content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def c4x(c: Circuit, c0: int, c1: int, c2: int, c3: int, t: int) -> Circuit: """A macro of 4-controlled X gate""" return c.h[t].c4z(c0, c1, c2, c3, t).h[t]
89b5d790a70448a1d46452554ab234e113e63c59
500
def pad(data, pad_id): """ Pad all lists in data to the same length. """ width = max(len(d) for d in data) return [d + [pad_id] * (width - len(d)) for d in data]
a0951f4332879600d25c061cf1c553126d6df8d2
501
from netharn import util def draw_boxes_on_image(img, boxes, color='blue', thickness=1, box_format=None): """ Example: >>> from netharn import util >>> img = np.zeros((10, 10, 3), dtype=np.uint8) >>> color = 'blue' >>> thickness = 1 >>> boxes = util.Boxes([[1, 1, 8, 8]], 'tlbr') >>> img2 = draw_boxes_on_image(img, boxes, color, thickness) >>> # xdoc: +REQUIRES(--show) >>> from netharn.util import mplutil >>> mplutil.autompl() # xdoc: +SKIP >>> mplutil.figure(doclf=True, fnum=1) >>> mplutil.imshow(img2) """ if not isinstance(boxes, util.Boxes): if box_format is None: raise ValueError('specify box_format') boxes = util.Boxes(boxes, box_format) color = tuple(util.Color(color).as255('bgr')) tlbr = boxes.to_tlbr().data img2 = img.copy() for x1, y1, x2, y2 in tlbr: # pt1 = (int(round(x1)), int(round(y1))) # pt2 = (int(round(x2)), int(round(y2))) pt1 = (int(x1), int(y1)) pt2 = (int(x2), int(y2)) img2 = cv2.rectangle(img2, pt1, pt2, color, thickness=thickness) return img2
3c4a3b547d39bac940ea9f6999a98f2db62f938b
502
def _select_random_features(feature_list, amount): """Selects a given amount of random features from the feature list""" set_size = len(feature_list) -1 random_features = [] for i in range(amount): while(True): random_feature = feature_list[randint(0, set_size)] if(random_feature in random_features): continue else: random_features.append(random_feature) break return random_features
e281bfa75e153aa195119f84777f41db9d5e806c
503
def matrixop_inp_matr(): """ Функция возвращает матрицу, введённую пользователем с клавиатуры. Returns ------- a : [[float, float, ...], [float, float, ...], ...] Матрица, введенная пользователем """ while True: try: m = int(input('Сколько будет строк в матрице? ')) except: print('Вы ввели не число') else: if m > 0: break else: print('Вы ввели не натуральное число') while True: try: n = int(input('Сколько будет столбцов в матрице? ')) except: print('Вы ввели не число') else: if n > 0: break else: print('Вы ввели не натуральное число') print("Введите элементы матрицы (заполнение идёт по строкам)") a = [] for i in range(m): a.append([]) for j in range(n): while True: try: print(f'Введите элемент a[{i+1}][{j+1}]') elem = eval(input()) except: print('Вы ввели не число') else: break a[i].append(elem) return a
c373af0c7493ff32f919d903644b2031cc51162c
504
import os def gen_info(run_event_files): """Generate subject_info structure from a list of event files """ info = [] for i, event_files in enumerate(run_event_files): runinfo = Bunch(conditions=[], onsets=[], durations=[], amplitudes=[]) for event_file in event_files: _, name = os.path.split(event_file) if '.run' in name: name, _ = name.split('.run%03d'%(i+1)) elif '.txt' in name: name, _ = name.split('.txt') runinfo.conditions.append(name) event_info = np.atleast_2d(np.loadtxt(event_file)) runinfo.onsets.append(event_info[:, 0].tolist()) if event_info.shape[1] > 1: runinfo.durations.append(event_info[:, 1].tolist()) else: runinfo.durations.append([0]) if event_info.shape[1] > 2: runinfo.amplitudes.append(event_info[:, 2].tolist()) else: delattr(runinfo, 'amplitudes') info.append(runinfo) return info
0e347231c811c39602530e05f3f767d8b91ba243
505
def dropannotation(annotation_list): """ Drop out the annotation contained in annotation_list """ target = "" for c in annotation_list: if not c == "#": target += c else: return target return target
9f4a695eaf80f79dce943f2f91926d9c823483b6
506
def do_associate_latest_edit(parser, token): """ AssociateLatestEdit """ try: tag, node = token.split_contents() except ValueError: raise template.TemplateSyntaxError, "%r tag requires one argument" % token.contents.split()[0] return AssociateLatestEdit(node)
75cf36f1cccd2191636f3cb603503c6655ae0c67
507
def open_monitoring_db(dbhost, dbuser, dbpass, database): """ Open MySQL monitoring DB """ try: conn = MySQLdb.connect(host=dbhost, user=dbuser, passwd=dbpass, db=database) except MySQLdb.Error, err: print "Error %d: %s" % (err.args[0], err.args[1]) sys.exit(1) return conn
db33430d20c7c72c7428d85f161d1c186404dc05
508
def matdiff(matrix1,matrix2,figsize=None,cmap=None): """ display the difference between two real matrices, alongside this plot this difference on a log- colour scale (if diff!=0) """ if not figsize: figsize = defaults['figsize'] if not cmap: cmap = defaults['cmap'] _matdiff = matrix1-matrix2 f, (ax1, ax2) = plt.subplots(1,2,figsize=(2*figsize[0],figsize[1])) imreal = ax1.imshow(_matdiff,interpolation='nearest',cmap=cmap) f.colorbar(imreal,ax=ax1) # trying to plot the log-scale diff will fail if the difference is zero everywhere if not np.all(_matdiff==np.zeros(_matdiff.shape)): imimag = ax2.imshow(np.log10(np.abs(_matdiff)),interpolation='nearest',cmap=cmap) f.colorbar(imimag,ax=ax2) return f
fb11354f7388e461ac49bcac942a9b6a2b5528d4
509
def _tokens_by_class_of(tokens): """Generates lookup table of tokens in each class.""" out = defaultdict(set) for token, token_classes in tokens.items(): for token_class in token_classes: out[token_class].add(token) return out
c335582785e4c8a5b82232849ccee579f5ab068f
510
def load_mnist_dataset(shape=(-1, 784), path='data'): """Load the original mnist. Automatically download MNIST dataset and return the training, validation and test set with 50000, 10000 and 10000 digit images respectively. Parameters ---------- shape : tuple The shape of digit images (the default is (-1, 784), alternatively (-1, 28, 28, 1)). path : str The path that the data is downloaded to. Returns ------- X_train, y_train, X_val, y_val, X_test, y_test: tuple Return splitted training/validation/test set respectively. Examples -------- >>> X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1,784), path='datasets') >>> X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 28, 28, 1)) """ return _load_mnist_dataset(shape, path, name='mnist', url='http://yann.lecun.com/exdb/mnist/')
856a758864ef85b4a5bea742dd90a49e997ad9b7
511
import logging import os import scipy import json def entropy_of_states(probabilities, output_path, n_clusters): """ Computes the entropy of probabilities of states :param probabilities: array with states probabilities :type probabilities: np.ndarray :param output_path: path to output directory :type output_path: str :param n_clusters: number of clusters :type: n_clusters: int :return: entropy: calculated entropy :rtype: int """ logging.basicConfig( filename=os.path.join(output_path, 'entropy_n_clusters_{}.log'.format( n_clusters)), level=logging.INFO) entropy = scipy.stats.entropy(probabilities) logging.info('State {} entropy is {}'.format(n_clusters, entropy)) dict = {'State': n_clusters, 'entropy': entropy} with open(os.path.join(output_path, 'entropy.json'), 'w') as fp: json.dump(dict, fp) return entropy
e67ae313b22a2bf335575b71a812eb7bd3614aec
512
def EntryToSlaveName(entry): """Produces slave name from the slaves config dict.""" name = entry.get('slavename') or entry.get('hostname') if 'subdir' in entry: return '%s#%s' % (name, entry['subdir']) return name
258e68c683592c21ea8111f21ba3ab648ddb8c57
513
from app.main import bp as main_bp from app.errors import bp as errors_bp from app.api import bp as api_bp import os import logging def create_app(config_class=Config): """ Constructs a Flask application instance. Parameters ---------- config_class: class that stores the configuration variables. Returns ------- app : Flask application """ app = Flask(__name__) app.config.from_object(config_class) bootstrap.init_app(app) app.register_blueprint(main_bp) app.register_blueprint(errors_bp) app.register_blueprint(api_bp, url_prefix='/api') if not os.path.exists('logs'): os.mkdir('logs') file_handler = RotatingFileHandler('logs/oslo-bysykkel-monitor.log', maxBytes=10240, backupCount=10) file_handler.setFormatter(logging.Formatter( '%(asctime)s %(levelname)s: %(message)s ' '[in %(pathname)s:%(lineno)d]')) file_handler.setLevel(logging.INFO) app.logger.addHandler(file_handler) app.logger.setLevel(logging.INFO) app.logger.info('Oslo Bysykkel Monitor startup') return app
fe84f5ef3239a7b0c6a2d9a948ca44d413ab4d81
514
def is_symmetric_re(root: TreeNode) -> bool: """Check if a binary tree is a mirror of itself (symmetric around its center).""" if not root: return False def is_mirror(t1, t2): if not t1 and not t2: return True if not t1 or not t2: return False return t1.val == t2.val and is_mirror(t1.left, t2.right) and is_mirror(t1.right, t2.left) return is_mirror(root, root)
b2d0450a881e0a1748575baa8d7c6ae1224fb3c0
515
async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up paperless from a config entry.""" hass.config_entries.async_setup_platforms(entry, PLATFORMS) return True
8793312f379c510e3420e785eba6ce4db3f098c7
516
def azimuthal_average(image, center=None, stddev=True, binsize=0.5, interpnan=False): """ Modified based on https://github.com/keflavich/image_tools/blob/master/image_tools/radialprofile.py Calculate the azimuthally averaged radial profile. Parameters: imgae (numpy ndarray): 2-D image center (list): [x, y] pixel coordinates. If None, use image center. Note that x is horizontal and y is vertical, y, x = image.shape. stdev (bool): if True, the stdev of profile will also be returned. binsize (float): size of the averaging bin. Can lead to strange results if non-binsize factors are used to specify the center and the binsize is too large. interpnan (bool): Interpolate over NAN values, i.e. bins where there is no data? Returns: If `stdev == True`, it will return [radius, profile, stdev]; else, it will return [radius, profile]. """ # Calculate the indices from the image y, x = np.indices(image.shape) if center is None: center = np.array([(x.max() - x.min()) / 2.0, (y.max() - y.min()) / 2.0]) r = np.hypot(x - center[0], y - center[1]) # The 'bins' as initially defined are lower/upper bounds for each bin # so that values will be in [lower,upper) nbins = int(np.round(r.max() / binsize) + 1) maxbin = nbins * binsize bins = np.linspace(0, maxbin, nbins + 1) # We're probably more interested in the bin centers than their left or right sides... bin_centers = (bins[1:] + bins[:-1]) / 2.0 # There are never any in bin 0, because the lowest index returned by digitize is 1 nr = np.histogram(r, bins)[0] # nr is how many pixels are within each bin # Radial profile itself profile = np.histogram(r, bins, weights=image)[0] / nr if interpnan: profile = np.interp(bin_centers, bin_centers[~np.isnan(profile)], profile[~np.isnan(profile)]) if stddev: # Find out which radial bin each point in the map belongs to # recall that bins are from 1 to nbins whichbin = np.digitize(r.ravel(), bins) profile_std = np.array([image.ravel()[whichbin == b].std() for b in range(1, nbins + 1)]) profile_std /= np.sqrt(nr) # 均值的偏差 return [bin_centers, profile, profile_std] else: return [bin_centers, profile]
3ebadf5fa93cc93e6a5b14327392a2fdecb5d266
517
import re def find_assign(data, varname): """Finds a substring that looks like an assignment. :param data: Source to search in. :param varname: Name of the variable for which an assignment should be found. """ ASSIGN_RE = re.compile(BASE_ASSIGN_PATTERN.format(varname)) if len(ASSIGN_RE.findall(data)) > 1: raise PluginError('Found multiple {}-strings.'.format(varname)) if len(ASSIGN_RE.findall(data)) < 1: raise PluginError('No version assignment ("{}") found.' .format(varname)) return ASSIGN_RE.search(data).group(2)
99e1d1436307dd278fbef8b7e52c4d2eedd6d657
518
import requests def remove(token: str, server: str="http://localhost:8080/remove", params: dict=None) -> int: """ Removes the data associated with the token. :param token: the token to download the data for :type token: str :param server: the URL of the server to upload to :type server: str :param params: the additional parameters to send to the server, eg login information (user/password) :type params: dict :return: the status code, None if failed to download :rtype: int """ if params is None: files = {} else: files = params.copy() files['token'] = token r = requests.post(server, files=files) return r.status_code
a74f2c5f84ae064a909df717917f4589b59eacb5
519
import requests def get_pending_surveys_batch_number(batch_no): """ Gets batch number for the shared survey :param batch_no: Shared survey batch number :type batch_no: str :raises ApiError: Raised when party returns api error :return: list share surveys """ bound_logger = logger.bind(batch_no=batch_no) bound_logger.info("Attempting to retrieve share surveys by batch number") url = f"{app.config['PARTY_URL']}/party-api/v1/pending-surveys/{batch_no}" response = requests.get(url, auth=app.config["BASIC_AUTH"]) try: response.raise_for_status() except requests.exceptions.HTTPError: bound_logger.error("Failed to retrieve share surveys by batch number") raise ApiError(logger, response) bound_logger.info("Successfully retrieved share surveys by batch number") return response
ee31c28c393e29b6cd628aefc38d2ca948c7cdaf
520
def before_after_to_box(element, pseudo_type, state, style_for, get_image_from_uri, target_collector): """Return the boxes for ::before or ::after pseudo-element.""" style = style_for(element, pseudo_type) if pseudo_type and style is None: # Pseudo-elements with no style at all do not get a style dict. # Their initial content property computes to 'none'. return [] # TODO: should be the computed value. When does the used value for # `display` differ from the computer value? It's at least wrong for # `content` where 'normal' computes as 'inhibit' for pseudo elements. display = style['display'] content = style['content'] if 'none' in (display, content) or content in ('normal', 'inhibit'): return [] box = make_box('%s::%s' % (element.tag, pseudo_type), style, []) quote_depth, counter_values, _counter_scopes = state update_counters(state, style) children = [] outside_markers = [] if display == 'list-item': marker_boxes = marker_to_box( element, state, style, style_for, get_image_from_uri, target_collector) if marker_boxes: if style['list_style_position'] == 'outside': outside_markers.extend(marker_boxes) else: children.extend(marker_boxes) children.extend(content_to_boxes( style, box, quote_depth, counter_values, get_image_from_uri, target_collector)) box.children = children return outside_markers + [box]
2c34523b7e4ba690d54fd3622e903976a7629b3c
521
def make_sign_initializer(random_sign_init): """Random sign intitializer for HyperBatchEnsemble layers.""" if random_sign_init > 0: return ed.initializers.RandomSign(random_sign_init) else: return tf.keras.initializers.RandomNormal( mean=1.0, stddev=-random_sign_init)
e8ea2653ef9c7c5ba447921d7def990e29a7c9b2
522
def _parallel_predict_proba(ensemble, X, idx, results): """ Compute predictions of SCM estimators """ for k in idx: res = ensemble.estimators[k].predict(X[:, ensemble.estim_features[k]]) results = results + res return results
b0a2d5c59318506202c9331597ab2a11eacb7a32
523
def compute_FP_TP_Probs(Ycorr, Xcorr, Probs, is_tumor, evaluation_mask, Isolated_Tumor_Cells, level): """Generates true positive and false positive stats for the analyzed image Args: Probs: list of the Probabilities of the detected lesions Xcorr: list of X-coordinates of the lesions Ycorr: list of Y-coordinates of the lesions is_tumor: A boolean variable which is one when the case cotains tumor evaluation_mask: The evaluation mask Isolated_Tumor_Cells: list of labels containing Isolated Tumor Cells level: The level at which the evaluation mask was made Returns: FP_probs: A list containing the probabilities of the false positive detections TP_probs: A list containing the probabilities of the True positive detections NumberOfTumors: Number of Tumors in the image (excluding Isolate Tumor Cells) detection_summary: A python dictionary object with keys that are the labels of the lesions that should be detected (non-ITC tumors) and values that contain detection details [confidence score, X-coordinate, Y-coordinate]. Lesions that are missed by the algorithm have an empty value. FP_summary: A python dictionary object with keys that represent the false positive finding number and values that contain detection details [confidence score, X-coordinate, Y-coordinate]. """ max_label = np.amax(evaluation_mask) FP_probs = [] TP_probs = np.zeros((max_label,), dtype=np.float32) detection_summary = {} FP_summary = {} for i in range(1, max_label + 1): if i not in Isolated_Tumor_Cells: label = 'Label ' + str(i) detection_summary[label] = [] FP_counter = 0 if (is_tumor): for i in range(0, len(Xcorr)): # note: the x, y coordinates are switched, I make the x, y to be int, so that the array of evaluation_mask #HittedLabel = evaluation_mask[int(Xcorr[i] / pow(2, level)), int(Ycorr[i] / pow(2, level))] HittedLabel = evaluation_mask[int( Ycorr[i]/pow(2, level)), int(Xcorr[i]/pow(2, level))] print(HittedLabel) # HittedLabel = evaluation_mask[int(Ycorr[i]/pow(2, level)), int(Xcorr[i]/pow(2, level))] # HittedLabel = evaluation_mask[Ycorr[i]/pow(2, level), Xcorr[i]/pow(2, level)] if HittedLabel == 0: FP_probs.append(Probs[i]) key = 'FP ' + str(FP_counter) FP_summary[key] = [Probs[i], Xcorr[i], Ycorr[i]] FP_counter += 1 elif HittedLabel not in Isolated_Tumor_Cells: if (Probs[i] > TP_probs[HittedLabel - 1]): label = 'Label ' + str(HittedLabel) detection_summary[label] = [Probs[i], Xcorr[i], Ycorr[i]] TP_probs[HittedLabel - 1] = Probs[i] else: for i in range(0, len(Xcorr)): FP_probs.append(Probs[i]) key = 'FP ' + str(FP_counter) FP_summary[key] = [Probs[i], Xcorr[i], Ycorr[i]] FP_counter += 1 print(FP_counter) num_of_tumors = max_label - len(Isolated_Tumor_Cells) # just for diagnose print('number of isolated tumor cells =', len(Isolated_Tumor_Cells)) return FP_probs, TP_probs, num_of_tumors, detection_summary, FP_summary
434abefeba56201d20799b1f00783bc77dcbf2c0
524
def make_sentences(text, src): """ Builds a list of dictionaries, one for each sentence resulting from the sentence parser. The dictionary schema is {"src": src, "label": 0, "sentence": sent} Substitutions are made for the identified tokens. Args: text (str): text to process src (str): identifier (file name) to include in the output Returns: List[Dict] """ no_sec = True text = text.replace(USC_DOT, USC) text = text.replace(PL, PL_SPACE) text = text.replace(EO, EO_SPACE) sents = [scrubber(sent, no_sec=no_sec) for sent in sent_tokenize(text)] sent_list = list() for sent in sents: if not sent: continue sent_list.append({"src": src, "label": 0, "sentence": sent}) return sent_list
5da57a55f76a3d4d29f1d0ed681b8597e958b9d0
525
def read_test_case(file_path): """ reads one test case from file. returns contents of test case Parameters ---------- file_path : str the path of the test case file to read. Returns ------- list a list of contents of the test case. """ file = open(file_path, "r") number = int(file.readline().strip()) case = list() for i in range(number): case.append(file.readline().strip()) file.close() return case
6a87ff979d0b1ccf838ebef56401a48760711541
526
def add_checkbox_column(col_list, row_list, checkbox_pos=1): """Insert a new column into the list of column dictionaries so that it is the second column dictionary found in the list. Also add the checkbox column header to the list of row dictionaries and subsequent checkbox value 'col_list'- a list of dictionaries that defines the column structure for the table (required). The order of the columns from left to right is depicted by the index of the column dictionary in the list. Each dictionary in the list has the following keys and values: 'name' - a string for the column name (required) 'total' - a boolean for whether the column should be totaled (required) 'row_list' - a list of dictionaries that represent the rows. Each dictionaries keys should match the column names found in 'col_list' (required) Example: [{col_name_1: value, col_name_2: value, ...}, {col_name_1: value, col_name_2: value, ...}, ...] checkbox_pos - an integer for the position of the checkbox column. Defaulted at 1 (optional) returns - a tuple of the updated column and rows list of dictionaries in that order""" LOGGER.debug('Adding a checkbox column to the column structure') # Insert a new column dictionary in the list in the second spot col_list.insert(checkbox_pos, {'name':'Select', 'total':False, 'attr':{'class':'checkbox'}, 'td_class':'checkbox'}) # For each dictionary in the row list add a 'Select' key which # refers to the new column and set the value as a checkbox for val in row_list: val['Select'] = '<input type=checkbox name=cb value=1>' # Return a tuple of the updated / modified column and row list of # dictionaries return (col_list, row_list)
a259d933ecf91f9c5e9dc9d14122a034eaf5f61f
527
import torch def accuracy4batch(model, testloader, criterion): """save a model checkpoint INPUT: model: pytorch nn model. testloader: DataLoader. test data set criterion: criterion. loss criterion device: torch.device. device on which model/data is based OUTPUT: accuracy: float in [0:1]. percenct proportion of correct classifications in testloader test_loss: float. absolute error """ test_loss = 0 accuracy = 0 model.eval() with torch.no_grad(): for inputs, labels in testloader: inputs, labels = inputs.to(model.device), labels.to(model.device) logps = model.forward(inputs) batch_loss = criterion(logps, labels) test_loss += batch_loss.item() # Calculate accuracy ps = torch.exp(logps) top_p, top_class = ps.topk(1, dim=1) equals = top_class == labels.view(*top_class.shape) accuracy += torch.mean(equals.type(torch.FloatTensor)).item() accuracy = accuracy/len(testloader) return accuracy, test_loss
2005984b94f17bf601034953bbea3dca6542143d
528
def AmendmentLinks(amendment, users_by_id, project_name): """Produce a list of value/url pairs for an Amendment PB. Args: amendment: Amendment PB to display. users_by_id: dict {user_id: user_view, ...} including all users mentioned in amendment. project_nme: Name of project the issue/comment/amendment is in. Returns: A list of dicts with 'value' and 'url' keys. 'url' may be None. """ # Display both old and new summary if amendment.field == tracker_pb2.FieldID.SUMMARY: result = amendment.newvalue if amendment.oldvalue: result += ' (was: %s)' % amendment.oldvalue return [{'value': result, 'url': None}] # Display new owner only elif amendment.field == tracker_pb2.FieldID.OWNER: if amendment.added_user_ids and amendment.added_user_ids[0] > 0: uid = amendment.added_user_ids[0] return [{'value': users_by_id[uid].display_name, 'url': None}] else: return [{'value': framework_constants.NO_USER_NAME, 'url': None}] elif amendment.field in (tracker_pb2.FieldID.BLOCKEDON, tracker_pb2.FieldID.BLOCKING, tracker_pb2.FieldID.MERGEDINTO): values = amendment.newvalue.split() bug_refs = [_SafeParseIssueRef(v.strip()) for v in values] issue_urls = [FormatIssueURL(ref, default_project_name=project_name) for ref in bug_refs] # TODO(jrobbins): Permission checks on referenced issues to allow # showing summary on hover. return [{'value': v, 'url': u} for (v, u) in zip(values, issue_urls)] elif amendment.newvalue: # Catchall for everything except user-valued fields. return [{'value': v, 'url': None} for v in amendment.newvalue.split()] else: # Applies to field==CC or CUSTOM with user type. values = _PlusMinusString( [users_by_id[uid].display_name for uid in amendment.added_user_ids if uid in users_by_id], [users_by_id[uid].display_name for uid in amendment.removed_user_ids if uid in users_by_id]) return [{'value': v.strip(), 'url': None} for v in values.split()]
9518bc4082bcecc50af8906869426806172b8022
529
def pick_an_experiment(i): """ Input: { (repo_uoa) - experiment repository name (defaults to hackathon_local_repo, but can be overridden by '*') (extra_tags) - extra tags to filter } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ repo_uoa = i.get('repo_uoa', hackathon_local_repo) extra_tags = i.get('extra_tags') list_exp_adict = { 'action': 'list_experiments', 'module_uoa': work['self_module_uoa'], 'repo_uoa': repo_uoa, 'extra_tags': extra_tags, } r=ck.access( list_exp_adict ) if r['return']>0: return r if len(r['lst'])==0: return {'return':1, 'error':'No experiments to choose from - please relax your filters'} all_experiment_names = [ '{repo_uoa}:{module_uoa}:{data_uoa}'.format(**entry_dict) for entry_dict in r['lst']] number_of_experiments = len(all_experiment_names) select_adict = {'action': 'select_string', 'module_uoa': 'misc', 'options': all_experiment_names, 'default': str(number_of_experiments-1), 'question': 'Please select the experiment entry', } r=ck.access( select_adict ) if r['return']>0: return r else: cid = r['selected_value'] return {'return':0, 'cid': cid}
97671967ab153173280a142143fb4b07892c92fa
530
import uuid import pathlib def run(args, image: str) -> str: """ Run docker image and mount user-provided folder with C++ files. Parameters ---------- args : dict-like User provided arguments parsed by argparse.ArgumentParser instance. image : str Name of image from which container is run Returns ------- str: Name of created container. Consist of torchlambda prefix and random string """ def _add_components(args): return ( '"' + ";".join(args.aws_components) + '"' if args.aws_components else '"core"' ) def _compilation(args): return '"' + args.compilation + '"' if args.compilation else "" container_name = "torchlambda-" + str(uuid.uuid4()) source_directory = pathlib.Path(args.source).absolute() if source_directory.is_dir(): command = "docker {} run {} -v {}:/usr/local/user_code --name {} {} {} ".format( *general.parse_none( args.docker, args.docker_run, source_directory, container_name, image, _add_components(args), ) ) command += _compilation(args) general.run( command, operation="building inference AWS Lambda package.", silent=args.silent, ) return container_name print("torchlambda:: Provided source files are not directory, exiting.") exit(1)
eba0ab0e93543410ae4a2375ec80a9015168d303
531
def get_top_design_list(oProject): """ Returns a list of the names of the top-level designs. Parameters ---------- oProject : pywin32 COMObject The HFSS project in which the operation will be performed. designname : str Name of the design to insert. Returns ------- design_list : list of str The top-level design list. """ design_list = list(oProject.GetTopDesignList()) return map(str,design_list)
6610cd68a90e20fd916a2ec13b54f37a75c31050
532
from typing import Union from typing import Dict from typing import Any def chi01(param_name: Union[str, None], yval: float, **kwargs) -> Dict[str, Any]: """Plot defaults for sweep_plotting.chi01""" kwargs["xlabel"] = kwargs.get("xlabel") or recast_name(param_name) kwargs["ylabel"] = kwargs.get("ylabel") or r"$\chi_{{01}}$ [{}]".format( units.get_units() ) kwargs["title"] = kwargs.get("title") or r"$\chi_{{01}}=${:.4f} {}".format( yval, units.get_units() ) return kwargs
58e5d09152062a9307526bd953ff91832ef80321
533
def cstring(*args, **kwargs): """Return a colored string. Parameters ---------- args : iterable of str bold : bool color : str, {'HEADER', 'LIGHTBLUE', 'LIGHTGREEN', 'WARNING', 'FAIL', 'ENDC', 'BOLD', 'UNDERLINE' 'BLACK', 'RED', 'GREEN', 'YELLOW', 'BLUE', 'MAGENTA', 'CYAN', 'WHITE'} Terminal color to use. """ args, kwargs = _colorize(*args, **kwargs) cstr = " ".join(args) return cstr
69bc81f0e9267743297bec25b2fccc8f2da2c89d
534
from . import routes # Import routes def create_app(): """Construct the core application.""" app = Flask(__name__, instance_relative_config=False) app.config.from_object('config.Config') db.init_app(app) admin.init_app(app) basic_auth.init_app(app) with app.app_context(): db.create_all() # Create sql tables for our data models admin.add_view(ArticleView(Articles, db.session)) return app
28bfb75626a5be05aef21404956f6ef7adf8f80a
535
def bytes_index(x: bytes, sub: bytes, start: int, end: int) -> int: """Where is the first location of a subsequence within a given slice of a bytes object? Compiling bytes.index compiles this function, when sub is a bytes object. This function is only intended to be executed in this compiled form. Args: x: The bytes object in which to search. sub: The subsequence to look for. start: Beginning of slice of x. Interpreted as slice notation. end: End of slice of x. Interpreted as slice notation. Returns: Lowest index of match within slice of x. Raises: ValueError: If sub is not found. """ ret = bytes_find(x, sub, start, end) if ret == -1: raise ValueError("subsection not found") return ret
3a78e029a96d27fdf5b5cdea397b21f57ca939d9
536
import os def pickup_path(start_path, filename, default=None): """pickupping the config file path start path = "/foo/bar/boo", filename = "config.ini" finding candidates are ["/foo/bar/boo/config.ini", "/foo/bar/config.ini", "/foo/config.ini", "/config.ini"] """ start_point = os.path.normpath(os.path.abspath(start_path)) current = start_point candidates = [] while True: candidates.append(os.path.join(current, filename)) if current == "/": break current, dropped = os.path.split(current) for path in candidates: if os.path.exists(path): return path return default
2535871cbb1197dde07f41063114bd37b88149e7
537
def uniform(minimum, maximum, shape=[]): """uniform(minimum, maximum, shape=[]) returns array of given shape of random reals in given range""" if shape == []: shape = None return mt.uniform(minimum, maximum, shape)
882cd915cb7dfec0e1b6857f99ecefe876ae21b1
538
def unquote_to_bytes(urlencoded_string): """Replace %xx escapes by their single-character equivalent, using the “iso-8859-1” encoding to decode all 8-bit values. """ return bytes( unquote(urlencoded_string, encoding='iso-8859-1'), encoding='iso-8859-1' )
60216d170381e356520c283f308add08754c987d
539
def qualifiedName(item): """Return the full name of an item, including any projects that it's in. If the item does not have a name, return ``None``. XXX: Doesn't include folders. """ names = [] # Note: assumes that the presence of a single null name in the parent tree # means that the item is not properly named. for i in iterParents(item): name = i.name() if name is None: return None names.append(name) return " / ".join(reversed(names))
2a1cdc9e15897c104f63793041ed2d4fe91e383d
540
def assign_columns_of_sector_levels(df_load): """ Add additional column capturing the sector level in the two columns :param df_load: df with at least on sector column :param ambiguous_sector_assignment: if there are sectors that can be assigned to multiple sector lengths (e.g., for government or household sectors), option to specify which sector assignment to keep. :return: df with new column for sector length """ df = replace_NoneType_with_empty_cells(df_load) # load cw with column of sector levels cw = load_sector_length_cw_melt() # merge df assigning sector lengths for s in ['Produced', 'Consumed']: df = df.merge(cw, how='left', left_on=f'Sector{s}By', right_on='Sector').drop(columns=['Sector']).rename( columns={'SectorLength': f'Sector{s}ByLength'}) df[f'Sector{s}ByLength'] = df[f'Sector{s}ByLength'].fillna(0) # There are cases where non-traditional sectors (non naics) have # multiple naics assignments. If there is a non-zero value in the other # sector length column, keep that row because sector lengths must always # match. # subset df into two dfs, one where one sector column length has a zero # value and the second where both sector length columns have non-zero # values df1 = df[(df['SectorProducedByLength'] == 0) | (df['SectorConsumedByLength'] == 0)] df2 = df[(df['SectorProducedByLength'] != 0) & (df['SectorConsumedByLength'] != 0)] # only keep rows where the values are equal df2e = df2[df2['SectorProducedByLength'] == df2['SectorConsumedByLength']] # concat dfs dfc = pd.concat([df1, df2e], ignore_index=True) # check for duplicates. Rows might be duplicated if a sector is the same # for multiple sector lengths duplicate_cols = [e for e in dfc.columns if e not in [ 'SectorProducedByLength', 'SectorConsumedByLength']] duplicate_df = dfc[dfc.duplicated(subset=duplicate_cols, keep=False)].reset_index(drop=True) if len(duplicate_df) > 0: log.warning('There are duplicate rows caused by ambiguous sectors.') dfc = dfc.sort_values(['SectorProducedByLength', 'SectorConsumedByLength']).reset_index(drop=True) return dfc
4dd60267702f21e103cab18293975a5f62c934d2
541
def add_matrices(matrix_a, matrix_b): """Add two n x n matrices """ return [[x + y for x, y in zip(matrix_a[i], matrix_b[i])] for i in range(len(matrix_a))]
a9f6a857892872fde584b6884e59a8b624220061
542
import scipy def no_pretrain_inner_speech(subject): """This function aims at training a model without pretraining by training only on the inner speech condition of a sigle subject :return: metric history for every of the n k-folds :rtype: list of dictonaries """ ###### DATA data, events = dp.load_data(subjects=[subject], filter_action=True) # shuffle data and labels data, events = sklearn.utils.shuffle(data, events) # save memory by converting from 64bit to 32bit floats data = data.astype(np.float32) # filter out only the inner speech condition data, events = dp.choose_condition(data, events, 'inner speech') # select the column containing directions (up, down, left, right) events = events[:, 1] # one-hot event data events = np_utils.to_categorical(events, 4) # zscore normalize the data data = scipy.stats.zscore(data, axis=2) # reshape data = data.reshape(*data.shape, 1) print("Data Prepared.") ###### MODEL gpus = tf.config.list_logical_devices('GPU') mirrored_strategy = tf.distribute.MirroredStrategy(gpus) with mirrored_strategy.scope(): # create EEGNet (source: https://github.com/vlawhern/arl-eegmodels) model = EEGNet(nb_classes=4, Chans=data.shape[1], Samples=data.shape[2], dropoutRate=DROPOUT, kernLength=KERNEL_LENGTH, F1=8, D=2, F2=16, dropoutType='Dropout') # adam optimizer optimizer = tf.keras.optimizers.Adam() # compile model model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.build(input_shape=(BATCH_SIZE, *data.shape[1:])) path = './models/saved_models/no_pretrain_inner_speech' model.save(path) del model ###### KFOLD TRAINING history_accumulator = [] for _ in range(N_CHECKS): history = kfold_training(data, events, path, BATCH_SIZE, EPOCHS) history_accumulator += history print(history_accumulator) print("Subject", subject, " Mean Accuracy:", np.mean([h['val_accuracy'][-1] for h in history_accumulator])) return history_accumulator
daa08a8ea88838b8e66c3fc23c2b6997bfdff490
543
from typing import Any def build_put_big_decimal_negative_decimal_request(**kwargs: Any) -> HttpRequest: """Put big decimal value -99999999.99. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this request builder into your code flow. :keyword json: The default value is -99999999.99. Note that overriding this default value may result in unsupported behavior. :paramtype json: float :return: Returns an :class:`~azure.core.rest.HttpRequest` that you will pass to the client's `send_request` method. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this response into your code flow. :rtype: ~azure.core.rest.HttpRequest """ content_type = kwargs.pop("content_type", None) # type: Optional[str] json = kwargs.pop("json", -99999999.99) # type: float accept = "application/json" # Construct URL url = "/number/big/decimal/-99999999.99" # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="PUT", url=url, headers=header_parameters, json=json, **kwargs)
e41800c8bee6a9c4874b3625ed374c9514c81fe7
544
def make_subplots( rows=1, cols=1, shared_xaxes=False, shared_yaxes=False, start_cell="top-left", print_grid=False, horizontal_spacing=None, vertical_spacing=None, subplot_titles=None, column_widths=None, row_heights=None, specs=None, insets=None, column_titles=None, row_titles=None, x_title=None, y_title=None, figure=None, **kwargs, ) -> go.Figure: """ Return an instance of plotly.graph_objs.Figure with predefined subplots configured in 'layout'. Parameters ---------- rows: int (default 1) Number of rows in the subplot grid. Must be greater than zero. cols: int (default 1) Number of columns in the subplot grid. Must be greater than zero. shared_xaxes: boolean or str (default False) Assign shared (linked) x-axes for 2D cartesian subplots - True or 'columns': Share axes among subplots in the same column - 'rows': Share axes among subplots in the same row - 'all': Share axes across all subplots in the grid. shared_yaxes: boolean or str (default False) Assign shared (linked) y-axes for 2D cartesian subplots - 'columns': Share axes among subplots in the same column - True or 'rows': Share axes among subplots in the same row - 'all': Share axes across all subplots in the grid. start_cell: 'bottom-left' or 'top-left' (default 'top-left') Choose the starting cell in the subplot grid used to set the domains_grid of the subplots. - 'top-left': Subplots are numbered with (1, 1) in the top left corner - 'bottom-left': Subplots are numbererd with (1, 1) in the bottom left corner print_grid: boolean (default True): If True, prints a string representation of the plot grid. Grid may also be printed using the `Figure.print_grid()` method on the resulting figure. horizontal_spacing: float (default 0.2 / cols) Space between subplot columns in normalized plot coordinates. Must be a float between 0 and 1. Applies to all columns (use 'specs' subplot-dependents spacing) vertical_spacing: float (default 0.3 / rows) Space between subplot rows in normalized plot coordinates. Must be a float between 0 and 1. Applies to all rows (use 'specs' subplot-dependents spacing) subplot_titles: list of str or None (default None) Title of each subplot as a list in row-major ordering. Empty strings ("") can be included in the list if no subplot title is desired in that space so that the titles are properly indexed. specs: list of lists of dict or None (default None) Per subplot specifications of subplot type, row/column spanning, and spacing. ex1: specs=[[{}, {}], [{'colspan': 2}, None]] ex2: specs=[[{'rowspan': 2}, {}], [None, {}]] - Indices of the outer list correspond to subplot grid rows starting from the top, if start_cell='top-left', or bottom, if start_cell='bottom-left'. The number of rows in 'specs' must be equal to 'rows'. - Indices of the inner lists correspond to subplot grid columns starting from the left. The number of columns in 'specs' must be equal to 'cols'. - Each item in the 'specs' list corresponds to one subplot in a subplot grid. (N.B. The subplot grid has exactly 'rows' times 'cols' cells.) - Use None for a blank a subplot cell (or to move past a col/row span). - Note that specs[0][0] has the specs of the 'start_cell' subplot. - Each item in 'specs' is a dictionary. The available keys are: * type (string, default 'xy'): Subplot type. One of - 'xy': 2D Cartesian subplot type for scatter, bar, etc. - 'scene': 3D Cartesian subplot for scatter3d, cone, etc. - 'polar': Polar subplot for scatterpolar, barpolar, etc. - 'ternary': Ternary subplot for scatterternary - 'mapbox': Mapbox subplot for scattermapbox - 'domain': Subplot type for traces that are individually positioned. pie, parcoords, parcats, etc. - trace type: A trace type which will be used to determine the appropriate subplot type for that trace * secondary_y (bool, default False): If True, create a secondary y-axis positioned on the right side of the subplot. Only valid if type='xy'. * colspan (int, default 1): number of subplot columns for this subplot to span. * rowspan (int, default 1): number of subplot rows for this subplot to span. * l (float, default 0.0): padding left of cell * r (float, default 0.0): padding right of cell * t (float, default 0.0): padding right of cell * b (float, default 0.0): padding bottom of cell - Note: Use 'horizontal_spacing' and 'vertical_spacing' to adjust the spacing in between the subplots. insets: list of dict or None (default None): Inset specifications. Insets are subplots that overlay grid subplots - Each item in 'insets' is a dictionary. The available keys are: * cell (tuple, default=(1,1)): (row, col) index of the subplot cell to overlay inset axes onto. * type (string, default 'xy'): Subplot type * l (float, default=0.0): padding left of inset in fraction of cell width * w (float or 'to_end', default='to_end') inset width in fraction of cell width ('to_end': to cell right edge) * b (float, default=0.0): padding bottom of inset in fraction of cell height * h (float or 'to_end', default='to_end') inset height in fraction of cell height ('to_end': to cell top edge) column_widths: list of numbers or None (default None) list of length `cols` of the relative widths of each column of suplots. Values are normalized internally and used to distribute overall width of the figure (excluding padding) among the columns. For backward compatibility, may also be specified using the `column_width` keyword argument. row_heights: list of numbers or None (default None) list of length `rows` of the relative heights of each row of subplots. If start_cell='top-left' then row heights are applied top to bottom. Otherwise, if start_cell='bottom-left' then row heights are applied bottom to top. For backward compatibility, may also be specified using the `row_width` kwarg. If specified as `row_width`, then the width values are applied from bottom to top regardless of the value of start_cell. This matches the legacy behavior of the `row_width` argument. column_titles: list of str or None (default None) list of length `cols` of titles to place above the top subplot in each column. row_titles: list of str or None (default None) list of length `rows` of titles to place on the right side of each row of subplots. If start_cell='top-left' then row titles are applied top to bottom. Otherwise, if start_cell='bottom-left' then row titles are applied bottom to top. x_title: str or None (default None) Title to place below the bottom row of subplots, centered horizontally y_title: str or None (default None) Title to place to the left of the left column of subplots, centered vertically figure: go.Figure or None (default None) If None, a new go.Figure instance will be created and its axes will be populated with those corresponding to the requested subplot geometry and this new figure will be returned. If a go.Figure instance, the axes will be added to the layout of this figure and this figure will be returned. If the figure already contains axes, they will be overwritten. Examples -------- Example 1: >>> # Stack two subplots vertically, and add a scatter trace to each >>> from plotly.subplots import make_subplots >>> import plotly.graph_objects as go >>> fig = make_subplots(rows=2) This is the format of your plot grid: [ (1,1) xaxis1,yaxis1 ] [ (2,1) xaxis2,yaxis2 ] >>> fig.add_scatter(y=[2, 1, 3], row=1, col=1) # doctest: +ELLIPSIS Figure(...) >>> fig.add_scatter(y=[1, 3, 2], row=2, col=1) # doctest: +ELLIPSIS Figure(...) or see Figure.append_trace Example 2: >>> # Stack a scatter plot >>> fig = make_subplots(rows=2, shared_xaxes=True) This is the format of your plot grid: [ (1,1) xaxis1,yaxis1 ] [ (2,1) xaxis2,yaxis2 ] >>> fig.add_scatter(y=[2, 1, 3], row=1, col=1) # doctest: +ELLIPSIS Figure(...) >>> fig.add_scatter(y=[1, 3, 2], row=2, col=1) # doctest: +ELLIPSIS Figure(...) Example 3: >>> # irregular subplot layout (more examples below under 'specs') >>> fig = make_subplots(rows=2, cols=2, ... specs=[[{}, {}], ... [{'colspan': 2}, None]]) This is the format of your plot grid: [ (1,1) xaxis1,yaxis1 ] [ (1,2) xaxis2,yaxis2 ] [ (2,1) xaxis3,yaxis3 - ] >>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=1, col=1) # doctest: +ELLIPSIS Figure(...) >>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=1, col=2) # doctest: +ELLIPSIS Figure(...) >>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=2, col=1) # doctest: +ELLIPSIS Figure(...) Example 4: >>> # insets >>> fig = make_subplots(insets=[{'cell': (1,1), 'l': 0.7, 'b': 0.3}]) This is the format of your plot grid: [ (1,1) xaxis1,yaxis1 ] With insets: [ xaxis2,yaxis2 ] over [ (1,1) xaxis1,yaxis1 ] >>> fig.add_scatter(x=[1,2,3], y=[2,1,1]) # doctest: +ELLIPSIS Figure(...) >>> fig.add_scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2') # doctest: +ELLIPSIS Figure(...) Example 5: >>> # include subplot titles >>> fig = make_subplots(rows=2, subplot_titles=('Plot 1','Plot 2')) This is the format of your plot grid: [ (1,1) x1,y1 ] [ (2,1) x2,y2 ] >>> fig.add_scatter(x=[1,2,3], y=[2,1,2], row=1, col=1) # doctest: +ELLIPSIS Figure(...) >>> fig.add_bar(x=[1,2,3], y=[2,1,2], row=2, col=1) # doctest: +ELLIPSIS Figure(...) Example 6: Subplot with mixed subplot types >>> fig = make_subplots(rows=2, cols=2, ... specs=[[{'type': 'xy'}, {'type': 'polar'}], ... [{'type': 'scene'}, {'type': 'ternary'}]]) >>> fig.add_traces( ... [go.Scatter(y=[2, 3, 1]), ... go.Scatterpolar(r=[1, 3, 2], theta=[0, 45, 90]), ... go.Scatter3d(x=[1, 2, 1], y=[2, 3, 1], z=[0, 3, 5]), ... go.Scatterternary(a=[0.1, 0.2, 0.1], ... b=[0.2, 0.3, 0.1], ... c=[0.7, 0.5, 0.8])], ... rows=[1, 1, 2, 2], ... cols=[1, 2, 1, 2]) # doctest: +ELLIPSIS Figure(...) """ return _sub.make_subplots( rows, cols, shared_xaxes, shared_yaxes, start_cell, print_grid, horizontal_spacing, vertical_spacing, subplot_titles, column_widths, row_heights, specs, insets, column_titles, row_titles, x_title, y_title, figure, **kwargs, )
1119aba8e9b9f35b18959f765e4528e2d065a5b8
545
from re import T def op_table(name): """Get the symbol `name' as an int8_t[].""" return gdb.parse_and_eval("&'" + name + "'").cast(T('int8_t').pointer())
8266128cb1bf59b9d71d7dabb7d002ff22e41192
546
from typing import Dict from typing import Any def nf_masks_to_neurof_dict(binary_masks: np.ndarray, dataset_name: str) -> Dict[str, Any]: """ Take as input a tensor of binary mask and produces dict format for neurofinder Args: binary_masks: 3d ndarray (components x dimension 1 x dimension 2) dataset_filename: name of the dataset Returns: dset: dict dataset in neurofinder format to be saved in json """ regions = [] for m in binary_masks: coords = [[int(x), int(y)] for x, y in zip(*np.where(m))] regions.append({"coordinates": coords}) dset = {"regions": regions, "dataset": dataset_name} return dset
daee76afc56e6e0da0939530a49f4a77b4c1d5f6
547
def get_domain_machine_command(): """Retrieves a collection of Machines that have communicated to or from a given domain address. Returns: (str, dict, dict). Human readable, context, raw response """ headers = ['ID', 'ComputerDNSName', 'OSPlatform', 'LastIPAddress', 'LastExternalIPAddress', 'HealthStatus', 'RiskScore', 'ExposureLevel'] domain = demisto.args().get('domain') response = get_domain_machines_request(domain) machines_list = get_machines_list(response) human_readable = tableToMarkdown(f'Machines that have communicated with {domain} domain:', machines_list, headers=headers, removeNull=True) context_output = { 'Domain': domain, 'Machines': machines_list } entry_context = { 'MicrosoftATP.DomainMachine(val.Domain === obj.Domain)': context_output } return human_readable, entry_context, response
0e614d15abd3e99408d4a3d7a93ecc49dba694ad
548
import copy from functools import reduce def flatten_dict(source_dict, name_delimiter='_', inner_name=False): """ flatten nest dict Parameters ---------- source_dict : nest dict name_delimiter : flatten name delimiter(non-use when inner_name is True) inner_name : False, use innermost name as retrun dict key or not Returns ------- flatten dict Examples -------- >>> from tidyframe import flatten_dict >>> nest_dict = { ... 'a': 1, ... 'b': [1, 2], ... 'c': { ... 'cc1': 3, ... 'cc2': 4 ... }, ... 'd': { ... 'd1': 5, ... 'd2': { ... 'dd1': 6, ... 'dd2': 7 ... } ... } ... } >>> flatten_dict(nest_dict) {'a': 1, 'b': [1, 2], 'c_cc1': 3, 'c_cc2': 4, 'd_d1': 5, 'd_d2_dd1': 6, 'd_d2_dd2': 7} >>> flatten_dict(nest_dict, inner_name=True) {'a': 1, 'b': [1, 2], 'cc1': 3, 'cc2': 4, 'd1': 5, 'dd1': 6, 'dd2': 7} """ assert isinstance(source_dict, dict), "import source_dict is not dict" json_name = {} for key in source_dict.keys(): if isinstance(get_in(source_dict, [key]), dict): val = [True, [key]] json_name.update({key: val}) else: val = [False, [key]] json_name.update({key: val}) while True: key_inner = list(filter(lambda x: json_name.get(x)[0], json_name)) if key_inner: for x in key_inner: dict_to_update_json_name = {} val = json_name.get(x)[1] for key in get_in(source_dict, val).keys(): val_in = copy(val) val_in.append(key) if isinstance(get_in(source_dict, val_in), dict): dict_to_update = { reduce(lambda x, y: x + name_delimiter + y, val_in): [True, val_in] } else: dict_to_update = { reduce(lambda x, y: x + name_delimiter + y, val_in): [False, val_in] } dict_to_update_json_name.update(dict_to_update) json_name.update(dict_to_update_json_name) json_name.pop(x) else: break if inner_name: return { json_name.get(x)[1][-1]: get_in(source_dict, json_name.get(x)[1]) for x in json_name.keys() } else: return { x: get_in(source_dict, json_name.get(x)[1]) for x in json_name.keys() }
fbba7666c25f5eafd47642b8308a486e25cdc6f9
549
def matrix_multiply(A, B): """ Multiply two matrices A and B. :param A: the right matrix :param B: the left matrix :return: A * B """ # define m and n for the matrix as well as l, the connecting dimension between A and B m, l, n = len(A), len(A[0]), len(B[0]) # initialize an all zeros matrix C = [[0.0 for _ in range(len(B[0]))] for _ in range(len(A))] # iterative over the rows of C for i in range(m): # iterative over the columns of C for j in range(n): # set C[i][j] to the dot product of ith row of A and the jth column of B C[i][j] = sum(A[i][k] * B[k][j] for k in range(l)) # return the matrix C = A @ B return C
3cd551ea87d9f925654a4153106c2fe87e33fa8c
550
def hard_light(image1, image2): """ Superimposes two videos on top of each other using the Hard Light algorithm :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_hard_light(image2.im))
dcfd25a83f142c2d42c38a787569001af6f6bfc9
551
def show(*actors, **options): """ Create on the fly an instance of class ``Plotter`` and show the object(s) provided. Allowed input objects types are: ``str``, ``Mesh``, ``Volume``, ``Picture``, ``Assembly`` ``vtkPolyData``, ``vtkActor``, ``vtkActor2D``, ``vtkImageActor``, ``vtkAssembly`` or ``vtkVolume``. If filename is given, its type is guessed based on its extension. Supported formats are: `vtu, vts, vtp, ply, obj, stl, 3ds, xml, neutral, gmsh, pcd, xyz, txt, byu, tif, slc, vti, mhd, png, jpg`. :param int at: number of the renderer to plot to, if more than one exists :param list shape: Number of sub-render windows inside of the main window. Specify two across with ``shape=(2, 1)`` and a two by two grid with ``shape=(2, 2)``. By default there is only one renderer. Can also accept a shape as string descriptor. E.g.: - shape="3|1" means 3 plots on the left and 1 on the right, - shape="4/2" means 4 plots on top of 2 at bottom. :param int axes: set the type of axes to be shown - 0, no axes - 1, draw three gray grid walls - 2, show cartesian axes from (0,0,0) - 3, show positive range of cartesian axes from (0,0,0) - 4, show a triad at bottom left - 5, show a cube at bottom left - 6, mark the corners of the bounding box - 7, draw a 3D ruler at each side of the cartesian axes - 8, show the ``vtkCubeAxesActor`` object - 9, show the bounding box outLine - 10, show three circles representing the maximum bounding box - 11, show a large grid on the x-y plane - 12, show polar axes - 13, draw a simple ruler at the bottom of the window Axis type-1 can be fully customized by passing a dictionary ``axes=dict()`` where: Check ``addons.Axes()`` for the full list of options. :param float azimuth/elevation/roll: move camera accordingly :param str viewup: either ['x', 'y', 'z'] or a vector to set vertical direction :param bool resetcam: re-adjust camera position to fit objects :param dict camera: Camera parameters can further be specified with a dictionary assigned to the ``camera`` keyword (E.g. `show(camera={'pos':(1,2,3), 'thickness':1000,})`) - pos, `(list)`, the position of the camera in world coordinates - focalPoint `(list)`, the focal point of the camera in world coordinates - viewup `(list)`, the view up direction for the camera - distance `(float)`, set the focal point to the specified distance from the camera position. - clippingRange `(float)`, distance of the near and far clipping planes along the direction of projection. - parallelScale `(float)`, scaling used for a parallel projection, i.e. the height of the viewport in world-coordinate distances. The default is 1. Note that the "scale" parameter works as an "inverse scale", larger numbers produce smaller images. This method has no effect in perspective projection mode. - thickness `(float)`, set the distance between clipping planes. This method adjusts the far clipping plane to be set a distance 'thickness' beyond the near clipping plane. - viewAngle `(float)`, the camera view angle, which is the angular height of the camera view measured in degrees. The default angle is 30 degrees. This method has no effect in parallel projection mode. The formula for setting the angle up for perfect perspective viewing is: angle = 2*atan((h/2)/d) where h is the height of the RenderWindow (measured by holding a ruler up to your screen) and d is the distance from your eyes to the screen. :param bool interactive: pause and interact with window (True) or continue execution (False) :param float rate: maximum rate of `show()` in Hertz :param int interactorStyle: set the type of interaction - 0 = TrackballCamera [default] - 1 = TrackballActor - 2 = JoystickCamera - 3 = JoystickActor - 4 = Flight - 5 = RubberBand2D - 6 = RubberBand3D - 7 = RubberBandZoom - 8 = Context - 9 = 3D - 10 = Terrain - 11 = Unicam :param bool q: force program to quit after `show()` command returns. :param bool new: if set to `True`, a call to ``show`` will instantiate a new ``Plotter`` object (a new window) instead of reusing the first created. :return: the current ``Plotter`` class instance. .. note:: With multiple renderers, keyword ``at`` can become a `list`, e.g. .. code-block:: python from vedo import * s = Sphere() c = Cube() p = Paraboloid() show(s, c, at=[0, 1], shape=(3,1)) show(p, at=2, interactive=True) # # is equivalent to: plt = Plotter(shape=(3,1)) s = Sphere() c = Cube() p = Paraboloid() plt.show(s, at=0) plt.show(p, at=1) plt.show(c, at=2, interactive=True) """ at = options.pop("at", None) shape = options.pop("shape", (1, 1)) N = options.pop("N", None) pos = options.pop("pos", (0, 0)) size = options.pop("size", "auto") screensize = options.pop("screensize", "auto") title = options.pop("title", "") bg = options.pop("bg", "white") bg2 = options.pop("bg2", None) axes = options.pop("axes", settings.defaultAxesType) interactive = options.pop("interactive", None) offscreen = options.pop("offscreen", False) sharecam = options.pop("sharecam", True) resetcam = options.pop("resetcam", True) zoom = options.pop("zoom", None) viewup = options.pop("viewup", "") azimuth = options.pop("azimuth", 0) elevation = options.pop("elevation", 0) roll = options.pop("roll", 0) camera = options.pop("camera", None) interactorStyle = options.pop("interactorStyle", 0) q = options.pop("q", False) newPlotter = options.pop("new", False) if len(options): for op in options: printc("Warning: unknown keyword in show():", op, c='y') if len(actors) == 0: actors = None elif len(actors) == 1: actors = actors[0] else: actors = utils.flatten(actors) if settings.plotter_instance and not newPlotter: # Plotter exists plt = settings.plotter_instance else: # Plotter must be created if utils.isSequence(at): # user passed a sequence for "at" if not utils.isSequence(actors): printc("show() Error: input must be a list.", c='r') raise RuntimeError() if len(at) != len(actors): printc("show() Error: lists 'input' and 'at', must have equal lengths.", c='r') raise RuntimeError() if len(at) > 1 and (shape == (1, 1) and N is None): N = max(at) + 1 elif at is None and (N or shape != (1, 1)): if not utils.isSequence(actors): printc('show() Error: N or shape is set, but input is not a sequence.', c='r') printc(' you may need to specify e.g. at=0', c='r') raise RuntimeError() at = list(range(len(actors))) plt = Plotter( shape=shape, N=N, pos=pos, size=size, screensize=screensize, title=title, axes=axes, sharecam=sharecam, resetcam=resetcam, interactive=interactive, offscreen=offscreen, bg=bg, bg2=bg2, ) # use _plt_to_return because plt.show() can return a k3d/panel plot _plt_to_return = None if utils.isSequence(at): for i, a in enumerate(actors): _plt_to_return = plt.show( a, at=i, zoom=zoom, resetcam=resetcam, viewup=viewup, azimuth=azimuth, elevation=elevation, roll=roll, camera=camera, interactive=False, interactorStyle=interactorStyle, bg=bg, bg2=bg2, axes=axes, q=q, ) plt.interactive = interactive if interactive or len(at)==N \ or (isinstance(shape[0],int) and len(at)==shape[0]*shape[1]): # note that shape can be a string if not offscreen: plt.interactor.Start() else: _plt_to_return = plt.show( actors, at=at, zoom=zoom, resetcam=resetcam, viewup=viewup, azimuth=azimuth, elevation=elevation, roll=roll, camera=camera, interactive=interactive, interactorStyle=interactorStyle, bg=bg, bg2=bg2, axes=axes, q=q, ) return _plt_to_return
e95c9bbd325e8e6da6ee4f33ca861496c3048bd3
552
import subprocess def convert_book(book): """ Attempt to convert any books of type in `CONVERTIBLE_MIMETYPES` to .mobi, in the same folder as the given temporary path. """ tmp_path = book.get_tmp_pathname(u'send_books') mobi_tmp_path = convert_to_mobi_path(tmp_path) if mobi_tmp_path is None: return None log.info(u"Converting book for user id {0}".format(book.user_id)) try: subprocess.check_output(['ebook-convert', tmp_path, mobi_tmp_path], timeout=CONVERSION_TIMEOUT) except subprocess.CalledProcessError as e: return e.output except subprocess.TimeoutExpired as e: return "Timed out converting book" except Exception as e: return e.message
707674ea97365bbf95dba4754052fcfc8409bae0
553
from typing import List def get_followup_question_list(intent: str) -> List[str]: """ Get all imported followup questions for this intent as a list * `intent`: name-parameter of the yml-section with which the followup questions were imported **Returns:** None if no followup questions are known for this intent, otherwise list of followup questions for this intent """ return None if not qa.get(intent) else qa.get(intent).followup_questions
00581a497d4e09670edaa0d44870a2a0d7589ada
554
from typing import Tuple def event_train_test_split( evs: np.ndarray, n_evs: int, train_split: float, random_seed: int=1 ) -> Tuple[np.ndarray, np.ndarray]: """[summary] Args: n_evs (int): [description] train_split (float): [description] random_seed (int, optional): [description]. Defaults to 1. Returns: Tuple[np.ndarray, np.ndarray]: [description] """ # some basic checks assert 0 < train_split < 1, "Variable train_split (ts) must be 0<ts<1." assert n_evs > 1, "Need more than 1 event to split." # set the random state locally r = np.random.RandomState(random_seed) # compute the number of test and train samples train_samples = int(np.round(train_split * n_evs, 0)) test_samples = int(n_evs - train_samples) # split the events train_events = r.choice(evs, train_samples, replace=False) test_events = evs[~np.isin(evs, train_events)] # make sure they add up to the total number! assert len(train_events) + len(test_events) == n_evs return train_events, test_events
69deb28d199fc8636ed45a90630a69753f4c1066
555
def get_cd(wcs, n=1): """ Get the value of the change in world coordinate per pixel across a linear axis. Defaults to wcs.wcs.cd if present. Does not support rotated headers (e.g., with nonzero CDm_n where m!=n) """ if hasattr(wcs.wcs,'cd'): if wcs.wcs.cd[n-1,n-1] != 0: return wcs.wcs.cd[n-1,n-1] else: return wcs.wcs.get_cdelt()[n-1]
9b31c81a1a5e87efeb201ffef7f8f65f846fe0b7
556
def mock_clear(): """Clear MOCK_DATA_HEAP""" MOCK_DATA_HEAP.clear() return ""
96212726db3f1e29ac4da54e62df70cb89ba1f2e
557
from datetime import datetime def cls_merge_type(classification): """ classification type이 2가지일 때 합쳐주는 함수 Parameters ---------- classification: cls classification 리스트 Returns ------- list of cls 변환된 classification 리스트 """ cls_type = {'instant' if cls.get('instant_datetime') else 'not_instant' for cls in classification } if len(cls_type) == 2: for cls in classification: instant_datetime = cls.get('instant_datetime') if instant_datetime: year = instant_datetime.year start_datetime = datetime.datetime(year, 1, 1) # 해당년도 1월 1일로 설정 end_datetime = instant_datetime cls['instant_datetime'] = None cls['start_datetime'] = start_datetime cls['end_datetime'] = end_datetime return classification
e6a59f45adecdc21acb81f6890ac79cfaa93b4d6
558
def duplicate_detector(gate_orders: list[tuple[str]]) -> int: """Detects any schematics that have an identical combination of gates.""" difference = len(gate_orders) - len(list(set(gate_orders))) # List - list with no duplicates return difference
e439a106abc0ff21bfe9773b3185d35b5bf05aa0
559
def permutations(x): """Return all permutations of x""" def fn(i): if i == len(x): ans.append(x.copy()) for k in range(i, len(x)): x[i], x[k] = x[k], x[i] fn(i+1) x[i], x[k] = x[k], x[i] ans = [] fn(0) return ans
691c701e1ac17da5dabb0fc3fe607ff68ac8fcdc
560
import os def _add_cobertura_package(packages, package_name, package_data): # type: (SubElement, str, t.Dict[str, t.Dict[str, int]]) -> t.Tuple[int, int] """Add a package element to the given packages element.""" elem_package = SubElement(packages, 'package') elem_classes = SubElement(elem_package, 'classes') total_lines_hit = 0 total_line_count = 0 for path, results in package_data.items(): lines_hit = len([True for hits in results.values() if hits]) line_count = len(results) total_lines_hit += lines_hit total_line_count += line_count elem_class = SubElement(elem_classes, 'class') class_name = os.path.splitext(os.path.basename(path))[0] if class_name.startswith("Ansible.ModuleUtils"): class_name = class_name[20:] content_root = data_context().content.root filename = path if filename.startswith(content_root): filename = filename[len(content_root) + 1:] elem_class.attrib.update({ 'branch-rate': '0', 'complexity': '0', 'filename': filename, 'line-rate': str(round(lines_hit / line_count, 4)) if line_count else "0", 'name': class_name, }) SubElement(elem_class, 'methods') elem_lines = SubElement(elem_class, 'lines') for number, hits in results.items(): elem_line = SubElement(elem_lines, 'line') elem_line.attrib.update( hits=str(hits), number=str(number), ) elem_package.attrib.update({ 'branch-rate': '0', 'complexity': '0', 'line-rate': str(round(total_lines_hit / total_line_count, 4)) if total_line_count else "0", 'name': package_name, }) return total_lines_hit, total_line_count
80db50ebf302ed5a590069ba08aa7d9de1b59cda
561
def encode(model, text, out_file=None, topic_priors=None, prior_weight=1.0): """ Perform text-to-image encoding. Parameters ---------- model : :obj:`gclda.model.Model` Model object needed for decoding. text : :obj:`str` or :obj:`list` Text to encode into an image. out_file : :obj:`str`, optional If not None, writes the encoded image to a file. topic_priors : :obj:`numpy.ndarray` of :obj:`float`, optional A 1d array of size (n_topics) with values for topic weighting. If None, no weighting is done. Default is None. prior_weight : :obj:`float`, optional The weight by which the prior will affect the encoding. Default is 1. Returns ------- img : :obj:`nibabel.Nifti1Image` The encoded image. topic_weights : :obj:`numpy.ndarray` of :obj:`float` The weights of the topics used in encoding. Notes ----- ====================== ============================================================== Notation Meaning ====================== ============================================================== :math:`v` Voxel :math:`t` Topic :math:`w` Word type :math:`h` Input text :math:`p(v|t)` Probability of topic given voxel (``p_topic_g_voxel``) :math:`\\tau_{t}` Topic weight vector (``topic_weights``) :math:`p(w|t)` Probability of word type given topic (``p_word_g_topic``) :math:`\omega` 1d array from input image (``input_values``) ====================== ============================================================== 1. Compute :math:`p(v|t)` (``p_voxel_g_topic``). - From :obj:`gclda.model.Model.get_spatial_probs()` 2. Compute :math:`p(t|w)` (``p_topic_g_word``). 3. Vectorize input text according to model vocabulary. 4. Reduce :math:`p(t|w)` to only include word types in input text. 5. Compute :math:`p(t|h)` (``p_topic_g_text``) by multiplying :math:`p(t|w)` by word counts for input text. 6. Sum topic weights (:math:`\\tau_{t}`) across words. - :math:`\\tau_{t} = \sum_{i}{p(t|h_{i})}` 7. Compute voxel weights. - :math:`p(v|h) \propto p(v|t) \cdot \\tau_{t}` 8. The resulting array (``voxel_weights``) reflects arbitrarily scaled voxel weights for the input text. 9. Unmask and reshape ``voxel_weights`` into brain image. """ if isinstance(text, list): text = " ".join(text) # Assume that words in word_labels are underscore-separated. # Convert to space-separation for vectorization of input string. vocabulary = [term.replace("_", " ") for term in model.dataset.word_labels] max_len = max([len(term.split(" ")) for term in vocabulary]) vectorizer = CountVectorizer( vocabulary=model.dataset.word_labels, ngram_range=(1, max_len) ) word_counts = np.squeeze(vectorizer.fit_transform([text]).toarray()) keep_idx = np.where(word_counts > 0)[0] text_counts = word_counts[keep_idx] n_topics_per_word_token = np.sum(model.n_word_tokens_word_by_topic, axis=1) p_topic_g_word = ( model.n_word_tokens_word_by_topic / n_topics_per_word_token[:, None] ) p_topic_g_word = np.nan_to_num(p_topic_g_word, 0) p_topic_g_text = p_topic_g_word[keep_idx] # p(T|W) for words in text only prod = p_topic_g_text * text_counts[:, None] # Multiply p(T|W) by words in text topic_weights = np.sum(prod, axis=0) # Sum across words if topic_priors is not None: weighted_priors = weight_priors(topic_priors, prior_weight) topic_weights *= weighted_priors _, p_voxel_g_topic = model.get_spatial_probs() voxel_weights = np.dot(p_voxel_g_topic, topic_weights) img = unmask(voxel_weights, model.dataset.mask_img) if out_file is not None: img.to_filename(out_file) return img, topic_weights
941745be7b84c3af9d7f7e62cb2d93fabc3b22c1
562
def clean_string(s: str) -> str: """Cleans and returns an input string >>> clean_string(" xYz ") 'XYZ' """ return str(s).strip().upper()
c97281505492ded5b9167076312959c5eee41a6c
563
import collections def get_unique_region_cov_df(unique_region_dict, fuzzer_names): """Returns a DataFrame where the two columns are fuzzers and the number of unique regions covered.""" fuzzers = collections.defaultdict(int) for region in unique_region_dict: for fuzzer in unique_region_dict[region]: fuzzers[fuzzer] += 1 dict_to_transform = {'fuzzer': [], 'unique_regions_covered': []} for fuzzer in fuzzer_names: covered_num = fuzzers[fuzzer] dict_to_transform['fuzzer'].append(fuzzer) dict_to_transform['unique_regions_covered'].append(covered_num) return pd.DataFrame(dict_to_transform)
923227fb804549252bf51cd94e65180c3f8564e8
564
from typing import Optional from typing import Union from typing import Tuple import os from typing import Counter import torch def load_continuous_dataset( root: str, name: str, raw: bool = False, random_state: Optional[RandomState] = None ) -> Union[ Tuple[np.ndarray, np.ndarray, np.ndarray], Tuple[UnsupervisedDataset, UnsupervisedDataset, UnsupervisedDataset] ]: """ Load a continuous dataset. All the datasets are preprocessed as in the original MAF paper repository. See https://github.com/gpapamak/maf/tree/master/datasets for details. :param root: The datasets root directory. :param name: The name of the dataset. :param raw: Whether to return unpreprocessed Numpy arrays instead of Torch Datasets. Torch Datasets will have standardization as data transformation. :param random_state: The random state to use for shuffling and transforming the data. It can be either None, a seed integer or a Numpy RandomState. :return: The train, validation and test dataset splits. :raise ValueError: If the continuous dataset name is not known. """ # Check the random state random_state = check_random_state(random_state) directory = os.path.join(root, name) if name == 'power': # Load the dataset data = np.load(os.path.join(directory, 'data.npy')) random_state.shuffle(data) n_samples = len(data) data = np.delete(data, [1, 3], axis=1) # Add noise as in original datasets preprocessing (MAF paper) voltage_noise = 0.01 * random_state.rand(n_samples, 1) gap_noise = 0.001 * random_state.rand(n_samples, 1) sm_noise = random_state.rand(n_samples, 3) time_noise = np.zeros(shape=(n_samples, 1)) data = data + np.hstack([gap_noise, voltage_noise, sm_noise, time_noise]) # Split the dataset n_test = int(0.1 * len(data)) data_test = data[-n_test:] data = data[:-n_test] n_valid = int(0.1 * len(data)) data_valid = data[-n_valid:] data_train = data[:-n_valid] elif name == 'gas': # Load the dataset data = pd.read_pickle(os.path.join(directory, 'ethylene_CO.pickle')) data.drop(['Meth', 'Eth', 'Time'], axis=1, inplace=True) # Remove uninformative features uninformative_idx = (data.corr() > 0.98).to_numpy().sum(axis=1) while np.any(uninformative_idx > 1): col_to_remove = np.where(uninformative_idx > 1)[0][0] data.drop(data.columns[col_to_remove], axis=1, inplace=True) uninformative_idx = (data.corr() > 0.98).to_numpy().sum(axis=1) data = data.to_numpy() random_state.shuffle(data) # Split the dataset n_test = int(0.1 * len(data)) data_test = data[-n_test:] data = data[:-n_test] n_valid = int(0.1 * len(data)) data_valid = data[-n_valid:] data_train = data[:-n_valid] elif name == 'hepmass': # Load the dataset data_train = pd.read_csv(os.path.join(directory, "1000_train.csv"), index_col=False) data_test = pd.read_csv(os.path.join(directory, "1000_test.csv"), index_col=False) # Gets rid of any background noise examples i.e. class label 0. data_train = data_train[data_train[data_train.columns[0]] == 1] data_train = data_train.drop(data_train.columns[0], axis=1) data_test = data_test[data_test[data_test.columns[0]] == 1] data_test = data_test.drop(data_test.columns[0], axis=1) data_test = data_test.drop(data_test.columns[-1], axis=1) data_train, data_test = data_train.to_numpy(), data_test.to_numpy() # Remove any features that have too many re-occurring real values. features_to_remove = [] for i, feature in enumerate(data_train.T): c = Counter(feature) max_count = next(v for k, v in sorted(c.items())) if max_count > 5: features_to_remove.append(i) features_to_keep = [i for i in range(data_train.shape[1]) if i not in features_to_remove] data_train = data_train[:, features_to_keep] data_test = data_test[:, features_to_keep] random_state.shuffle(data_train) # Split the train dataset n_valid = int(len(data_train) * 0.1) data_valid = data_train[-n_valid:] data_train = data_train[:-n_valid] elif name == 'miniboone': # Load the dataset data = np.load(os.path.join(directory, 'data.npy')) random_state.shuffle(data) # Split the dataset n_test = int(0.1 * len(data)) data_test = data[-n_test:] data = data[:-n_test] n_valid = int(0.1 * len(data)) data_valid = data[-n_valid:] data_train = data[:-n_valid] elif name == 'BSDS300': # Load the dataset with h5py.File(os.path.join(directory, 'BSDS300.hdf5'), 'r') as file: data_train = file['train'][:] data_valid = file['validation'][:] data_test = file['test'][:] else: raise ValueError("Unknown continuous dataset called {}".format(name)) # Return raw Numpy arrays, if specified if raw: return data_train, data_valid, data_test # Instantiate the standardize transform mean = torch.tensor(np.mean(data_train, axis=0), dtype=torch.float32) std = torch.tensor(np.std(data_train, axis=0), dtype=torch.float32) transform = Normalize(mean, std) # Wrap and return the datasets data_train = UnsupervisedDataset(data_train, transform) data_valid = UnsupervisedDataset(data_valid, transform) data_test = UnsupervisedDataset(data_test, transform) return data_train, data_valid, data_test
d33c3e36fbf4c225a0be07e52f4e6b8845dc2187
565
def display_generation_hit_results(hit_info, hit_results): """Displays the results of a generation HIT Parameters ---------- hit_info : GenerationHITInfo HITInfo object storing information regarding the HIT hit_results : GenerationResults HIT results object storing the results of the relevant HIT Returns ------- bool returns True """ dec_string = format_decomposition_string(hit_results.decomposition) print( 'HIT ID: {hit_id}' '\nAssignment ID: {assignment_id}' '\nHIT Type: Generation' '\n' '\nResults' '\n=======' '\nAnnotation ID: {annotation_id}' '\nQuestion ID: {question_id}' '\nQuestion Text: {question_text}' '\nDecomposition: {decomposition}'.format( hit_id=hit_results.hit_id, assignment_id=hit_results.assignment_id, annotation_id=hit_info.annotation_id, question_id=hit_info.question_id, question_text=hit_info.question_text, decomposition=dec_string)) return True
649cf05d0ee3a87032993fd05fc120162c7f8d2b
566
import sys def check_help_all_output(pkg, subcommand=None): """test that `python -m PKG --help-all` works""" cmd = [sys.executable, '-m', pkg] if subcommand: cmd.extend(subcommand) cmd.append('--help-all') out, err, rc = get_output_error_code(cmd) nt.assert_equal(rc, 0, err) nt.assert_not_in("Traceback", err) nt.assert_in("Options", out) nt.assert_in("Class parameters", out) return out, err
adeb80303c1a087a1294803cff298978f305f738
567
def XOR(v1, v2): """ XOR operation element by element from 2 lists :param v1: [1, 0, 1, 0, 0, 1] :param v2: [1, 1, 0, 0, 1, 1] :return: [0, 1, 1, 0, 1, 0] """ return [a ^ b for a, b in zip(v1, v2)]
e3b94b35ccf4e1dd99cc51f32c70f96c5fe99795
568
def linearly_spaced_combinations(bounds, num_samples): """ Return 2-D array with all linearly spaced combinations with the bounds. Parameters ---------- bounds : sequence of tuples The bounds for the variables, [(x1_min, x1_max), (x2_min, x2_max), ...] num_samples : integer or array_likem Number of samples to use for every dimension. Can be a constant if the same number should be used for all, or an array to fine-tune precision. Total number of data points is num_samples ** len(bounds). Returns ------- combinations : 2-d array A 2-d arrray. If d = len(bounds) and l = prod(num_samples) then it is of size l x d, that is, every row contains one combination of inputs. """ bounds = np.atleast_2d(bounds) num_vars = len(bounds) num_samples = np.broadcast_to(num_samples, num_vars) # Create linearly spaced test inputs inputs = [np.linspace(b[0], b[1], n) for b, n in zip(bounds, num_samples)] # Convert to 2-D array return combinations(inputs)
4d493290ae5c8af91f2f0dce5041c12c22bb6aaa
569
from typing import Optional from typing import Tuple def flatten_expressions_tree( expression: Optional[Expression]) -> Tuple[Expression, ...]: """ Flatten expressions tree into a list. """ if not expression: return tuple() expressions = [expression] for arg in expression.arguments: if is_expression(arg): expressions.extend(flatten_expressions_tree(arg)) return tuple(expressions)
dea87f37663e995a74b7709b3dbb62d5cc370f50
570
def policy_head(x, mode, params): """ The policy head attached after the residual blocks as described by DeepMind: 1. A convolution of 8 filters of kernel size 3 × 3 with stride 1 2. Batch normalisation 3. A rectifier non-linearity 4. A fully connected linear layer that outputs a vector of size 19²+1 = 362 corresponding to logit probabilities for all intersections and the pass move """ num_channels = params['num_channels'] num_samples = params['num_samples'] def _forward(x, is_recomputing=False): """ Returns the result of the forward inference pass on `x` """ y = batch_norm_conv2d(x, 'conv_1', (3, 3, num_channels, num_samples), mode, params, is_recomputing=is_recomputing) y = tf.nn.relu(y) y = tf.reshape(y, (-1, 361 * num_samples)) y = dense(y, 'linear_1', (361 * num_samples, 362), policy_offset_op, mode, params, is_recomputing=is_recomputing) return tf.cast(y, tf.float32) return recompute_grad(_forward)(x)
8e8418ffd46857cf03921ea516729d15a0ef5ca9
571
from typing import Set from typing import Sequence def _get_doors_gt_nsrts() -> Set[NSRT]: """Create ground truth NSRTs for DoorsEnv.""" robot_type, door_type, room_type = _get_types_by_names( CFG.env, ["robot", "door", "room"]) InRoom, InDoorway, InMainRoom, TouchingDoor, DoorIsOpen, DoorInRoom, \ DoorsShareRoom = _get_predicates_by_names(CFG.env, ["InRoom", "InDoorway", "InMainRoom", "TouchingDoor", "DoorIsOpen", "DoorInRoom", "DoorsShareRoom"]) MoveToDoor, OpenDoor, MoveThroughDoor = _get_options_by_names( CFG.env, ["MoveToDoor", "OpenDoor", "MoveThroughDoor"]) nsrts = set() # MoveToDoorFromMainRoom # This operator should only be used on the first step of a plan. robot = Variable("?robot", robot_type) room = Variable("?room", room_type) door = Variable("?door", door_type) parameters = [robot, room, door] option_vars = [robot, door] option = MoveToDoor preconditions = { LiftedAtom(InRoom, [robot, room]), LiftedAtom(InMainRoom, [robot, room]), LiftedAtom(DoorInRoom, [door, room]), } add_effects = { LiftedAtom(TouchingDoor, [robot, door]), LiftedAtom(InDoorway, [robot, door]) } delete_effects = {LiftedAtom(InMainRoom, [robot, room])} side_predicates: Set[Predicate] = set() move_to_door_nsrt = NSRT("MoveToDoorFromMainRoom", parameters, preconditions, add_effects, delete_effects, side_predicates, option, option_vars, null_sampler) nsrts.add(move_to_door_nsrt) # MoveToDoorFromDoorWay robot = Variable("?robot", robot_type) start_door = Variable("?start_door", door_type) end_door = Variable("?end_door", door_type) parameters = [robot, start_door, end_door] option_vars = [robot, end_door] option = MoveToDoor preconditions = { LiftedAtom(InDoorway, [robot, start_door]), LiftedAtom(DoorsShareRoom, [start_door, end_door]), } add_effects = { LiftedAtom(TouchingDoor, [robot, end_door]), LiftedAtom(InDoorway, [robot, end_door]) } delete_effects = {LiftedAtom(InDoorway, [robot, start_door])} side_predicates = set() move_to_door_nsrt = NSRT("MoveToDoorFromDoorWay", parameters, preconditions, add_effects, delete_effects, side_predicates, option, option_vars, null_sampler) nsrts.add(move_to_door_nsrt) # OpenDoor robot = Variable("?robot", robot_type) door = Variable("?door", door_type) parameters = [door, robot] option_vars = [door, robot] option = OpenDoor preconditions = { LiftedAtom(TouchingDoor, [robot, door]), LiftedAtom(InDoorway, [robot, door]), } add_effects = {LiftedAtom(DoorIsOpen, [door])} delete_effects = { LiftedAtom(TouchingDoor, [robot, door]), } side_predicates = set() # Allow protected access because this is an oracle. Used in the sampler. env = get_or_create_env(CFG.env) assert isinstance(env, DoorsEnv) get_open_door_target_value = env._get_open_door_target_value # pylint: disable=protected-access # Even though this option does not need to be parameterized, we make it so, # because we want to match the parameter space of the option that will # get learned during option learning. This is useful for when we want # to use sampler_learner = "oracle" too. def open_door_sampler(state: State, goal: Set[GroundAtom], rng: np.random.Generator, objs: Sequence[Object]) -> Array: del rng, goal # unused door, _ = objs assert door.is_instance(door_type) # Calculate the desired change in the doors "rotation" feature. # Allow protected access because this is an oracle. mass = state.get(door, "mass") friction = state.get(door, "friction") target_rot = state.get(door, "target_rot") target_val = get_open_door_target_value(mass=mass, friction=friction, target_rot=target_rot) current_val = state.get(door, "rot") delta_rot = target_val - current_val # The door always changes from closed to open. delta_open = 1.0 return np.array([delta_rot, delta_open], dtype=np.float32) open_door_nsrt = NSRT("OpenDoor", parameters, preconditions, add_effects, delete_effects, side_predicates, option, option_vars, open_door_sampler) nsrts.add(open_door_nsrt) # MoveThroughDoor robot = Variable("?robot", robot_type) start_room = Variable("?start_room", room_type) end_room = Variable("?end_room", room_type) door = Variable("?door", door_type) parameters = [robot, start_room, door, end_room] option_vars = [robot, door] option = MoveThroughDoor preconditions = { LiftedAtom(InRoom, [robot, start_room]), LiftedAtom(InDoorway, [robot, door]), LiftedAtom(DoorIsOpen, [door]), LiftedAtom(DoorInRoom, [door, start_room]), LiftedAtom(DoorInRoom, [door, end_room]), } add_effects = { LiftedAtom(InRoom, [robot, end_room]), } delete_effects = { LiftedAtom(InRoom, [robot, start_room]), } side_predicates = set() move_through_door_nsrt = NSRT("MoveThroughDoor", parameters, preconditions, add_effects, delete_effects, side_predicates, option, option_vars, null_sampler) nsrts.add(move_through_door_nsrt) return nsrts
c7bf01b092b6e7a76053a4d2905a6e4e154f72fd
572
def _get_word_ngrams(n, sentences): """Calculates word n-grams for multiple sentences. """ assert len(sentences) > 0 assert n > 0 words = sum(sentences, []) return _get_ngrams(n, words)
73640beb269895d7c54d21825135908eba3f3bd4
573
from typing import List def override_list(base_list: List, dynamic_key: str, val): """ Customize the base list by updating with the dynamic_key and val. Parameters ---------- base: dict Dictionary or List to be customized with dynamic args dynamic_key: str Key to identify the location the value should be updated. Nested with DOT like "custom.key_0.key_1.key_2.0.0.key_4" val: str or float or int or dict or list Value to be set Returns ------- dict Updated base_list based on the key-value pairs in dynamic_args Notes ----- This will be called recursively with override_dict. If dynamic_key is not a number, then we try to match on `name` field in the list of dictionaries. """ def find_root_key_index(base_list, root_key): if root_key.isdigit(): # If array index root_key = int(root_key) else: # If string, then match on `name` for root_key_i in range(len(base_list)): if root_key == base_list[root_key_i][NAME]: root_key = root_key_i break if not isinstance(root_key, int): raise KeyError("{} not found in List".format(root_key)) return root_key if DOT in dynamic_key: # Compute root and subtree keys root_key = find_root_key_index(base_list, dynamic_key.split(DOT)[0]) subtree_key = DOT.join(dynamic_key.split(DOT)[1:]) # Extract subtree subtree = base_list[root_key] if isinstance(subtree, dict): root_val = override_dict(base_dict=subtree, dynamic_key=subtree_key, val=val) elif isinstance(subtree, list): root_val = override_list(base_list=subtree, dynamic_key=subtree_key, val=val) else: raise ValueError( "Unsupported subtree type. Must be one of list or dict") else: # End of nested dynamic key root_key = find_root_key_index(base_list, dynamic_key) root_val = val base_list[root_key] = root_val return base_list
eb7e4a0462d2db82cb1900784b5d99e2865dcc00
574
def c_components(DAG): """Return a list of the maximal c-component node sets in DAG.""" G = nx.Graph(); G.add_nodes_from(observable_nodes(DAG)) G.add_edges_from([(u,v) for u,v in observable_pairs(DAG) if has_confounded_path(DAG, u, v)]) return list(nx.connected_components(G))
85c4ae4ee7b9572e31727f672864e4b079e3bde7
575
def wss_over_number_of_clusters(data, algorithm='kmeans', max_iter=100, num_repeats = 5, max_num_clusters = 12, plot_file = None): """ Calculates the within-sum-of-squares (WSS) for different numbers of clusters, averaged over several iterations. Parameters ---------- data : float array Trajectory data [frames,frame_data] algorithm : string The algorithm to use for the clustering. Options: kmeans, rspace. Default: kmeans max_iter : int, optional Maximum number of iterations. Default: 100. num_repeats : int, optional Number of times to run the clustering for each number of clusters. Default: 5. max_num_clusters : int, optional Maximum number of clusters for k-means clustering. Default: 12. plot_file : str, optional Name of the file to save the plot. Returns ------- all_wss : float array WSS values for each number of clusters (starting at 2). std_wss : float array Standard deviations of the WSS. """ # Initialize lists all_wss = [] std_wss = [] # Loop over the number of clusters for nc in range(1,max_num_clusters): rep_wss = [] # Run each clustering several times. for repeat in range(num_repeats): # Get clusters and WSS for this repetition. cc = obtain_clusters(data, algorithm=algorithm, max_iter=max_iter, num_clusters=nc, plot=False) cidx, wss, centroids = cc rep_wss.append(wss) # Calculate mean and standard deviation for this number of clusters. all_wss.append(np.mean(rep_wss)) std_wss.append(np.std(rep_wss)) # Plot the WSS over the number of clusters fig, ax = plt.subplots(1,1, figsize=[4,3], dpi=300) ax.errorbar(np.arange(len(all_wss))+2,np.array(all_wss),yerr=np.array(std_wss)/np.sqrt(num_repeats)) ax.set_xlabel('number of clusters') ax.set_ylabel('total WSS') fig.tight_layout() # Save the plot to file. if plot_file: fig.savefig(plot_file) return all_wss, std_wss
fa00e00a5b0ba53b4b578fae04c43c69500d2d97
576
from typing import List from typing import Tuple def separate_classes(x: np.ndarray, y: np.ndarray) -> List[Tuple[int, np.ndarray]]: """Separate samples by classes into a list. Args: x (np.ndarray): Samples. y (np.ndarray): Target labels (classes). Returns: List[Tuple[int, np.ndarray]]: List in the format [(class, samples),...] """ classes = np.unique(y) l = [] for clss in classes: l.append((clss, x[y==clss])) return l
ee0a93b44785f6f017769da6fd6f1cc65f9cf121
577
import time from datetime import datetime def monitor_threads(threads, arguments): """ Monitor the threads. Parameters ---------- threads: dict The threads to monitor. arguments: namespace The parsed command line. # --GT-- not used, kept to avoid to break the function call. Returns ------- int 0 """ try: # exit and let systemd restart the process to avoid issues with # potential memory leaks time.sleep(60 * 60 * 2) except Exception: # the sleep was interrupted pass for th in threads.keys(): threads[th].stop() # give up to 30 seconds for threads to exit cleanly timeout = datetime.now() + timedelta(seconds=30) while timeout > datetime.now(): thread_running = False for th in threads.keys(): if threads[th].is_alive(): thread_running = True if not thread_running: break return 0
fa0e1f329cb70eb1fd81c74c9ec555921cab9041
578
def fetch_cfr_parts(notice_xml): """ Sometimes we need to read the CFR part numbers from the notice XML itself. This would need to happen when we've broken up a multiple-effective-date notice that has multiple CFR parts that may not be included in each date. """ parts = [] for cfr_elm in notice_xml.xpath('//CFR'): parts.extend(notice_cfr_p.parseString(cfr_elm.text).cfr_parts) return list(sorted(set(parts)))
d4fc1be9004f5a670c58dc3badaef80d53f73fc4
579
def get_dayofweek(date): """ Returns day of week in string format from date parameter (in datetime format). """ return date.strftime("%A")
4a0f728733870998331ea6f796b167b9dd3276ab
580
def add_model_output(modelIn, mode=None, num_add=None, activation=None): """ This function modifies the last dense layer in the passed keras model. The modification includes adding units and optionally changing the activation function. Parameters ---------- modelIn : keras model Keras model to be modified. mode : string Mode to modify the layer. It could be: 'abstain' for adding an arbitrary number of units for the abstention optimization strategy. 'qtl' for quantile regression which needs the outputs to be tripled. 'het' for heteroscedastic regression which needs the outputs to be doubled. (current implicit default: 'het') num_add : integer Number of units to add. This only applies to the 'abstain' mode. activation : string String with keras specification of activation function (e.g. 'relu', 'sigomid', 'softmax', etc.) Return ---------- modelOut : keras model Keras model after last dense layer has been modified as specified. If there is no mode specified it returns the same model. """ if mode is None: return modelIn numlayers = len(modelIn.layers) # Find last dense layer i = -1 while 'dense' not in (modelIn.layers[i].name) and ((i+numlayers) > 0): i -= 1 # Minimal verification about the validity of the layer found assert ((i + numlayers) >= 0) assert ('dense' in modelIn.layers[i].name) # Compute new output size if mode is 'abstain': assert num_add is not None new_output_size = modelIn.layers[i].output_shape[-1] + num_add elif mode is 'qtl': # for quantile UQ new_output_size = 3 * modelIn.layers[i].output_shape[-1] else: # for heteroscedastic UQ new_output_size = 2 * modelIn.layers[i].output_shape[-1] # Recover current layer options config = modelIn.layers[i].get_config() # Update number of units config['units'] = new_output_size # Update activation function if requested if activation is not None: config['activation'] = activation # Create new Dense layer reconstructed_layer = Dense.from_config(config) # Connect new Dense last layer to previous one-before-last layer additional = reconstructed_layer(modelIn.layers[i-1].output) # If the layer to replace is not the last layer, add the remainder layers if i < -1: for j in range(i+1, 0): config_j = modelIn.layers[j].get_config() aux_j = layers.deserialize({'class_name': modelIn.layers[j].__class__.__name__, 'config': config_j}) reconstructed_layer = aux_j.from_config(config_j) additional = reconstructed_layer(additional) modelOut = Model(modelIn.input, additional) return modelOut
2b869477bb67f7349569d15e0ada229cc1400e39
581
def parse(f): """Parse ASDL from the given file and return a Module node describing it.""" parser = ASDLParser() return parser.parse(f)
ca6b97c2181444dd7325877d67d74bb894c1bfef
582
def distance(xyz, lattice, PBC=[1,2,3]): """ Returns the Euclidean distance from the origin for a fractional displacement vector. Takes into account the lattice metric and periodic boundary conditions, including up to one non-periodic axis. Args: xyz: a fractional 3d displacement vector. Can be obtained by subtracting one fractional vector from another lattice: a 3x3 matrix describing a unit cell's lattice vectors PBC: the axes, if any, which are periodic. 1, 2, and 3 correspond to x, y, and z respectively. Returns: a scalar for the distance of the point from the origin """ xyz = filtered_coords(xyz, PBC=PBC) matrix = create_matrix(PBC=PBC) matrix += xyz matrix = np.dot(matrix, lattice) return np.min(cdist(matrix,[[0,0,0]]))
e6a6a925773b35996cc5f71982b72aeaef25cc4f
583
def dobro(n=0, formato=False): """ Dobrar número :param n: número a ser dobrado :param formato: (opicional) mostrar o moeda :return: resultado """ n = float(n) n += n return moeda(n) if formato else n
f01267cf432d48ab263d90756fd920c7d6d987a1
584
def f_q2d(n, m): """Lowercase f term for 2D-Q polynomials. oe-20-3-2483 Eq. (A.18b). Parameters ---------- n : int radial order m : int azimuthal order Returns ------- float f """ if n == 0: return np.sqrt(F_q2d(n=0, m=m)) else: return np.sqrt(F_q2d(n, m) - g_q2d(n-1, m) ** 2)
52919fab40e51dfa8ba89eb1d6f97ec733ce9de5
585
def binary_search(data, target, low, high): """Return position if target is found in indicated portion of a python list and -1 if target is not found. """ if low > high: return -1 mid = (low + high) // 2 if target == data[mid]: return mid elif target < data[mid]: # recur on the portion left of the middle return binary_search(data, target, low, mid - 1) else: # recur on the portion right of the middle return binary_search(data, target, mid + 1, high)
8f85596e4ff8971f4002b2f108c9c276304924be
586
def delete_position(id): """Delete a post. Ensures that the post exists and that the logged in user is the author of the post. """ db = get_db() db.execute('DELETE FROM gatekeeping WHERE id = ?', (id,)) db.commit() return jsonify(status='ok')
cf5d6580eea191a0d17d1a98e2f86a8610a5f58a
587
import struct def read_string(stream, length): """read data from the file and return as a text string """ text = struct.unpack('{}s'.format(length), stream.read(length)) try: result = str(text[0], encoding='utf-8') except UnicodeDecodeError: result = str(text[0], encoding='latin-1') return result.rstrip('\x00')
da8ddf04ea6c0232e59c4612105a243a5c1807d4
588
import math def generate_gate_y_hamiltonian_vec() -> np.ndarray: """Return the vector representation for the Hamiltonian of a Y gate with respect to the orthonormal Hermitian matrix basis with the normalized identity matrix as the 0th element. The result is a real vector with size 4. Parameters ---------- Returns ---------- np.ndarray The real vector representation of the Hamiltonian of the gate. """ dim = 2 coeff = 0.5 * math.pi * np.sqrt(2) vec = np.zeros(dim * dim, dtype=np.float64) vec[0] = -coeff vec[2] = coeff return vec
0a290c8f4a2c0acd81439caa4e5c4a7032a91d83
589
def _semi_implicit_midpoint(ode_fun, jac_fun, y_olds, t_old, f_old, dt, args, solver_parameters, J00, I): """ Calculate solution at t_old+dt using the semi-implicit midpoint formula. Based on equations IV.9.16a-b of Ref II. """ y_older, y_old = y_olds je_tot=0 if(y_older is None): # Use Euler to get starting value return _semi_implicit_euler(ode_fun, jac_fun, y_olds, t_old, f_old, dt, args, solver_parameters, J00, I) if(f_old is None): f_yj = ode_fun(*(y_old,t_old)+args) fe_tot = 1 else: # We already computed it and can just reuse it f_yj = f_old fe_tot=0 b = np.dot(-(I+dt*J00),(y_old-y_older)) + 2*dt*f_yj A = I-dt*J00 if(solver_parameters['initialGuess']): # Use Euler for initial guess x0, f_yj, fe_tot_,je_tot=_explicit_euler(ode_fun, jac_fun, y_olds, t_old, f_yj, dt, args, solver_parameters) fe_tot += fe_tot_ else: x0=None dy = linear_solve(A, b, iterative=solver_parameters['iterative'], tol=solver_parameters['min_tol'], x0=x0) y_new = y_old + dy return (y_new, f_yj, fe_tot, je_tot)
7807427e64d4348eb4deb4624d1db5e4df0226ca
590
from tensorflow.python.framework.graph_util import ( convert_variables_to_constants, remove_training_nodes, ) def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True): """ Freezes the state of a session into a pruned computation graph. Creates a new computation graph where variable nodes are replaced by constants taking their current value in the session. The new graph will be pruned so subgraphs that are not necessary to compute the requested outputs are removed. @param session The TensorFlow session to be frozen. @param keep_var_names A list of variable names that should not be frozen, or None to freeze all the variables in the graph. @param output_names Names of the relevant graph outputs. @param clear_devices Remove the device directives from the graph for better portability. @return The frozen graph definition. """ graph = session.graph with graph.as_default(): freeze_var_names = list( set(v.op.name for v in tf.global_variables()).difference( keep_var_names or [])) output_names = output_names or [] output_names += [v.op.name for v in tf.global_variables()] # Graph -> GraphDef ProtoBuf input_graph_def = graph.as_graph_def() if clear_devices: for node in input_graph_def.node: node.device = "" frozen_graph = convert_variables_to_constants( session, input_graph_def, output_names, freeze_var_names) frozen_graph = remove_training_nodes(frozen_graph) return frozen_graph
3617fc93a1727fcabf128622fcaf0e8dd5008b24
591
def get_system_cpu_times(): """Return system CPU times as a namedtuple.""" user, nice, system, idle = _psutil_osx.get_system_cpu_times() return _cputimes_ntuple(user, nice, system, idle)
c2edb6c0b87449c31aba1fe023736e30cdf41154
592
def Mce1(m, q, ξ, *, p=0): """ v = Mce1(m, q, ξ, *, p=0) Compute the value of the even Radial Mathieu function of the first kind Mce⁽¹⁾ₘ(q, ξ). Parameters ---------- m : array_like interger order of the Mathieu function q : array_like positive parameter in the Mathieu differential equation ξ : array like ``radial'' coordinate in the Elliptic coordinates p : 0 or 1 or 2 (default 0) 0 for the function, 1 for the first derivative 2 for the second derivative Returns ------- v : array like value of Mce⁽¹⁾ₘ(q, ξ) or Mce⁽¹⁾ₘ′(q, ξ) or Mce⁽¹⁾ₘ′´(q, ξ) """ if p == 0: return mathieu_modcem1(m, q, ξ)[0] if p == 1: return mathieu_modcem1(m, q, ξ)[1] if p == 2: return (mathieu_a(m, q) - (2 * q) * cosh(2 * ξ)) * mathieu_modcem1(m, q, ξ)[0] raise ValueError("The value p must be 0, 1, or 2.")
7a5c7fc6b9a9380c5d763f1773a26516345e5a3b
593
def profileown(): """Display user's profile""" return render_template("profile.html", user=session, person=session, books=None)
83ac3e78fb2f3b43596874c8208099d041536ebb
594
def GetChildConfigListMetadata(child_configs, config_status_map): """Creates a list for the child configs metadata. This creates a list of child config dictionaries from the given child configs, optionally adding the final status if the success map is specified. Args: child_configs: The list of child configs for this build. config_status_map: The map of config name to final build status. Returns: List of child config dictionaries, with optional final status """ child_config_list = [] for c in child_configs: pass_fail_status = None if config_status_map: if config_status_map[c['name']]: pass_fail_status = constants.FINAL_STATUS_PASSED else: pass_fail_status = constants.FINAL_STATUS_FAILED child_config_list.append({'name': c['name'], 'boards': c['boards'], 'status': pass_fail_status}) return child_config_list
621fa06eb0055a2dec1941bb4fd84ecb8fd6847c
595
def get_samples(df, selected_rows, no_of_samples, records_in_db): """ get samples without shuffling columns """ df_fixed = None df_random = None generic_data_dict = [] #drop rows with 'ignore' set to 'yes' if 'ignore' in df.columns: df = df[df["ignore"] != "yes"] df = df.drop(['ignore'], axis = 1) print_info("================================================================================") print_info("Total no. of samples found in variable xls file : {}".format(len(df.index))) print_info("Total no. of samples already tested : {}".format(len(records_in_db))) print_info("Total no. of samples remaining to test : {}".format(len(df.index) - len(records_in_db))) print_info("Total no. of random samples selected in this test : {}".format(no_of_samples)) if selected_rows: print_info("Selected rows to test : {}".format(selected_rows)) print_info("================================================================================") #select user selected rows if selected_rows: selected_rows = [row-1 for row in selected_rows] df_fixed = df.iloc[selected_rows] df = df.drop(selected_rows, axis=0) #select records in df which are not in db_df db_df = pd.DataFrame(records_in_db) if db_df.columns.tolist(): df = df.merge(db_df, how = 'outer' ,indicator=True).\ loc[lambda x : x['_merge']=='left_only'] df = df.drop(['_merge'], axis = 1) if no_of_samples and len(df.index) == 0: print_error("All the samples are tested. use --reset_execution to restart test again") exit(1) if no_of_samples and no_of_samples <= len(df.index): #select random samples df_random = df.sample(n=no_of_samples) elif no_of_samples and no_of_samples > len(df.index): print_error("Given no. of samples {} is greater than remaining samples to" \ " test {}. please reduce no. of samples".format(no_of_samples, len(df.index))) exit(1) df = pd.concat([df_fixed, df_random]) generic_data_dict = df.to_dict('records') print_info("selected samples : {}".format(generic_data_dict)) print_info("================================================================================") return generic_data_dict
16b13d59e50ebcb16e65feea41bc801b1e8b87b8
596
def update_member_names(oldasndict, pydr_input): """ Update names in a member dictionary. Given an association dictionary with rootnames and a list of full file names, it will update the names in the member dictionary to contain '_*' extension. For example a rootname of 'u9600201m' will be replaced by 'u9600201m_c0h' making sure that a MEf file is passed as an input and not the corresponding GEIS file. """ omembers = oldasndict['members'].copy() nmembers = {} translated_names = [f.split('.fits')[0] for f in pydr_input] newkeys = [fileutil.buildNewRootname(file) for file in pydr_input] keys_map = list(zip(newkeys, pydr_input)) for okey, oval in list(omembers.items()): if okey in newkeys: nkey = pydr_input[newkeys.index(okey)] nmembers[nkey.split('.fits')[0]] = oval oldasndict.pop('members') # replace should be always True to cover the case when flt files were removed # and the case when names were translated oldasndict.update(members=nmembers, replace=True) oldasndict['order'] = translated_names return oldasndict
364a4bdd742fe03545e9bb4fb72ef996beea1550
597
def part1(entries: str) -> int: """part1 solver take a str and return an int""" houses = {(0, 0): 1} pos_x, pos_y = 0, 0 for direction in entries: delta_x, delta_y = moves[direction] pos_x += delta_x pos_y += delta_y houses[(pos_x, pos_y)] = houses.get((pos_x, pos_y), 0) + 1 return len(houses)
104cf7b32ec9f395603a32f57b146129d30a417b
598
def beqs( screen, asof=None, typ='PRIVATE', group='General', **kwargs ) -> pd.DataFrame: """ Bloomberg equity screening Args: screen: screen name asof: as of date typ: GLOBAL/B (Bloomberg) or PRIVATE/C (Custom, default) group: group name if screen is organized into groups Returns: pd.DataFrame """ logger = logs.get_logger(beqs, **kwargs) service = conn.bbg_service(service='//blp/refdata', **kwargs) request = service.createRequest('BeqsRequest') request.set('screenName', screen) request.set('screenType', 'GLOBAL' if typ[0].upper() in ['G', 'B'] else 'PRIVATE') request.set('Group', group) if asof: overrides = request.getElement('overrides') ovrd = overrides.appendElement() ovrd.setElement('fieldId', 'PiTDate') ovrd.setElement('value', utils.fmt_dt(asof, '%Y%m%d')) logger.debug(f'Sending request to Bloomberg ...\n{request}') conn.send_request(request=request, **kwargs) res = pd.DataFrame(process.rec_events(func=process.process_ref)) if res.empty: if kwargs.get('trial', 0): return pd.DataFrame() else: return beqs( screen=screen, asof=asof, typ=typ, group=group, trial=1, **kwargs ) if kwargs.get('raw', False): return res cols = res.field.unique() return ( res .set_index(['ticker', 'field']) .unstack(level=1) .rename_axis(index=None, columns=[None, None]) .droplevel(axis=1, level=0) .loc[:, cols] .pipe(pipeline.standard_cols) )
ba65d7b4913862b340bf8ab9033ce9fe8fad8535
599