text
stringlengths 14
7.51M
| subset
stringclasses 3
values | source
stringclasses 2
values |
---|---|---|
Given the equation $7 x^2+6 x+9 y^2-5 y-8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
9 y^2-5 y+7 x^2+6 x-8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }8 \text{to }\text{both }\text{sides}: \\
9 y^2-5 y+7 x^2+6 x=8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(7 x^2+6 x+\underline{\text{ }}\right)+\left(9 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 x^2+6 x+\underline{\text{ }}\right)=7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right): \\
\fbox{$7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right)$}+\left(9 y^2-5 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(9 y^2-5 y+\underline{\text{ }}\right)=9 \left(y^2-\frac{5 y}{9}+\underline{\text{ }}\right): \\
7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2-\frac{5 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
8+\frac{9}{7}=\frac{65}{7}: \\
7 \left(x^2+\frac{6 x}{7}+\frac{9}{49}\right)+9 \left(y^2-\frac{5 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{65}{7}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{9}}{2}\right)^2=\frac{25}{324} \text{on }\text{the }\text{left }\text{and }9\times \frac{25}{324}=\frac{25}{36} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{65}{7}+\frac{25}{36}=\frac{2515}{252}: \\
7 \left(x^2+\frac{6 x}{7}+\frac{9}{49}\right)+9 \left(y^2-\frac{5 y}{9}+\frac{25}{324}\right)=\fbox{$\frac{2515}{252}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{6 x}{7}+\frac{9}{49}=\left(x+\frac{3}{7}\right)^2: \\
7 \fbox{$\left(x+\frac{3}{7}\right)^2$}+9 \left(y^2-\frac{5 y}{9}+\frac{25}{324}\right)=\frac{2515}{252} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{5 y}{9}+\frac{25}{324}=\left(y-\frac{5}{18}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 7 \left(x+\frac{3}{7}\right)^2+9 \fbox{$\left(y-\frac{5}{18}\right)^2$}=\frac{2515}{252} \\
\end{array}
| khanacademy | amps |
Given the equation $-7 x^2-9 x-2 y^2+2 y+6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-2 y^2+2 y-7 x^2-9 x+6=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }6 \text{from }\text{both }\text{sides}: \\
-2 y^2+2 y-7 x^2-9 x=-6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-7 x^2-9 x+\underline{\text{ }}\right)+\left(-2 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-7 x^2-9 x+\underline{\text{ }}\right)=-7 \left(x^2+\frac{9 x}{7}+\underline{\text{ }}\right): \\
\fbox{$-7 \left(x^2+\frac{9 x}{7}+\underline{\text{ }}\right)$}+\left(-2 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-2 y^2+2 y+\underline{\text{ }}\right)=-2 \left(y^2-y+\underline{\text{ }}\right): \\
-7 \left(x^2+\frac{9 x}{7}+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{7}}{2}\right)^2=\frac{81}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{81}{196}=-\frac{81}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-6-\frac{81}{28}=-\frac{249}{28}: \\
-7 \left(x^2+\frac{9 x}{7}+\frac{81}{196}\right)-2 \left(y^2-y+\underline{\text{ }}\right)=\fbox{$-\frac{249}{28}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-2}{4}=-\frac{1}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{249}{28}-\frac{1}{2}=-\frac{263}{28}: \\
-7 \left(x^2+\frac{9 x}{7}+\frac{81}{196}\right)-2 \left(y^2-y+\frac{1}{4}\right)=\fbox{$-\frac{263}{28}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{9 x}{7}+\frac{81}{196}=\left(x+\frac{9}{14}\right)^2: \\
-7 \fbox{$\left(x+\frac{9}{14}\right)^2$}-2 \left(y^2-y+\frac{1}{4}\right)=-\frac{263}{28} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -7 \left(x+\frac{9}{14}\right)^2-2 \fbox{$\left(y-\frac{1}{2}\right)^2$}=-\frac{263}{28} \\
\end{array}
| khanacademy | amps |
Given the equation $9 x^2+5 x-10 y^2+4 y+8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-10 y^2+4 y+9 x^2+5 x+8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }8 \text{from }\text{both }\text{sides}: \\
-10 y^2+4 y+9 x^2+5 x=-8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(9 x^2+5 x+\underline{\text{ }}\right)+\left(-10 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(9 x^2+5 x+\underline{\text{ }}\right)=9 \left(x^2+\frac{5 x}{9}+\underline{\text{ }}\right): \\
\fbox{$9 \left(x^2+\frac{5 x}{9}+\underline{\text{ }}\right)$}+\left(-10 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-10 y^2+4 y+\underline{\text{ }}\right)=-10 \left(y^2-\frac{2 y}{5}+\underline{\text{ }}\right): \\
9 \left(x^2+\frac{5 x}{9}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2-\frac{2 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{9}}{2}\right)^2=\frac{25}{324} \text{on }\text{the }\text{left }\text{and }9\times \frac{25}{324}=\frac{25}{36} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{25}{36}-8=-\frac{263}{36}: \\
9 \left(x^2+\frac{5 x}{9}+\frac{25}{324}\right)-10 \left(y^2-\frac{2 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{263}{36}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{5}}{2}\right)^2=\frac{1}{25} \text{on }\text{the }\text{left }\text{and }\frac{-10}{25}=-\frac{2}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{263}{36}-\frac{2}{5}=-\frac{1387}{180}: \\
9 \left(x^2+\frac{5 x}{9}+\frac{25}{324}\right)-10 \left(y^2-\frac{2 y}{5}+\frac{1}{25}\right)=\fbox{$-\frac{1387}{180}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{5 x}{9}+\frac{25}{324}=\left(x+\frac{5}{18}\right)^2: \\
9 \fbox{$\left(x+\frac{5}{18}\right)^2$}-10 \left(y^2-\frac{2 y}{5}+\frac{1}{25}\right)=-\frac{1387}{180} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{2 y}{5}+\frac{1}{25}=\left(y-\frac{1}{5}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 9 \left(x+\frac{5}{18}\right)^2-\text{10 }\fbox{$\left(y-\frac{1}{5}\right)^2$}=-\frac{1387}{180} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2+5 x+9 y^2+2 y-4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
9 y^2+2 y+4 x^2+5 x-4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }4 \text{to }\text{both }\text{sides}: \\
9 y^2+2 y+4 x^2+5 x=4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(4 x^2+5 x+\underline{\text{ }}\right)+\left(9 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2+5 x+\underline{\text{ }}\right)=4 \left(x^2+\frac{5 x}{4}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2+\frac{5 x}{4}+\underline{\text{ }}\right)$}+\left(9 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(9 y^2+2 y+\underline{\text{ }}\right)=9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right): \\
4 \left(x^2+\frac{5 x}{4}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{4}}{2}\right)^2=\frac{25}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{25}{64}=\frac{25}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
4+\frac{25}{16}=\frac{89}{16}: \\
4 \left(x^2+\frac{5 x}{4}+\frac{25}{64}\right)+9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{89}{16}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{9}}{2}\right)^2=\frac{1}{81} \text{on }\text{the }\text{left }\text{and }\frac{9}{81}=\frac{1}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{89}{16}+\frac{1}{9}=\frac{817}{144}: \\
4 \left(x^2+\frac{5 x}{4}+\frac{25}{64}\right)+9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=\fbox{$\frac{817}{144}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{5 x}{4}+\frac{25}{64}=\left(x+\frac{5}{8}\right)^2: \\
4 \fbox{$\left(x+\frac{5}{8}\right)^2$}+9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=\frac{817}{144} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{2 y}{9}+\frac{1}{81}=\left(y+\frac{1}{9}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \left(x+\frac{5}{8}\right)^2+9 \fbox{$\left(y+\frac{1}{9}\right)^2$}=\frac{817}{144} \\
\end{array}
| khanacademy | amps |
Given the equation $-x^2-5 x-8 y^2-7 y-9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-8 y^2-7 y-x^2-5 x-9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }9 \text{to }\text{both }\text{sides}: \\
-8 y^2-7 y-x^2-5 x=9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-x^2-5 x+\underline{\text{ }}\right)+\left(-8 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-x^2-5 x+\underline{\text{ }}\right)=-\left(x^2+5 x+\underline{\text{ }}\right): \\
\fbox{$-\left(x^2+5 x+\underline{\text{ }}\right)$}+\left(-8 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-8 y^2-7 y+\underline{\text{ }}\right)=-8 \left(y^2+\frac{7 y}{8}+\underline{\text{ }}\right): \\
-\left(x^2+5 x+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2+\frac{7 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{5}{2}\right)^2=\frac{25}{4} \text{on }\text{the }\text{left }\text{and }-\frac{25}{4}=-\frac{25}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
9-\frac{25}{4}=\frac{11}{4}: \\
-\left(x^2+5 x+\frac{25}{4}\right)-8 \left(y^2+\frac{7 y}{8}+\underline{\text{ }}\right)=\fbox{$\frac{11}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{8}}{2}\right)^2=\frac{49}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{49}{256}=-\frac{49}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{11}{4}-\frac{49}{32}=\frac{39}{32}: \\
-\left(x^2+5 x+\frac{25}{4}\right)-8 \left(y^2+\frac{7 y}{8}+\frac{49}{256}\right)=\fbox{$\frac{39}{32}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+5 x+\frac{25}{4}=\left(x+\frac{5}{2}\right)^2: \\
-\fbox{$\left(x+\frac{5}{2}\right)^2$}-8 \left(y^2+\frac{7 y}{8}+\frac{49}{256}\right)=\frac{39}{32} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{7 y}{8}+\frac{49}{256}=\left(y+\frac{7}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -\left(x+\frac{5}{2}\right)^2-8 \fbox{$\left(y+\frac{7}{16}\right)^2$}=\frac{39}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $2 x^2-5 x+9 y^2+10 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
9 y^2+10 y+2 x^2-5 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
9 y^2+10 y+2 x^2-5 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(2 x^2-5 x+\underline{\text{ }}\right)+\left(9 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(2 x^2-5 x+\underline{\text{ }}\right)=2 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right): \\
\fbox{$2 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right)$}+\left(9 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(9 y^2+10 y+\underline{\text{ }}\right)=9 \left(y^2+\frac{10 y}{9}+\underline{\text{ }}\right): \\
2 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+\frac{10 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{25}{16}=\frac{25}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{25}{8}-4=-\frac{7}{8}: \\
2 \left(x^2-\frac{5 x}{2}+\frac{25}{16}\right)+9 \left(y^2+\frac{10 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{7}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{10}{9}}{2}\right)^2=\frac{25}{81} \text{on }\text{the }\text{left }\text{and }9\times \frac{25}{81}=\frac{25}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{25}{9}-\frac{7}{8}=\frac{137}{72}: \\
2 \left(x^2-\frac{5 x}{2}+\frac{25}{16}\right)+9 \left(y^2+\frac{10 y}{9}+\frac{25}{81}\right)=\fbox{$\frac{137}{72}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{5 x}{2}+\frac{25}{16}=\left(x-\frac{5}{4}\right)^2: \\
2 \fbox{$\left(x-\frac{5}{4}\right)^2$}+9 \left(y^2+\frac{10 y}{9}+\frac{25}{81}\right)=\frac{137}{72} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{10 y}{9}+\frac{25}{81}=\left(y+\frac{5}{9}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 2 \left(x-\frac{5}{4}\right)^2+9 \fbox{$\left(y+\frac{5}{9}\right)^2$}=\frac{137}{72} \\
\end{array}
| khanacademy | amps |
Given the equation $-3 x^2-4 x-10 y+6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-3 x^2-4 x+(6-10 y)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }-10 y-3 x^2-4 x+6 \text{from }\text{both }\text{sides}: \\
3 x^2+4 x+(10 y-6)=0 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Subtract }10 y-6 \text{from }\text{both }\text{sides}: \\
3 x^2+4 x=6-10 y \\
\end{array}
Step 4:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(3 x^2+4 x+\underline{\text{ }}\right)=(6-10 y)+\underline{\text{ }} \\
\end{array}
Step 5:
\begin{array}{l}
\left(3 x^2+4 x+\underline{\text{ }}\right)=3 \left(x^2+\frac{4 x}{3}+\underline{\text{ }}\right): \\
\fbox{$3 \left(x^2+\frac{4 x}{3}+\underline{\text{ }}\right)$}=(6-10 y)+\underline{\text{ }} \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }3\times \frac{4}{9}=\frac{4}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
(6-10 y)+\frac{4}{3}=\frac{22}{3}-10 y: \\
3 \left(x^2+\frac{4 x}{3}+\frac{4}{9}\right)=\fbox{$\frac{22}{3}-10 y$} \\
\end{array}
Step 8:
\begin{array}{l}
x^2+\frac{4 x}{3}+\frac{4}{9}=\left(x+\frac{2}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 3 \fbox{$\left(x+\frac{2}{3}\right)^2$}=\frac{22}{3}-10 y \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2+4 x+10 y^2-7 y+2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
10 y^2-7 y-10 x^2+4 x+2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }2 \text{from }\text{both }\text{sides}: \\
10 y^2-7 y-10 x^2+4 x=-2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2+4 x+\underline{\text{ }}\right)+\left(10 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2+4 x+\underline{\text{ }}\right)=-10 \left(x^2-\frac{2 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2-\frac{2 x}{5}+\underline{\text{ }}\right)$}+\left(10 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\
\end{array}
Step 5:
\begin{array}{l}
\left(10 y^2-7 y+\underline{\text{ }}\right)=10 \left(y^2-\frac{7 y}{10}+\underline{\text{ }}\right): \\
-10 \left(x^2-\frac{2 x}{5}+\underline{\text{ }}\right)+\fbox{$10 \left(y^2-\frac{7 y}{10}+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{5}}{2}\right)^2=\frac{1}{25} \text{on }\text{the }\text{left }\text{and }\frac{-10}{25}=-\frac{2}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-2-\frac{2}{5}=-\frac{12}{5}: \\
-10 \left(x^2-\frac{2 x}{5}+\frac{1}{25}\right)+10 \left(y^2-\frac{7 y}{10}+\underline{\text{ }}\right)=\fbox{$-\frac{12}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-7}{10}}{2}\right)^2=\frac{49}{400} \text{on }\text{the }\text{left }\text{and }10\times \frac{49}{400}=\frac{49}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{49}{40}-\frac{12}{5}=-\frac{47}{40}: \\
-10 \left(x^2-\frac{2 x}{5}+\frac{1}{25}\right)+10 \left(y^2-\frac{7 y}{10}+\frac{49}{400}\right)=\fbox{$-\frac{47}{40}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{2 x}{5}+\frac{1}{25}=\left(x-\frac{1}{5}\right)^2: \\
-10 \fbox{$\left(x-\frac{1}{5}\right)^2$}+10 \left(y^2-\frac{7 y}{10}+\frac{49}{400}\right)=-\frac{47}{40} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{7 y}{10}+\frac{49}{400}=\left(y-\frac{7}{20}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x-\frac{1}{5}\right)^2+\text{10 }\fbox{$\left(y-\frac{7}{20}\right)^2$}=-\frac{47}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2-9 x+8 y^2+8 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
8 y^2+8 y+4 x^2-9 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
8 y^2+8 y+4 x^2-9 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(4 x^2-9 x+\underline{\text{ }}\right)+\left(8 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2-9 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right)$}+\left(8 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(8 y^2+8 y+\underline{\text{ }}\right)=8 \left(y^2+y+\underline{\text{ }}\right): \\
4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-9}{4}}{2}\right)^2=\frac{81}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{81}{64}=\frac{81}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{81}{16}-4=\frac{17}{16}: \\
4 \left(x^2-\frac{9 x}{4}+\frac{81}{64}\right)+8 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{17}{16}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{8}{4}=2 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{17}{16}+2=\frac{49}{16}: \\
4 \left(x^2-\frac{9 x}{4}+\frac{81}{64}\right)+8 \left(y^2+y+\frac{1}{4}\right)=\fbox{$\frac{49}{16}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{9 x}{4}+\frac{81}{64}=\left(x-\frac{9}{8}\right)^2: \\
4 \fbox{$\left(x-\frac{9}{8}\right)^2$}+8 \left(y^2+y+\frac{1}{4}\right)=\frac{49}{16} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \left(x-\frac{9}{8}\right)^2+8 \fbox{$\left(y+\frac{1}{2}\right)^2$}=\frac{49}{16} \\
\end{array}
| khanacademy | amps |
Given the equation $10 x^2+2 x-9 y^2+4 y-7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-9 y^2+4 y+10 x^2+2 x-7=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }7 \text{to }\text{both }\text{sides}: \\
-9 y^2+4 y+10 x^2+2 x=7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(10 x^2+2 x+\underline{\text{ }}\right)+\left(-9 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(10 x^2+2 x+\underline{\text{ }}\right)=10 \left(x^2+\frac{x}{5}+\underline{\text{ }}\right): \\
\fbox{$10 \left(x^2+\frac{x}{5}+\underline{\text{ }}\right)$}+\left(-9 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-9 y^2+4 y+\underline{\text{ }}\right)=-9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right): \\
10 \left(x^2+\frac{x}{5}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{10}{100}=\frac{1}{10} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
7+\frac{1}{10}=\frac{71}{10}: \\
10 \left(x^2+\frac{x}{5}+\frac{1}{100}\right)-9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{71}{10}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-4}{9}}{2}\right)^2=\frac{4}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{4}{81}=-\frac{4}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{71}{10}-\frac{4}{9}=\frac{599}{90}: \\
10 \left(x^2+\frac{x}{5}+\frac{1}{100}\right)-9 \left(y^2-\frac{4 y}{9}+\frac{4}{81}\right)=\fbox{$\frac{599}{90}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{5}+\frac{1}{100}=\left(x+\frac{1}{10}\right)^2: \\
\text{10 }\fbox{$\left(x+\frac{1}{10}\right)^2$}-9 \left(y^2-\frac{4 y}{9}+\frac{4}{81}\right)=\frac{599}{90} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{4 y}{9}+\frac{4}{81}=\left(y-\frac{2}{9}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 10 \left(x+\frac{1}{10}\right)^2-9 \fbox{$\left(y-\frac{2}{9}\right)^2$}=\frac{599}{90} \\
\end{array}
| khanacademy | amps |
Given the equation $3 x^2+10 x-7 y^2+6 y-1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-7 y^2+6 y+3 x^2+10 x-1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }1 \text{to }\text{both }\text{sides}: \\
-7 y^2+6 y+3 x^2+10 x=1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(3 x^2+10 x+\underline{\text{ }}\right)+\left(-7 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(3 x^2+10 x+\underline{\text{ }}\right)=3 \left(x^2+\frac{10 x}{3}+\underline{\text{ }}\right): \\
\fbox{$3 \left(x^2+\frac{10 x}{3}+\underline{\text{ }}\right)$}+\left(-7 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-7 y^2+6 y+\underline{\text{ }}\right)=-7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right): \\
3 \left(x^2+\frac{10 x}{3}+\underline{\text{ }}\right)+\fbox{$-7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{10}{3}}{2}\right)^2=\frac{25}{9} \text{on }\text{the }\text{left }\text{and }3\times \frac{25}{9}=\frac{25}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
1+\frac{25}{3}=\frac{28}{3}: \\
3 \left(x^2+\frac{10 x}{3}+\frac{25}{9}\right)-7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right)=\fbox{$\frac{28}{3}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }-7\times \frac{9}{49}=-\frac{9}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{28}{3}-\frac{9}{7}=\frac{169}{21}: \\
3 \left(x^2+\frac{10 x}{3}+\frac{25}{9}\right)-7 \left(y^2-\frac{6 y}{7}+\frac{9}{49}\right)=\fbox{$\frac{169}{21}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{10 x}{3}+\frac{25}{9}=\left(x+\frac{5}{3}\right)^2: \\
3 \fbox{$\left(x+\frac{5}{3}\right)^2$}-7 \left(y^2-\frac{6 y}{7}+\frac{9}{49}\right)=\frac{169}{21} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{6 y}{7}+\frac{9}{49}=\left(y-\frac{3}{7}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 3 \left(x+\frac{5}{3}\right)^2-7 \fbox{$\left(y-\frac{3}{7}\right)^2$}=\frac{169}{21} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2-5 x+7 y^2-2 y+6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 y^2-2 y-10 x^2-5 x+6=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }6 \text{from }\text{both }\text{sides}: \\
7 y^2-2 y-10 x^2-5 x=-6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2-5 x+\underline{\text{ }}\right)+\left(7 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2-5 x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)$}+\left(7 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\
\end{array}
Step 5:
\begin{array}{l}
\left(7 y^2-2 y+\underline{\text{ }}\right)=7 \left(y^2-\frac{2 y}{7}+\underline{\text{ }}\right): \\
-10 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2-\frac{2 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-10}{16}=-\frac{5}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-6-\frac{5}{8}=-\frac{53}{8}: \\
-10 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+7 \left(y^2-\frac{2 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{53}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{7}}{2}\right)^2=\frac{1}{49} \text{on }\text{the }\text{left }\text{and }\frac{7}{49}=\frac{1}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{1}{7}-\frac{53}{8}=-\frac{363}{56}: \\
-10 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+7 \left(y^2-\frac{2 y}{7}+\frac{1}{49}\right)=\fbox{$-\frac{363}{56}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{2}+\frac{1}{16}=\left(x+\frac{1}{4}\right)^2: \\
-10 \fbox{$\left(x+\frac{1}{4}\right)^2$}+7 \left(y^2-\frac{2 y}{7}+\frac{1}{49}\right)=-\frac{363}{56} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{2 y}{7}+\frac{1}{49}=\left(y-\frac{1}{7}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x+\frac{1}{4}\right)^2+7 \fbox{$\left(y-\frac{1}{7}\right)^2$}=-\frac{363}{56} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2+9 x-5 y^2+10 y-7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-5 y^2+10 y-10 x^2+9 x-7=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }7 \text{to }\text{both }\text{sides}: \\
-5 y^2+10 y-10 x^2+9 x=7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2+9 x+\underline{\text{ }}\right)+\left(-5 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2+9 x+\underline{\text{ }}\right)=-10 \left(x^2-\frac{9 x}{10}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2-\frac{9 x}{10}+\underline{\text{ }}\right)$}+\left(-5 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-5 y^2+10 y+\underline{\text{ }}\right)=-5 \left(y^2-2 y+\underline{\text{ }}\right): \\
-10 \left(x^2-\frac{9 x}{10}+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2-2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-9}{10}}{2}\right)^2=\frac{81}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{81}{400}=-\frac{81}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
7-\frac{81}{40}=\frac{199}{40}: \\
-10 \left(x^2-\frac{9 x}{10}+\frac{81}{400}\right)-5 \left(y^2-2 y+\underline{\text{ }}\right)=\fbox{$\frac{199}{40}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-5\times 1=-5 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{199}{40}-5=-\frac{1}{40}: \\
-10 \left(x^2-\frac{9 x}{10}+\frac{81}{400}\right)-5 \left(y^2-2 y+1\right)=\fbox{$-\frac{1}{40}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{9 x}{10}+\frac{81}{400}=\left(x-\frac{9}{20}\right)^2: \\
-10 \fbox{$\left(x-\frac{9}{20}\right)^2$}-5 \left(y^2-2 y+1\right)=-\frac{1}{40} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-2 y+1=(y-1)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x-\frac{9}{20}\right)^2-5 \fbox{$(y-1)^2$}=-\frac{1}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $9 x^2+10 x-10 y^2-2 y+6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-10 y^2-2 y+9 x^2+10 x+6=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }6 \text{from }\text{both }\text{sides}: \\
-10 y^2-2 y+9 x^2+10 x=-6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(9 x^2+10 x+\underline{\text{ }}\right)+\left(-10 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(9 x^2+10 x+\underline{\text{ }}\right)=9 \left(x^2+\frac{10 x}{9}+\underline{\text{ }}\right): \\
\fbox{$9 \left(x^2+\frac{10 x}{9}+\underline{\text{ }}\right)$}+\left(-10 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-10 y^2-2 y+\underline{\text{ }}\right)=-10 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right): \\
9 \left(x^2+\frac{10 x}{9}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{10}{9}}{2}\right)^2=\frac{25}{81} \text{on }\text{the }\text{left }\text{and }9\times \frac{25}{81}=\frac{25}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{25}{9}-6=-\frac{29}{9}: \\
9 \left(x^2+\frac{10 x}{9}+\frac{25}{81}\right)-10 \left(y^2+\frac{y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{29}{9}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{-10}{100}=-\frac{1}{10} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{29}{9}-\frac{1}{10}=-\frac{299}{90}: \\
9 \left(x^2+\frac{10 x}{9}+\frac{25}{81}\right)-10 \left(y^2+\frac{y}{5}+\frac{1}{100}\right)=\fbox{$-\frac{299}{90}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{10 x}{9}+\frac{25}{81}=\left(x+\frac{5}{9}\right)^2: \\
9 \fbox{$\left(x+\frac{5}{9}\right)^2$}-10 \left(y^2+\frac{y}{5}+\frac{1}{100}\right)=-\frac{299}{90} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{5}+\frac{1}{100}=\left(y+\frac{1}{10}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 9 \left(x+\frac{5}{9}\right)^2-\text{10 }\fbox{$\left(y+\frac{1}{10}\right)^2$}=-\frac{299}{90} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2+x-8 y^2-9 y-4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-8 y^2-9 y+4 x^2+x-4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }4 \text{to }\text{both }\text{sides}: \\
-8 y^2-9 y+4 x^2+x=4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(4 x^2+x+\underline{\text{ }}\right)+\left(-8 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2+x+\underline{\text{ }}\right)=4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)$}+\left(-8 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-8 y^2-9 y+\underline{\text{ }}\right)=-8 \left(y^2+\frac{9 y}{8}+\underline{\text{ }}\right): \\
4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2+\frac{9 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}+4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{4}{64}=\frac{1}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
4+\frac{1}{16}=\frac{65}{16}: \\
4 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)-8 \left(y^2+\frac{9 y}{8}+\underline{\text{ }}\right)=\fbox{$\frac{65}{16}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{8}}{2}\right)^2=\frac{81}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{81}{256}=-\frac{81}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{65}{16}-\frac{81}{32}=\frac{49}{32}: \\
4 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)-8 \left(y^2+\frac{9 y}{8}+\frac{81}{256}\right)=\fbox{$\frac{49}{32}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{4}+\frac{1}{64}=\left(x+\frac{1}{8}\right)^2: \\
4 \fbox{$\left(x+\frac{1}{8}\right)^2$}-8 \left(y^2+\frac{9 y}{8}+\frac{81}{256}\right)=\frac{49}{32} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{9 y}{8}+\frac{81}{256}=\left(y+\frac{9}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \left(x+\frac{1}{8}\right)^2-8 \fbox{$\left(y+\frac{9}{16}\right)^2$}=\frac{49}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $-9 x^2+3 x+9 y^2+9 y-3=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
9 y^2+9 y-9 x^2+3 x-3=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }3 \text{to }\text{both }\text{sides}: \\
9 y^2+9 y-9 x^2+3 x=3 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-9 x^2+3 x+\underline{\text{ }}\right)+\left(9 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-9 x^2+3 x+\underline{\text{ }}\right)=-9 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right): \\
\fbox{$-9 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right)$}+\left(9 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\
\end{array}
Step 5:
\begin{array}{l}
\left(9 y^2+9 y+\underline{\text{ }}\right)=9 \left(y^2+y+\underline{\text{ }}\right): \\
-9 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+3 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{-9}{36}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
3-\frac{1}{4}=\frac{11}{4}: \\
-9 \left(x^2-\frac{x}{3}+\frac{1}{36}\right)+9 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{11}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{9}{4}=\frac{9}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{11}{4}+\frac{9}{4}=5: \\
-9 \left(x^2-\frac{x}{3}+\frac{1}{36}\right)+9 \left(y^2+y+\frac{1}{4}\right)=\fbox{$5$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{x}{3}+\frac{1}{36}=\left(x-\frac{1}{6}\right)^2: \\
-9 \fbox{$\left(x-\frac{1}{6}\right)^2$}+9 \left(y^2+y+\frac{1}{4}\right)=5 \\
\end{array}
Step 11:
\begin{array}{l}
y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -9 \left(x-\frac{1}{6}\right)^2+9 \fbox{$\left(y+\frac{1}{2}\right)^2$}=5 \\
\end{array}
| khanacademy | amps |
Given the equation $-x^2+x+8 y^2+10 y-1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
8 y^2+10 y-x^2+x-1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }1 \text{to }\text{both }\text{sides}: \\
8 y^2+10 y-x^2+x=1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-x^2+x+\underline{\text{ }}\right)+\left(8 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-x^2+x+\underline{\text{ }}\right)=-\left(x^2-x+\underline{\text{ }}\right): \\
\fbox{$-\left(x^2-x+\underline{\text{ }}\right)$}+\left(8 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(8 y^2+10 y+\underline{\text{ }}\right)=8 \left(y^2+\frac{5 y}{4}+\underline{\text{ }}\right): \\
-\left(x^2-x+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+\frac{5 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-1}{4}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
1-\frac{1}{4}=\frac{3}{4}: \\
-\left(x^2-x+\frac{1}{4}\right)+8 \left(y^2+\frac{5 y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{3}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{4}}{2}\right)^2=\frac{25}{64} \text{on }\text{the }\text{left }\text{and }8\times \frac{25}{64}=\frac{25}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{3}{4}+\frac{25}{8}=\frac{31}{8}: \\
-\left(x^2-x+\frac{1}{4}\right)+8 \left(y^2+\frac{5 y}{4}+\frac{25}{64}\right)=\fbox{$\frac{31}{8}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\
-\fbox{$\left(x-\frac{1}{2}\right)^2$}+8 \left(y^2+\frac{5 y}{4}+\frac{25}{64}\right)=\frac{31}{8} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{5 y}{4}+\frac{25}{64}=\left(y+\frac{5}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -\left(x-\frac{1}{2}\right)^2+8 \fbox{$\left(y+\frac{5}{8}\right)^2$}=\frac{31}{8} \\
\end{array}
| khanacademy | amps |
Given the equation $-7 x^2+5 x-3 y^2-9 y+1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-3 y^2-9 y-7 x^2+5 x+1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }1 \text{from }\text{both }\text{sides}: \\
-3 y^2-9 y-7 x^2+5 x=-1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-7 x^2+5 x+\underline{\text{ }}\right)+\left(-3 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-7 x^2+5 x+\underline{\text{ }}\right)=-7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right): \\
\fbox{$-7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right)$}+\left(-3 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-3 y^2-9 y+\underline{\text{ }}\right)=-3 \left(y^2+3 y+\underline{\text{ }}\right): \\
-7 \left(x^2-\frac{5 x}{7}+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2+3 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{7}}{2}\right)^2=\frac{25}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{25}{196}=-\frac{25}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-1-\frac{25}{28}=-\frac{53}{28}: \\
-7 \left(x^2-\frac{5 x}{7}+\frac{25}{196}\right)-3 \left(y^2+3 y+\underline{\text{ }}\right)=\fbox{$-\frac{53}{28}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }-3\times \frac{9}{4}=-\frac{27}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{53}{28}-\frac{27}{4}=-\frac{121}{14}: \\
-7 \left(x^2-\frac{5 x}{7}+\frac{25}{196}\right)-3 \left(y^2+3 y+\frac{9}{4}\right)=\fbox{$-\frac{121}{14}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{5 x}{7}+\frac{25}{196}=\left(x-\frac{5}{14}\right)^2: \\
-7 \fbox{$\left(x-\frac{5}{14}\right)^2$}-3 \left(y^2+3 y+\frac{9}{4}\right)=-\frac{121}{14} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+3 y+\frac{9}{4}=\left(y+\frac{3}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -7 \left(x-\frac{5}{14}\right)^2-3 \fbox{$\left(y+\frac{3}{2}\right)^2$}=-\frac{121}{14} \\
\end{array}
| khanacademy | amps |
Given the equation $-6 x^2+4 x-4 y^2+8 y-9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-4 y^2+8 y-6 x^2+4 x-9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }9 \text{to }\text{both }\text{sides}: \\
-4 y^2+8 y-6 x^2+4 x=9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-6 x^2+4 x+\underline{\text{ }}\right)+\left(-4 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-6 x^2+4 x+\underline{\text{ }}\right)=-6 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right): \\
\fbox{$-6 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right)$}+\left(-4 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-4 y^2+8 y+\underline{\text{ }}\right)=-4 \left(y^2-2 y+\underline{\text{ }}\right): \\
-6 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2-2 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{-6}{9}=-\frac{2}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
9-\frac{2}{3}=\frac{25}{3}: \\
-6 \left(x^2-\frac{2 x}{3}+\frac{1}{9}\right)-4 \left(y^2-2 y+\underline{\text{ }}\right)=\fbox{$\frac{25}{3}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-4\times 1=-4 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{25}{3}-4=\frac{13}{3}: \\
-6 \left(x^2-\frac{2 x}{3}+\frac{1}{9}\right)-4 \left(y^2-2 y+1\right)=\fbox{$\frac{13}{3}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{2 x}{3}+\frac{1}{9}=\left(x-\frac{1}{3}\right)^2: \\
-6 \fbox{$\left(x-\frac{1}{3}\right)^2$}-4 \left(y^2-2 y+1\right)=\frac{13}{3} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-2 y+1=(y-1)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -6 \left(x-\frac{1}{3}\right)^2-4 \fbox{$(y-1)^2$}=\frac{13}{3} \\
\end{array}
| khanacademy | amps |
Given the equation $8 x^2+5 x+9 y^2+7 y+1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
9 y^2+7 y+8 x^2+5 x+1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }1 \text{from }\text{both }\text{sides}: \\
9 y^2+7 y+8 x^2+5 x=-1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(8 x^2+5 x+\underline{\text{ }}\right)+\left(9 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(8 x^2+5 x+\underline{\text{ }}\right)=8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right): \\
\fbox{$8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right)$}+\left(9 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(9 y^2+7 y+\underline{\text{ }}\right)=9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right): \\
8 \left(x^2+\frac{5 x}{8}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{8}}{2}\right)^2=\frac{25}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{25}{256}=\frac{25}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{25}{32}-1=-\frac{7}{32}: \\
8 \left(x^2+\frac{5 x}{8}+\frac{25}{256}\right)+9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{7}{32}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{9}}{2}\right)^2=\frac{49}{324} \text{on }\text{the }\text{left }\text{and }9\times \frac{49}{324}=\frac{49}{36} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{49}{36}-\frac{7}{32}=\frac{329}{288}: \\
8 \left(x^2+\frac{5 x}{8}+\frac{25}{256}\right)+9 \left(y^2+\frac{7 y}{9}+\frac{49}{324}\right)=\fbox{$\frac{329}{288}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{5 x}{8}+\frac{25}{256}=\left(x+\frac{5}{16}\right)^2: \\
8 \fbox{$\left(x+\frac{5}{16}\right)^2$}+9 \left(y^2+\frac{7 y}{9}+\frac{49}{324}\right)=\frac{329}{288} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{7 y}{9}+\frac{49}{324}=\left(y+\frac{7}{18}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 8 \left(x+\frac{5}{16}\right)^2+9 \fbox{$\left(y+\frac{7}{18}\right)^2$}=\frac{329}{288} \\
\end{array}
| khanacademy | amps |
Given the equation $5 x^2-10 x+4 y^2-3 y-2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 y^2-3 y+5 x^2-10 x-2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }2 \text{to }\text{both }\text{sides}: \\
4 y^2-3 y+5 x^2-10 x=2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(5 x^2-10 x+\underline{\text{ }}\right)+\left(4 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 x^2-10 x+\underline{\text{ }}\right)=5 \left(x^2-2 x+\underline{\text{ }}\right): \\
\fbox{$5 \left(x^2-2 x+\underline{\text{ }}\right)$}+\left(4 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 5:
\begin{array}{l}
\left(4 y^2-3 y+\underline{\text{ }}\right)=4 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right): \\
5 \left(x^2-2 x+\underline{\text{ }}\right)+\fbox{$4 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }5\times 1=5 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
2+5=7: \\
5 \left(x^2-2 x+1\right)+4 \left(y^2-\frac{3 y}{4}+\underline{\text{ }}\right)=\fbox{$7$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{9}{64}=\frac{9}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
7+\frac{9}{16}=\frac{121}{16}: \\
5 \left(x^2-2 x+1\right)+4 \left(y^2-\frac{3 y}{4}+\frac{9}{64}\right)=\fbox{$\frac{121}{16}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-2 x+1=(x-1)^2: \\
5 \fbox{$(x-1)^2$}+4 \left(y^2-\frac{3 y}{4}+\frac{9}{64}\right)=\frac{121}{16} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{3 y}{4}+\frac{9}{64}=\left(y-\frac{3}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 5 (x-1)^2+4 \fbox{$\left(y-\frac{3}{8}\right)^2$}=\frac{121}{16} \\
\end{array}
| khanacademy | amps |
Given the equation $6 x^2-10 x+8 y^2+4 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
8 y^2+4 y+6 x^2-10 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
8 y^2+4 y+6 x^2-10 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(6 x^2-10 x+\underline{\text{ }}\right)+\left(8 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(6 x^2-10 x+\underline{\text{ }}\right)=6 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right)$}+\left(8 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(8 y^2+4 y+\underline{\text{ }}\right)=8 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right): \\
6 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{3}}{2}\right)^2=\frac{25}{36} \text{on }\text{the }\text{left }\text{and }6\times \frac{25}{36}=\frac{25}{6} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{25}{6}-4=\frac{1}{6}: \\
6 \left(x^2-\frac{5 x}{3}+\frac{25}{36}\right)+8 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{1}{6}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{8}{16}=\frac{1}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{1}{6}+\frac{1}{2}=\frac{2}{3}: \\
6 \left(x^2-\frac{5 x}{3}+\frac{25}{36}\right)+8 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\fbox{$\frac{2}{3}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{5 x}{3}+\frac{25}{36}=\left(x-\frac{5}{6}\right)^2: \\
6 \fbox{$\left(x-\frac{5}{6}\right)^2$}+8 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\frac{2}{3} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{2}+\frac{1}{16}=\left(y+\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \left(x-\frac{5}{6}\right)^2+8 \fbox{$\left(y+\frac{1}{4}\right)^2$}=\frac{2}{3} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2-10 x-4 y^2+6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 x^2-10 x+\left(6-4 y^2\right)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }6 \text{from }\text{both }\text{sides}: \\
-4 y^2+4 x^2-10 x=-6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(4 x^2-10 x+\underline{\text{ }}\right)-4 y^2=\underline{\text{ }}-6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2-10 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2-\frac{5 x}{2}+\underline{\text{ }}\right)$}-4 y^2=\underline{\text{ }}-6 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }4\times \frac{25}{16}=\frac{25}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\frac{25}{4}-6=\frac{1}{4}: \\
4 \left(x^2-\frac{5 x}{2}+\frac{25}{16}\right)-4 y^2=\fbox{$\frac{1}{4}$} \\
\end{array}
Step 7:
\begin{array}{l}
x^2-\frac{5 x}{2}+\frac{25}{16}=\left(x-\frac{5}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \fbox{$\left(x-\frac{5}{4}\right)^2$}-4 y^2=\frac{1}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2+2 x+5 y^2+3 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
5 y^2+3 y+4 x^2+2 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
5 y^2+3 y+4 x^2+2 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(4 x^2+2 x+\underline{\text{ }}\right)+\left(5 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2+2 x+\underline{\text{ }}\right)=4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)$}+\left(5 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(5 y^2+3 y+\underline{\text{ }}\right)=5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right): \\
4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{1}{4}-4=-\frac{15}{4}: \\
4 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+5 \left(y^2+\frac{3 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{15}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{9}{100}=\frac{9}{20} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{9}{20}-\frac{15}{4}=-\frac{33}{10}: \\
4 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+5 \left(y^2+\frac{3 y}{5}+\frac{9}{100}\right)=\fbox{$-\frac{33}{10}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{2}+\frac{1}{16}=\left(x+\frac{1}{4}\right)^2: \\
4 \fbox{$\left(x+\frac{1}{4}\right)^2$}+5 \left(y^2+\frac{3 y}{5}+\frac{9}{100}\right)=-\frac{33}{10} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{3 y}{5}+\frac{9}{100}=\left(y+\frac{3}{10}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \left(x+\frac{1}{4}\right)^2+5 \fbox{$\left(y+\frac{3}{10}\right)^2$}=-\frac{33}{10} \\
\end{array}
| khanacademy | amps |
Given the equation $-4 x^2+3 x-9 y^2-7 y+1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-9 y^2-7 y-4 x^2+3 x+1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }1 \text{from }\text{both }\text{sides}: \\
-9 y^2-7 y-4 x^2+3 x=-1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-4 x^2+3 x+\underline{\text{ }}\right)+\left(-9 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-4 x^2+3 x+\underline{\text{ }}\right)=-4 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right): \\
\fbox{$-4 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)$}+\left(-9 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-9 y^2-7 y+\underline{\text{ }}\right)=-9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right): \\
-4 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{9}{64}=-\frac{9}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-1-\frac{9}{16}=-\frac{25}{16}: \\
-4 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)-9 \left(y^2+\frac{7 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{25}{16}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{9}}{2}\right)^2=\frac{49}{324} \text{on }\text{the }\text{left }\text{and }-9\times \frac{49}{324}=-\frac{49}{36} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{25}{16}-\frac{49}{36}=-\frac{421}{144}: \\
-4 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)-9 \left(y^2+\frac{7 y}{9}+\frac{49}{324}\right)=\fbox{$-\frac{421}{144}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{3 x}{4}+\frac{9}{64}=\left(x-\frac{3}{8}\right)^2: \\
-4 \fbox{$\left(x-\frac{3}{8}\right)^2$}-9 \left(y^2+\frac{7 y}{9}+\frac{49}{324}\right)=-\frac{421}{144} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{7 y}{9}+\frac{49}{324}=\left(y+\frac{7}{18}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -4 \left(x-\frac{3}{8}\right)^2-9 \fbox{$\left(y+\frac{7}{18}\right)^2$}=-\frac{421}{144} \\
\end{array}
| khanacademy | amps |
Given the equation $2 x^2-7 x-6 y^2+8 y-4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-6 y^2+8 y+2 x^2-7 x-4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }4 \text{to }\text{both }\text{sides}: \\
-6 y^2+8 y+2 x^2-7 x=4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(2 x^2-7 x+\underline{\text{ }}\right)+\left(-6 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(2 x^2-7 x+\underline{\text{ }}\right)=2 \left(x^2-\frac{7 x}{2}+\underline{\text{ }}\right): \\
\fbox{$2 \left(x^2-\frac{7 x}{2}+\underline{\text{ }}\right)$}+\left(-6 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-6 y^2+8 y+\underline{\text{ }}\right)=-6 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right): \\
2 \left(x^2-\frac{7 x}{2}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-7}{2}}{2}\right)^2=\frac{49}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{49}{16}=\frac{49}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
4+\frac{49}{8}=\frac{81}{8}: \\
2 \left(x^2-\frac{7 x}{2}+\frac{49}{16}\right)-6 \left(y^2-\frac{4 y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{81}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }-6\times \frac{4}{9}=-\frac{8}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{81}{8}-\frac{8}{3}=\frac{179}{24}: \\
2 \left(x^2-\frac{7 x}{2}+\frac{49}{16}\right)-6 \left(y^2-\frac{4 y}{3}+\frac{4}{9}\right)=\fbox{$\frac{179}{24}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{7 x}{2}+\frac{49}{16}=\left(x-\frac{7}{4}\right)^2: \\
2 \fbox{$\left(x-\frac{7}{4}\right)^2$}-6 \left(y^2-\frac{4 y}{3}+\frac{4}{9}\right)=\frac{179}{24} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{4 y}{3}+\frac{4}{9}=\left(y-\frac{2}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 2 \left(x-\frac{7}{4}\right)^2-6 \fbox{$\left(y-\frac{2}{3}\right)^2$}=\frac{179}{24} \\
\end{array}
| khanacademy | amps |
Given the equation $-5 x^2-5 x-2 y^2+y+6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-2 y^2+y-5 x^2-5 x+6=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }6 \text{from }\text{both }\text{sides}: \\
-2 y^2+y-5 x^2-5 x=-6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-5 x^2-5 x+\underline{\text{ }}\right)+\left(-2 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-5 x^2-5 x+\underline{\text{ }}\right)=-5 \left(x^2+x+\underline{\text{ }}\right): \\
\fbox{$-5 \left(x^2+x+\underline{\text{ }}\right)$}+\left(-2 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-6 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-2 y^2+y+\underline{\text{ }}\right)=-2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right): \\
-5 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-6 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-5}{4}=-\frac{5}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-6-\frac{5}{4}=-\frac{29}{4}: \\
-5 \left(x^2+x+\frac{1}{4}\right)-2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{29}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-2}{16}=-\frac{1}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{29}{4}-\frac{1}{8}=-\frac{59}{8}: \\
-5 \left(x^2+x+\frac{1}{4}\right)-2 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\fbox{$-\frac{59}{8}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\
-5 \fbox{$\left(x+\frac{1}{2}\right)^2$}-2 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=-\frac{59}{8} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{y}{2}+\frac{1}{16}=\left(y-\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -5 \left(x+\frac{1}{2}\right)^2-2 \fbox{$\left(y-\frac{1}{4}\right)^2$}=-\frac{59}{8} \\
\end{array}
| khanacademy | amps |
Given the equation $6 x^2-6 x-9 y^2-2 y-8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-9 y^2-2 y+6 x^2-6 x-8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }8 \text{to }\text{both }\text{sides}: \\
-9 y^2-2 y+6 x^2-6 x=8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(6 x^2-6 x+\underline{\text{ }}\right)+\left(-9 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(6 x^2-6 x+\underline{\text{ }}\right)=6 \left(x^2-x+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2-x+\underline{\text{ }}\right)$}+\left(-9 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-9 y^2-2 y+\underline{\text{ }}\right)=-9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right): \\
6 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{6}{4}=\frac{3}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
8+\frac{3}{2}=\frac{19}{2}: \\
6 \left(x^2-x+\frac{1}{4}\right)-9 \left(y^2+\frac{2 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{19}{2}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{9}}{2}\right)^2=\frac{1}{81} \text{on }\text{the }\text{left }\text{and }\frac{-9}{81}=-\frac{1}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{19}{2}-\frac{1}{9}=\frac{169}{18}: \\
6 \left(x^2-x+\frac{1}{4}\right)-9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=\fbox{$\frac{169}{18}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\
6 \fbox{$\left(x-\frac{1}{2}\right)^2$}-9 \left(y^2+\frac{2 y}{9}+\frac{1}{81}\right)=\frac{169}{18} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{2 y}{9}+\frac{1}{81}=\left(y+\frac{1}{9}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \left(x-\frac{1}{2}\right)^2-9 \fbox{$\left(y+\frac{1}{9}\right)^2$}=\frac{169}{18} \\
\end{array}
| khanacademy | amps |
Given the equation $-5 x^2-10 x+4 y^2+7 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 y^2+7 y-5 x^2-10 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
4 y^2+7 y-5 x^2-10 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-5 x^2-10 x+\underline{\text{ }}\right)+\left(4 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-5 x^2-10 x+\underline{\text{ }}\right)=-5 \left(x^2+2 x+\underline{\text{ }}\right): \\
\fbox{$-5 \left(x^2+2 x+\underline{\text{ }}\right)$}+\left(4 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(4 y^2+7 y+\underline{\text{ }}\right)=4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right): \\
-5 \left(x^2+2 x+\underline{\text{ }}\right)+\fbox{$4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-5\times 1=-5 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-4-5=-9: \\
-5 \left(x^2+2 x+1\right)+4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right)=\fbox{$-9$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{4}}{2}\right)^2=\frac{49}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{49}{64}=\frac{49}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{49}{16}-9=-\frac{95}{16}: \\
-5 \left(x^2+2 x+1\right)+4 \left(y^2+\frac{7 y}{4}+\frac{49}{64}\right)=\fbox{$-\frac{95}{16}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+2 x+1=(x+1)^2: \\
-5 \fbox{$(x+1)^2$}+4 \left(y^2+\frac{7 y}{4}+\frac{49}{64}\right)=-\frac{95}{16} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{7 y}{4}+\frac{49}{64}=\left(y+\frac{7}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -5 (x+1)^2+4 \fbox{$\left(y+\frac{7}{8}\right)^2$}=-\frac{95}{16} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2-9 x-9 y^2+8 y-5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-9 y^2+8 y+4 x^2-9 x-5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }5 \text{to }\text{both }\text{sides}: \\
-9 y^2+8 y+4 x^2-9 x=5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(4 x^2-9 x+\underline{\text{ }}\right)+\left(-9 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2-9 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right)$}+\left(-9 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-9 y^2+8 y+\underline{\text{ }}\right)=-9 \left(y^2-\frac{8 y}{9}+\underline{\text{ }}\right): \\
4 \left(x^2-\frac{9 x}{4}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2-\frac{8 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-9}{4}}{2}\right)^2=\frac{81}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{81}{64}=\frac{81}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
5+\frac{81}{16}=\frac{161}{16}: \\
4 \left(x^2-\frac{9 x}{4}+\frac{81}{64}\right)-9 \left(y^2-\frac{8 y}{9}+\underline{\text{ }}\right)=\fbox{$\frac{161}{16}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-8}{9}}{2}\right)^2=\frac{16}{81} \text{on }\text{the }\text{left }\text{and }-9\times \frac{16}{81}=-\frac{16}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{161}{16}-\frac{16}{9}=\frac{1193}{144}: \\
4 \left(x^2-\frac{9 x}{4}+\frac{81}{64}\right)-9 \left(y^2-\frac{8 y}{9}+\frac{16}{81}\right)=\fbox{$\frac{1193}{144}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{9 x}{4}+\frac{81}{64}=\left(x-\frac{9}{8}\right)^2: \\
4 \fbox{$\left(x-\frac{9}{8}\right)^2$}-9 \left(y^2-\frac{8 y}{9}+\frac{16}{81}\right)=\frac{1193}{144} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{8 y}{9}+\frac{16}{81}=\left(y-\frac{4}{9}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \left(x-\frac{9}{8}\right)^2-9 \fbox{$\left(y-\frac{4}{9}\right)^2$}=\frac{1193}{144} \\
\end{array}
| khanacademy | amps |
Given the equation $6 x^2+4 x-6 y^2-10 y+5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-6 y^2-10 y+6 x^2+4 x+5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }5 \text{from }\text{both }\text{sides}: \\
-6 y^2-10 y+6 x^2+4 x=-5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(6 x^2+4 x+\underline{\text{ }}\right)+\left(-6 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(6 x^2+4 x+\underline{\text{ }}\right)=6 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right)$}+\left(-6 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-6 y^2-10 y+\underline{\text{ }}\right)=-6 \left(y^2+\frac{5 y}{3}+\underline{\text{ }}\right): \\
6 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2+\frac{5 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{6}{9}=\frac{2}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{2}{3}-5=-\frac{13}{3}: \\
6 \left(x^2+\frac{2 x}{3}+\frac{1}{9}\right)-6 \left(y^2+\frac{5 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{13}{3}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{3}}{2}\right)^2=\frac{25}{36} \text{on }\text{the }\text{left }\text{and }-6\times \frac{25}{36}=-\frac{25}{6} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{13}{3}-\frac{25}{6}=-\frac{17}{2}: \\
6 \left(x^2+\frac{2 x}{3}+\frac{1}{9}\right)-6 \left(y^2+\frac{5 y}{3}+\frac{25}{36}\right)=\fbox{$-\frac{17}{2}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{2 x}{3}+\frac{1}{9}=\left(x+\frac{1}{3}\right)^2: \\
6 \fbox{$\left(x+\frac{1}{3}\right)^2$}-6 \left(y^2+\frac{5 y}{3}+\frac{25}{36}\right)=-\frac{17}{2} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{5 y}{3}+\frac{25}{36}=\left(y+\frac{5}{6}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \left(x+\frac{1}{3}\right)^2-6 \fbox{$\left(y+\frac{5}{6}\right)^2$}=-\frac{17}{2} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2-6 x-6 y^2-8 y-10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-6 y^2-8 y-10 x^2-6 x-10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\
-6 y^2-8 y-10 x^2-6 x=10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2-6 x+\underline{\text{ }}\right)+\left(-6 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2-6 x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right)$}+\left(-6 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-6 y^2-8 y+\underline{\text{ }}\right)=-6 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right): \\
-10 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right)+\fbox{$-6 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }-10\times \frac{9}{100}=-\frac{9}{10} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
10-\frac{9}{10}=\frac{91}{10}: \\
-10 \left(x^2+\frac{3 x}{5}+\frac{9}{100}\right)-6 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{91}{10}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }-6\times \frac{4}{9}=-\frac{8}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{91}{10}-\frac{8}{3}=\frac{193}{30}: \\
-10 \left(x^2+\frac{3 x}{5}+\frac{9}{100}\right)-6 \left(y^2+\frac{4 y}{3}+\frac{4}{9}\right)=\fbox{$\frac{193}{30}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{3 x}{5}+\frac{9}{100}=\left(x+\frac{3}{10}\right)^2: \\
-10 \fbox{$\left(x+\frac{3}{10}\right)^2$}-6 \left(y^2+\frac{4 y}{3}+\frac{4}{9}\right)=\frac{193}{30} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{4 y}{3}+\frac{4}{9}=\left(y+\frac{2}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x+\frac{3}{10}\right)^2-6 \fbox{$\left(y+\frac{2}{3}\right)^2$}=\frac{193}{30} \\
\end{array}
| khanacademy | amps |
Given the equation $-8 x^2+5 x+4 y^2-2 y+8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 y^2-2 y-8 x^2+5 x+8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }8 \text{from }\text{both }\text{sides}: \\
4 y^2-2 y-8 x^2+5 x=-8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-8 x^2+5 x+\underline{\text{ }}\right)+\left(4 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-8 x^2+5 x+\underline{\text{ }}\right)=-8 \left(x^2-\frac{5 x}{8}+\underline{\text{ }}\right): \\
\fbox{$-8 \left(x^2-\frac{5 x}{8}+\underline{\text{ }}\right)$}+\left(4 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(4 y^2-2 y+\underline{\text{ }}\right)=4 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right): \\
-8 \left(x^2-\frac{5 x}{8}+\underline{\text{ }}\right)+\fbox{$4 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{8}}{2}\right)^2=\frac{25}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{25}{256}=-\frac{25}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-8-\frac{25}{32}=-\frac{281}{32}: \\
-8 \left(x^2-\frac{5 x}{8}+\frac{25}{256}\right)+4 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{281}{32}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{1}{4}-\frac{281}{32}=-\frac{273}{32}: \\
-8 \left(x^2-\frac{5 x}{8}+\frac{25}{256}\right)+4 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\fbox{$-\frac{273}{32}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{5 x}{8}+\frac{25}{256}=\left(x-\frac{5}{16}\right)^2: \\
-8 \fbox{$\left(x-\frac{5}{16}\right)^2$}+4 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=-\frac{273}{32} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{y}{2}+\frac{1}{16}=\left(y-\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -8 \left(x-\frac{5}{16}\right)^2+4 \fbox{$\left(y-\frac{1}{4}\right)^2$}=-\frac{273}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2+2 x+5 y^2-8 y-10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
5 y^2-8 y-10 x^2+2 x-10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\
5 y^2-8 y-10 x^2+2 x=10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2+2 x+\underline{\text{ }}\right)+\left(5 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2+2 x+\underline{\text{ }}\right)=-10 \left(x^2-\frac{x}{5}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2-\frac{x}{5}+\underline{\text{ }}\right)$}+\left(5 y^2-8 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(5 y^2-8 y+\underline{\text{ }}\right)=5 \left(y^2-\frac{8 y}{5}+\underline{\text{ }}\right): \\
-10 \left(x^2-\frac{x}{5}+\underline{\text{ }}\right)+\fbox{$5 \left(y^2-\frac{8 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{5}}{2}\right)^2=\frac{1}{100} \text{on }\text{the }\text{left }\text{and }\frac{-10}{100}=-\frac{1}{10} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
10-\frac{1}{10}=\frac{99}{10}: \\
-10 \left(x^2-\frac{x}{5}+\frac{1}{100}\right)+5 \left(y^2-\frac{8 y}{5}+\underline{\text{ }}\right)=\fbox{$\frac{99}{10}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{16}{25}=\frac{16}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{99}{10}+\frac{16}{5}=\frac{131}{10}: \\
-10 \left(x^2-\frac{x}{5}+\frac{1}{100}\right)+5 \left(y^2-\frac{8 y}{5}+\frac{16}{25}\right)=\fbox{$\frac{131}{10}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{x}{5}+\frac{1}{100}=\left(x-\frac{1}{10}\right)^2: \\
-10 \fbox{$\left(x-\frac{1}{10}\right)^2$}+5 \left(y^2-\frac{8 y}{5}+\frac{16}{25}\right)=\frac{131}{10} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{8 y}{5}+\frac{16}{25}=\left(y-\frac{4}{5}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x-\frac{1}{10}\right)^2+5 \fbox{$\left(y-\frac{4}{5}\right)^2$}=\frac{131}{10} \\
\end{array}
| khanacademy | amps |
Given the equation $2 x^2+5 x+9 y^2-4 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
9 y^2-4 y+2 x^2+5 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
9 y^2-4 y+2 x^2+5 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(2 x^2+5 x+\underline{\text{ }}\right)+\left(9 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(2 x^2+5 x+\underline{\text{ }}\right)=2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right): \\
\fbox{$2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right)$}+\left(9 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(9 y^2-4 y+\underline{\text{ }}\right)=9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right): \\
2 \left(x^2+\frac{5 x}{2}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{25}{16}=\frac{25}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{25}{8}-4=-\frac{7}{8}: \\
2 \left(x^2+\frac{5 x}{2}+\frac{25}{16}\right)+9 \left(y^2-\frac{4 y}{9}+\underline{\text{ }}\right)=\fbox{$-\frac{7}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-4}{9}}{2}\right)^2=\frac{4}{81} \text{on }\text{the }\text{left }\text{and }9\times \frac{4}{81}=\frac{4}{9} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{4}{9}-\frac{7}{8}=-\frac{31}{72}: \\
2 \left(x^2+\frac{5 x}{2}+\frac{25}{16}\right)+9 \left(y^2-\frac{4 y}{9}+\frac{4}{81}\right)=\fbox{$-\frac{31}{72}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{5 x}{2}+\frac{25}{16}=\left(x+\frac{5}{4}\right)^2: \\
2 \fbox{$\left(x+\frac{5}{4}\right)^2$}+9 \left(y^2-\frac{4 y}{9}+\frac{4}{81}\right)=-\frac{31}{72} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{4 y}{9}+\frac{4}{81}=\left(y-\frac{2}{9}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 2 \left(x+\frac{5}{4}\right)^2+9 \fbox{$\left(y-\frac{2}{9}\right)^2$}=-\frac{31}{72} \\
\end{array}
| khanacademy | amps |
Given the equation $5 x^2-8 x+7 y^2+8 y+3=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 y^2+8 y+5 x^2-8 x+3=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }3 \text{from }\text{both }\text{sides}: \\
7 y^2+8 y+5 x^2-8 x=-3 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(5 x^2-8 x+\underline{\text{ }}\right)+\left(7 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 x^2-8 x+\underline{\text{ }}\right)=5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right): \\
\fbox{$5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right)$}+\left(7 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\
\end{array}
Step 5:
\begin{array}{l}
\left(7 y^2+8 y+\underline{\text{ }}\right)=7 \left(y^2+\frac{8 y}{7}+\underline{\text{ }}\right): \\
5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2+\frac{8 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{16}{25}=\frac{16}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{16}{5}-3=\frac{1}{5}: \\
5 \left(x^2-\frac{8 x}{5}+\frac{16}{25}\right)+7 \left(y^2+\frac{8 y}{7}+\underline{\text{ }}\right)=\fbox{$\frac{1}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{8}{7}}{2}\right)^2=\frac{16}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{16}{49}=\frac{16}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{1}{5}+\frac{16}{7}=\frac{87}{35}: \\
5 \left(x^2-\frac{8 x}{5}+\frac{16}{25}\right)+7 \left(y^2+\frac{8 y}{7}+\frac{16}{49}\right)=\fbox{$\frac{87}{35}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{8 x}{5}+\frac{16}{25}=\left(x-\frac{4}{5}\right)^2: \\
5 \fbox{$\left(x-\frac{4}{5}\right)^2$}+7 \left(y^2+\frac{8 y}{7}+\frac{16}{49}\right)=\frac{87}{35} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{8 y}{7}+\frac{16}{49}=\left(y+\frac{4}{7}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 5 \left(x-\frac{4}{5}\right)^2+7 \fbox{$\left(y+\frac{4}{7}\right)^2$}=\frac{87}{35} \\
\end{array}
| khanacademy | amps |
Given the equation $-3 x^2-6 x+7 y^2+6 y-10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 y^2+6 y-3 x^2-6 x-10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\
7 y^2+6 y-3 x^2-6 x=10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-3 x^2-6 x+\underline{\text{ }}\right)+\left(7 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-3 x^2-6 x+\underline{\text{ }}\right)=-3 \left(x^2+2 x+\underline{\text{ }}\right): \\
\fbox{$-3 \left(x^2+2 x+\underline{\text{ }}\right)$}+\left(7 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(7 y^2+6 y+\underline{\text{ }}\right)=7 \left(y^2+\frac{6 y}{7}+\underline{\text{ }}\right): \\
-3 \left(x^2+2 x+\underline{\text{ }}\right)+\fbox{$7 \left(y^2+\frac{6 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{2}{2}\right)^2=1 \text{on }\text{the }\text{left }\text{and }-3\times 1=-3 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
10-3=7: \\
-3 \left(x^2+2 x+1\right)+7 \left(y^2+\frac{6 y}{7}+\underline{\text{ }}\right)=\fbox{$7$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
7+\frac{9}{7}=\frac{58}{7}: \\
-3 \left(x^2+2 x+1\right)+7 \left(y^2+\frac{6 y}{7}+\frac{9}{49}\right)=\fbox{$\frac{58}{7}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+2 x+1=(x+1)^2: \\
-3 \fbox{$(x+1)^2$}+7 \left(y^2+\frac{6 y}{7}+\frac{9}{49}\right)=\frac{58}{7} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{6 y}{7}+\frac{9}{49}=\left(y+\frac{3}{7}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -3 (x+1)^2+7 \fbox{$\left(y+\frac{3}{7}\right)^2$}=\frac{58}{7} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2-x-y^2+4 y+5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-y^2+4 y-10 x^2-x+5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }5 \text{from }\text{both }\text{sides}: \\
-y^2+4 y-10 x^2-x=-5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2-x+\underline{\text{ }}\right)+\left(-y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2-x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{x}{10}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2+\frac{x}{10}+\underline{\text{ }}\right)$}+\left(-y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-y^2+4 y+\underline{\text{ }}\right)=-\left(y^2-4 y+\underline{\text{ }}\right): \\
-10 \left(x^2+\frac{x}{10}+\underline{\text{ }}\right)+\fbox{$-\left(y^2-4 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{10}}{2}\right)^2=\frac{1}{400} \text{on }\text{the }\text{left }\text{and }\frac{-10}{400}=-\frac{1}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-5-\frac{1}{40}=-\frac{201}{40}: \\
-10 \left(x^2+\frac{x}{10}+\frac{1}{400}\right)-\left(y^2-4 y+\underline{\text{ }}\right)=\fbox{$-\frac{201}{40}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-4}{2}\right)^2=4 \text{on }\text{the }\text{left }\text{and }-4=-4 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{201}{40}-4=-\frac{361}{40}: \\
-10 \left(x^2+\frac{x}{10}+\frac{1}{400}\right)-\left(y^2-4 y+4\right)=\fbox{$-\frac{361}{40}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{10}+\frac{1}{400}=\left(x+\frac{1}{20}\right)^2: \\
-10 \fbox{$\left(x+\frac{1}{20}\right)^2$}-\left(y^2-4 y+4\right)=-\frac{361}{40} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-4 y+4=(y-2)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x+\frac{1}{20}\right)^2-\fbox{$(y-2)^2$}=-\frac{361}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $-3 x^2+3 x+10 y^2-10 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
10 y^2-10 y-3 x^2+3 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
10 y^2-10 y-3 x^2+3 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-3 x^2+3 x+\underline{\text{ }}\right)+\left(10 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-3 x^2+3 x+\underline{\text{ }}\right)=-3 \left(x^2-x+\underline{\text{ }}\right): \\
\fbox{$-3 \left(x^2-x+\underline{\text{ }}\right)$}+\left(10 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(10 y^2-10 y+\underline{\text{ }}\right)=10 \left(y^2-y+\underline{\text{ }}\right): \\
-3 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$10 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-3}{4}=-\frac{3}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-4-\frac{3}{4}=-\frac{19}{4}: \\
-3 \left(x^2-x+\frac{1}{4}\right)+10 \left(y^2-y+\underline{\text{ }}\right)=\fbox{$-\frac{19}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{10}{4}=\frac{5}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{5}{2}-\frac{19}{4}=-\frac{9}{4}: \\
-3 \left(x^2-x+\frac{1}{4}\right)+10 \left(y^2-y+\frac{1}{4}\right)=\fbox{$-\frac{9}{4}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\
-3 \fbox{$\left(x-\frac{1}{2}\right)^2$}+10 \left(y^2-y+\frac{1}{4}\right)=-\frac{9}{4} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -3 \left(x-\frac{1}{2}\right)^2+\text{10 }\fbox{$\left(y-\frac{1}{2}\right)^2$}=-\frac{9}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2+x-2 y^2+8 y+5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-2 y^2+8 y+4 x^2+x+5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }5 \text{from }\text{both }\text{sides}: \\
-2 y^2+8 y+4 x^2+x=-5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(4 x^2+x+\underline{\text{ }}\right)+\left(-2 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2+x+\underline{\text{ }}\right)=4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)$}+\left(-2 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-2 y^2+8 y+\underline{\text{ }}\right)=-2 \left(y^2-4 y+\underline{\text{ }}\right): \\
4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2-4 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{4}{64}=\frac{1}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{1}{16}-5=-\frac{79}{16}: \\
4 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)-2 \left(y^2-4 y+\underline{\text{ }}\right)=\fbox{$-\frac{79}{16}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-4}{2}\right)^2=4 \text{on }\text{the }\text{left }\text{and }-2\times 4=-8 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{79}{16}-8=-\frac{207}{16}: \\
4 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)-2 \left(y^2-4 y+4\right)=\fbox{$-\frac{207}{16}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{4}+\frac{1}{64}=\left(x+\frac{1}{8}\right)^2: \\
4 \fbox{$\left(x+\frac{1}{8}\right)^2$}-2 \left(y^2-4 y+4\right)=-\frac{207}{16} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-4 y+4=(y-2)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \left(x+\frac{1}{8}\right)^2-2 \fbox{$(y-2)^2$}=-\frac{207}{16} \\
\end{array}
| khanacademy | amps |
Given the equation $-x^2-2 y^2-3 y+5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-2 y^2-3 y+\left(5-x^2\right)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }-2 y^2-3 y-x^2+5 \text{from }\text{both }\text{sides}: \\
2 y^2+3 y+\left(x^2-5\right)=0 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Add }5 \text{to }\text{both }\text{sides}: \\
2 y^2+3 y+x^2=5 \\
\end{array}
Step 4:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(2 y^2+3 y+\underline{\text{ }}\right)+x^2=\underline{\text{ }}+5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(2 y^2+3 y+\underline{\text{ }}\right)=2 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right): \\
\fbox{$2 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)$}+x^2=\underline{\text{ }}+5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{9}{16}=\frac{9}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
5+\frac{9}{8}=\frac{49}{8}: \\
2 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)+x^2=\fbox{$\frac{49}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
y^2+\frac{3 y}{2}+\frac{9}{16}=\left(y+\frac{3}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 2 \fbox{$\left(y+\frac{3}{4}\right)^2$}+x^2=\frac{49}{8} \\
\end{array}
| khanacademy | amps |
Given the equation $-4 x^2+7 x+7 y^2-6 y-1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 y^2-6 y-4 x^2+7 x-1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }1 \text{to }\text{both }\text{sides}: \\
7 y^2-6 y-4 x^2+7 x=1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-4 x^2+7 x+\underline{\text{ }}\right)+\left(7 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-4 x^2+7 x+\underline{\text{ }}\right)=-4 \left(x^2-\frac{7 x}{4}+\underline{\text{ }}\right): \\
\fbox{$-4 \left(x^2-\frac{7 x}{4}+\underline{\text{ }}\right)$}+\left(7 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(7 y^2-6 y+\underline{\text{ }}\right)=7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right): \\
-4 \left(x^2-\frac{7 x}{4}+\underline{\text{ }}\right)+\fbox{$7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-7}{4}}{2}\right)^2=\frac{49}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{49}{64}=-\frac{49}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
1-\frac{49}{16}=-\frac{33}{16}: \\
-4 \left(x^2-\frac{7 x}{4}+\frac{49}{64}\right)+7 \left(y^2-\frac{6 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{33}{16}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{9}{49}=\frac{9}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{9}{7}-\frac{33}{16}=-\frac{87}{112}: \\
-4 \left(x^2-\frac{7 x}{4}+\frac{49}{64}\right)+7 \left(y^2-\frac{6 y}{7}+\frac{9}{49}\right)=\fbox{$-\frac{87}{112}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{7 x}{4}+\frac{49}{64}=\left(x-\frac{7}{8}\right)^2: \\
-4 \fbox{$\left(x-\frac{7}{8}\right)^2$}+7 \left(y^2-\frac{6 y}{7}+\frac{9}{49}\right)=-\frac{87}{112} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{6 y}{7}+\frac{9}{49}=\left(y-\frac{3}{7}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -4 \left(x-\frac{7}{8}\right)^2+7 \fbox{$\left(y-\frac{3}{7}\right)^2$}=-\frac{87}{112} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2-2 x+10 y+6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 x^2-2 x+(10 y+6)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }10 y+6 \text{from }\text{both }\text{sides}: \\
4 x^2-2 x=-10 y-6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(4 x^2-2 x+\underline{\text{ }}\right)=(-10 y-6)+\underline{\text{ }} \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2-2 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)$}=(-10 y-6)+\underline{\text{ }} \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
(-10 y-6)+\frac{1}{4}=-10 y-\frac{23}{4}: \\
4 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)=\fbox{$-10 y-\frac{23}{4}$} \\
\end{array}
Step 7:
\begin{array}{l}
x^2-\frac{x}{2}+\frac{1}{16}=\left(x-\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \fbox{$\left(x-\frac{1}{4}\right)^2$}=-10 y-\frac{23}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $-5 x^2-8 x-4 y^2-6 y+7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-4 y^2-6 y-5 x^2-8 x+7=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }7 \text{from }\text{both }\text{sides}: \\
-4 y^2-6 y-5 x^2-8 x=-7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-5 x^2-8 x+\underline{\text{ }}\right)+\left(-4 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-5 x^2-8 x+\underline{\text{ }}\right)=-5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right)$}+\left(-4 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-4 y^2-6 y+\underline{\text{ }}\right)=-4 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right): \\
-5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }-5\times \frac{16}{25}=-\frac{16}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-7-\frac{16}{5}=-\frac{51}{5}: \\
-5 \left(x^2+\frac{8 x}{5}+\frac{16}{25}\right)-4 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{51}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }-4\times \frac{9}{16}=-\frac{9}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{51}{5}-\frac{9}{4}=-\frac{249}{20}: \\
-5 \left(x^2+\frac{8 x}{5}+\frac{16}{25}\right)-4 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=\fbox{$-\frac{249}{20}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{8 x}{5}+\frac{16}{25}=\left(x+\frac{4}{5}\right)^2: \\
-5 \fbox{$\left(x+\frac{4}{5}\right)^2$}-4 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)=-\frac{249}{20} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{3 y}{2}+\frac{9}{16}=\left(y+\frac{3}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -5 \left(x+\frac{4}{5}\right)^2-4 \fbox{$\left(y+\frac{3}{4}\right)^2$}=-\frac{249}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $3 x^2+3 x-9 y+6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
3 x^2+3 x+(6-9 y)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }6-9 y \text{from }\text{both }\text{sides}: \\
3 x^2+3 x=9 y-6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(3 x^2+3 x+\underline{\text{ }}\right)=(9 y-6)+\underline{\text{ }} \\
\end{array}
Step 4:
\begin{array}{l}
\left(3 x^2+3 x+\underline{\text{ }}\right)=3 \left(x^2+x+\underline{\text{ }}\right): \\
\fbox{$3 \left(x^2+x+\underline{\text{ }}\right)$}=(9 y-6)+\underline{\text{ }} \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{3}{4}=\frac{3}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
(9 y-6)+\frac{3}{4}=9 y-\frac{21}{4}: \\
3 \left(x^2+x+\frac{1}{4}\right)=\fbox{$9 y-\frac{21}{4}$} \\
\end{array}
Step 7:
\begin{array}{l}
x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 3 \fbox{$\left(x+\frac{1}{2}\right)^2$}=9 y-\frac{21}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $5 x^2-2 x+y^2+9 y-8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
y^2+9 y+5 x^2-2 x-8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }8 \text{to }\text{both }\text{sides}: \\
y^2+9 y+5 x^2-2 x=8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(5 x^2-2 x+\underline{\text{ }}\right)+\left(y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 x^2-2 x+\underline{\text{ }}\right)=5 \left(x^2-\frac{2 x}{5}+\underline{\text{ }}\right): \\
\fbox{$5 \left(x^2-\frac{2 x}{5}+\underline{\text{ }}\right)$}+\left(y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{5}}{2}\right)^2=\frac{1}{25} \text{on }\text{the }\text{left }\text{and }\frac{5}{25}=\frac{1}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
8+\frac{1}{5}=\frac{41}{5}: \\
5 \left(x^2-\frac{2 x}{5}+\frac{1}{25}\right)+\left(y^2+9 y+\underline{\text{ }}\right)=\fbox{$\frac{41}{5}$} \\
\end{array}
Step 7:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\
\text{Add }\left(\frac{9}{2}\right)^2=\frac{81}{4} \text{to }\text{both }\text{sides}: \\
\end{array}
Step 8:
\begin{array}{l}
\frac{41}{5}+\frac{81}{4}=\frac{569}{20}: \\
5 \left(x^2-\frac{2 x}{5}+\frac{1}{25}\right)+\left(y^2+9 y+\frac{81}{4}\right)=\fbox{$\frac{569}{20}$} \\
\end{array}
Step 9:
\begin{array}{l}
x^2-\frac{2 x}{5}+\frac{1}{25}=\left(x-\frac{1}{5}\right)^2: \\
5 \fbox{$\left(x-\frac{1}{5}\right)^2$}+\left(y^2+9 y+\frac{81}{4}\right)=\frac{569}{20} \\
\end{array}
Step 10:
\begin{array}{l}
y^2+9 y+\frac{81}{4}=\left(y+\frac{9}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 5 \left(x-\frac{1}{5}\right)^2+\fbox{$\left(y+\frac{9}{2}\right)^2$}=\frac{569}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $-4 x^2+2 y^2-3 y+6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
2 y^2-3 y+\left(6-4 x^2\right)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }6 \text{from }\text{both }\text{sides}: \\
2 y^2-3 y-4 x^2=-6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(2 y^2-3 y+\underline{\text{ }}\right)-4 x^2=\underline{\text{ }}-6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(2 y^2-3 y+\underline{\text{ }}\right)=2 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right): \\
\fbox{$2 \left(y^2-\frac{3 y}{2}+\underline{\text{ }}\right)$}-4 x^2=\underline{\text{ }}-6 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{9}{16}=\frac{9}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\frac{9}{8}-6=-\frac{39}{8}: \\
2 \left(y^2-\frac{3 y}{2}+\frac{9}{16}\right)-4 x^2=\fbox{$-\frac{39}{8}$} \\
\end{array}
Step 7:
\begin{array}{l}
y^2-\frac{3 y}{2}+\frac{9}{16}=\left(y-\frac{3}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 2 \fbox{$\left(y-\frac{3}{4}\right)^2$}-4 x^2=-\frac{39}{8} \\
\end{array}
| khanacademy | amps |
Given the equation $6 x^2+x-2 y^2+5 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-2 y^2+5 y+6 x^2+x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
-2 y^2+5 y+6 x^2+x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(6 x^2+x+\underline{\text{ }}\right)+\left(-2 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(6 x^2+x+\underline{\text{ }}\right)=6 \left(x^2+\frac{x}{6}+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2+\frac{x}{6}+\underline{\text{ }}\right)$}+\left(-2 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-2 y^2+5 y+\underline{\text{ }}\right)=-2 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right): \\
6 \left(x^2+\frac{x}{6}+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{6}}{2}\right)^2=\frac{1}{144} \text{on }\text{the }\text{left }\text{and }\frac{6}{144}=\frac{1}{24} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{1}{24}-4=-\frac{95}{24}: \\
6 \left(x^2+\frac{x}{6}+\frac{1}{144}\right)-2 \left(y^2-\frac{5 y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{95}{24}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }-2\times \frac{25}{16}=-\frac{25}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{95}{24}-\frac{25}{8}=-\frac{85}{12}: \\
6 \left(x^2+\frac{x}{6}+\frac{1}{144}\right)-2 \left(y^2-\frac{5 y}{2}+\frac{25}{16}\right)=\fbox{$-\frac{85}{12}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{6}+\frac{1}{144}=\left(x+\frac{1}{12}\right)^2: \\
6 \fbox{$\left(x+\frac{1}{12}\right)^2$}-2 \left(y^2-\frac{5 y}{2}+\frac{25}{16}\right)=-\frac{85}{12} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{5 y}{2}+\frac{25}{16}=\left(y-\frac{5}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \left(x+\frac{1}{12}\right)^2-2 \fbox{$\left(y-\frac{5}{4}\right)^2$}=-\frac{85}{12} \\
\end{array}
| khanacademy | amps |
Given the equation $5 x^2+5 x-5 y^2-7 y+9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-5 y^2-7 y+5 x^2+5 x+9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }9 \text{from }\text{both }\text{sides}: \\
-5 y^2-7 y+5 x^2+5 x=-9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(5 x^2+5 x+\underline{\text{ }}\right)+\left(-5 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 x^2+5 x+\underline{\text{ }}\right)=5 \left(x^2+x+\underline{\text{ }}\right): \\
\fbox{$5 \left(x^2+x+\underline{\text{ }}\right)$}+\left(-5 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-5 y^2-7 y+\underline{\text{ }}\right)=-5 \left(y^2+\frac{7 y}{5}+\underline{\text{ }}\right): \\
5 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2+\frac{7 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{5}{4}=\frac{5}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{5}{4}-9=-\frac{31}{4}: \\
5 \left(x^2+x+\frac{1}{4}\right)-5 \left(y^2+\frac{7 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{31}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{5}}{2}\right)^2=\frac{49}{100} \text{on }\text{the }\text{left }\text{and }-5\times \frac{49}{100}=-\frac{49}{20} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{31}{4}-\frac{49}{20}=-\frac{51}{5}: \\
5 \left(x^2+x+\frac{1}{4}\right)-5 \left(y^2+\frac{7 y}{5}+\frac{49}{100}\right)=\fbox{$-\frac{51}{5}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\
5 \fbox{$\left(x+\frac{1}{2}\right)^2$}-5 \left(y^2+\frac{7 y}{5}+\frac{49}{100}\right)=-\frac{51}{5} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{7 y}{5}+\frac{49}{100}=\left(y+\frac{7}{10}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 5 \left(x+\frac{1}{2}\right)^2-5 \fbox{$\left(y+\frac{7}{10}\right)^2$}=-\frac{51}{5} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2+8 x-3 y^2+10 y+10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-3 y^2+10 y-10 x^2+8 x+10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\
-3 y^2+10 y-10 x^2+8 x=-10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2+8 x+\underline{\text{ }}\right)+\left(-3 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2+8 x+\underline{\text{ }}\right)=-10 \left(x^2-\frac{4 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2-\frac{4 x}{5}+\underline{\text{ }}\right)$}+\left(-3 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-3 y^2+10 y+\underline{\text{ }}\right)=-3 \left(y^2-\frac{10 y}{3}+\underline{\text{ }}\right): \\
-10 \left(x^2-\frac{4 x}{5}+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2-\frac{10 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }-10\times \frac{4}{25}=-\frac{8}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-10-\frac{8}{5}=-\frac{58}{5}: \\
-10 \left(x^2-\frac{4 x}{5}+\frac{4}{25}\right)-3 \left(y^2-\frac{10 y}{3}+\underline{\text{ }}\right)=\fbox{$-\frac{58}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-10}{3}}{2}\right)^2=\frac{25}{9} \text{on }\text{the }\text{left }\text{and }-3\times \frac{25}{9}=-\frac{25}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{58}{5}-\frac{25}{3}=-\frac{299}{15}: \\
-10 \left(x^2-\frac{4 x}{5}+\frac{4}{25}\right)-3 \left(y^2-\frac{10 y}{3}+\frac{25}{9}\right)=\fbox{$-\frac{299}{15}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{4 x}{5}+\frac{4}{25}=\left(x-\frac{2}{5}\right)^2: \\
-10 \fbox{$\left(x-\frac{2}{5}\right)^2$}-3 \left(y^2-\frac{10 y}{3}+\frac{25}{9}\right)=-\frac{299}{15} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{10 y}{3}+\frac{25}{9}=\left(y-\frac{5}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x-\frac{2}{5}\right)^2-3 \fbox{$\left(y-\frac{5}{3}\right)^2$}=-\frac{299}{15} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2+2 x+4 y^2+10 y-1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 y^2+10 y+4 x^2+2 x-1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }1 \text{to }\text{both }\text{sides}: \\
4 y^2+10 y+4 x^2+2 x=1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(4 x^2+2 x+\underline{\text{ }}\right)+\left(4 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2+2 x+\underline{\text{ }}\right)=4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)$}+\left(4 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(4 y^2+10 y+\underline{\text{ }}\right)=4 \left(y^2+\frac{5 y}{2}+\underline{\text{ }}\right): \\
4 \left(x^2+\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$4 \left(y^2+\frac{5 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
1+\frac{1}{4}=\frac{5}{4}: \\
4 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+4 \left(y^2+\frac{5 y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{5}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{2}}{2}\right)^2=\frac{25}{16} \text{on }\text{the }\text{left }\text{and }4\times \frac{25}{16}=\frac{25}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{5}{4}+\frac{25}{4}=\frac{15}{2}: \\
4 \left(x^2+\frac{x}{2}+\frac{1}{16}\right)+4 \left(y^2+\frac{5 y}{2}+\frac{25}{16}\right)=\fbox{$\frac{15}{2}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{2}+\frac{1}{16}=\left(x+\frac{1}{4}\right)^2: \\
4 \fbox{$\left(x+\frac{1}{4}\right)^2$}+4 \left(y^2+\frac{5 y}{2}+\frac{25}{16}\right)=\frac{15}{2} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{5 y}{2}+\frac{25}{16}=\left(y+\frac{5}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \left(x+\frac{1}{4}\right)^2+4 \fbox{$\left(y+\frac{5}{4}\right)^2$}=\frac{15}{2} \\
\end{array}
| khanacademy | amps |
Given the equation $5 x^2-8 x+4 y^2+2 y+7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 y^2+2 y+5 x^2-8 x+7=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }7 \text{from }\text{both }\text{sides}: \\
4 y^2+2 y+5 x^2-8 x=-7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(5 x^2-8 x+\underline{\text{ }}\right)+\left(4 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 x^2-8 x+\underline{\text{ }}\right)=5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right): \\
\fbox{$5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right)$}+\left(4 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(4 y^2+2 y+\underline{\text{ }}\right)=4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right): \\
5 \left(x^2-\frac{8 x}{5}+\underline{\text{ }}\right)+\fbox{$4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{16}{25}=\frac{16}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{16}{5}-7=-\frac{19}{5}: \\
5 \left(x^2-\frac{8 x}{5}+\frac{16}{25}\right)+4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$-\frac{19}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{1}{4}-\frac{19}{5}=-\frac{71}{20}: \\
5 \left(x^2-\frac{8 x}{5}+\frac{16}{25}\right)+4 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\fbox{$-\frac{71}{20}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{8 x}{5}+\frac{16}{25}=\left(x-\frac{4}{5}\right)^2: \\
5 \fbox{$\left(x-\frac{4}{5}\right)^2$}+4 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=-\frac{71}{20} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{2}+\frac{1}{16}=\left(y+\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 5 \left(x-\frac{4}{5}\right)^2+4 \fbox{$\left(y+\frac{1}{4}\right)^2$}=-\frac{71}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $10 x^2+9 x-y^2-7 y-8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-y^2-7 y+10 x^2+9 x-8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }8 \text{to }\text{both }\text{sides}: \\
-y^2-7 y+10 x^2+9 x=8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(10 x^2+9 x+\underline{\text{ }}\right)+\left(-y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(10 x^2+9 x+\underline{\text{ }}\right)=10 \left(x^2+\frac{9 x}{10}+\underline{\text{ }}\right): \\
\fbox{$10 \left(x^2+\frac{9 x}{10}+\underline{\text{ }}\right)$}+\left(-y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-y^2-7 y+\underline{\text{ }}\right)=-\left(y^2+7 y+\underline{\text{ }}\right): \\
10 \left(x^2+\frac{9 x}{10}+\underline{\text{ }}\right)+\fbox{$-\left(y^2+7 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{10}}{2}\right)^2=\frac{81}{400} \text{on }\text{the }\text{left }\text{and }10\times \frac{81}{400}=\frac{81}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
8+\frac{81}{40}=\frac{401}{40}: \\
10 \left(x^2+\frac{9 x}{10}+\frac{81}{400}\right)-\left(y^2+7 y+\underline{\text{ }}\right)=\fbox{$\frac{401}{40}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{7}{2}\right)^2=\frac{49}{4} \text{on }\text{the }\text{left }\text{and }-\frac{49}{4}=-\frac{49}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{401}{40}-\frac{49}{4}=-\frac{89}{40}: \\
10 \left(x^2+\frac{9 x}{10}+\frac{81}{400}\right)-\left(y^2+7 y+\frac{49}{4}\right)=\fbox{$-\frac{89}{40}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{9 x}{10}+\frac{81}{400}=\left(x+\frac{9}{20}\right)^2: \\
\text{10 }\fbox{$\left(x+\frac{9}{20}\right)^2$}-\left(y^2+7 y+\frac{49}{4}\right)=-\frac{89}{40} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+7 y+\frac{49}{4}=\left(y+\frac{7}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 10 \left(x+\frac{9}{20}\right)^2-\fbox{$\left(y+\frac{7}{2}\right)^2$}=-\frac{89}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2-3 x+2 y^2+2 y-1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
2 y^2+2 y-10 x^2-3 x-1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }1 \text{to }\text{both }\text{sides}: \\
2 y^2+2 y-10 x^2-3 x=1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2-3 x+\underline{\text{ }}\right)+\left(2 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2-3 x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{3 x}{10}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2+\frac{3 x}{10}+\underline{\text{ }}\right)$}+\left(2 y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(2 y^2+2 y+\underline{\text{ }}\right)=2 \left(y^2+y+\underline{\text{ }}\right): \\
-10 \left(x^2+\frac{3 x}{10}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{3}{10}}{2}\right)^2=\frac{9}{400} \text{on }\text{the }\text{left }\text{and }-10\times \frac{9}{400}=-\frac{9}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
1-\frac{9}{40}=\frac{31}{40}: \\
-10 \left(x^2+\frac{3 x}{10}+\frac{9}{400}\right)+2 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{31}{40}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{2}{4}=\frac{1}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{31}{40}+\frac{1}{2}=\frac{51}{40}: \\
-10 \left(x^2+\frac{3 x}{10}+\frac{9}{400}\right)+2 \left(y^2+y+\frac{1}{4}\right)=\fbox{$\frac{51}{40}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{3 x}{10}+\frac{9}{400}=\left(x+\frac{3}{20}\right)^2: \\
-10 \fbox{$\left(x+\frac{3}{20}\right)^2$}+2 \left(y^2+y+\frac{1}{4}\right)=\frac{51}{40} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x+\frac{3}{20}\right)^2+2 \fbox{$\left(y+\frac{1}{2}\right)^2$}=\frac{51}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $5 x^2+8 x-y^2-y-8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-y^2-y+5 x^2+8 x-8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }8 \text{to }\text{both }\text{sides}: \\
-y^2-y+5 x^2+8 x=8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(5 x^2+8 x+\underline{\text{ }}\right)+\left(-y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 x^2+8 x+\underline{\text{ }}\right)=5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right): \\
\fbox{$5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right)$}+\left(-y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-y^2-y+\underline{\text{ }}\right)=-\left(y^2+y+\underline{\text{ }}\right): \\
5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right)+\fbox{$-\left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{16}{25}=\frac{16}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
8+\frac{16}{5}=\frac{56}{5}: \\
5 \left(x^2+\frac{8 x}{5}+\frac{16}{25}\right)-\left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{56}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-1}{4}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{56}{5}-\frac{1}{4}=\frac{219}{20}: \\
5 \left(x^2+\frac{8 x}{5}+\frac{16}{25}\right)-\left(y^2+y+\frac{1}{4}\right)=\fbox{$\frac{219}{20}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{8 x}{5}+\frac{16}{25}=\left(x+\frac{4}{5}\right)^2: \\
5 \fbox{$\left(x+\frac{4}{5}\right)^2$}-\left(y^2+y+\frac{1}{4}\right)=\frac{219}{20} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 5 \left(x+\frac{4}{5}\right)^2-\fbox{$\left(y+\frac{1}{2}\right)^2$}=\frac{219}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $-7 x^2+9 x-8 y^2-6 y-5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-8 y^2-6 y-7 x^2+9 x-5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }5 \text{to }\text{both }\text{sides}: \\
-8 y^2-6 y-7 x^2+9 x=5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-7 x^2+9 x+\underline{\text{ }}\right)+\left(-8 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-7 x^2+9 x+\underline{\text{ }}\right)=-7 \left(x^2-\frac{9 x}{7}+\underline{\text{ }}\right): \\
\fbox{$-7 \left(x^2-\frac{9 x}{7}+\underline{\text{ }}\right)$}+\left(-8 y^2-6 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-8 y^2-6 y+\underline{\text{ }}\right)=-8 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right): \\
-7 \left(x^2-\frac{9 x}{7}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-9}{7}}{2}\right)^2=\frac{81}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{81}{196}=-\frac{81}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
5-\frac{81}{28}=\frac{59}{28}: \\
-7 \left(x^2-\frac{9 x}{7}+\frac{81}{196}\right)-8 \left(y^2+\frac{3 y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{59}{28}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }-8\times \frac{9}{64}=-\frac{9}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{59}{28}-\frac{9}{8}=\frac{55}{56}: \\
-7 \left(x^2-\frac{9 x}{7}+\frac{81}{196}\right)-8 \left(y^2+\frac{3 y}{4}+\frac{9}{64}\right)=\fbox{$\frac{55}{56}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{9 x}{7}+\frac{81}{196}=\left(x-\frac{9}{14}\right)^2: \\
-7 \fbox{$\left(x-\frac{9}{14}\right)^2$}-8 \left(y^2+\frac{3 y}{4}+\frac{9}{64}\right)=\frac{55}{56} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{3 y}{4}+\frac{9}{64}=\left(y+\frac{3}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -7 \left(x-\frac{9}{14}\right)^2-8 \fbox{$\left(y+\frac{3}{8}\right)^2$}=\frac{55}{56} \\
\end{array}
| khanacademy | amps |
Given the equation $-9 x^2+7 x-4 y^2+y+9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-4 y^2+y-9 x^2+7 x+9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }9 \text{from }\text{both }\text{sides}: \\
-4 y^2+y-9 x^2+7 x=-9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-9 x^2+7 x+\underline{\text{ }}\right)+\left(-4 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-9 x^2+7 x+\underline{\text{ }}\right)=-9 \left(x^2-\frac{7 x}{9}+\underline{\text{ }}\right): \\
\fbox{$-9 \left(x^2-\frac{7 x}{9}+\underline{\text{ }}\right)$}+\left(-4 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-4 y^2+y+\underline{\text{ }}\right)=-4 \left(y^2-\frac{y}{4}+\underline{\text{ }}\right): \\
-9 \left(x^2-\frac{7 x}{9}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2-\frac{y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-7}{9}}{2}\right)^2=\frac{49}{324} \text{on }\text{the }\text{left }\text{and }-9\times \frac{49}{324}=-\frac{49}{36} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-9-\frac{49}{36}=-\frac{373}{36}: \\
-9 \left(x^2-\frac{7 x}{9}+\frac{49}{324}\right)-4 \left(y^2-\frac{y}{4}+\underline{\text{ }}\right)=\fbox{$-\frac{373}{36}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{-4}{64}=-\frac{1}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{373}{36}-\frac{1}{16}=-\frac{1501}{144}: \\
-9 \left(x^2-\frac{7 x}{9}+\frac{49}{324}\right)-4 \left(y^2-\frac{y}{4}+\frac{1}{64}\right)=\fbox{$-\frac{1501}{144}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{7 x}{9}+\frac{49}{324}=\left(x-\frac{7}{18}\right)^2: \\
-9 \fbox{$\left(x-\frac{7}{18}\right)^2$}-4 \left(y^2-\frac{y}{4}+\frac{1}{64}\right)=-\frac{1501}{144} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{y}{4}+\frac{1}{64}=\left(y-\frac{1}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -9 \left(x-\frac{7}{18}\right)^2-4 \fbox{$\left(y-\frac{1}{8}\right)^2$}=-\frac{1501}{144} \\
\end{array}
| khanacademy | amps |
Given the equation $8 x^2+8 x-5 y^2-4 y-2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-5 y^2-4 y+8 x^2+8 x-2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }2 \text{to }\text{both }\text{sides}: \\
-5 y^2-4 y+8 x^2+8 x=2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(8 x^2+8 x+\underline{\text{ }}\right)+\left(-5 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(8 x^2+8 x+\underline{\text{ }}\right)=8 \left(x^2+x+\underline{\text{ }}\right): \\
\fbox{$8 \left(x^2+x+\underline{\text{ }}\right)$}+\left(-5 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-5 y^2-4 y+\underline{\text{ }}\right)=-5 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right): \\
8 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{8}{4}=2 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
2+2=4: \\
8 \left(x^2+x+\frac{1}{4}\right)-5 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right)=\fbox{$4$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }-5\times \frac{4}{25}=-\frac{4}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
4-\frac{4}{5}=\frac{16}{5}: \\
8 \left(x^2+x+\frac{1}{4}\right)-5 \left(y^2+\frac{4 y}{5}+\frac{4}{25}\right)=\fbox{$\frac{16}{5}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\
8 \fbox{$\left(x+\frac{1}{2}\right)^2$}-5 \left(y^2+\frac{4 y}{5}+\frac{4}{25}\right)=\frac{16}{5} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{4 y}{5}+\frac{4}{25}=\left(y+\frac{2}{5}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 8 \left(x+\frac{1}{2}\right)^2-5 \fbox{$\left(y+\frac{2}{5}\right)^2$}=\frac{16}{5} \\
\end{array}
| khanacademy | amps |
Given the equation $6 x^2-x-y^2-4 y+10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-y^2-4 y+6 x^2-x+10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\
-y^2-4 y+6 x^2-x=-10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(6 x^2-x+\underline{\text{ }}\right)+\left(-y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(6 x^2-x+\underline{\text{ }}\right)=6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right)$}+\left(-y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-y^2-4 y+\underline{\text{ }}\right)=-\left(y^2+4 y+\underline{\text{ }}\right): \\
6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right)+\fbox{$-\left(y^2+4 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{6}}{2}\right)^2=\frac{1}{144} \text{on }\text{the }\text{left }\text{and }\frac{6}{144}=\frac{1}{24} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{1}{24}-10=-\frac{239}{24}: \\
6 \left(x^2-\frac{x}{6}+\frac{1}{144}\right)-\left(y^2+4 y+\underline{\text{ }}\right)=\fbox{$-\frac{239}{24}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{4}{2}\right)^2=4 \text{on }\text{the }\text{left }\text{and }-4=-4 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{239}{24}-4=-\frac{335}{24}: \\
6 \left(x^2-\frac{x}{6}+\frac{1}{144}\right)-\left(y^2+4 y+4\right)=\fbox{$-\frac{335}{24}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{x}{6}+\frac{1}{144}=\left(x-\frac{1}{12}\right)^2: \\
6 \fbox{$\left(x-\frac{1}{12}\right)^2$}-\left(y^2+4 y+4\right)=-\frac{335}{24} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+4 y+4=(y+2)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \left(x-\frac{1}{12}\right)^2-\fbox{$(y+2)^2$}=-\frac{335}{24} \\
\end{array}
| khanacademy | amps |
Given the equation $-4 x^2+2 x-2 y-9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-4 x^2+2 x+(-2 y-9)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }-2 y-4 x^2+2 x-9 \text{from }\text{both }\text{sides}: \\
4 x^2-2 x+(2 y+9)=0 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Subtract }2 y+9 \text{from }\text{both }\text{sides}: \\
4 x^2-2 x=-2 y-9 \\
\end{array}
Step 4:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(4 x^2-2 x+\underline{\text{ }}\right)=(-2 y-9)+\underline{\text{ }} \\
\end{array}
Step 5:
\begin{array}{l}
\left(4 x^2-2 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)$}=(-2 y-9)+\underline{\text{ }} \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{4}{16}=\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
(-2 y-9)+\frac{1}{4}=-2 y-\frac{35}{4}: \\
4 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)=\fbox{$-2 y-\frac{35}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
x^2-\frac{x}{2}+\frac{1}{16}=\left(x-\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \fbox{$\left(x-\frac{1}{4}\right)^2$}=-2 y-\frac{35}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $-7 x^2-6 x-5 y^2-7 y-10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-5 y^2-7 y-7 x^2-6 x-10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\
-5 y^2-7 y-7 x^2-6 x=10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-7 x^2-6 x+\underline{\text{ }}\right)+\left(-5 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-7 x^2-6 x+\underline{\text{ }}\right)=-7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right): \\
\fbox{$-7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right)$}+\left(-5 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-5 y^2-7 y+\underline{\text{ }}\right)=-5 \left(y^2+\frac{7 y}{5}+\underline{\text{ }}\right): \\
-7 \left(x^2+\frac{6 x}{7}+\underline{\text{ }}\right)+\fbox{$-5 \left(y^2+\frac{7 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{6}{7}}{2}\right)^2=\frac{9}{49} \text{on }\text{the }\text{left }\text{and }-7\times \frac{9}{49}=-\frac{9}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
10-\frac{9}{7}=\frac{61}{7}: \\
-7 \left(x^2+\frac{6 x}{7}+\frac{9}{49}\right)-5 \left(y^2+\frac{7 y}{5}+\underline{\text{ }}\right)=\fbox{$\frac{61}{7}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{5}}{2}\right)^2=\frac{49}{100} \text{on }\text{the }\text{left }\text{and }-5\times \frac{49}{100}=-\frac{49}{20} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{61}{7}-\frac{49}{20}=\frac{877}{140}: \\
-7 \left(x^2+\frac{6 x}{7}+\frac{9}{49}\right)-5 \left(y^2+\frac{7 y}{5}+\frac{49}{100}\right)=\fbox{$\frac{877}{140}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{6 x}{7}+\frac{9}{49}=\left(x+\frac{3}{7}\right)^2: \\
-7 \fbox{$\left(x+\frac{3}{7}\right)^2$}-5 \left(y^2+\frac{7 y}{5}+\frac{49}{100}\right)=\frac{877}{140} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{7 y}{5}+\frac{49}{100}=\left(y+\frac{7}{10}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -7 \left(x+\frac{3}{7}\right)^2-5 \fbox{$\left(y+\frac{7}{10}\right)^2$}=\frac{877}{140} \\
\end{array}
| khanacademy | amps |
Given the equation $7 x^2+2 x-4 y^2-7 y-9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-4 y^2-7 y+7 x^2+2 x-9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }9 \text{to }\text{both }\text{sides}: \\
-4 y^2-7 y+7 x^2+2 x=9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(7 x^2+2 x+\underline{\text{ }}\right)+\left(-4 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 x^2+2 x+\underline{\text{ }}\right)=7 \left(x^2+\frac{2 x}{7}+\underline{\text{ }}\right): \\
\fbox{$7 \left(x^2+\frac{2 x}{7}+\underline{\text{ }}\right)$}+\left(-4 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-4 y^2-7 y+\underline{\text{ }}\right)=-4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right): \\
7 \left(x^2+\frac{2 x}{7}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{7}}{2}\right)^2=\frac{1}{49} \text{on }\text{the }\text{left }\text{and }\frac{7}{49}=\frac{1}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
9+\frac{1}{7}=\frac{64}{7}: \\
7 \left(x^2+\frac{2 x}{7}+\frac{1}{49}\right)-4 \left(y^2+\frac{7 y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{64}{7}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{4}}{2}\right)^2=\frac{49}{64} \text{on }\text{the }\text{left }\text{and }-4\times \frac{49}{64}=-\frac{49}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{64}{7}-\frac{49}{16}=\frac{681}{112}: \\
7 \left(x^2+\frac{2 x}{7}+\frac{1}{49}\right)-4 \left(y^2+\frac{7 y}{4}+\frac{49}{64}\right)=\fbox{$\frac{681}{112}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{2 x}{7}+\frac{1}{49}=\left(x+\frac{1}{7}\right)^2: \\
7 \fbox{$\left(x+\frac{1}{7}\right)^2$}-4 \left(y^2+\frac{7 y}{4}+\frac{49}{64}\right)=\frac{681}{112} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{7 y}{4}+\frac{49}{64}=\left(y+\frac{7}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 7 \left(x+\frac{1}{7}\right)^2-4 \fbox{$\left(y+\frac{7}{8}\right)^2$}=\frac{681}{112} \\
\end{array}
| khanacademy | amps |
Given the equation $2 x^2+9 x+8 y^2+5 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
8 y^2+5 y+2 x^2+9 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
8 y^2+5 y+2 x^2+9 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(2 x^2+9 x+\underline{\text{ }}\right)+\left(8 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(2 x^2+9 x+\underline{\text{ }}\right)=2 \left(x^2+\frac{9 x}{2}+\underline{\text{ }}\right): \\
\fbox{$2 \left(x^2+\frac{9 x}{2}+\underline{\text{ }}\right)$}+\left(8 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(8 y^2+5 y+\underline{\text{ }}\right)=8 \left(y^2+\frac{5 y}{8}+\underline{\text{ }}\right): \\
2 \left(x^2+\frac{9 x}{2}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+\frac{5 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{2}}{2}\right)^2=\frac{81}{16} \text{on }\text{the }\text{left }\text{and }2\times \frac{81}{16}=\frac{81}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{81}{8}-4=\frac{49}{8}: \\
2 \left(x^2+\frac{9 x}{2}+\frac{81}{16}\right)+8 \left(y^2+\frac{5 y}{8}+\underline{\text{ }}\right)=\fbox{$\frac{49}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{8}}{2}\right)^2=\frac{25}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{25}{256}=\frac{25}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{49}{8}+\frac{25}{32}=\frac{221}{32}: \\
2 \left(x^2+\frac{9 x}{2}+\frac{81}{16}\right)+8 \left(y^2+\frac{5 y}{8}+\frac{25}{256}\right)=\fbox{$\frac{221}{32}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{9 x}{2}+\frac{81}{16}=\left(x+\frac{9}{4}\right)^2: \\
2 \fbox{$\left(x+\frac{9}{4}\right)^2$}+8 \left(y^2+\frac{5 y}{8}+\frac{25}{256}\right)=\frac{221}{32} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{5 y}{8}+\frac{25}{256}=\left(y+\frac{5}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 2 \left(x+\frac{9}{4}\right)^2+8 \fbox{$\left(y+\frac{5}{16}\right)^2$}=\frac{221}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2+x-10 y^2-10 y+10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-10 y^2-10 y+4 x^2+x+10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }\text{10 }\text{from }\text{both }\text{sides}: \\
-10 y^2-10 y+4 x^2+x=-10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(4 x^2+x+\underline{\text{ }}\right)+\left(-10 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2+x+\underline{\text{ }}\right)=4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)$}+\left(-10 y^2-10 y+\underline{\text{ }}\right)=\underline{\text{ }}-10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-10 y^2-10 y+\underline{\text{ }}\right)=-10 \left(y^2+y+\underline{\text{ }}\right): \\
4 \left(x^2+\frac{x}{4}+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}-10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{4}{64}=\frac{1}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{1}{16}-10=-\frac{159}{16}: \\
4 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)-10 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$-\frac{159}{16}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-10}{4}=-\frac{5}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{159}{16}-\frac{5}{2}=-\frac{199}{16}: \\
4 \left(x^2+\frac{x}{4}+\frac{1}{64}\right)-10 \left(y^2+y+\frac{1}{4}\right)=\fbox{$-\frac{199}{16}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{4}+\frac{1}{64}=\left(x+\frac{1}{8}\right)^2: \\
4 \fbox{$\left(x+\frac{1}{8}\right)^2$}-10 \left(y^2+y+\frac{1}{4}\right)=-\frac{199}{16} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \left(x+\frac{1}{8}\right)^2-\text{10 }\fbox{$\left(y+\frac{1}{2}\right)^2$}=-\frac{199}{16} \\
\end{array}
| khanacademy | amps |
Given the equation $x^2-6 x-2 y^2-9 y+2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-2 y^2-9 y+x^2-6 x+2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }2 \text{from }\text{both }\text{sides}: \\
-2 y^2-9 y+x^2-6 x=-2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(x^2-6 x+\underline{\text{ }}\right)+\left(-2 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-2 y^2-9 y+\underline{\text{ }}\right)=-2 \left(y^2+\frac{9 y}{2}+\underline{\text{ }}\right): \\
\left(x^2-6 x+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2+\frac{9 y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\
\text{Add }\left(\frac{-6}{2}\right)^2=9 \text{to }\text{both }\text{sides}: \\
\end{array}
Step 6:
\begin{array}{l}
9-2=7: \\
\left(x^2-6 x+9\right)-2 \left(y^2+\frac{9 y}{2}+\underline{\text{ }}\right)=\fbox{$7$} \\
\end{array}
Step 7:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{2}}{2}\right)^2=\frac{81}{16} \text{on }\text{the }\text{left }\text{and }-2\times \frac{81}{16}=-\frac{81}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 8:
\begin{array}{l}
7-\frac{81}{8}=-\frac{25}{8}: \\
\left(x^2-6 x+9\right)-2 \left(y^2+\frac{9 y}{2}+\frac{81}{16}\right)=\fbox{$-\frac{25}{8}$} \\
\end{array}
Step 9:
\begin{array}{l}
x^2-6 x+9=(x-3)^2: \\
\fbox{$(x-3)^2$}-2 \left(y^2+\frac{9 y}{2}+\frac{81}{16}\right)=-\frac{25}{8} \\
\end{array}
Step 10:
\begin{array}{l}
y^2+\frac{9 y}{2}+\frac{81}{16}=\left(y+\frac{9}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & (x-3)^2-2 \fbox{$\left(y+\frac{9}{4}\right)^2$}=-\frac{25}{8} \\
\end{array}
| khanacademy | amps |
Given the equation $8 x^2+x+10 y^2+10 y-7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
10 y^2+10 y+8 x^2+x-7=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }7 \text{to }\text{both }\text{sides}: \\
10 y^2+10 y+8 x^2+x=7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(8 x^2+x+\underline{\text{ }}\right)+\left(10 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(8 x^2+x+\underline{\text{ }}\right)=8 \left(x^2+\frac{x}{8}+\underline{\text{ }}\right): \\
\fbox{$8 \left(x^2+\frac{x}{8}+\underline{\text{ }}\right)$}+\left(10 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(10 y^2+10 y+\underline{\text{ }}\right)=10 \left(y^2+y+\underline{\text{ }}\right): \\
8 \left(x^2+\frac{x}{8}+\underline{\text{ }}\right)+\fbox{$10 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}+7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{8}}{2}\right)^2=\frac{1}{256} \text{on }\text{the }\text{left }\text{and }\frac{8}{256}=\frac{1}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
7+\frac{1}{32}=\frac{225}{32}: \\
8 \left(x^2+\frac{x}{8}+\frac{1}{256}\right)+10 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$\frac{225}{32}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{10}{4}=\frac{5}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{225}{32}+\frac{5}{2}=\frac{305}{32}: \\
8 \left(x^2+\frac{x}{8}+\frac{1}{256}\right)+10 \left(y^2+y+\frac{1}{4}\right)=\fbox{$\frac{305}{32}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{8}+\frac{1}{256}=\left(x+\frac{1}{16}\right)^2: \\
8 \fbox{$\left(x+\frac{1}{16}\right)^2$}+10 \left(y^2+y+\frac{1}{4}\right)=\frac{305}{32} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 8 \left(x+\frac{1}{16}\right)^2+\text{10 }\fbox{$\left(y+\frac{1}{2}\right)^2$}=\frac{305}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $-5 x^2+6 x-8 y^2-9 y-2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-8 y^2-9 y-5 x^2+6 x-2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }2 \text{to }\text{both }\text{sides}: \\
-8 y^2-9 y-5 x^2+6 x=2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-5 x^2+6 x+\underline{\text{ }}\right)+\left(-8 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-5 x^2+6 x+\underline{\text{ }}\right)=-5 \left(x^2-\frac{6 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-5 \left(x^2-\frac{6 x}{5}+\underline{\text{ }}\right)$}+\left(-8 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-8 y^2-9 y+\underline{\text{ }}\right)=-8 \left(y^2+\frac{9 y}{8}+\underline{\text{ }}\right): \\
-5 \left(x^2-\frac{6 x}{5}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2+\frac{9 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-6}{5}}{2}\right)^2=\frac{9}{25} \text{on }\text{the }\text{left }\text{and }-5\times \frac{9}{25}=-\frac{9}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
2-\frac{9}{5}=\frac{1}{5}: \\
-5 \left(x^2-\frac{6 x}{5}+\frac{9}{25}\right)-8 \left(y^2+\frac{9 y}{8}+\underline{\text{ }}\right)=\fbox{$\frac{1}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{8}}{2}\right)^2=\frac{81}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{81}{256}=-\frac{81}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{1}{5}-\frac{81}{32}=-\frac{373}{160}: \\
-5 \left(x^2-\frac{6 x}{5}+\frac{9}{25}\right)-8 \left(y^2+\frac{9 y}{8}+\frac{81}{256}\right)=\fbox{$-\frac{373}{160}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{6 x}{5}+\frac{9}{25}=\left(x-\frac{3}{5}\right)^2: \\
-5 \fbox{$\left(x-\frac{3}{5}\right)^2$}-8 \left(y^2+\frac{9 y}{8}+\frac{81}{256}\right)=-\frac{373}{160} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{9 y}{8}+\frac{81}{256}=\left(y+\frac{9}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -5 \left(x-\frac{3}{5}\right)^2-8 \fbox{$\left(y+\frac{9}{16}\right)^2$}=-\frac{373}{160} \\
\end{array}
| khanacademy | amps |
Given the equation $-9 x^2+7 x-9 y^2-9 y+7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-9 y^2-9 y-9 x^2+7 x+7=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }7 \text{from }\text{both }\text{sides}: \\
-9 y^2-9 y-9 x^2+7 x=-7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-9 x^2+7 x+\underline{\text{ }}\right)+\left(-9 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-9 x^2+7 x+\underline{\text{ }}\right)=-9 \left(x^2-\frac{7 x}{9}+\underline{\text{ }}\right): \\
\fbox{$-9 \left(x^2-\frac{7 x}{9}+\underline{\text{ }}\right)$}+\left(-9 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-9 y^2-9 y+\underline{\text{ }}\right)=-9 \left(y^2+y+\underline{\text{ }}\right): \\
-9 \left(x^2-\frac{7 x}{9}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2+y+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-7}{9}}{2}\right)^2=\frac{49}{324} \text{on }\text{the }\text{left }\text{and }-9\times \frac{49}{324}=-\frac{49}{36} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-7-\frac{49}{36}=-\frac{301}{36}: \\
-9 \left(x^2-\frac{7 x}{9}+\frac{49}{324}\right)-9 \left(y^2+y+\underline{\text{ }}\right)=\fbox{$-\frac{301}{36}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-9}{4}=-\frac{9}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{301}{36}-\frac{9}{4}=-\frac{191}{18}: \\
-9 \left(x^2-\frac{7 x}{9}+\frac{49}{324}\right)-9 \left(y^2+y+\frac{1}{4}\right)=\fbox{$-\frac{191}{18}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{7 x}{9}+\frac{49}{324}=\left(x-\frac{7}{18}\right)^2: \\
-9 \fbox{$\left(x-\frac{7}{18}\right)^2$}-9 \left(y^2+y+\frac{1}{4}\right)=-\frac{191}{18} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+y+\frac{1}{4}=\left(y+\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -9 \left(x-\frac{7}{18}\right)^2-9 \fbox{$\left(y+\frac{1}{2}\right)^2$}=-\frac{191}{18} \\
\end{array}
| khanacademy | amps |
Given the equation $x^2+6 x-y^2+9 y-5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-y^2+9 y+x^2+6 x-5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }5 \text{to }\text{both }\text{sides}: \\
-y^2+9 y+x^2+6 x=5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(x^2+6 x+\underline{\text{ }}\right)+\left(-y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-y^2+9 y+\underline{\text{ }}\right)=-\left(y^2-9 y+\underline{\text{ }}\right): \\
\left(x^2+6 x+\underline{\text{ }}\right)+\fbox{$-\left(y^2-9 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\
\text{Add }\left(\frac{6}{2}\right)^2=9 \text{to }\text{both }\text{sides}: \\
\end{array}
Step 6:
\begin{array}{l}
5+9=14: \\
\left(x^2+6 x+9\right)-\left(y^2-9 y+\underline{\text{ }}\right)=\fbox{$14$} \\
\end{array}
Step 7:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-9}{2}\right)^2=\frac{81}{4} \text{on }\text{the }\text{left }\text{and }-\frac{81}{4}=-\frac{81}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 8:
\begin{array}{l}
14-\frac{81}{4}=-\frac{25}{4}: \\
\left(x^2+6 x+9\right)-\left(y^2-9 y+\frac{81}{4}\right)=\fbox{$-\frac{25}{4}$} \\
\end{array}
Step 9:
\begin{array}{l}
x^2+6 x+9=(x+3)^2: \\
\fbox{$(x+3)^2$}-\left(y^2-9 y+\frac{81}{4}\right)=-\frac{25}{4} \\
\end{array}
Step 10:
\begin{array}{l}
y^2-9 y+\frac{81}{4}=\left(y-\frac{9}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & (x+3)^2-\fbox{$\left(y-\frac{9}{2}\right)^2$}=-\frac{25}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2-6 x+4 y^2+y-2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
4 y^2+y+4 x^2-6 x-2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }2 \text{to }\text{both }\text{sides}: \\
4 y^2+y+4 x^2-6 x=2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(4 x^2-6 x+\underline{\text{ }}\right)+\left(4 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2-6 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{3 x}{2}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2-\frac{3 x}{2}+\underline{\text{ }}\right)$}+\left(4 y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}+2 \\
\end{array}
Step 5:
\begin{array}{l}
\left(4 y^2+y+\underline{\text{ }}\right)=4 \left(y^2+\frac{y}{4}+\underline{\text{ }}\right): \\
4 \left(x^2-\frac{3 x}{2}+\underline{\text{ }}\right)+\fbox{$4 \left(y^2+\frac{y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}+2 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }4\times \frac{9}{16}=\frac{9}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
2+\frac{9}{4}=\frac{17}{4}: \\
4 \left(x^2-\frac{3 x}{2}+\frac{9}{16}\right)+4 \left(y^2+\frac{y}{4}+\underline{\text{ }}\right)=\fbox{$\frac{17}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{4}}{2}\right)^2=\frac{1}{64} \text{on }\text{the }\text{left }\text{and }\frac{4}{64}=\frac{1}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{17}{4}+\frac{1}{16}=\frac{69}{16}: \\
4 \left(x^2-\frac{3 x}{2}+\frac{9}{16}\right)+4 \left(y^2+\frac{y}{4}+\frac{1}{64}\right)=\fbox{$\frac{69}{16}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{3 x}{2}+\frac{9}{16}=\left(x-\frac{3}{4}\right)^2: \\
4 \fbox{$\left(x-\frac{3}{4}\right)^2$}+4 \left(y^2+\frac{y}{4}+\frac{1}{64}\right)=\frac{69}{16} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{4}+\frac{1}{64}=\left(y+\frac{1}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \left(x-\frac{3}{4}\right)^2+4 \fbox{$\left(y+\frac{1}{8}\right)^2$}=\frac{69}{16} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2-x-7 y^2+9 y+7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-7 y^2+9 y-10 x^2-x+7=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }7 \text{from }\text{both }\text{sides}: \\
-7 y^2+9 y-10 x^2-x=-7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2-x+\underline{\text{ }}\right)+\left(-7 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2-x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{x}{10}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2+\frac{x}{10}+\underline{\text{ }}\right)$}+\left(-7 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-7 y^2+9 y+\underline{\text{ }}\right)=-7 \left(y^2-\frac{9 y}{7}+\underline{\text{ }}\right): \\
-10 \left(x^2+\frac{x}{10}+\underline{\text{ }}\right)+\fbox{$-7 \left(y^2-\frac{9 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{10}}{2}\right)^2=\frac{1}{400} \text{on }\text{the }\text{left }\text{and }\frac{-10}{400}=-\frac{1}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-7-\frac{1}{40}=-\frac{281}{40}: \\
-10 \left(x^2+\frac{x}{10}+\frac{1}{400}\right)-7 \left(y^2-\frac{9 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{281}{40}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-9}{7}}{2}\right)^2=\frac{81}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{81}{196}=-\frac{81}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{281}{40}-\frac{81}{28}=-\frac{2777}{280}: \\
-10 \left(x^2+\frac{x}{10}+\frac{1}{400}\right)-7 \left(y^2-\frac{9 y}{7}+\frac{81}{196}\right)=\fbox{$-\frac{2777}{280}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{10}+\frac{1}{400}=\left(x+\frac{1}{20}\right)^2: \\
-10 \fbox{$\left(x+\frac{1}{20}\right)^2$}-7 \left(y^2-\frac{9 y}{7}+\frac{81}{196}\right)=-\frac{2777}{280} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{9 y}{7}+\frac{81}{196}=\left(y-\frac{9}{14}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x+\frac{1}{20}\right)^2-7 \fbox{$\left(y-\frac{9}{14}\right)^2$}=-\frac{2777}{280} \\
\end{array}
| khanacademy | amps |
Given the equation $-8 x^2+4 x+y^2+2 y-6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
y^2+2 y-8 x^2+4 x-6=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }6 \text{to }\text{both }\text{sides}: \\
y^2+2 y-8 x^2+4 x=6 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-8 x^2+4 x+\underline{\text{ }}\right)+\left(y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-8 x^2+4 x+\underline{\text{ }}\right)=-8 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right): \\
\fbox{$-8 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)$}+\left(y^2+2 y+\underline{\text{ }}\right)=\underline{\text{ }}+6 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-8}{16}=-\frac{1}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
6-\frac{1}{2}=\frac{11}{2}: \\
-8 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\left(y^2+2 y+\underline{\text{ }}\right)=\fbox{$\frac{11}{2}$} \\
\end{array}
Step 7:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\
\text{Add }\left(\frac{2}{2}\right)^2=1 \text{to }\text{both }\text{sides}: \\
\end{array}
Step 8:
\begin{array}{l}
\frac{11}{2}+1=\frac{13}{2}: \\
-8 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\left(y^2+2 y+1\right)=\fbox{$\frac{13}{2}$} \\
\end{array}
Step 9:
\begin{array}{l}
x^2-\frac{x}{2}+\frac{1}{16}=\left(x-\frac{1}{4}\right)^2: \\
-8 \fbox{$\left(x-\frac{1}{4}\right)^2$}+\left(y^2+2 y+1\right)=\frac{13}{2} \\
\end{array}
Step 10:
\begin{array}{l}
y^2+2 y+1=(y+1)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -8 \left(x-\frac{1}{4}\right)^2+\fbox{$(y+1)^2$}=\frac{13}{2} \\
\end{array}
| khanacademy | amps |
Given the equation $x^2-6 x-7 y^2+7 y+9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-7 y^2+7 y+x^2-6 x+9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }9 \text{from }\text{both }\text{sides}: \\
-7 y^2+7 y+x^2-6 x=-9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(x^2-6 x+\underline{\text{ }}\right)+\left(-7 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}-9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-7 y^2+7 y+\underline{\text{ }}\right)=-7 \left(y^2-y+\underline{\text{ }}\right): \\
\left(x^2-6 x+\underline{\text{ }}\right)+\fbox{$-7 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}-9 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\
\text{Add }\left(\frac{-6}{2}\right)^2=9 \text{to }\text{both }\text{sides}: \\
\end{array}
Step 6:
\begin{array}{l}
9-9=0: \\
\left(x^2-6 x+9\right)-7 \left(y^2-y+\underline{\text{ }}\right)=\fbox{$0$} \\
\end{array}
Step 7:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-7}{4}=-\frac{7}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 8:
\begin{array}{l}
x^2-6 x+9=(x-3)^2: \\
\fbox{$(x-3)^2$}-7 \left(y^2-y+\frac{1}{4}\right)=-\frac{7}{4} \\
\end{array}
Step 9:
\begin{array}{l}
y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & (x-3)^2-7 \fbox{$\left(y-\frac{1}{2}\right)^2$}=-\frac{7}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $-10 x^2-6 x-3 y^2-4 y-1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-3 y^2-4 y-10 x^2-6 x-1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }1 \text{to }\text{both }\text{sides}: \\
-3 y^2-4 y-10 x^2-6 x=1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-10 x^2-6 x+\underline{\text{ }}\right)+\left(-3 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-10 x^2-6 x+\underline{\text{ }}\right)=-10 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-10 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right)$}+\left(-3 y^2-4 y+\underline{\text{ }}\right)=\underline{\text{ }}+1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-3 y^2-4 y+\underline{\text{ }}\right)=-3 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right): \\
-10 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right)+\fbox{$-3 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }-10\times \frac{9}{100}=-\frac{9}{10} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
1-\frac{9}{10}=\frac{1}{10}: \\
-10 \left(x^2+\frac{3 x}{5}+\frac{9}{100}\right)-3 \left(y^2+\frac{4 y}{3}+\underline{\text{ }}\right)=\fbox{$\frac{1}{10}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }-3\times \frac{4}{9}=-\frac{4}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{1}{10}-\frac{4}{3}=-\frac{37}{30}: \\
-10 \left(x^2+\frac{3 x}{5}+\frac{9}{100}\right)-3 \left(y^2+\frac{4 y}{3}+\frac{4}{9}\right)=\fbox{$-\frac{37}{30}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{3 x}{5}+\frac{9}{100}=\left(x+\frac{3}{10}\right)^2: \\
-10 \fbox{$\left(x+\frac{3}{10}\right)^2$}-3 \left(y^2+\frac{4 y}{3}+\frac{4}{9}\right)=-\frac{37}{30} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{4 y}{3}+\frac{4}{9}=\left(y+\frac{2}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -10 \left(x+\frac{3}{10}\right)^2-3 \fbox{$\left(y+\frac{2}{3}\right)^2$}=-\frac{37}{30} \\
\end{array}
| khanacademy | amps |
Given the equation $-8 x^2+6 x-8 y^2-3 y+3=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-8 y^2-3 y-8 x^2+6 x+3=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }3 \text{from }\text{both }\text{sides}: \\
-8 y^2-3 y-8 x^2+6 x=-3 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-8 x^2+6 x+\underline{\text{ }}\right)+\left(-8 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-8 x^2+6 x+\underline{\text{ }}\right)=-8 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right): \\
\fbox{$-8 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)$}+\left(-8 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-8 y^2-3 y+\underline{\text{ }}\right)=-8 \left(y^2+\frac{3 y}{8}+\underline{\text{ }}\right): \\
-8 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2+\frac{3 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }-8\times \frac{9}{64}=-\frac{9}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-3-\frac{9}{8}=-\frac{33}{8}: \\
-8 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)-8 \left(y^2+\frac{3 y}{8}+\underline{\text{ }}\right)=\fbox{$-\frac{33}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{3}{8}}{2}\right)^2=\frac{9}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{9}{256}=-\frac{9}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{33}{8}-\frac{9}{32}=-\frac{141}{32}: \\
-8 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)-8 \left(y^2+\frac{3 y}{8}+\frac{9}{256}\right)=\fbox{$-\frac{141}{32}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{3 x}{4}+\frac{9}{64}=\left(x-\frac{3}{8}\right)^2: \\
-8 \fbox{$\left(x-\frac{3}{8}\right)^2$}-8 \left(y^2+\frac{3 y}{8}+\frac{9}{256}\right)=-\frac{141}{32} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{3 y}{8}+\frac{9}{256}=\left(y+\frac{3}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -8 \left(x-\frac{3}{8}\right)^2-8 \fbox{$\left(y+\frac{3}{16}\right)^2$}=-\frac{141}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $5 x^2-7 x+8 y^2+10 y+3=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
8 y^2+10 y+5 x^2-7 x+3=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }3 \text{from }\text{both }\text{sides}: \\
8 y^2+10 y+5 x^2-7 x=-3 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(5 x^2-7 x+\underline{\text{ }}\right)+\left(8 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 x^2-7 x+\underline{\text{ }}\right)=5 \left(x^2-\frac{7 x}{5}+\underline{\text{ }}\right): \\
\fbox{$5 \left(x^2-\frac{7 x}{5}+\underline{\text{ }}\right)$}+\left(8 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\
\end{array}
Step 5:
\begin{array}{l}
\left(8 y^2+10 y+\underline{\text{ }}\right)=8 \left(y^2+\frac{5 y}{4}+\underline{\text{ }}\right): \\
5 \left(x^2-\frac{7 x}{5}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+\frac{5 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-7}{5}}{2}\right)^2=\frac{49}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{49}{100}=\frac{49}{20} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{49}{20}-3=-\frac{11}{20}: \\
5 \left(x^2-\frac{7 x}{5}+\frac{49}{100}\right)+8 \left(y^2+\frac{5 y}{4}+\underline{\text{ }}\right)=\fbox{$-\frac{11}{20}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{4}}{2}\right)^2=\frac{25}{64} \text{on }\text{the }\text{left }\text{and }8\times \frac{25}{64}=\frac{25}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{25}{8}-\frac{11}{20}=\frac{103}{40}: \\
5 \left(x^2-\frac{7 x}{5}+\frac{49}{100}\right)+8 \left(y^2+\frac{5 y}{4}+\frac{25}{64}\right)=\fbox{$\frac{103}{40}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{7 x}{5}+\frac{49}{100}=\left(x-\frac{7}{10}\right)^2: \\
5 \fbox{$\left(x-\frac{7}{10}\right)^2$}+8 \left(y^2+\frac{5 y}{4}+\frac{25}{64}\right)=\frac{103}{40} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{5 y}{4}+\frac{25}{64}=\left(y+\frac{5}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 5 \left(x-\frac{7}{10}\right)^2+8 \fbox{$\left(y+\frac{5}{8}\right)^2$}=\frac{103}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $10 x^2+6 x-4 y^2-2 y-10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-4 y^2-2 y+10 x^2+6 x-10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\
-4 y^2-2 y+10 x^2+6 x=10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(10 x^2+6 x+\underline{\text{ }}\right)+\left(-4 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(10 x^2+6 x+\underline{\text{ }}\right)=10 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right): \\
\fbox{$10 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right)$}+\left(-4 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-4 y^2-2 y+\underline{\text{ }}\right)=-4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right): \\
10 \left(x^2+\frac{3 x}{5}+\underline{\text{ }}\right)+\fbox{$-4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }10\times \frac{9}{100}=\frac{9}{10} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
10+\frac{9}{10}=\frac{109}{10}: \\
10 \left(x^2+\frac{3 x}{5}+\frac{9}{100}\right)-4 \left(y^2+\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$\frac{109}{10}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{-4}{16}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{109}{10}-\frac{1}{4}=\frac{213}{20}: \\
10 \left(x^2+\frac{3 x}{5}+\frac{9}{100}\right)-4 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\fbox{$\frac{213}{20}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{3 x}{5}+\frac{9}{100}=\left(x+\frac{3}{10}\right)^2: \\
\text{10 }\fbox{$\left(x+\frac{3}{10}\right)^2$}-4 \left(y^2+\frac{y}{2}+\frac{1}{16}\right)=\frac{213}{20} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{2}+\frac{1}{16}=\left(y+\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 10 \left(x+\frac{3}{10}\right)^2-4 \fbox{$\left(y+\frac{1}{4}\right)^2$}=\frac{213}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $3 x^2-5 x+6 y^2-7 y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
6 y^2-7 y+3 x^2-5 x+4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4 \text{from }\text{both }\text{sides}: \\
6 y^2-7 y+3 x^2-5 x=-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(3 x^2-5 x+\underline{\text{ }}\right)+\left(6 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(3 x^2-5 x+\underline{\text{ }}\right)=3 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right): \\
\fbox{$3 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right)$}+\left(6 y^2-7 y+\underline{\text{ }}\right)=\underline{\text{ }}-4 \\
\end{array}
Step 5:
\begin{array}{l}
\left(6 y^2-7 y+\underline{\text{ }}\right)=6 \left(y^2-\frac{7 y}{6}+\underline{\text{ }}\right): \\
3 \left(x^2-\frac{5 x}{3}+\underline{\text{ }}\right)+\fbox{$6 \left(y^2-\frac{7 y}{6}+\underline{\text{ }}\right)$}=\underline{\text{ }}-4 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{3}}{2}\right)^2=\frac{25}{36} \text{on }\text{the }\text{left }\text{and }3\times \frac{25}{36}=\frac{25}{12} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{25}{12}-4=-\frac{23}{12}: \\
3 \left(x^2-\frac{5 x}{3}+\frac{25}{36}\right)+6 \left(y^2-\frac{7 y}{6}+\underline{\text{ }}\right)=\fbox{$-\frac{23}{12}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-7}{6}}{2}\right)^2=\frac{49}{144} \text{on }\text{the }\text{left }\text{and }6\times \frac{49}{144}=\frac{49}{24} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{49}{24}-\frac{23}{12}=\frac{1}{8}: \\
3 \left(x^2-\frac{5 x}{3}+\frac{25}{36}\right)+6 \left(y^2-\frac{7 y}{6}+\frac{49}{144}\right)=\fbox{$\frac{1}{8}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{5 x}{3}+\frac{25}{36}=\left(x-\frac{5}{6}\right)^2: \\
3 \fbox{$\left(x-\frac{5}{6}\right)^2$}+6 \left(y^2-\frac{7 y}{6}+\frac{49}{144}\right)=\frac{1}{8} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{7 y}{6}+\frac{49}{144}=\left(y-\frac{7}{12}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 3 \left(x-\frac{5}{6}\right)^2+6 \fbox{$\left(y-\frac{7}{12}\right)^2$}=\frac{1}{8} \\
\end{array}
| khanacademy | amps |
Given the equation $-2 x^2-6 x-y^2+y-3=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-y^2+y-2 x^2-6 x-3=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }3 \text{to }\text{both }\text{sides}: \\
-y^2+y-2 x^2-6 x=3 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-2 x^2-6 x+\underline{\text{ }}\right)+\left(-y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-2 x^2-6 x+\underline{\text{ }}\right)=-2 \left(x^2+3 x+\underline{\text{ }}\right): \\
\fbox{$-2 \left(x^2+3 x+\underline{\text{ }}\right)$}+\left(-y^2+y+\underline{\text{ }}\right)=\underline{\text{ }}+3 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-y^2+y+\underline{\text{ }}\right)=-\left(y^2-y+\underline{\text{ }}\right): \\
-2 \left(x^2+3 x+\underline{\text{ }}\right)+\fbox{$-\left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}+3 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }-2\times \frac{9}{4}=-\frac{9}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
3-\frac{9}{2}=-\frac{3}{2}: \\
-2 \left(x^2+3 x+\frac{9}{4}\right)-\left(y^2-y+\underline{\text{ }}\right)=\fbox{$-\frac{3}{2}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-1 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-1}{4}=-\frac{1}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{3}{2}-\frac{1}{4}=-\frac{7}{4}: \\
-2 \left(x^2+3 x+\frac{9}{4}\right)-\left(y^2-y+\frac{1}{4}\right)=\fbox{$-\frac{7}{4}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+3 x+\frac{9}{4}=\left(x+\frac{3}{2}\right)^2: \\
-2 \fbox{$\left(x+\frac{3}{2}\right)^2$}-\left(y^2-y+\frac{1}{4}\right)=-\frac{7}{4} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -2 \left(x+\frac{3}{2}\right)^2-\fbox{$\left(y-\frac{1}{2}\right)^2$}=-\frac{7}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $8 x^2-10 x+8 y^2+9 y-10=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
8 y^2+9 y+8 x^2-10 x-10=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }\text{10 }\text{to }\text{both }\text{sides}: \\
8 y^2+9 y+8 x^2-10 x=10 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(8 x^2-10 x+\underline{\text{ }}\right)+\left(8 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 4:
\begin{array}{l}
\left(8 x^2-10 x+\underline{\text{ }}\right)=8 \left(x^2-\frac{5 x}{4}+\underline{\text{ }}\right): \\
\fbox{$8 \left(x^2-\frac{5 x}{4}+\underline{\text{ }}\right)$}+\left(8 y^2+9 y+\underline{\text{ }}\right)=\underline{\text{ }}+10 \\
\end{array}
Step 5:
\begin{array}{l}
\left(8 y^2+9 y+\underline{\text{ }}\right)=8 \left(y^2+\frac{9 y}{8}+\underline{\text{ }}\right): \\
8 \left(x^2-\frac{5 x}{4}+\underline{\text{ }}\right)+\fbox{$8 \left(y^2+\frac{9 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}+10 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{4}}{2}\right)^2=\frac{25}{64} \text{on }\text{the }\text{left }\text{and }8\times \frac{25}{64}=\frac{25}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
10+\frac{25}{8}=\frac{105}{8}: \\
8 \left(x^2-\frac{5 x}{4}+\frac{25}{64}\right)+8 \left(y^2+\frac{9 y}{8}+\underline{\text{ }}\right)=\fbox{$\frac{105}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{9}{8}}{2}\right)^2=\frac{81}{256} \text{on }\text{the }\text{left }\text{and }8\times \frac{81}{256}=\frac{81}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{105}{8}+\frac{81}{32}=\frac{501}{32}: \\
8 \left(x^2-\frac{5 x}{4}+\frac{25}{64}\right)+8 \left(y^2+\frac{9 y}{8}+\frac{81}{256}\right)=\fbox{$\frac{501}{32}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{5 x}{4}+\frac{25}{64}=\left(x-\frac{5}{8}\right)^2: \\
8 \fbox{$\left(x-\frac{5}{8}\right)^2$}+8 \left(y^2+\frac{9 y}{8}+\frac{81}{256}\right)=\frac{501}{32} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{9 y}{8}+\frac{81}{256}=\left(y+\frac{9}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 8 \left(x-\frac{5}{8}\right)^2+8 \fbox{$\left(y+\frac{9}{16}\right)^2$}=\frac{501}{32} \\
\end{array}
| khanacademy | amps |
Given the equation $8 x^2+8 x+2 y^2-y-7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
2 y^2-y+8 x^2+8 x-7=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }7 \text{to }\text{both }\text{sides}: \\
2 y^2-y+8 x^2+8 x=7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(8 x^2+8 x+\underline{\text{ }}\right)+\left(2 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(8 x^2+8 x+\underline{\text{ }}\right)=8 \left(x^2+x+\underline{\text{ }}\right): \\
\fbox{$8 \left(x^2+x+\underline{\text{ }}\right)$}+\left(2 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(2 y^2-y+\underline{\text{ }}\right)=2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right): \\
8 \left(x^2+x+\underline{\text{ }}\right)+\fbox{$2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)$}=\underline{\text{ }}+7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{8}{4}=2 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
7+2=9: \\
8 \left(x^2+x+\frac{1}{4}\right)+2 \left(y^2-\frac{y}{2}+\underline{\text{ }}\right)=\fbox{$9$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{2}{16}=\frac{1}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
9+\frac{1}{8}=\frac{73}{8}: \\
8 \left(x^2+x+\frac{1}{4}\right)+2 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\fbox{$\frac{73}{8}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+x+\frac{1}{4}=\left(x+\frac{1}{2}\right)^2: \\
8 \fbox{$\left(x+\frac{1}{2}\right)^2$}+2 \left(y^2-\frac{y}{2}+\frac{1}{16}\right)=\frac{73}{8} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{y}{2}+\frac{1}{16}=\left(y-\frac{1}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 8 \left(x+\frac{1}{2}\right)^2+2 \fbox{$\left(y-\frac{1}{4}\right)^2$}=\frac{73}{8} \\
\end{array}
| khanacademy | amps |
Given the equation $x^2-2 x+5 y^2+7 y-4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
5 y^2+7 y+x^2-2 x-4=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }4 \text{to }\text{both }\text{sides}: \\
5 y^2+7 y+x^2-2 x=4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(x^2-2 x+\underline{\text{ }}\right)+\left(5 y^2+7 y+\underline{\text{ }}\right)=\underline{\text{ }}+4 \\
\end{array}
Step 4:
\begin{array}{l}
\left(5 y^2+7 y+\underline{\text{ }}\right)=5 \left(y^2+\frac{7 y}{5}+\underline{\text{ }}\right): \\
\left(x^2-2 x+\underline{\text{ }}\right)+\fbox{$5 \left(y^2+\frac{7 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+4 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it, }\text{then }\text{add }\text{it }\text{to }\text{both }\text{sides.} \\
\text{Add }\left(\frac{-2}{2}\right)^2=1 \text{to }\text{both }\text{sides}: \\
\end{array}
Step 6:
\begin{array}{l}
4+1=5: \\
\left(x^2-2 x+1\right)+5 \left(y^2+\frac{7 y}{5}+\underline{\text{ }}\right)=\fbox{$5$} \\
\end{array}
Step 7:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{7}{5}}{2}\right)^2=\frac{49}{100} \text{on }\text{the }\text{left }\text{and }5\times \frac{49}{100}=\frac{49}{20} \text{on }\text{the }\text{right}: \\
\end{array}
Step 8:
\begin{array}{l}
5+\frac{49}{20}=\frac{149}{20}: \\
\left(x^2-2 x+1\right)+5 \left(y^2+\frac{7 y}{5}+\frac{49}{100}\right)=\fbox{$\frac{149}{20}$} \\
\end{array}
Step 9:
\begin{array}{l}
x^2-2 x+1=(x-1)^2: \\
\fbox{$(x-1)^2$}+5 \left(y^2+\frac{7 y}{5}+\frac{49}{100}\right)=\frac{149}{20} \\
\end{array}
Step 10:
\begin{array}{l}
y^2+\frac{7 y}{5}+\frac{49}{100}=\left(y+\frac{7}{10}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & (x-1)^2+5 \fbox{$\left(y+\frac{7}{10}\right)^2$}=\frac{149}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $2 x^2-x-8 y^2+10 y+7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-8 y^2+10 y+2 x^2-x+7=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }7 \text{from }\text{both }\text{sides}: \\
-8 y^2+10 y+2 x^2-x=-7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(2 x^2-x+\underline{\text{ }}\right)+\left(-8 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(2 x^2-x+\underline{\text{ }}\right)=2 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right): \\
\fbox{$2 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)$}+\left(-8 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}-7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-8 y^2+10 y+\underline{\text{ }}\right)=-8 \left(y^2-\frac{5 y}{4}+\underline{\text{ }}\right): \\
2 \left(x^2-\frac{x}{2}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2-\frac{5 y}{4}+\underline{\text{ }}\right)$}=\underline{\text{ }}-7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{2}}{2}\right)^2=\frac{1}{16} \text{on }\text{the }\text{left }\text{and }\frac{2}{16}=\frac{1}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{1}{8}-7=-\frac{55}{8}: \\
2 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)-8 \left(y^2-\frac{5 y}{4}+\underline{\text{ }}\right)=\fbox{$-\frac{55}{8}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-5}{4}}{2}\right)^2=\frac{25}{64} \text{on }\text{the }\text{left }\text{and }-8\times \frac{25}{64}=-\frac{25}{8} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{55}{8}-\frac{25}{8}=-10: \\
2 \left(x^2-\frac{x}{2}+\frac{1}{16}\right)-8 \left(y^2-\frac{5 y}{4}+\frac{25}{64}\right)=\fbox{$-10$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{x}{2}+\frac{1}{16}=\left(x-\frac{1}{4}\right)^2: \\
2 \fbox{$\left(x-\frac{1}{4}\right)^2$}-8 \left(y^2-\frac{5 y}{4}+\frac{25}{64}\right)=-10 \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{5 y}{4}+\frac{25}{64}=\left(y-\frac{5}{8}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 2 \left(x-\frac{1}{4}\right)^2-8 \fbox{$\left(y-\frac{5}{8}\right)^2$}=-10 \\
\end{array}
| khanacademy | amps |
Given the equation $-5 x^2-4 y^2-6 y+6=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-4 y^2-6 y+\left(6-5 x^2\right)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }-4 y^2-6 y-5 x^2+6 \text{from }\text{both }\text{sides}: \\
4 y^2+6 y+\left(5 x^2-6\right)=0 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Add }6 \text{to }\text{both }\text{sides}: \\
4 y^2+6 y+5 x^2=6 \\
\end{array}
Step 4:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(4 y^2+6 y+\underline{\text{ }}\right)+5 x^2=\underline{\text{ }}+6 \\
\end{array}
Step 5:
\begin{array}{l}
\left(4 y^2+6 y+\underline{\text{ }}\right)=4 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right): \\
\fbox{$4 \left(y^2+\frac{3 y}{2}+\underline{\text{ }}\right)$}+5 x^2=\underline{\text{ }}+6 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{3}{2}}{2}\right)^2=\frac{9}{16} \text{on }\text{the }\text{left }\text{and }4\times \frac{9}{16}=\frac{9}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
6+\frac{9}{4}=\frac{33}{4}: \\
4 \left(y^2+\frac{3 y}{2}+\frac{9}{16}\right)+5 x^2=\fbox{$\frac{33}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
y^2+\frac{3 y}{2}+\frac{9}{16}=\left(y+\frac{3}{4}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \fbox{$\left(y+\frac{3}{4}\right)^2$}+5 x^2=\frac{33}{4} \\
\end{array}
| khanacademy | amps |
Given the equation $6 x^2+5 x+6 y^2+5 y+8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
6 y^2+5 y+6 x^2+5 x+8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }8 \text{from }\text{both }\text{sides}: \\
6 y^2+5 y+6 x^2+5 x=-8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(6 x^2+5 x+\underline{\text{ }}\right)+\left(6 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(6 x^2+5 x+\underline{\text{ }}\right)=6 \left(x^2+\frac{5 x}{6}+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2+\frac{5 x}{6}+\underline{\text{ }}\right)$}+\left(6 y^2+5 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(6 y^2+5 y+\underline{\text{ }}\right)=6 \left(y^2+\frac{5 y}{6}+\underline{\text{ }}\right): \\
6 \left(x^2+\frac{5 x}{6}+\underline{\text{ }}\right)+\fbox{$6 \left(y^2+\frac{5 y}{6}+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{6}}{2}\right)^2=\frac{25}{144} \text{on }\text{the }\text{left }\text{and }6\times \frac{25}{144}=\frac{25}{24} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{25}{24}-8=-\frac{167}{24}: \\
6 \left(x^2+\frac{5 x}{6}+\frac{25}{144}\right)+6 \left(y^2+\frac{5 y}{6}+\underline{\text{ }}\right)=\fbox{$-\frac{167}{24}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{6}}{2}\right)^2=\frac{25}{144} \text{on }\text{the }\text{left }\text{and }6\times \frac{25}{144}=\frac{25}{24} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{25}{24}-\frac{167}{24}=-\frac{71}{12}: \\
6 \left(x^2+\frac{5 x}{6}+\frac{25}{144}\right)+6 \left(y^2+\frac{5 y}{6}+\frac{25}{144}\right)=\fbox{$-\frac{71}{12}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{5 x}{6}+\frac{25}{144}=\left(x+\frac{5}{12}\right)^2: \\
6 \fbox{$\left(x+\frac{5}{12}\right)^2$}+6 \left(y^2+\frac{5 y}{6}+\frac{25}{144}\right)=-\frac{71}{12} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{5 y}{6}+\frac{25}{144}=\left(y+\frac{5}{12}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \left(x+\frac{5}{12}\right)^2+6 \fbox{$\left(y+\frac{5}{12}\right)^2$}=-\frac{71}{12} \\
\end{array}
| khanacademy | amps |
Given the equation $-5 x^2+7 x+10 y^2+8 y-7=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
10 y^2+8 y-5 x^2+7 x-7=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }7 \text{to }\text{both }\text{sides}: \\
10 y^2+8 y-5 x^2+7 x=7 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-5 x^2+7 x+\underline{\text{ }}\right)+\left(10 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-5 x^2+7 x+\underline{\text{ }}\right)=-5 \left(x^2-\frac{7 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-5 \left(x^2-\frac{7 x}{5}+\underline{\text{ }}\right)$}+\left(10 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}+7 \\
\end{array}
Step 5:
\begin{array}{l}
\left(10 y^2+8 y+\underline{\text{ }}\right)=10 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right): \\
-5 \left(x^2-\frac{7 x}{5}+\underline{\text{ }}\right)+\fbox{$10 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+7 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-7}{5}}{2}\right)^2=\frac{49}{100} \text{on }\text{the }\text{left }\text{and }-5\times \frac{49}{100}=-\frac{49}{20} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
7-\frac{49}{20}=\frac{91}{20}: \\
-5 \left(x^2-\frac{7 x}{5}+\frac{49}{100}\right)+10 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right)=\fbox{$\frac{91}{20}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }10\times \frac{4}{25}=\frac{8}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{91}{20}+\frac{8}{5}=\frac{123}{20}: \\
-5 \left(x^2-\frac{7 x}{5}+\frac{49}{100}\right)+10 \left(y^2+\frac{4 y}{5}+\frac{4}{25}\right)=\fbox{$\frac{123}{20}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{7 x}{5}+\frac{49}{100}=\left(x-\frac{7}{10}\right)^2: \\
-5 \fbox{$\left(x-\frac{7}{10}\right)^2$}+10 \left(y^2+\frac{4 y}{5}+\frac{4}{25}\right)=\frac{123}{20} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{4 y}{5}+\frac{4}{25}=\left(y+\frac{2}{5}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -5 \left(x-\frac{7}{10}\right)^2+\text{10 }\fbox{$\left(y+\frac{2}{5}\right)^2$}=\frac{123}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $7 x^2-8 x-7 y^2-2 y+8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-7 y^2-2 y+7 x^2-8 x+8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }8 \text{from }\text{both }\text{sides}: \\
-7 y^2-2 y+7 x^2-8 x=-8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(7 x^2-8 x+\underline{\text{ }}\right)+\left(-7 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 x^2-8 x+\underline{\text{ }}\right)=7 \left(x^2-\frac{8 x}{7}+\underline{\text{ }}\right): \\
\fbox{$7 \left(x^2-\frac{8 x}{7}+\underline{\text{ }}\right)$}+\left(-7 y^2-2 y+\underline{\text{ }}\right)=\underline{\text{ }}-8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-7 y^2-2 y+\underline{\text{ }}\right)=-7 \left(y^2+\frac{2 y}{7}+\underline{\text{ }}\right): \\
7 \left(x^2-\frac{8 x}{7}+\underline{\text{ }}\right)+\fbox{$-7 \left(y^2+\frac{2 y}{7}+\underline{\text{ }}\right)$}=\underline{\text{ }}-8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-8}{7}}{2}\right)^2=\frac{16}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{16}{49}=\frac{16}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{16}{7}-8=-\frac{40}{7}: \\
7 \left(x^2-\frac{8 x}{7}+\frac{16}{49}\right)-7 \left(y^2+\frac{2 y}{7}+\underline{\text{ }}\right)=\fbox{$-\frac{40}{7}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{7}}{2}\right)^2=\frac{1}{49} \text{on }\text{the }\text{left }\text{and }\frac{-7}{49}=-\frac{1}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
-\frac{40}{7}-\frac{1}{7}=-\frac{41}{7}: \\
7 \left(x^2-\frac{8 x}{7}+\frac{16}{49}\right)-7 \left(y^2+\frac{2 y}{7}+\frac{1}{49}\right)=\fbox{$-\frac{41}{7}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{8 x}{7}+\frac{16}{49}=\left(x-\frac{4}{7}\right)^2: \\
7 \fbox{$\left(x-\frac{4}{7}\right)^2$}-7 \left(y^2+\frac{2 y}{7}+\frac{1}{49}\right)=-\frac{41}{7} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{2 y}{7}+\frac{1}{49}=\left(y+\frac{1}{7}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 7 \left(x-\frac{4}{7}\right)^2-7 \fbox{$\left(y+\frac{1}{7}\right)^2$}=-\frac{41}{7} \\
\end{array}
| khanacademy | amps |
Given the equation $6 x^2+8 x-9 y^2+6 y=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-9 y^2+6 y+6 x^2+8 x=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(6 x^2+8 x+\underline{\text{ }}\right)+\left(-9 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\
\end{array}
Step 3:
\begin{array}{l}
\left(6 x^2+8 x+\underline{\text{ }}\right)=6 \left(x^2+\frac{4 x}{3}+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2+\frac{4 x}{3}+\underline{\text{ }}\right)$}+\left(-9 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+0 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-9 y^2+6 y+\underline{\text{ }}\right)=-9 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right): \\
6 \left(x^2+\frac{4 x}{3}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+0 \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{4}{3}}{2}\right)^2=\frac{4}{9} \text{on }\text{the }\text{left }\text{and }6\times \frac{4}{9}=\frac{8}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{-9}{9}=-1 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{8}{3}-1=\frac{5}{3}: \\
6 \left(x^2+\frac{4 x}{3}+\frac{4}{9}\right)-9 \left(y^2-\frac{2 y}{3}+\frac{1}{9}\right)=\fbox{$\frac{5}{3}$} \\
\end{array}
Step 8:
\begin{array}{l}
x^2+\frac{4 x}{3}+\frac{4}{9}=\left(x+\frac{2}{3}\right)^2: \\
6 \fbox{$\left(x+\frac{2}{3}\right)^2$}-9 \left(y^2-\frac{2 y}{3}+\frac{1}{9}\right)=\frac{5}{3} \\
\end{array}
Step 9:
\begin{array}{l}
y^2-\frac{2 y}{3}+\frac{1}{9}=\left(y-\frac{1}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \left(x+\frac{2}{3}\right)^2-9 \fbox{$\left(y-\frac{1}{3}\right)^2$}=\frac{5}{3} \\
\end{array}
| khanacademy | amps |
Given the equation $4 x^2-3 x+2 y^2+6 y+3=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
2 y^2+6 y+4 x^2-3 x+3=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }3 \text{from }\text{both }\text{sides}: \\
2 y^2+6 y+4 x^2-3 x=-3 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(4 x^2-3 x+\underline{\text{ }}\right)+\left(2 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\
\end{array}
Step 4:
\begin{array}{l}
\left(4 x^2-3 x+\underline{\text{ }}\right)=4 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right): \\
\fbox{$4 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)$}+\left(2 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}-3 \\
\end{array}
Step 5:
\begin{array}{l}
\left(2 y^2+6 y+\underline{\text{ }}\right)=2 \left(y^2+3 y+\underline{\text{ }}\right): \\
4 \left(x^2-\frac{3 x}{4}+\underline{\text{ }}\right)+\fbox{$2 \left(y^2+3 y+\underline{\text{ }}\right)$}=\underline{\text{ }}-3 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }4 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{4}}{2}\right)^2=\frac{9}{64} \text{on }\text{the }\text{left }\text{and }4\times \frac{9}{64}=\frac{9}{16} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{9}{16}-3=-\frac{39}{16}: \\
4 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)+2 \left(y^2+3 y+\underline{\text{ }}\right)=\fbox{$-\frac{39}{16}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }2\times \frac{9}{4}=\frac{9}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{9}{2}-\frac{39}{16}=\frac{33}{16}: \\
4 \left(x^2-\frac{3 x}{4}+\frac{9}{64}\right)+2 \left(y^2+3 y+\frac{9}{4}\right)=\fbox{$\frac{33}{16}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{3 x}{4}+\frac{9}{64}=\left(x-\frac{3}{8}\right)^2: \\
4 \fbox{$\left(x-\frac{3}{8}\right)^2$}+2 \left(y^2+3 y+\frac{9}{4}\right)=\frac{33}{16} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+3 y+\frac{9}{4}=\left(y+\frac{3}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 4 \left(x-\frac{3}{8}\right)^2+2 \fbox{$\left(y+\frac{3}{2}\right)^2$}=\frac{33}{16} \\
\end{array}
| khanacademy | amps |
Given the equation $-7 x^2-5 x-8 y^2-y-5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-8 y^2-y-7 x^2-5 x-5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }5 \text{to }\text{both }\text{sides}: \\
-8 y^2-y-7 x^2-5 x=5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-7 x^2-5 x+\underline{\text{ }}\right)+\left(-8 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-7 x^2-5 x+\underline{\text{ }}\right)=-7 \left(x^2+\frac{5 x}{7}+\underline{\text{ }}\right): \\
\fbox{$-7 \left(x^2+\frac{5 x}{7}+\underline{\text{ }}\right)$}+\left(-8 y^2-y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-8 y^2-y+\underline{\text{ }}\right)=-8 \left(y^2+\frac{y}{8}+\underline{\text{ }}\right): \\
-7 \left(x^2+\frac{5 x}{7}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2+\frac{y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{5}{7}}{2}\right)^2=\frac{25}{196} \text{on }\text{the }\text{left }\text{and }-7\times \frac{25}{196}=-\frac{25}{28} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
5-\frac{25}{28}=\frac{115}{28}: \\
-7 \left(x^2+\frac{5 x}{7}+\frac{25}{196}\right)-8 \left(y^2+\frac{y}{8}+\underline{\text{ }}\right)=\fbox{$\frac{115}{28}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{8}}{2}\right)^2=\frac{1}{256} \text{on }\text{the }\text{left }\text{and }\frac{-8}{256}=-\frac{1}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{115}{28}-\frac{1}{32}=\frac{913}{224}: \\
-7 \left(x^2+\frac{5 x}{7}+\frac{25}{196}\right)-8 \left(y^2+\frac{y}{8}+\frac{1}{256}\right)=\fbox{$\frac{913}{224}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{5 x}{7}+\frac{25}{196}=\left(x+\frac{5}{14}\right)^2: \\
-7 \fbox{$\left(x+\frac{5}{14}\right)^2$}-8 \left(y^2+\frac{y}{8}+\frac{1}{256}\right)=\frac{913}{224} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{y}{8}+\frac{1}{256}=\left(y+\frac{1}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -7 \left(x+\frac{5}{14}\right)^2-8 \fbox{$\left(y+\frac{1}{16}\right)^2$}=\frac{913}{224} \\
\end{array}
| khanacademy | amps |
Given the equation $6 x^2-2 x-2 y^2+10 y-9=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-2 y^2+10 y+6 x^2-2 x-9=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }9 \text{to }\text{both }\text{sides}: \\
-2 y^2+10 y+6 x^2-2 x=9 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(6 x^2-2 x+\underline{\text{ }}\right)+\left(-2 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 4:
\begin{array}{l}
\left(6 x^2-2 x+\underline{\text{ }}\right)=6 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right)$}+\left(-2 y^2+10 y+\underline{\text{ }}\right)=\underline{\text{ }}+9 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-2 y^2+10 y+\underline{\text{ }}\right)=-2 \left(y^2-5 y+\underline{\text{ }}\right): \\
6 \left(x^2-\frac{x}{3}+\underline{\text{ }}\right)+\fbox{$-2 \left(y^2-5 y+\underline{\text{ }}\right)$}=\underline{\text{ }}+9 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{6}{36}=\frac{1}{6} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
9+\frac{1}{6}=\frac{55}{6}: \\
6 \left(x^2-\frac{x}{3}+\frac{1}{36}\right)-2 \left(y^2-5 y+\underline{\text{ }}\right)=\fbox{$\frac{55}{6}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-5}{2}\right)^2=\frac{25}{4} \text{on }\text{the }\text{left }\text{and }-2\times \frac{25}{4}=-\frac{25}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{55}{6}-\frac{25}{2}=-\frac{10}{3}: \\
6 \left(x^2-\frac{x}{3}+\frac{1}{36}\right)-2 \left(y^2-5 y+\frac{25}{4}\right)=\fbox{$-\frac{10}{3}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{x}{3}+\frac{1}{36}=\left(x-\frac{1}{6}\right)^2: \\
6 \fbox{$\left(x-\frac{1}{6}\right)^2$}-2 \left(y^2-5 y+\frac{25}{4}\right)=-\frac{10}{3} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-5 y+\frac{25}{4}=\left(y-\frac{5}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \left(x-\frac{1}{6}\right)^2-2 \fbox{$\left(y-\frac{5}{2}\right)^2$}=-\frac{10}{3} \\
\end{array}
| khanacademy | amps |
Given the equation $9 x^2+6 x-9 y^2+6 y-5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-9 y^2+6 y+9 x^2+6 x-5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }5 \text{to }\text{both }\text{sides}: \\
-9 y^2+6 y+9 x^2+6 x=5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(9 x^2+6 x+\underline{\text{ }}\right)+\left(-9 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(9 x^2+6 x+\underline{\text{ }}\right)=9 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right): \\
\fbox{$9 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right)$}+\left(-9 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-9 y^2+6 y+\underline{\text{ }}\right)=-9 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right): \\
9 \left(x^2+\frac{2 x}{3}+\underline{\text{ }}\right)+\fbox{$-9 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{9}{9}=1 \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
5+1=6: \\
9 \left(x^2+\frac{2 x}{3}+\frac{1}{9}\right)-9 \left(y^2-\frac{2 y}{3}+\underline{\text{ }}\right)=\fbox{$6$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{-9}{9}=-1 \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
6-1=5: \\
9 \left(x^2+\frac{2 x}{3}+\frac{1}{9}\right)-9 \left(y^2-\frac{2 y}{3}+\frac{1}{9}\right)=\fbox{$5$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{2 x}{3}+\frac{1}{9}=\left(x+\frac{1}{3}\right)^2: \\
9 \fbox{$\left(x+\frac{1}{3}\right)^2$}-9 \left(y^2-\frac{2 y}{3}+\frac{1}{9}\right)=5 \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{2 y}{3}+\frac{1}{9}=\left(y-\frac{1}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 9 \left(x+\frac{1}{3}\right)^2-9 \fbox{$\left(y-\frac{1}{3}\right)^2$}=5 \\
\end{array}
| khanacademy | amps |
Given the equation $-3 x^2-9 x-10 y^2+6 y-8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-10 y^2+6 y-3 x^2-9 x-8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }8 \text{to }\text{both }\text{sides}: \\
-10 y^2+6 y-3 x^2-9 x=8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-3 x^2-9 x+\underline{\text{ }}\right)+\left(-10 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-3 x^2-9 x+\underline{\text{ }}\right)=-3 \left(x^2+3 x+\underline{\text{ }}\right): \\
\fbox{$-3 \left(x^2+3 x+\underline{\text{ }}\right)$}+\left(-10 y^2+6 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-10 y^2+6 y+\underline{\text{ }}\right)=-10 \left(y^2-\frac{3 y}{5}+\underline{\text{ }}\right): \\
-3 \left(x^2+3 x+\underline{\text{ }}\right)+\fbox{$-10 \left(y^2-\frac{3 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }-3\times \frac{9}{4}=-\frac{27}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
8-\frac{27}{4}=\frac{5}{4}: \\
-3 \left(x^2+3 x+\frac{9}{4}\right)-10 \left(y^2-\frac{3 y}{5}+\underline{\text{ }}\right)=\fbox{$\frac{5}{4}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-10 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{5}}{2}\right)^2=\frac{9}{100} \text{on }\text{the }\text{left }\text{and }-10\times \frac{9}{100}=-\frac{9}{10} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{5}{4}-\frac{9}{10}=\frac{7}{20}: \\
-3 \left(x^2+3 x+\frac{9}{4}\right)-10 \left(y^2-\frac{3 y}{5}+\frac{9}{100}\right)=\fbox{$\frac{7}{20}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+3 x+\frac{9}{4}=\left(x+\frac{3}{2}\right)^2: \\
-3 \fbox{$\left(x+\frac{3}{2}\right)^2$}-10 \left(y^2-\frac{3 y}{5}+\frac{9}{100}\right)=\frac{7}{20} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{3 y}{5}+\frac{9}{100}=\left(y-\frac{3}{10}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -3 \left(x+\frac{3}{2}\right)^2-\text{10 }\fbox{$\left(y-\frac{3}{10}\right)^2$}=\frac{7}{20} \\
\end{array}
| khanacademy | amps |
Given the equation $-2 x^2+2 x+10 y^2+8 y+1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
10 y^2+8 y-2 x^2+2 x+1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }1 \text{from }\text{both }\text{sides}: \\
10 y^2+8 y-2 x^2+2 x=-1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-2 x^2+2 x+\underline{\text{ }}\right)+\left(10 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-2 x^2+2 x+\underline{\text{ }}\right)=-2 \left(x^2-x+\underline{\text{ }}\right): \\
\fbox{$-2 \left(x^2-x+\underline{\text{ }}\right)$}+\left(10 y^2+8 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(10 y^2+8 y+\underline{\text{ }}\right)=10 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right): \\
-2 \left(x^2-x+\underline{\text{ }}\right)+\fbox{$10 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{-2}{4}=-\frac{1}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-1-\frac{1}{2}=-\frac{3}{2}: \\
-2 \left(x^2-x+\frac{1}{4}\right)+10 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right)=\fbox{$-\frac{3}{2}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }10\times \frac{4}{25}=\frac{8}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{8}{5}-\frac{3}{2}=\frac{1}{10}: \\
-2 \left(x^2-x+\frac{1}{4}\right)+10 \left(y^2+\frac{4 y}{5}+\frac{4}{25}\right)=\fbox{$\frac{1}{10}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2: \\
-2 \fbox{$\left(x-\frac{1}{2}\right)^2$}+10 \left(y^2+\frac{4 y}{5}+\frac{4}{25}\right)=\frac{1}{10} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{4 y}{5}+\frac{4}{25}=\left(y+\frac{2}{5}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -2 \left(x-\frac{1}{2}\right)^2+\text{10 }\fbox{$\left(y+\frac{2}{5}\right)^2$}=\frac{1}{10} \\
\end{array}
| khanacademy | amps |
Given the equation $3 x^2+x-8 y^2+3 y-5=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-8 y^2+3 y+3 x^2+x-5=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }5 \text{to }\text{both }\text{sides}: \\
-8 y^2+3 y+3 x^2+x=5 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(3 x^2+x+\underline{\text{ }}\right)+\left(-8 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 4:
\begin{array}{l}
\left(3 x^2+x+\underline{\text{ }}\right)=3 \left(x^2+\frac{x}{3}+\underline{\text{ }}\right): \\
\fbox{$3 \left(x^2+\frac{x}{3}+\underline{\text{ }}\right)$}+\left(-8 y^2+3 y+\underline{\text{ }}\right)=\underline{\text{ }}+5 \\
\end{array}
Step 5:
\begin{array}{l}
\left(-8 y^2+3 y+\underline{\text{ }}\right)=-8 \left(y^2-\frac{3 y}{8}+\underline{\text{ }}\right): \\
3 \left(x^2+\frac{x}{3}+\underline{\text{ }}\right)+\fbox{$-8 \left(y^2-\frac{3 y}{8}+\underline{\text{ }}\right)$}=\underline{\text{ }}+5 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }3 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{1}{3}}{2}\right)^2=\frac{1}{36} \text{on }\text{the }\text{left }\text{and }\frac{3}{36}=\frac{1}{12} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
5+\frac{1}{12}=\frac{61}{12}: \\
3 \left(x^2+\frac{x}{3}+\frac{1}{36}\right)-8 \left(y^2-\frac{3 y}{8}+\underline{\text{ }}\right)=\fbox{$\frac{61}{12}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-8 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{8}}{2}\right)^2=\frac{9}{256} \text{on }\text{the }\text{left }\text{and }-8\times \frac{9}{256}=-\frac{9}{32} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{61}{12}-\frac{9}{32}=\frac{461}{96}: \\
3 \left(x^2+\frac{x}{3}+\frac{1}{36}\right)-8 \left(y^2-\frac{3 y}{8}+\frac{9}{256}\right)=\fbox{$\frac{461}{96}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{x}{3}+\frac{1}{36}=\left(x+\frac{1}{6}\right)^2: \\
3 \fbox{$\left(x+\frac{1}{6}\right)^2$}-8 \left(y^2-\frac{3 y}{8}+\frac{9}{256}\right)=\frac{461}{96} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{3 y}{8}+\frac{9}{256}=\left(y-\frac{3}{16}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 3 \left(x+\frac{1}{6}\right)^2-8 \fbox{$\left(y-\frac{3}{16}\right)^2$}=\frac{461}{96} \\
\end{array}
| khanacademy | amps |
Given the equation $-2 x^2+6 x+10 y^2-3 y+1=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
10 y^2-3 y-2 x^2+6 x+1=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }1 \text{from }\text{both }\text{sides}: \\
10 y^2-3 y-2 x^2+6 x=-1 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-2 x^2+6 x+\underline{\text{ }}\right)+\left(10 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-2 x^2+6 x+\underline{\text{ }}\right)=-2 \left(x^2-3 x+\underline{\text{ }}\right): \\
\fbox{$-2 \left(x^2-3 x+\underline{\text{ }}\right)$}+\left(10 y^2-3 y+\underline{\text{ }}\right)=\underline{\text{ }}-1 \\
\end{array}
Step 5:
\begin{array}{l}
\left(10 y^2-3 y+\underline{\text{ }}\right)=10 \left(y^2-\frac{3 y}{10}+\underline{\text{ }}\right): \\
-2 \left(x^2-3 x+\underline{\text{ }}\right)+\fbox{$10 \left(y^2-\frac{3 y}{10}+\underline{\text{ }}\right)$}=\underline{\text{ }}-1 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-2 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-3}{2}\right)^2=\frac{9}{4} \text{on }\text{the }\text{left }\text{and }-2\times \frac{9}{4}=-\frac{9}{2} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
-1-\frac{9}{2}=-\frac{11}{2}: \\
-2 \left(x^2-3 x+\frac{9}{4}\right)+10 \left(y^2-\frac{3 y}{10}+\underline{\text{ }}\right)=\fbox{$-\frac{11}{2}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }\text{10 }\text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-3}{10}}{2}\right)^2=\frac{9}{400} \text{on }\text{the }\text{left }\text{and }10\times \frac{9}{400}=\frac{9}{40} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{9}{40}-\frac{11}{2}=-\frac{211}{40}: \\
-2 \left(x^2-3 x+\frac{9}{4}\right)+10 \left(y^2-\frac{3 y}{10}+\frac{9}{400}\right)=\fbox{$-\frac{211}{40}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-3 x+\frac{9}{4}=\left(x-\frac{3}{2}\right)^2: \\
-2 \fbox{$\left(x-\frac{3}{2}\right)^2$}+10 \left(y^2-\frac{3 y}{10}+\frac{9}{400}\right)=-\frac{211}{40} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-\frac{3 y}{10}+\frac{9}{400}=\left(y-\frac{3}{20}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -2 \left(x-\frac{3}{2}\right)^2+\text{10 }\fbox{$\left(y-\frac{3}{20}\right)^2$}=-\frac{211}{40} \\
\end{array}
| khanacademy | amps |
Given the equation $6 x^2-x+9 y^2-9 y+2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
9 y^2-9 y+6 x^2-x+2=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }2 \text{from }\text{both }\text{sides}: \\
9 y^2-9 y+6 x^2-x=-2 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(6 x^2-x+\underline{\text{ }}\right)+\left(9 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\
\end{array}
Step 4:
\begin{array}{l}
\left(6 x^2-x+\underline{\text{ }}\right)=6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right)$}+\left(9 y^2-9 y+\underline{\text{ }}\right)=\underline{\text{ }}-2 \\
\end{array}
Step 5:
\begin{array}{l}
\left(9 y^2-9 y+\underline{\text{ }}\right)=9 \left(y^2-y+\underline{\text{ }}\right): \\
6 \left(x^2-\frac{x}{6}+\underline{\text{ }}\right)+\fbox{$9 \left(y^2-y+\underline{\text{ }}\right)$}=\underline{\text{ }}-2 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-1}{6}}{2}\right)^2=\frac{1}{144} \text{on }\text{the }\text{left }\text{and }\frac{6}{144}=\frac{1}{24} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
\frac{1}{24}-2=-\frac{47}{24}: \\
6 \left(x^2-\frac{x}{6}+\frac{1}{144}\right)+9 \left(y^2-y+\underline{\text{ }}\right)=\fbox{$-\frac{47}{24}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }9 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{-1}{2}\right)^2=\frac{1}{4} \text{on }\text{the }\text{left }\text{and }\frac{9}{4}=\frac{9}{4} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{9}{4}-\frac{47}{24}=\frac{7}{24}: \\
6 \left(x^2-\frac{x}{6}+\frac{1}{144}\right)+9 \left(y^2-y+\frac{1}{4}\right)=\fbox{$\frac{7}{24}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2-\frac{x}{6}+\frac{1}{144}=\left(x-\frac{1}{12}\right)^2: \\
6 \fbox{$\left(x-\frac{1}{12}\right)^2$}+9 \left(y^2-y+\frac{1}{4}\right)=\frac{7}{24} \\
\end{array}
Step 11:
\begin{array}{l}
y^2-y+\frac{1}{4}=\left(y-\frac{1}{2}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \left(x-\frac{1}{12}\right)^2+9 \fbox{$\left(y-\frac{1}{2}\right)^2$}=\frac{7}{24} \\
\end{array}
| khanacademy | amps |
Given the equation $-6 x^2+4 x+8 y+2=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
-6 x^2+4 x+(8 y+2)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }8 y-6 x^2+4 x+2 \text{from }\text{both }\text{sides}: \\
6 x^2-4 x+(-8 y-2)=0 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Add }8 y+2 \text{to }\text{both }\text{sides}: \\
6 x^2-4 x=8 y+2 \\
\end{array}
Step 4:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(6 x^2-4 x+\underline{\text{ }}\right)=(8 y+2)+\underline{\text{ }} \\
\end{array}
Step 5:
\begin{array}{l}
\left(6 x^2-4 x+\underline{\text{ }}\right)=6 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right): \\
\fbox{$6 \left(x^2-\frac{2 x}{3}+\underline{\text{ }}\right)$}=(8 y+2)+\underline{\text{ }} \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }6 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-2}{3}}{2}\right)^2=\frac{1}{9} \text{on }\text{the }\text{left }\text{and }\frac{6}{9}=\frac{2}{3} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
(8 y+2)+\frac{2}{3}=8 y+\frac{8}{3}: \\
6 \left(x^2-\frac{2 x}{3}+\frac{1}{9}\right)=\fbox{$8 y+\frac{8}{3}$} \\
\end{array}
Step 8:
\begin{array}{l}
x^2-\frac{2 x}{3}+\frac{1}{9}=\left(x-\frac{1}{3}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 6 \fbox{$\left(x-\frac{1}{3}\right)^2$}=8 y+\frac{8}{3} \\
\end{array}
| khanacademy | amps |
Given the equation $-5 x^2-8 x+5 y^2+4 y-8=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
5 y^2+4 y-5 x^2-8 x-8=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Add }8 \text{to }\text{both }\text{sides}: \\
5 y^2+4 y-5 x^2-8 x=8 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{with }x \text{and }y \text{separately, }\text{leaving }\text{placeholder }\text{constants}: \\
\left(-5 x^2-8 x+\underline{\text{ }}\right)+\left(5 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 4:
\begin{array}{l}
\left(-5 x^2-8 x+\underline{\text{ }}\right)=-5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right): \\
\fbox{$-5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right)$}+\left(5 y^2+4 y+\underline{\text{ }}\right)=\underline{\text{ }}+8 \\
\end{array}
Step 5:
\begin{array}{l}
\left(5 y^2+4 y+\underline{\text{ }}\right)=5 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right): \\
-5 \left(x^2+\frac{8 x}{5}+\underline{\text{ }}\right)+\fbox{$5 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right)$}=\underline{\text{ }}+8 \\
\end{array}
Step 6:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }-5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{8}{5}}{2}\right)^2=\frac{16}{25} \text{on }\text{the }\text{left }\text{and }-5\times \frac{16}{25}=-\frac{16}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 7:
\begin{array}{l}
8-\frac{16}{5}=\frac{24}{5}: \\
-5 \left(x^2+\frac{8 x}{5}+\frac{16}{25}\right)+5 \left(y^2+\frac{4 y}{5}+\underline{\text{ }}\right)=\fbox{$\frac{24}{5}$} \\
\end{array}
Step 8:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }y \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }5 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{4}{5}}{2}\right)^2=\frac{4}{25} \text{on }\text{the }\text{left }\text{and }5\times \frac{4}{25}=\frac{4}{5} \text{on }\text{the }\text{right}: \\
\end{array}
Step 9:
\begin{array}{l}
\frac{24}{5}+\frac{4}{5}=\frac{28}{5}: \\
-5 \left(x^2+\frac{8 x}{5}+\frac{16}{25}\right)+5 \left(y^2+\frac{4 y}{5}+\frac{4}{25}\right)=\fbox{$\frac{28}{5}$} \\
\end{array}
Step 10:
\begin{array}{l}
x^2+\frac{8 x}{5}+\frac{16}{25}=\left(x+\frac{4}{5}\right)^2: \\
-5 \fbox{$\left(x+\frac{4}{5}\right)^2$}+5 \left(y^2+\frac{4 y}{5}+\frac{4}{25}\right)=\frac{28}{5} \\
\end{array}
Step 11:
\begin{array}{l}
y^2+\frac{4 y}{5}+\frac{4}{25}=\left(y+\frac{2}{5}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & -5 \left(x+\frac{4}{5}\right)^2+5 \fbox{$\left(y+\frac{2}{5}\right)^2$}=\frac{28}{5} \\
\end{array}
| khanacademy | amps |
Given the equation $7 x^2-8 x-y+4=0$, complete the square.
Step 1:
\begin{array}{l}
\begin{array}{l}
\text{Complete the square}: \\
7 x^2-8 x+(4-y)=0 \\
\end{array}
Step 2:
\begin{array}{l}
\text{Subtract }4-y \text{from }\text{both }\text{sides}: \\
7 x^2-8 x=y-4 \\
\end{array}
Step 3:
\begin{array}{l}
\text{Group }\text{terms }\text{together }\text{on }\text{the }\text{left }\text{hand }\text{side, }\text{with }\text{a }\text{placeholder }\text{constant}: \\
\left(7 x^2-8 x+\underline{\text{ }}\right)=(y-4)+\underline{\text{ }} \\
\end{array}
Step 4:
\begin{array}{l}
\left(7 x^2-8 x+\underline{\text{ }}\right)=7 \left(x^2-\frac{8 x}{7}+\underline{\text{ }}\right): \\
\fbox{$7 \left(x^2-\frac{8 x}{7}+\underline{\text{ }}\right)$}=(y-4)+\underline{\text{ }} \\
\end{array}
Step 5:
\begin{array}{l}
\begin{array}{l}
\text{Take }\text{one }\text{half }\text{of }\text{the }\text{coefficient }\text{of }x \text{and }\text{square }\text{it. }\text{Then }\text{add }\text{it }\text{to }\text{both }\text{sides }\text{of }\text{the }\text{equation, }\text{multiplying }\text{by }\text{the }\text{factored }\text{constant }7 \text{on }\text{the }\text{right.} \\
\text{Insert }\left(\frac{\frac{-8}{7}}{2}\right)^2=\frac{16}{49} \text{on }\text{the }\text{left }\text{and }7\times \frac{16}{49}=\frac{16}{7} \text{on }\text{the }\text{right}: \\
\end{array}
Step 6:
\begin{array}{l}
(y-4)+\frac{16}{7}=y-\frac{12}{7}: \\
7 \left(x^2-\frac{8 x}{7}+\frac{16}{49}\right)=\fbox{$y-\frac{12}{7}$} \\
\end{array}
Step 7:
\begin{array}{l}
x^2-\frac{8 x}{7}+\frac{16}{49}=\left(x-\frac{4}{7}\right)^2: \\
\fbox{$
\begin{array}{ll}
\text{Answer:} & \\
\text{} & 7 \fbox{$\left(x-\frac{4}{7}\right)^2$}=y-\frac{12}{7} \\
\end{array}
| khanacademy | amps |