commit
stringlengths
40
40
subject
stringlengths
4
1.73k
repos
stringlengths
5
127k
old_file
stringlengths
2
751
new_file
stringlengths
2
751
new_contents
stringlengths
1
8.98k
old_contents
stringlengths
0
6.59k
license
stringclasses
13 values
lang
stringclasses
23 values
4b696c2a54f7afd95013763c098aec30b08409d6
Create bulb-switcher-ii.py
kamyu104/LeetCode,kamyu104/LeetCode,yiwen-luo/LeetCode,yiwen-luo/LeetCode,kamyu104/LeetCode,tudennis/LeetCode---kamyu104-11-24-2015,kamyu104/LeetCode,yiwen-luo/LeetCode,tudennis/LeetCode---kamyu104-11-24-2015,tudennis/LeetCode---kamyu104-11-24-2015,yiwen-luo/LeetCode,tudennis/LeetCode---kamyu104-11-24-2015,yiwen-luo/LeetCode,tudennis/LeetCode---kamyu104-11-24-2015,kamyu104/LeetCode
Python/bulb-switcher-ii.py
Python/bulb-switcher-ii.py
# Time: O(1) # Space: O(1) class Solution(object): def flipLights(self, n, m): """ :type n: int :type m: int :rtype: int """ if m == 0: return 1 if n == 1: return 2 if m == 1 and n == 2: return 3 if m == 1 or n == 2 return 4 if m == 2: return 7 return 8
mit
Python
0621b935558b6805d2b45fee49bc2e959201fd7a
add number-of-digit-one
zeyuanxy/leet-code,zeyuanxy/leet-code,EdisonAlgorithms/LeetCode,zeyuanxy/leet-code,EdisonAlgorithms/LeetCode,EdisonAlgorithms/LeetCode
vol5/number-of-digit-one/number-of-digit-one.py
vol5/number-of-digit-one/number-of-digit-one.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author: Zeyuan Shang # @Date: 2015-11-03 15:21:00 # @Last Modified by: Zeyuan Shang # @Last Modified time: 2015-11-03 15:21:14 import itertools class Solution(object): def countDigitOne(self, n): """ :type n: int :rtype: int """ if n <= 0: return 0 def digits(n): while n: yield n % 10 n /= 10 def pows(b): x = 1 while True: yield x x *= 10 def g(d, m): if d < 1: return n / (m * 10) * m elif d == 1: return n / (m * 10) * m + n % m + 1 else: return (n / (m * 10) + 1) * m return sum(itertools.starmap(g, itertools.izip(digits(n), pows(10))))
mit
Python
27d37833663842405f159127f30c6351958fcb10
Add draft of example using the new @bench
ktbs/ktbs-bench,ktbs/ktbs-bench
bench_examples/bench_dec_insert.py
bench_examples/bench_dec_insert.py
from csv import DictWriter from ktbs_bench.utils.decorators import bench @bench def batch_insert(graph, file): """Insert triples in batch.""" print(graph, file) if __name__ == '__main__': # Define some graph/store to use graph_list = ['g1', 'g2'] # Define some files to get the triples from n3file_list = ['f1', 'f2'] # Testing batch insert res = {'func_name': 'batch_insert'} for graph in graph_list: for n3file in n3file_list: time_res = batch_insert(graph, n3file) res[time_res[0]] = time_res[1] # Setup the result CSV with open('/tmp/res.csv', 'wb') as outfile: res_csv = DictWriter(outfile, fieldnames=res.keys()) res_csv.writeheader() # Write the results res_csv.writerow(res)
mit
Python
7c0a37e2ad123dfeb409c682a1cab37630678642
Improve preprocessing text docs
sarvex/tensorflow,yongtang/tensorflow,tensorflow/tensorflow-pywrap_tf_optimizer,sarvex/tensorflow,yongtang/tensorflow,tensorflow/tensorflow-pywrap_saved_model,davidzchen/tensorflow,gunan/tensorflow,annarev/tensorflow,davidzchen/tensorflow,aldian/tensorflow,tensorflow/tensorflow-pywrap_tf_optimizer,tensorflow/tensorflow-experimental_link_static_libraries_once,Intel-tensorflow/tensorflow,frreiss/tensorflow-fred,paolodedios/tensorflow,paolodedios/tensorflow,freedomtan/tensorflow,annarev/tensorflow,gautam1858/tensorflow,cxxgtxy/tensorflow,tensorflow/tensorflow-experimental_link_static_libraries_once,freedomtan/tensorflow,tensorflow/tensorflow,yongtang/tensorflow,sarvex/tensorflow,annarev/tensorflow,tensorflow/tensorflow-pywrap_saved_model,tensorflow/tensorflow-pywrap_saved_model,gunan/tensorflow,tensorflow/tensorflow-pywrap_tf_optimizer,aam-at/tensorflow,frreiss/tensorflow-fred,paolodedios/tensorflow,tensorflow/tensorflow-pywrap_saved_model,frreiss/tensorflow-fred,freedomtan/tensorflow,tensorflow/tensorflow-experimental_link_static_libraries_once,Intel-tensorflow/tensorflow,aam-at/tensorflow,Intel-tensorflow/tensorflow,tensorflow/tensorflow-pywrap_saved_model,tensorflow/tensorflow-pywrap_saved_model,yongtang/tensorflow,paolodedios/tensorflow,Intel-tensorflow/tensorflow,karllessard/tensorflow,gunan/tensorflow,yongtang/tensorflow,aldian/tensorflow,karllessard/tensorflow,sarvex/tensorflow,frreiss/tensorflow-fred,annarev/tensorflow,tensorflow/tensorflow-pywrap_tf_optimizer,cxxgtxy/tensorflow,aam-at/tensorflow,aam-at/tensorflow,Intel-tensorflow/tensorflow,petewarden/tensorflow,gunan/tensorflow,aldian/tensorflow,petewarden/tensorflow,tensorflow/tensorflow-experimental_link_static_libraries_once,karllessard/tensorflow,sarvex/tensorflow,aldian/tensorflow,cxxgtxy/tensorflow,tensorflow/tensorflow-pywrap_tf_optimizer,karllessard/tensorflow,petewarden/tensorflow,tensorflow/tensorflow,aldian/tensorflow,sarvex/tensorflow,freedomtan/tensorflow,gunan/tensorflow,davidzchen/tensorflow,karllessard/tensorflow,Intel-tensorflow/tensorflow,yongtang/tensorflow,petewarden/tensorflow,davidzchen/tensorflow,gautam1858/tensorflow,frreiss/tensorflow-fred,tensorflow/tensorflow,paolodedios/tensorflow,yongtang/tensorflow,tensorflow/tensorflow,Intel-Corporation/tensorflow,aam-at/tensorflow,frreiss/tensorflow-fred,frreiss/tensorflow-fred,aam-at/tensorflow,tensorflow/tensorflow-pywrap_tf_optimizer,gautam1858/tensorflow,gunan/tensorflow,Intel-Corporation/tensorflow,tensorflow/tensorflow-pywrap_tf_optimizer,petewarden/tensorflow,petewarden/tensorflow,aam-at/tensorflow,Intel-tensorflow/tensorflow,frreiss/tensorflow-fred,tensorflow/tensorflow-pywrap_saved_model,frreiss/tensorflow-fred,gautam1858/tensorflow,petewarden/tensorflow,annarev/tensorflow,gunan/tensorflow,gautam1858/tensorflow,sarvex/tensorflow,davidzchen/tensorflow,tensorflow/tensorflow,freedomtan/tensorflow,karllessard/tensorflow,karllessard/tensorflow,Intel-tensorflow/tensorflow,aam-at/tensorflow,tensorflow/tensorflow,yongtang/tensorflow,annarev/tensorflow,cxxgtxy/tensorflow,gautam1858/tensorflow,tensorflow/tensorflow-pywrap_saved_model,freedomtan/tensorflow,tensorflow/tensorflow-pywrap_tf_optimizer,gunan/tensorflow,karllessard/tensorflow,davidzchen/tensorflow,aam-at/tensorflow,tensorflow/tensorflow-pywrap_tf_optimizer,davidzchen/tensorflow,tensorflow/tensorflow-pywrap_saved_model,Intel-Corporation/tensorflow,aam-at/tensorflow,gautam1858/tensorflow,petewarden/tensorflow,petewarden/tensorflow,davidzchen/tensorflow,paolodedios/tensorflow,aldian/tensorflow,frreiss/tensorflow-fred,cxxgtxy/tensorflow,paolodedios/tensorflow,tensorflow/tensorflow,gunan/tensorflow,tensorflow/tensorflow-experimental_link_static_libraries_once,Intel-Corporation/tensorflow,davidzchen/tensorflow,gunan/tensorflow,freedomtan/tensorflow,petewarden/tensorflow,cxxgtxy/tensorflow,aldian/tensorflow,freedomtan/tensorflow,tensorflow/tensorflow-experimental_link_static_libraries_once,petewarden/tensorflow,sarvex/tensorflow,Intel-Corporation/tensorflow,frreiss/tensorflow-fred,tensorflow/tensorflow-pywrap_tf_optimizer,gautam1858/tensorflow,frreiss/tensorflow-fred,tensorflow/tensorflow-experimental_link_static_libraries_once,tensorflow/tensorflow,davidzchen/tensorflow,davidzchen/tensorflow,Intel-tensorflow/tensorflow,freedomtan/tensorflow,Intel-tensorflow/tensorflow,karllessard/tensorflow,davidzchen/tensorflow,petewarden/tensorflow,paolodedios/tensorflow,annarev/tensorflow,annarev/tensorflow,tensorflow/tensorflow-experimental_link_static_libraries_once,annarev/tensorflow,gautam1858/tensorflow,cxxgtxy/tensorflow,gunan/tensorflow,yongtang/tensorflow,Intel-Corporation/tensorflow,Intel-Corporation/tensorflow,paolodedios/tensorflow,aldian/tensorflow,gautam1858/tensorflow,cxxgtxy/tensorflow,tensorflow/tensorflow-experimental_link_static_libraries_once,gautam1858/tensorflow,yongtang/tensorflow,tensorflow/tensorflow,tensorflow/tensorflow-pywrap_saved_model,karllessard/tensorflow,tensorflow/tensorflow-pywrap_saved_model,freedomtan/tensorflow,annarev/tensorflow,aam-at/tensorflow,annarev/tensorflow,karllessard/tensorflow,aam-at/tensorflow,gunan/tensorflow,yongtang/tensorflow,freedomtan/tensorflow,tensorflow/tensorflow-pywrap_tf_optimizer,tensorflow/tensorflow,paolodedios/tensorflow,Intel-tensorflow/tensorflow,Intel-Corporation/tensorflow,freedomtan/tensorflow,tensorflow/tensorflow-experimental_link_static_libraries_once,gautam1858/tensorflow,paolodedios/tensorflow,tensorflow/tensorflow,tensorflow/tensorflow-experimental_link_static_libraries_once
tensorflow/python/keras/preprocessing/text.py
tensorflow/python/keras/preprocessing/text.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for text input preprocessing. """ # pylint: disable=invalid-name from __future__ import absolute_import from __future__ import division from __future__ import print_function from keras_preprocessing import text from tensorflow.python.util.tf_export import keras_export hashing_trick = text.hashing_trick Tokenizer = text.Tokenizer @keras_export('keras.preprocessing.text.text_to_word_sequence') def text_to_word_sequence(text, filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', lower=True, split=" "): """Converts a text to a sequence of words (or tokens). This function transforms a string of text into a list of words while ignoring `filters` which include punctuations by default. >>> text = 'This is a sample sentence.' >>> tf.keras.preprocessing.text.text_to_word_sequence(text) ['this', 'is', 'a', 'sample', 'sentence'] Arguments: text: Input text (string). filters: list (or concatenation) of characters to filter out, such as punctuation. Default: `'!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\\t\\n'`, includes basic punctuation, tabs, and newlines. lower: boolean. Whether to convert the input to lowercase. split: str. Separator for word splitting. Returns: A list of words (or tokens). """ return text.text_to_word_sequence( text, filters=filters, lower=lower, split=split) @keras_export('tf.keras.preprocessing.text.one_hot') def one_hot(text, n, filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', lower=True, split=' '): """One-hot encodes a text into a list of word indexes of size `n`. This function receives as input a string of text and returns a list of encoded integers each corresponding to a word (or token) in the given input string. >>> text = 'This is a sample sentence.' >>> tf.keras.preprocessing.text.one_hot(text, 20) [4, 18, 1, 15, 17] Arguments: text: Input text (string). n: int. Size of vocabulary. filters: list (or concatenation) of characters to filter out, such as punctuation. Default: ``!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\\t\\n``, includes basic punctuation, tabs, and newlines. lower: boolean. Whether to set the text to lowercase. split: str. Separator for word splitting. Returns: List of integers in `[1, n]`. Each integer encodes a word (unicity non-guaranteed). """ return text.one_hot( text, n, filters=filters, lower=lower, split=split) # text.tokenizer_from_json is only available if keras_preprocessing >= 1.1.0 try: tokenizer_from_json = text.tokenizer_from_json keras_export('keras.preprocessing.text.tokenizer_from_json')( tokenizer_from_json) except AttributeError: pass keras_export('keras.preprocessing.text.hashing_trick')(hashing_trick) keras_export('keras.preprocessing.text.Tokenizer')(Tokenizer)
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for text input preprocessing. """ # pylint: disable=invalid-name from __future__ import absolute_import from __future__ import division from __future__ import print_function from keras_preprocessing import text from tensorflow.python.util.tf_export import keras_export text_to_word_sequence = text.text_to_word_sequence one_hot = text.one_hot hashing_trick = text.hashing_trick Tokenizer = text.Tokenizer keras_export( 'keras.preprocessing.text.text_to_word_sequence')(text_to_word_sequence) keras_export('keras.preprocessing.text.one_hot')(one_hot) keras_export('keras.preprocessing.text.hashing_trick')(hashing_trick) keras_export('keras.preprocessing.text.Tokenizer')(Tokenizer) # text.tokenizer_from_json is only available if keras_preprocessing >= 1.1.0 try: tokenizer_from_json = text.tokenizer_from_json keras_export('keras.preprocessing.text.tokenizer_from_json')( tokenizer_from_json) except AttributeError: pass
apache-2.0
Python
175470eea9716f587a2339932c1cfb6c5240c4df
add tools.testing module for asserts (numpy, pandas compat wrapper)
wzbozon/statsmodels,wzbozon/statsmodels,phobson/statsmodels,nvoron23/statsmodels,phobson/statsmodels,detrout/debian-statsmodels,cbmoore/statsmodels,kiyoto/statsmodels,wkfwkf/statsmodels,astocko/statsmodels,adammenges/statsmodels,gef756/statsmodels,yl565/statsmodels,hlin117/statsmodels,saketkc/statsmodels,DonBeo/statsmodels,Averroes/statsmodels,bzero/statsmodels,wwf5067/statsmodels,Averroes/statsmodels,wwf5067/statsmodels,YihaoLu/statsmodels,DonBeo/statsmodels,bzero/statsmodels,nguyentu1602/statsmodels,adammenges/statsmodels,adammenges/statsmodels,alekz112/statsmodels,musically-ut/statsmodels,nguyentu1602/statsmodels,rgommers/statsmodels,jseabold/statsmodels,cbmoore/statsmodels,nvoron23/statsmodels,musically-ut/statsmodels,statsmodels/statsmodels,statsmodels/statsmodels,bzero/statsmodels,bert9bert/statsmodels,bsipocz/statsmodels,gef756/statsmodels,huongttlan/statsmodels,josef-pkt/statsmodels,phobson/statsmodels,yl565/statsmodels,josef-pkt/statsmodels,kiyoto/statsmodels,detrout/debian-statsmodels,cbmoore/statsmodels,jstoxrocky/statsmodels,jseabold/statsmodels,yl565/statsmodels,alekz112/statsmodels,ChadFulton/statsmodels,edhuckle/statsmodels,alekz112/statsmodels,wkfwkf/statsmodels,edhuckle/statsmodels,bert9bert/statsmodels,wkfwkf/statsmodels,wzbozon/statsmodels,bashtage/statsmodels,nvoron23/statsmodels,astocko/statsmodels,cbmoore/statsmodels,bert9bert/statsmodels,huongttlan/statsmodels,waynenilsen/statsmodels,nvoron23/statsmodels,alekz112/statsmodels,rgommers/statsmodels,YihaoLu/statsmodels,saketkc/statsmodels,hainm/statsmodels,musically-ut/statsmodels,yl565/statsmodels,DonBeo/statsmodels,wdurhamh/statsmodels,hlin117/statsmodels,jstoxrocky/statsmodels,statsmodels/statsmodels,jseabold/statsmodels,statsmodels/statsmodels,bert9bert/statsmodels,kiyoto/statsmodels,waynenilsen/statsmodels,huongttlan/statsmodels,ChadFulton/statsmodels,bashtage/statsmodels,gef756/statsmodels,YihaoLu/statsmodels,rgommers/statsmodels,bzero/statsmodels,wdurhamh/statsmodels,edhuckle/statsmodels,edhuckle/statsmodels,gef756/statsmodels,wdurhamh/statsmodels,wdurhamh/statsmodels,phobson/statsmodels,detrout/debian-statsmodels,bsipocz/statsmodels,ChadFulton/statsmodels,josef-pkt/statsmodels,saketkc/statsmodels,wwf5067/statsmodels,hainm/statsmodels,detrout/debian-statsmodels,huongttlan/statsmodels,rgommers/statsmodels,hainm/statsmodels,saketkc/statsmodels,wzbozon/statsmodels,jstoxrocky/statsmodels,josef-pkt/statsmodels,cbmoore/statsmodels,waynenilsen/statsmodels,YihaoLu/statsmodels,wzbozon/statsmodels,phobson/statsmodels,astocko/statsmodels,astocko/statsmodels,jstoxrocky/statsmodels,wkfwkf/statsmodels,gef756/statsmodels,bsipocz/statsmodels,edhuckle/statsmodels,saketkc/statsmodels,ChadFulton/statsmodels,wwf5067/statsmodels,hlin117/statsmodels,jseabold/statsmodels,nvoron23/statsmodels,hainm/statsmodels,nguyentu1602/statsmodels,josef-pkt/statsmodels,kiyoto/statsmodels,waynenilsen/statsmodels,ChadFulton/statsmodels,bert9bert/statsmodels,rgommers/statsmodels,Averroes/statsmodels,bzero/statsmodels,DonBeo/statsmodels,musically-ut/statsmodels,nguyentu1602/statsmodels,ChadFulton/statsmodels,bashtage/statsmodels,bashtage/statsmodels,wdurhamh/statsmodels,YihaoLu/statsmodels,Averroes/statsmodels,statsmodels/statsmodels,bsipocz/statsmodels,bashtage/statsmodels,statsmodels/statsmodels,kiyoto/statsmodels,josef-pkt/statsmodels,bashtage/statsmodels,adammenges/statsmodels,hlin117/statsmodels,jseabold/statsmodels,DonBeo/statsmodels,wkfwkf/statsmodels,yl565/statsmodels
statsmodels/tools/testing.py
statsmodels/tools/testing.py
"""assert functions from numpy and pandas testing """ import re from distutils.version import StrictVersion import numpy as np import numpy.testing as npt import pandas import pandas.util.testing as pdt # for pandas version check def strip_rc(version): return re.sub(r"rc\d+$", "", version) def is_pandas_min_version(min_version): '''check whether pandas is at least min_version ''' from pandas.version import short_version as pversion return StrictVersion(strip_rc(pversion)) >= min_version # local copies, all unchanged from numpy.testing import (assert_allclose, assert_almost_equal, assert_approx_equal, assert_array_almost_equal, assert_array_almost_equal_nulp, assert_array_equal, assert_array_less, assert_array_max_ulp, assert_raises, assert_string_equal, assert_warns) # adjusted functions def assert_equal(actual, desired, err_msg='', verbose=True, **kwds): if not is_pandas_min_version('0.14.1'): npt.assert_equal(actual, desired, err_msg='', verbose=True) else: if isinstance(desired, pandas.Index): pdt.assert_index_equal(actual, desired) elif isinstance(desired, pandas.Series): pdt.assert_series_equal(actual, desired, **kwds) elif isinstance(desired, pandas.DataFrame): pdt.assert_frame_equal(actual, desired, **kwds) else: npt.assert_equal(actual, desired, err_msg='', verbose=True)
bsd-3-clause
Python
68cd37c1c1bf279bc67e3d6391c8f4b88e0eb7a0
add buggy profiler, not ready each instanciation add 2sec to exec time
short-edition/syntaxnet-wrapper
syntaxnet_wrapper/test/profile_execution.py
syntaxnet_wrapper/test/profile_execution.py
from syntaxnet_wrapper.wrapper import SyntaxNetWrapper from time import time from prettytable import PrettyTable def profile_exec(niter, action, keep_wrapper): t = time() sentence = 'une phrase de test' for i in range(niter): if keep_wrapper == False or i == 0: sn_wrapper = SyntaxNetWrapper('French') if action == 'morpho': sn_wrapper.morpho_sentence(sentence) elif action == 'tagger': sn_wrapper.tag_sentence(sentence) elif action == 'parser': sn_wrapper.parse_sentence(sentence) del sn_wrapper return time() - t x = PrettyTable(['Action', 'niter', 'keep wrapper', 'execution_time']) # Describe test case test_cases = [ {'action': 'morpho', 'niter': 1, 'keep_wrapper': False}, {'action': 'morpho', 'niter': 10, 'keep_wrapper': True}, #{'action': 'morpho', 'niter': 100, 'keep_wrapper': True}, #{'action': 'morpho', 'niter': 1000, 'keep_wrapper': True}, {'action': 'tagger', 'niter': 1, 'keep_wrapper': True}, #{'action': 'tagger', 'niter': 10, 'keep_wrapper': True}, #{'action': 'tagger', 'niter': 100, 'keep_wrapper': True}, #{'action': 'tagger', 'niter': 1000, 'keep_wrapper': True}, {'action': 'parser', 'niter': 1, 'keep_wrapper': True}, #{'action': 'parser', 'niter': 10, 'keep_wrapper': True}, #{'action': 'parser', 'niter': 100, 'keep_wrapper': True}, #{'action': 'parser', 'niter': 1000, 'keep_wrapper': True}, {'action': 'morpho', 'niter': 1, 'keep_wrapper': False}, #{'action': 'morpho', 'niter': 10, 'keep_wrapper': False}, #{'action': 'morpho', 'niter': 100, 'keep_wrapper': False}, #{'action': 'morpho', 'niter': 1000, 'keep_wrapper': False}, {'action': 'tagger', 'niter': 1, 'keep_wrapper': False}, #{'action': 'tagger', 'niter': 10, 'keep_wrapper': False}, #{'action': 'tagger', 'niter': 100, 'keep_wrapper': False}, #{'action': 'tagger', 'niter': 1000, 'keep_wrapper': False}, {'action': 'parser', 'niter': 1, 'keep_wrapper': False}, #{'action': 'parser', 'niter': 10, 'keep_wrapper': False}, #{'action': 'parser', 'niter': 100, 'keep_wrapper': False}, #{'action': 'parser', 'niter': 1000, 'keep_wrapper': False}, ] for test_case in test_cases: exec_time = profile_exec(**test_case) x.add_row([test_case['action'], test_case['niter'], test_case['keep_wrapper'], exec_time]) with open('output_profiling.txt', 'wb') as file_: file_.write(x.get_string())
apache-2.0
Python
c76c7b19afdf364ade2b7d0793cbdb14cb315131
add smalltalk like object model
loucq123/object_model
smalltalk_like/obj_model.py
smalltalk_like/obj_model.py
class Base(object): def __init__(self, cls, fields): self.cls = cls self.fields = fields def read_attribute(self, field_name): return self.fields.get(field_name) def write_attribute(self, field_name, value): self.fields[field_name] = value def call_method(self, method_name, *args): method = self.cls.find_method(method_name) return method(self, *args) def isinstance(self, cls): return self.cls.issubclass(cls) class Class(Base): def __init__(self, name, base_class, fields, metaclass): Base.__init__(self, metaclass, fields) self.name = name self.base_class = base_class def super_class_traversal(self): if self.base_class is None: return [self] else: return [self] + self.base_class.super_class_traversal() def issubclass(self, cls): return cls in self.super_class_traversal() def find_method(self, method_name): for cls in self.super_class_traversal(): if method_name in cls.fields: return cls.fields[method_name] return MISSING class Instance(Base): def __init__(self, cls): assert isinstance(cls, Class) Base.__init__(self, cls, {}) OBJECT = Class(name='object', base_class=None, fields={}, metaclass=None) TYPE = Class(name='TYPE', base_class=OBJECT, fields={}, metaclass=None) TYPE.cls = TYPE OBJECT.cls = TYPE MISSING = object()
mit
Python
5bcd31440322d19262b694a5df299f43af577e5e
Create app.py
Kalimaha/fake_data_crud_service
app.py
app.py
from flask import Flask app = Flask(__name__) @app.route("/") def hello(): return "Hello World!" if __name__ == "__main__": app.run()
mit
Python
f6624531e47c599af42e75d84708359eaa982569
Solve AoC 2020-12-25/1
matslindh/codingchallenges,matslindh/codingchallenges
adventofcode2020/25.py
adventofcode2020/25.py
def loop_size_finder(inp, subject_number=7): i = 1 c = 0 while i != inp: i *= subject_number i %= 20201227 c += 1 return c def transformer(iterations, subject_number=7): i = 1 for _ in range(0, iterations): i *= subject_number i %= 20201227 return i def test_loop_size_finder(): assert loop_size_finder(5764801) == 8 assert loop_size_finder(17807724) == 11 assert transformer(11, subject_number=5764801) == transformer(8, subject_number=17807724) if __name__ == '__main__': card_loops = loop_size_finder(10212254) door_loops = loop_size_finder(12577395) print(transformer(card_loops, 12577395))
mit
Python
b5433672a4e27db4e8f8698c311d05055462ac00
Create main file
rcs333/ClinVirusSeq
annotate_clin_virus.py
annotate_clin_virus.py
import timeit import subprocess import glob import sys import argparse start = timeit.default_timer() # This program runs some shit and does some shit about clinical virus samples # Gonna write more as I need too # parser = argparse.ArgumentParser(description= 'Annotate a set of UW clinical viral samples, pulling virus information from prokka and blast') # parser.add_argument('file_dir', help='Input file directory, all .fasta files will be processed and .seq and .gbf files will be produced in the format input_dir/output/FASTA_name') # parser.add_argument('metadata_info_sheet_location', help='.csv file where all of the metadata is stored') # parser.add_argument('sbt_file_loc', help='location of .sbt file for .gbf file creation') # args = parser.parse_args() # Here I assume that the .fasta file has multiple fastas as opposed to being given a directory, this is subject to later change fasta_filename = '10fasta_UWViroClinSeq.fasta' metadata_info_sheet = 'UWVIROCLINSEQ - SCCA.csv' gff_file_loc = 'HPIV3_121416.gff' # Takes the name of a clincical virus as specified on the metadata sheet and returns a list of the relevant metadata def pull_metadata(virus_name): for line in open(metadata_info_sheet): if line.split(',')[1] == virus_name: # Parse and steal input # reutrn two strings, one for the cmt file and the other for the .fsa features def parse_gff(gff_file_loc): # First two lines are garbarge # One line a sequence format: ##TYPE DNA virus_name # then sequences start: # FORMAT: # RNA NAME # SEQUENCE # end- # all of them, also in the same order as the first list # NAME GENEIOUS cds ## ## stupid shit then the names # all named, and also in order # Write this into lists # write the damn files right here # pull_metadata(name) # write the .tbl and .fsa right here def write_output(): # make a folder for each, name it the sample name # Go through and make .fsa and .tbl files out of our data # TODO: generalize, but first I'mma run it with hard coded filepaths def run_tbl(): # run .tbl2asn on all of the folders and process the .sqn files for submission # Probobly entails throwing the .sbt file into each folder # # Process the fasta_file # Now we go through and actually work our magic on the viruses for x in range(0,len(virus_name_list)): clin_data_list = pull_metadata(virus_name_list[x]) # TODO: Modify fasta/cmt file # TODO: Run Prokka - with options stolen from sheet
mit
Python
92aaff39dbd670f65dcbdeb34a2a506e0fcdf58b
add basic show_urls test
haakenlid/django-extensions,linuxmaniac/django-extensions,linuxmaniac/django-extensions,haakenlid/django-extensions,django-extensions/django-extensions,linuxmaniac/django-extensions,haakenlid/django-extensions,django-extensions/django-extensions,django-extensions/django-extensions
tests/management/commands/test_show_urls.py
tests/management/commands/test_show_urls.py
# -*- coding: utf-8 -*- from django.core.management import call_command from django.utils.six import StringIO def test_show_urls_format_dense(): out = StringIO() call_command('show_urls', stdout=out) output = out.getvalue() assert "/admin/\tdjango.contrib.admin.sites.index\tadmin:index\n" in output assert "/admin/<app_label>/\tdjango.contrib.admin.sites.app_index\tadmin:app_list\n" in output def test_show_urls_format_verbose(): out = StringIO() call_command('show_urls', format="verbose", stdout=out) output = out.getvalue() assert """/login/ \tController: django.contrib.auth.views.LoginView \tURL Name: login""" in output
mit
Python
74a4f56d28497de89415f29ca3e1d6298c2fdd23
Create drivers.py
ariegg/webiopi-drivers,ariegg/webiopi-drivers
chips/sensor/simulation/drivers.py
chips/sensor/simulation/drivers.py
# This code has to be added to the corresponding __init__.py DRIVERS["simulatedsensors"] = ["PRESSURE", "TEMPERATURE", "LUMINOSITY", "DISTANCE", "HUMIDITY", "COLOR", "CURRENT", "VOLTAGE", "POWER", "LINEARACCELERATION", "ANGULARACCELERATION", "ACCELERATION", "LINEARVELOCITY", "ANGULARVELOCITY", "VELOCITY", "SENSORS"]
apache-2.0
Python
0d77fe363b6e6e8b1a0424cec7631cf13b669968
add linear simulation
harmslab/epistasis,Zsailer/epistasis
epistasis/simulate/linear.py
epistasis/simulate/linear.py
__doc__ = """Submodule with various classes for generating/simulating genotype-phenotype maps.""" # ------------------------------------------------------------ # Imports # ------------------------------------------------------------ import numpy as np from gpmap.gpm import GenotypePhenotypeMap # local imports from epistasis.decomposition import generate_dv_matrix from epistasis.simulate.base import BaseSimulation # ------------------------------------------------------------ # ArtificialMap object can be used to quickly generating a toy # space for testing the EpistasisModels # ------------------------------------------------------------ class LinearSimulation(BaseSimulation): """Construct an genotype-phenotype from linear building blocks and epistatic coefficients. Example ------- Phenotype = b0 + b1 + b2 + b3 + b12 + b13 + b13 + b123 Parameters --------- wildtype : str Wildtype genotype mutations : dict Mapping for each site to its alphabet order : int Order of epistasis in simulated genotype-phenotype map betas : array-like values of epistatic coefficients (must be positive for this function to work. Log is taken) model_type : str Use a local or global (i.e. Walsh space) epistasis model to construct phenotypes """ def __init__(self, wildtype, mutations, model_type='local', ): # Construct epistasis mapping objects (empty) super(LinearSimulation,self).__init__( wildtype, mutations, ) self.model_type = model_type @property def p_additive(self): """Get the additive phenotypes""" orders = self.epistasis.getorder labels = list(orders[0].labels) + list(orders[1].labels) vals = list(orders[0].values) + list(orders[1].values) x = generate_dv_matrix(self.binary.genotypes, labels, model_type=self.model_type) return np.dot(x, vals) def build(self): """ Build the phenotype map from epistatic interactions. """ # Allocate phenotype numpy array _phenotypes = np.zeros(self.n, dtype=float) # Get model type: self.X = generate_dv_matrix(self.binary.genotypes, self.epistasis.labels, model_type=self.model_type) self.phenotypes = np.dot( self.X, self.epistasis.values)
unlicense
Python
14e637720d6c80ed88232130b00385ceb4d451da
Create manual/__init__.py
MichaelCurrin/twitterverse,MichaelCurrin/twitterverse
app/tests/manual/__init__.py
app/tests/manual/__init__.py
""" Manual test module. Note that while `TEST_MODE` should be set an environment variable for the unit and integration tests, we want that off here so we can test against local config data. """
mit
Python
5bd4534b375efed2ce5026a64228a45a9acc1d64
add parallel runner
datamicroscopes/kernels,datamicroscopes/kernels,datamicroscopes/kernels
microscopes/kernels/parallel.py
microscopes/kernels/parallel.py
"""Contains a parallel runner implementation, with support for various backends """ from microscopes.common import validator import multiprocessing as mp def _mp_work(args): runner, niters = args runner.run(niters) return runner.get_latent() class runner(object): def __init__(self, runners, backend='multiprocessing', **kwargs): self._runners = runners if backend not in ('multiprocessing',): raise ValueError("invalid backend: {}".format(backend)) self._backend = backend if backend == 'multiprocessing': validator.validate_kwargs(kwargs, ('processes',)) if 'processes' not in kwargs: kwargs['processes'] = mp.cpu_count() validator.validate_positive(kwargs['processes'], 'processes') self._processes = kwargs['processes'] else: assert False, 'should not be reached' def run(self, niters=10000): """Run each runner for `niters`, using the backend for parallelism """ if self._backend == 'multiprocessing': pool = mp.Pool(processes=self._processes) args = [(runner, niters) for runner in self._runners] # map_async() + get() allows us to workaround a bug where # control-C doesn't kill multiprocessing workers self._latents = pool.map_async(_mp_work, args).get(10000000) pool.close() pool.join() else: assert False, 'should not be reached' def get_latents(self): return self._latents
bsd-3-clause
Python
0cdc87edc4d5e4c967e7bc5bd35c5b30151d5a6e
Create admin_pages.py
marbindrakon/eve-wspace,evewspace/eve-wspace,mmalyska/eve-wspace,evewspace/eve-wspace,marbindrakon/eve-wspace,evewspace/eve-wspace,evewspace/eve-wspace,marbindrakon/eve-wspace,marbindrakon/eve-wspace,mmalyska/eve-wspace,mmalyska/eve-wspace,mmalyska/eve-wspace
evewspace/API/admin_pages.py
evewspace/API/admin_pages.py
from core.admin_page_registry import registry registry.register('SSO', 'sso_admin.html', 'API.change_ssoaccesslist')
apache-2.0
Python
48190b463bcbafc0b1d3af6c41677a295237e3ba
Add missing file
Simran-B/arangodb,Simran-B/arangodb,fceller/arangodb,fceller/arangodb,fceller/arangodb,wiltonlazary/arangodb,graetzer/arangodb,graetzer/arangodb,graetzer/arangodb,Simran-B/arangodb,wiltonlazary/arangodb,graetzer/arangodb,baslr/ArangoDB,arangodb/arangodb,joerg84/arangodb,graetzer/arangodb,graetzer/arangodb,wiltonlazary/arangodb,m0ppers/arangodb,joerg84/arangodb,fceller/arangodb,baslr/ArangoDB,graetzer/arangodb,fceller/arangodb,hkernbach/arangodb,graetzer/arangodb,m0ppers/arangodb,joerg84/arangodb,hkernbach/arangodb,hkernbach/arangodb,baslr/ArangoDB,joerg84/arangodb,joerg84/arangodb,m0ppers/arangodb,baslr/ArangoDB,m0ppers/arangodb,joerg84/arangodb,baslr/ArangoDB,hkernbach/arangodb,Simran-B/arangodb,Simran-B/arangodb,baslr/ArangoDB,fceller/arangodb,fceller/arangodb,baslr/ArangoDB,hkernbach/arangodb,arangodb/arangodb,baslr/ArangoDB,graetzer/arangodb,joerg84/arangodb,hkernbach/arangodb,fceller/arangodb,m0ppers/arangodb,joerg84/arangodb,graetzer/arangodb,fceller/arangodb,arangodb/arangodb,m0ppers/arangodb,m0ppers/arangodb,Simran-B/arangodb,hkernbach/arangodb,baslr/ArangoDB,hkernbach/arangodb,m0ppers/arangodb,wiltonlazary/arangodb,arangodb/arangodb,arangodb/arangodb,joerg84/arangodb,arangodb/arangodb,hkernbach/arangodb,hkernbach/arangodb,m0ppers/arangodb,m0ppers/arangodb,fceller/arangodb,graetzer/arangodb,wiltonlazary/arangodb,joerg84/arangodb,wiltonlazary/arangodb,Simran-B/arangodb,arangodb/arangodb,hkernbach/arangodb,joerg84/arangodb,m0ppers/arangodb,graetzer/arangodb,Simran-B/arangodb,baslr/ArangoDB,graetzer/arangodb,graetzer/arangodb,wiltonlazary/arangodb,hkernbach/arangodb,hkernbach/arangodb,arangodb/arangodb,baslr/ArangoDB,wiltonlazary/arangodb,baslr/ArangoDB,baslr/ArangoDB,joerg84/arangodb,joerg84/arangodb,baslr/ArangoDB,Simran-B/arangodb,m0ppers/arangodb,hkernbach/arangodb,joerg84/arangodb,m0ppers/arangodb,Simran-B/arangodb
3rdParty/V8/V8-5.0.71.39/build/has_valgrind.py
3rdParty/V8/V8-5.0.71.39/build/has_valgrind.py
#!/usr/bin/env python # Copyright 2016 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) VALGRIND_DIR = os.path.join(BASE_DIR, 'third_party', 'valgrind') LINUX32_DIR = os.path.join(VALGRIND_DIR, 'linux_x86') LINUX64_DIR = os.path.join(VALGRIND_DIR, 'linux_x64') def DoMain(_): """Hook to be called from gyp without starting a separate python interpreter.""" return int(os.path.exists(LINUX32_DIR) and os.path.exists(LINUX64_DIR)) if __name__ == '__main__': print DoMain([])
apache-2.0
Python
82860a07e361aa5322b7d055c60c7178e40296bd
Create search_accepted_nodes_for_queries.py
DynamoDS/Coulomb,DynamoDS/Coulomb,DynamoDS/Coulomb
SearchTools/search_accepted_nodes_for_queries.py
SearchTools/search_accepted_nodes_for_queries.py
# Search and accept, looks for each accept what the previously entered search text # and the node that was accepted import gzip import json import base64 import sys # Library of system calls import traceback import time import os from os.path import isfile, join # Check that the script has been given the right argumets if len(sys.argv) != 3: print "Usage: python search_actions_extract.py path_to_data results_path" print "Export the search and accept actions in the logs" exit(1) # Load the arguments into local variables VERBOSE = True path = sys.argv[1] # First command line argument (input path) out_path = sys.argv[2] # Second command line argument (results path) # Setup the tracking data structures results = [] # Holds the results linesCount = 0 # Number of lines processed searchCount = 0 # Number of search messages processed err = 0; # Error count lastSeenSearch = None; # Print the header row print time.strftime("%Y-%m-%d %H:%M:%S"), "LinesCount", "SearchesCount", "Errors Count" # Recursively list the files in sub folders files = [os.path.join(dp, f) for dp, dn, fn in os.walk(path) for f in fn] for filePath in files: # If the file isn't a sorted file, skip it if not filePath.endswith('sorted'): continue # Open the file, decompressing it as we go f = gzip.open (filePath) # Walk over every line in the file for ln in f: linesCount += 1 # Count them # If we've seen 10,000 lines emit a progress indicator message if linesCount % 10000 == 0: print time.strftime("%Y-%m-%d %H:%M:%S"), linesCount, searchCount,err try: if not ln.startswith("{"): continue # It wasn't a valid data line, maybe a header or an error data = json.loads(ln) # The data lines are JSON packed, so load them into a map # At this point `data` contains a map of all the data fields in the message tag = data["Tag"] # Extract the tag if tag != "Search" and tag != "Search-NodeAdded": # If it isn't a search message, skip continue searchCount += 1 result = {} # Assemble an empty result structure # Copy over the relevant data result["Session"] = data["SessionID"] # Populate the sessions result["MicroTime"] = data["MicroTime"] # Add the timing result["Query"] = base64.b64decode(data["Data"]) # The thing that is being searched for # Now manually compute a data item called 'Action', what the user was doing if tag == "Search": result["Action"] = "SEARCH" lastSeenSearch = result if tag == "Search-NodeAdded": result["Action"] = "ACCEPT" if (lastSeenSearch['Session'] == result['Session']): searchAnswer = {} searchAnswer['Session'] = lastSeenSearch['Session'] searchAnswer['Query'] = lastSeenSearch['Query'] searchAnswer['Accepted'] = result['Query'] searchAnswer['TimeSinceLastSearch'] = int(result['MicroTime']) - int(lastSeenSearch['MicroTime']) results.append(searchAnswer) if VERBOSE: print searchAnswer except: # If there is a problem, print what went wrong print filePath print "FAILED LINE: "+ ln print traceback.format_exc() err += 1 # Output the results into the output file print time.strftime("%Y-%m-%d %H:%M:%S"), "Writing results" out_file = open(out_path, "w") out_file.write(json.dumps(results)) out_file.close() print time.strftime("%Y-%m-%d %H:%M:%S"), "Done"
mit
Python
ccce1108e1deab466fd72c022949fa05fa807a3a
add initial files for launch
googleapis/nodejs-policy-troubleshooter,googleapis/nodejs-policy-troubleshooter,googleapis/nodejs-policy-troubleshooter
synth.py
synth.py
# http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This script is used to synthesize generated parts of this library.""" import synthtool as s import synthtool.gcp as gcp import synthtool.languages.node as node import subprocess import logging logging.basicConfig(level=logging.DEBUG) # run the gapic generator gapic = gcp.GAPICBazel() versions = ["v1"] name = 'policytroubleshooter' for version in versions: library = gapic.node_library( name, version, proto_path = f'google/cloud/policytroubleshooter/{version}') s.copy(library, excludes=[]) # Copy common templates common_templates = gcp.CommonTemplates() templates = common_templates.node_library( source_location='build/src', versions=["v1"], default_version="v1") s.copy(templates, excludes=[]) node.postprocess_gapic_library()
apache-2.0
Python
f480a0a8d51c5c059a05165f30f64bb310299ee3
Add 'rescore' command
dbinetti/barberscore-django,dbinetti/barberscore,dbinetti/barberscore-django,dbinetti/barberscore,barberscore/barberscore-api,barberscore/barberscore-api,barberscore/barberscore-api,barberscore/barberscore-api
project/apps/api/management/commands/rescore.py
project/apps/api/management/commands/rescore.py
from django.core.management.base import ( BaseCommand, ) from apps.api.models import ( Contestant, Appearance, Performance, ) class Command(BaseCommand): help = "Command to denormailze data." def handle(self, *args, **options): ps = Performance.objects.all() for p in ps: p.save() as_ = Appearance.objects.all() for a in as_: a.save() cs = Contestant.objects.all() for c in cs: c.save() return "Done"
bsd-2-clause
Python
d4a7bbe27b285e455a3beafefd22fc493edeb161
Add unittest for eventlogger config validation.
ketoo/Astron,pizcogirl/Astron,ketoo/Astron,blindsighttf2/Astron,blindsighttf2/Astron,ketoo/Astron,pizcogirl/Astron,pizcogirl/Astron,ketoo/Astron,blindsighttf2/Astron,pizcogirl/Astron,blindsighttf2/Astron
test/test_config_eventlogger.py
test/test_config_eventlogger.py
#!/usr/bin/env python2 import unittest import subprocess import threading import tempfile import os from testdc import * DAEMON_PATH = './astrond' TERMINATED = -15 EXITED = 1 class ConfigTest(object): def __init__(self, config): self.config = config self.process = None def run(self, timeout): def target(): self.process = subprocess.Popen([DAEMON_PATH, self.config]) self.process.communicate() thread = threading.Thread(target=target) thread.start() thread.join(timeout) if thread.is_alive(): self.process.terminate() thread.join() return self.process.returncode class TestConfigEventLogger(unittest.TestCase): @classmethod def setUpClass(cls): cfg, cls.config_file = tempfile.mkstemp() os.close(cfg) cls.test_command = ConfigTest(cls.config_file) @classmethod def tearDownClass(cls): if cls.config_file is not None: os.remove(cls.config_file) @classmethod def write_config(cls, config): f = open(cls.config_file, "w") f.write(config) f.close() @classmethod def run_test(cls, config, timeout = 2): cls.write_config(config) return cls.test_command.run(timeout) def test_eventlogger_good(self): config = """\ messagedirector: bind: 127.0.0.1:57123 roles: - type: eventlogger bind: 0.0.0.0:9090 output: /var/log/astron/eventlogger/el-%Y-%m-%d-%H-%M-%S.log rotate_interval: 1d """ self.assertEquals(self.run_test(config), TERMINATED) if __name__ == '__main__': unittest.main()
bsd-3-clause
Python
1578c4328542dd1b1c7ccd1f08dd2b2455055190
Add integration test covering all cql types
kracekumar/python-driver,tempbottle/python-driver,bbirand/python-driver,coldeasy/python-driver,datastax/python-driver,thobbs/python-driver,yi719/python-driver,mambocab/python-driver,kishkaru/python-driver,mike-tr-adamson/python-driver,markflorisson/python-driver,kracekumar/python-driver,sontek/python-driver,aholmberg/python-driver,stef1927/python-driver,jfelectron/python-driver,sontek/python-driver,mobify/python-driver,jregovic/python-driver,bbirand/python-driver,jfelectron/python-driver,vipjml/python-driver,thelastpickle/python-driver,stef1927/python-driver,kishkaru/python-driver,jregovic/python-driver,vipjml/python-driver,thelastpickle/python-driver,yi719/python-driver,HackerEarth/cassandra-python-driver,beobal/python-driver,coldeasy/python-driver,markflorisson/python-driver,HackerEarth/cassandra-python-driver,beobal/python-driver,datastax/python-driver,aholmberg/python-driver,mike-tr-adamson/python-driver,thobbs/python-driver,tempbottle/python-driver,mobify/python-driver,mambocab/python-driver
tests/integration/test_types.py
tests/integration/test_types.py
from decimal import Decimal from datetime import datetime from uuid import uuid1, uuid4 import unittest from cassandra.cluster import Cluster from cassandra.query import ColumnCollection class TypeTests(unittest.TestCase): def test_basic_types(self): c = Cluster() s = c.connect() s.execute(""" CREATE KEYSPACE typetests WITH replication = { 'class' : 'SimpleStrategy', 'replication_factor': '1'} """) s.set_keyspace("typetests") s.execute(""" CREATE TABLE mytable ( a text, b text, c ascii, d bigint, e blob, f boolean, g decimal, h double, i float, j inet, k int, l list<text>, m set<int>, n map<text, int>, o text, p timestamp, q uuid, r timeuuid, s varint, PRIMARY KEY (a, b) ) """) v1_uuid = uuid1() v4_uuid = uuid4() mydatetime = datetime(2013, 1, 1, 1, 1, 1) params = ( "sometext", "sometext", "ascii", # ascii 12345678923456789, # bigint "blob".encode('hex'), # blob True, # boolean Decimal('1.234567890123456789'), # decimal 0.000244140625, # double 1.25, # float "1.2.3.4", # inet 12345, # int ColumnCollection(['a', 'b', 'c']), # list<text> collection ColumnCollection({1, 2, 3}), # set<int> collection ColumnCollection({'a': 1, 'b': 2}), # map<text, int> collection "text", # text mydatetime, # timestamp v4_uuid, # uuid v1_uuid, # timeuuid 123456789123456789123456789 # varint ) s.execute(""" INSERT INTO mytable (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) """, params) results = s.execute("SELECT * FROM mytable") expected = ( "sometext", "sometext", "ascii", # ascii 12345678923456789, # bigint "blob", # blob True, # boolean Decimal('1.234567890123456789'), # decimal 0.000244140625, # double 1.25, # float "1.2.3.4", # inet 12345, # int ('a', 'b', 'c'), # list<text> collection {1, 2, 3}, # set<int> collection {'a': 1, 'b': 2}, # map<text, int> collection "text", # text mydatetime, # timestamp v4_uuid, # uuid v1_uuid, # timeuuid 123456789123456789123456789 # varint ) for expected, actual in zip(expected, results[0]): self.assertEquals(expected, actual)
apache-2.0
Python
78c9f392a02c0fdb72294e08a3d5ce78262443f5
Create 1.py
jreyes97/hello-world
1.py
1.py
u=1
apache-2.0
Python
36d7de73c2908aff574acb06a41660240ca554d4
Select support
jhamrick/dbtools,jhamrick/dbtools
db.py
db.py
import sqlite3 as sql import numpy as np import pandas as pd class Table(object): def __init__(self, db, name): self.db = db self.name = name conn = sql.connect(self.db) with conn: cur = conn.cursor() cur.execute("PRAGMA table_info('%s')" % self.name) rows = cur.fetchall() # id, column name, data type, null, default, primary key self.meta = np.array(rows) self.columns = tuple(self.meta[:, 1]) # parse data types dtype = [] for dt in self.meta[:, 2]: if dt == "INTEGER": dtype.append(int) elif dt == "TEXT": dtype.append(str) else: raise ValueError("unhandled dtype: %s" % dt) self.dtype = tuple(dtype) # parse primary key, if any pk = np.nonzero(self.meta[:, 5])[0] if len(pk) > 1: raise ValueError("more than one primary key: %s" % pk) elif len(pk) == 1: self.pk = self.columns[pk[0]] else: self.pk = None def select(self, columns=None, where=None): # argument parsing if columns is None: cols = list(self.columns) else: if not hasattr(columns, '__iter__'): cols = [columns] else: cols = list(columns) # select primary key even if not given, so we can use the # correct index later if self.pk not in cols: cols.insert(0, self.pk) sel = ",".join(cols) # base query query = "SELECT %s FROM %s" % (sel, self.name) # add a selection filter, if specified if where is not None: where_str, where_args = where query += " WHERE %s" % where_str if not hasattr(where_args, "__iter__"): where_args = (where_args,) args = (query, where_args) else: args = (query,) # connect to the database and execute the query conn = sql.connect(self.db) with conn: cur = conn.cursor() cur.execute(*args) rows = cur.fetchall() # now we need to parse the result into a DataFrame if self.pk in cols: index = self.pk else: index = None data = pd.DataFrame.from_records(rows, columns=cols, index=index) return data def __getitem__(self, key): if isinstance(key, int): # select a row if self.pk is None: raise ValueError("no primary key column") data = self.select(where=("%s=?" % self.pk, key)) elif isinstance(key, slice): # select multiple rows if self.pk is None: raise ValueError("no primary key column") if key.step not in (None, 1): raise ValueError("cannot handle step size > 1") if key.start is None and key.stop is None: where = None elif key.start is None: where = ("%s<?" % self.pk, key.stop) elif key.stop is None: where = ("%s>=?" % self.pk, key.start) else: where = ("%s<? AND %s>=?" % (self.pk, self.pk), (key.stop, key.start)) data = self.select(where=where) elif isinstance(key, str): # select a column data = self.select(key) elif all(isinstance(k, str) for k in key): # select multiple columns data = self.select(key) else: raise ValueError("invalid key: %s" % key) return data tbl = Table("data.db", "Participants")
mit
Python
d596bfbbfa725111fb4c0f6d4abf6789669f06de
Create sets.py
davidone/misc,davidone/misc
sets.py
sets.py
#!/usr/bin/env python2 ''' Generates automatically one array, a. Prints an ordered list with only unique elems ''' import random SIZE_LIST_A = 10 a = [] def populate_arrays(): for i in range(0, SIZE_LIST_A): a.append(random.randint(1, 100)) if __name__ == "__main__": populate_arrays() print "a: {:s}".format(str(a)) b = list(set(a)) b.sort() print "b: {:s}".format(str(b)) exit(0)
mit
Python
563b9e1f826433179a5e3c5e611d40efc8736c4a
Create Hexbin Example
altair-viz/altair,jakevdp/altair
altair/examples/hexbins.py
altair/examples/hexbins.py
""" Hexbin Chart ----------------- This example shows a hexbin chart. """ import altair as alt from vega_datasets import data source = data.seattle_weather() # Size of the hexbins size = 15 # Count of distinct x features xFeaturesCount = 12 # Count of distinct y features yFeaturesCount = 7 # Name of the x field xField = 'date' # Name of the y field yField = 'date' # the shape of a hexagon hexagon = "M0,-2.3094010768L2,-1.1547005384 2,1.1547005384 0,2.3094010768 -2,1.1547005384 -2,-1.1547005384Z" alt.Chart(source).mark_point(size=size**2, shape=hexagon).encode( x=alt.X('xFeaturePos:Q', axis=alt.Axis(title='Month', grid=False, tickOpacity=0, domainOpacity=0)), y=alt.Y('day(' + yField + '):O', axis=alt.Axis(title='Weekday', labelPadding=20, tickOpacity=0, domainOpacity=0)), stroke=alt.value('black'), strokeWidth=alt.value(0.2), fill=alt.Color('mean(temp_max):Q', scale=alt.Scale(scheme='darkblue')), tooltip=['month(' + xField + '):O', 'day(' + yField + '):O', 'mean(temp_max):Q'] ).transform_calculate( # This field is required for the hexagonal X-Offset xFeaturePos='(day(datum.' + yField + ') % 2) / 2 + month(datum.' + xField + ')' ).properties( # Exact scaling factors to make the hexbins fit width=size * xFeaturesCount * 2, height=size * yFeaturesCount * 1.7320508076, # 1.7320508076 is approx. sin(60°)*2 ).configure_view( strokeWidth=0 )
bsd-3-clause
Python
8118dc283eececdd074bac675c57975ceeba3739
Create gateway.py
jbetsinger/HomeAutomation,jbetsinger/HomeAutomation
Gateway/gateway.py
Gateway/gateway.py
\\ This will be the Gateway.py file for the RPi Gateway
apache-2.0
Python
d9dcf34a73b4168885a02c495fb9b808a55b5c9e
Add spu debugger printer module
matthiaskramm/corepy,matthiaskramm/corepy,matthiaskramm/corepy,matthiaskramm/corepy
corepy/lib/printer/spu_debugger.py
corepy/lib/printer/spu_debugger.py
# Copyright (c) 2006-2009 The Trustees of Indiana University. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # - Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # - Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # - Neither the Indiana University nor the names of its contributors may be used # to endorse or promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import corepy.spre.spe as spe import corepy.spre.syn_util as syn_util class SPU_Debugger(object): """ InstructionStream printer for the Interactive SPU debugger. Output syntax from this printer is designed to be easily used by the SPU debugger: ilhu(3, 0xDEAD) iohl(3, 0xBEEF) stqd(3, 0, 1) """ def __init__(self): return def __del__(self): return def header(self, fd): return def footer(self, fd): return def prologue(self, fd): """ Allow the module to print a prologue header if desired. The return value should be a boolean indicating whether prologue instructions should be printed. """ return False def epilogue(self, fd): """ Allow the module to print a prologue header if desired. The return value should be a boolean indicating whether epilogue instructions should be printed. """ return False def stream(self, fd, stream): return def string(self, fd, str): """Print a string (assumedly representing an instruction).""" print >>fd, "\t%s" % (str) return def instruction(self, fd, inst): op_str = ', '.join([self.str_op(op) for op in inst._supplied_operands]) for k, v in inst._supplied_koperands.items(): op_str += ", %s = %s" % (str(k), str(v)) print >>fd, "%s(%s)" % (inst.__class__.__name__, op_str) return def label(self, fd, lbl): print >>fd, "\n%s:" % lbl.name return def str_op(self, op): if isinstance(op, spe.Register): return str(op.reg) elif isinstance(op, spe.Variable): return str(op.reg.reg) return str(op)
bsd-3-clause
Python
2c0ce3c64720122bf2fdd80aeb2ff8359873ac83
Test that noindex flag will only show robots metatag when set
Code4SA/municipal-data,Code4SA/municipal-data,Code4SA/municipal-data,Code4SA/municipal-data
municipal_finance/tests/test_analytics.py
municipal_finance/tests/test_analytics.py
from django.test import TestCase from django.conf import settings class TestAnalytics(TestCase): def test_noindex_flag(self): response = self.client.get('/') self.assertEqual(response.status_code, 200) self.assertTrue('<meta name="robots" content="noindex">' not in str(response.content)) settings.NO_INDEX = "True" response = self.client.get('/') self.assertEqual(response.status_code, 200) self.assertTrue('<meta name="robots" content="noindex">' in str(response.content))
mit
Python
11dd2daf7dd125e0be6a604dd22ae25efed16226
Update at 2017-07-20 14-05-11
amoshyc/tthl-code
test.py
test.py
import json from pathlib import Path import numpy as np import pandas as pd import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.allow_growth = True set_session(tf.Session(config=config)) from keras.models import Sequential, Model from keras.preprocessing import image from keras.layers import * from keras.optimizers import * from data import * from utils import get_callbacks def main(): with tf.device('/gpu:3'): model = Sequential() model.add(TimeDistributed(BatchNormalization(), input_shape=(TIMESTEPS, 224, 224, 3))) model.add(TimeDistributed(Conv2D(4, kernel_size=5, strides=3, activation='relu'))) model.add(TimeDistributed(Conv2D(8, kernel_size=5, strides=2, activation='relu'))) model.add(TimeDistributed(Conv2D(12, kernel_size=3, strides=1, activation='relu'))) model.add(TimeDistributed(BatchNormalization())) model.add(TimeDistributed(MaxPooling2D(pool_size=3))) model.add(Conv3D(4, kernel_size=5, strides=1, activation='relu')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(16)) model.add(Dropout(0.3)) model.add(Dense(1, activation='sigmoid')) model_arg = { 'loss': 'binary_crossentropy', 'optimizer': 'sgd', 'metrics': ['binary_accuracy'] } model.compile(**model_arg) model.summary() n_train, n_val = 5000, 1000 x_train = np.zeros((n_train, TIMESTEPS, 224, 224, 3), dtype=np.float32) y_train = np.zeros((n_train, 1), dtype=np.uint8) x_val = np.zeros((n_val, TIMESTEPS, 224, 224, 3), dtype=np.float32) y_val = np.zeros((n_val, 1), dtype=np.uint8) print('Loading data...', end='') for i in range(n_train): x, y = next(window_train_gen) x_train[i] = x y_train[i] = y for i in range(n_val): x, y = next(window_val_gen) x_val[i] = x y_val[i] = y print('ok') fit_arg = { 'x': x_train, 'y': y_train, 'batch_size': WINDOW_BATCH_SIZE, 'epochs': 30, 'validation_data': (x_val, y_val), 'shuffle': True } model.fit(**fit_arg) if __name__ == '__main__': main()
apache-2.0
Python
0c76fa59e77786c577f0750c65f97d24eb3c4157
Test script
hyperlex/vdcnn
test.py
test.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import os import time import datetime import tables from sklearn.metrics import f1_score,confusion_matrix # ===================== Preparation des données ============================= # Load data print("Loading data...") alphabet = "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+-=<>()[]{} " sequence_max_length = 1024 # Twitter has only 140 characters. We pad 4 blanks characters more to the right of tweets to be conformed with the architecture of A. Conneau et al (2016) from tensorflow.core.protobuf import saver_pb2 checkpoint_file = tf.train.latest_checkpoint("./") graph = tf.Graph() # Input data. with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) # Get the placeholders from the graph by name input_x = graph.get_operation_by_name("input_x").outputs[0] input_y = graph.get_operation_by_name("input_y").outputs[0] is_training = graph.get_operation_by_name( "phase").outputs[0] ### To update the computation of moving_mean & moving_var, we must put it on the parent graph of minimizing loss accuracy = graph.get_operation_by_name( "accuracy/accuracy").outputs[0] predictions = graph.get_operation_by_name( "fc-3/predictions").outputs[0] hdf5_path = "my_extendable_compressed_data_test.hdf5" batch_size = 1000 extendable_hdf5_file = tables.open_file(hdf5_path, mode='r') y_true_ = [] predictions_= [] for ptr in range(0, 70000, batch_size): feed_dict = {cnn.input_x: extendable_hdf5_file.root.data[ptr:ptr + batch_size], cnn.input_y: extendable_hdf5_file.root.clusters[ptr:ptr + batch_size] , cnn.is_training: False } y_true = tf.argmax(extendable_hdf5_file.root.clusters[ptr:ptr + batch_size] , 1) y_true_bis,predictions_bis ,accuracy = sess.run([y_true,predictions,cnn.accuracy], feed_dict= feed_dict) y_true_.extend(y_true_bis) predictions_.extend(predictions_bis) confusion_matrix_ = confusion_matrix(y_true_,predictions_) print(confusion_matrix_) print ("f1_score", f1_score(y_true_, predictions_ ,average ='weighted')) print ("f1_score", f1_score(y_true_, predictions_ ,average =None)) extendable_hdf5_file.close()
mit
Python
77effff7ece070eabb3853ba918d40b7eb1c3de5
Create sc.py
voidabhi/python-scripts,voidabhi/python-scripts,voidabhi/python-scripts,voidabhi/python-scripts,voidabhi/python-scripts
sc.py
sc.py
#!/usr/bin/env python import soundcloud from clize import clize, run from subprocess import call @clize def sc_load(tracks='', likes='', tags='', group=''): opts = {} if likes: method = 'favorites' elif tracks or group: method = 'tracks' elif tags: method = 'tracks' opts = {'tags': tags} else: return client = soundcloud.Client(client_id='c4c979fd6f241b5b30431d722af212e8') if likes or tracks: user = likes or tracks track = client.get('/resolve', url='https://soundcloud.com/' + user) user_id = track.id url = '/users/%d/' % user_id elif group: track = client.get('/resolve', url='https://soundcloud.com/groups/' + group) group_id = track.id url = '/groups/%d/' % group_id else: url = '/' end = '%s%s' % (url, method) for i, sound in enumerate(client.get(end, **opts)): print("%d Loading %s..." % (i, sound.obj['title'])) call(['mpc', '-h', '<motdepasse>@entrecote', 'load', 'soundcloud://url/%s' % sound.obj['permalink_url'].replace('http:', 'https:')]) if __name__ == '__main__': run(sc_load)
mit
Python
2055fc1eda896103931eaba5fb01238506aaac1a
Add signup in urls
gentoo/identity.gentoo.org,dastergon/identity.gentoo.org,dastergon/identity.gentoo.org,gentoo/identity.gentoo.org
urls.py
urls.py
from django.conf.urls.defaults import patterns, include, url from django.contrib import admin from okupy.login.views import * from okupy.user.views import * from okupy.signup.views import * admin.autodiscover() urlpatterns = patterns('', url(r'^login/$', mylogin), url(r'^$', user), url(r'^signup/', signup), url(r'^admin/', include(admin.site.urls)), )
from django.conf.urls.defaults import patterns, include, url from django.contrib import admin from okupy.login.views import * from okupy.user.views import * admin.autodiscover() urlpatterns = patterns('', url(r'^login/$', mylogin), url(r'^$', user), url(r'^admin/', include(admin.site.urls)), )
agpl-3.0
Python
d5b6299b802810748584b06242f614550155a283
Create app.py
bmawji3/testing-my-man-bot
app.py
app.py
from flask import Flask, request import requests import json import traceback import random import os from urllib.parse import urlencode from urllib.request import Request, urlopen app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def main(): # if request.method == 'POST': # try: # data = json.loads(request.data) # print ('data: ', data) # print ('request.data: ', request.data) # except: # print ('error?') # elif request.method == 'GET': # print('get') # print (request.data) # return 'get' # return 'all fails\n' if request.method == 'POST': data = request.get_json() if data['name'] != 'My Man': # msg = '{}, you sent "{}".'.format(data['name'], data['text']) msg = 'https://media.giphy.com/media/qPVzemjFi150Q/giphy.gif' send_message(msg) elif request.method == 'GET': msg = 'https://media.giphy.com/media/3o7aCUqs54taGzqDWU/giphy.gif' send_message(msg) return ("My Man!!") def send_message(msg): url = 'https://api.groupme.com/v3/bots/post' data = { 'bot_id' : os.getenv('BOT_ID'), 'text' : msg, } request = Request(url, urlencode(data).encode()) json = urlopen(request).read().decode() if __name__ == '__main__': app.run()
mit
Python
4ff22a24a7d681a3c62f7d7e4fe56c0032a83370
Improve logging
zhangwei0181/ldap-passwd-webui,jirutka/change-password
app.py
app.py
import bottle from bottle import get, post, static_file, request, route, template from bottle import SimpleTemplate from configparser import ConfigParser from ldap3 import Connection, LDAPBindError, LDAPInvalidCredentialsResult, Server from ldap3 import AUTH_SIMPLE, SUBTREE from os import path @get('/') def get_index(): return index_tpl() @post('/') def post_index(): form = request.forms.get def error(msg): return index_tpl(username=form('username'), alerts=[('error', msg)]) if form('new-password') != form('confirm-password'): return error("Password doesn't match the confirmation!") if len(form('new-password')) < 8: return error("Password must be at least 8 characters long!") if not change_password(form('username'), form('old-password'), form('new-password')): print("Unsuccessful attemp to change password for: %s" % form('username')) return error("Username or password is incorrect!") print("Password successfully changed for: %s" % form('username')) return index_tpl(alerts=[('success', "Password has been changed")]) @route('/static/<filename>', name='static') def serve_static(filename): return static_file(filename, root=path.join(BASE_DIR, 'static')) def index_tpl(**kwargs): return template('index', **kwargs) def change_password(username, old_pass, new_pass): server = Server(CONF['ldap']['host'], int(CONF['ldap']['port'])) user_dn = find_user_dn(server, username) try: with Connection(server, authentication=AUTH_SIMPLE, raise_exceptions=True, user=user_dn, password=old_pass) as c: c.bind() c.extend.standard.modify_password(user_dn, old_pass, new_pass) return True except (LDAPBindError, LDAPInvalidCredentialsResult): return False def find_user_dn(server, uid): with Connection(server) as c: c.search(CONF['ldap']['base'], "(uid=%s)" % uid, SUBTREE, attributes=['dn']) return c.response[0]['dn'] if c.response else None BASE_DIR = path.dirname(__file__) CONF = ConfigParser() CONF.read(path.join(BASE_DIR, 'settings.ini')) bottle.TEMPLATE_PATH = [ BASE_DIR ] # Set default attributes to pass into templates. SimpleTemplate.defaults = dict(CONF['html']) SimpleTemplate.defaults['url'] = bottle.url # Run bottle internal test server when invoked directly (in development). if __name__ == '__main__': bottle.run(host='0.0.0.0', port=8080) # Run bottle in application mode (in production under uWSGI server). else: application = bottle.default_app()
import bottle from bottle import get, post, static_file, request, route, template from bottle import SimpleTemplate from configparser import ConfigParser from ldap3 import Connection, LDAPBindError, LDAPInvalidCredentialsResult, Server from ldap3 import AUTH_SIMPLE, SUBTREE from os import path @get('/') def get_index(): return index_tpl() @post('/') def post_index(): form = request.forms.get def error(msg): return index_tpl(username=form('username'), alerts=[('error', msg)]) if form('new-password') != form('confirm-password'): return error("Password doesn't match the confirmation!") if len(form('new-password')) < 8: return error("Password must be at least 8 characters long!") if not change_password(form('username'), form('old-password'), form('new-password')): return error("Username or password is incorrect!") return index_tpl(alerts=[('success', "Password has been changed")]) @route('/static/<filename>', name='static') def serve_static(filename): return static_file(filename, root=path.join(BASE_DIR, 'static')) def index_tpl(**kwargs): return template('index', **kwargs) def change_password(username, old_pass, new_pass): print("Changing password for user: %s" % username) server = Server(CONF['ldap']['host'], int(CONF['ldap']['port'])) user_dn = find_user_dn(server, username) try: with Connection(server, authentication=AUTH_SIMPLE, raise_exceptions=True, user=user_dn, password=old_pass) as c: c.bind() c.extend.standard.modify_password(user_dn, old_pass, new_pass) return True except (LDAPBindError, LDAPInvalidCredentialsResult): return False def find_user_dn(server, uid): with Connection(server) as c: c.search(CONF['ldap']['base'], "(uid=%s)" % uid, SUBTREE, attributes=['dn']) return c.response[0]['dn'] if c.response else None BASE_DIR = path.dirname(__file__) CONF = ConfigParser() CONF.read(path.join(BASE_DIR, 'settings.ini')) bottle.TEMPLATE_PATH = [ BASE_DIR ] # Set default attributes to pass into templates. SimpleTemplate.defaults = dict(CONF['html']) SimpleTemplate.defaults['url'] = bottle.url # Run bottle internal test server when invoked directly (in development). if __name__ == '__main__': bottle.run(host='0.0.0.0', port=8080) # Run bottle in application mode (in production under uWSGI server). else: application = bottle.default_app()
mit
Python
b720ecf75634718a122c97bcff29129e321aa9b2
Add cat.py.
lemon24/python-practice
cat.py
cat.py
""" Usage: cat.py [FILE]... Concatenate FILE(s), or standard input, to standard output. """ import sys def iter_files(paths): for path in paths: try: yield open(path, 'rb') except (IOError, OSError) as e: print("error: {}".format(e), file=sys.stderr) def main(argv=None): if not argv: argv = list(sys.argv) if len(argv) < 2: files = [sys.stdin.buffer] else: files = iter_files(argv[1:]) for file in files: for line in file: sys.stdout.buffer.write(line) file.close() if __name__ == "__main__": main()
mit
Python
3b58283f613fc827e024c8d971d89c24fc2b3ed0
Create knn.py
lingcheng99/kagge-digit-recognition
knn.py
knn.py
import numpy as np import pandas as pd from sklearn import metrics from sklearn.cross_validation import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.decomposition import PCA #Read training data and split into train and test data data=pd.read_csv('train.csv') data1=data.values X=data1[:,1:] y=np.ravel(y) Xtrain,Xtest,ytrain,ytest=train_test_split(X,y,test_size=0.25) #Run PCA and KNN pca=PCA(n_components=50).fit(Xtrain) Xtrain_reduced=pca.transform(Xtrain) Xtest_reduced=pca.transform(Xtest) knn=KNeighborsClassifier(n_neighbors=5,weights='distance',p=3) knn.fit(Xtrain_reduced,ytrain) pred=knn.predict(Xtest_reduced) print("Classification report for classifier %s:\n%s\n" % (knn, metrics.classification_report(ytest,pred))) #Run prediction on test data and make submissions test=pd.read_csv('test.csv') test_reduced=pca.transform(test) pred2=knn.predict(test_reduced) pred2 = pd.DataFrame(pred2) pred2['ImageId'] = pred2.index + 1 pred2 = pred2[['ImageId', 0]] pred2.columns = ['ImageId', 'Label'] pred2.to_csv('pred2.csv', index=False)
mit
Python
1faa3c76d1c752de02149af34954ed538fe10fa1
Add test
albertyw/albertyw.com,albertyw/albertyw.com,albertyw/albertyw.com,albertyw/albertyw.com,albertyw/albertyw.com
app/tests/test_data.py
app/tests/test_data.py
import unittest from app import data class TestProjects(unittest.TestCase): def test_load(self) -> None: projects = data.Projects.load() self.assertNotEqual(projects.data, {}) self.assertIn('Python', projects.data) self.assertIn('Git Browse', projects.data['Python']) self.assertIn('description', projects.data['Python']['Git Browse'])
mit
Python
5813474651299998fb27c64c6d179a0a59bbe28c
Create otc.py
stqism/THE_KGB,KittyHawkIrc/core
otc.py
otc.py
def tick(a,b,c): if a == 'help': msg = '^otc {currency}, specify a 2nd currency for rates, add --last/high/low etc for that alone.' return msg import urllib2,json,StringIO a = a.lower() b = b.lower() c = c.lower() if b.startswith('-'): c = b b = 'usd' if b == 'none': b = 'usd' btce = urllib2.Request('https://btc-e.com/api/2/' + a + '_' + b + '/ticker') get = urllib2.urlopen(btce) parse = get.read() if parse == '{"error":"invalid pair"}': b = 'btc' btce = urllib2.Request('https://btc-e.com/api/2/' + a + '_' + b + '/ticker') get = urllib2.urlopen(btce) parse = get.read() try: ticker3 = "{" + parse.split('{',2)[2].split('}',2)[0] + "}".replace('"','\'').replace(':',':"').replace(',','",').replace('}','"}') ticker2 = ticker3.replace(':',':"').replace(',','",') ticker = json.loads(ticker2) except: return 'Unknown currency' if c == 'none': msg = 'BTC-E ' + a.upper() + b.upper() + ' ticker | High: ' + ticker['high'] + ', Low: ' + ticker['low'] + ', avg: ' + ticker['avg'] + ', Last: ' + ticker['last'] + ', Buy: ' + ticker['buy'] + ', Sell: ' + ticker['sell'] elif c.startswith('--'): msg = ticker[c[2:]] else: msg = 'That flag does not exist' return msg
mit
Python
bf678628cf98b1c18a75f09fa15d26526ea0e3ac
Add gender choices fields
masschallenge/django-accelerator,masschallenge/django-accelerator
accelerator/migrations/0028_add_gender_fields.py
accelerator/migrations/0028_add_gender_fields.py
from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accelerator', '0027_add_gender_choices_object'), ] operations = [ migrations.AddField( model_name='entrepreneurprofile', name='gender_self_description', field=models.TextField(blank=True, default=''), ), migrations.AddField( model_name='entrepreneurprofile', name='gender_identity', field=models.ManyToManyField( blank=True, to=settings.ACCELERATOR_GENDERCHOICES_MODEL), ), migrations.AddField( model_name='expertprofile', name='gender_self_description', field=models.TextField(blank=True, default=''), ), migrations.AddField( model_name='expertprofile', name='gender_identity', field=models.ManyToManyField( blank=True, to=settings.ACCELERATOR_GENDERCHOICES_MODEL), ), migrations.AddField( model_name='memberprofile', name='gender_self_description', field=models.TextField(blank=True, default=''), ), migrations.AddField( model_name='memberprofile', name='gender_identity', field=models.ManyToManyField( blank=True, to=settings.ACCELERATOR_GENDERCHOICES_MODEL), ), ]
mit
Python
bac06acb1e6255040f371232776f3da75fb9247a
Add data migration to populate preprint_doi_created field on existing published preprints where DOI identifier exists. Set to preprint date_published field.
baylee-d/osf.io,baylee-d/osf.io,erinspace/osf.io,cslzchen/osf.io,mattclark/osf.io,mfraezz/osf.io,cslzchen/osf.io,caseyrollins/osf.io,CenterForOpenScience/osf.io,laurenrevere/osf.io,Johnetordoff/osf.io,saradbowman/osf.io,icereval/osf.io,brianjgeiger/osf.io,felliott/osf.io,cslzchen/osf.io,TomBaxter/osf.io,felliott/osf.io,aaxelb/osf.io,adlius/osf.io,aaxelb/osf.io,felliott/osf.io,laurenrevere/osf.io,Johnetordoff/osf.io,sloria/osf.io,caseyrollins/osf.io,HalcyonChimera/osf.io,leb2dg/osf.io,baylee-d/osf.io,brianjgeiger/osf.io,brianjgeiger/osf.io,caseyrollins/osf.io,brianjgeiger/osf.io,adlius/osf.io,CenterForOpenScience/osf.io,erinspace/osf.io,aaxelb/osf.io,HalcyonChimera/osf.io,mfraezz/osf.io,mattclark/osf.io,chennan47/osf.io,laurenrevere/osf.io,pattisdr/osf.io,crcresearch/osf.io,TomBaxter/osf.io,icereval/osf.io,erinspace/osf.io,chennan47/osf.io,icereval/osf.io,binoculars/osf.io,Johnetordoff/osf.io,mfraezz/osf.io,binoculars/osf.io,felliott/osf.io,saradbowman/osf.io,Johnetordoff/osf.io,crcresearch/osf.io,sloria/osf.io,mattclark/osf.io,pattisdr/osf.io,crcresearch/osf.io,binoculars/osf.io,cslzchen/osf.io,mfraezz/osf.io,adlius/osf.io,aaxelb/osf.io,leb2dg/osf.io,sloria/osf.io,CenterForOpenScience/osf.io,pattisdr/osf.io,TomBaxter/osf.io,HalcyonChimera/osf.io,HalcyonChimera/osf.io,leb2dg/osf.io,leb2dg/osf.io,chennan47/osf.io,adlius/osf.io,CenterForOpenScience/osf.io
osf/migrations/0069_auto_20171127_1119.py
osf/migrations/0069_auto_20171127_1119.py
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-11-27 17:19 from __future__ import unicode_literals import logging from django.db import migrations from osf.models import PreprintService logger = logging.getLogger(__name__) def add_preprint_doi_created(apps, schema_editor): """ Data migration that makes preprint_doi_created equal to date_published for existing published preprints. """ null_preprint_doi_created = PreprintService.objects.filter(preprint_doi_created__isnull=True, date_published__isnull=False) preprints_count = null_preprint_doi_created.count() current_preprint = 0 logger.info('{} published preprints found with preprint_doi_created is null.'.format(preprints_count)) for preprint in null_preprint_doi_created: current_preprint += 1 if preprint.get_identifier('doi'): preprint.preprint_doi_created = preprint.date_published preprint.save() logger.info('Preprint ID {}, {}/{} preprint_doi_created field populated.'.format(preprint._id, current_preprint, preprints_count)) else: logger.info('Preprint ID {}, {}/{} skipped because a DOI has not been created.'.format(preprint._id, current_preprint, preprints_count)) def reverse_func(apps, schema_editor): """ Reverses data migration. Sets preprint_doi_created field back to null. """ preprint_doi_created_not_null = PreprintService.objects.filter(preprint_doi_created__isnull=False) preprints_count = preprint_doi_created_not_null.count() current_preprint = 0 logger.info('Reversing preprint_doi_created migration.') for preprint in preprint_doi_created_not_null: current_preprint += 1 preprint.preprint_doi_created = None preprint.save() logger.info('Preprint ID {}, {}/{} preprint_doi_created field set to None.'.format(preprint._id, current_preprint, preprints_count)) class Migration(migrations.Migration): dependencies = [ ('osf', '0068_preprintservice_preprint_doi_created'), ] operations = [ migrations.RunPython(add_preprint_doi_created, reverse_func) ]
apache-2.0
Python
167a6497d79a4a18badd5ea85a87e7eefcd02696
Add init file to the root acceptance tests folder
telefonicaid/fiware-pep-steelskin,agroknow/fiware-pep-steelskin,agroknow/fiware-pep-steelskin,agroknow/fiware-pep-steelskin,telefonicaid/fiware-pep-steelskin,agroknow/fiware-pep-steelskin,telefonicaid/fiware-pep-steelskin,telefonicaid/fiware-pep-steelskin
test/acceptance/__init__.py
test/acceptance/__init__.py
# -*- coding: utf-8 -*- """ Copyright 2014 Telefonica Investigación y Desarrollo, S.A.U This file is part of fiware-orion-pep fiware-orion-pep is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. fiware-orion-pep is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with fiware-orion-pep. If not, see http://www.gnu.org/licenses/. For those usages not covered by the GNU Affero General Public License please contact with::[iot_support@tid.es] """ __author__ = 'Jon Calderin Goñi <jon.caldering@gmail.com>' import os """ Make sure the logs path exists and create it otherwise. """ if not os.path.exists('logs'): os.makedirs('logs')
agpl-3.0
Python
d290b3b2cc15a3bab907ed3847da709ab31edace
disable unpredictable tests
looker/sentry,beeftornado/sentry,jean/sentry,gencer/sentry,gencer/sentry,looker/sentry,beeftornado/sentry,jean/sentry,ifduyue/sentry,looker/sentry,beeftornado/sentry,JackDanger/sentry,gencer/sentry,mvaled/sentry,mvaled/sentry,JamesMura/sentry,jean/sentry,JamesMura/sentry,JackDanger/sentry,JamesMura/sentry,JackDanger/sentry,ifduyue/sentry,jean/sentry,JamesMura/sentry,mvaled/sentry,looker/sentry,gencer/sentry,ifduyue/sentry,mvaled/sentry,jean/sentry,looker/sentry,mvaled/sentry,ifduyue/sentry,mvaled/sentry,ifduyue/sentry,gencer/sentry,JamesMura/sentry
tests/acceptance/test_api.py
tests/acceptance/test_api.py
from __future__ import absolute_import from sentry.testutils import AcceptanceTestCase class ApiTokensTest(AcceptanceTestCase): def setUp(self): super(ApiTokensTest, self).setUp() self.user = self.create_user('foo@example.com') self.login_as(self.user) self.path = '/api/' def test_simple(self): self.browser.get(self.path) self.browser.wait_until_not('.loading') self.browser.snapshot('api tokens - no tokens') # self.browser.click('.ref-create-token') # self.browser.wait_until_not('.loading') # self.browser.snapshot('api tokens - new token') # self.browser.click('.btn-primary') # self.browser.wait_until_not('.loading') # self.browser.snapshot('api tokens - single token') class ApiApplicationTest(AcceptanceTestCase): def setUp(self): super(ApiApplicationTest, self).setUp() self.user = self.create_user('foo@example.com') self.login_as(self.user) self.path = '/api/applications/' def test_simple(self): self.browser.get(self.path) self.browser.wait_until_not('.loading') self.browser.snapshot('api applications - no applications') # self.browser.click('.ref-create-application') # self.browser.wait_until_not('.loading') # self.browser.snapshot('api applications - new application') # self.browser.click('.btn-primary') # self.browser.wait_until_not('.loading') # self.browser.snapshot('api applications - single application')
from __future__ import absolute_import from sentry.testutils import AcceptanceTestCase class ApiTokensTest(AcceptanceTestCase): def setUp(self): super(ApiTokensTest, self).setUp() self.user = self.create_user('foo@example.com') self.login_as(self.user) self.path = '/api/' def test_simple(self): self.browser.get(self.path) self.browser.wait_until_not('.loading') self.browser.snapshot('api tokens - no tokens') self.browser.click('.ref-create-token') self.browser.wait_until_not('.loading') self.browser.snapshot('api tokens - new token') self.browser.click('.btn-primary') self.browser.wait_until_not('.loading') self.browser.snapshot('api tokens - single token') class ApiApplicationTest(AcceptanceTestCase): def setUp(self): super(ApiApplicationTest, self).setUp() self.user = self.create_user('foo@example.com') self.login_as(self.user) self.path = '/api/applications/' def test_simple(self): self.browser.get(self.path) self.browser.wait_until_not('.loading') self.browser.snapshot('api applications - no applications') self.browser.click('.ref-create-application') self.browser.wait_until_not('.loading') self.browser.snapshot('api applications - new application') self.browser.click('.btn-primary') self.browser.wait_until_not('.loading') self.browser.snapshot('api applications - single application')
bsd-3-clause
Python
8fa776fd2fa63a44cb048a39fe7359ee9366c5e8
Add basic Processor tests
Hero1378/bucky,trbs/bucky,dimrozakis/bucky,dimrozakis/bucky,ewdurbin/bucky,trbs/bucky,JoseKilo/bucky,ewdurbin/bucky,jsiembida/bucky3,JoseKilo/bucky,Hero1378/bucky
tests/003-test-processor.py
tests/003-test-processor.py
import time import random import multiprocessing from functools import wraps try: import queue except ImportError: import Queue as queue import t import bucky.processor import bucky.cfg as cfg cfg.debug = True def processor(func): @wraps(func) def run(): inq = multiprocessing.Queue() outq = multiprocessing.Queue() proc = bucky.processor.CustomProcessor(inq, outq, cfg) proc.start() func(inq, outq, proc) inq.put(None) dead = False for i in range(5): if not proc.is_alive(): dead = True break time.sleep(0.1) if not dead: raise RuntimeError("Server didn't die.") return run def send_get_data(indata, inq, outq): for sample in indata: inq.put(sample) while True: try: sample = outq.get(True, 1) except queue.Empty: break yield sample def identity(host, name, val, time): return host, name, val, time @t.set_cfg("processor", identity) @processor def test_start_stop(inq, outq, proc): assert proc.is_alive(), "Processor not alive." inq.put(None) time.sleep(0.5) assert not proc.is_alive(), "Processor not killed by putting None in queue" @t.set_cfg("processor", identity) @processor def test_plumbing(inq, outq, proc): data = [] times = 100 for i in range(times): host = "tests.host-%d" % i name = "test-plumbing-%d" % i value = i timestamp = int(time.time() + i) data.append((host, name, value, timestamp)) i = 0 for sample in send_get_data(data, inq, outq): t.eq(sample, data[i]) i += 1 t.eq(i, times) def filter_even(host, name, val, timestamp): if not val % 2: return None return host, name, val, timestamp @t.set_cfg("processor", filter_even) @processor def test_filter(inq, outq, proc): data = [] times = 100 for i in range(times): host = "tests.host-%d" % i name = "test-filter-%d" % i timestamp = int(time.time() + i) data.append((host, name, 0, timestamp)) data.append((host, name, 1, timestamp)) i = 0 for sample in send_get_data(data, inq, outq): t.eq(sample[2], 1) i += 1 t.eq(i, times)
apache-2.0
Python
0b185bb6a30cb7c9b02c80051a8426dc736da3d6
Add sample WSGI app
locke105/mclib
examples/wsgi.py
examples/wsgi.py
import cgi import json from wsgiref import simple_server import falcon from mclib import mc_info class MCInfo(object): def on_get(self, req, resp): host = req.get_param('host', required=True) port = req.get_param_as_int('port', min=1024, max=65565) try: if port is not None: info = mc_info.get_info(host=host, port=port) else: info = mc_info.get_info(host=host) except Exception: raise Exception('Couldn\'t retrieve info.') if '.json' in req.uri: resp.body = self.get_json(info) return preferred = req.client_prefers(['application/json', 'text/html']) if 'html' in preferred: resp.content_type = 'text/html' resp.body = self.get_html(info) else: resp.body = self.get_json(info) def get_html(self, info): html = """<body> <style> table,th,td { border:1px solid black; border-collapse:collapse } th,td { padding: 5px } </style> <table> """ for k,v in info.iteritems(): items = {'key': cgi.escape(k)} if isinstance(v, basestring): items['val'] = cgi.escape(v) else: items['val'] = v html = html + '<tr><td>%(key)s</td><td>%(val)s</td></tr>' % items html = html + '</table></body>' return html def get_json(self, info): return json.dumps(info) app = falcon.API() mcinfo = MCInfo() app.add_route('/mcinfo', mcinfo) app.add_route('/mcinfo.json', mcinfo) if __name__ == '__main__': httpd = simple_server.make_server('0.0.0.0', 3000, app) httpd.serve_forever()
apache-2.0
Python
b097075f7606563fc8ae80274e73b74dedd8129f
prepare a new folder "resources" for json files to replace python dynamic_resources
muslih/alfanous,muslih/alfanous,muslih/alfanous,muslih/alfanous,muslih/alfanous,muslih/alfanous,muslih/alfanous
src/alfanous/Data.py
src/alfanous/Data.py
''' Created on Jun 15, 2012 @author: assem ''' class Configs: pass class Indexes: pass class Ressources: pass
agpl-3.0
Python
b171eb0c77f2d68051b48145f4e49275ed6860b9
Add tests for signup code exists method
pinax/django-user-accounts,pinax/django-user-accounts
account/tests/test_models.py
account/tests/test_models.py
from django.conf import settings from django.core import mail from django.core.urlresolvers import reverse from django.test import TestCase, override_settings from django.contrib.auth.models import User from account.models import SignupCode class SignupCodeModelTestCase(TestCase): def test_exists_no_match(self): code = SignupCode(email='foobar@example.com', code='FOOFOO') code.save() self.assertFalse(SignupCode.exists(code='BARBAR')) self.assertFalse(SignupCode.exists(email='bar@example.com')) self.assertFalse(SignupCode.exists(email='bar@example.com', code='BARBAR')) self.assertFalse(SignupCode.exists()) def test_exists_email_only_match(self): code = SignupCode(email='foobar@example.com', code='FOOFOO') code.save() self.assertTrue(SignupCode.exists(email='foobar@example.com')) def test_exists_code_only_match(self): code = SignupCode(email='foobar@example.com', code='FOOFOO') code.save() self.assertTrue(SignupCode.exists(code='FOOFOO')) self.assertTrue(SignupCode.exists(email='bar@example.com', code='FOOFOO')) def test_exists_email_match_code_mismatch(self): code = SignupCode(email='foobar@example.com', code='FOOFOO') code.save() self.assertTrue(SignupCode.exists(email='foobar@example.com', code='BARBAR')) def test_exists_code_match_email_mismatch(self): code = SignupCode(email='foobar@example.com', code='FOOFOO') code.save() self.assertTrue(SignupCode.exists(email='bar@example.com', code='FOOFOO')) def test_exists_both_match(self): code = SignupCode(email='foobar@example.com', code='FOOFOO') code.save() self.assertTrue(SignupCode.exists(email='foobar@example.com', code='FOOFOO'))
mit
Python
f5140f87e0e4326fe189b2f5f3ff3ac90f8db5c8
Add new heroku_worker.py to run as a Heroku worker process
mattstibbs/blockbuster-server,mattstibbs/blockbuster-server
blockbuster/heroku_worker.py
blockbuster/heroku_worker.py
import redis from rq import Worker, Queue, Connection import os REDIS_URL = os.environ.get('REDIS_URL', 'redis://localhost:32769/1') print(REDIS_URL) listen = ['default'] conn = redis.from_url(REDIS_URL) if __name__ == '__main__': with Connection(conn): worker = Worker(map(Queue, listen)) worker.work()
mit
Python
0722624244d107b19a006f07fd884d47597e4eb1
Add utility class to filter text through external program
guillermooo/dart-sublime-bundle,guillermooo-forks/dart-sublime-bundle,guillermooo/dart-sublime-bundle,guillermooo-forks/dart-sublime-bundle,guillermooo-forks/dart-sublime-bundle,guillermooo-forks/dart-sublime-bundle,guillermooo/dart-sublime-bundle,guillermooo/dart-sublime-bundle
lib/filter.py
lib/filter.py
from subprocess import Popen from subprocess import PIPE from subprocess import TimeoutExpired import threading from Dart import PluginLogger from Dart.lib.plat import supress_window _logger = PluginLogger(__name__) class TextFilter(object): '''Filters text through an external program (sync). ''' def __init__(self, args, timeout=10): self.args = args self.timeout = timeout # Encoding the external program likes to receive. self.in_encoding = 'utf-8' # Encoding the external program will emit. self.out_encoding = 'utf-8' self._proc = None def encode(self, text): return text.encode(self.in_ecoding) def decode(self, encoded_bytes): return encoded_bytes.decode(self.out_encoding) def clean(self, text): return text.replace('\r', '').rstrip() def _start(self): try: self._proc = Popen(self.args, stdout=PIPE, stderr=PIPE, stdin=PIPE, startupinfo=supress_window()) except OSError as e: _logger.error('while starting text filter program: %s', e) return def filter(self, input_text): self._start() try: in_bytes = input_text.encode(self.in_encoding) out_bytes, err_bytes = self._proc.communicate(in_bytes, self.timeout) return self.clean(self.decode(out_bytes)) except TimeoutExpired: _logger.debug('text filter program response timed out') return None except Exception as e: _logger.error('while running TextFilter: %s', e) return None
bsd-3-clause
Python
c7da0ed13838150f0276c4c9f425390822b5b43b
Add serializers for API models.
rcutmore/vinotes-api,rcutmore/vinotes-api
vinotes/apps/api/serializers.py
vinotes/apps/api/serializers.py
from django.contrib.auth.models import User from rest_framework import serializers from .models import Note, Trait, Wine, Winery class WinerySerializer(serializers.ModelSerializer): class Meta: model = Winery fields = ('id', 'name') class WineSerializer(serializers.ModelSerializer): class Meta: model = Wine fields = ('id', 'winery', 'name', 'vintage') class TraitSerializer(serializers.ModelSerializer): class Meta: model = Trait fields = ('id', 'name') class NoteSerializer(serializers.ModelSerializer): class Meta: model = Note fields = ('id', 'taster', 'tasted', 'wine', 'color_traits', 'nose_traits', 'taste_traits', 'finish_traits', 'rating') class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ('id', 'username', 'email', 'notes')
unlicense
Python
383c67da4729886602227b715f65390427ccd8bc
Create w3_1.py
s40523239/2016fallcp_hw,s40523239/2016fallcp_hw,s40523239/2016fallcp_hw
w3_1.py
w3_1.py
print ("Hello World!")
agpl-3.0
Python
66afbaab9abe51a83d6ea9765b7b8b70d045115e
Create question2.py
pythonzhichan/DailyQuestion,pythonzhichan/DailyQuestion
dingshubo/question2.py
dingshubo/question2.py
#_*_ coding:utf-8 _*_ #!/user/bin/python import random number_random = random.randint(1,100) for chance in range(5): #玩家有5次机会 number_player=input('请输入一个1-100之间的整数:') if(number_player>number_random): print('这个数字偏大') elif (number_player<number_random): print('这个数字偏小') print('你还有%d次机会')%(4-chance) while (chance == 4): #当for遍历到第最后一次的时候 if (number_player == number_random): print('恭喜你答对了') break else: print('正确答案是:%s') % number_random break
mit
Python
3189cd139b868d74caf35aa5b7a80f748f21c231
add tool to process brian's files
akrherz/idep,akrherz/idep,akrherz/dep,akrherz/dep,akrherz/dep,akrherz/dep,akrherz/idep,akrherz/idep,akrherz/dep,akrherz/idep,akrherz/idep
scripts/import/import_brian_files.py
scripts/import/import_brian_files.py
import glob import os os.chdir("c") for filename in glob.glob("*"): tokens = filename.split("_") huc12 = tokens[1] typ = tokens[2].split(".")[1] newfn = "/i/%s/%s/%s" % (typ, huc12, filename) os.rename(filename, newfn)
mit
Python
e73b5fadbcff141fab2478954345ebaac22d8e63
add K-means
LeoZ123/Machine-Learning-Practice
K-means/K-means.py
K-means/K-means.py
''' Created on Apr 30, 2017 @author: Leo Zhong ''' import numpy as np # Function: K Means # ------------- # K-Means is an algorithm that takes in a dataset and a constant # k and returns k centroids (which define clusters of data in the # dataset which are similar to one another). def kmeans(X, k, maxIt): #get col and row numPoints, numDim = X.shape dataSet = np.zeros((numPoints, numDim + 1)) dataSet[:, :-1] = X # Initialize centroids randomly centroids = dataSet[np.random.randint(numPoints, size = k), :] #Randomly assign labels to initial centorid centroids[:, -1] = range(1, k +1) # Initialize book keeping vars. iterations = 0 oldCentroids = None # Run the main k-means algorithm while not shouldStop(oldCentroids, centroids, iterations, maxIt): print ("iteration: \n", iterations) print ("dataSet: \n", dataSet) print ("centroids: \n", centroids) # Save old centroids for convergence test. Book keeping. oldCentroids = np.copy(centroids) iterations += 1 # Assign labels to each datapoint based on centroids updateLabels(dataSet, centroids) # Assign centroids based on datapoint labels centroids = getCentroids(dataSet, k) # We can get the labels too by calling getLabels(dataSet, centroids) return dataSet # Function: Should Stop # ------------- # Returns True or False if k-means is done. K-means terminates either # because it has run a maximum number of iterations OR the centroids # stop changing. def shouldStop(oldCentroids, centroids, iterations, maxIt): if iterations > maxIt: return True return np.array_equal(oldCentroids, centroids) # Function: Get Labels # ------------- # Update a label for each piece of data in the dataset. def updateLabels(dataSet, centroids): # For each element in the dataset, chose the closest centroid. # Make that centroid the element's label. numPoints, numDim = dataSet.shape for i in range(0, numPoints): dataSet[i, -1] = getLabelFromClosestCentroid(dataSet[i, :-1], centroids) def getLabelFromClosestCentroid(dataSetRow, centroids): label = centroids[0, -1]; minDist = np.linalg.norm(dataSetRow - centroids[0, :-1]) for i in range(1 , centroids.shape[0]): dist = np.linalg.norm(dataSetRow - centroids[i, :-1]) if dist < minDist: minDist = dist label = centroids[i, -1] print ("minDist:", minDist) return label # Function: Get Centroids # ------------- # Returns k random centroids, each of dimension n. def getCentroids(dataSet, k): # Each centroid is the geometric mean of the points that # have that centroid's label. Important: If a centroid is empty (no points have # that centroid's label) you should randomly re-initialize it. result = np.zeros((k, dataSet.shape[1])) for i in range(1, k + 1): oneCluster = dataSet[dataSet[:, -1] == i, :-1] result[i - 1, :-1] = np.mean(oneCluster, axis = 0) result[i - 1, -1] = i return result x1 = np.array([1, 1]) x2 = np.array([2, 1]) x3 = np.array([4, 3]) x4 = np.array([5, 4]) testX = np.vstack((x1, x2, x3, x4)) result = kmeans(testX, 2, 10) print ("final result:") print (result)
mit
Python
7e17363eaf8d17f0d595ca5199e59a51c7b1df65
Add the core social_pipeline.
WillianPaiva/1flow,1flow/1flow,WillianPaiva/1flow,1flow/1flow,WillianPaiva/1flow,1flow/1flow,WillianPaiva/1flow,1flow/1flow,WillianPaiva/1flow,1flow/1flow
oneflow/core/social_pipeline.py
oneflow/core/social_pipeline.py
# -*- coding: utf-8 -*- u""" Copyright 2013-2014 Olivier Cortès <oc@1flow.io>. This file is part of the 1flow project. It provides {python,django}-social-auth pipeline helpers. 1flow is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. 1flow is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with 1flow. If not, see http://www.gnu.org/licenses/ """ import logging # from constance import config # from django.shortcuts import redirect from social_auth.backends.facebook import FacebookBackend from social_auth.backends.twitter import TwitterBackend from social_auth.backends import google from models import ( TwitterAccount, # FacebookAccount, FacebookFeed, ) LOGGER = logging.getLogger(__name__) def check_feeds(social_user, user, details, request, response, backend, is_new=False, *args, **kwargs): """ Create Accounts & feeds associated with social networks. """ try: if isinstance(backend, FacebookBackend): pass elif isinstance(backend, google.GoogleOAuth2Backend): pass elif isinstance(backend, TwitterBackend): TwitterAccount.check_social_user(social_user, user, backend) except: LOGGER.exception(u'Could not check feeds for user %s from ' u'backend %s.', user, social_user)
agpl-3.0
Python
ee533a5e2a4eff99641383741e1cbe8e57c43e1f
add typing stub/compat package
charlievieth/GoSubl,charlievieth/GoSubl
gosubl/typing.py
gosubl/typing.py
try: # ST builds >= 4000 from mypy_extensions import TypedDict from typing import Any from typing import Callable from typing import Dict from typing import Generator from typing import IO from typing import Iterable from typing import Iterator from typing import List from typing import Mapping from typing import Optional from typing import Set from typing import Tuple from typing import Type from typing import Union from typing_extensions import Protocol except ImportError: # ST builds < 4000 def _make_type(name: str) -> '_TypeMeta': return _TypeMeta(name, (Type,), {}) # type: ignore class _TypeMeta(type): def __getitem__(self, args: 'Any') -> 'Any': if not isinstance(args, tuple): args = (args,) name = '{}[{}]'.format( str(self), ', '.join(map(str, args)) ) return _make_type(name) def __str__(self) -> str: return self.__name__ class Type(metaclass=_TypeMeta): # type: ignore pass class TypedDict(Type, dict): # type: ignore def __init__(*args, **kwargs) -> None: # type: ignore pass class Any(Type): # type: ignore pass class Callable(Type): # type: ignore pass class Dict(Type): # type: ignore pass class Generator(Type): # type: ignore pass class IO(Type): # type: ignore pass class Iterable(Type): # type: ignore pass class Iterator(Type): # type: ignore pass class List(Type): # type: ignore pass class Mapping(Type): # type: ignore pass class Optional(Type): # type: ignore pass class Set(Type): # type: ignore pass class Tuple(Type): # type: ignore pass class Union(Type): # type: ignore pass Protocol = object # type: ignore
mit
Python
2761e3bfd8d2c8281db565e54f6e3ea687bd5663
add backfill problem_id script
stopstalk/stopstalk-deployment,stopstalk/stopstalk-deployment,stopstalk/stopstalk-deployment,stopstalk/stopstalk-deployment,stopstalk/stopstalk-deployment
private/scripts/extras/backfill_problem_id.py
private/scripts/extras/backfill_problem_id.py
""" Copyright (c) 2015-2019 Raj Patel(raj454raj@gmail.com), StopStalk Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import time ptable = db.problem stable = db.submission links = db(ptable).select(ptable.id, ptable.link) plink_to_id = dict([(x.link, x.id) for x in links]) BATCH_SIZE = 25000 for i in xrange(10000): rows = db(stable).select(limitby=(i * BATCH_SIZE, (i + 1) * BATCH_SIZE)) print rows.first().id, rows.last().id, updated = 0 for srecord in rows: if srecord.problem_id is None and \ srecord.problem_link in plink_to_id: srecord.update_record(problem_id=plink_to_id[srecord.problem_link]) updated += 1 if updated > 0: db.commit() time.sleep(0.1) print "updated", updated else: print "no updates"
mit
Python
a3de0337f6e3511cc3381f92f7bbc384d7667dfd
Create xmas.py
sdlwdr/misc
xmas.py
xmas.py
gifts=['A Partridge in a Pear Tree', 'Two Turtle Doves, and', 'Three French Hens', 'Four Calling Birds', 'Five Golden Rings', 'Six Geese-a-Laying', 'Seven Swans-a-Swimming', 'Eight Maids-a-Milking', 'Nine Ladies Dancing', 'Ten Lords-a-Leaping', 'Eleven Pipers Piping', 'Twelve Drummers Drumming'] ordinal=['st', 'nd', 'rd', 'th', 'th', 'th', 'th', 'th', 'th', 'th', 'th', 'th'] for day in range(12): print('On the ' + str(day+1) + str(ordinal[day]) + ' day of Christmas, my true love sent to me...') gift=day while gift >= 0: print(str(gifts[gift])) gift-=1 print('\n')
mit
Python
8fa4888dbf82d225f52b6df347372a0381c08237
Add __main__.py for running python -m grip.
mgoddard-pivotal/grip,jbarreras/grip,ssundarraj/grip,mgoddard-pivotal/grip,joeyespo/grip,ssundarraj/grip,jbarreras/grip,joeyespo/grip
grip/__main__.py
grip/__main__.py
"""\ Grip ---- Render local readme files before sending off to Github. :copyright: (c) 2014 by Joe Esposito. :license: MIT, see LICENSE for more details. """ from command import main if __name__ == '__main__': main()
mit
Python
95874a5e06ff70d1cbea49321549beee5cc5abba
Create an example of storing units in HDF5
h5py/h5py,h5py/h5py,h5py/h5py
examples/store_and_retrieve_units_example.py
examples/store_and_retrieve_units_example.py
""" Author: Daniel Berke, berke.daniel@gmail.com Date: October 27, 2019 Requirements: h5py>=2.10.0, unyt>=v2.4.0 Notes: This short example script shows how to save unit information attached to a `unyt_array` using `attrs` in HDF5, and recover it upon reading the file. It uses the Unyt package (https://github.com/yt-project/unyt) because that's what I'm familiar with, but presumably similar options exist for Pint and astropy.units. """ import h5py import tempfile import unyt as u # Set up a temporary file for this example. tf = tempfile.TemporaryFile() f = h5py.File(tf, 'a') # Create some mock data with moderately complicated units (this is the # dimensional representation of Joules of energy). test_data = [1, 2, 3, 4, 5] * u.kg * ( u.m / u.s ) ** 2 print(test_data.units) # kg*m**2/s**2 # Create a data set to hold the numerical information: f.create_dataset('stored data', data=test_data) # Save the units information as a string in `attrs`. f['stored data'].attrs['units'] = str(test_data.units) # Now recover the data, using the saved units information to reconstruct the # original quantities. reconstituted_data = u.unyt_array(f['stored data'], units=f['stored data'].attrs['units']) print(reconstituted_data.units) # kg*m**2/s**2 assert reconstituted_data.units == test_data.units
bsd-3-clause
Python
4fe50fda289be7db3fb96450e713eb8f1a815026
Add weighted linear algorithm
swarmer/autoscaler
autoscaler/server/scaling/algorithms/weighted.py
autoscaler/server/scaling/algorithms/weighted.py
import math from autoscaler.server.request_history import RequestHistory from autoscaler.server.scaling.utils import parse_interval class WeightedScalingAlgorithm: def __init__(self, algorithm_config): self.interval_seconds = parse_interval( algorithm_config['interval'] ) self.requests_per_instance_interval = ( algorithm_config['requests_per_instance_interval'] ) self.weights = algorithm_config['weights'] def get_instance_count(self, request_history: RequestHistory): intervals = request_history.get_last_intervals( self.interval_seconds, len(self.weights) ) normalized_weights = self._normalized_weights(self.weights) weighted_request_count = sum( len(interval) * weight for weight, interval in zip(normalized_weights, intervals) ) return max(1, math.ceil( weighted_request_count / self.requests_per_instance_interval) ) @staticmethod def _normalized_weights(weights): weight_sum = sum(weights) return [weight / weight_sum for weight in weights]
mit
Python
ca43479fc10505b04ec8861de074f25c80c6f5e1
add rhythm description module
jvbalen/catchy,jvbalen/catchy
rhythm_features.py
rhythm_features.py
from __future__ import division, print_function import os import numpy as np import utils onsets_dir = '' beats_dir = '' def compute_and_write(data_dir, track_list=None, features=None): """Compute frame-based features for all audio files in a folder. Args: data_dir (str): where to write features track_list (str or None): list of file ids. Set to None to infer from files in ioi_dir and chroma_dir. features (dict): dictionary with (unique) feature names as keys and tuples as values, each containing a feature extraction function and a parameter dictionary. Feature extraction functions can be any function that returns one or more 1d or 2d-arrays that share their first dimension. Required global variables: beats_dir (str): where to find beat data onsets_dir (str): where to find onset data """ if track_list is None: track_list = [filename.split('.')[0] for filename in os.listdir(ioi_dir)] if features is None: features = {'ioihist': (get_ioi_hist, {})} for track_id in track_list: print("Computing features for track {}...".format(track_id)) for feature in features: # run feature function func, params = features[feature] X = func(track_id, **params) # normalize (!) and flatten X = X.flatten() / np.sum(X) # write utils.write_feature(X, [data_dir, feature, track_id]) def get_ioi_hist(track_id, min_length = -7, max_length = 0, step=1): """Compute a IOI histogram, with bins logarithmically spaced between `min_length` (def: -7) and `max_length` (0), with step `step`. """ t, ioi = get_norm_ioi(track_id) log_ioi = np.log2(ioi) halfstep = step / 2.0 nbins = (max_length - min_length) / step + 1 binedges = np.linspace(minpitch - halfstep, maxpitch + halfstep, nbins + 1) ioi_hist, _ = np.histogram(log_ioi, binedges) ioi_hist = ioi_hist / np.sum(ioi_hist) return ioi_hist def get_beats(track_id): """Read beat data from file beats_dir + track_id + '.csv'. File should contain a time column followed by one column of beat intervals. """ beats_file = os.path.join(beats_dir, track_id + '.csv') t, beat_intervals = utils.read_feature(beats_file, time=True) return t, beat_intervals def get_onsets(track_id): """Read ioi data from file onsets_dir + track_id + '.csv'. File should contain a time column followed by one column of inter-onset intervals. """ onsets_file = os.path.join(onsets_dir, track_id + '.csv') t, ioi = utils.read_feature(onsets_file, time=True) return t, ioi # TODO def get_norm_ioi(track_id): pass if __name__ == '__main__': compute_and_write(sys.argv[1], sys.argv[2])
mit
Python
a726625e13ac08d0b6c2c686de476b6e78bc0f48
Add unit test for _skeleton
MichelJuillard/dlstats,mmalter/dlstats,Widukind/dlstats,MichelJuillard/dlstats,mmalter/dlstats,Widukind/dlstats,MichelJuillard/dlstats,mmalter/dlstats
dlstats/fetchers/test__skeleton.py
dlstats/fetchers/test__skeleton.py
import unittest from datetime import datetime from _skeleton import Dataset class DatasetTestCase(unittest.TestCase): def test_full_example(self): self.assertIsInstance(Dataset(provider='Test provider',name='GDP',dataset_code='nama_gdp_fr',dimension_list=[{'name':'COUNTRY','values':[('FR','France'),('DE','Germany')]}],doc_href='rasessr',last_update=datetime(2014,12,2)),Dataset) def test_empty_doc_href(self): self.assertIsInstance(Dataset(provider='Test provider',name='GDP',dataset_code='nama_gdp_fr',dimension_list=[{'name':'COUNTRY','values':[('FR','France'),('DE','Germany')]}],last_update=datetime(2014,12,2)),Dataset) if __name__ == '__main__': unittest.main()
agpl-3.0
Python
e54c82c336827c1fc835837006885c245a05e5cb
Add html stripper for announcements
karenang/ivle-bot,karen/ivle-bot
html_stripper.py
html_stripper.py
from html.parser import HTMLParser class HTMLStripper(HTMLParser): def __init__(self): super().__init__() self.reset() self.strict = False self.convert_charrefs= True self.fed = [] def handle_data(self, d): self.fed.append(d) def get_data(self): return ''.join(self.fed) def strip_tags(html): s = HTMLStripper() s.feed(html) return s.get_data()
mit
Python
20830e9fb2785eda94bf9e7c0dab70d476bc82b4
Add `sample_settings.py`
avinassh/Reddit-GoodReads-Bot
sample_settings.py
sample_settings.py
# Rename this file to `settings.py` in deployment # supported_subreddits = 'india' supported_subreddits = 'india+indianbooks' user_agent = ('Goodreads, v0.1. Gives info of the book whenever goodreads' 'link to a book is posted. (by /u/avinassh)') scopes = ['identity', 'submit', 'privatemessages', 'read'] be_gentle_to_reddit = True # reddit app app_key = 'K...q' app_secret = 'y...i' # bot account access_token = '3...R' refresh_token = '3...m' # good reads goodreads_api_key = '5...v' goodreads_api_secret = 'T...4'
mit
Python
638c6383acf4431c95327fd0cbdb535e115e027d
Create admin util for user management.
manylabs/flow-server,manylabs/flow-server,manylabs/flow-server
flow-admin.py
flow-admin.py
#!/usr/bin/env python # # To ensure you can import rhizo-server modules set PYTHONPATH # to point to rhize-server base dir. # E.g. # export PYTHONPATH=/home/user/rhizo-server/ # from optparse import OptionParser from main.users.auth import create_user from main.users.models import User, OrganizationUser from main.resources.resource_util import find_resource, _create_folders from main.app import db if __name__ == '__main__': parser = OptionParser() parser.add_option( '-c', '--create-user', dest='flow_user_spec', help='Create flow user specified in the format email:username:password:fullname', default='') parser.add_option( '-d', '--delete-user', dest='delete_username', help='Delete flow user specified by username', default='') (options, args) = parser.parse_args() if options.flow_user_spec: parts = options.flow_user_spec.split(':') email = parts[0] username = parts[1] password = parts[2] fullname = parts[3] assert '.' in email and '@' in email # # Create user # print("Creating user %s" % (username)) user_id = create_user( email, username, password, fullname, User.STANDARD_USER) # # Add user to flow organization # print("Creating organization user.") org_user = OrganizationUser() org_user.organization_id = find_resource('/testing').id org_user.user_id = user_id org_user.is_admin = False db.session.add(org_user) db.session.commit() # # Create a folder for this user to store their programs # student_folder = 'testing/student-folders/%s' % (username) print("Creating student folder %s." % (student_folder)) _create_folders(student_folder) print('Created flow user: %s' % (email)) elif options.delete_username: # # Delete the specified user by username # username = options.delete_username user = User.query.filter(User.user_name == username).first() if user is None: print("No such user %s." % (username)) exit(1) # # Delete user folder # student_folder = find_resource('/testing/student-folders/%s' % (username)) if student_folder is not None: print("Deleting student folder %s." % (student_folder.name)) db.session.delete(student_folder) db.session.commit() else: print("No student folder to delete.") # # Delete organization user # org_id = find_resource('/testing').id org_user = OrganizationUser.query.filter( OrganizationUser.organization_id == org_id, OrganizationUser.user_id == user.id ).first() if org_user is not None: print("Deleting organization user.") db.session.delete(org_user) db.session.commit() else: print("No organization user to delete.") # # Now delete the user # db.session.delete(user) db.session.commit() print('Deleted flow user: %s.' % (username))
mit
Python
0da1d2edc0f2a01d90cfc7cbf2bb4d37d1cc58d9
Add examples from JModelica User's Manual (1.17.0)
michael-okeefe/soep-sandbox
src/ast_example.py
src/ast_example.py
# Import library for path manipulations import os.path # Import the JModelica.org Python packages import pymodelica from pymodelica.compiler_wrappers import ModelicaCompiler # Import numerical libraries import numpy as N import ctypes as ct import matplotlib.pyplot as plt # Import JPype import jpype # Create a reference to the java package 'org' org = jpype.JPackage('org') # Create a compiler and compiler target object mc = ModelicaCompiler() # Build trees as if for an FMU or Model Exchange v 1.0 target = mc.create_target_object("me", "1.0") # Don't parse the file if it has already been parsed try: source_root.getProgramRoot() except: # Parse the file CauerLowPassAnalog.mo and get the root node # of the AST model = mc.get_modelicapath() + "\\Modelica" source_root = mc.parse_model(model) # Don't load the standard library if it is already loaded try: modelica.getName().getID() except NameError, e: # Load the Modelica standard library and get the class # declaration AST node corresponding to the Modelica # package. modelica = source_root.getProgram().getLibNode(0). \ getStoredDefinition().getElement(0) def count_classes(class_decl, depth): """ Count the number of classes hierarchically contained in a class declaration. """ # get an iterator over all local classes using the method # ClassDecl.classes() which returns a Java Iterable object # over ClassDecl objects local_classes = class_decl.classes().iterator() num_classes = 0 # Loop over all local classes while local_classes.hasNext(): # Call count_classes recursively for all local classes # (including the contained class itself) num_classes += 1 + count_classes(local_classes.next(), depth + 1) # If the class declaration corresponds to a package, print # the number of hierarchically contained classes if class_decl.isPackage() and depth <= 1: print("The package %s has %d hierarchically contained classes"%( class_decl.qualifiedName(), num_classes)) # Return the number of hierarchically contained classes return num_classes # Call count_classes for 'Modelica' num_classes = count_classes(modelica, 0) try: filter_source.getProgramRoot() except: filter_source = mc.parse_model("CauerLowPassAnalog.mo") # Don't instantiate if instance has been computed already try: filter_instance.components() except: # Retrieve the node filter_instance = mc.instantiate_model( filter_source, "CauerLowPassAnalog", target) def dump_inst_ast(inst_node, indent, fid): """ Pretty print an instance node, including its merged environment. """ # Get the merged environment of an instance node env = inst_node.getMergedEnvironment() # Create a string containing the type and name of the instance node str = indent + inst_node.prettyPrint("") str = str + " {" # Loop over all elements in the merged modification environment for i in range(env.size()): str = str + env.get(i).toString() if i < env.size() - 1: str = str + ", " str = str + "}" # Print fid.write(str + "\n") # Get all components and dump them recursively components = inst_node.instComponentDeclList for i in range(components.getNumChild()): # Assume the primitive variables are leafs in the instance AST if (inst_node.getClass() is \ org.jmodelica.modelica.compiler.InstPrimitive) is False: dump_inst_ast(components.getChild(i), indent + " ", fid) # Get all extends clauses and dump them recursively extends = inst_node.instExtendsList for i in range(extends.getNumChild()): # Assume that primitive variables are leafs in the instance AST if (inst_node.getClass() is \ org.jmodelica.modelica.compiler.InstPrimitive) is False: dump_inst_ast(extends.getChild(i), indent + " ", fid) # dump the filter instance with open('out.txt', 'w') as fid: dump_inst_ast(filter_instance, "", fid) print("Done!")
mit
Python
55dd21610a2ed1befed6b4560528e8a6bf3602e2
Define function to retrieve imgur credentials
ueg1990/imgur-cli
imgur_cli/cli.py
imgur_cli/cli.py
import argparse import logging import os import imgurpython from collections import namedtuple logger = logging.getLogger(__name__) def imgur_credentials(): ImgurCredentials = namedtuple('ImgurCredentials', ['client_id', 'client_secret', 'access_token', 'refresh_token', 'mashape_key']) try: from config import config client_id = config.get('IMGUR_CLIENT_ID') client_secret = config.get('IMGUR_CLIENT_SECRET') access_token = config.get('IMGUR_ACCESS_TOKEN') refresh_token = config.get('IMGUR_REFRESH_TOKEN') mashape_key = config.get('IMGUR_MASHAPE_KEY') except ImportError: client_id = os.environ.get('IMGUR_CLIENT_ID') client_secret = os.environ.get('IMGUR_CLIENT_SECRET') access_token = os.environ.get('IMGUR_ACCESS_TOKEN') refresh_token = os.environ.get('IMGUR_REFRESH_TOKEN') mashape_key = os.environ.get('IMGUR_MASHAPE_KEY') if not client_id or not client_secret: raise imgurpython.client.ImgurClientError('Client credentials not found. Ensure you have both client id and client secret') return ImgurCredentials(client_id, client_secret, access_token, refresh_token, mashape_key)
mit
Python
d3ebb800c88be18861608f8b174cc652223ac67c
Add utils.py with get_options function
klpdotorg/dubdubdub,klpdotorg/dubdubdub,klpdotorg/dubdubdub,klpdotorg/dubdubdub
apps/ivrs/utils.py
apps/ivrs/utils.py
def get_options(question_number): if question_number == 2: return " Press 4 or 5 " else: return " Press 1 for Yes or 2 for No"
mit
Python
2c8752cd586f6d02ce8da4bc3a79660889ed7f3f
Add some minimal testing for BandRCModel to the test suite.
cjcardinale/climlab,brian-rose/climlab,brian-rose/climlab,cjcardinale/climlab,cjcardinale/climlab
climlab/tests/test_bandrc.py
climlab/tests/test_bandrc.py
import numpy as np import climlab import pytest # The fixtures are reusable pieces of code to set up the input to the tests. # Without fixtures, we would have to do a lot of cutting and pasting # I inferred which fixtures to use from the notebook # Latitude-dependent grey radiation.ipynb @pytest.fixture() def model(): return climlab.BandRCModel() # helper for a common test pattern def _check_minmax(array, amin, amax): return (np.allclose(array.min(), amin) and np.allclose(array.max(), amax)) def test_model_creation(model): """Just make sure we can create a model.""" assert len(model.Tatm)==30 def test_integrate_years(model): """Check that we can integrate forward the model and get the expected surface temperature and water vapor. Also check the climate sensitivity to doubling CO2.""" model.step_forward() model.integrate_years(2) Ts = model.Ts.copy() assert np.isclose(Ts, 275.43383753) assert _check_minmax(model.q, 5.E-6, 3.23764447e-03) model.absorber_vmr['CO2'] *= 2. model.integrate_years(2) assert np.isclose(model.Ts - Ts, 3.180993)
mit
Python
c1ea660b72ac10fd0a2dea1416b45c6796ca5adb
add pascal voc ingest
NervanaSystems/aeon,NervanaSystems/aeon,NervanaSystems/aeon,NervanaSystems/aeon
ingest/pascal.py
ingest/pascal.py
#!/usr/bin/python import json import glob import sys import getopt import collections import os from os.path import isfile, join import xml.etree.ElementTree as et from collections import defaultdict # http://stackoverflow.com/questions/7684333/converting-xml-to-dictionary-using-elementtree def etree_to_dict(t): d = {t.tag: {} if t.attrib else None} children = list(t) if children: dd = defaultdict(list) for dc in map(etree_to_dict, children): for k, v in dc.iteritems(): dd[k].append(v) d = {t.tag: {k:v[0] if len(v) == 1 else v for k, v in dd.iteritems()}} if t.attrib: d[t.tag].update(('@' + k, v) for k, v in t.attrib.iteritems()) if t.text: text = t.text.strip() if children or t.attrib: if text: d[t.tag]['#text'] = text else: d[t.tag] = text return d def validate_metadata(jobj,file): boxlist = jobj['object'] if not isinstance(boxlist,collections.Sequence): print('{0} is not a sequence').format(file) return False # print("{0} has {1} boxes").format(jobj['filename'],len(boxlist)) index = 0; for box in boxlist: if 'part' in box: parts = box['part'] if not isinstance(parts,collections.Sequence): print('parts {0} is not a sequence').format(file) return False index += 1 return True def convert_pascal_to_json(input_path,output_path): #onlyfiles = [f for f in listdir(input_path) if isfile(join(input_path, f)) && file.endswith('.xml')] if not os.path.exists(output_path): os.makedirs(output_path) onlyfiles = glob.glob(join(input_path,'*.xml')) onlyfiles.sort() for file in onlyfiles: outfile = join(output_path,os.path.basename(file)) outfile = os.path.splitext(outfile)[0]+'.json' print(outfile) trimmed = parse_single_file(join(input_path,file)) if validate_metadata(trimmed,file): result = json.dumps(trimmed, sort_keys=True, indent=4, separators=(',', ': ')) f = open(outfile,'w') f.write(result) else: print('error parsing metadata {0}').format(file) #print(result) def parse_single_file(path): tree = et.parse(path) root = tree.getroot() d = etree_to_dict(root) trimmed = d['annotation'] olist = trimmed['object'] if not isinstance(olist,collections.Sequence): trimmed['object'] = [olist]; return trimmed def main(argv): input_path = '' output_path = '' parse_file = '' try: opts, args = getopt.getopt(argv,"hi:o:p:") except getopt.GetoptError: print 'ingest.py -i <input> -o <output>' sys.exit(2) for opt, arg in opts: print('opt {0}, arg {1}').format(opt,arg) if opt == '-h': print 'ingest.py -i <input> -o <output>' sys.exit() elif opt in ("-i", "--input"): input_path = arg elif opt in ("-o", "--output"): output_path = arg elif opt in ("-p", "--parse"): parse_file = arg print(parse_file) if parse_file: parsed = parse_single_file(parse_file) json1 = json.dumps(parsed, sort_keys=True, indent=4, separators=(',', ': ')) print(json1) elif input_path: convert_pascal_to_json(input_path,output_path) if __name__ == "__main__": main(sys.argv[1:]) # file = '/usr/local/data/VOCdevkit/VOC2007/Annotations/006637.xml' # tree = et.parse(file) # root = tree.getroot() # d = etree_to_dict(root) # # et.dump(tree) # json2 = d['annotation'] # json1 = json.dumps(json2, sort_keys=True, indent=4, separators=(',', ': ')) # print(json1) # path = '/usr/local/data/VOCdevkit/VOC2007/Annotations/*.xml' # convert_pascal_to_json(path)
apache-2.0
Python
27899a91fc6cdf73dccc7f9c5c353b05d2433c42
add example participant client inbound drop rule for blackholing
h2020-endeavour/endeavour,h2020-endeavour/endeavour
pclnt/blackholing_test.py
pclnt/blackholing_test.py
{ "inbound": [ { "cookie": 3, "match": { "eth_src": "08:00:27:89:3b:9f" }, "action": { "drop": 0 } } ] }
apache-2.0
Python
cd910f95753a138e2df48a1370e666bee49ad1dd
Add py solution for 693. Binary Number with Alternating Bits
ckclark/leetcode,ckclark/leetcode,ckclark/leetcode,ckclark/leetcode,ckclark/leetcode,ckclark/leetcode
py/binary-number-with-alternating-bits.py
py/binary-number-with-alternating-bits.py
class Solution(object): def hasAlternatingBits(self, n): """ :type n: int :rtype: bool """ power_2 = (n ^ (n >> 1)) + 1 return (power_2 & -power_2) == power_2
apache-2.0
Python
b34c0ec439a997705799136e56a926649bd93e52
add new function to test whether an object is completely within the bounds of an image
danforthcenter/plantcv,danforthcenter/plantcv,stiphyMT/plantcv,danforthcenter/plantcv,stiphyMT/plantcv,stiphyMT/plantcv
plantcv/plantcv/within_frame.py
plantcv/plantcv/within_frame.py
import cv2 as cv2 import numpy as np def within_frame(img, obj): ''' This function tests whether the plant object is completely in the field of view Input: img - an image with the bounds you are interested in obj - a single object, preferably after calling pcv.image_composition(), that is from within `img` Returns: in_bounds - a boolean (True or False) whether the object touches the edge of the image :param img: numpy.ndarray :param obj: str :return in_bounds: boolean ''' # Check if object is touching image boundaries (QC) if len(np.shape(img)) == 3: ix, iy, iz = np.shape(img) else: ix, iy = np.shape(img) size1 = ix, iy frame_background = np.zeros(size1, dtype=np.uint8) frame = frame_background + 1 frame_contour, frame_hierarchy = cv2.findContours(frame, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[-2:] ptest = [] vobj = np.vstack(obj) for i, c in enumerate(vobj): xy = tuple(c) pptest = cv2.pointPolygonTest(frame_contour[0], xy, measureDist=False) ptest.append(pptest) in_bounds = all(c == 1 for c in ptest) return(in_bounds)
mit
Python
c4040803cb670f913bc8743ee68f5a5f0721d4f8
Add game logic
HPI-Hackathon/cartets,HPI-Hackathon/cartets,HPI-Hackathon/cartets
backend/game.py
backend/game.py
# All game related code import json import random class Game(): def __init__(self): self.players = {} self.turn = None self.running = False def add_player(self, conn, data): player = Player(conn, data) self.players[player.get_name()] = player conn.send(json.dumps({'action': 'accepted', 'data': ''})) return player def wait_for_answer(self, player): # Initial start of game if not self.running() and len(self.players) == 3: starter = self.start_game() data = {'turn': starter.get_name(), 'cards': []} return json.dumps({'action': 'start', 'data': data}) return self.handle_round(self, player) def handle_round(self, player): pass def start_game(self): self.turn = random.choice(self.players) return self.turn class Player(): def __init__(self, conn, data): self.name = data['name'] self.connection = conn self.cards = [] def get_name(self): return self.name class Card(): def __init__(self): pass
mit
Python
69e22c778a576f746784270fa9971a6399433f92
Add docstring to UnivariateFilter.
Myasuka/scikit-learn,bikong2/scikit-learn,billy-inn/scikit-learn,IndraVikas/scikit-learn,thilbern/scikit-learn,ogrisel/scikit-learn,jblackburne/scikit-learn,mwv/scikit-learn,moutai/scikit-learn,quheng/scikit-learn,tosolveit/scikit-learn,tomlof/scikit-learn,macks22/scikit-learn,krez13/scikit-learn,shangwuhencc/scikit-learn,raghavrv/scikit-learn,yanlend/scikit-learn,procoder317/scikit-learn,anurag313/scikit-learn,luo66/scikit-learn,Myasuka/scikit-learn,aewhatley/scikit-learn,dingocuster/scikit-learn,tdhopper/scikit-learn,florian-f/sklearn,joernhees/scikit-learn,shenzebang/scikit-learn,jakobworldpeace/scikit-learn,RPGOne/scikit-learn,xwolf12/scikit-learn,evgchz/scikit-learn,nesterione/scikit-learn,shyamalschandra/scikit-learn,Akshay0724/scikit-learn,idlead/scikit-learn,murali-munna/scikit-learn,vinayak-mehta/scikit-learn,vivekmishra1991/scikit-learn,yask123/scikit-learn,poryfly/scikit-learn,Fireblend/scikit-learn,michigraber/scikit-learn,ominux/scikit-learn,JosmanPS/scikit-learn,nesterione/scikit-learn,loli/semisupervisedforests,ElDeveloper/scikit-learn,victorbergelin/scikit-learn,heli522/scikit-learn,costypetrisor/scikit-learn,ChanChiChoi/scikit-learn,rajat1994/scikit-learn,mjudsp/Tsallis,jlegendary/scikit-learn,Jimmy-Morzaria/scikit-learn,mojoboss/scikit-learn,samzhang111/scikit-learn,hainm/scikit-learn,simon-pepin/scikit-learn,ishanic/scikit-learn,devanshdalal/scikit-learn,aflaxman/scikit-learn,huzq/scikit-learn,yunfeilu/scikit-learn,moutai/scikit-learn,rrohan/scikit-learn,henridwyer/scikit-learn,alexsavio/scikit-learn,lbishal/scikit-learn,Clyde-fare/scikit-learn,cauchycui/scikit-learn,xiaoxiamii/scikit-learn,mugizico/scikit-learn,RayMick/scikit-learn,bthirion/scikit-learn,murali-munna/scikit-learn,jpautom/scikit-learn,hitszxp/scikit-learn,bhargav/scikit-learn,moutai/scikit-learn,hsiaoyi0504/scikit-learn,pv/scikit-learn,hsuantien/scikit-learn,jlegendary/scikit-learn,zaxtax/scikit-learn,macks22/scikit-learn,abhishekkrthakur/scikit-learn,marcocaccin/scikit-learn,RPGOne/scikit-learn,pnedunuri/scikit-learn,jm-begon/scikit-learn,larsmans/scikit-learn,billy-inn/scikit-learn,MatthieuBizien/scikit-learn,massmutual/scikit-learn,cl4rke/scikit-learn,tosolveit/scikit-learn,LiaoPan/scikit-learn,zorojean/scikit-learn,shangwuhencc/scikit-learn,vshtanko/scikit-learn,rohanp/scikit-learn,zorroblue/scikit-learn,hlin117/scikit-learn,ogrisel/scikit-learn,pianomania/scikit-learn,Garrett-R/scikit-learn,spallavolu/scikit-learn,B3AU/waveTree,PatrickChrist/scikit-learn,mhdella/scikit-learn,fredhusser/scikit-learn,ngoix/OCRF,TomDLT/scikit-learn,ilo10/scikit-learn,arjoly/scikit-learn,thientu/scikit-learn,jorge2703/scikit-learn,amueller/scikit-learn,aabadie/scikit-learn,jkarnows/scikit-learn,kagayakidan/scikit-learn,xuewei4d/scikit-learn,aminert/scikit-learn,olologin/scikit-learn,liangz0707/scikit-learn,nelson-liu/scikit-learn,shenzebang/scikit-learn,victorbergelin/scikit-learn,beepee14/scikit-learn,shusenl/scikit-learn,ssaeger/scikit-learn,abimannans/scikit-learn,3manuek/scikit-learn,yask123/scikit-learn,pkruskal/scikit-learn,jmetzen/scikit-learn,poryfly/scikit-learn,cwu2011/scikit-learn,quheng/scikit-learn,r-mart/scikit-learn,cwu2011/scikit-learn,Fireblend/scikit-learn,nhejazi/scikit-learn,mlyundin/scikit-learn,cwu2011/scikit-learn,vybstat/scikit-learn,Garrett-R/scikit-learn,qifeigit/scikit-learn,mhue/scikit-learn,mjudsp/Tsallis,Obus/scikit-learn,IshankGulati/scikit-learn,fabianp/scikit-learn,anirudhjayaraman/scikit-learn,aetilley/scikit-learn,CforED/Machine-Learning,vibhorag/scikit-learn,JPFrancoia/scikit-learn,vermouthmjl/scikit-learn,0x0all/scikit-learn,robin-lai/scikit-learn,mhdella/scikit-learn,jzt5132/scikit-learn,0asa/scikit-learn,scikit-learn/scikit-learn,hugobowne/scikit-learn,yonglehou/scikit-learn,arabenjamin/scikit-learn,arjoly/scikit-learn,zorojean/scikit-learn,Fireblend/scikit-learn,jjx02230808/project0223,henrykironde/scikit-learn,khkaminska/scikit-learn,sergeyf/scikit-learn,tosolveit/scikit-learn,CforED/Machine-Learning,DSLituiev/scikit-learn,ominux/scikit-learn,vortex-ape/scikit-learn,wanggang3333/scikit-learn,fyffyt/scikit-learn,schets/scikit-learn,rohanp/scikit-learn,espg/scikit-learn,shusenl/scikit-learn,saiwing-yeung/scikit-learn,AnasGhrab/scikit-learn,Nyker510/scikit-learn,AIML/scikit-learn,fzalkow/scikit-learn,DonBeo/scikit-learn,liangz0707/scikit-learn,shenzebang/scikit-learn,kmike/scikit-learn,xwolf12/scikit-learn,NelisVerhoef/scikit-learn,jpautom/scikit-learn,gclenaghan/scikit-learn,mjgrav2001/scikit-learn,mattgiguere/scikit-learn,loli/semisupervisedforests,yask123/scikit-learn,dsullivan7/scikit-learn,mxjl620/scikit-learn,Vimos/scikit-learn,jakirkham/scikit-learn,lenovor/scikit-learn,shenzebang/scikit-learn,r-mart/scikit-learn,xavierwu/scikit-learn,nrhine1/scikit-learn,ltiao/scikit-learn,clemkoa/scikit-learn,glemaitre/scikit-learn,florian-f/sklearn,fbagirov/scikit-learn,madjelan/scikit-learn,schets/scikit-learn,simon-pepin/scikit-learn,aewhatley/scikit-learn,kagayakidan/scikit-learn,marcocaccin/scikit-learn,HolgerPeters/scikit-learn,JeanKossaifi/scikit-learn,luo66/scikit-learn,ClimbsRocks/scikit-learn,evgchz/scikit-learn,UNR-AERIAL/scikit-learn,BiaDarkia/scikit-learn,ivannz/scikit-learn,clemkoa/scikit-learn,frank-tancf/scikit-learn,zihua/scikit-learn,davidgbe/scikit-learn,trungnt13/scikit-learn,gotomypc/scikit-learn,fabianp/scikit-learn,fredhusser/scikit-learn,466152112/scikit-learn,rahul-c1/scikit-learn,scikit-learn/scikit-learn,Srisai85/scikit-learn,MartinDelzant/scikit-learn,mxjl620/scikit-learn,jkarnows/scikit-learn,nelson-liu/scikit-learn,rajat1994/scikit-learn,sanketloke/scikit-learn,dingocuster/scikit-learn,NunoEdgarGub1/scikit-learn,chrisburr/scikit-learn,nvoron23/scikit-learn,themrmax/scikit-learn,michigraber/scikit-learn,andaag/scikit-learn,yonglehou/scikit-learn,kagayakidan/scikit-learn,Lawrence-Liu/scikit-learn,iismd17/scikit-learn,vermouthmjl/scikit-learn,466152112/scikit-learn,vortex-ape/scikit-learn,maheshakya/scikit-learn,btabibian/scikit-learn,tomlof/scikit-learn,icdishb/scikit-learn,jorik041/scikit-learn,joshloyal/scikit-learn,MechCoder/scikit-learn,wazeerzulfikar/scikit-learn,frank-tancf/scikit-learn,devanshdalal/scikit-learn,aflaxman/scikit-learn,cl4rke/scikit-learn,LiaoPan/scikit-learn,liberatorqjw/scikit-learn,manashmndl/scikit-learn,clemkoa/scikit-learn,deepesch/scikit-learn,terkkila/scikit-learn,etkirsch/scikit-learn,MatthieuBizien/scikit-learn,billy-inn/scikit-learn,abhishekkrthakur/scikit-learn,Adai0808/scikit-learn,moutai/scikit-learn,procoder317/scikit-learn,rahuldhote/scikit-learn,jm-begon/scikit-learn,xyguo/scikit-learn,ahoyosid/scikit-learn,ominux/scikit-learn,loli/sklearn-ensembletrees,fengzhyuan/scikit-learn,Srisai85/scikit-learn,waterponey/scikit-learn,devanshdalal/scikit-learn,jblackburne/scikit-learn,zhenv5/scikit-learn,toastedcornflakes/scikit-learn,JPFrancoia/scikit-learn,sumspr/scikit-learn,Aasmi/scikit-learn,herilalaina/scikit-learn,poryfly/scikit-learn,xavierwu/scikit-learn,PrashntS/scikit-learn,PatrickChrist/scikit-learn,henridwyer/scikit-learn,vigilv/scikit-learn,DonBeo/scikit-learn,bigdataelephants/scikit-learn,trungnt13/scikit-learn,russel1237/scikit-learn,IshankGulati/scikit-learn,liangz0707/scikit-learn,q1ang/scikit-learn,henrykironde/scikit-learn,Adai0808/scikit-learn,schets/scikit-learn,dhruv13J/scikit-learn,fyffyt/scikit-learn,nrhine1/scikit-learn,ningchi/scikit-learn,sinhrks/scikit-learn,hrjn/scikit-learn,glennq/scikit-learn,victorbergelin/scikit-learn,wlamond/scikit-learn,beepee14/scikit-learn,jereze/scikit-learn,abhishekkrthakur/scikit-learn,fredhusser/scikit-learn,samuel1208/scikit-learn,tawsifkhan/scikit-learn,spallavolu/scikit-learn,kylerbrown/scikit-learn,mhue/scikit-learn,samuel1208/scikit-learn,JsNoNo/scikit-learn,bikong2/scikit-learn,rvraghav93/scikit-learn,rahul-c1/scikit-learn,hitszxp/scikit-learn,aflaxman/scikit-learn,rajat1994/scikit-learn,harshaneelhg/scikit-learn,glouppe/scikit-learn,abimannans/scikit-learn,imaculate/scikit-learn,LohithBlaze/scikit-learn,DSLituiev/scikit-learn,fzalkow/scikit-learn,massmutual/scikit-learn,ZenDevelopmentSystems/scikit-learn,mrshu/scikit-learn,AnasGhrab/scikit-learn,Jimmy-Morzaria/scikit-learn,herilalaina/scikit-learn,mehdidc/scikit-learn,Djabbz/scikit-learn,pypot/scikit-learn,akionakamura/scikit-learn,kaichogami/scikit-learn,ky822/scikit-learn,xuewei4d/scikit-learn,lazywei/scikit-learn,chrsrds/scikit-learn,tosolveit/scikit-learn,joshloyal/scikit-learn,terkkila/scikit-learn,abhishekgahlot/scikit-learn,beepee14/scikit-learn,anirudhjayaraman/scikit-learn,0asa/scikit-learn,shahankhatch/scikit-learn,bthirion/scikit-learn,MartinSavc/scikit-learn,khkaminska/scikit-learn,AIML/scikit-learn,vigilv/scikit-learn,mayblue9/scikit-learn,sergeyf/scikit-learn,PrashntS/scikit-learn,untom/scikit-learn,sgenoud/scikit-learn,cdegroc/scikit-learn,bhargav/scikit-learn,thilbern/scikit-learn,rishikksh20/scikit-learn,hsiaoyi0504/scikit-learn,mattilyra/scikit-learn,abimannans/scikit-learn,rvraghav93/scikit-learn,nmayorov/scikit-learn,alexeyum/scikit-learn,bthirion/scikit-learn,cainiaocome/scikit-learn,glemaitre/scikit-learn,roxyboy/scikit-learn,arahuja/scikit-learn,h2educ/scikit-learn,sonnyhu/scikit-learn,jblackburne/scikit-learn,quheng/scikit-learn,gclenaghan/scikit-learn,mayblue9/scikit-learn,zorojean/scikit-learn,costypetrisor/scikit-learn,wazeerzulfikar/scikit-learn,RomainBrault/scikit-learn,ldirer/scikit-learn,MatthieuBizien/scikit-learn,samzhang111/scikit-learn,icdishb/scikit-learn,aetilley/scikit-learn,kylerbrown/scikit-learn,ilyes14/scikit-learn,treycausey/scikit-learn,huobaowangxi/scikit-learn,btabibian/scikit-learn,nhejazi/scikit-learn,mikebenfield/scikit-learn,yanlend/scikit-learn,lenovor/scikit-learn,tomlof/scikit-learn,B3AU/waveTree,spallavolu/scikit-learn,ivannz/scikit-learn,kylerbrown/scikit-learn,betatim/scikit-learn,sanketloke/scikit-learn,belltailjp/scikit-learn,ldirer/scikit-learn,untom/scikit-learn,mattgiguere/scikit-learn,B3AU/waveTree,nikitasingh981/scikit-learn,dsullivan7/scikit-learn,hsuantien/scikit-learn,IssamLaradji/scikit-learn,jereze/scikit-learn,phdowling/scikit-learn,rvraghav93/scikit-learn,manhhomienbienthuy/scikit-learn,abhishekgahlot/scikit-learn,kashif/scikit-learn,akionakamura/scikit-learn,eickenberg/scikit-learn,mfjb/scikit-learn,samuel1208/scikit-learn,0asa/scikit-learn,vigilv/scikit-learn,TomDLT/scikit-learn,3manuek/scikit-learn,jorik041/scikit-learn,RachitKansal/scikit-learn,cl4rke/scikit-learn,shangwuhencc/scikit-learn,fabioticconi/scikit-learn,ishanic/scikit-learn,0x0all/scikit-learn,walterreade/scikit-learn,saiwing-yeung/scikit-learn,mfjb/scikit-learn,Sentient07/scikit-learn,wzbozon/scikit-learn,jmschrei/scikit-learn,macks22/scikit-learn,PatrickOReilly/scikit-learn,CforED/Machine-Learning,fengzhyuan/scikit-learn,theoryno3/scikit-learn,olologin/scikit-learn,jzt5132/scikit-learn,jaidevd/scikit-learn,lesteve/scikit-learn,altairpearl/scikit-learn,Clyde-fare/scikit-learn,MechCoder/scikit-learn,djgagne/scikit-learn,sonnyhu/scikit-learn,pythonvietnam/scikit-learn,jakobworldpeace/scikit-learn,toastedcornflakes/scikit-learn,cybernet14/scikit-learn,AlexRobson/scikit-learn,sonnyhu/scikit-learn,jmetzen/scikit-learn,larsmans/scikit-learn,costypetrisor/scikit-learn,liangz0707/scikit-learn,dsullivan7/scikit-learn,yask123/scikit-learn,btabibian/scikit-learn,ChanderG/scikit-learn,aabadie/scikit-learn,liberatorqjw/scikit-learn,abimannans/scikit-learn,bigdataelephants/scikit-learn,RachitKansal/scikit-learn,cainiaocome/scikit-learn,alvarofierroclavero/scikit-learn,ilo10/scikit-learn,Adai0808/scikit-learn,arahuja/scikit-learn,lazywei/scikit-learn,cybernet14/scikit-learn,zihua/scikit-learn,Aasmi/scikit-learn,r-mart/scikit-learn,loli/semisupervisedforests,treycausey/scikit-learn,elkingtonmcb/scikit-learn,IndraVikas/scikit-learn,vshtanko/scikit-learn,pompiduskus/scikit-learn,ogrisel/scikit-learn,hugobowne/scikit-learn,iismd17/scikit-learn,BiaDarkia/scikit-learn,rvraghav93/scikit-learn,kmike/scikit-learn,Lawrence-Liu/scikit-learn,zaxtax/scikit-learn,rrohan/scikit-learn,anurag313/scikit-learn,xiaoxiamii/scikit-learn,quheng/scikit-learn,Windy-Ground/scikit-learn,raghavrv/scikit-learn,betatim/scikit-learn,IndraVikas/scikit-learn,nomadcube/scikit-learn,rishikksh20/scikit-learn,Garrett-R/scikit-learn,JosmanPS/scikit-learn,andrewnc/scikit-learn,evgchz/scikit-learn,liyu1990/sklearn,vermouthmjl/scikit-learn,kevin-intel/scikit-learn,ChanChiChoi/scikit-learn,pv/scikit-learn,nhejazi/scikit-learn,RayMick/scikit-learn,rahuldhote/scikit-learn,sinhrks/scikit-learn,lenovor/scikit-learn,xyguo/scikit-learn,loli/semisupervisedforests,f3r/scikit-learn,zuku1985/scikit-learn,NunoEdgarGub1/scikit-learn,andrewnc/scikit-learn,ChanderG/scikit-learn,khkaminska/scikit-learn,yyjiang/scikit-learn,yanlend/scikit-learn,pkruskal/scikit-learn,sanketloke/scikit-learn,rsivapr/scikit-learn,AlexandreAbraham/scikit-learn,walterreade/scikit-learn,pythonvietnam/scikit-learn,fabianp/scikit-learn,pnedunuri/scikit-learn,trankmichael/scikit-learn,nikitasingh981/scikit-learn,eg-zhang/scikit-learn,wlamond/scikit-learn,jakirkham/scikit-learn,MartinDelzant/scikit-learn,wlamond/scikit-learn,mwv/scikit-learn,RomainBrault/scikit-learn,f3r/scikit-learn,JeanKossaifi/scikit-learn,maheshakya/scikit-learn,vortex-ape/scikit-learn,mugizico/scikit-learn,yunfeilu/scikit-learn,florian-f/sklearn,adamgreenhall/scikit-learn,NelisVerhoef/scikit-learn,toastedcornflakes/scikit-learn,potash/scikit-learn,Akshay0724/scikit-learn,huzq/scikit-learn,meduz/scikit-learn,wzbozon/scikit-learn,aewhatley/scikit-learn,etkirsch/scikit-learn,luo66/scikit-learn,adamgreenhall/scikit-learn,olologin/scikit-learn,untom/scikit-learn,mrshu/scikit-learn,murali-munna/scikit-learn,NelisVerhoef/scikit-learn,MohammedWasim/scikit-learn,sarahgrogan/scikit-learn,nomadcube/scikit-learn,shyamalschandra/scikit-learn,iismd17/scikit-learn,YinongLong/scikit-learn,eg-zhang/scikit-learn,glennq/scikit-learn,ningchi/scikit-learn,AnasGhrab/scikit-learn,phdowling/scikit-learn,joshloyal/scikit-learn,AlexanderFabisch/scikit-learn,mblondel/scikit-learn,maheshakya/scikit-learn,bnaul/scikit-learn,fengzhyuan/scikit-learn,Sentient07/scikit-learn,shikhardb/scikit-learn,ltiao/scikit-learn,q1ang/scikit-learn,shikhardb/scikit-learn,pythonvietnam/scikit-learn,NunoEdgarGub1/scikit-learn,chrisburr/scikit-learn,bikong2/scikit-learn,djgagne/scikit-learn,depet/scikit-learn,murali-munna/scikit-learn,adamgreenhall/scikit-learn,alexsavio/scikit-learn,mlyundin/scikit-learn,luo66/scikit-learn,ycaihua/scikit-learn,MartinSavc/scikit-learn,nesterione/scikit-learn,robin-lai/scikit-learn,ldirer/scikit-learn,jorik041/scikit-learn,AlexRobson/scikit-learn,plissonf/scikit-learn,ishanic/scikit-learn,shahankhatch/scikit-learn,petosegan/scikit-learn,RomainBrault/scikit-learn,hdmetor/scikit-learn,vivekmishra1991/scikit-learn,raghavrv/scikit-learn,q1ang/scikit-learn,rsivapr/scikit-learn,JsNoNo/scikit-learn,mfjb/scikit-learn,potash/scikit-learn,procoder317/scikit-learn,0x0all/scikit-learn,sumspr/scikit-learn,zuku1985/scikit-learn,lazywei/scikit-learn,saiwing-yeung/scikit-learn,arabenjamin/scikit-learn,manashmndl/scikit-learn,hrjn/scikit-learn,pypot/scikit-learn,cdegroc/scikit-learn,yonglehou/scikit-learn,Myasuka/scikit-learn,anurag313/scikit-learn,henrykironde/scikit-learn,joshloyal/scikit-learn,hitszxp/scikit-learn,carrillo/scikit-learn,Garrett-R/scikit-learn,amueller/scikit-learn,fabioticconi/scikit-learn,lucidfrontier45/scikit-learn,dingocuster/scikit-learn,scikit-learn/scikit-learn,smartscheduling/scikit-learn-categorical-tree,ngoix/OCRF,altairpearl/scikit-learn,pkruskal/scikit-learn,saiwing-yeung/scikit-learn,maheshakya/scikit-learn,mxjl620/scikit-learn,alvarofierroclavero/scikit-learn,shikhardb/scikit-learn,kevin-intel/scikit-learn,RachitKansal/scikit-learn,cybernet14/scikit-learn,jakobworldpeace/scikit-learn,mojoboss/scikit-learn,YinongLong/scikit-learn,rrohan/scikit-learn,LohithBlaze/scikit-learn,B3AU/waveTree,robbymeals/scikit-learn,ycaihua/scikit-learn,AlexRobson/scikit-learn,mikebenfield/scikit-learn,LiaoPan/scikit-learn,ndingwall/scikit-learn,OshynSong/scikit-learn,voxlol/scikit-learn,RPGOne/scikit-learn,vshtanko/scikit-learn,kjung/scikit-learn,AlexandreAbraham/scikit-learn,giorgiop/scikit-learn,zhenv5/scikit-learn,mojoboss/scikit-learn,eickenberg/scikit-learn,arjoly/scikit-learn,heli522/scikit-learn,ngoix/OCRF,LohithBlaze/scikit-learn,hitszxp/scikit-learn,sumspr/scikit-learn,equialgo/scikit-learn,robbymeals/scikit-learn,manhhomienbienthuy/scikit-learn,hainm/scikit-learn,harshaneelhg/scikit-learn,herilalaina/scikit-learn,ycaihua/scikit-learn,krez13/scikit-learn,Clyde-fare/scikit-learn,zuku1985/scikit-learn,fyffyt/scikit-learn,bikong2/scikit-learn,liyu1990/sklearn,Achuth17/scikit-learn,robin-lai/scikit-learn,CVML/scikit-learn,kaichogami/scikit-learn,pythonvietnam/scikit-learn,joernhees/scikit-learn,nesterione/scikit-learn,madjelan/scikit-learn,jjx02230808/project0223,mrshu/scikit-learn,ningchi/scikit-learn,siutanwong/scikit-learn,macks22/scikit-learn,poryfly/scikit-learn,pompiduskus/scikit-learn,sinhrks/scikit-learn,xzh86/scikit-learn,meduz/scikit-learn,davidgbe/scikit-learn,ndingwall/scikit-learn,billy-inn/scikit-learn,jakobworldpeace/scikit-learn,cauchycui/scikit-learn,smartscheduling/scikit-learn-categorical-tree,plissonf/scikit-learn,vermouthmjl/scikit-learn,AlexandreAbraham/scikit-learn,ElDeveloper/scikit-learn,Windy-Ground/scikit-learn,djgagne/scikit-learn,ogrisel/scikit-learn,carrillo/scikit-learn,equialgo/scikit-learn,davidgbe/scikit-learn,mhue/scikit-learn,h2educ/scikit-learn,aminert/scikit-learn,arahuja/scikit-learn,Sentient07/scikit-learn,altairpearl/scikit-learn,lesteve/scikit-learn,arabenjamin/scikit-learn,tdhopper/scikit-learn,shyamalschandra/scikit-learn,mwv/scikit-learn,466152112/scikit-learn,liyu1990/sklearn,ndingwall/scikit-learn,nmayorov/scikit-learn,carrillo/scikit-learn,alvarofierroclavero/scikit-learn,Djabbz/scikit-learn,espg/scikit-learn,jorge2703/scikit-learn,dsquareindia/scikit-learn,lin-credible/scikit-learn,ishanic/scikit-learn,hugobowne/scikit-learn,appapantula/scikit-learn,michigraber/scikit-learn,lin-credible/scikit-learn,rishikksh20/scikit-learn,jayflo/scikit-learn,mlyundin/scikit-learn,mblondel/scikit-learn,ilyes14/scikit-learn,themrmax/scikit-learn,etkirsch/scikit-learn,themrmax/scikit-learn,pv/scikit-learn,jzt5132/scikit-learn,walterreade/scikit-learn,russel1237/scikit-learn,alexeyum/scikit-learn,Titan-C/scikit-learn,mayblue9/scikit-learn,petosegan/scikit-learn,ssaeger/scikit-learn,ClimbsRocks/scikit-learn,mattilyra/scikit-learn,phdowling/scikit-learn,NunoEdgarGub1/scikit-learn,jm-begon/scikit-learn,larsmans/scikit-learn,anurag313/scikit-learn,zuku1985/scikit-learn,jseabold/scikit-learn,depet/scikit-learn,UNR-AERIAL/scikit-learn,larsmans/scikit-learn,michigraber/scikit-learn,petosegan/scikit-learn,Titan-C/scikit-learn,rahuldhote/scikit-learn,florian-f/sklearn,mattilyra/scikit-learn,OshynSong/scikit-learn,theoryno3/scikit-learn,f3r/scikit-learn,mblondel/scikit-learn,terkkila/scikit-learn,mhdella/scikit-learn,fabioticconi/scikit-learn,imaculate/scikit-learn,mjgrav2001/scikit-learn,DonBeo/scikit-learn,frank-tancf/scikit-learn,jaidevd/scikit-learn,rexshihaoren/scikit-learn,yanlend/scikit-learn,xwolf12/scikit-learn,ephes/scikit-learn,bigdataelephants/scikit-learn,elkingtonmcb/scikit-learn,ky822/scikit-learn,deepesch/scikit-learn,MechCoder/scikit-learn,3manuek/scikit-learn,bnaul/scikit-learn,untom/scikit-learn,jseabold/scikit-learn,hdmetor/scikit-learn,ycaihua/scikit-learn,tomlof/scikit-learn,evgchz/scikit-learn,shusenl/scikit-learn,jayflo/scikit-learn,rsivapr/scikit-learn,Barmaley-exe/scikit-learn,vybstat/scikit-learn,JeanKossaifi/scikit-learn,pompiduskus/scikit-learn,kylerbrown/scikit-learn,nmayorov/scikit-learn,sanketloke/scikit-learn,cwu2011/scikit-learn,siutanwong/scikit-learn,themrmax/scikit-learn,krez13/scikit-learn,ZENGXH/scikit-learn,idlead/scikit-learn,treycausey/scikit-learn,xubenben/scikit-learn,RomainBrault/scikit-learn,siutanwong/scikit-learn,glouppe/scikit-learn,ilyes14/scikit-learn,pratapvardhan/scikit-learn,AlexandreAbraham/scikit-learn,sergeyf/scikit-learn,liyu1990/sklearn,fredhusser/scikit-learn,AlexanderFabisch/scikit-learn,fengzhyuan/scikit-learn,liberatorqjw/scikit-learn,mikebenfield/scikit-learn,tmhm/scikit-learn,dingocuster/scikit-learn,sarahgrogan/scikit-learn,glennq/scikit-learn,bhargav/scikit-learn,IssamLaradji/scikit-learn,maheshakya/scikit-learn,stylianos-kampakis/scikit-learn,chrsrds/scikit-learn,nomadcube/scikit-learn,henridwyer/scikit-learn,clemkoa/scikit-learn,mehdidc/scikit-learn,phdowling/scikit-learn,devanshdalal/scikit-learn,mugizico/scikit-learn,vinayak-mehta/scikit-learn,hitszxp/scikit-learn,B3AU/waveTree,jlegendary/scikit-learn,giorgiop/scikit-learn,gclenaghan/scikit-learn,kaichogami/scikit-learn,loli/sklearn-ensembletrees,PatrickChrist/scikit-learn,0asa/scikit-learn,jakirkham/scikit-learn,tdhopper/scikit-learn,mxjl620/scikit-learn,jayflo/scikit-learn,aminert/scikit-learn,fbagirov/scikit-learn,ChanderG/scikit-learn,yunfeilu/scikit-learn,vybstat/scikit-learn,ahoyosid/scikit-learn,idlead/scikit-learn,jzt5132/scikit-learn,jkarnows/scikit-learn,CforED/Machine-Learning,liberatorqjw/scikit-learn,Fireblend/scikit-learn,trungnt13/scikit-learn,0x0all/scikit-learn,jmschrei/scikit-learn,ankurankan/scikit-learn,carrillo/scikit-learn,ilo10/scikit-learn,rahul-c1/scikit-learn,Djabbz/scikit-learn,sonnyhu/scikit-learn,ashhher3/scikit-learn,hrjn/scikit-learn,xyguo/scikit-learn,andaag/scikit-learn,bnaul/scikit-learn,Vimos/scikit-learn,pompiduskus/scikit-learn,MartinSavc/scikit-learn,anirudhjayaraman/scikit-learn,kevin-intel/scikit-learn,sgenoud/scikit-learn,belltailjp/scikit-learn,yyjiang/scikit-learn,wlamond/scikit-learn,Barmaley-exe/scikit-learn,fzalkow/scikit-learn,shahankhatch/scikit-learn,altairpearl/scikit-learn,treycausey/scikit-learn,loli/sklearn-ensembletrees,gotomypc/scikit-learn,LohithBlaze/scikit-learn,jjx02230808/project0223,glemaitre/scikit-learn,deepesch/scikit-learn,chrisburr/scikit-learn,vortex-ape/scikit-learn,NelisVerhoef/scikit-learn,Srisai85/scikit-learn,ngoix/OCRF,Jimmy-Morzaria/scikit-learn,russel1237/scikit-learn,samuel1208/scikit-learn,JosmanPS/scikit-learn,LiaoPan/scikit-learn,PatrickOReilly/scikit-learn,glemaitre/scikit-learn,IndraVikas/scikit-learn,hlin117/scikit-learn,espg/scikit-learn,betatim/scikit-learn,ivannz/scikit-learn,cainiaocome/scikit-learn,justincassidy/scikit-learn,vivekmishra1991/scikit-learn,ClimbsRocks/scikit-learn,heli522/scikit-learn,andrewnc/scikit-learn,jaidevd/scikit-learn,simon-pepin/scikit-learn,mehdidc/scikit-learn,zihua/scikit-learn,krez13/scikit-learn,JosmanPS/scikit-learn,hlin117/scikit-learn,eickenberg/scikit-learn,mrshu/scikit-learn,mjudsp/Tsallis,bnaul/scikit-learn,HolgerPeters/scikit-learn,mojoboss/scikit-learn,r-mart/scikit-learn,mfjb/scikit-learn,samzhang111/scikit-learn,ChanderG/scikit-learn,jorge2703/scikit-learn,rajat1994/scikit-learn,mhue/scikit-learn,plissonf/scikit-learn,ashhher3/scikit-learn,fabianp/scikit-learn,idlead/scikit-learn,jmetzen/scikit-learn,lucidfrontier45/scikit-learn,hdmetor/scikit-learn,pianomania/scikit-learn,Aasmi/scikit-learn,joernhees/scikit-learn,mugizico/scikit-learn,eg-zhang/scikit-learn,xubenben/scikit-learn,ky822/scikit-learn,depet/scikit-learn,ZenDevelopmentSystems/scikit-learn,zorojean/scikit-learn,MechCoder/scikit-learn,trankmichael/scikit-learn,Djabbz/scikit-learn,waterponey/scikit-learn,chrsrds/scikit-learn,pnedunuri/scikit-learn,HolgerPeters/scikit-learn,JeanKossaifi/scikit-learn,ashhher3/scikit-learn,vivekmishra1991/scikit-learn,manhhomienbienthuy/scikit-learn,dsquareindia/scikit-learn,loli/sklearn-ensembletrees,alvarofierroclavero/scikit-learn,ElDeveloper/scikit-learn,nomadcube/scikit-learn,CVML/scikit-learn,ndingwall/scikit-learn,lbishal/scikit-learn,xiaoxiamii/scikit-learn,tawsifkhan/scikit-learn,giorgiop/scikit-learn,rexshihaoren/scikit-learn,vibhorag/scikit-learn,AIML/scikit-learn,zhenv5/scikit-learn,DSLituiev/scikit-learn,xyguo/scikit-learn,abhishekgahlot/scikit-learn,PatrickChrist/scikit-learn,Achuth17/scikit-learn,manhhomienbienthuy/scikit-learn,mjudsp/Tsallis,mayblue9/scikit-learn,ephes/scikit-learn,lucidfrontier45/scikit-learn,Obus/scikit-learn,ilyes14/scikit-learn,evgchz/scikit-learn,ephes/scikit-learn,wanggang3333/scikit-learn,scikit-learn/scikit-learn,nhejazi/scikit-learn,tdhopper/scikit-learn,xuewei4d/scikit-learn,kjung/scikit-learn,Clyde-fare/scikit-learn,plissonf/scikit-learn,vybstat/scikit-learn,TomDLT/scikit-learn,mhdella/scikit-learn,potash/scikit-learn,aabadie/scikit-learn,walterreade/scikit-learn,UNR-AERIAL/scikit-learn,JPFrancoia/scikit-learn,imaculate/scikit-learn,ltiao/scikit-learn,ZENGXH/scikit-learn,dsquareindia/scikit-learn,jmetzen/scikit-learn,raghavrv/scikit-learn,manashmndl/scikit-learn,jjx02230808/project0223,kjung/scikit-learn,aabadie/scikit-learn,arjoly/scikit-learn,imaculate/scikit-learn,procoder317/scikit-learn,shangwuhencc/scikit-learn,heli522/scikit-learn,gotomypc/scikit-learn,rahuldhote/scikit-learn,siutanwong/scikit-learn,MohammedWasim/scikit-learn,glouppe/scikit-learn,smartscheduling/scikit-learn-categorical-tree,aminert/scikit-learn,rexshihaoren/scikit-learn,glennq/scikit-learn,voxlol/scikit-learn,AlexanderFabisch/scikit-learn,huobaowangxi/scikit-learn,kevin-intel/scikit-learn,thientu/scikit-learn,treycausey/scikit-learn,xubenben/scikit-learn,ZENGXH/scikit-learn,elkingtonmcb/scikit-learn,RayMick/scikit-learn,zorroblue/scikit-learn,tmhm/scikit-learn,pypot/scikit-learn,alexeyum/scikit-learn,theoryno3/scikit-learn,jpautom/scikit-learn,PatrickOReilly/scikit-learn,cauchycui/scikit-learn,TomDLT/scikit-learn,MatthieuBizien/scikit-learn,jereze/scikit-learn,3manuek/scikit-learn,lin-credible/scikit-learn,xzh86/scikit-learn,jorge2703/scikit-learn,MohammedWasim/scikit-learn,kashif/scikit-learn,jblackburne/scikit-learn,Obus/scikit-learn,Nyker510/scikit-learn,Akshay0724/scikit-learn,ningchi/scikit-learn,jseabold/scikit-learn,akionakamura/scikit-learn,dsullivan7/scikit-learn,AlexRobson/scikit-learn,spallavolu/scikit-learn,PatrickOReilly/scikit-learn,lenovor/scikit-learn,hsuantien/scikit-learn,ankurankan/scikit-learn,jkarnows/scikit-learn,djgagne/scikit-learn,xiaoxiamii/scikit-learn,potash/scikit-learn,ycaihua/scikit-learn,IssamLaradji/scikit-learn,justincassidy/scikit-learn,herilalaina/scikit-learn,YinongLong/scikit-learn,Sentient07/scikit-learn,Garrett-R/scikit-learn,olologin/scikit-learn,giorgiop/scikit-learn,fzalkow/scikit-learn,kmike/scikit-learn,voxlol/scikit-learn,wzbozon/scikit-learn,lucidfrontier45/scikit-learn,YinongLong/scikit-learn,zaxtax/scikit-learn,Jimmy-Morzaria/scikit-learn,huobaowangxi/scikit-learn,thientu/scikit-learn,ssaeger/scikit-learn,nvoron23/scikit-learn,bthirion/scikit-learn,mehdidc/scikit-learn,massmutual/scikit-learn,ElDeveloper/scikit-learn,arahuja/scikit-learn,f3r/scikit-learn,eickenberg/scikit-learn,robbymeals/scikit-learn,Myasuka/scikit-learn,mwv/scikit-learn,hainm/scikit-learn,sarahgrogan/scikit-learn,anntzer/scikit-learn,rohanp/scikit-learn,hsiaoyi0504/scikit-learn,voxlol/scikit-learn,Titan-C/scikit-learn,ivannz/scikit-learn,gclenaghan/scikit-learn,Obus/scikit-learn,CVML/scikit-learn,ChanChiChoi/scikit-learn,anirudhjayaraman/scikit-learn,ephes/scikit-learn,jaidevd/scikit-learn,AnasGhrab/scikit-learn,mattgiguere/scikit-learn,DonBeo/scikit-learn,smartscheduling/scikit-learn-categorical-tree,jseabold/scikit-learn,appapantula/scikit-learn,terkkila/scikit-learn,sgenoud/scikit-learn,thilbern/scikit-learn,justincassidy/scikit-learn,lbishal/scikit-learn,tawsifkhan/scikit-learn,jlegendary/scikit-learn,Vimos/scikit-learn,bigdataelephants/scikit-learn,wazeerzulfikar/scikit-learn,ClimbsRocks/scikit-learn,jakirkham/scikit-learn,cdegroc/scikit-learn,mblondel/scikit-learn,mjgrav2001/scikit-learn,IshankGulati/scikit-learn,nikitasingh981/scikit-learn,victorbergelin/scikit-learn,ominux/scikit-learn,pv/scikit-learn,madjelan/scikit-learn,ashhher3/scikit-learn,pratapvardhan/scikit-learn,pypot/scikit-learn,zorroblue/scikit-learn,Barmaley-exe/scikit-learn,vinayak-mehta/scikit-learn,q1ang/scikit-learn,shusenl/scikit-learn,schets/scikit-learn,etkirsch/scikit-learn,mrshu/scikit-learn,harshaneelhg/scikit-learn,alexsavio/scikit-learn,JsNoNo/scikit-learn,stylianos-kampakis/scikit-learn,ankurankan/scikit-learn,UNR-AERIAL/scikit-learn,hrjn/scikit-learn,aewhatley/scikit-learn,cauchycui/scikit-learn,AlexanderFabisch/scikit-learn,amueller/scikit-learn,cl4rke/scikit-learn,kagayakidan/scikit-learn,abhishekgahlot/scikit-learn,hdmetor/scikit-learn,nvoron23/scikit-learn,thilbern/scikit-learn,vinayak-mehta/scikit-learn,beepee14/scikit-learn,tmhm/scikit-learn,shikhardb/scikit-learn,hsiaoyi0504/scikit-learn,zihua/scikit-learn,thientu/scikit-learn,Windy-Ground/scikit-learn,kmike/scikit-learn,pianomania/scikit-learn,wanggang3333/scikit-learn,ChanChiChoi/scikit-learn,0x0all/scikit-learn,stylianos-kampakis/scikit-learn,jmschrei/scikit-learn,shyamalschandra/scikit-learn,dhruv13J/scikit-learn,theoryno3/scikit-learn,ahoyosid/scikit-learn,zhenv5/scikit-learn,RPGOne/scikit-learn,qifeigit/scikit-learn,DSLituiev/scikit-learn,henrykironde/scikit-learn,MartinDelzant/scikit-learn,petosegan/scikit-learn,rsivapr/scikit-learn,manashmndl/scikit-learn,xubenben/scikit-learn,xwolf12/scikit-learn,zorroblue/scikit-learn,khkaminska/scikit-learn,rohanp/scikit-learn,IssamLaradji/scikit-learn,h2educ/scikit-learn,BiaDarkia/scikit-learn,mattgiguere/scikit-learn,simon-pepin/scikit-learn,nvoron23/scikit-learn,OshynSong/scikit-learn,btabibian/scikit-learn,meduz/scikit-learn,alexsavio/scikit-learn,waterponey/scikit-learn,espg/scikit-learn,nrhine1/scikit-learn,betatim/scikit-learn,Aasmi/scikit-learn,frank-tancf/scikit-learn,huzq/scikit-learn,abhishekgahlot/scikit-learn,fbagirov/scikit-learn,Achuth17/scikit-learn,Vimos/scikit-learn,aetilley/scikit-learn,ltiao/scikit-learn,trungnt13/scikit-learn,iismd17/scikit-learn,justincassidy/scikit-learn,icdishb/scikit-learn,adamgreenhall/scikit-learn,nmayorov/scikit-learn,MartinSavc/scikit-learn,Nyker510/scikit-learn,cainiaocome/scikit-learn,BiaDarkia/scikit-learn,robbymeals/scikit-learn,jm-begon/scikit-learn,sumspr/scikit-learn,costypetrisor/scikit-learn,lucidfrontier45/scikit-learn,meduz/scikit-learn,anntzer/scikit-learn,eickenberg/scikit-learn,ssaeger/scikit-learn,ngoix/OCRF,anntzer/scikit-learn,cybernet14/scikit-learn,hsuantien/scikit-learn,kashif/scikit-learn,jpautom/scikit-learn,kashif/scikit-learn,florian-f/sklearn,vshtanko/scikit-learn,Achuth17/scikit-learn,sinhrks/scikit-learn,mattilyra/scikit-learn,rrohan/scikit-learn,HolgerPeters/scikit-learn,Adai0808/scikit-learn,PrashntS/scikit-learn,Lawrence-Liu/scikit-learn,hlin117/scikit-learn,andaag/scikit-learn,JsNoNo/scikit-learn,jayflo/scikit-learn,marcocaccin/scikit-learn,huzq/scikit-learn,trankmichael/scikit-learn,xavierwu/scikit-learn,aetilley/scikit-learn,jorik041/scikit-learn,mikebenfield/scikit-learn,RachitKansal/scikit-learn,glouppe/scikit-learn,vibhorag/scikit-learn,appapantula/scikit-learn,rexshihaoren/scikit-learn,xavierwu/scikit-learn,trankmichael/scikit-learn,PrashntS/scikit-learn,ZenDevelopmentSystems/scikit-learn,wzbozon/scikit-learn,andaag/scikit-learn,sgenoud/scikit-learn,equialgo/scikit-learn,Nyker510/scikit-learn,robin-lai/scikit-learn,bhargav/scikit-learn,icdishb/scikit-learn,russel1237/scikit-learn,alexeyum/scikit-learn,ZENGXH/scikit-learn,rsivapr/scikit-learn,nrhine1/scikit-learn,madjelan/scikit-learn,equialgo/scikit-learn,lesteve/scikit-learn,MohammedWasim/scikit-learn,fabioticconi/scikit-learn,pratapvardhan/scikit-learn,amueller/scikit-learn,appapantula/scikit-learn,AIML/scikit-learn,pratapvardhan/scikit-learn,CVML/scikit-learn,vibhorag/scikit-learn,sgenoud/scikit-learn,abhishekkrthakur/scikit-learn,kaichogami/scikit-learn,tawsifkhan/scikit-learn,sarahgrogan/scikit-learn,pianomania/scikit-learn,xuewei4d/scikit-learn,xzh86/scikit-learn,depet/scikit-learn,kmike/scikit-learn,jmschrei/scikit-learn,nikitasingh981/scikit-learn,hugobowne/scikit-learn,deepesch/scikit-learn,roxyboy/scikit-learn,waterponey/scikit-learn,ngoix/OCRF,ankurankan/scikit-learn,pnedunuri/scikit-learn,JPFrancoia/scikit-learn,0asa/scikit-learn,h2educ/scikit-learn,marcocaccin/scikit-learn,lbishal/scikit-learn,MartinDelzant/scikit-learn,roxyboy/scikit-learn,Windy-Ground/scikit-learn,belltailjp/scikit-learn,nelson-liu/scikit-learn,lin-credible/scikit-learn,RayMick/scikit-learn,ldirer/scikit-learn,OshynSong/scikit-learn,vigilv/scikit-learn,jereze/scikit-learn,ankurankan/scikit-learn,huobaowangxi/scikit-learn,stylianos-kampakis/scikit-learn,IshankGulati/scikit-learn,Akshay0724/scikit-learn,mjudsp/Tsallis,eg-zhang/scikit-learn,joernhees/scikit-learn,massmutual/scikit-learn,henridwyer/scikit-learn,loli/sklearn-ensembletrees,nelson-liu/scikit-learn,dhruv13J/scikit-learn,ahoyosid/scikit-learn,wazeerzulfikar/scikit-learn,gotomypc/scikit-learn,shahankhatch/scikit-learn,lesteve/scikit-learn,samzhang111/scikit-learn,belltailjp/scikit-learn,toastedcornflakes/scikit-learn,elkingtonmcb/scikit-learn,zaxtax/scikit-learn,hainm/scikit-learn,depet/scikit-learn,mattilyra/scikit-learn,kjung/scikit-learn,mlyundin/scikit-learn,mjgrav2001/scikit-learn,rishikksh20/scikit-learn,Barmaley-exe/scikit-learn,Lawrence-Liu/scikit-learn,sergeyf/scikit-learn,ky822/scikit-learn,tmhm/scikit-learn,andrewnc/scikit-learn,ilo10/scikit-learn,harshaneelhg/scikit-learn,yyjiang/scikit-learn,xzh86/scikit-learn,larsmans/scikit-learn,chrsrds/scikit-learn,arabenjamin/scikit-learn,anntzer/scikit-learn,fyffyt/scikit-learn,qifeigit/scikit-learn,fbagirov/scikit-learn,chrisburr/scikit-learn,cdegroc/scikit-learn,aflaxman/scikit-learn,ZenDevelopmentSystems/scikit-learn,yonglehou/scikit-learn,lazywei/scikit-learn,dhruv13J/scikit-learn,Titan-C/scikit-learn,wanggang3333/scikit-learn,rahul-c1/scikit-learn,yyjiang/scikit-learn,Srisai85/scikit-learn,davidgbe/scikit-learn,dsquareindia/scikit-learn,pkruskal/scikit-learn,roxyboy/scikit-learn,qifeigit/scikit-learn,akionakamura/scikit-learn,yunfeilu/scikit-learn,466152112/scikit-learn
examples/plot_feature_selection.py
examples/plot_feature_selection.py
""" =============================== Univariate Feature Selection =============================== An example showing univariate feature selection. Noisy (non informative) features are added to the iris data and univariate feature selection is applied. For each feature, we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that univariate feature selection selects the informative features and that these have larger SVM weights. In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with univariate feature selection. The SVM attributes small weights to these features, but these weight are non zero. Applying univariate feature selection before the SVM increases the SVM weight attributed to the significant features, and will thus improve classification. """ import numpy as np import pylab as pl ################################################################################ # import some data to play with # The IRIS dataset from scikits.learn import datasets, svm iris = datasets.load_iris() # Some noisy data not correlated E = np.random.normal(size=(len(iris.data), 35)) # Add the noisy data to the informative features x = np.hstack((iris.data, E)) y = iris.target ################################################################################ pl.figure(1) pl.clf() x_indices = np.arange(x.shape[-1]) ################################################################################ # Univariate feature selection from scikits.learn.feature_selection import univariate_selection as univ_selection # As a scoring function, we use a F test for classification # We use the default selection function: the 10% most significant # features selector = univ_selection.SelectFpr( score_func=univ_selection.f_classif) selector.fit(x, y) scores = -np.log(selector._pvalues) scores /= scores.max() pl.bar(x_indices-.45, scores, width=.3, label=r'Univariate score ($-\log(p\,values)$)', color='g') ################################################################################ # Compare to the weights of an SVM clf = svm.SVC(kernel='linear') clf.fit(x, y) svm_weights = (clf.support_**2).sum(axis=0) svm_weights /= svm_weights.max() pl.bar(x_indices-.15, svm_weights, width=.3, label='SVM weight', color='r') pl.title("Comparing feature selection") pl.xlabel('Feature number') pl.yticks(()) pl.axis('tight') pl.legend() pl.show()
""" =============================== Univariate Feature Selection =============================== An example showing univariate feature selection. Noisy (non informative) features are added to the iris data and univariate feature selection is applied. For each feature, we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that univariate feature selection selects the informative features and that these have larger SVM weights. In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with univariate feature selection. The SVM attributes small weights to these features, but these weight are non zero. Applying univariate feature selection before the SVM increases the SVM weight attributed to the significant features, and will thus improve classification. """ import numpy as np import pylab as pl ################################################################################ # import some data to play with # The IRIS dataset from scikits.learn import datasets, svm iris = datasets.load_iris() # Some noisy data not correlated E = np.random.normal(size=(len(iris.data), 35)) # Add the noisy data to the informative features x = np.hstack((iris.data, E)) y = iris.target ################################################################################ pl.figure(1) pl.clf() x_indices = np.arange(x.shape[-1]) ################################################################################ # Univariate feature selection from scikits.learn.feature_selection import univ_selection # As a scoring function, we use a F test for classification # We use the default selection function: the 10% most significant # features selector = univ_selection.UnivSelection( score_func=univ_selection.f_classif) selector.fit(x, y) scores = -np.log(selector.p_values_) scores /= scores.max() pl.bar(x_indices-.45, scores, width=.3, label=r'Univariate score ($-\log(p\,values)$)', color='g') ################################################################################ # Compare to the weights of an SVM clf = svm.SVC(kernel='linear') clf.fit(x, y) svm_weights = (clf.support_**2).sum(axis=0) svm_weights /= svm_weights.max() pl.bar(x_indices-.15, svm_weights, width=.3, label='SVM weight', color='r') ################################################################################ # Now fit an SVM with added feature selection selector = univ_selection.UnivSelection( estimator=clf, score_func=univ_selection.f_classif) selector.fit(x, y) svm_weights = (clf.support_**2).sum(axis=0) svm_weights /= svm_weights.max() full_svm_weights = np.zeros(selector.support_.shape) full_svm_weights[selector.support_] = svm_weights pl.bar(x_indices+.15, full_svm_weights, width=.3, label='SVM weight after univariate selection', color='b') pl.title("Comparing feature selection") pl.xlabel('Feature number') pl.yticks(()) pl.axis('tight') pl.legend() pl.show()
bsd-3-clause
Python
1beec05941a6a34452bea6e9f60a1673c0f0925f
add base test case file
isotoma/KeenClient-Python,keenlabs/KeenClient-Python,ruleant/KeenClient-Python
keen/tests/base_test_case.py
keen/tests/base_test_case.py
__author__ = 'dkador'
mit
Python
1fa849f1a0eadad9573b677d3904986d76f900eb
Create main.py
mindm/2017Challenges,erocs/2017Challenges,popcornanachronism/2017Challenges,mindm/2017Challenges,erocs/2017Challenges,DakRomo/2017Challenges,popcornanachronism/2017Challenges,erocs/2017Challenges,popcornanachronism/2017Challenges,DakRomo/2017Challenges,popcornanachronism/2017Challenges,popcornanachronism/2017Challenges,DakRomo/2017Challenges,popcornanachronism/2017Challenges,DakRomo/2017Challenges,mindm/2017Challenges,DakRomo/2017Challenges,erocs/2017Challenges,DakRomo/2017Challenges,mindm/2017Challenges,DakRomo/2017Challenges,DakRomo/2017Challenges,erocs/2017Challenges,mindm/2017Challenges,popcornanachronism/2017Challenges,DakRomo/2017Challenges,erocs/2017Challenges,erocs/2017Challenges,mindm/2017Challenges,mindm/2017Challenges,erocs/2017Challenges,popcornanachronism/2017Challenges,erocs/2017Challenges,mindm/2017Challenges,DakRomo/2017Challenges,mindm/2017Challenges,mindm/2017Challenges,DakRomo/2017Challenges,mindm/2017Challenges,erocs/2017Challenges,popcornanachronism/2017Challenges,erocs/2017Challenges,erocs/2017Challenges,DakRomo/2017Challenges,popcornanachronism/2017Challenges,mindm/2017Challenges,popcornanachronism/2017Challenges,mindm/2017Challenges,mindm/2017Challenges,popcornanachronism/2017Challenges,popcornanachronism/2017Challenges,DakRomo/2017Challenges,erocs/2017Challenges,DakRomo/2017Challenges,erocs/2017Challenges,popcornanachronism/2017Challenges
challenge_2/python/wost/main.py
challenge_2/python/wost/main.py
""" Python 3.6: :: Counts all the instances of all the elements in a list. :: Returns all the instances with a count of 1. """ def find_one_in_list(a_list): a_dict = {} for char in a_list: if char not in a_dict.keys(): a_dict[char] = 1 else: a_dict[char] += 1 for letter in a_dict.keys(): if a_dict[letter] == 1: print(letter, end=" ") print() def main(): # Returns 6, 7. find_one_in_list([5, 4, 3, 4, 5, 6, 1, 3, 1, 7, 8, 8]) # Returns b. find_one_in_list(["a", "b", "c", "a", "c", "W", "W"]) # Returns A, 5, r. find_one_in_list(["A", "b", "d", "r", 4, 5, 4, "b", "d"]) # Returns nothing. find_one_in_list([]) if __name__ == "__main__": main()
mit
Python
ac4679b4dcbbc3b2a29230233afc138f98cf2c42
Add the basics
wurstmineberg/python-anvil
anvil.py
anvil.py
import gzip import io import nbt.nbt import pathlib import re import zlib class Region: def __init__(self, path): if isinstance(path, str): path = pathlib.Path(path) with path.open('rb') as f: data = f.read() self.locations = data[:4096] self.timestamps = data[4096:8192] self.data = data[8192:] match = re.search('r\.(-?[0-9]+)\.(-?[0-9]+)\.mca$', path.name) if match: self.x = int(match.group(1)) self.z = int(match.group(2)) else: self.x = None self.z = None def chunk_column(self, x, z): x_offset = x & 31 z_offset = z & 31 meta_offset = 4 * ((x_offset & 32) + (z_offset & 32) * 32) chunk_location = self.locations[meta_offset:meta_offset + 4] offset = chunk_location[0] * (256 ** 2) + chunk_location[1] * 256 + chunk_location[2] if offset == 0: return ChunkColumn(None, x=x, z=z) else: offset -= 2 sector_count = chunk_location[3] return ChunkColumn(self.data[4096 * offset:4096 * (offset + sector_count)], x=x, z=z) class ChunkColumn: def __init__(self, data, *, x=None, z=None): self.x = x self.z = z length = data[0] * (256 ** 3) + data[1] * (256 ** 2) + data[2] * 256 + data[3] compression = data[4] compressed_data = data[5:4 + length] if compression == 1: # gzip decompress = gzip.decompress elif compression == 2: # zlib decompress = zlib.decompress else: raise ValueError('Unknown compression method: {}'.format(compression)) self.data = nbt.nbt.NBTFile(buffer=io.BytesIO(decompress(compressed_data)))
mit
Python
702abe6dc661fbcda04f743edc56d2938098cefa
Add checkJSON file function only for checking a JSON file against a specified schema
jimwaldo/HarvardX-Tools,jimwaldo/HarvardX-Tools
src/main/python/convertfiles/checkJSON.py
src/main/python/convertfiles/checkJSON.py
#!/nfs/projects/c/ci3_jwaldo/MONGO/bin/python """ This function will check an existing JSON newline delimited file against a specified schema Input is a newline delimited JSON file and schema file Output is a summary printout of statistics Usage: python checkJSON [-options] OPTIONS: --input Name of input filename (required) --output Name of output filename --schema Specify JSON Schema (required) --schema-name Specify JSON Schema name within json file, if it exists @author: G.Lopez """ import convertCSVtoJSON as converter from path import path import json from collections import OrderedDict import argparse import sys # Maintain Stats LINE_CNT = 0 LINE_CNT_1000 = 1000 def checkJSON(inputFile, schemaFile, schemaName=None): global LINE_CNT # Read specified schema file checkFormat = converter.convertCSVtoJSON() schema_dict = checkFormat.readSchema( path(schemaFile), schemaName ) # Read JSON file fin = open(inputFile, 'r') for line in fin: try: json_rec = json.loads(line, object_pairs_hook=OrderedDict) checkFormat.cleanJSONline(json_rec, schema_dict, applySchema=False) checkFormat.checkIllegalKeys(json_rec, fixkeys=False) # Print procesing Counter LINE_CNT = LINE_CNT + 1 if LINE_CNT % LINE_CNT_1000 == 0: sys.stdout.write("[main]: %dk Lines processed\r" % ( LINE_CNT / LINE_CNT_1000 ) ) sys.stdout.flush() except: print "[checkJSON]: Error parsing JSON line at line %s" % LINE_CNT pass checkFormat.printOtherStats() checkFormat.calculateSchemaStats() checkFormat.printSchemaStats() checkFormat.calculateOverallSummary() checkFormat.printOverallSummary() def main(): """ Main Program to Check Specified JSON file against Schema """ # Setup Command Line Options text_help = '''usage: %prog [-options] ''' text_description = ''' Check JSON schema script ''' parser = argparse.ArgumentParser( prog='PROG', description=text_description) parser.add_argument("--input", type=str, help="Name of input file", required=True) parser.add_argument("--schema", type=str, help="Specify JSON Schema", required=True) parser.add_argument("--schema-name", type=str, help="Specify JSON Schema Name") args = vars(parser.parse_args()) print "[main]: arguments passed => %s" % args # Read Input File print "[main]: Reading JSON input file %s " % args['input'] checkJSON( args['input'], args['schema'], args['schema_name'] ) if __name__ == '__main__': main()
bsd-3-clause
Python
7330f9f1423fe7ee169569957d537441b6d72c08
Create 0106_us_city_synonyms.py
boisvert42/npr-puzzle-python
2019/0106_us_city_synonyms.py
2019/0106_us_city_synonyms.py
#%% """ NPR 2019-01-06 https://www.npr.org/2019/01/06/682575357/sunday-puzzle-stuck-in-the-middle Name a major U.S. city in 10 letters. If you have the right one, you can rearrange its letters to get two 5-letter words that are synonyms. What are they? """ import sys sys.path.append('..') import nprcommontools as nct from nltk.corpus import gazetteers #%% COMMON_WORDS = frozenset(x for x in nct.get_common_words() if len(x) == 5) #%% US_CITIES = set(nct.alpha_only(x.lower()) for x in gazetteers.words('uscities.txt') if len(nct.alpha_only(x)) == 10) city_dict = nct.make_sorted_dict(US_CITIES) #%% for c1 in COMMON_WORDS: my_synonyms = nct.get_synonyms(c1) for c2 in my_synonyms: sort_word = nct.sort_string(''.join(c1+c2)) if sort_word in city_dict: print(c1,c2,city_dict[sort_word])
cc0-1.0
Python
2f08053dc04470c9a1e4802e0e90c198bb5eae63
Update app/views/account/__init__.py
apipanda/openssl,apipanda/openssl,apipanda/openssl,apipanda/openssl
app/views/account/__init__.py
app/views/account/__init__.py
from flask import Blueprint account = Blueprint( 'account', __name__ ) from . import views
mit
Python
5470661c6f171f1e9da609c3bf67ece21cf6d6eb
Add example for response status code
timothycrosley/hug,timothycrosley/hug,MuhammadAlkarouri/hug,MuhammadAlkarouri/hug,MuhammadAlkarouri/hug,timothycrosley/hug
examples/return_400.py
examples/return_400.py
import hug from falcon import HTTP_400 @hug.get() def only_positive(positive: int, response): if positive < 0: response.status = HTTP_400
mit
Python
450f55f158bdec4b290851d68b8b79bd824d50f6
Add the joystick test
Pitchless/arceye,Pitchless/arceye
bin/joy_test.py
bin/joy_test.py
#!/usr/bin/env python from __future__ import print_function import pygame # Define some colors BLACK = ( 0, 0, 0) WHITE = ( 255, 255, 255) # This is a simple class that will help us print to the screen # It has nothing to do with the joysticks, just outputing the # information. class TextPrint: def __init__(self): self.reset() self.font = pygame.font.Font(None, 20) def print(self, screen, textString): textBitmap = self.font.render(textString, True, BLACK) screen.blit(textBitmap, [self.x, self.y]) self.y += self.line_height def reset(self): self.x = 10 self.y = 10 self.line_height = 15 def indent(self): self.x += 10 def unindent(self): self.x -= 10 pygame.init() # Set the width and height of the screen [width,height] size = [500, 700] screen = pygame.display.set_mode(size) pygame.display.set_caption("My Game") #Loop until the user clicks the close button. done = False # Used to manage how fast the screen updates clock = pygame.time.Clock() # Initialize the joysticks pygame.joystick.init() # Get ready to print textPrint = TextPrint() # -------- Main Program Loop ----------- while done==False: # EVENT PROCESSING STEP for event in pygame.event.get(): # User did something if event.type == pygame.QUIT: # If user clicked close done=True # Flag that we are done so we exit this loop # Possible joystick actions: JOYAXISMOTION JOYBALLMOTION JOYBUTTONDOWN JOYBUTTONUP JOYHATMOTION if event.type == pygame.JOYBUTTONDOWN: print("Joystick button pressed.") if event.type == pygame.JOYBUTTONUP: print("Joystick button released.") # DRAWING STEP # First, clear the screen to white. Don't put other drawing commands # above this, or they will be erased with this command. screen.fill(WHITE) textPrint.reset() # Get count of joysticks joystick_count = pygame.joystick.get_count() textPrint.print(screen, "Number of joysticks: {}".format(joystick_count) ) textPrint.indent() # For each joystick: for i in range(joystick_count): joystick = pygame.joystick.Joystick(i) joystick.init() textPrint.print(screen, "Joystick {}".format(i) ) textPrint.indent() # Get the name from the OS for the controller/joystick name = joystick.get_name() textPrint.print(screen, "Joystick name: {}".format(name) ) # Usually axis run in pairs, up/down for one, and left/right for # the other. axes = joystick.get_numaxes() textPrint.print(screen, "Number of axes: {}".format(axes) ) textPrint.indent() for i in range( axes ): axis = joystick.get_axis( i ) textPrint.print(screen, "Axis {} value: {:>6.3f}".format(i, axis) ) textPrint.unindent() buttons = joystick.get_numbuttons() textPrint.print(screen, "Number of buttons: {}".format(buttons) ) textPrint.indent() for i in range( buttons ): button = joystick.get_button( i ) textPrint.print(screen, "Button {:>2} value: {}".format(i,button) ) textPrint.unindent() # Hat switch. All or nothing for direction, not like joysticks. # Value comes back in an array. hats = joystick.get_numhats() textPrint.print(screen, "Number of hats: {}".format(hats) ) textPrint.indent() for i in range( hats ): hat = joystick.get_hat( i ) textPrint.print(screen, "Hat {} value: {}".format(i, str(hat)) ) textPrint.unindent() textPrint.unindent() # ALL CODE TO DRAW SHOULD GO ABOVE THIS COMMENT # Go ahead and update the screen with what we've drawn. pygame.display.flip() # Limit to 20 frames per second clock.tick(20) # Close the window and quit. # If you forget this line, the program will 'hang' # on exit if running from IDLE. pygame.quit ()
apache-2.0
Python
34f44cd57baf9f0a548d728e90ca0c67f47b08a1
Add tests for Resource
soccermetrics/soccermetrics-client-py
tests/test_resource.py
tests/test_resource.py
import unittest import soccermetrics from soccermetrics import __api_version__ from soccermetrics.rest import SoccermetricsRestClient from soccermetrics.rest.resource import Resource class ResourceTest(unittest.TestCase): def setUp(self): base_url = "http://api-summary.soccermetrics.net" auth = dict(account="APP_ID",api_key="APP_KEY") self.resource = Resource(base_url, auth) def test_initialization(self): self.assertEqual(self.resource.auth['account'],"APP_ID") self.assertEqual(self.resource.auth['api_key'],"APP_KEY") self.assertEqual(self.resource.endpoint,'/%s' % __api_version__)
mit
Python
0b0d77ca77cf5359175836d68fc0bcce3829d731
Create change_config.py
GluuFederation/community-edition-setup,GluuFederation/community-edition-setup,GluuFederation/community-edition-setup
static/scripts/change_hostname/change_config.py
static/scripts/change_hostname/change_config.py
import os, sys from change_gluu_host import Installer, FakeRemote, ChangeGluuHostname name_changer = ChangeGluuHostname( old_host='<current_hostname>', new_host='<new_hostname>', cert_city='<city>', cert_mail='<email>', cert_state='<state_or_region>', cert_country='<country>', server='<actual_hostname_of_server>', ip_address='<ip_address_of_server>', ldap_password="<ldap_password>", os_type='<linux_distro>', local= True ) r = name_changer.startup() if not r: sys.exit(1) name_changer.change_appliance_config() name_changer.change_clients() name_changer.change_uma() name_changer.change_httpd_conf() name_changer.create_new_certs() name_changer.change_host_name() name_changer.modify_etc_hosts()
mit
Python
3cb39bc8be7fdf857ebbdd2f78cbb617b2dda104
Create PowofTwo_003.py
Chasego/codi,Chasego/codi,cc13ny/Allin,cc13ny/algo,Chasego/codi,Chasego/cod,Chasego/codi,Chasego/codirit,cc13ny/algo,Chasego/codi,Chasego/codirit,cc13ny/algo,Chasego/cod,Chasego/codirit,cc13ny/algo,Chasego/cod,cc13ny/Allin,Chasego/cod,cc13ny/Allin,Chasego/codirit,cc13ny/Allin,Chasego/codirit,Chasego/cod,cc13ny/Allin,cc13ny/algo
leetcode/231-Power-of-Two/PowofTwo_003.py
leetcode/231-Power-of-Two/PowofTwo_003.py
class Solution: # @param {integer} n # @return {boolean} def isPowerOfTwo(self, n): return n > 0 and (n & n - 1 is 0)
mit
Python
3cc6edabfc0251516aa2b11a6838fe12a794967c
Duplicate sandwich
SelvorWhim/competitive,SelvorWhim/competitive,SelvorWhim/competitive,SelvorWhim/competitive
Codewars/DuplicateSandwich.py
Codewars/DuplicateSandwich.py
def duplicate_sandwich(arr): seen = set() for word in arr: if word in seen: double = word break seen.add(word) i1 = -1 i2 = -1 for i,word in enumerate(arr): if word == double: if i1 < 0: i1 = i else: i2 = i break return arr[i1+1:i2]
unlicense
Python
edd28dc68b91af78da1a1d576fcb9dcb83ebd0c8
Create lin_reg.py
RationalAsh/ml_scripts
lin_reg.py
lin_reg.py
#!/usr/bin/python import numpy as np import matplotlib.pyplot as plt from scipy.signal import square #Mean Square error function def costf(X, y, theta): m = y.shape[0] #print m return (1.0/m)*np.sum(np.power(np.dot(X,theta) - y, 2)) #Gradient of error function def gradientf(X, y, theta): m = y.shape[0] err = np.dot(X, theta) - y return (2.0/m)*np.dot(np.transpose(X), err) t = np.arange(0,10,0.01) y = 2*square(t) + 0*np.random.random(t.shape) X = np.array([[1, np.sin(x), np.sin(3*x), np.sin(5*x), np.sin(7*x)] for x in t]) th = np.zeros(5) errors = [] thetas = [] #Optimizing using gradient descent algorithm numiters = 1000 alpha = 0.02 #Learning rate errors.append(costf(X,y,th)) for i in xrange(numiters): #Gradient descent grad = gradientf(X,y,th) th = th - alpha*grad errors.append(costf(X,y,th)) thetas.append(th) if(i%10 == 0): print "Iteration: "+str(i) print "Costf: "+ str(costf(X,y,th)) print "Gradient: " + str(gradientf(X, t, th)) print "Theta: "+ str(th) y_ = np.dot(X, th) #Closed form solution th_opt = np.dot(np.linalg.pinv(X), y) y_opt = np.dot(X, th_opt) #Plotting results plt.plot(t, y, 'o') plt.xlabel('x') plt.ylabel('y') plt.hold(True) plt.plot(t, y_) plt.plot(t, y_opt) plt.figure() plt.plot(errors) plt.title("Error over time") plt.ylabel("Error") plt.xlabel("Number of iterations") plt.show()
mit
Python
dc854dc41929b027f393c7e341be51193b4ca7b9
Create SearchinRSArr_001.py
Chasego/cod,cc13ny/algo,Chasego/codirit,cc13ny/algo,cc13ny/Allin,Chasego/codirit,cc13ny/algo,Chasego/codi,cc13ny/Allin,Chasego/cod,Chasego/codirit,Chasego/codi,cc13ny/Allin,Chasego/codirit,cc13ny/Allin,cc13ny/algo,Chasego/cod,cc13ny/algo,Chasego/codirit,Chasego/codi,cc13ny/Allin,Chasego/cod,Chasego/cod,Chasego/codi,Chasego/codi
leetcode/033-Search-in-Rotated-Sorted-Array/SearchinRSArr_001.py
leetcode/033-Search-in-Rotated-Sorted-Array/SearchinRSArr_001.py
class Solution: # @param {integer[]} nums # @param {integer} target # @return {integer} def search(self, nums, target): l, r = 0, len(nums) - 1 while l <= r: m = (l + r) / 2 if nums[m] == target: return m elif nums[m] > target: if nums[m] > nums[r] and target < nums[l]: l = m + 1 else: r = m - 1 else: if nums[m] < nums[r] and target > nums[r]: r = m - 1 else: l = m + 1 return -1
mit
Python
b57c24b23fa9566178455da895ea63baf6e16ff4
Test cases to verify parsing of bitwise encoded PIDs
corbinbs/shadetree,s-s-boika/obdlib,QualiApps/obdlib,QualiApps/obdlib,s-s-boika/obdlib
tests/scanner_tests.py
tests/scanner_tests.py
from shadetree.obd.scanner import decode_bitwise_pids DURANGO_SUPPORTED_PIDS_RESPONSE = 'BE 3E B8 10 ' JETTA_DIESEL_SUPPORTED_PIDS_RESPONSE = '98 3B 80 19 ' def test_decode_bitwise_pids_durango(): """ Verify we correctly parse information about supported PIDs on a 1999 Dodge Durango """ supported_pids = decode_bitwise_pids(DURANGO_SUPPORTED_PIDS_RESPONSE) assert supported_pids == { '01': True, '02': False, '03': True, '04': True, '05': True, '06': True, '07': True, '08': False, '09': False, '0A': False, '0B': True, '0C': True, '0D': True, '0E': True, '0F': True, '10': False, '11': True, '12': False, '13': True, '14': True, '15': True, '16': False, '17': False, '18': False, '19': False, '1A': False, '1B': False, '1C': True, '1D': False, '1E': False, '1F': False, '20': False } def test_decode_bitwise_pids_jetta_diesel(): """ Verify we correctly parse information about supported PIDs on a 2004 Jetta Diesel Wagon """ supported_pids = decode_bitwise_pids(JETTA_DIESEL_SUPPORTED_PIDS_RESPONSE) assert supported_pids == { '01': True, '02': False, '03': False, '04': True, '05': True, '06': False, '07': False, '08': False, '09': False, '0A': False, '0B': True, '0C': True, '0D': True, '0E': False, '0F': True, '10': True, '11': True, '12': False, '13': False, '14': False, '15': False, '16': False, '17': False, '18': False, '19': False, '1A': False, '1B': False, '1C': True, '1D': True, '1E': False, '1F': False, '20': True }
mit
Python
7a9bb7d412ccfa4921dc691232c1192bbb2789cd
Add rudimentary swarming service.
benschmaus/catapult,benschmaus/catapult,catapult-project/catapult-csm,sahiljain/catapult,sahiljain/catapult,catapult-project/catapult,catapult-project/catapult,catapult-project/catapult-csm,catapult-project/catapult,catapult-project/catapult-csm,catapult-project/catapult-csm,benschmaus/catapult,sahiljain/catapult,sahiljain/catapult,catapult-project/catapult,catapult-project/catapult-csm,sahiljain/catapult,catapult-project/catapult-csm,benschmaus/catapult,benschmaus/catapult,sahiljain/catapult,catapult-project/catapult,catapult-project/catapult,benschmaus/catapult,benschmaus/catapult,catapult-project/catapult-csm,catapult-project/catapult
dashboard/dashboard/services/swarming_service.py
dashboard/dashboard/services/swarming_service.py
# Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Functions for interfacing with the Chromium Swarming Server. The Swarming Server is a task distribution service. It can be used to kick off a test run. API explorer: https://goo.gl/uxPUZo """ # TODO(dtu): This module is very much a work in progress. It's not clear whether # the parameters are the right ones to pass, whether it's the right way to pass # the parameters (as opposed to having a data object, whether the functions # should be encapsulated in the data object, or whether this is at the right # abstraction level. from apiclient import discovery from dashboard import utils _DISCOVERY_URL = ('https://chromium-swarm.appspot.com/_ah/api' '/discovery/v1/apis/{api}/{apiVersion}/rest') def New(name, user, bot_id, isolated_hash, extra_args=None): """Create a new Swarming task.""" if not extra_args: extra_args = [] swarming = _DiscoverService() request = swarming.tasks().new(body={ 'name': name, 'user': user, 'priority': '100', 'expiration_secs': '600', 'properties': { 'inputs_ref': { 'isolated': isolated_hash, }, 'extra_args': extra_args, 'dimensions': [ {'key': 'id', 'value': bot_id}, {'key': 'pool', 'value': 'Chrome-perf'}, ], 'execution_timeout_secs': '3600', 'io_timeout_secs': '3600', }, 'tags': [ 'id:%s-b1' % bot_id, 'pool:Chrome-perf', ], }) return request.execute() def Get(task_id): del task_id raise NotImplementedError() def _DiscoverService(): return discovery.build('swarming', 'v1', discoveryServiceUrl=_DISCOVERY_URL, http=utils.ServiceAccountHttp())
bsd-3-clause
Python
1a3839a083293200862ea21283c9c4d82a836846
Add test for profiles.
Brown-University-Library/vivo-data-management,Brown-University-Library/vivo-data-management
tests/test_catalyst.py
tests/test_catalyst.py
from vdm.catalyst import DisambiguationEngine def pretty(raw): """ Pretty print xml. """ import xml.dom.minidom xml = xml.dom.minidom.parseString(raw) pretty = xml.toprettyxml() return pretty def test_profile(): #Basic info about a person. p = [ 'Josiah', 'Carberry', None, 'jcarberry@brown.edu', ['null'], ['null'] ] disambig = DisambiguationEngine() disambig.affiliation_strings = ['Sample University'] doc = disambig.build_doc(*p) #Basic verification that XML contains what we expect. assert('<First>Josiah</First>' in doc) assert('<Last>Carberry</Last>' in doc) assert('<email>jcarberry@brown.edu</email>' in doc) assert('<Affiliation>%Sample University%</Affiliation>' in doc)
mit
Python
15b69945a209515c236d8ed788e824a895ef6859
Create uvcontinuum.py
tiffanyhsyu/XMPs
xmps/color_selection/uvcontinuum.py
xmps/color_selection/uvcontinuum.py
bsd-3-clause
Python
ba60687fec047ed94bf7bb76dcf8bcf485c705ec
Add script to repair member relations between organizations and packages.
etalab/etalab-ckan-scripts
repair_organizations_members.py
repair_organizations_members.py
#! /usr/bin/env python # -*- coding: utf-8 -*- # Etalab-CKAN-Scripts -- Various scripts that handle Etalab datasets in CKAN repository # By: Emmanuel Raviart <emmanuel@raviart.com> # # Copyright (C) 2013 Emmanuel Raviart # http://github.com/etalab/etalab-ckan-scripts # # This file is part of Etalab-CKAN-Scripts. # # Etalab-CKAN-Scripts is free software; you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # Etalab-CKAN-Scripts is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """Repair members of organizations, to ensure that they match the owners of packages.""" import argparse import logging import os import sys from ckan import model, plugins from ckan.config.environment import load_environment from paste.deploy import appconfig from paste.registry import Registry import pylons import sqlalchemy as sa #import sqlalchemy.exc app_name = os.path.splitext(os.path.basename(__file__))[0] log = logging.getLogger(app_name) class MockTranslator(object): def gettext(self, value): return value def ugettext(self, value): return value def ungettext(self, singular, plural, n): if n > 1: return plural return singular def main(): parser = argparse.ArgumentParser(description = __doc__) parser.add_argument('config', help = 'path of configuration file') parser.add_argument('-v', '--verbose', action = 'store_true', help = 'increase output verbosity') args = parser.parse_args() # logging.basicConfig(level = logging.DEBUG if args.verbose else logging.WARNING, stream = sys.stdout) logging.basicConfig(level = logging.INFO if args.verbose else logging.WARNING, stream = sys.stdout) site_conf = appconfig('config:{}'.format(os.path.abspath(args.config))) load_environment(site_conf.global_conf, site_conf.local_conf) registry = Registry() registry.prepare() registry.register(pylons.translator, MockTranslator()) plugins.load('synchronous_search') revision = model.repo.new_revision() for package in model.Session.query(model.Package).filter( model.Package.owner_org != None, model.Package.state == 'active', ): owner = model.Session.query(model.Group).get(package.owner_org) assert owner is not None assert owner.is_organization assert owner.state != 'deleted' member = model.Session.query(model.Member).filter( model.Member.group_id == owner.id, model.Member.state == 'active', model.Member.table_id == package.id, ).first() if member is None: log.info(u'Repairing organization "{}" package "{}" membership'.format(owner.name, package.name)) member = model.Session.query(model.Member).filter( model.Member.group_id == owner.id, model.Member.table_id == package.id, ).first() assert member is not None if member.capacity != 'organization': member.capacity = 'organization' member.state = 'active' assert member.table_name == 'package' else: if member.capacity != 'organization': log.warning(u'Repairing capacity organization "{}" package "{}" membership'.format(owner, package)) member.capacity = 'organization' assert member.table_name == 'package' continue model.repo.commit_and_remove() return 0 if __name__ == '__main__': sys.exit(main())
agpl-3.0
Python
c6f09446076677e5a3af8fda8c7fbbb73885234f
Add Custom Filter Design demo
rclement/yodel,rclement/yodel
demo/custom_filter_design.py
demo/custom_filter_design.py
import yodel.analysis import yodel.filter import yodel.complex import yodel.conversion import matplotlib.pyplot as plt def frequency_response(response): size = len(response) freq_response_real = [0] * size freq_response_imag = [0] * size fft = yodel.analysis.FFT(size) fft.forward(response, freq_response_real, freq_response_imag) return freq_response_real, freq_response_imag def amplitude_response(spec_real, spec_imag, db=True): size = len(spec_real) amp = [0] * size for i in range(0, size): amp[i] = yodel.complex.modulus(spec_real[i], spec_imag[i]) if db: amp[i] = yodel.conversion.lin2db(amp[i]) return amp def phase_response(spec_real, spec_imag, degrees=True): size = len(spec_real) pha = [0] * size for i in range(0, size): pha[i] = yodel.complex.phase(spec_real[i], spec_imag[i]) if degrees: pha[i] = (pha[i] * 180.0 / math.pi) return pha class CustomFilterDesigner: def __init__(self): self.samplerate = 48000 self.framesize = 256 self.frsize = int((self.framesize/2)+1) self.custom_fr = [1] * self.frsize self.hzscale = [(i*self.samplerate) / (2.0*self.frsize) for i in range(0, self.frsize)] self.flt = yodel.filter.Custom(self.samplerate, self.framesize) self.pressed = None self.update_filter() self.create_plot() def update_filter(self): self.flt.design(self.custom_fr, False) fr_re, fr_im = frequency_response(self.flt.ir) self.fft_fr = amplitude_response(fr_re, fr_im, False) def create_plot(self): self.fig = plt.figure() self.cid = self.fig.canvas.mpl_connect('button_press_event', self.onpress) self.cid = self.fig.canvas.mpl_connect('button_release_event', self.onrelease) self.cid = self.fig.canvas.mpl_connect('motion_notify_event', self.onmotion) self.ax_custom_fr = self.fig.add_subplot(111) self.ax_custom_fr.set_title('Custom Filter Design') self.plot_custom_fr, = self.ax_custom_fr.plot(self.hzscale, self.custom_fr, 'r', label='Desired Frequency Response') self.plot_fft_fr, = self.ax_custom_fr.plot(self.hzscale, self.fft_fr[0:self.frsize], 'b', label='Actual Frequency Response') self.ax_custom_fr.legend() self.ax_custom_fr.grid() self.rescale_plot() def rescale_plot(self): self.ax_custom_fr.set_ylim(-1, 5) plt.draw() def onpress(self, event): if event.inaxes != self.ax_custom_fr: return self.pressed = (event.xdata, event.ydata) xpos = int(event.xdata * 2.0 * self.frsize / self.samplerate) ypos = max(event.ydata, 0) if xpos >= 0 and xpos < self.frsize: self.custom_fr[xpos] = ypos self.update_filter() self.plot_custom_fr.set_ydata(self.custom_fr) self.plot_fft_fr.set_ydata(self.fft_fr[0:self.frsize]) self.rescale_plot() def onrelease(self, event): self.pressed = None def onmotion(self, event): if self.pressed != None and event.xdata != None and event.ydata != None: xpos = int(event.xdata * 2.0 * self.frsize / self.samplerate) ypos = max(event.ydata, 0) if xpos >= 0 and xpos < self.frsize: self.custom_fr[xpos] = ypos self.update_filter() self.plot_custom_fr.set_ydata(self.custom_fr) self.plot_fft_fr.set_ydata(self.fft_fr[0:self.frsize]) self.rescale_plot() cfd = CustomFilterDesigner() plt.show()
mit
Python
4826764c24fca8204322f88adfde75968b3985ee
add wrapper to start bucky from source tree
trbs/bucky,JoseKilo/bucky,CollabNet/puppet-bucky,MrSecure/bucky2,ewdurbin/bucky,Hero1378/bucky,ewdurbin/bucky,dimrozakis/bucky,trbs/bucky,MrSecure/bucky2,jsiembida/bucky3,CollabNet/puppet-bucky,dimrozakis/bucky,CollabNet/puppet-bucky,JoseKilo/bucky,Hero1378/bucky,CollabNet/puppet-bucky
bucky.py
bucky.py
#!/usr/bin/env python import bucky.main if __name__ == '__main__': bucky.main.main()
apache-2.0
Python
c757c6ad714afb393c65c1b82bca31de357332fc
Add test coverage for utility module
lresende/toree-gateway,lresende/toree-gateway
python/util_test.py
python/util_test.py
# # (C) Copyright IBM Corp. 2017 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import sys import unittest import tempfile import util class TestUtils(unittest.TestCase): def setUp(self): """ capture stdout to a temp file """ self.tempFile = tempfile.TemporaryFile() os.dup2(self.tempFile.fileno(), sys.stdout.fileno()) def tearDown(self): """ remove temp file """ self.tempFile.close() def test_output_is_clean_when_debug_is_disabled(self): util.isDebugging = False util.debug_print('Debug Message') self.assertEqual(self._readOutput(), '', 'Should not write messages when debug is disabled') def test_output_has_content_when_debug_is_enabled(self): util.isDebugging = True util.debug_print('Debug Message') self.assertEqual(self._readOutput(), 'Debug Message', 'Should write messages when debug is enabled') def test_output_has_content_when_byte_array_message_is_passed(self): util.isDebugging = True util.debug_print(b'Binary Debug Message') self.assertEqual(self._readOutput(), 'Binary Debug Message', 'Should write messages when debug is enabled') def _readOutput(self): self.tempFile.seek(0) return self.tempFile.read().decode().rstrip() if __name__ == "__main__": unittest.main()
apache-2.0
Python
8ee2f2b4c3a0ac40c6b7582a2cf3724f30f41dae
Add data migration
shapiromatron/amy,shapiromatron/amy,vahtras/amy,pbanaszkiewicz/amy,pbanaszkiewicz/amy,pbanaszkiewicz/amy,wking/swc-amy,wking/swc-amy,vahtras/amy,shapiromatron/amy,swcarpentry/amy,swcarpentry/amy,wking/swc-amy,wking/swc-amy,swcarpentry/amy,vahtras/amy
workshops/migrations/0035_auto_20150107_1205.py
workshops/migrations/0035_auto_20150107_1205.py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations def copy_project_to_tags(apps, schema_editor): Event = apps.get_model('workshops', 'Event') for event in Event.objects.all().exclude(project=None): tag = event.project print('add {} to {}'.format(tag, event)) event.tags.add(tag) event.save() class Migration(migrations.Migration): dependencies = [ ('workshops', '0034_auto_20150107_1200'), ] operations = [ migrations.RenameModel( old_name='Project', new_name='Tag', ), migrations.AddField( model_name='event', name='tags', field=models.ManyToManyField(to='workshops.Tag'), preserve_default=True, ), migrations.RunPython(copy_project_to_tags), migrations.RemoveField( model_name='event', name='project', ), ]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('workshops', '0034_auto_20150107_1200'), ] operations = [ migrations.RenameModel( old_name='Project', new_name='Tag', ), migrations.RemoveField( model_name='event', name='project', ), migrations.AddField( model_name='event', name='tags', field=models.ManyToManyField(to='workshops.Tag'), preserve_default=True, ), ]
mit
Python
3ba67bf461f2f35f549cc2ac5c85dd1bfb39cfa4
Add a collection of tests around move_or_merge.py
artefactual/archivematica,artefactual/archivematica,artefactual/archivematica,artefactual/archivematica
src/MCPClient/tests/test_move_or_merge.py
src/MCPClient/tests/test_move_or_merge.py
# -*- encoding: utf-8 import pytest from .move_or_merge import move_or_merge def test_move_or_merge_when_dst_doesnt_exist(tmpdir): src = tmpdir.join("src.txt") dst = tmpdir.join("dst.txt") src.write("hello world") move_or_merge(src=src, dst=dst) assert not src.exists() assert dst.exists() assert dst.read() == "hello world" def test_okay_if_dst_exists_and_is_same(tmpdir): src = tmpdir.join("src.txt") dst = tmpdir.join("dst.txt") src.write("hello world") dst.write("hello world") move_or_merge(src=src, dst=dst) assert not src.exists() assert dst.exists() assert dst.read() == "hello world" def test_error_if_dst_exists_and_is_different(tmpdir): src = tmpdir.join("src.txt") dst = tmpdir.join("dst.txt") src.write("hello world") dst.write("we come in peace") with pytest.raises(RuntimeError, match="dst exists and is different"): move_or_merge(src=src, dst=dst) # Check the original file wasn't deleted assert src.exists() assert dst.exists() def test_moves_contents_of_directory(tmpdir): src_dir = tmpdir.mkdir("src") dst_dir = tmpdir.mkdir("dst") src = src_dir.join("file.txt") dst = dst_dir.join("file.txt") src.write("hello world") move_or_merge(src=str(src_dir), dst=str(dst_dir)) assert not src.exists() assert dst.exists() assert dst.read() == "hello world" def test_moves_nested_directory(tmpdir): src_dir = tmpdir.mkdir("src") dst_dir = tmpdir.mkdir("dst") src_nested = src_dir.mkdir("nested") dst_nested = dst_dir.join("nested") src = src_nested.join("file.txt") dst = dst_nested.join("file.txt") src.write("hello world") move_or_merge(src=str(src_dir), dst=str(dst_dir)) assert not src.exists() assert dst.exists() assert dst.read() == "hello world" def test_merges_nested_directory(tmpdir): src_dir = tmpdir.mkdir("src") dst_dir = tmpdir.mkdir("dst") src_nested = src_dir.mkdir("nested") # Unlike the previous test, we create the "nested" directory upfront, # but we don't populate it. dst_nested = dst_dir.mkdir("nested") src = src_nested.join("file.txt") dst = dst_nested.join("file.txt") src.write("hello world") move_or_merge(src=str(src_dir), dst=str(dst_dir)) assert not src.exists() assert dst.exists() assert dst.read() == "hello world" def test_merges_nested_directory_with_existing_file(tmpdir): src_dir = tmpdir.mkdir("src") dst_dir = tmpdir.mkdir("dst") src_nested = src_dir.mkdir("nested") dst_nested = dst_dir.mkdir("nested") src = src_nested.join("file.txt") dst = dst_nested.join("file.txt") src.write("hello world") dst.write("hello world") move_or_merge(src=str(src_dir), dst=str(dst_dir)) assert not src.exists() assert dst.exists() assert dst.read() == "hello world" def test_merges_nested_directory_with_mismatched_existing_file(tmpdir): src_dir = tmpdir.mkdir("src") dst_dir = tmpdir.mkdir("dst") src_nested = src_dir.mkdir("nested") dst_nested = dst_dir.mkdir("nested") src = src_nested.join("file.txt") dst = dst_nested.join("file.txt") src.write("hello world") dst.write("we come in peace") with pytest.raises(RuntimeError, match="dst exists and is different"): move_or_merge(src=str(src_dir), dst=str(dst_dir)) def test_ignores_existing_files_in_dst(tmpdir): src_dir = tmpdir.mkdir("src") dst_dir = tmpdir.mkdir("dst") dst_existing = dst_dir.join("philosophy.txt") dst_existing.write("i think therefore i am") src_dir.join("file.txt").write("hello world") move_or_merge(src=str(src_dir), dst=str(dst_dir)) assert dst_existing.exists() assert dst_existing.read() == "i think therefore i am"
agpl-3.0
Python