, 5 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 1987, 1 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 1987, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 1987, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 1987, 1 ], "dtype": "torch.float32", "is_nested": false }
{ "type": "TensorDict" }
{ "device": "cpu", "shape": [ 1987 ], "dtype": "torch.int64", "is_nested": false }
[ 1987 ]
cpu
<class 'tensordict._td.TensorDict'>
null
{ "device": "cpu", "shape": [ 1987, 5 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 1987, 1 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 1987, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 1987, 1 ], "dtype": "torch.bool", "is_nested": false }
null
null
null
[ 1987 ]
cpu
<class 'tensordict._td.TensorDict'>
{ "device": "cpu", "shape": [ 1987, 1 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 1612, 5 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 1612, 1 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 1612, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 1612, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 1612, 1 ], "dtype": "torch.float32", "is_nested": false }
{ "type": "TensorDict" }
{ "device": "cpu", "shape": [ 1612 ], "dtype": "torch.int64", "is_nested": false }
[ 1612 ]
cpu
<class 'tensordict._td.TensorDict'>
null
{ "device": "cpu", "shape": [ 1612, 5 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 1612, 1 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 1612, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 1612, 1 ], "dtype": "torch.bool", "is_nested": false }
null
null
null
[ 1612 ]
cpu
<class 'tensordict._td.TensorDict'>
{ "device": "cpu", "shape": [ 1612, 1 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 5000, 6 ], "dtype": "torch.float32", "is_nested": false }
null
{ "device": "cpu", "shape": [ 5000, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 5000, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 5000, 2 ], "dtype": "torch.float32", "is_nested": false }
{ "type": "TensorDict" }
{ "device": "cpu", "shape": [ 5000 ], "dtype": "torch.int64", "is_nested": false }
[ 5000 ]
cpu
<class 'tensordict._td.TensorDict'>
null
{ "device": "cpu", "shape": [ 5000, 6 ], "dtype": "torch.float32", "is_nested": false }
null
{ "device": "cpu", "shape": [ 5000, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 5000, 1 ], "dtype": "torch.bool", "is_nested": false }
null
null
null
[ 5000 ]
cpu
<class 'tensordict._td.TensorDict'>
{ "device": "cpu", "shape": [ 5000, 1 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 5000, 6 ], "dtype": "torch.float32", "is_nested": false }
null
{ "device": "cpu", "shape": [ 5000, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 5000, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 5000, 2 ], "dtype": "torch.float32", "is_nested": false }
{ "type": "TensorDict" }
{ "device": "cpu", "shape": [ 5000 ], "dtype": "torch.int64", "is_nested": false }
[ 5000 ]
cpu
<class 'tensordict._td.TensorDict'>
null
{ "device": "cpu", "shape": [ 5000, 6 ], "dtype": "torch.float32", "is_nested": false }
null
{ "device": "cpu", "shape": [ 5000, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 5000, 1 ], "dtype": "torch.bool", "is_nested": false }
null
null
null
[ 5000 ]
cpu
<class 'tensordict._td.TensorDict'>
{ "device": "cpu", "shape": [ 5000, 1 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 1297, 4 ], "dtype": "torch.float32", "is_nested": false }
null
{ "device": "cpu", "shape": [ 1297, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 1297, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 1297, 4 ], "dtype": "torch.float32", "is_nested": false }
{ "type": "TensorDict" }
{ "device": "cpu", "shape": [ 1297 ], "dtype": "torch.int64", "is_nested": false }
[ 1297 ]
cpu
<class 'tensordict._td.TensorDict'>
null
{ "device": "cpu", "shape": [ 1297, 4 ], "dtype": "torch.float32", "is_nested": false }
null
{ "device": "cpu", "shape": [ 1297, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 1297, 1 ], "dtype": "torch.bool", "is_nested": false }
null
null
null
[ 1297 ]
cpu
<class 'tensordict._td.TensorDict'>
{ "device": "cpu", "shape": [ 1297, 1 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 10000, 4 ], "dtype": "torch.float32", "is_nested": false }
null
{ "device": "cpu", "shape": [ 10000, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 10000, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 10000, 4 ], "dtype": "torch.float32", "is_nested": false }
{ "type": "TensorDict" }
{ "device": "cpu", "shape": [ 10000 ], "dtype": "torch.int64", "is_nested": false }
[ 10000 ]
cpu
<class 'tensordict._td.TensorDict'>
null
{ "device": "cpu", "shape": [ 10000, 4 ], "dtype": "torch.float32", "is_nested": false }
null
{ "device": "cpu", "shape": [ 10000, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 10000, 1 ], "dtype": "torch.bool", "is_nested": false }
null
null
null
[ 10000 ]
cpu
<class 'tensordict._td.TensorDict'>
{ "device": "cpu", "shape": [ 10000, 1 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 9244, 7 ], "dtype": "torch.float32", "is_nested": false }
null
{ "device": "cpu", "shape": [ 9244, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 9244, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 9244, 4 ], "dtype": "torch.float32", "is_nested": false }
{ "type": "TensorDict" }
{ "device": "cpu", "shape": [ 9244 ], "dtype": "torch.int64", "is_nested": false }
[ 9244 ]
cpu
<class 'tensordict._td.TensorDict'>
null
{ "device": "cpu", "shape": [ 9244, 7 ], "dtype": "torch.float32", "is_nested": false }
null
{ "device": "cpu", "shape": [ 9244, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 9244, 1 ], "dtype": "torch.bool", "is_nested": false }
null
null
null
[ 9244 ]
cpu
<class 'tensordict._td.TensorDict'>
{ "device": "cpu", "shape": [ 9244, 1 ], "dtype": "torch.float32", "is_nested": false }
{ "device": "cpu", "shape": [ 10000, 7 ], "dtype": "torch.float32", "is_nested": false }
null
{ "device": "cpu", "shape": [ 10000, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 10000, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 10000, 4 ], "dtype": "torch.float32", "is_nested": false }
{ "type": "TensorDict" }
{ "device": "cpu", "shape": [ 10000 ], "dtype": "torch.int64", "is_nested": false }
[ 10000 ]
cpu
<class 'tensordict._td.TensorDict'>
null
{ "device": "cpu", "shape": [ 10000, 7 ], "dtype": "torch.float32", "is_nested": false }
null
{ "device": "cpu", "shape": [ 10000, 1 ], "dtype": "torch.bool", "is_nested": false }
{ "device": "cpu", "shape": [ 10000, 1 ], "dtype": "torch.bool", "is_nested": false }
null
null
null
[ 10000 ]
cpu
<class 'tensordict._td.TensorDict'>
{ "device": "cpu", "shape": [ 10000, 1 ], "dtype": "torch.float32", "is_nested": false }