content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def quantile_compute(x, n_bins): """Quantile computation. Parameters ---------- x: pd.DataFrame the data variable we want to obtain its distribution. n_bins: int the number of bins we want to use to plot the distribution. Returns ------- quantiles: np.ndarray the quantiles. """ # aux.quantile(np.linspace(0, 1, 11)) # version = 0.15 quantiles = [x.quantile(q) for q in np.linspace(0, 1, n_bins+1)] quantiles = np.array(quantiles) return quantiles
4c23b417bb8c9e99709fca2371e476e4edadfeec
600
def remove_separators(version): """Remove separator characters ('.', '_', and '-') from a version. A version like 1.2.3 may be displayed as 1_2_3 in the URL. Make sure 1.2.3, 1-2-3, 1_2_3, and 123 are considered equal. Unfortunately, this also means that 1.23 and 12.3 are equal. Args: version (str or Version): A version Returns: str: The version with all separator characters removed """ version = str(version) version = version.replace('.', '') version = version.replace('_', '') version = version.replace('-', '') return version
c29b9e7ca84705a9f36123ff0d84e3beb24468bf
601
def parse_coverage_status(status): """Parse a coverage status""" return Status.HIT if status.upper() == 'SATISFIED' else Status.MISSED
8a295b3df2d10b7813ce0efc96331607da5ba1b9
602
def max_index(list): """Returns the index of the max value of list.""" split_list = zip(list, range(len(list))) (retval, retI) = reduce(lambda (currV, currI), (nV, nI): (currV, currI) if currV > nV else (nV, nI), split_list) return retI
43e15edbc227b13db3d468b4ee8d030770d5f1a2
603
def mask_coverage(coverage: mx.sym.Symbol, source_length: mx.sym.Symbol) -> mx.sym.Symbol: """ Masks all coverage scores that are outside the actual sequence. :param coverage: Input coverage vector. Shape: (batch_size, seq_len, coverage_num_hidden). :param source_length: Source length. Shape: (batch_size,). :return: Masked coverage vector. Shape: (batch_size, seq_len, coverage_num_hidden). """ return mx.sym.SequenceMask(data=coverage, axis=1, use_sequence_length=True, sequence_length=source_length)
d2594a12a78d604c26588218f8b084bf5c18d2ac
604
def DFS_complete(g): """Perform DFS for entire graph and return forest as a dictionary. Result maps each vertex v to the edge that was used to discover it. (Vertices that are roots of a DFS tree are mapped to None.) """ forest = {} for u in g.vertices(): if u not in forest: forest[u] = None # u will be the root of a tree DFS(g, u, forest) return forest
ec141354d41cf87381db841e6adf8e888a573494
605
def _transform_p_dict(p_value_dict): """ Utility function that transforms a dictionary of dicts into a dataframe representing the dicts as rows (like tuples). Is needed to keep track of the feature names and corresponding values. The underlying datastructures are confusing. :param p_value_dict: dictionary of dictionaries storing the p_values :return: dataframe where the keys are added to the p_values as columns """ # Turn dictionary of dictionaries into a collection of the key-value pairs represented as nested tuples item_dict = dict() for feat in p_value_dict: item_dict[feat] = list(p_value_dict[feat].items()) # building a matrix (nested lists) by extracting and sorting data from nested tuples # (items[0], (nested_items[0], nested_items[1])) df_matrix = [] for items in item_dict.items(): for nested_items in items[1]: df_matrix.append([nested_items[1], nested_items[0], items[0]]) return pd.DataFrame(df_matrix)
154ce78ae03267ce69254ff583ca0b736d62d435
606
import torch from typing import Optional def iou( predict: torch.Tensor, target: torch.Tensor, mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ This is a great loss because it emphasizes on the active regions of the predict and targets """ dims = tuple(range(predict.dim())[1:]) if mask is not None: predict = predict * mask target = target * mask intersect = (predict * target).sum(dims) union = (predict + target - predict * target).sum(dims) + 1e-4 return (intersect / union).sum() / intersect.numel()
7608189bde3b640a8f148e3628e5668a3b310655
607
import re def get_sequence(seq_id): """ TO DO: 1. redirection 303. (not tested in compliance_suite) 2. Note: compliance_suite ignores the range if it is out of bounds or if > SUBSEQUENCE_LIMIT 3. Ambiguous error code resolution in refget documentation: range: The server MUST respond with a Bad Request error if one or more ranges are out of bounds of the sequence. If the server supports circular chromosomes and the chromosome is not circular or the range is outside the bounds of the chromosome the server shall return Range Not Satisfiable. start, end: The server MUST respond with a Bad Request error if start is specified and is larger than the total sequence length. If the server supports circular chromosomes and the chromosome is not circular or the range is outside the bounds of the chromosome the server shall return Range Not Satisfiable. 4. Should we validate the response headers in the compliance suite? 5. check if start and end are 32 bit """ header_content = request.headers accept_type = "text/vnd.ga4gh.refget.v1.0.0+plain" # validate the accept header if "accept" in header_content and header_content["accept"] not in [accept_type,"*/*"]: # bad mock server: status = 200 when headers are incorrect return Response(status=200) # check if the sequence is present. If not, error = 404 sequence_obj = get_sequence_obj(seq_id, DATA, TRUNC512) if not sequence_obj: # bad mock server: status = 200 when sequence is not found return Response(status=200) # get start, end and range params start = request.args.get('start', default = None) end = request.args.get('end', default=None) RANGE_HEADER_PATTERN = re.compile(r'bytes=[0-9]*-[0-9]*$') if "range" in header_content: seq_range = header_content["Range"] # bad mock server: status = 404 when both start/end and range parameters are passed if (start or end) and seq_range: return Response(status=404) # bad mock server: status = 404 when range pattern is not as expected if not RANGE_HEADER_PATTERN.match(seq_range): return Response(status=404) fbs = int(header_content['Range'].split('=')[1].split('-')[0]) lbs = int(header_content['Range'].split('=')[1].split('-')[1]) if (fbs > sequence_obj.size-1) or (fbs > lbs): """ Note: we are ignoring case where (lbs > sequence_obj.size-1), (lbs-fbs+1 > SUBSEQUENCE_LIMIT) to match the compliance_suite tests filtering the case where (fbs > lbs) : Sub-sequences of circular chromosomes across the origin may not be requested via the Range header """ # since fbs and lbs <= SUBSEQUENCE_LIMIT-1, it is implied that the subsequence limit if any is satisfied # bad mock server: incorrect status = 400 return Response(status=400) elif (lbs > sequence_obj.size-1) : lbs = sequence_obj.size # bad mock server: status = 200 while returning subsequence return Response(response=(sequence_obj.sequence[fbs:lbs+1]).encode("ascii"),status=200, mimetype=accept_type) if start or end: # if start or end params are present, return the filtered sequence # if start or end params are not 32 bit unsigned int, error = 400 # if start > sequence length, error =400 # if start > end and circular not implemented, error = 501 if start: # TO DO: check if start and end are 32 bit if not start.isdigit(): #checks if start is unsigned int # bad mock server: incorrect status 200 return Response(status=200) start = int(start) else: start = 0 if end: if not end.isdigit(): #checks if end is unsigned int # bad mock server: incorrect status 200 return Response(status=200) end = int(end) else: end = sequence_obj.size if start >= sequence_obj.size or end > sequence_obj.size : # bad mock server: incorrect status 400 return Response(status=400) elif start > end: if CIRCULAR_CHROMOSOME_SUPPORT == False: # bad mock server: incorrect status 416 return Response(status=416) else: if sequence_obj.is_circular == False: # bad mock server: incorrect status 500 return Response(status=500) else: if len(sequence_obj.sequence[start:sequence_obj.size]+sequence_obj.sequence[0:end])>SUBSEQUENCE_LIMIT: # bad mock server: incorrect status 400 return Response(status=400) else: # bad mock server: incorrect status 404 return Response(response=(sequence_obj.sequence[start:sequence_obj.size]+sequence_obj.sequence[0:end]).encode("ascii"),status=404,mimetype=accept_type) elif end-start >SUBSEQUENCE_LIMIT: # bad mock server: incorrect status 200 return Response(status=200) # bad mock server: incorrect status 404 return Response(response=(sequence_obj.sequence[start:end]).encode("ascii"),status=404,mimetype=accept_type) # bad mock server: incorrect status 500 return Response(response=(sequence_obj.sequence).encode("ascii"), status=500,mimetype=accept_type)
d0d10c1c491d32ffc70c5579330163bee11d5a15
608
def getCondVisibility(condition): """ Returns ``True`` (``1``) or ``False`` (``0``) as a ``bool``. :param condition: string - condition to check. List of Conditions: http://wiki.xbmc.org/?title=List_of_Boolean_Conditions .. note:: You can combine two (or more) of the above settings by using "+" as an ``AND`` operator, "|" as an ``OR`` operator, "!" as a ``NOT`` operator, and "[" and "]" to bracket expressions. example:: visible = xbmc.getCondVisibility('[Control.IsVisible(41) + !Control.IsVisible(12)]') """ return bool(1)
761914696ac2050c6bf130e5b49221be043903bd
609
def get_xy_strs(kpts): """ strings debugging and output """ _xs, _ys = get_xys(kpts) xy_strs = [('xy=(%.1f, %.1f)' % (x, y,)) for x, y, in zip(_xs, _ys)] return xy_strs
78117b991c851a67dccb3c40fa5ca18f469b53c8
610
def history_cumulative(request): """ This endpoints returns the number of cumulative infections for each area given a date in history. """ days = int(request.query_params.get("days")) observed = Covid19DataPoint.objects.all() historyDate = max([d.date for d in observed]) - timedelta(days=-days) shownData = observed.filter(date=historyDate) deathData = Covid19DeathDataPoint.objects.filter(date=historyDate) #total_confirmed = sum([d.val for d in shownData]) #total_death = sum([d.val for d in deathData]) greatest_model = Covid19Model.objects.get(name="SI-kJalpha - 40x") greatest_predictions = Covid19PredictionDataPoint.objects.filter(model=greatest_model) greatest_predictions = greatest_predictions.filter(date=greatest_predictions.last().date, social_distancing=1) greatest_vals = [d.val for d in greatest_predictions] max_val = max(greatest_vals) greatest_death_model = Covid19Model.objects.get(name="SI-kJalpha - 40x (death prediction)") greatest_death_predictions = Covid19PredictionDataPoint.objects.filter(model=greatest_death_model) greatest_death_predictions = greatest_death_predictions.filter(date=greatest_death_predictions.last().date, social_distancing=1) greatest_death_vals = [d.val for d in greatest_death_predictions] max_death_val = max(greatest_death_vals) response = [{ 'area': { 'country': d.area.country, 'state': d.area.state, 'iso_2': d.area.iso_2, }, 'value': d.val, #'value_percentage': 1e3*d.val/total_confirmed, 'max_val_percentage': 1e4*d.val/max_val, 'date': d.date, 'deathValue': deathData.filter(area=d.area, date=d.date).first().val, 'max_death_percentage':1e4*deathData.filter(area=d.area, date=d.date).first().val/max_death_val, #'death_percentage': 1e3*deathData.filter(area=d.area, date=d.date).first().val/total_death, } for d in shownData] return Response(response)
7ecdf3e41304d99b11e7695e2962dbe3b7f6c96a
611
def check_partial(func, *args, **kwargs): """Create a partial to be used by goodtables.""" new_func = partial(func, *args, **kwargs) new_func.check = func.check return new_func
55a723bc81e5666db9fdd97a4ea88d36635e3dc3
612
def mcas(mc, entries): """Multi-entry compare-and-set. Synopsis: >>> from memcache_collections import mcas >>> mc = memcache.Client(['127.0.0.1:11211'], cache_cas=True) >>> # initialize a doubly-linked list with two elements >>> mc.set_multi({ ... 'foo': {'next': 'bar'}, ... 'bar': {'prev': 'foo'}}) [] >>> # Always use mcas_get to access entries potentially in MCAS >>> # operations. It returns an object representing a memcache entry >>> # snapshot. >>> foo_entry, bar_entry = mcas_get(mc, 'foo'), mcas_get(mc, 'bar') >>> foo_entry.key, foo_entry.value ('foo', {'next': 'bar'}) >>> # atomically insert new node in our doubly linked list via MCAS >>> mc.add('baz', {'prev': 'foo', 'next': 'bar'}) 1 >>> mcas(mc, [ ... (foo_entry, {'next': 'baz'}), ... (bar_entry, {'prev': 'baz'})]) True Function is not thread safe due to implicit CAS ID handling of the Python API. Args: mc: memcache client entries: iterable of (Entry, new_value) tuples Returns: True if MCAS completed successfully. The aggregate size of current and new values for all entries must fit within the memcache value limit (typically 1 MB). Based on "Practical lock-freedom", Keir Fraser, 2004, pp. 30-34. """ dc = _DequeClient(mc) mcas_record = _McasRecord(mc, entries) dc.AddNode(mcas_record) # very sad that we need to read this back just to get CAS ID dc.mc.gets(mcas_record.uuid) return _mcas_help(dc, mcas_record, is_originator=True)
741cbc4d9962292fc544b945785a72cc25060d5b
613
def figure_8s(N_cycles=2, duration=30, mag=0.75): """ Scenario: multiple figure-8s. Parameters ---------- N_cycles : int How many cycles of left+right braking. duration : int [sec] Seconds per half-cycle. mag : float Magnitude of braking applied. """ on = [(2.0, mag), (duration - 2.0, None)] # Braking on off = [(1.0, 0), (duration - 1.0, None)] # Braking off inputs = { "delta_br": simulation.linear_control([(2, 0), *([*on, *off] * N_cycles)]), "delta_bl": simulation.linear_control([(2, 0), *([*off, *on] * N_cycles)]), } T = N_cycles * duration * 2 return inputs, T
3bb485b23ea337b038a52fa946b5080cb8ae79eb
614
import inspect def grad_ast(func, wrt, motion, mode, preserve_result, verbose): """Perform AD on a single function and return the AST. Args: See `grad`. Returns: node: The AST of a module containing the adjoint and primal function definitions. required: A list of non-built in functions that this function called, and of which the primals and adjoints need to be made available in order for the returned function to run. """ node = annotate.resolve_calls(func) fence.validate(node, inspect.getsource(func)) node = anf_.anf(node) if verbose >= 2: print('ANF') print(quoting.to_source(node)) if mode == 'reverse': node, required, stack = reverse_ad.reverse_ad(node.body[0], wrt, preserve_result) if verbose >= 2: print('RAW') print(quoting.to_source(node)) if motion == 'split': node = reverse_ad.split(node, stack) else: node = reverse_ad.joint(node) if verbose >= 2: print('MOTION') print(quoting.to_source(node)) elif mode == 'forward': node, required = forward_ad.forward_ad(node.body[0], wrt, preserve_result) return node, required
1b358f36fb73169fa31bfd3266ccfae172980178
615
import re def sortRules(ruleList): """Return sorted list of rules. Rules should be in a tab-delimited format: 'rule\t\t[four letter negation tag]' Sorts list of rules descending based on length of the rule, splits each rule into components, converts pattern to regular expression, and appends it to the end of the rule. """ ruleList.sort(key = len, reverse = True) sortedList = [] for rule in ruleList: s = rule.strip().split('\t') splitTrig = s[0].split() trig = r'\s+'.join(splitTrig) pattern = r'\b(' + trig + r')\b' s.append(re.compile(pattern, re.IGNORECASE)) sortedList.append(s) return sortedList
5b98903fd48f562d22e0ce269aa55e52963fa4a9
616
def v3_settings_response(): """Define a fixture that returns a V3 subscriptions response.""" return load_fixture("v3_settings_response.json")
909d538388dde838bc57d6084c98db40b24db4f8
617
def Geom2dLProp_Curve2dTool_FirstParameter(*args): """ * returns the first parameter bound of the curve. :param C: :type C: Handle_Geom2d_Curve & :rtype: float """ return _Geom2dLProp.Geom2dLProp_Curve2dTool_FirstParameter(*args)
f9dea146d3e9002c17cddd3f60ff6fe5362a1268
618
def decode_regression_batch_image(x_batch, y_batch, x_post_fn = None, y_post_fn = None, **kwargs): """ x_batch: L or gray (batch_size, height, width, 1) y_batch: ab channel (batch_size, height, width, 2) x_post_fn: decode function of x_batch y_post_fn: decode function of y_batch """ assert len(y_batch.shape)==4 and y_batch.shape[3]==2, "Invalid y_batch shape (batchsize, height, width, 2)" assert len(x_batch.shape)==3 and x_batch.shape[3]==1, "Invalid y_batch shape (batchsize, height, width, 1)" y_height, y_width = y_batch.shape[1:3] x_height, x_width = x_batch.shape[1:3] if x_height != y_height or x_width != y_width: y_batch = sni.zoom(y_batch, [1, 1.*x_height/y_height, 1.*x_width/y_width, 1]) # if x_batch = x_post_fn(x_batch) if x_post_fn is not None else x_batch y_batch = y_post_fn(y_batch) if y_post_fn is not None else y_batch y_batch_Lab = np.concatenate([y_batch_L, y_batch_ab], axis = 3) y_batch_RGB = np.array([cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_Lab2RGB) for image in y_batch_Lab]) return y_batch_RGB
270c0b60646c0d16f8f8a4f3f2d5933bef369e3e
619
def get_mag_from_obs(h, e, d0=0): """gets the magnetic north components given the observatory components. Parameters __________ h: array_like the h component from the observatory e: array_like the e component from the observatory d0: float the declination baseline angle in radians Returns _______ tuple of array_like [0]: total h component as a float [1]: total d declination as a float """ mag_h = get_mag_h_from_obs(h, e) mag_d = get_mag_d_from_obs(h, e, d0) return (mag_h, mag_d)
27f4d538c3a9e13522f195bd9abb2683037ba72a
620
import subprocess def get_local_host(choice='IP'): """ choice: 'IP' or 'NAME' """ if choice == 'IP': cmd = 'hostname -i' else: cmd = 'hostname' out = subprocess.check_output(cmd.split()) if choice == 'hostname': return out.strip('\n') else: ip_tmp = out.strip('\n').strip() if ip_tmp and address_can_be_linked(ip_tmp): ip = ip_tmp else: ip = None ip_list = get_all_ips(None) for ip_tmp in ip_list: if address_can_be_linked(ip_tmp): ip = ip_tmp break return ip
ef7b21e6ae10c360759bdb11e9c80695f63ea31e
621
def set_cell(client, instance, colid, value, file_=None): """Set the value of one cell of a family table. Args: client (obj): creopyson Client. instance (str): Family Table instance name. colid (str): Column ID. value (depends on data type): Cell value. `file_` (str, optional): File name (usually an assembly). Defaults is currently active model. Returns: None """ data = { "instance": instance, "colid": colid, "value": value, } if file_ is not None: data["file"] = file_ else: active_file = client.file_get_active() if active_file: data["file"] = active_file["file"] return client._creoson_post("familytable", "set_cell", data)
b1617484a3a710046cda5daaf6bbe9b376f83418
622
def find_bounds(particles): """ Find the maximum and minimum bounds describing a set of particles. """ min_bound = np.array( [np.min(particles[:, 0]), np.min(particles[:, 1]), np.min(particles[:, 2])] ) max_bound = np.array( [np.max(particles[:, 0]), np.max(particles[:, 1]), np.max(particles[:, 2])] ) return max_bound, min_bound
2640ce6aa79cbe4392d2e044bddf46a94f6b76af
623
def get_tags_date(link, default_date=None): """Extract tags and date from the link.""" tags = ["links"] date = "" fltr = [ "Bookmarks Menu", "Bookmark Bar", "Personal Toolbar Folder", "Importierte Lesezeichen", "Bookmarks Toolbar", "Kein Label vorhanden", "Unsorted Bookmarks", "Unsortierte Lesezeichen", "Recently Bookmarked", "Recent Tags", ] for parent in link.parents: if parent.name == "dl": for sibling in parent.previous_siblings: if sibling.name == "h3": tags += sibling.get_text().split(">") datestr = ( sibling.get("add_date", None) or sibling.get("last_visit", None) or sibling.get("last_modified", None) or default_date ) date = convert_date(datestr) for sibling in parent.next_siblings: if sibling.name == "h3": tags += sibling.get_text().split(">") datestr = ( sibling.get("add_date", None) or sibling.get("last_visit", None) or sibling.get("last_modified", None) or default_date ) date = convert_date(datestr) break return ([standardize_tag(i) for i in tags if i not in fltr], date)
b9f28a1f2f819cdfcc794ce3dc507ff4df288906
624
from datetime import datetime def _is_future(time, time_ref=None): """ check if `time` is in future (w.r.t. `time_ref`, by default it is now) Parameters ---------- time : int or datetime the time to check (if int it's considered a timestamp, see :py:meth:`datetime.timestamp`) time_ref : int or datetime the time reference (if int it's considered a timestamp, see :py:meth:`datetime.timestamp`), if None use the present time (default: None) Returns ------- bool is in future or not """ time = _parse_time_from_input(time, "time") if time_ref is None: time_ref = datetime.now() else: time_ref = _parse_time_from_input(time_ref, "time_ref") return time > time_ref
ece5121ee0e49c77a260b117cb0f251a35aa289b
625
from datetime import datetime def create_and_train_model(x_learn, y_learn, model, n_cores): """General method to create and train model""" print(model.fit(x_learn, y_learn)) start_time = datetime.now() c_val = cross_val_score(model, x_learn, y_learn, cv=10, n_jobs=n_cores) end_time = datetime.now() print(type(model).__name__, "with n_jobs =", n_cores, "took:", (end_time.second - start_time.second), "seconds") print(type(model).__name__, "cross_val_score:", c_val.mean()) return model, c_val
babef20c893c39a09fe4a0e0f777b2ec326b694c
626
def cardidolizedimageurl(context, card, idolized, english_version=False): """ Returns an image URL for a card in the context of School Idol Contest """ prefix = 'english_' if english_version else '' if card.is_special or card.is_promo: idolized = True if idolized: if getattr(card, prefix + 'round_card_idolized_image'): return _imageurl(getattr(card, prefix + 'round_card_idolized_image'), context=context) if getattr(card, prefix + 'card_idolized_image'): return _imageurl(getattr(card, prefix + 'card_idolized_image'), context=context) return _imageurl('static/default-' + card.attribute + '.png', context=context) if getattr(card, prefix + 'round_card_image'): return _imageurl(getattr(card, prefix + 'round_card_image'), context=context) if getattr(card, prefix + 'card_image'): return _imageurl(getattr(card, prefix + 'card_image'), context=context) return _imageurl('static/default-' + card.attribute + '.png', context=context)
c69e1a4d998d632091fcf1d69a240d68386e0b21
627
def extract_simple_tip(e): """ """ emin = e.min() emax = e.max() indices = [nearest_index(emin), nearest_index(emax)] indices.sort() imin,imax = indices imax +=1 # for python style indexing return imin, imax
c3d215ee34caa733a83b8be54cc92f9071839bef
628
def parse_pipeline_config(pipeline_config_file): """Returns pipeline config and meta architecture name.""" with tf.gfile.GFile(pipeline_config_file, 'r') as config_file: config_str = config_file.read() pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() text_format.Merge(config_str, pipeline_config) meta_arch = pipeline_config.model.WhichOneof('model') return pipeline_config, meta_arch
4e7047c2e7b195bce8cadf83fa19e1b7c1cb16ca
629
import math def get_pwl(time_series, pwl_epsilon): """ This is a wrapper function for getting a bounded piecewise linear approximation of the data """ if not isinstance(pwl_epsilon, (int, float)): raise TypeError("pwl_epsilon must be a numeric type!") if not (isinstance(time_series, pd.DataFrame) or isinstance(time_series, list)): raise TypeError("The argument time_series must be a Pandas Dataframe, or a list!") if isinstance(time_series, pd.DataFrame): # just how hakimis algorithm wants the data polyline_from_data = list(zip(time_series.index.tolist(), time_series[construct_variable_name(1)].values.tolist())) else: polyline_from_data = time_series if math.isclose(pwl_epsilon, 0.0): return polyline_from_data else: approx_grap = create_approximation_graph(timeseries=polyline_from_data, epsilon=pwl_epsilon) shortest_path_gen =\ nx.all_shortest_paths(approx_grap, tuple(polyline_from_data[0]), tuple(polyline_from_data[-1])) # this avoids generating all paths, since we take just the first one (saves memory and time) return next(shortest_path_gen)
431d83e59e4f3faa3cbe7f21106690f030330529
630
def to_array(string): """Converts a string to an array relative to its spaces. Args: string (str): The string to convert into array Returns: str: New array """ try: new_array = string.split(" ") # Convert the string into array while "" in new_array: # Check if the array contains empty strings new_array.remove("") return new_array except: print("The parameter string is not a str") return string
7ee87a2b245a71666939e9ce2e23dc07fcaa0153
631
def convert_atoms_to_pdb_molecules(atoms: t.List[Atom]) -> t.List[str]: """ This function converts the atom list into pdb blocks. Parameters ---------- atoms : t.List[Atom] List of atoms Returns ------- t.List[str] pdb strings of that molecule """ # 1) GROUP ATOMS BT MOLECULES molecules = defaultdict(list) for a in atoms: molecules[a.resi].append(a) # 2) CONSTUCT PDB BLOCKS #ref: https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html pdb_format = "ATOM {:>5d} {:<2}{:1}{:>3} {:1}{:>3d}{:1} {:>7.3f}{:>7.3f}{:>7.3f}{:>5}{:>6}{:<3}{:>2} {:>2d}" dummy_occupancy= dummy_bfactor= dummy_charge = 0.0 dummy_alt_location= dummy_chain= dummy_insertion_code= dummy_segment = "" pdb_molecules: t.List[str] = [] for m_ID in sorted(molecules): m = molecules[m_ID] atoms_as_lines: t.List[str] = [] for a in sorted(m, key= lambda x: x.id): atoms_as_lines.append(pdb_format.format(int(a.id), a.name, dummy_alt_location, a.resn, dummy_chain, int(a.resi), dummy_insertion_code, a.x, a.y, a.z, dummy_occupancy, dummy_bfactor, dummy_segment, a.elem, int(dummy_charge))) # Sort by Id: => convert str up do first space to int #atoms_as_lines = sorted(atoms_as_lines, key=lambda x: int(x[:x.index('\t')])) molecule_as_str = "TITLE "+a.resn+"\n"+'\n'.join(atoms_as_lines) + '\nEND' # molecule_as_str = molecule_as_str.replace('\t',' ') pdb_molecules.append(molecule_as_str) print(pdb_molecules[-1]) return pdb_molecules
3f073818b92ce1db7b2e8c4aaf0724afb546beba
632
def unvoiced_features(sig,fs,vcont,sil_cont): """ Unvoiced segment features. Requires voiced and silence/pauses segment detection. """ #Unvoiced features uv_seg,_,_ = unvoiced_seg(sig,fs,vcont,sil_cont) lunvoiced = [] for uv in uv_seg: lunvoiced.append(len(uv)/fs)#Length of unvoiced segment uunvoiced = np.mean(lunvoiced)#Average length # sunvoiced = np.std(lunvoiced)#variation of length uvrate = (len(uv_seg)*fs)/len(sig)#Unvoiced segments per second numuv = len(uv_seg) rPVI,nPVI = get_pvi(lunvoiced) pGPI,dGPI = get_gpi(lunvoiced,len(sig)/fs) # feats_unvoiced = np.hstack([numuv,uvrate,uunvoiced,rPVI,nPVI,pGPI,dGPI]) feats_unvoiced = {'Unvoiced_counts':numuv, 'Unvoiced_rate':uvrate, 'Unvoiced_duration':uunvoiced, 'Unvoiced_rPVI':rPVI, 'Unvoiced_nPVI':nPVI, 'Unvoiced_dGPI':dGPI} return feats_unvoiced
bb6f5fc0c939a7d838140b7a7eadda2ff32e5592
633
def civic_methods(method001, method002, method003): """Create test fixture for methods.""" return [method001, method002, method003]
63913e2cfe866c65d9a1e7d5d3ba2e081b8e12f6
634
def _generate_tags(encoding_type, number_labels=4): """ :param encoding_type: 例如BIOES, BMES, BIO等 :param number_labels: 多少个label,大于1 :return: """ vocab = {} for i in range(number_labels): label = str(i) for tag in encoding_type: if tag == 'O': if tag not in vocab: vocab['O'] = len(vocab) + 1 continue vocab['{}-{}'.format(tag, label)] = len(vocab) + 1 # 其实表达的是这个的count return vocab
36125c684be9dc1d0abc522d536276be7e3d7328
635
def delete_link_tag(api_client, link_id, tag_key, **kwargs): # noqa: E501 """delete_link_tag # noqa: E501 Delete link tag by key This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> response = await api.delete_link_tag(client, link_id, tag_key, async_req=True) :param link_id str: str of link. e.g. lnk0 :param tag_key str: key of tag :param async_req bool: execute request asynchronously :param bool sorted: Sort resources :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: APIResponse or awaitable if async """ local_var_params = locals() request_params = [] # noqa: E501 collection_formats = {} path_params = {"link_id": link_id, "tag_key": tag_key} query_params = [] for param in [p for p in request_params if local_var_params.get(p) is not None]: query_params.append((param, local_var_params[param])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params["Accept"] = api_client.select_header_accept( ["application/json"] ) # noqa: E501 # Authentication setting auth_settings = ["ApiTokenAuth", "basicAuth"] # noqa: E501 return api_client.call_api( "/links/{link_id}/tags/{tag_key}", "DELETE", path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type="object", # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get("async_req"), _return_http_data_only=local_var_params.get( "_return_http_data_only" ), # noqa: E501 _preload_content=local_var_params.get("_preload_content", True), _request_timeout=local_var_params.get("_request_timeout"), collection_formats=collection_formats, )
5e643eaa02b50a733030ac35da5821a494ee2517
636
def infect_graph(g, title): """ Function to infect the graph using SI model. Parameters: g: Graph Returns: G : Infected graph t : Time of diffusion of each node """ G=g # Model selection - diffusion time model = ep.SIModel(G) nos = 1/len(G) # Model Configuration config = mc.Configuration() config.add_model_parameter('beta', 0.03) config.add_model_parameter("fraction_infected", 0.05) model.set_initial_status(config) # Simulation execution iterations = model.iteration_bunch(200) diffusionTime={} for i in range(1,len(G)): diffusionTime[i]=-1 for i in iterations: for j in i['status']: if(i['status'][j]==1): diffusionTime[j]=i['iteration'] nodeColor = [] source_nodes = [] for i in G.nodes(): if iterations[0]["status"][i]==1: nodeColor.append('red') source_nodes.append(i) else: nodeColor.append('blue') sorted_values = sorted(diffusionTime.values()) # Sort the values sorted_dict = {} for i in sorted_values: for k in diffusionTime.keys(): if diffusionTime[k] == i: sorted_dict[k] = diffusionTime[k] plt.clf() nx.draw(G, node_color=nodeColor, with_labels=True) plt.title('Intial Phase') plt.savefig(f'./plots/{title}_Initial-infect.png') plt.clf() nx.draw(G, node_color=list(x for i,x in diffusionTime.items()),cmap=plt.cm.Reds, with_labels=True) plt.title('Final Phase') plt.savefig(f'./plots/{title}_Final-infect.png') return (G, sorted_dict, source_nodes)
b0c3f5d2518083cabf4de4214acf65027fc623f5
637
def main_func_SHORT(): """ Func. called by the main T """ sleep(SHORT) return True
de5cffd80a74a048f0016e5912dd15b93f0a4dd6
638
from typing import Tuple import math def split_train_test(X: pd.DataFrame, y: pd.Series, train_proportion: float = .75) \ -> Tuple[pd.DataFrame, pd.Series, pd.DataFrame, pd.Series]: """ Randomly split given sample to a training- and testing sample Parameters ---------- X : DataFrame of shape (n_samples, n_features) Data frame of samples and feature values. y : Series of shape (n_samples, ) Responses corresponding samples in data frame. train_proportion: Fraction of samples to be split as training set Returns ------- train_X : DataFrame of shape (ceil(train_proportion * n_samples), n_features) Design matrix of train set train_y : Series of shape (ceil(train_proportion * n_samples), ) Responses of training samples test_X : DataFrame of shape (floor((1-train_proportion) * n_samples), n_features) Design matrix of test set test_y : Series of shape (floor((1-train_proportion) * n_samples), ) Responses of test samples """ no_of_train_rows = math.ceil(train_proportion * X.shape[0]) X : pd.DataFrame = pd.DataFrame.join(X,y) train_data = X.sample(n=no_of_train_rows, axis=0) test_data = X.loc[X.index.difference(train_data.index), ] train_y = train_data[y.name] test_y = test_data[y.name] train_data.drop(columns=y.name,inplace=True) test_data.drop(columns=y.name,inplace=True) # print(train_data.shape) # print(test_data.shape) # print(train_y.shape) # print(test_y.shape) return train_data, train_y, test_data, test_y
2261e72821ab55ac12f4f0b88511ce1f6d9d8d5f
639
def s2sdd(s): """ Converts a 4-port single-ended S-parameter matrix to a 2-port differential mode representation. Reference: https://www.aesa-cortaillod.com/fileadmin/documents/knowledge/AN_150421_E_Single_ended_S_Parameters.pdf """ sdd = np.zeros((2, 2), dtype=np.complex128) sdd[0, 0] = 0.5*(s[0, 0] - s[0, 2] - s[2, 0] + s[2, 2]) sdd[0, 1] = 0.5*(s[0, 1] - s[0, 3] - s[2, 1] + s[2, 3]) sdd[1, 0] = 0.5*(s[1, 0] - s[1, 2] - s[3, 0] + s[3, 2]) sdd[1, 1] = 0.5*(s[1, 1] - s[1, 3] - s[3, 1] + s[3, 3]) return sdd
0d29d2d248a49dd27bab202abd84014aab799907
640
def plot_gdf(gdf, map_f=None, maxitems=-1, style_func_args={}, popup_features=[], tiles='cartodbpositron', zoom=6, geom_col='geometry', control_scale=True): """ :param gdf: GeoDataFrame GeoDataFrame to visualize. :param map_f: folium.Map `folium.Map` object where the GeoDataFrame `gdf` will be plotted. If `None`, a new map will be created. :param maxitems: int maximum number of tiles to plot. If `-1`, all tiles will be plotted. :param style_func_args: dict dictionary to pass the following style parameters (keys) to the GeoJson style function of the polygons: 'weight', 'color', 'opacity', 'fillColor', 'fillOpacity', 'radius' :param popup_features: list when clicking on a tile polygon, a popup window displaying the information in the columns of `gdf` listed in `popup_features` will appear. :param tiles: str folium's `tiles` parameter. :param zoom: int initial zoom. :param geom_col: str name of the geometry column of `gdf`. :param control_scale: bool if `True`, add scale information in the bottom left corner of the visualization. The default is `True`. Returns ------- `folium.Map` object with the plotted GeoDataFrame. """ if map_f is None: # initialise map lon, lat = np.mean(np.array(list(gdf[geom_col].apply(utils.get_geom_centroid).values)), axis=0) map_f = folium.Map(location=[lat, lon], tiles=tiles, zoom_start=zoom, control_scale=control_scale) count = 0 for k in gdf.index: g = gdf.loc[k] if type(g[geom_col]) == gpd.geoseries.GeoSeries: for i in range(len(g[geom_col])): map_f = add_to_map(g[geom_col].iloc[i], g.iloc[i], map_f, popup_features=popup_features, style_func_args=style_func_args) else: map_f = add_to_map(g[geom_col], g, map_f, popup_features=popup_features, style_func_args=style_func_args) count += 1 if count == maxitems: break return map_f
80c4002ca82e849a1701c00ead54671729009670
641
def set_catflap_cat_inside(request, catflap_uuid): """GET so it can be used as an email link.""" catflap = CatFlap.objects.get(uuid=catflap_uuid) if not catflap.cat_inside: catflap.cat_inside = True catflap.save() track_manual_intervention(catflap, cat_inside=True) return redirect_to_status_page(request, catflap_uuid)
cb7feabe83ef69598aff9fe6ba9867996312c892
642
import ctypes def feature_list(): """Check the library for compile-time features. The list of features are maintained in libinfo.h and libinfo.cc Returns ------- list List of :class:`.Feature` objects """ lib_features_c_array = ctypes.POINTER(Feature)() lib_features_size = ctypes.c_size_t() check_call(_LIB.MXLibInfoFeatures(ctypes.byref(lib_features_c_array), ctypes.byref(lib_features_size))) features = [lib_features_c_array[i] for i in range(lib_features_size.value)] return features
ec20748fb4aae07898949822b3a7ba9835f4ed57
643
def _symm_herm(C): """To get rid of NaNs produced by _scalar2array, symmetrize operators where C_ijkl = C_jilk*""" nans = np.isnan(C) C[nans] = np.einsum('jilk', C)[nans].conj() return C
bd2e46b3ed751eb380aedd8d280294177fb6b3fd
644
def cat(self, dim=0): """Map of 'cat' pytorch method.""" x = self dim = _dim_explicit(x[0].shape, dim) return P.concat(x, dim)
9eba4de4941ac437e82f98647e0c6dc014b1578f
645
import re def _name_xform(o): """transform names to lowercase, without symbols (except underscore) Any chars other than alphanumeric are converted to an underscore """ return re.sub("\W", "_", o.lower())
8ea563f805493d8885c143d9c2e2e54447ef19e8
646
def runner(app): """创建一个运行器,用于调用应用注册的 Click 命令""" return app.test_cli_runner()
f9ffb3040045e0789a5686eb9a80f3fdef126a9d
647
def create_activation_cache(model): """Creates an activation cache for the tensors of a model.""" input_quantizer = quantized_relu(8, 0) output_cache = {} # If using a Sequential model, the input layer is hidden. Therefore, add the # input quantization to the cache if the first layer is not an input layer if not isinstance(model.layers[0], InputLayer): output_cache[model.layers[0].input.experimental_ref()] = input_quantizer # cache graph tensors' activations for l in model.layers: output_cache[l.output.experimental_ref()] = l if isinstance(l, QActivation) or isinstance(l, QAdaptiveActivation) : output_cache[l.output.experimental_ref()] = l.quantizer elif isinstance(l, InputLayer): # assume the input is 8-bit positive value output_cache[l.output.experimental_ref()] = input_quantizer elif l.__class__.__name__ in [ "QDense", "QConv2D", "QConv1D", "QDepthwiseConv2D" ]: output_cache[l.output.experimental_ref()] = l.activation else: if isinstance(l.input, list): # right now, we just get the first one - we assume this is the leading # one. all_q = [ output_cache.get(l.input[i].experimental_ref()) for i in range(len(l.input)) ] q = all_q[0] else: q = output_cache.get(l.input.experimental_ref(), None) output_cache[l.output.experimental_ref()] = q if q is None: raise ValueError("Unknown operation in {}".format(l.name)) return output_cache
a35c11e95831e3aa51fadce75577e97bd150cc1e
648
def feature_scatterplot(fset_path, features_to_plot): """Create scatter plot of feature set. Parameters ---------- fset_path : str Path to feature set to be plotted. features_to_plot : list of str List of feature names to be plotted. Returns ------- (str, str) Returns (docs_json, render_items) json for the desired plot. """ fset, data = featurize.load_featureset(fset_path) fset = fset[features_to_plot] colors = cycle(palette[5]) plots = np.array([[figure(width=300, height=200) for j in range(len(features_to_plot))] for i in range(len(features_to_plot))]) for (j, i), p in np.ndenumerate(plots): if (j == i == 0): p.title.text = "Scatterplot matrix" p.circle(fset.values[:,i], fset.values[:,j], color=next(colors)) p.xaxis.minor_tick_line_color = None p.yaxis.minor_tick_line_color = None p.ygrid[0].ticker.desired_num_ticks = 2 p.xgrid[0].ticker.desired_num_ticks = 4 p.outline_line_color = None p.axis.visible = None plot = gridplot(plots.tolist(), ncol=len(features_to_plot), mergetools=True, responsive=True, title="Test") # Convert plot to json objects necessary for rendering with bokeh on the # frontend render_items = [{'docid': plot._id, 'elementid': make_id()}] doc = Document() doc.add_root(plot) docs_json_inner = doc.to_json() docs_json = {render_items[0]['docid']: docs_json_inner} docs_json = serialize_json(docs_json) render_items = serialize_json(render_items) return docs_json, render_items
e8e0a545b992042eb334554042c9efa68a4f6a1f
649
def model1(v, va, vb, ka, Wa, Wb, pa): """ A translation of the equation from Sandström's Dynamic NMR Spectroscopy, p. 14, for the uncoupled 2-site exchange simulation. v: frequency whose amplitude is to be calculated va, vb: frequencies of a and b singlets (slow exchange limit) (va > vb) ka: rate constant for state A--> state B pa: fraction of population in state Adv: frequency difference (va - vb) between a and b singlets (slow exchange) T2a, T2b: T2 (transverse relaxation time) for each nuclei returns: amplitude at frequency v """ pi = np.pi pb = 1 - pa tau = pb / ka dv = va - vb Dv = (va + vb) / 2 - v T2a = 1 / (pi * Wa) T2b = 1 / (pi * Wb) P = tau * ((1 / (T2a * T2b)) - 4 * (pi ** 2) * (Dv ** 2) + (pi ** 2) * (dv ** 2)) P += ((pa / T2a) + (pb / T2b)) Q = tau * (2 * pi * Dv - pi * dv * (pa - pb)) R = 2 * pi * Dv * (1 + tau * ((1 / T2a) + (1 / T2b))) R += pi * dv * tau * ((1 / T2b) - (1 / T2a)) + pi * dv * (pa - pb) I = (P * (1 + tau * ((pb / T2a) + (pa / T2b))) + Q * R) / (P ** 2 + R ** 2) return I
c1110cbd16bfcd942a086e8d878bfe3117bf4f99
650
def calculate_laminar_flame_speed( initial_temperature, initial_pressure, species_dict, mechanism, phase_specification="", unit_registry=_U ): """ This function uses cantera to calculate the laminar flame speed of a given gas mixture. Parameters ---------- initial_temperature : pint.Quantity Initial temperature of gas mixture initial_pressure : pint.Quantity Initial pressure of gas mixture species_dict : dict Dictionary with species names (all caps) as keys and moles as values mechanism : str String of mechanism to use (e.g. "gri30.cti") phase_specification : str Phase specification for cantera solution unit_registry : pint.UnitRegistry Unit registry for managing units to prevent conflicts with parent unit registry Returns ------- pint.Quantity Laminar flame speed in m/s as a pint quantity """ gas = ct.Solution(mechanism, phase_specification) quant = unit_registry.Quantity tools.check_pint_quantity( initial_pressure, "pressure", ensure_positive=True ) tools.check_pint_quantity( initial_temperature, "temperature", ensure_positive=True ) # ensure species dict isn't empty if len(species_dict) == 0: raise ValueError("Empty species dictionary") # ensure all species are in the mechanism file bad_species = "" good_species = gas.species_names for species in species_dict: if species not in good_species: bad_species += species + "\n" if len(bad_species) > 0: raise ValueError("Species not in mechanism:\n" + bad_species) gas.TPX = ( initial_temperature.to("K").magnitude, initial_pressure.to("Pa").magnitude, species_dict ) # find laminar flame speed flame = ct.FreeFlame(gas) flame.set_refine_criteria(ratio=3, slope=0.1, curve=0.1) flame.solve(loglevel=0) return quant(flame.u[0], "m/s")
cdceb35dd5313d32e5b7cdfd4af2b842d2019587
651
def extrapolate_coverage(lines_w_status): """ Given the following input: >>> lines_w_status = [ (1, True), (4, True), (7, False), (9, False), ] Return expanded lines with their extrapolated line status. >>> extrapolate_coverage(lines_w_status) == [ (1, True), (2, True), (3, True), (4, True), (5, None), (6, None), (7, False), (8, False), (9, False), ] """ lines = [] prev_lineno = 0 prev_status = True for lineno, status in lines_w_status: while (lineno - prev_lineno) > 1: prev_lineno += 1 if prev_status is status: lines.append((prev_lineno, status)) else: lines.append((prev_lineno, None)) lines.append((lineno, status)) prev_lineno = lineno prev_status = status return lines
e7685359f570ae979f2421c3a64513409b9df352
652
def get_image_features(filename): """ Param: Path to image Returns: Desired features of image in the form of a dictionary (key = feature_name, value = feature_value) """ array, metadata = nrrd.read(filename) return {k: f(array, metadata, filename) for k, f in image_feature_functions.items()}
0f991ebed175f0f41e30654cb4665dea09a1053d
653
def get_DCT_transform_matrix(N): """ Return the normalised N-by-N discrete cosine transform (DCT) matrix. Applying the returned transform matrix to a vector x: D.dot(x) yields the DCT of x. Applying the returned transform matrix to a matrix A: D.dot(A) applies the DCT to the columns of A. Taking D.dot(A.dot(D.T)) applies the DCT to both columns and rows, i.e. a full 2D separable DCT transform. The inverse transform (the 1D IDCT) is D.T. Parameters ---------- N : int The size of the DCT transform matrix to return. Returns ------- D : ndarray The DCT transform matrix. Notes ----- The returned DCT matrix normalised such that is consitutes a orthonormal transform as given by equations (2.119) and (2.120) in [1]_. References ---------- .. [1] A.N. Akansu, R.A. Haddad, and P.R. Haddad, *Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets*, Academic Press, 2000. Examples -------- For example, get a 5-by-5 DCT matrix >>> import numpy as np >>> from magni.imaging.dictionaries import get_DCT_transform_matrix >>> D = get_DCT_transform_matrix(5) >>> np.round(np.abs(D), 4) array([[ 0.4472, 0.4472, 0.4472, 0.4472, 0.4472], [ 0.6015, 0.3717, 0. , 0.3717, 0.6015], [ 0.5117, 0.1954, 0.6325, 0.1954, 0.5117], [ 0.3717, 0.6015, 0. , 0.6015, 0.3717], [ 0.1954, 0.5117, 0.6325, 0.5117, 0.1954]]) and apply the 2D DCT transform to a dummy image >>> np.random.seed(6021) >>> img = np.random.randn(5, 5) >>> img_dct = D.dot(img.dot(D.T)) >>> np.round(img_dct, 4) array([[-0.5247, -0.0225, 0.9098, 0.369 , -0.477 ], [ 1.7309, -0.4142, 1.9455, -0.6726, -1.3676], [ 0.6987, 0.5355, 0.7213, -0.8498, -0.1023], [ 0.0078, -0.0545, 0.3649, -1.4694, 1.732 ], [-1.5864, 0.156 , 0.8932, -0.8091, 0.5056]]) """ @_decorate_validation def validate_input(): _numeric('N', 'integer', range_='[1;inf)') validate_input() nn, rr = np.meshgrid(*map(np.arange, (N, N))) D = np.cos((2 * nn + 1) * rr * np.pi / (2 * N)) D[0, :] /= np.sqrt(N) D[1:, :] /= np.sqrt(N/2) return D
87314407c0836892a79747ea01aa9c369224198b
654
def get_reduce_nodes(name, nodes): """ Get nodes that combine the reduction variable with a sentinel variable. Recognizes the first node that combines the reduction variable with another variable. """ reduce_nodes = None for i, stmt in enumerate(nodes): lhs = stmt.target.name rhs = stmt.value if isinstance(stmt.value, ir.Expr): in_vars = set(v.name for v in stmt.value.list_vars()) if name in in_vars: args = get_expr_args(stmt.value) args.remove(name) assert len(args) == 1 replace_vars_inner(stmt.value, {args[0]: ir.Var(stmt.target.scope, name+"#init", stmt.target.loc)}) reduce_nodes = nodes[i:] break; assert reduce_nodes, "Invalid reduction format" return reduce_nodes
8438829236f9c45986d1e1394cd0c6864caec73f
655
def extract_mesh_descriptor_id(descriptor_id_str: str) -> int: """ Converts descriptor ID strings (e.g. 'D000016') into a number ID (e.g. 16). """ if len(descriptor_id_str) == 0: raise Exception("Empty descriptor ID") if descriptor_id_str[0] != "D": raise Exception("Expected descriptor ID to start with 'D', {}".format(descriptor_id_str)) return int(descriptor_id_str[1:])
9f013eadee9a149b9617e4a1c058bbe67c6dd8ba
656
def process_sources(sources_list): """ This function processes the sources result :param sources_list: A list of dictionaries :return: A list of source objects """ sources_results = [] for sources_item in sources_list: id = sources_item.get('id') name = sources_item.get('name') description = sources_item.get('description') url = sources_item.get('url') category = sources_item.get('category') language = sources_item.get('language') country = sources_item.get('country') print(sources_item) sources_object = Sources(id, name, description, url) sources_results.append(sources_object) return sources_results
7742a721802c66daf525520969f5831f9a497137
657
import math def encrypt(message_text, key): """Method Defined for ENCRYPTION of a Simple \ String message into a Cipher Text Using \ 2x2 Hill Cipher Technique \nPARAMETERS\n message_text: string to be encrypted key: string key for encryption with length <= 4 \nRETURNS\n cipher_text: encrypted Message string """ # for 2x2 Hill Cipher length of key must be <= 4 # print("Warning: All Spaces with be lost!") cipher_text = "" key_matrix = None if len(key) <= 4: key_matrix = string_to_Matrix_Z26(key, 2, 2) else: print("Key Length must be <= 4 in 2x2 Hill Cipher") return pairs = math.ceil((len(message_text)/2)) matrix = string_to_Matrix_Z26(message_text, 2, pairs) key_inverse = matrix_inverse_Z26(key_matrix) if type(key_inverse) == type(None): print("NOTE: The provided Key is NOT Invertible,") print("To avoid failure while decryption,") print("Try again with an invertible Key") return None for i in range(pairs): result_char = (key_matrix*matrix[:, i]) % 26 cipher_text += ENGLISH_ALPHABETS[ result_char[0, 0] ] cipher_text += ENGLISH_ALPHABETS[ result_char[1, 0] ] return cipher_text
2b36ba888980021cc69bffb1316b4e352bd026e8
658
import torch def resnet101(pretrained=False, num_groups=None, weight_std=False, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], num_groups=num_groups, weight_std=weight_std, **kwargs) if pretrained: model_dict = model.state_dict() if num_groups and weight_std: pretrained_dict = torch.load('data/R-101-GN-WS.pth.tar') overlap_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict} assert len(overlap_dict) == 312 elif not num_groups and not weight_std: pretrained_dict = model_zoo.load_url(model_urls['resnet101']) overlap_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} else: raise ValueError('Currently only support BN or GN+WS') model_dict.update(overlap_dict) model.load_state_dict(model_dict) return model
da4213b280eeef56cf1bdce7bfd05cfc0b8cde7d
659
def cron(cronline, venusian_category='irc3.plugins.cron'): """main decorator""" def wrapper(func): def callback(context, name, ob): obj = context.context crons = obj.get_plugin(Crons) if info.scope == 'class': callback = getattr( obj.get_plugin(ob), func.__name__) else: callback = irc3.utils.wraps_with_context(func, obj) crons.add_cron(cronline, callback) info = venusian.attach(func, callback, category=venusian_category) return func return wrapper
9ffe20fd3e803b1260577ff38122b4912ab4d69a
660
def oauth_type(): """Check if Slack or another OAuth has been configured""" if "OAUTH_TYPE" in current_app.config: return current_app.config["OAUTH_TYPE"].lower() else: return None
d9fe8f77fd502890becd44cbaf802b2e94598a6f
661
import re import logging import os def _get_scenarios(rule_dir, scripts, scenarios_regex, benchmark_cpes): """ Returns only valid scenario files, rest is ignored (is not meant to be executed directly. """ if scenarios_regex is not None: scenarios_pattern = re.compile(scenarios_regex) scenarios = [] for script in scripts: if scenarios_regex is not None: if scenarios_pattern.match(script) is None: logging.debug("Skipping script %s - it did not match --scenarios regex" % script) continue script_context = _get_script_context(script) if script_context is not None: script_params = _parse_parameters(os.path.join(rule_dir, script)) if common.matches_platform(script_params["platform"], benchmark_cpes): scenarios += [Scenario(script, script_context, script_params)] else: logging.info("Script %s is not applicable on given platform" % script) return scenarios
5f91798103461c98ea53cd9ddf1ac25b042f97ce
662
import random import string def create_categories(): """Create a group of random strings for each column in the table.""" return [ [ ''.join(random.choices(string.ascii_lowercase, k=random.randint(STR_MIN, STR_MAX))) for _i in range(CAT_COUNT) ] for _j in range(COL_COUNT) ]
8552be3fb45091f404d396f452dd37824a0cae23
663
import os def get_asp_output_folder(project_name): """ :type project_name: string """ loc = PROJECT_RESULTS_LOC + project_name + '/' + PROJECT_ASP_OUTPUT_FOLDER mkdir_p(loc) return os.path.abspath(loc)
f9a1a7eec875bf77b0dc414bcda0205010f09c3b
664
from typing import Union from typing import Tuple from typing import List from typing import Any def _compute_comm_classes( A: Union[np.ndarray, spmatrix] ) -> Tuple[List[List[Any]], bool]: """Compute communication classes for a graph given by A.""" di_graph = ( nx.from_scipy_sparse_matrix(A, create_using=nx.DiGraph) if issparse(A) else nx.from_numpy_array(A, create_using=nx.DiGraph) ) nx.strongly_connected_components(di_graph) comm_classes = sorted( nx.strongly_connected_components(di_graph), key=len, reverse=True ) is_irreducible = len(comm_classes) == 1 return comm_classes, is_irreducible
15a7025d10855a4644be60d52dba273c526c2b43
665
import typing def parse_lines(lines: typing.List[str], units: Units, use_na: bool = True) -> typing.List[typing.Dict[str, typing.Any]]: """ Returns a list of parsed line dictionaries """ parsed_lines = [] prob = '' while lines: raw_line = lines[0].strip() line = core.sanitize_line(raw_line) # Remove prob from the beginning of a line if line.startswith('PROB'): # Add standalone prob to next line if len(line) == 6: prob = line line = '' # Add to current line elif len(line) > 6: prob = line[:6] line = line[6:].strip() if line: parsed_line = (parse_na_line if use_na else parse_in_line)(line, units) for key in ('start_time', 'end_time'): parsed_line[key] = core.make_timestamp(parsed_line[key]) parsed_line['probability'] = core.make_number(prob[4:]) parsed_line['raw'] = raw_line parsed_line['sanitized'] = prob + ' ' + line if prob else line prob = '' parsed_lines.append(parsed_line) lines.pop(0) return parsed_lines
356b3c4d80a462643ab6c7747d4f1174202129be
666
import random def rand_cutout(np_img, pcts=(0.05, 0.4), depth=(1., 0.), max_k=1): """Cut out from image, and edges of rectangles are smooth. Returns: applied image, cut mask """ cut = np.ones(np_img.shape[:2]) k = random.randint(1, max_k) for _ in range(k): d = random.random() * depth[0] + depth[1] hill = rand_solid_hill((np_img.shape[1], np_img.shape[0]), pcts=pcts) cut = cut * (1 - d * hill) return np_img * cut[..., np.newaxis], (cut < 0.9).astype(np.int8)
fd5b40138314827c3ff69bb571f30453049c073b
667
from typing import List def create_content_list(contents: List[str]) -> str: """Format list of string into markdown list Args: contents: (List[string]), list of string to be formatted Returns: String """ return '\n'.join( [template.LIST_TEMPLATE.format( level='', content=item ) for item in contents])
4080d7540def0bd0199f380a787b49eafc512b6f
668
from typing import Optional import requests import logging def convert(key: str, content: str, output_format: OWLFormat=OWLFormat.func) -> Optional[str]: """ Convert content into output_format :param key: Key of content for error reporting :param content: OWL representation :param output_format: target format :return: Converted information if successful """ try: resp = requests.post('https://www.ldf.fi/service/owl-converter/', data=dict(onto=content, to=output_format.name)) except ConnectionError as e: logging.getLogger().error(f"{key}: {str(e)}") return None if resp.ok: return resp.text logging.getLogger().error(f"{key}: {str(resp)}")
c350a00198489d6224693cf528fb952283c6fc27
669
def _post_single_image(client: Imgur, image_path, title, description=None): """ Limit to 1250 POST requests per hour and 12500 per day """ image = client.image_upload(image_path, title, description) # album_id = client.album_get('Family Photos')['response']['data']['id'] # client.album_add(album_id, image['response']['data']['id']) return image['response']['data']['link']
22b1c5996986616515e8edcfcd22d9c82df1d27b
670
def load_data(path, start=0, end=99999, step=1, returnNames = False): """Load images into a list #Arguments paths: List of strings representing paths to folders containing images that must be named as numbers start,end,step: Refers to the number of name of images. Only loads images with in this range. """ imgs = load_imgs(path,start,end,step,returnNames = returnNames) return imgs
7edaff4bc977a63c22f140b74a86bc9c6fdae604
671
def animated_1d_plot(probe_data_dnf: np.ndarray, probe_data_input1: np.ndarray, probe_data_input2: np.ndarray, interval: ty.Optional[int] = 30) -> None: """Generates an animated plot for examples in the DNF regimes tutorial. Parameters ---------- probe_data_dnf : numpy.ndarray probe data of the DNF probe_data_input1 : numpy.ndarray probe data of the first spiking input probe_data_input2 : numpy.ndarray probe data of the second spiking input interval : int interval to use in matplotlib.animation.FuncAnimation """ probe_data_input = probe_data_input1 + probe_data_input2 probe_data_input = probe_data_input.astype(np.float) probe_data_dnf = probe_data_dnf.astype(np.float) probe_data_input = np.transpose(probe_data_input) probe_data_dnf = np.transpose(probe_data_dnf) num_neurons = np.size(probe_data_input, axis=1) num_time_steps = np.size(probe_data_dnf, axis=0) input_spike_rates = compute_spike_rates(probe_data_input) dnf_spike_rates = compute_spike_rates(probe_data_dnf) fig, ax = plt.subplots(2, 1, figsize=(10, 5)) line0, = ax[0].plot(np.zeros((num_neurons,)), 'bo-') line1, = ax[1].plot(np.zeros((num_neurons,)), 'ro-') im = [line0, line1] ax[0].set_xlabel("") ax[1].set_xlabel("Input neuron idx") ax[0].set_ylabel("Input spike rate") ax[1].set_ylabel("DNF spike rate") ax[0].set_xticks([]) ax[1].set_xticks([0, num_neurons - 1]) ax[0].set_yticks([0, 1]) ax[1].set_yticks([0, 1]) ax[0].set_xlim(-1, num_neurons) ax[1].set_xlim(-1, num_neurons) offset = 0.1 ax[0].set_ylim(np.min(input_spike_rates) - offset, np.max(input_spike_rates) + offset) ax[1].set_ylim(np.min(dnf_spike_rates) - offset, np.max(dnf_spike_rates) + offset) plt.tight_layout() def animate(i: int) -> ty.List: x = range(num_neurons) im[0].set_data(x, input_spike_rates[i, :]) im[1].set_data(x, dnf_spike_rates[i, :]) return im anim = animation.FuncAnimation(fig, animate, frames=num_time_steps, interval=interval, blit=True) html = display.HTML(anim.to_jshtml()) display.display(html) plt.close()
8ec34c6772b728daeb429a2ecf4af52ab673bc96
672
def create_tendencies(params, return_inner_products=False, return_qgtensor=False): """Function to handle the inner products and tendencies tensors construction. Returns the tendencies function :math:`\\boldsymbol{f}` determining the model's ordinary differential equations: .. math:: \dot{\\boldsymbol{x}} = \\boldsymbol{f}(\\boldsymbol{x}) which is for the model's integration. It returns also the linearized tendencies :math:`\\boldsymbol{\mathrm{J}} \equiv \\boldsymbol{\mathrm{D}f} = \\frac{\partial \\boldsymbol{f}}{\partial \\boldsymbol{x}}` (Jacobian matrix) which are used by the tangent linear model: .. math :: \dot{\\boldsymbol{\delta x}} = \\boldsymbol{\mathrm{J}}(\\boldsymbol{x}) \cdot \\boldsymbol{\delta x} Parameters ---------- params: ~params.params.QgParams The parameters fully specifying the model configuration. return_inner_products: bool If True, return the inner products of the model. Default to False. return_qgtensor: bool If True, return the tendencies tensor of the model. Default to False. Returns ------- f: callable The numba-jitted tendencies function. Df: callable The numba-jitted linearized tendencies function. inner_products: (AtmosphericInnerProducts, OceanicInnerProducts) If `return_inner_products` is True, the inner products of the system. qgtensor: QgsTensor If `return_qgtensor` is True, the tendencies tensor of the system. """ if params.ablocks is not None: aip = AtmosphericInnerProducts(params) else: aip = None if params.goblocks is not None and params.gotemperature_params._name == "Oceanic Temperature": oip = OceanicInnerProducts(params) else: oip = None if aip is not None and oip is not None: aip.connect_to_ocean(oip) agotensor = QgsTensor(aip, oip) coo = agotensor.tensor.coords.T val = agotensor.tensor.data @njit def f(t, x): xx = np.concatenate((np.full((1,), 1.), x)) xr = sparse_mul3(coo, val, xx, xx) return xr[1:] jcoo = agotensor.jacobian_tensor.coords.T jval = agotensor.jacobian_tensor.data @njit def Df(t, x): xx = np.concatenate((np.full((1,), 1.), x)) mul_jac = sparse_mul2(jcoo, jval, xx) return mul_jac[1:, 1:] ret = list() ret.append(f) ret.append(Df) if return_inner_products: ret.append((aip, oip)) if return_qgtensor: ret.append(agotensor) return ret
2ca9f8f6c52b72070c8d339a6ec23d7dd52ea66c
673
import re def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: with open(versionfile_abs, "r") as fobj: for line in fobj: if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) except OSError: pass return keywords
ff70ee2690bc36aaf892653040996597750c52da
674
def script(text, interpreter="sh"): """Execute a shell script. The script is passed to the interpreter via stdin and the return code of the interpreter is returned.""" process = Popen(interpreter, stdin=PIPE) process.communicate(input=text) process.wait() return process.returncode
c4dcbe40f2868099bb8986b82753ab6e00c9a1c5
675
import tempfile from pathlib import Path import subprocess def generateImage(boardfilename, outputfilename, dpi, pcbdrawArgs, back): """ Generate board image for the diagram. Returns bounding box (top let, bottom right) active areas of the images in KiCAD native units. """ # For now, use PcbDraw as a process until we rewrite the tool so it can be # used as a library. Also note that we always generate SVG first as we can # easily read the active area from it. Then we manually convert it to PNG with tempfile.TemporaryDirectory() as d: tmpdir = Path(d) svgfilename = tmpdir / "img.svg" command = ["pcbdraw", "--shrink", "0"] if back: command.append("--back") if pcbdrawArgs["style"] is not None: command.extend(["--style", pcbdrawArgs["style"]]) if pcbdrawArgs["libs"] is not None: command.extend(["--libs", pcbdrawArgs["libs"]]) if pcbdrawArgs["remap"] is not None: command.extend(["--remap", pcbdrawArgs["remap"]]) if pcbdrawArgs["filter"] is not None: command.extend(["--filter", pcbdrawArgs["filter"]]) command.append(boardfilename) command.append(str(svgfilename)) subprocess.run(command, check=True) svgToBitmap(svgfilename, outputfilename, dpi) document = etree.parse(str(svgfilename)) tlx, tly, w, h = map(float, document.getroot().attrib["viewBox"].split()) return { "tl": (ki2mm(svg2ki(tlx)), ki2mm(svg2ki(tly))), "br": (ki2mm(svg2ki(tlx + w)), ki2mm(svg2ki(tly + h))) }
8f7e4f01583ad9c0dcdbf0783663e73923eda2a5
676
import warnings from typing import Optional def mask_to_image( mask: _T_input, batch_first: bool = False, color: Optional[str] = None, origin: str = 'lower' ) -> np.ndarray: """ Creates an image from a mask `Tensor` or `ndarray`. For more details of the output shape, see the tensorboardx docs Note: Clips mask to range [0, 1]. Any values outside of this range will be ignored. Args: mask: Mask to plot batch_first: If `True`, `signal` is expected to have shape `(batch [optional], frames, features)`. If `False`, the batch axis is assumed to be in the second position, i.e., `(frames, batch [optional], features)`. color: A color map name. The name is forwarded to `matplotlib.pyplot.cm.get_cmap` to get the color map. If `None`, grayscale is used. origin: Origin of the plot. Can be `'upper'` or `'lower'`. Returns: Colorized image with shape (color (1 or 3), features, frames) """ mask = to_numpy(mask, detach=True) clipped_values = np.sum((mask < 0) | (mask > 1)) if clipped_values: warnings.warn( f'Mask value passed to mask_to_image out of range ([0, 1])! ' f'{clipped_values} values are clipped!' ) image = np.clip(mask * 255, 0, 255) image = image.astype(np.uint8) image = _remove_batch_axis(image, batch_first=batch_first) return _colorize(_apply_origin(image.T, origin), color)
a4679d78fd9df003fe91742fb0eb0707ca3fd5f8
677
def lerp(x0, x1, t): """ Linear interpolation """ return (1.0 - t) * x0 + t * x1
82d9ce36dd5879c7aab64dc5615a2fb298471383
678
def read_uint4(f): """ >>> import io >>> read_uint4(io.BytesIO(b'\\xff\\x00\\x00\\x00')) 255 >>> read_uint4(io.BytesIO(b'\\x00\\x00\\x00\\x80')) == 2**31 True """ data = f.read(4) if len(data) == 4: return _unpack('<I', data)[0] raise ValueError('not enough data in stream to read uint4')
4a2ffd3f58100d44f0e430847f5a7d8ef1f54a33
679
from re import L def bound_contribution(w, g, G, nmax, squeeze=True): # TODO docstring # This method assumes g, if it is multidimensional varies along the first axis while w varies along the zeroth axis. """ """ # helper methods def f1(g): return np.sqrt(g).astype(int) # * L(w + (1 / ell - ell / g) ** 2, 0, G) def f2(w, g, G, ell): return ( np.pi * L(w + (1 / ell - ell / g) ** 2, 0, G) * 2 * (g - ell ** 2) * (2 * ell ** 2 - g) / (ell ** 3 * g ** 2) ) def f3(ell): out = np.ones(ell.shape) out[ell == 0] = 0 return out def f4(g, ell, n): # we aren't ensuring that we don't compute ell == n. # TODO catch ell == n with a more robust method out = ( n ** 2 * (n ** 2 * ell ** 2 - (g - ell ** 2) ** 2) / ((n ** 2 - ell ** 2) * (n ** 2 * ell ** 2 - g ** 2)) ) out[out == -np.inf] = np.nan out[out == np.inf] = np.nan return out # check input arrays ndim_org = w.ndim w, g, G = _checkndim_copy_reshape([w, g, G], 2) # create array to sum over ellmax = int(np.max(np.sqrt(g))) ell_base = np.arange(1, ellmax + 1, 1) new_shape = (1,) * ndim_org + (ell_base.size,) + (1,) ell_base = np.reshape(ell_base, new_shape) ell = np.repeat( ell_base, g.size, axis=1 ) # TODO np.argmax g.shape | assumes g is varying along 1st axis ell[f1(g) < ell] = 0 # create array to product over n = np.arange(1, nmax + 1, 1) new_shape = (1,) * (ndim_org + 1) + n.shape n = np.reshape(n, new_shape) # now actually create output arrays out = f4(g, ell, n) out = np.nanprod(out, axis=-1, keepdims=True) out = out * f2(w, g, G, ell) * f3(ell) out = np.nansum( out, axis=-2, keepdims=True ) # TODO figure out why I need nansum here if squeeze: out = np.squeeze(out) return out
9011a4a13ef187982809640d944fc9db51160c38
680
def get_onto_class_by_node_type(ont: owlready2.namespace.Ontology, node_label: str): """Get an object corresponding to an ontology class given the node label. `owlready2` doesn't make it easy to dynamically retrieve ontology classes. This uses some (relatively unsafe) string manipulation to hack together a solution. Notes ----- This should be refactored if/when a better solution is available! """ matches = [c for c in ont.classes() if str(c).split(".")[-1] == node_label] if len(matches) == 1: return matches[0] elif len(matches) == 0: return None else: raise ValueError( "Error: Something is wrong with your ontology's class hierarchy! Check for duplicate classes with '{0}' in the name".format( node_label ) )
0da35b5dc63b49cddece1cf0886d53315c77bf43
681
def validate_dtype_freq(dtype, freq): """ If both a dtype and a freq are available, ensure they match. If only dtype is available, extract the implied freq. Parameters ---------- dtype : dtype freq : DateOffset or None Returns ------- freq : DateOffset Raises ------ ValueError : non-period dtype IncompatibleFrequency : mismatch between dtype and freq """ if freq is not None: freq = frequencies.to_offset(freq) if dtype is not None: dtype = pandas_dtype(dtype) if not is_period_dtype(dtype): raise ValueError("dtype must be PeriodDtype") if freq is None: freq = dtype.freq elif freq != dtype.freq: raise IncompatibleFrequency("specified freq and dtype are different") return freq
407f3c52781a1e6986feaa455f78224d64cb7ca8
682
def extract_filtered_series(data_frame, column_list): """ Returns a filtered Panda Series one-dimensional ndarray from a targeted column. Duplicate values and NaN or blank values are dropped from the result set which is returned sorted (ascending). :param data_frame: Pandas DataFrame :param column_list: list of columns :return: Panda Series one-dimensional ndarray """ return data_frame[column_list].drop_duplicates().dropna(axis=0, how='all').sort_values( column_list) # return data_frame[column_list].str.strip().drop_duplicates().dropna().sort_values()
33120a2abedd5e8a7801bd0dfd89b107b1b593cb
683
from re import T def event_rheader(r): """ Resource headers for component views """ rheader = None if r.representation == "html": if r.name == "event": # Event Controller tabs = [(T("Event Details"), None)] #if settings.has_module("req"): # tabs.append((T("Requests"), "req")) rheader_tabs = s3_rheader_tabs(r, tabs) event = r.record if event: if event.exercise: exercise = TH(T("EXERCISE")) else: exercise = TH() if event.closed: closed = TH(T("CLOSED")) else: closed = TH() rheader = DIV(TABLE(TR(exercise), TR(TH("%s: " % T("Name")), event.name), TH("%s: " % T("Comments")), event.comments, TR(TH("%s: " % T("Zero Hour")), event.zero_hour), TR(closed), ), rheader_tabs) if r.name == "incident": # Incident Controller tabs = [(T("Incident Details"), None)] if settings.has_module("project"): tabs.append((T("Tasks"), "task")) if settings.has_module("hrm"): tabs.append((T("Human Resources"), "human_resource")) if settings.has_module("asset"): tabs.append((T("Assets"), "asset")) tabs.append((T("Facilities"), "site")) tabs.append((T("Map Configuration"), "config")) rheader_tabs = s3_rheader_tabs(r, tabs) record = r.record if record: if record.exercise: exercise = TH(T("EXERCISE")) else: exercise = TH() if record.closed: closed = TH(T("CLOSED")) else: closed = TH() rheader = DIV(TABLE(TR(exercise), TR(TH("%s: " % T("Name")), record.name), TH("%s: " % T("Comments")), record.comments, TR(TH("%s: " % T("Zero Hour")), record.zero_hour), TR(closed), ), rheader_tabs) return rheader
8e63b275927f2ae1a98076185e56be4f5e565ce3
684
import argparse import sys import yaml def parse_args(): """Read arguments from config file and command line args.""" options_default = { 'permissions': True, 'checksum': True, 'interval': 60, 'pidfile': '~/.dropboxhandler.pid', 'daemon': False, 'umask': 0o077, } parser = argparse.ArgumentParser( description="Listen for new files in " + "dropboxdirs and move to ObenBis/storage", ) parser.add_argument("-c", "--conf-file", help="Specify config file", metavar="FILE", default="~/.dropboxhandler.conf") parser.add_argument("--print-example-config", help="Print a example config file to stdout.", action="store_true", default=False) parser.add_argument('-d', '--daemon', action='store_true', default=None) parser.add_argument('--pidfile', default=None) parser.add_argument('--check-config', default=False, action='store_true', help="Do not start the daemon, but check the " + "config file") args = parser.parse_args() if args.print_example_config: print_example_config() sys.exit(0) try: with open(args.conf_file) as f: config = yaml.load(f) except dropboxhandler.FileNotFoundError: error_exit("Could not find config file (default location: " + "~/.dropboxhandler.conf") except yaml.parser.ParserError as e: error_exit("Could not parse config file. Error was %s" % e) for key in ['incoming', 'outgoing', 'openbis', 'options']: if key not in config: error_exit("Config file must include section '%s'" % key) options_default.update(config['options']) config['options'] = options_default if args.pidfile is not None: config['options']['pidfile'] = args.pidfile if args.daemon is not None: config['options']['daemon'] = args.daemon config['check_config'] = args.check_config return config
c878a0a01a8e64f9f23cf56010f5b6aee146ea31
685
def backend_is_up(backend): """Returns whether a server is receiving traffic in HAProxy. :param backend: backend dict, like one of those returned by smartstack_tools.get_multiple_backends. :returns is_up: Whether the backend is in a state that receives traffic. """ return str(backend['status']).startswith('UP')
9cb729bc14821b97d21d3d864c3ca7a1d6d46085
686
import glob def get_bot_files_glob(**kwargs): """Returns a `list` with the matching file names using the format string for BOT data """ outdict = {} kwcopy = kwargs.copy() test_name = kwcopy.pop('testName').lower() nfiles = kwcopy.get('nfiles', None) rafts = get_raft_names_dc(kwcopy['run'], kwcopy.get('teststand', 'bot')) for raft in rafts: raftdict = {} slots = getSlotList(raft) for slot in slots: glob_string = BOT_FORMATTER(raft=raft, slot=slot, testName=test_name, **kwcopy) files = sorted(glob.glob(glob_string)) if nfiles is None: raftdict[slot] = files else: raftdict[slot] = files[0:nfiles] outdict[raft] = raftdict return outdict
818abf757b09866afba712c114d1a87938cad990
687
def minutiae_selection(minutiae): """ Selects the subset of most reliable minutiae. """ M = np.array([(m['x'], m['y'], m['direction'], m['reliability']) for m in minutiae]) M[:,2] = np.round(np.rad2deg(nbis_idx2angle(M[:,2], N=16))) M[:,3] = np.round(M[:,3] * 100.0) M = M.astype(int) M = M[M[:,3] > np.percentile(M[:,3], 5), :] return M
2eff6c4f4f92b395da25aaa83a1de46fb07f4269
688
def alt_blend_value(data, i, j, k): """Computes the average value of the three vertices of a triangle in the simplex triangulation, where two of the vertices are on the upper horizontal.""" keys = alt_triangle_coordinates(i, j, k) return blend_value(data, i, j, k, keys=keys)
3ddf30c8bb983622d2df99eb76511270fcf62c1b
689
def _BinaryCrossEntropy(): """Returns a layer that computes prediction-target cross entropies.""" def f(model_output, target_category): # pylint: disable=invalid-name shapes.assert_same_shape(model_output, target_category) batch_size = model_output.shape[0] j = jnp.dot(jnp.transpose(target_category), jnp.log(model_output)) j += jnp.dot(jnp.transpose(1 - target_category), jnp.log(1 - model_output)) j = -1.0/batch_size * jnp.squeeze(j) return j return Fn('_BinaryCrossEntropy', f)
2def2ce8e8e32af94ac67de4d99e28e15ff07622
690
def normalize(subs, strict): """ Normalises subtitles. :param subs: :py:class:`Subtitle` objects :param bool strict: Whether to enable strict mode, see :py:func:`Subtitle.to_srt` for more information :returns: A single SRT formatted string, with each input :py:class:`Subtitle` represented as an SRT block :rtype: str :raises SRTParseError: If parsing fails. """ return _cli.compose_suggest_on_fail(subs, strict)
e0e90be189fe77b123bfe960e4e9b9e63977bbe3
691
def Stern_Brocot(n): """ Another way to iterate over rationals References: https://stackoverflow.com/questions/24997970/iterating-over-parts-of-the-stern-brocot-tree-in-python """ states = [(0, 1, 1, 1)] result = [] while len(states) != 0: a, b, c, d = states.pop() if a + b + c + d <= n: result.append((a + c, b + d)) states.append((a, b, a + c, b + d)) states.append((a + c, b + d, c, d)) return result
cdaa919932668b33e8233c59964c3ca9bbc30119
692
def compare_elements(prev_hash_dict, current_hash_dict): """Compare elements that have changed between prev_hash_dict and current_hash_dict. Check if any elements have been added, removed or modified. """ changed = {} for key in prev_hash_dict: elem = current_hash_dict.get(key, '') if elem == '': changed[key] = 'deleted' elif elem != prev_hash_dict[key]: changed[key] = 'changed' for key in current_hash_dict: elem = prev_hash_dict.get(key, '') if elem == '': changed[key] = 'added' return changed
2f24863a16aca86ccd3a82a4148b34282349e640
693
def generator_string(lang_uses: str = 'all', char_count: int = 1, char_size: str = 'lower') -> str: """Generator string :param lang_uses: набор символов :type lang_uses: str :param char_count: сколько символов отдать :type char_count: int :param char_size: размер символов :type char_size: str :return: str """ random_string = ''.join(choices(get_alphabet(lang_uses=lang_uses, char_size=char_size), k=char_count)) return random_string
fc517613ce1df5f3d208b4d6b3e5a356ac2f7e13
694
import sys import re def get_host_ips(version=4, exclude=None): """ Gets all IP addresses assigned to this host. Ignores Loopback Addresses This function is fail-safe and will return an empty array instead of raising any exceptions. :param version: Desired IP address version. Can be 4 or 6. defaults to 4 :param exclude: list of interface name regular expressions to ignore (ex. ["^lo$","docker0.*"]) :return: List of IPAddress objects. """ exclude = exclude or [] ip_addrs = [] # Select Regex for IPv6 or IPv4. ip_re = IPV4_RE if version is 4 else IPV6_RE # Call `ip addr`. try: ip_addr_output = check_output(["ip", "-%d" % version, "addr"]) except (CalledProcessError, OSError): print("Call to 'ip addr' Failed") sys.exit(1) # Separate interface blocks from ip addr output and iterate. for iface_block in INTERFACE_SPLIT_RE.findall(ip_addr_output): # Try to get the interface name from the block match = IFACE_RE.match(iface_block) iface = match.group(1) # Ignore the interface if it is explicitly excluded if match and not any(re.match(regex, iface) for regex in exclude): # Iterate through Addresses on interface. for address in ip_re.findall(iface_block): # Append non-loopback addresses. if not IPNetwork(address).ip.is_loopback(): ip_addrs.append(IPAddress(address)) return ip_addrs
33ceabec2165021919322881e501745dd673a733
695
def rate_string(rate, work_unit, computer_prefix=False): """Return a human-friendly string representing a rate. 'rate' is given in 'work_unit's per second. If the rate is less than 0.1 then the inverse is shown. Examples: >>> rate_string(200000, "B", True) '195KB/s' >>> rate_string(0.01, "file") '1m40s/file' >>> rate_string(1.0 / 24 / 3600, "earthrot") '1d0h/earthrot' """ if rate > 0 and rate < 0.1: return "%s/%s" % (time_string(1.0 / rate), work_unit) else: return "%s/s" % (quantity_string(rate, work_unit, computer_prefix))
4e7f62684be770525812465014c35dae0ce1806b
696
def get_queue_arn(sqs_client, queue_url: str) -> str: """Encapsulates SQS::get_queue_attributes with special attribute QueueArn. :param sqs_client: The Boto3 AWS SQS client object. :param queue_url: URL of the queue :return: The Amazon Resource Name (ARN) of the queue. """ try: response = sqs_client.get_queue_attributes(QueueUrl=queue_url, AttributeNames=["QueueArn"]) queue_arn = response["Attributes"]["QueueArn"] logger.info("Retrieved queue ARN: '%s' for URL: '%s'.", queue_arn, queue_url) except ClientError: logger.exception("Couldn't retrieve ARN for queue URL: %s.", queue_url) raise else: return queue_arn
a8fbf9e8271e8809494da7634fff682769020ecd
697
import psutil def any_flexloggers_running() -> bool: """Returns whether any FlexLogger.exe processes are running.""" for proc in psutil.process_iter(["pid", "name"]): if proc.info["name"].lower() == "flexlogger.exe": return True return False
3dc7fb6c5120e41ff26fda41b111dec9c08560a3
698
def _get_non_white_runs(mask): """Returns those runs that are delimeted by white cells.""" res = [] in_a_block = False last_idx = len(mask) - 1 for idx, cell in enumerate(mask): if cell != WHITE and not in_a_block: in_a_block = True start = idx if cell == WHITE and in_a_block: in_a_block = False end = idx - 1 res.append(Block(start, end, length=end - start + 1)) if idx == last_idx and in_a_block: res.append(Block(start, last_idx, length=last_idx - start + 1)) return res
0a1c4251b0a86dc95f1cea8962827b88f4945edb
699