a-number
stringlengths 7
7
| sequence
sequencelengths 1
377
| description
stringlengths 3
852
|
---|---|---|
A361468 | [
"1",
"12",
"30",
"117",
"56",
"40",
"132",
"1080",
"775",
"672",
"182",
"390",
"306",
"176",
"1680",
"9801",
"380",
"9300",
"552",
"6552",
"3960",
"2184",
"870",
"144",
"2793",
"408",
"19500",
"1716",
"992",
"2240",
"1406",
"88452",
"5460",
"4560",
"7392",
"90675",
"1722",
"736",
"9180",
"60480",
"1892",
"5280",
"2256",
"126",
"43400",
"1160",
"2862",
"32670",
"16093",
"3724",
"456",
"442",
"3540",
"26000"
] | a(n) = A249670(A003961(n)). |
A361469 | [
"0",
"3",
"3",
"3",
"4",
"4",
"4",
"7",
"3",
"7",
"3",
"4",
"4",
"5",
"7",
"6",
"4",
"6",
"5",
"7",
"7",
"6",
"4",
"6",
"4",
"5",
"7",
"5",
"6",
"8",
"3",
"9",
"6",
"7",
"8",
"6",
"4",
"6",
"7",
"11",
"4",
"8",
"6",
"4",
"7",
"5",
"5",
"7",
"4",
"5",
"5",
"3",
"5",
"8",
"5",
"9",
"8",
"9",
"3",
"8",
"4",
"6",
"7",
"7",
"8",
"7",
"6",
"7",
"5",
"9",
"3",
"8",
"6",
"5",
"7",
"6",
"7",
"8",
"5",
"10",
"6",
"7",
"5",
"6",
"8",
"7",
"9",
"10",
"4",
"10",
"8",
"5",
"6",
"6",
"9",
"10",
"4",
"7",
"6",
"5",
"5",
"6",
"6",
"7",
"11"
] | a(n) = bigomega(A249670(A003961(n))). |
A361473 | [
"1",
"10",
"27",
"45",
"143",
"306",
"903",
"465",
"1215",
"3037",
"2418",
"4809",
"17193",
"8349",
"32055",
"75847",
"117705",
"306075",
"379395",
"467955",
"1269075",
"2517687",
"1809295",
"4720023",
"6375915",
"12961575",
"21540987",
"35647010",
"16615305",
"192717405",
"268822806",
"186269391",
"247067415"
] | a(n) is the least positive integer that can be expressed as the sum of one or more consecutive nonprime numbers in exactly n ways. |
A361475 | [
"0",
"1",
"0",
"3",
"1",
"0",
"7",
"4",
"1",
"0",
"15",
"13",
"5",
"1",
"0",
"31",
"40",
"21",
"6",
"1",
"0",
"63",
"121",
"85",
"31",
"7",
"1",
"0",
"127",
"364",
"341",
"156",
"43",
"8",
"1",
"0",
"255",
"1093",
"1365",
"781",
"259",
"57",
"9",
"1",
"0",
"511",
"3280",
"5461",
"3906",
"1555",
"400",
"73",
"10",
"1",
"0",
"1023",
"9841",
"21845",
"19531",
"9331",
"2801",
"585",
"91",
"11",
"1",
"0"
] | Array read by ascending antidiagonals: A(n, k) = (k^n - 1)/(k - 1), with k >= 2. |
A361476 | [
"0",
"1",
"4",
"12",
"34",
"99",
"308",
"1040",
"3820",
"15197",
"65060",
"297828",
"1449742",
"7468527",
"40555732",
"231335944",
"1381989864",
"8623700793",
"56078446596",
"379233142780",
"2662013133274",
"19362917621979",
"145719550012276",
"1133023004941248",
"9090156910550084",
"75161929739797493",
"639793220877941476"
] | Antidiagonal sums of A361475. |
A361477 | [
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"3",
"1",
"3",
"1",
"3",
"2",
"1",
"2",
"3",
"4",
"3",
"4",
"1",
"4",
"3",
"2",
"3",
"4",
"3",
"2",
"3",
"2",
"1",
"2",
"3",
"4",
"6",
"6",
"5",
"6",
"6",
"4",
"5",
"1",
"5",
"6",
"5",
"4",
"3",
"2",
"6",
"6",
"1",
"6",
"5",
"6",
"6",
"1",
"6",
"4",
"6",
"2",
"3",
"2",
"1",
"2",
"3",
"4",
"6",
"12",
"5",
"12",
"3",
"12",
"10",
"6",
"10",
"4",
"10",
"12",
"6",
"4",
"5",
"6",
"10"
] | a(n) is the number of integers whose binary expansions have the same multiset of run-lengths as that of n. |
A361478 | [
"0",
"1",
"2",
"3",
"4",
"6",
"5",
"4",
"6",
"7",
"8",
"14",
"9",
"11",
"13",
"10",
"9",
"11",
"13",
"12",
"9",
"11",
"13",
"8",
"14",
"15",
"16",
"30",
"17",
"23",
"29",
"18",
"20",
"22",
"26",
"19",
"25",
"27",
"18",
"20",
"22",
"26",
"21",
"18",
"20",
"22",
"26",
"17",
"23",
"29",
"24",
"28",
"19",
"25",
"27",
"18",
"20",
"22",
"26",
"19",
"25",
"27",
"24",
"28",
"17",
"23",
"29",
"16",
"30"
] | Irregular table T(n, k), n >= 0, k = 1..A361477(n), read by rows; the n-th row lists the integers whose binary expansions have the same multiset of run-lengths as that of n. |
A361479 | [
"0",
"1",
"2",
"3",
"4",
"5",
"4",
"7",
"8",
"9",
"10",
"9",
"12",
"9",
"8",
"15",
"16",
"17",
"18",
"19",
"18",
"21",
"18",
"17",
"24",
"19",
"18",
"19",
"24",
"17",
"16",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"36",
"35",
"34",
"37",
"42",
"37",
"36",
"37",
"34",
"33",
"48",
"35",
"36",
"51",
"36",
"37",
"36",
"35",
"56",
"35",
"34",
"35",
"48",
"33",
"32",
"63",
"64",
"65",
"66",
"67"
] | a(n) is the least integer whose binary expansion has the same multiset of run-lengths as that of n. |
A361480 | [
"0",
"1",
"2",
"3",
"6",
"5",
"6",
"7",
"14",
"13",
"10",
"13",
"12",
"13",
"14",
"15",
"30",
"29",
"26",
"27",
"26",
"21",
"26",
"29",
"28",
"27",
"26",
"27",
"28",
"29",
"30",
"31",
"62",
"61",
"58",
"59",
"54",
"53",
"54",
"59",
"58",
"53",
"42",
"53",
"54",
"53",
"58",
"61",
"60",
"59",
"54",
"51",
"54",
"53",
"54",
"59",
"56",
"59",
"58",
"59",
"60",
"61",
"62",
"63",
"126",
"125"
] | a(n) is the greatest integer whose binary expansion has the same multiset of run-lengths as that of n. |
A361481 | [
"0",
"1",
"2",
"3",
"4",
"6",
"5",
"7",
"8",
"14",
"9",
"11",
"13",
"10",
"12",
"15",
"16",
"30",
"17",
"23",
"29",
"18",
"20",
"22",
"26",
"19",
"25",
"27",
"21",
"24",
"28",
"31",
"32",
"62",
"33",
"47",
"61",
"34",
"40",
"46",
"58",
"35",
"39",
"49",
"55",
"57",
"59",
"36",
"38",
"44",
"50",
"52",
"54",
"37",
"41",
"43",
"45",
"53",
"42",
"48",
"60",
"51",
"56",
"63",
"64",
"126",
"65"
] | Distinct values of A361478, in order of appearance. |
A361482 | [
"0",
"1",
"2",
"3",
"4",
"6",
"5",
"7",
"8",
"10",
"13",
"11",
"14",
"12",
"9",
"15",
"16",
"18",
"21",
"25",
"22",
"28",
"23",
"19",
"29",
"26",
"24",
"27",
"30",
"20",
"17",
"31",
"32",
"34",
"37",
"41",
"47",
"53",
"48",
"42",
"38",
"54",
"58",
"55",
"49",
"56",
"39",
"35",
"59",
"43",
"50",
"61",
"51",
"57",
"52",
"44",
"62",
"45",
"40",
"46",
"60",
"36",
"33",
"63",
"64",
"66",
"69",
"73"
] | Inverse permutation to A361481. |
A361483 | [
"7",
"13",
"37",
"61",
"97",
"103",
"127",
"163",
"193",
"211",
"223",
"307",
"313",
"331",
"337",
"397",
"421",
"463",
"487",
"541",
"571",
"601",
"607",
"631",
"673",
"691",
"727",
"757",
"853",
"907",
"937",
"967",
"1021",
"1033",
"1051",
"1063",
"1117",
"1153",
"1171",
"1231",
"1237",
"1297",
"1303",
"1327",
"1381",
"1453",
"1531",
"1567",
"1621",
"1657",
"1693",
"1723"
] | Primes p such that p + 256 is also prime. |
A361484 | [
"11",
"29",
"59",
"89",
"101",
"107",
"131",
"149",
"179",
"197",
"227",
"239",
"257",
"311",
"317",
"347",
"479",
"509",
"521",
"557",
"617",
"641",
"659",
"701",
"719",
"809",
"887",
"911",
"941",
"947",
"971",
"977",
"1019",
"1031",
"1097",
"1109",
"1151",
"1181",
"1187",
"1229",
"1277",
"1289",
"1319",
"1361",
"1367",
"1439",
"1481",
"1487",
"1499",
"1571",
"1601"
] | Primes p such that p + 512 is also prime. |
A361485 | [
"7",
"37",
"67",
"73",
"79",
"127",
"139",
"157",
"163",
"193",
"199",
"277",
"283",
"337",
"349",
"409",
"457",
"463",
"487",
"499",
"547",
"577",
"613",
"643",
"673",
"709",
"787",
"823",
"853",
"877",
"883",
"907",
"1039",
"1063",
"1087",
"1117",
"1129",
"1213",
"1249",
"1327",
"1399",
"1423",
"1453",
"1567",
"1597",
"1609",
"1663",
"1669",
"1753",
"1777",
"1873",
"1879"
] | Primes p such that p + 1024 is also prime. |
A361486 | [
"1",
"1",
"1",
"1",
"2",
"2",
"3",
"2",
"2",
"3",
"2",
"2",
"3",
"2",
"2",
"3",
"1",
"3",
"3",
"1",
"4",
"1",
"4",
"3",
"5",
"5",
"1",
"4",
"3",
"4",
"5",
"4",
"4",
"5",
"6",
"6",
"7",
"4",
"4",
"5",
"5",
"6",
"2",
"4",
"1",
"4",
"5",
"1",
"6",
"2",
"6",
"4",
"6",
"5",
"5",
"7",
"2",
"3",
"4",
"6",
"5",
"5",
"7",
"2",
"3",
"8",
"1",
"4",
"3",
"6",
"7",
"5",
"5",
"3",
"5",
"7",
"6",
"3",
"1",
"1",
"7",
"8",
"7",
"7",
"4",
"5",
"8",
"5",
"9",
"6",
"6",
"8",
"7",
"7",
"6",
"8",
"9",
"9",
"3"
] | Lexicographically earliest sequence of positive numbers on a square spiral such that no three equal numbers are collinear. |
A361488 | [
"1",
"0",
"0",
"2",
"2",
"0",
"6",
"12",
"6",
"20",
"60",
"60",
"90",
"280",
"420",
"532",
"1330",
"2520",
"3444",
"6804",
"14112",
"21912",
"37884",
"77616",
"133914",
"223080",
"432432",
"793364",
"1341912",
"2471040",
"4629196",
"8076640",
"14453010",
"26960232",
"48308832",
"85794852",
"157947816",
"287413152",
"512697900",
"933072064"
] | Diagonal of rational function 1/(1 - (x^3 + y^3 + x^4*y)). |
A361489 | [
"1",
"1",
"2",
"6",
"19",
"72",
"313",
"1472",
"7612",
"42679",
"255515",
"1632710",
"11065057",
"79065807",
"594174922",
"4679473130",
"38500353667",
"330172915164",
"2944613004359",
"27253908250340",
"261328607398332",
"2591724561444621",
"26545170005412613",
"280411070646125638"
] | Expansion of e.g.f. exp(exp(x) - 1 + x^3/6). |
A361490 | [
"8",
"45",
"52",
"75",
"92",
"99",
"130",
"147",
"164",
"195",
"236",
"255",
"266",
"333",
"406",
"423",
"430",
"477",
"494",
"555",
"574",
"627",
"670",
"711",
"716",
"777",
"782",
"801",
"806",
"903",
"908",
"915",
"932",
"935",
"938",
"969",
"1010",
"1017",
"1022",
"1065",
"1076",
"1233",
"1244",
"1443",
"1474",
"1479",
"1490",
"1533",
"1556",
"1635",
"1724",
"1737",
"1790",
"1833",
"1844",
"2007",
"2012"
] | a(1) = 8; for n > 1, a(n) is the least triprime > a(n-1) such that a(n) - a(n-1) and a(n) + a(n-1) are both prime. |
A361491 | [
"1",
"73",
"2521",
"85681",
"2910673",
"98877241",
"3358915561",
"114104251873",
"3876185648161",
"131676207785641",
"4473114879063673",
"151954229680379281",
"5161970694253831921",
"175355049374949906073",
"5956909708054042974601",
"202359575024462511230401",
"6874268641123671338859073",
"233522774223180363009978121"
] | Expansion of x*(1+38*x+x^2)/((1-x)*(x^2-34*x+1)). |
A361492 | [
"1",
"1",
"2",
"6",
"30",
"30",
"210",
"210",
"210",
"17430",
"30030",
"60060",
"510510",
"3573570"
] | Common difference corresponding to increasing arithmetic progression of at least n >= 2 primes whose first term is A284708(n); a(1) = 1. |
A361493 | [
"1",
"1",
"2",
"11",
"39",
"172",
"1163",
"6547",
"41772",
"335139",
"2486215",
"20078610",
"186139957",
"1676540257",
"16077206122",
"168739976555",
"1763716943267",
"19358116589964",
"226362412711759",
"2669223655597955",
"32748447519013132",
"421204995451111971",
"5496921281576148363"
] | Expansion of e.g.f. exp(exp(x) - 1 + x^3). |
A361497 | [
"3",
"4",
"4",
"4",
"7",
"7",
"6",
"8",
"6",
"10",
"12",
"6",
"11",
"8",
"12",
"14",
"10",
"17",
"14",
"16",
"16",
"16",
"15",
"8",
"20",
"21",
"10",
"18",
"14",
"24",
"18",
"20",
"12",
"16",
"22",
"25",
"30",
"20",
"22",
"12",
"32",
"36",
"12",
"30",
"16",
"42",
"22",
"32",
"16",
"22",
"30",
"31",
"32",
"22",
"26",
"12",
"36",
"39",
"18",
"37",
"28",
"48",
"35",
"28",
"32",
"42",
"32",
"34",
"46",
"30",
"29",
"26",
"40",
"49",
"52",
"14",
"45",
"24",
"34",
"48",
"32",
"56",
"30",
"44",
"38",
"40",
"36",
"45",
"20",
"54",
"74",
"22",
"49",
"28"
] | Number of cusps in Prym-Teichmuller curve W_D(4) of discriminant D = A361169(n). |
A361498 | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"3",
"5",
"1",
"4",
"4",
"6",
"4",
"5",
"7",
"5",
"9",
"6",
"9",
"8",
"9",
"10",
"9",
"8",
"9",
"9",
"9",
"11",
"14",
"10",
"11",
"14",
"15",
"16",
"14",
"15",
"14",
"21",
"18",
"22",
"19",
"19",
"17",
"23",
"21",
"17",
"23",
"19",
"27",
"22",
"30",
"18",
"27",
"22",
"34",
"30",
"25",
"29",
"22",
"41",
"35",
"43",
"26",
"36",
"29",
"33",
"36",
"30",
"39",
"35",
"39",
"43",
"55",
"37",
"40",
"38",
"49",
"46",
"38",
"44",
"40"
] | Genus of Prym-Teichmuller curve W_D(4) of discriminant D = A361169(n). |
A361499 | [
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"2",
"0",
"0",
"0",
"2",
"1",
"0",
"1",
"0",
"2",
"1",
"0",
"0",
"0",
"0",
"3",
"0",
"1",
"0",
"0",
"3",
"2",
"0",
"0",
"0",
"2",
"2",
"0",
"2",
"0",
"1",
"3",
"0",
"0",
"0",
"0",
"4",
"2",
"1",
"0",
"0",
"2",
"2",
"0",
"0",
"0",
"0",
"3",
"0",
"2",
"0",
"0",
"3",
"3",
"0",
"0",
"0",
"2",
"1",
"0",
"3",
"0",
"0",
"3",
"4",
"0",
"0",
"0",
"4",
"4",
"0",
"1",
"0",
"0",
"4",
"2",
"0",
"0",
"0",
"2",
"5",
"0",
"2"
] | Number of orbifold points of order 2 in Prym-Teichmuller curve W_D(4) of discriminant D = A361169(n). |
A361500 | [
"1",
"0",
"0",
"2",
"0",
"0",
"2",
"1",
"2",
"0",
"0",
"2",
"1",
"0",
"2",
"0",
"0",
"2",
"2",
"0",
"0",
"4",
"1",
"4",
"0",
"2",
"2",
"0",
"0",
"0",
"3",
"0",
"2",
"2",
"0",
"1",
"0",
"2",
"3",
"4",
"2",
"0",
"4",
"0",
"2",
"0",
"2",
"0",
"0",
"6",
"0",
"0",
"0",
"4",
"2",
"4",
"0",
"4",
"4",
"1",
"0",
"0",
"2",
"0",
"0",
"4",
"4",
"0",
"0",
"6",
"5",
"2",
"0",
"2",
"0",
"6",
"0",
"0",
"3",
"0",
"2",
"2",
"6",
"0",
"2",
"0",
"4",
"3",
"4",
"0",
"0",
"6",
"0",
"2"
] | Number of orbifold points of order 3 in Prym-Teichmuller curve W_D(4) of discriminant D = A361169(n). |
A361501 | [
"11",
"112",
"1124",
"11248",
"1124816",
"112481623",
"11248162328",
"1124816232838",
"112481623283849",
"11248162328384962",
"1124816232838496270",
"112481623283849627077",
"2486232838496270779",
"248623283849627077997",
"248623283849627077997113",
"248623283849627077997113118",
"248623283849627077997113118128"
] | A variant of A359143 in which all copies of a digit d are erased only when d is both the leading digit and the final digit of (a(n) concatenated with sum of digits of a(n)). |
A361502 | [
"2",
"3",
"4",
"8",
"13",
"42",
"347",
"3466",
"49012",
"528231",
"717126",
"63056215",
"1375559400",
"7038527851"
] | Index of n-th prime in A359804. |
A361503 | [
"2",
"3",
"5",
"2",
"3",
"5",
"7",
"3",
"2",
"5",
"7",
"11",
"3",
"5",
"7",
"11",
"5",
"3",
"7",
"5",
"11",
"7",
"2",
"3",
"5",
"7",
"11",
"5",
"7",
"2",
"3",
"5",
"7",
"3",
"5",
"7",
"2",
"5",
"7",
"11",
"13",
"5",
"2",
"3",
"5",
"2",
"7",
"3",
"5",
"7",
"11",
"5",
"3",
"2",
"5",
"7",
"11",
"2",
"5",
"3",
"7",
"5",
"3",
"7",
"2",
"11",
"3",
"7",
"5",
"3",
"7",
"5",
"11",
"7",
"5",
"11",
"7",
"5",
"3",
"7",
"11",
"3",
"2",
"5",
"7",
"2",
"5",
"3",
"2",
"5",
"7",
"13",
"3",
"5",
"2",
"3"
] | a(1)=2; thereafter a(n) = smallest prime that does not divide b(n-1)*b(n), where b(k) = A359804(k). |
A361504 | [
"1",
"2",
"3",
"5",
"4",
"6",
"8",
"10",
"9",
"7",
"13",
"14",
"42",
"12",
"11",
"24",
"347",
"19",
"3466",
"15",
"16",
"17",
"49012",
"25",
"18",
"31",
"32",
"20",
"528231",
"21",
"717126",
"38",
"22",
"44",
"23",
"35",
"63056215",
"47",
"45",
"26",
"1375559400",
"27",
"7038527851",
"28",
"29",
"55"
] | Index of n in A359804, or -1 if n never appears there. |
A361505 | [
"1",
"2",
"5",
"10",
"24",
"38",
"87",
"172",
"349",
"706",
"1407",
"2752",
"5487",
"11103",
"22285",
"44429",
"88993",
"177746",
"356460",
"712129",
"1425163",
"2849424",
"5701776",
"11401709",
"22804522",
"45608572",
"91219022",
"182438457",
"364879209",
"729757797",
"1459514883",
"2919031155",
"5838065175",
"11676129412",
"23352260426"
] | Index of 2^n in A359804. |
A361506 | [
"1",
"3",
"8",
"19",
"45",
"102",
"232",
"524",
"1181",
"2659",
"5984",
"13466",
"30300",
"68177",
"153400",
"345151",
"776590",
"1747330",
"3931495",
"8845865",
"19903197",
"44782195",
"100759940",
"226709865",
"510097199",
"1147718700",
"2582367075",
"5810325920",
"13073233320",
"29414774970",
"66183243690",
"148912298300",
"335052671200",
"753868510200"
] | a(n) = floor( (4/5)*( (9/4)^(n+1)-1 ) ). |
A361507 | [
"1",
"3",
"7",
"16",
"37",
"84",
"190",
"428",
"964",
"2170",
"4883",
"10987",
"24721",
"55623",
"125152",
"281593",
"633585",
"1425567",
"3207526",
"7216934",
"16238102",
"36535730",
"82205393",
"184962135",
"416164804",
"936370810",
"2106834323",
"4740377227",
"10665848761",
"23998159713",
"53995859355",
"121490683549",
"273354037986",
"615046585469",
"1383854817306",
"3113673338939"
] | a(0) = 1; thereafter a(n) = floor((9/4)*a(n-1)) + 1. |
A361517 | [
"3",
"4",
"5",
"11",
"17",
"27",
"35",
"37",
"49",
"59",
"69",
"81",
"91",
"103",
"115",
"123",
"135",
"137",
"167",
"175",
"189",
"199",
"207",
"287",
"295",
"307",
"361",
"1051",
"2507",
"2757",
"2917",
"3057",
"3081",
"7255",
"7361",
"7871",
"16173"
] | The value of n for which the two-player impartial {0,1}-Toggle game on a generalized Petersen graph GP(n,2) with a (1,0)-weight assignment is a next-player winning game. |
A361521 | [
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"5",
"4",
"0",
"0",
"9",
"12",
"6",
"0",
"0",
"14",
"24",
"21",
"8",
"0",
"0",
"20",
"40",
"45",
"32",
"10",
"0",
"0",
"27",
"60",
"78",
"72",
"45",
"12",
"0",
"0",
"35",
"84",
"120",
"128",
"105",
"60",
"14",
"0",
"0",
"44",
"112",
"171",
"200",
"190",
"144",
"77",
"16",
"0",
"0",
"54",
"144",
"231",
"288",
"300",
"264",
"189",
"96",
"18",
"0"
] | Array read by descending antidiagonals. A(n, k) is the number of the nonempty multiset combinations of {0, 1} as defined in A361682. |
A361522 | [
"1",
"0",
"1",
"0",
"2",
"0",
"6",
"0",
"24",
"0",
"120",
"0",
"720",
"0",
"5040",
"0",
"40320",
"0",
"362880",
"0",
"3628800",
"0",
"39916800",
"0",
"479001600",
"0",
"6227020800",
"0",
"87178291200",
"0",
"1307674368000",
"0",
"20922789888000",
"0",
"355687428096000",
"0",
"6402373705728000",
"0",
"121645100408832000",
"0",
"2432902008176640000"
] | The aerated factorial numbers. |
A361523 | [
"1",
"1",
"1",
"1",
"2",
"4",
"1",
"3",
"17",
"54",
"1",
"6",
"61",
"892",
"9235",
"1",
"10",
"220",
"8159",
"406653",
"10538496"
] | Triangle read by rows: T(n,k) is the number of ways of dividing an n X k rectangle into integer-sided rectangles, up to rotations and reflections. |
A361524 | [
"1",
"1",
"4",
"54",
"9235",
"10538496"
] | Number of ways of dividing an n X n square into integer-sided rectangles, up to rotations and reflections. |
A361525 | [
"1",
"3",
"17",
"54",
"892",
"8159",
"80021",
"791821",
"7906439",
"79069308"
] | Number of ways of dividing an n X 3 rectangle into integer-sided rectangles, up to rotations and reflections. |
A361526 | [
"1",
"6",
"61",
"892",
"9235",
"406653",
"9252097",
"211703640"
] | Number of ways of dividing an n X 4 rectangle into integer-sided rectangles, up to rotations and reflections. |
A361527 | [
"1",
"0",
"1",
"0",
"1",
"3",
"0",
"2",
"21",
"25",
"0",
"6",
"213",
"774",
"543",
"0",
"24",
"3470",
"30275",
"59830",
"29281",
"0",
"120",
"95982",
"1847265",
"7757355",
"10110735",
"3781503",
"0",
"720",
"4578588",
"190855000",
"1522899105",
"3944546095",
"3767987307",
"1138779265"
] | Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] having exactly k strongly connected components all of which are simple cycles, n >= 0, 0 <= k <= n. |
A361528 | [
"1",
"1",
"8",
"75",
"804",
"9681",
"129168",
"1889379",
"30037500",
"515342817",
"9484627608",
"186305208219",
"3888697965012",
"85920579594225",
"2002828537732896",
"49107722192594739",
"1263165207424720812",
"34004577057249890241",
"955970215914084949800",
"28011115058953357075563",
"853924857091970071203972"
] | a(n) = (2+n)*(2*a(n-1) - (n-2)*a(n-2)) with a(0)=a(1)=1. |
A361530 | [
"23",
"37",
"53",
"73",
"113",
"127",
"131",
"137",
"139",
"151",
"157",
"173",
"179",
"193",
"197",
"211",
"223",
"229",
"233",
"239",
"241",
"271",
"283",
"293",
"311",
"313",
"317",
"331",
"337",
"347",
"353",
"359",
"367",
"373",
"379",
"383",
"389",
"397",
"421",
"431",
"433",
"457",
"523",
"541",
"547",
"571",
"593",
"613",
"617",
"631",
"673",
"677",
"719"
] | Primes that can be written as the result of shuffling the decimal digits of two primes. |
A361531 | [
"1",
"-1",
"0",
"2",
"-3",
"-2",
"21",
"-44",
"-62",
"631",
"-1367",
"-3170",
"34849",
"-86855",
"-302964",
"3058342",
"-8509971",
"-36488802",
"430842051",
"-1111575888",
"-6244999438",
"78663444549",
"-250850311489",
"-1724880111306",
"18475299723737",
"-65061274823853",
"-444914618968648",
"6831921081061986"
] | Expansion of e.g.f. exp(1 - exp(x) + x^3/6). |
A361532 | [
"1",
"1",
"4",
"19",
"118",
"886",
"7786",
"78184",
"881644",
"11017108",
"150966856",
"2249261356",
"36181351504",
"624658612384",
"11516406883528",
"225740649754936",
"4686671645814736",
"102712289940757264",
"2369128149877075264",
"57359541280704038128",
"1454229915957292684576"
] | Expansion of e.g.f. exp((x + x^2/2)/(1-x)). |
A361533 | [
"1",
"0",
"0",
"1",
"4",
"20",
"130",
"980",
"8400",
"80920",
"865200",
"10164000",
"130114600",
"1802600800",
"26867640800",
"428661633400",
"7288513232000",
"131558835408000",
"2512282795422400",
"50600743739145600",
"1071998968264224000",
"23829055696093648000",
"554524256514356128000"
] | Expansion of e.g.f. exp(x^3/(6 * (1-x))). |
A361535 | [
"1",
"10",
"61",
"290",
"1172",
"4212",
"13833",
"42262",
"121625",
"332764",
"871641",
"2197936",
"5359005",
"12679730",
"29200593",
"65617892",
"144189054",
"310400110",
"655669910",
"1360910666",
"2779007594",
"5589070978",
"11081585154",
"21679798590",
"41883282555",
"79958881544",
"150943109191",
"281926365224"
] | Expansion of g.f. 1 / Product_{n>=1} ((1 - x^n)^6 * (1 - x^(2*n-1))^4). |
A361536 | [
"1",
"3",
"60",
"2037",
"92187",
"5066952",
"322801089",
"23197971285",
"1848188250810",
"161297106209607",
"15285968218925460",
"1562519987561305566",
"171348519312001997550",
"20068058089211306151393",
"2500498134501774994768119",
"330350627790472265384885061",
"46136067767500181432129130897"
] | Expansion of g.f. A(x) satisfying A(x) = Sum_{n>=0} d^n/dx^n x^(3*n) * A(x)^(3*n) / n!. |
A361537 | [
"1",
"3",
"75",
"3234",
"186471",
"13063908",
"1060481214",
"97053553710",
"9840717984447",
"1092337371705273",
"131589391554509112",
"17089208887923714204",
"2379797411747290723350",
"353790840030976298935989",
"55935780589531899802966062",
"9373903063348266793396858620"
] | Expansion of g.f. A(x) satisfying A(x) = Sum_{n>=0} d^n/dx^n x^(3*n) * A(x)^(4*n) / n!. |
A361538 | [
"1",
"5",
"244",
"19090",
"1839075",
"199363606",
"23320604384",
"2876887986028",
"369107300988219",
"48807370374419910",
"6610055144592717246",
"912769451975745598299",
"128087096344387852459658",
"18219369599509083643661044",
"2621701165622760015979876800",
"381039123615762485580377457688"
] | Central terms of triangle A361050. |
A361539 | [
"3",
"39",
"426",
"4550",
"50085",
"577731",
"7022596",
"90148860",
"1222753815",
"17515226465",
"264663151038",
"4212100028994",
"70475063838361",
"1237144088015535",
"22735980569119560",
"436467520716475064",
"8733235757816095083",
"181740089309026259565",
"3925458146197916823970"
] | a(n) = A361540(n, n-2) for n >= 2, a diagonal of triangle A361540. |
A361540 | [
"1",
"1",
"1",
"3",
"4",
"1",
"22",
"39",
"18",
"1",
"269",
"604",
"426",
"92",
"1",
"4616",
"12625",
"12040",
"4550",
"520",
"1",
"102847",
"332766",
"401355",
"218300",
"50085",
"3222",
"1",
"2824816",
"10574725",
"15456756",
"11017895",
"3867080",
"577731",
"21700",
"1",
"92355769",
"393171416",
"676130644",
"597596216",
"284455150",
"69038984",
"7022596",
"157544",
"1"
] | Expansion of e.g.f. A(x,y) satisfying A(x,y) = Sum_{n>=0} (A(x,y)^n + y)^n * x^n/n!, as a triangle read by rows. |
A361541 | [
"1",
"4",
"56",
"1220",
"34788",
"1203152",
"48418384",
"2210163032",
"112501779300",
"6308565897088",
"386149471644704",
"25614932030415636",
"1830512170952711968",
"140224558208217547440",
"11464991752291729651224",
"996723500374559386157920",
"91824970792933898453830680"
] | Expansion of g.f. A(x) satisfying A(x) = Sum_{n>=0} d^n/dx^n x^(4*n) * A(x)^n / n!. |
A361542 | [
"1",
"4",
"84",
"2940",
"137228",
"7809680",
"517517212",
"38860889496",
"3248881861500",
"298704250964336",
"29928006672383280",
"3244628959712243628",
"378449007991303855532",
"47261928190105905687600",
"6293239981401396941576632",
"890249832854933140207681360",
"133355904852469516343820132852"
] | Expansion of g.f. A(x) satisfying A(x) = Sum_{n>=0} d^n/dx^n x^(4*n) * A(x)^(2*n) / n!. |
A361543 | [
"1",
"4",
"112",
"5380",
"346788",
"27285968",
"2498963752",
"259124694312",
"29885849525700",
"3786931724896768",
"522451837498888672",
"77929657518224116484",
"12496899169394954817144",
"2144326582901160246138160",
"392104633203721656029928184",
"76134826269461672101153285664"
] | Expansion of g.f. A(x) satisfying A(x) = Sum_{n>=0} d^n/dx^n x^(4*n) * A(x)^(3*n) / n!. |
A361544 | [
"1",
"4",
"39",
"604",
"12625",
"332766",
"10574725",
"393171416",
"16744363569",
"803841993370",
"42957812253301",
"2529951235854516",
"162852898603253209",
"11378885054925777494",
"858009440175419213445",
"69471138931959493061296",
"6013997809048628612191585",
"554545575488282609142617778"
] | a(n) = A361540(n,1) for n >= 1, a column of triangle A361540. |
A361545 | [
"1",
"0",
"0",
"0",
"1",
"5",
"30",
"210",
"1715",
"15750",
"160650",
"1801800",
"22043175",
"292116825",
"4168464300",
"63725161500",
"1039028615625",
"17998106626500",
"330068683444500",
"6388785205803000",
"130156170633113625",
"2783924007745505625",
"62375052003905891250",
"1460924768552182683750"
] | Expansion of e.g.f. exp(x^4/(24 * (1-x))). |
A361546 | [
"1",
"5",
"3",
"5",
"9",
"5",
"9",
"11",
"45",
"23",
"35",
"15",
"3",
"9",
"27",
"51",
"27",
"53",
"9",
"39",
"23",
"249",
"51",
"51",
"131",
"221",
"29",
"105",
"321",
"179",
"5",
"221",
"111",
"411",
"191",
"65",
"83",
"75",
"95",
"101",
"147",
"83",
"149",
"111",
"203",
"131",
"9",
"245",
"281",
"15",
"83",
"65",
"299",
"39",
"51",
"51",
"225",
"65",
"81",
"125",
"611",
"143",
"65",
"107",
"21"
] | a(n) is the least odd number k such that k*2^prime(n) + 1 is prime, or -1 if no such number k exists. |
A361547 | [
"1",
"0",
"0",
"0",
"0",
"1",
"6",
"42",
"336",
"3024",
"30366",
"335412",
"4041576",
"52756704",
"741620880",
"11169844686",
"179448036768",
"3063069801792",
"55360031126400",
"1056123043335360",
"21208345049147256",
"447183762148547424",
"9877939209960101280",
"228112734232663600320"
] | Expansion of e.g.f. exp(x^5/(120 * (1-x))). |
A361548 | [
"1",
"1",
"4",
"20",
"126",
"966",
"8656",
"88544",
"1016380",
"12920156",
"179996816",
"2725070096",
"44521522024",
"780344770440",
"14599772973696",
"290311643773376",
"6112190642062096",
"135798496839920144",
"3174483084427144000",
"77872118431269176896",
"1999809157085214044896"
] | Expansion of e.g.f. exp((x + x^2/2 + x^3/6)/(1-x)). |
A361549 | [
"1",
"18",
"426",
"12040",
"401355",
"15456756",
"676130644",
"33151425840",
"1802216703285",
"107652497473180",
"7012494336544686",
"494963689847333928",
"37648456802884402111",
"3071415347513049808740",
"267644521958509484952360",
"24822151072519637091258976",
"2442314922307988498911793385"
] | a(n) = A361540(n,2) for n >= 2, a column of triangle A361540. |
A361550 | [
"1",
"0",
"1",
"0",
"5",
"1",
"0",
"18",
"10",
"1",
"0",
"55",
"61",
"20",
"1",
"0",
"149",
"290",
"215",
"35",
"1",
"0",
"371",
"1172",
"1660",
"555",
"56",
"1",
"0",
"867",
"4212",
"10311",
"5850",
"1254",
"84",
"1",
"0",
"1923",
"13833",
"54688",
"47460",
"17773",
"2555",
"120",
"1",
"0",
"4086",
"42262",
"256815",
"319409",
"188300",
"46844",
"4810",
"165",
"1",
"0",
"8374",
"121625",
"1093790",
"1864445",
"1621116",
"621915",
"111348",
"8505",
"220",
"1",
"0",
"16634",
"332764",
"4297370",
"9717550",
"11913160",
"6557572",
"1818022",
"243795",
"14290",
"286",
"1"
] | Expansion of g.f. A(x,y) satisfying x*y = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x,y)^(3*n) - 1/A(x,y)^(3*n+1)), as a triangle read by rows. |
A361551 | [
"1",
"5",
"90",
"2535",
"93840",
"4226355",
"222038775",
"13259599965",
"884588496165",
"65114097133590",
"5239173990133060",
"457392343670390700",
"43064135370809341250",
"4350264113638902544555",
"469422682906897831519170",
"53897717818214315584719430",
"6561919113715122121302125775"
] | Expansion of g.f. A(x) satisfying A(x) = Sum_{n>=0} d^n/dx^n (x^(5*n) * A(x)^n) / n!. |
A361552 | [
"1",
"2",
"14",
"84",
"530",
"3770",
"29446",
"240302",
"2003914",
"17024332",
"147306448",
"1294859540",
"11524690228",
"103605031978",
"939357512086",
"8580744729478",
"78898896072996",
"729661925134886",
"6782435427053490",
"63332055630823770",
"593793935288453260",
"5587934788557993846"
] | Expansion of g.f. A(x) satisfying 2*x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)). |
A361553 | [
"1",
"3",
"24",
"171",
"1335",
"11940",
"115773",
"1160901",
"11901537",
"124726644",
"1332688035",
"14455451526",
"158660036535",
"1758835084221",
"19667067522966",
"221573079684087",
"2512635069594897",
"28656903391830291",
"328500210705228867",
"3782806859877522522",
"43738575934977450465"
] | Expansion of g.f. A(x) satisfying 3*x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)). |
A361554 | [
"1",
"4",
"36",
"296",
"2732",
"28980",
"329996",
"3872908",
"46575260",
"573472248",
"7197096168",
"91640952360",
"1180636398320",
"15364364313588",
"201691201775092",
"2667523242203932",
"35510152549696208",
"475424653523498396",
"6397601663340197268",
"86481499341290372804",
"1173813146742741571560"
] | Expansion of g.f. A(x) satisfying 4*x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)). |
A361555 | [
"1",
"5",
"50",
"465",
"4925",
"59870",
"776155",
"10364135",
"142082065",
"1995371980",
"28549274995",
"414327073520",
"6084353526535",
"90258375062245",
"1350607531232830",
"20361436162127965",
"308964002231172075",
"4715119823819824535",
"72324133311820587435",
"1114404268419043050750"
] | Expansion of g.f. A(x) satisfying 5*x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)). |
A361556 | [
"1",
"5",
"61",
"1660",
"47460",
"1621116",
"58002140",
"2213389940",
"87301563690",
"3555890156445",
"148125509781095",
"6292884402884976",
"271565202254735207",
"11878392121526009800",
"525519782174930309205",
"23481280252471520720288",
"1058270749214634093475910",
"48058678036035725619136698"
] | Central terms of triangle A361550. |
A361557 | [
"1",
"1",
"4",
"20",
"127",
"977",
"8789",
"90267",
"1040260",
"13275258",
"185653535",
"2821321725",
"46265262553",
"813871304989",
"15281792484768",
"304949014412540",
"6442741397501699",
"143633948442619765",
"3369004776395733829",
"82919378806522132407",
"2136425765494805888952"
] | Expansion of e.g.f. exp((exp(x) - 1)/(1-x)). |
A361558 | [
"1",
"1",
"4",
"20",
"127",
"976",
"8776",
"90084",
"1037555",
"13233077",
"184956386",
"2809098986",
"46038214729",
"809411443790",
"15189361799522",
"302932433571356",
"6396529241755881",
"142523960797017589",
"3341115707515530400",
"82187749261419720712",
"2116421112495023612311"
] | Expansion of e.g.f. exp((x + x^2/2 + x^3/6 + x^4/24)/(1-x)). |
A361559 | [
"0",
"10",
"258",
"1740",
"20070",
"48510",
"196920",
"350370",
"937860",
"3075030",
"4322160",
"10641330",
"17925180",
"22825110",
"35827560",
"65816010",
"113180910",
"133937670",
"215070570",
"288148140",
"331474860",
"493573080",
"633015810",
"899599140",
"1387338960",
"1700082450",
"1876303260",
"2272556790",
"2494333710"
] | a(n) = Sum_{k=1..prime(n)-1} floor(k^5/prime(n)). |
A361560 | [
"1",
"1",
"4",
"47",
"1471",
"115042",
"21591817",
"9455689609",
"9464951556046",
"21316993121024757",
"106689322228222150243",
"1174731578884501228621956",
"28221161668500867009724237123",
"1468937207982284446757761131062629",
"164682046577167683717133576752582349216",
"39562388056404531283767850863430043742371123"
] | Number of labeled digraphs on [n] all of whose strongly connected components are complete digraphs. |
A361562 | [
"3",
"7",
"11",
"19",
"23",
"31",
"43",
"79",
"127",
"167",
"191",
"199",
"347",
"3539",
"5807",
"10691",
"11279",
"12391",
"14479",
"83339",
"117239",
"127031",
"141079",
"269987",
"986191",
"4031399"
] | Wagstaff numbers that are of the form 4*k + 3. |
A361563 | [
"5",
"13",
"17",
"61",
"101",
"313",
"701",
"1709",
"2617",
"10501",
"42737",
"95369",
"138937",
"267017",
"374321"
] | Wagstaff numbers that are of the form 4*k + 1. |
A361564 | [
"4",
"6",
"10",
"17",
"25",
"39",
"59",
"87",
"127",
"186"
] | Number of (n-3)-connected unlabeled n-node graphs. |
A361565 | [
"1",
"3",
"2",
"2",
"3",
"5",
"4",
"3",
"3",
"7",
"6",
"7",
"7",
"9",
"4",
"4",
"9",
"9",
"10",
"9",
"5",
"13",
"12",
"5",
"5",
"15",
"6",
"11",
"15",
"11",
"16",
"6",
"7",
"19",
"6",
"6",
"19",
"21",
"8",
"13",
"21",
"13",
"22",
"15",
"7",
"25",
"24",
"7",
"7",
"15",
"10",
"17",
"27",
"15",
"8",
"15",
"11",
"31",
"30",
"8",
"31",
"33",
"8",
"8",
"9",
"17",
"34",
"21",
"13",
"17",
"36",
"17",
"37",
"39",
"10"
] | a(n) is the numerator of the median of divisors of n. |
A361566 | [
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2"
] | a(n) is the denominator of the median of divisors of n. |
A361567 | [
"1",
"0",
"1",
"6",
"15",
"60",
"555",
"3150",
"17745",
"158760",
"1399545",
"10914750",
"102920895",
"1104323220",
"11249313075",
"119330961750",
"1426411411425",
"17429852840400",
"213417453474225",
"2791671804271350",
"38524272522310575",
"537569719902715500",
"7732658753799054075"
] | Expansion of e.g.f. exp(x^2/2 * (1+x)^2). |
A361568 | [
"1",
"0",
"0",
"1",
"12",
"60",
"130",
"420",
"8400",
"101080",
"781200",
"4435200",
"37714600",
"607807200",
"8660652000",
"94007313400",
"914497584000",
"11566931376000",
"198256136478400",
"3275456501116800",
"46558791351072000",
"636647461257808000",
"10238792220969312000",
"194852563745775936000"
] | Expansion of e.g.f. exp(x^3/6 * (1+x)^3). |
A361569 | [
"1",
"0",
"0",
"0",
"1",
"20",
"180",
"840",
"1715",
"2520",
"88200",
"1940400",
"29111775",
"303603300",
"2188286100",
"12549537000",
"143029511625",
"3397035642000",
"71419225878000",
"1170096883956000",
"15075357741068625",
"163540869094102500",
"2025016641129982500",
"40912918773391665000"
] | Expansion of e.g.f. exp(x^4/24 * (1+x)^4). |
A361570 | [
"1",
"0",
"2",
"12",
"36",
"240",
"2280",
"15120",
"122640",
"1330560",
"13335840",
"136382400",
"1657212480",
"20860519680",
"262278656640",
"3585207225600",
"52249374777600",
"772773281280000",
"11907924610982400",
"193962388523904000",
"3253343368231756800",
"56051640629816832000"
] | Expansion of e.g.f. exp( (x * (1+x))^2 ). |
A361571 | [
"1",
"0",
"0",
"6",
"72",
"360",
"1080",
"15120",
"302400",
"3689280",
"32659200",
"359251200",
"6965481600",
"133880947200",
"2070484416000",
"30305353478400",
"559684629504000",
"12582442768896000",
"271843009108070400",
"5401042458152140800",
"111578968350001152000",
"2657164887872022528000"
] | Expansion of e.g.f. exp( (x * (1+x))^3 ). |
A361572 | [
"1",
"0",
"0",
"6",
"72",
"720",
"7560",
"90720",
"1270080",
"20381760",
"364694400",
"7125148800",
"150186960000",
"3393726336000",
"81882210009600",
"2102315389574400",
"57244753133568000",
"1647544166940672000",
"49957730917981286400",
"1591303422125646028800"
] | Expansion of e.g.f. exp( (x / (1-x))^3 ). |
A361573 | [
"1",
"0",
"0",
"1",
"12",
"120",
"1210",
"13020",
"152880",
"1975960",
"28148400",
"440470800",
"7525441000",
"139375236000",
"2778421245600",
"59239029249400",
"1343609515248000",
"32274288638592000",
"818014942318974400",
"21809788600885084800",
"610079100418595808000",
"17863467401461938256000"
] | Expansion of e.g.f. exp(x^3/(6 * (1 - x)^3)). |
A361574 | [
"1",
"3",
"8",
"21",
"68",
"242",
"861",
"3151",
"11874",
"45192",
"173496",
"673042"
] | a(n) is the number of Fibonacci meanders of length m*n and central angle 360/m degrees where m = 3. |
A361576 | [
"1",
"0",
"0",
"0",
"24",
"480",
"7200",
"100800",
"1431360",
"21772800",
"370137600",
"7185024000",
"158150361600",
"3848298854400",
"100865282918400",
"2799294930432000",
"81599752346112000",
"2492894621048832000",
"79852538982408192000",
"2684220785621286912000"
] | Expansion of e.g.f. exp( (x / (1-x))^4 ). |
A361577 | [
"1",
"0",
"0",
"0",
"1",
"20",
"300",
"4200",
"58835",
"849240",
"12814200",
"203742000",
"3430355775",
"61363001700",
"1168815948300",
"23734579869000",
"513878948207625",
"11850279026586000",
"290440507342986000",
"7543064638441332000",
"206860683821114948625",
"5968372055889205462500"
] | Expansion of e.g.f. exp(x^4/(24 * (1 - x)^4)). |
A361578 | [
"1",
"0",
"1",
"1",
"5",
"8",
"30",
"85",
"382",
"1550",
"7352"
] | Number of 5-connected polyhedra (or 5-connected simple planar graphs) with n nodes |
A361579 | [
"1",
"0",
"1",
"0",
"3",
"1",
"0",
"51",
"12",
"1",
"0",
"3614",
"447",
"34",
"1",
"0",
"991930",
"53675",
"2885",
"85",
"1",
"0",
"1051469032",
"21514470",
"741455",
"16665",
"201",
"1",
"0",
"4366988803688",
"30405612790",
"642187105",
"9816380",
"90678",
"462",
"1",
"0",
"71895397383029040",
"160152273169644",
"2024633081100",
"19625842425",
"122330544",
"474138",
"1044",
"1"
] | Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k source-like components, n >= 0, 0 <= k <= n. |
A361580 | [
"1",
"2",
"3",
"2",
"5",
"32",
"7",
"42",
"3",
"52",
"11",
"6432",
"13",
"72",
"53",
"842",
"17",
"9632",
"19",
"10542",
"73",
"112",
"23",
"1286432",
"5",
"132",
"93",
"14742",
"29",
"15106532",
"31",
"16842",
"113",
"172",
"75",
"181296432",
"37",
"192",
"133",
"20108542",
"41",
"21147632",
"43",
"221142",
"15953",
"232",
"47",
"24161286432",
"7",
"251052"
] | If n is composite, replace n with the concatenation of its nontrivial divisors, written in decreasing order, each divisor being written in base 10 with its digits in normal order, otherwise a(n) = n. |
A361581 | [
"1",
"2",
"3",
"2",
"5",
"32",
"7",
"42",
"3",
"52",
"11",
"6432",
"13",
"72",
"53",
"842",
"17",
"9632",
"19",
"1542",
"73",
"112",
"23",
"2186432",
"5",
"312",
"93",
"41742",
"29",
"51016532",
"31",
"61842",
"113",
"712",
"75",
"812196432",
"37",
"912",
"313",
"2018542",
"41",
"12417632",
"43",
"221142",
"51953",
"322",
"47",
"42612186432",
"7",
"520152"
] | If n is composite, replace n with the concatenation of its nontrivial divisors, written in decreasing order, each divisor being written in base 10 with its digits in reverse order, otherwise a(n) = n. |
A361582 | [
"1",
"0",
"1",
"0",
"1",
"2",
"0",
"5",
"5",
"6",
"0",
"83",
"62",
"42",
"31",
"0",
"5048",
"2494",
"1172",
"592",
"302",
"0",
"1047008",
"330063",
"103961",
"38312",
"15616",
"5984",
"0",
"705422362",
"137934757",
"28095923",
"7243110",
"2297690",
"795930",
"243668",
"0",
"1580348371788",
"184557780045",
"23226116293",
"3951426731",
"914429926",
"261269562",
"79512478",
"20286025"
] | Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled nodes with k strongly connected components. |
A361583 | [
"1",
"1",
"3",
"12",
"88",
"1217",
"34672",
"2039085",
"246005109",
"60296886108",
"29828186693218",
"29663937774464786",
"59172529527454608139",
"236453014376786629601848",
"1891427400988740573006253862",
"30274661556583530830890359188257",
"969429810937979825934973090455224882"
] | Number of digraphs on n unlabeled nodes whose strongly connected components are complete digraphs. |
A361584 | [
"1",
"1",
"3",
"12",
"88",
"1239",
"36540",
"2226595",
"277421616",
"69974281748",
"35535207035048",
"36224521019293188",
"74004483908461354689",
"302712665772844097945072",
"2477999475270966827490305948",
"40583406022745170376459610683073",
"1329552679157905406495248763876363056"
] | Number of digraphs on n unlabeled nodes whose strongly connected components are directed cycles or single vertices. |
A361585 | [
"1",
"0",
"1",
"1",
"8",
"28",
"736",
"17879",
"1568614",
"196581247",
"62857465075",
"34431266945361",
"42146672798547398",
"95881304594606248756",
"459546334152150732106700",
"4253461062245855670436620669",
"80700118619568448244440535541825",
"3011390106783578987361705575335328331"
] | Number of digraphs on n unlabeled nodes whose strongly connected components are directed cycles. |
A361586 | [
"1",
"0",
"1",
"5",
"90",
"5289",
"1071691",
"712342075",
"1585944117738",
"12152982231404393",
"328276896613548366675",
"31834464336872565979301363",
"11234630426387288679040317490771",
"14576388456695908232721134339830232699",
"70075904005979773819582865772534172929477101"
] | Number of directed graphs on n unlabeled nodes in which every node belongs to a directed cycle. |
A361587 | [
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"5",
"4",
"4",
"0",
"83",
"56",
"36",
"24",
"0",
"5048",
"2406",
"1101",
"542",
"267",
"0",
"1047008",
"324917",
"101307",
"37017",
"14947",
"5647",
"0",
"705422362",
"136882286",
"27757789",
"7134897",
"2257234",
"779257",
"237317",
"0",
"1580348371788",
"183851281949",
"23086772643",
"3922864504",
"907027520",
"258909828",
"78691767",
"20035307"
] | Triangle read by rows: T(n,k) is the number of weakly connected digraphs on n unlabeled nodes with k strongly connected components. |
A361588 | [
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"5",
"4",
"4",
"0",
"83",
"57",
"37",
"25",
"0",
"5048",
"2411",
"1110",
"550",
"271",
"0",
"1047008",
"325015",
"101467",
"37140",
"15024",
"5682",
"0",
"705422362",
"136887749",
"27765860",
"7139149",
"2259378",
"780314",
"237684",
"0",
"1580348371788",
"183852357683",
"23088181536",
"3923330808",
"907186816",
"258971872",
"78716548",
"20042357"
] | Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled nodes with k strongly connected components and without isolated nodes. |
A361589 | [
"1",
"0",
"1",
"4",
"25",
"271",
"5682",
"237684",
"20042357",
"3404651985",
"1162523674892",
"796395726736678",
"1093229314594543016",
"3004753338859186373234",
"16527845763725396055765240",
"181891586856152393087373330332",
"4004313490358484085907684748704180",
"176328671349936542115174881107633828418"
] | Number of acyclic digraphs on n unlabeled nodes without isolated nodes. |
A361590 | [
"1",
"0",
"1",
"1",
"0",
"2",
"5",
"5",
"0",
"6",
"90",
"55",
"42",
"0",
"31",
"5289",
"2451",
"974",
"592",
"0",
"302",
"1071691",
"323709",
"94332",
"29612",
"15616",
"0",
"5984",
"712342075",
"135208025",
"25734232",
"6059018",
"1650492",
"795930",
"0",
"243668",
"1585944117738",
"181427072519",
"21650983294",
"3358042412",
"704602272",
"174576110",
"79512478",
"0",
"20286025"
] | Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled nodes with exactly k strongly connected components of size 1. |
A361592 | [
"1",
"0",
"1",
"1",
"0",
"3",
"18",
"21",
"0",
"25",
"1699",
"1080",
"774",
"0",
"543",
"587940",
"267665",
"103860",
"59830",
"0",
"29281",
"750744901",
"225144360",
"64169325",
"19791000",
"10110735",
"0",
"3781503",
"3556390155318",
"672637205149",
"126726655860",
"29445913175",
"7939815030",
"3767987307",
"0",
"1138779265"
] | Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k strongly connected components of size 1, n>=0, 0<=k<=n. |