index
int64 0
0
| repo_id
stringclasses 93
values | file_path
stringlengths 15
128
| content
stringlengths 14
7.05M
|
---|---|---|---|
0 | ALLM | ALLM/CF/driver.cpp | #include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <stdlib.h>
#include <mpi.h>
#include "driver.h"
extern "C"
{
void initmat(mat * Amat){
Amat->iv = NULL;
Amat->jv = NULL;
Amat->vv = NULL;
Amat->m = 0;
Amat->nnz = 0;
}
void driver_mat(mat * inA, mat * outX, parameters * inParams){
printf(" nnz %d \n", inA->nnz);
for(int k =0; k<inA->nnz; ++k){
printf("%d \n", k);
outX->iv[k] = inA->iv[k];
printf("%d \n", k);
printf(" iv %d \n", inA->iv[k]);
outX->jv[k] = inA->jv[k];
outX->vv[k] = inA->vv[k] + inParams->alpha*inA->vv[k];
}
}
void driver_mat_mpi(mat * inA, mat * outX, parameters * inParams){
int rank;
//MPI_Fint fcomm;
//fcomm = inParams->comm;
//MPI_Comm comm;
//comm = MPI_Comm_f2c(fcomm);
if(inParams->fcomm != -1){
(inParams->comm) = MPI_Comm_f2c((inParams->fcomm));
printf("fcomm %d \n ", inParams->fcomm);
}
MPI_Comm_rank(inParams->comm, &rank);
printf(" nnz %d \n", inA->nnz);
for(int k =0; k<inA->nnz; ++k){
printf("%d \n", k);
outX->iv[k] = inA->iv[k];
printf("%d \n", k);
printf(" iv %d \n", inA->iv[k]);
outX->jv[k] = inA->jv[k];
if(k==rank){
outX->vv[k] = rank*inA->vv[k] + rank*inParams->alpha*inA->vv[k];
}
else{
outX->vv[k] = rank;
}
}
}
}
/*int main(){
const int m = 2;
const int nnz = 2;
int * a_i = (int *) malloc(nnz * sizeof(int));
int * a_j = (int *) malloc(nnz * sizeof(int));
double * a_v = (double *) malloc(nnz * sizeof(double));
a_i[0]=0;a_j[0]=0;a_v[0]=1;
a_i[1]=1;a_j[1]=1;a_v[1]=1;
mat A;
initmat(&A);
A.m=m;A.nnz=nnz;
A.iv=a_i;A.jv=a_j;A.vv=a_v;
int * x_i = (int *) malloc(nnz * sizeof(int));
int * x_j = (int *) malloc(nnz * sizeof(int));
double * x_v = (double *) malloc(nnz * sizeof(double));
x_i[0]=0;x_j[0]=0;x_v[0]=0;
x_i[1]=0;x_j[1]=0;x_v[1]=0;
mat X;
initmat(&X);
X.m=m;X.nnz=nnz;
X.iv=x_i;X.jv=x_j;X.vv=x_v;
parameters params;
params.alpha = 2.0;
params.comm = 0;
driver_mat(&A, &X, ¶ms);
printf("A:\n");
for(int k = 0; k < nnz; ++k){ printf("%lf ", a_v[k]); }
printf("\n");
printf("X:\n");
for(int k = 0; k < nnz; ++k){ printf("%lf ", x_v[k]); }
printf("\n");
free(a_i);
free(a_j);
free(a_v);
free(x_i);
free(x_j);
free(x_v);
return 0;
}*/
|
0 | ALLM | ALLM/CF/driver.h | #if defined __cplusplus
using Scalar = double;
using Primary = double;
#else
typedef double Scalar;
typedef double Primary;
#endif
typedef struct{
int * iv;
int * jv;
Scalar * vv;
int m;
int nnz;
//int storage;
//int symmetry;
} mat;
typedef struct{
Scalar alpha;
MPI_Comm comm;
MPI_Fint fcomm;
} parameters;
#if defined __cplusplus
extern "C" {
#endif
void initmat(mat * Amat);
void driver_mat(mat * inA, mat * outX, parameters * inParams);
void driver_mat_mpi(mat * inA, mat * outX, parameters * inParams);
#if defined __cplusplus
}
#endif
|
0 | ALLM | ALLM/C_SUJET1/nbody.c | #include <stdio.h>
#include <math.h>
#include <stdlib.h> // drand48
#include <omp.h>
#define DUMP
struct ParticleType {
float x, y, z;
float vx, vy, vz;
};
void MoveParticles(const int nParticles, struct ParticleType* const particle, const float dt) {
// Loop over particles that experience force
for (int i = 0; i < nParticles; i++) {
// Components of the gravity force on particle i
float Fx = 0, Fy = 0, Fz = 0;
// Loop over particles that exert force
for (int j = 0; j < nParticles; j++) {
// No self interaction
if (i != j) {
// Avoid singularity and interaction with self
const float softening = 1e-20;
// Newton's law of universal gravity
const float dx = particle[j].x - particle[i].x;
const float dy = particle[j].y - particle[i].y;
const float dz = particle[j].z - particle[i].z;
const float drSquared = dx*dx + dy*dy + dz*dz + softening;
const float drPower32 = pow(drSquared, 3.0/2.0);
// Calculate the net force
Fx += dx / drPower32;
Fy += dy / drPower32;
Fz += dz / drPower32;
}
}
// Accelerate particles in response to the gravitational force
particle[i].vx += dt*Fx;
particle[i].vy += dt*Fy;
particle[i].vz += dt*Fz;
}
// Move particles according to their velocities
// O(N) work, so using a serial loop
for (int i = 0 ; i < nParticles; i++) {
particle[i].x += particle[i].vx*dt;
particle[i].y += particle[i].vy*dt;
particle[i].z += particle[i].vz*dt;
}
}
void dump(int iter, int nParticles, struct ParticleType* particle)
{
char filename[64];
snprintf(filename, 64, "output_%d.txt", iter);
FILE *f;
f = fopen(filename, "w+");
int i;
for (i = 0; i < nParticles; i++)
{
fprintf(f, "%e %e %e %e %e %e\n",
particle[i].x, particle[i].y, particle[i].z,
particle[i].vx, particle[i].vy, particle[i].vz);
}
fclose(f);
}
// Initialize random number generator and particles:
void init_rand(int nParticles, struct ParticleType* particle){
srand48(0x2020);
for (int i = 0; i < nParticles; i++)
{
particle[i].x = 2.0*drand48() - 1.0;
particle[i].y = 2.0*drand48() - 1.0;
particle[i].z = 2.0*drand48() - 1.0;
particle[i].vx = 2.0*drand48() - 1.0;
particle[i].vy = 2.0*drand48() - 1.0;
particle[i].vz = 2.0*drand48() - 1.0;
}
}
// Initialize (no random generator) particles
void init_norand(int nParticles, struct ParticleType* particle){
const float a=127.0/nParticles;
for (int i = 0; i < nParticles; i++)
{
particle[i].x = i*a;//2.0*drand48() - 1.0;
particle[i].y = i*a;//2.0*drand48() - 1.0;
particle[i].z = 1.0;//2.0*drand48() - 1.0;
particle[i].vx = 0.5;//2.0*drand48() - 1.0;
particle[i].vy = 0.5;//2.0*drand48() - 1.0;
particle[i].vz = 0.5;//2.0*drand48() - 1.0;
}
}
int main(const int argc, const char** argv)
{
// Problem size and other parameters
const int nParticles = (argc > 1 ? atoi(argv[1]) : 16384);
// Duration of test
const int nSteps = (argc > 2)?atoi(argv[2]):10;
// Particle propagation time step
const float dt = 0.0005f;
struct ParticleType* particle = malloc(nParticles*sizeof(struct ParticleType));
// Initialize random number generator and particles
//init_rand(nParticles, particle);
// Initialize (no random generator) particles
init_norand(nParticles, particle);
// Perform benchmark
printf("\nPropagating %d particles using 1 thread...\n\n",
nParticles
);
double rate = 0, dRate = 0; // Benchmarking data
const int skipSteps = 3; // Skip first iteration (warm-up)
printf("\033[1m%5s %10s %10s %8s\033[0m\n", "Step", "Time, s", "Interact/s", "GFLOP/s"); fflush(stdout);
for (int step = 1; step <= nSteps; step++) {
const double tStart = omp_get_wtime(); // Start timing
MoveParticles(nParticles, particle, dt);
const double tEnd = omp_get_wtime(); // End timing
const float HztoInts = ((float)nParticles)*((float)(nParticles-1)) ;
const float HztoGFLOPs = 20.0*1e-9*((float)(nParticles))*((float)(nParticles-1));
if (step > skipSteps) { // Collect statistics
rate += HztoGFLOPs/(tEnd - tStart);
dRate += HztoGFLOPs*HztoGFLOPs/((tEnd - tStart)*(tEnd-tStart));
}
printf("%5d %10.3e %10.3e %8.1f %s\n",
step, (tEnd-tStart), HztoInts/(tEnd-tStart), HztoGFLOPs/(tEnd-tStart), (step<=skipSteps?"*":""));
fflush(stdout);
#ifdef DUMP
dump(step, nParticles, particle);
#endif
}
rate/=(double)(nSteps-skipSteps);
dRate=sqrt(dRate/(double)(nSteps-skipSteps)-rate*rate);
printf("-----------------------------------------------------\n");
printf("\033[1m%s %4s \033[42m%10.1f +- %.1f GFLOP/s\033[0m\n",
"Average performance:", "", rate, dRate);
printf("-----------------------------------------------------\n");
printf("* - warm-up, not included in average\n\n");
free(particle);
return 0;
}
|
0 | ALLM | ALLM/C_SUJET1/nbody_aos.cu | #include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <math.h>
#include <omp.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_profiler_api.h>
#define nPart 16384
#define THREADS_PER_BLOCK 256
#define DUMP
//-------------------------------------------------------------------------------------------------------------------------
//struct ParticleType{
// float x, y, z, vx, vy, vz;
//};
struct ParticleType{
float x[nPart],y[nPart],z[nPart];
float vx[nPart],vy[nPart],vz[nPart];
};
//-------------------------------------------------------------------------------------------------------------------------
//CUDA VERSION:
__global__ void MoveParticles_CUDA(const int nParticles, struct ParticleType* const particle){
// Particle propagation time step
const float dt = 0.0005f;
int i = threadIdx.x + blockIdx.x * blockDim.x;
if(i<nParticles){
float Fx=0.,Fy=0.,Fz=0.;
for(int j = 0; j< nParticles; j++){
//no self interaction:
if(i != j){
//avoid singularity and interaction with self:
const float softening = 1e-20;
//Newton's law of universal gravity:
const float dx = particle->x[j] - particle->x[i];
const float dy = particle->y[j] - particle->y[i];
const float dz = particle->z[j] - particle->z[i];
const float drSquared = dx*dx + dy*dy + dz*dz + softening;
const float drPower32 = pow(drSquared, 3.0/2.0);
//Calculate the net force:
Fx += dx / drPower32;
Fy += dy / drPower32;
Fz += dz / drPower32;
}//fi i!=j
}//j loop
//Accelerate particles in response to the gravitational force:
particle->vx[i] += dt*Fx;
particle->vy[i] += dt*Fy;
particle->vz[i] += dt*Fz;
}
}//fct MoveParticles_CUDA
//-------------------------------------------------------------------------------------------------------------------------
// Initialize random number generator and particles:
void init_rand(int nParticles, struct ParticleType* particle){
srand48(0x2020);
for (int i = 0; i < nParticles; i++)
{
particle->x[i] = 2.0*drand48() - 1.0;
particle->y[i] = 2.0*drand48() - 1.0;
particle->z[i] = 2.0*drand48() - 1.0;
particle->vx[i] = 2.0*drand48() - 1.0;
particle->vy[i] = 2.0*drand48() - 1.0;
particle->vz[i] = 2.0*drand48() - 1.0;
}
}
//-------------------------------------------------------------------------------------------------------------------------
// Initialize (no random generator) particles
void init_norand(int nParticles, struct ParticleType* const particle){
const float a=127.0/nParticles;
for (int i = 0; i < nParticles; i++)
{
particle->x[i] = i*a;//2.0*drand48() - 1.0;
particle->y[i] = i*a;//2.0*drand48() - 1.0;
particle->z[i] = 1.0;//2.0*drand48() - 1.0;
particle->vx[i] = 0.5;//2.0*drand48() - 1.0;
particle->vy[i] = 0.5;//2.0*drand48() - 1.0;
particle->vz[i] = 0.5;//2.0*drand48() - 1.0;
}
}
//-------------------------------------------------------------------------------------------------------------------------
void dump(int iter, int nParticles, struct ParticleType* particle)
{
char filename[64];
snprintf(filename, 64, "output_%d.txt", iter);
FILE *f;
f = fopen(filename, "w+");
int i;
for (i = 0; i < nParticles; i++)
{
fprintf(f, "%e %e %e %e %e %e\n",
particle->x[i], particle->y[i], particle->z[i], particle->vx[i], particle->vy[i], particle->vz[i]);
}
fclose(f);
}
//-------------------------------------------------------------------------------------------------------------------------
int main(const int argc, const char** argv)
{
// Problem size and other parameters
// const int nParticles = (argc > 1 ? atoi(argv[1]) : 16384);
const int nParticles=nPart;
// Duration of test
const int nSteps = (argc > 2)?atoi(argv[2]):10;
// Particle propagation time step
const float ddt = 0.0005f;
//-------------------------------------------------------------------------------------------------------------------------
//DEFINE SIZE:
int SIZE = sizeof(struct ParticleType);
//-------------------------------------------------------------------------------------------------------------------------
//DECLARATION & ALLOC particle ON HOST:
struct ParticleType* particle = (struct ParticleType*) malloc(SIZE);
//-------------------------------------------------------------------------------------------------------------------------
// Initialize random number generator and particles
srand48(0x2020);
//Initialize random number generator and particles
//init_rand(nParticles, particle);
// Initialize (no random generator) particles
init_norand(nParticles, particle);
//-------------------------------------------------------------------------------------------------------------------------
// Perform benchmark
printf("\nPropagating %d particles using %d thread...\n\n",
128 ,nParticles
);
double rate = 0, dRate = 0; // Benchmarking data
const int skipSteps = 3; // Skip first iteration (warm-up)
printf("\033[1m%5s %10s %10s %8s\033[0m\n", "Step", "Time, s", "Interact/s", "GFLOP/s"); fflush(stdout);
//-------------------------------------------------------------------------------------------------------------------------
cudaProfilerStart();
//-------------------------------------------------------------------------------------------------------------------------
struct ParticleType *particle_cuda;
cudaMalloc((void **)&particle_cuda, SIZE);
//-------------------------------------------------------------------------------------------------------------------------
// cudaMemcpy(particle_cuda, particle, SIZE, cudaMemcpyHostToDevice);
//-------------------------------------------------------------------------------------------------------------------------
for (int step = 1; step <= nSteps; step++) {
const double tStart = omp_get_wtime(); // Start timing
cudaMemcpy(particle_cuda, particle, SIZE, cudaMemcpyHostToDevice);
MoveParticles_CUDA<<<nParticles/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(nParticles, particle_cuda);
cudaMemcpy(particle, particle_cuda, SIZE, cudaMemcpyDeviceToHost);//need to do?
const double tEnd = omp_get_wtime(); // End timing
// Move particles according to their velocities
// O(N) work, so using a serial loop
for (int i = 0 ; i < nParticles; i++) {
particle->x[i] += particle->vx[i]*ddt;
particle->y[i] += particle->vy[i]*ddt;
particle->z[i] += particle->vz[i]*ddt;
}
const float HztoInts = ((float)nParticles)*((float)(nParticles-1)) ;
const float HztoGFLOPs = 20.0*1e-9*((float)(nParticles))*((float)(nParticles-1));
if (step > skipSteps) { // Collect statistics
rate += HztoGFLOPs/(tEnd - tStart);
dRate += HztoGFLOPs*HztoGFLOPs/((tEnd - tStart)*(tEnd-tStart));
}
printf("%5d %10.3e %10.3e %8.1f %s\n",
step, (tEnd-tStart), HztoInts/(tEnd-tStart), HztoGFLOPs/(tEnd-tStart), (step<=skipSteps?"*":""));
fflush(stdout);
#ifdef DUMP
dump(step, nParticles, particle);
#endif
}
cudaFree(particle_cuda);
//-------------------------------------------------------------------------------------------------------------------------
cudaProfilerStop();
//-------------------------------------------------------------------------------------------------------------------------
rate/=(double)(nSteps-skipSteps);
dRate=sqrt(dRate/(double)(nSteps-skipSteps)-rate*rate);
printf("-----------------------------------------------------\n");
printf("\033[1m%s %4s \033[42m%10.1f +- %.1f GFLOP/s\033[0m\n",
"Average performance:", "", rate, dRate);
printf("-----------------------------------------------------\n");
printf("* - warm-up, not included in average\n\n");
free(particle);
return 0;
}
|
0 | ALLM | ALLM/C_SUJET1/nbody_cuda.cu | #include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <math.h>
#include <omp.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_profiler_api.h>
#define THREADS_PER_BLOCK 128
#define DUMP
//-------------------------------------------------------------------------------------------------------------------------
struct ParticleType{
float x, y, z, vx, vy, vz;
};
//-------------------------------------------------------------------------------------------------------------------------
//CUDA VERSION:
__global__ void MoveParticles_CUDA(const int nParticles, struct ParticleType* const particle){
// Particle propagation time step
const float dt = 0.0005f;
float Fx = 0.0, Fy = 0.0, Fz = 0.0;
int i = threadIdx.x + blockIdx.x * blockDim.x;
if(i<nParticles){
for(int j = 0; j< nParticles; j++){
//no self interaction:
if(i != j){
//avoid singularity and interaction with self:
const float softening = 1e-20;
//Newton's law of universal gravity:
const float dx = particle[j].x - particle[i].x;
const float dy = particle[j].y - particle[i].y;
const float dz = particle[j].z - particle[i].z;
const float drSquared = dx*dx + dy*dy + dz*dz + softening;
const float drPower32 = pow(drSquared, 3.0/2.0);
//Calculate the net force:
Fx += dx / drPower32;
Fy += dy / drPower32;
Fz += dz / drPower32;
}//fi i!=j
}//j loop
//Accelerate particles in response to the gravitational force:
particle[i].vx += dt*Fx;
particle[i].vy += dt*Fy;
particle[i].vz += dt*Fz;
}
}//fct MoveParticles_CUDA
//-------------------------------------------------------------------------------------------------------------------------
// Initialize random number generator and particles:
void init_rand(int nParticles, struct ParticleType* particle){
srand48(0x2020);
for (int i = 0; i < nParticles; i++)
{
particle[i].x = 2.0*drand48() - 1.0;
particle[i].y = 2.0*drand48() - 1.0;
particle[i].z = 2.0*drand48() - 1.0;
particle[i].vx = 2.0*drand48() - 1.0;
particle[i].vy = 2.0*drand48() - 1.0;
particle[i].vz = 2.0*drand48() - 1.0;
}
}
//-------------------------------------------------------------------------------------------------------------------------
// Initialize (no random generator) particles
void init_norand(int nParticles, struct ParticleType* particle){
const float a=127.0/nParticles;
for (int i = 0; i < nParticles; i++)
{
particle[i].x = i*a;//2.0*drand48() - 1.0;
particle[i].y = i*a;//2.0*drand48() - 1.0;
particle[i].z = 1.0;//2.0*drand48() - 1.0;
particle[i].vx = 0.5;//2.0*drand48() - 1.0;
particle[i].vy = 0.5;//2.0*drand48() - 1.0;
particle[i].vz = 0.5;//2.0*drand48() - 1.0;
}
}
//-------------------------------------------------------------------------------------------------------------------------
void dump(int iter, int nParticles, struct ParticleType* particle)
{
char filename[64];
snprintf(filename, 64, "output_%d.txt", iter);
FILE *f;
f = fopen(filename, "w+");
int i;
for (i = 0; i < nParticles; i++)
{
fprintf(f, "%e %e %e %e %e %e\n",
particle[i].x, particle[i].y, particle[i].z, particle[i].vx, particle[i].vy, particle[i].vz);
}
fclose(f);
}
//-------------------------------------------------------------------------------------------------------------------------
int main(const int argc, const char** argv)
{
// Problem size and other parameters
const int nParticles = (argc > 1 ? atoi(argv[1]) : 16384);
// Duration of test
const int nSteps = (argc > 2)?atoi(argv[2]):10;
// Particle propagation time step
const float ddt = 0.0005f;
//-------------------------------------------------------------------------------------------------------------------------
//DEFINE SIZE:
int SIZE = nParticles * sizeof(struct ParticleType);
//-------------------------------------------------------------------------------------------------------------------------
//DECLARATION & ALLOC particle ON HOST:
struct ParticleType* particle = (struct ParticleType*) malloc(SIZE);
//-------------------------------------------------------------------------------------------------------------------------
// Initialize random number generator and particles
srand48(0x2020);
// Initialize random number generator and particles
//init_rand(nParticles, particle);
// Initialize (no random generator) particles
init_norand(nParticles, particle);
//-------------------------------------------------------------------------------------------------------------------------
// Perform benchmark
printf("\nPropagating %d particles using 1 thread...\n\n",
nParticles
);
double rate = 0, dRate = 0; // Benchmarking data
const int skipSteps = 3; // Skip first iteration (warm-up)
printf("\033[1m%5s %10s %10s %8s\033[0m\n", "Step", "Time, s", "Interact/s", "GFLOP/s"); fflush(stdout);
//-------------------------------------------------------------------------------------------------------------------------
cudaProfilerStart();
//-------------------------------------------------------------------------------------------------------------------------
struct ParticleType *particle_cuda;
cudaMalloc((void **)&particle_cuda, SIZE);
//-------------------------------------------------------------------------------------------------------------------------
cudaMemcpy(particle_cuda, particle, SIZE, cudaMemcpyHostToDevice);
//-------------------------------------------------------------------------------------------------------------------------
for (int step = 1; step <= nSteps; step++) {
const double tStart = omp_get_wtime(); // Start timing
cudaMemcpy(particle_cuda, particle, SIZE, cudaMemcpyHostToDevice);
MoveParticles_CUDA<<<nParticles/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(nParticles, particle_cuda);
cudaMemcpy(particle, particle_cuda, SIZE, cudaMemcpyDeviceToHost);//need to do?
const double tEnd = omp_get_wtime(); // End timing
// Move particles according to their velocities
// O(N) work, so using a serial loop
for (int i = 0 ; i < nParticles; i++) {
particle[i].x += particle[i].vx*ddt;
particle[i].y += particle[i].vy*ddt;
particle[i].z += particle[i].vz*ddt;
}
const float HztoInts = ((float)nParticles)*((float)(nParticles-1)) ;
const float HztoGFLOPs = 20.0*1e-9*((float)(nParticles))*((float)(nParticles-1));
if (step > skipSteps) { // Collect statistics
rate += HztoGFLOPs/(tEnd - tStart);
dRate += HztoGFLOPs*HztoGFLOPs/((tEnd - tStart)*(tEnd-tStart));
}
printf("%5d %10.3e %10.3e %8.1f %s\n",
step, (tEnd-tStart), HztoInts/(tEnd-tStart), HztoGFLOPs/(tEnd-tStart), (step<=skipSteps?"*":""));
fflush(stdout);
#ifdef DUMP
dump(step, nParticles, particle);
#endif
}
cudaFree(particle_cuda);
//-------------------------------------------------------------------------------------------------------------------------
cudaProfilerStop();
//-------------------------------------------------------------------------------------------------------------------------
rate/=(double)(nSteps-skipSteps);
dRate=sqrt(dRate/(double)(nSteps-skipSteps)-rate*rate);
printf("-----------------------------------------------------\n");
printf("\033[1m%s %4s \033[42m%10.1f +- %.1f GFLOP/s\033[0m\n",
"Average performance:", "", rate, dRate);
printf("-----------------------------------------------------\n");
printf("* - warm-up, not included in average\n\n");
free(particle);
return 0;
}
|
0 | ALLM | ALLM/C_SUJET1/nbody_omp.c | #include <stdio.h>
#include <math.h>
#include <stdlib.h> // drand48
#include <omp.h>
#define DUMP
struct ParticleType {
float x, y, z;
float vx, vy, vz;
};
void MoveParticles(const int nParticles, struct ParticleType* const particle, const float dt) {
int i,j;
float Fx,Fy,Fz;
// Loop over particles that experience force
#pragma omp parallel for private(j)
for (i = 0; i < nParticles; i++) {
// Components of the gravity force on particle i
Fx = 0, Fy = 0, Fz = 0;
// Loop over particles that exert force
for (j = 0; j < nParticles; j++) {
// No self interaction
//if (i != j) {
// Avoid singularity and interaction with self
const float softening = 1e-20;
// Newton's law of universal gravity
const float dx = particle[j].x - particle[i].x;
const float dy = particle[j].y - particle[i].y;
const float dz = particle[j].z - particle[i].z;
const float drSquared = dx*dx + dy*dy + dz*dz + softening;
const float drPower32 = pow(drSquared, 3.0/2.0);
// Calculate the net force
Fx += dx / drPower32;
Fy += dy / drPower32;
Fz += dz / drPower32;
//}
}
// Accelerate particles in response to the gravitational force
particle[i].vx += dt*Fx;
particle[i].vy += dt*Fy;
particle[i].vz += dt*Fz;
}
// Move particles according to their velocities
// O(N) work, so using a serial loop
#pragma omp parallel for
for (int i = 0 ; i < nParticles; i++) {
particle[i].x += particle[i].vx*dt;
particle[i].y += particle[i].vy*dt;
particle[i].z += particle[i].vz*dt;
}
}
void dump(int iter, int nParticles, struct ParticleType* particle)
{
char filename[64];
snprintf(filename, 64, "output_%d.txt", iter);
FILE *f;
f = fopen(filename, "w+");
int i;
for (i = 0; i < nParticles; i++)
{
fprintf(f, "%e %e %e %e %e %e\n",
particle[i].x, particle[i].y, particle[i].z,
particle[i].vx, particle[i].vy, particle[i].vz);
}
fclose(f);
}
// Initialize random number generator and particles:
void init_rand(int nParticles, struct ParticleType* particle){
srand48(0x2020);
#pragma omp parallel for
for (int i = 0; i < nParticles; i++)
{
particle[i].x = 2.0*drand48() - 1.0;
particle[i].y = 2.0*drand48() - 1.0;
particle[i].z = 2.0*drand48() - 1.0;
particle[i].vx = 2.0*drand48() - 1.0;
particle[i].vy = 2.0*drand48() - 1.0;
particle[i].vz = 2.0*drand48() - 1.0;
}
}
// Initialize (no random generator) particles
void init_norand(int nParticles, struct ParticleType* particle){
const float a=127.0/nParticles;
#pragma omp parallel for
for (int i = 0; i < nParticles; i++)
{
particle[i].x = i*a;//2.0*drand48() - 1.0;
particle[i].y = i*a;//2.0*drand48() - 1.0;
particle[i].z = 1.0;//2.0*drand48() - 1.0;
particle[i].vx = 0.5;//2.0*drand48() - 1.0;
particle[i].vy = 0.5;//2.0*drand48() - 1.0;
particle[i].vz = 0.5;//2.0*drand48() - 1.0;
}
}
int main(const int argc, const char** argv)
{
// Problem size and other parameters
const int nParticles = (argc > 1 ? atoi(argv[1]) : 16384);
// Duration of test
const int nSteps = (argc > 2)?atoi(argv[2]):10;
// Particle propagation time step
const float dt = 0.0005f;
struct ParticleType* particle = malloc(nParticles*sizeof(struct ParticleType));
// Initialize random number generator and particles
//init_rand(nParticles, particle);
// Initialize (no random generator) particles
init_norand(nParticles, particle);
// Perform benchmark
printf("\nPropagating %d particles using 1 thread...\n\n",
nParticles
);
double rate = 0, dRate = 0; // Benchmarking data
const int skipSteps = 3; // Skip first iteration (warm-up)
printf("\033[1m%5s %10s %10s %8s\033[0m\n", "Step", "Time, s", "Interact/s", "GFLOP/s"); fflush(stdout);
for (int step = 1; step <= nSteps; step++) {
const double tStart = omp_get_wtime(); // Start timing
MoveParticles(nParticles, particle, dt);
const double tEnd = omp_get_wtime(); // End timing
const float HztoInts = ((float)nParticles)*((float)(nParticles-1)) ;
const float HztoGFLOPs = 20.0*1e-9*((float)(nParticles))*((float)(nParticles-1));
if (step > skipSteps) { // Collect statistics
rate += HztoGFLOPs/(tEnd - tStart);
dRate += HztoGFLOPs*HztoGFLOPs/((tEnd - tStart)*(tEnd-tStart));
}
printf("%5d %10.3e %10.3e %8.1f %s\n",
step, (tEnd-tStart), HztoInts/(tEnd-tStart), HztoGFLOPs/(tEnd-tStart), (step<=skipSteps?"*":""));
fflush(stdout);
#ifdef DUMP
dump(step, nParticles, particle);
#endif
}
rate/=(double)(nSteps-skipSteps);
dRate=sqrt(dRate/(double)(nSteps-skipSteps)-rate*rate);
printf("-----------------------------------------------------\n");
printf("\033[1m%s %4s \033[42m%10.1f +- %.1f GFLOP/s\033[0m\n",
"Average performance:", "", rate, dRate);
printf("-----------------------------------------------------\n");
printf("* - warm-up, not included in average\n\n");
free(particle);
return 0;
}
|
0 | ALLM | ALLM/C_SUJET1/openacc.c | #include <stdio.h>
#include <math.h>
#include <stdlib.h> // drand48
#include <omp.h>
#define DUMP
struct ParticleType {
float x, y, z;
float vx, vy, vz;
};
void MoveParticles(const int nParticles, struct ParticleType* const particle, const float dt) {
int i,j;
float Fx,Fy,Fz;
// Loop over particles that experience force
#pragma parallel loop//acc kernels async(2) wait(1)
for (i = 0; i < nParticles; i++) {
// Components of the gravity force on particle i
Fx = 0, Fy = 0, Fz = 0;
// Loop over particles that exert force
//#pragma acc parallel loop independent reduction(+:Fx,Fy,Fz)
for (j = 0; j < nParticles; j++) {
// No self interaction
// Avoid singularity and interaction with self
const float softening = 1e-20;
// Newton's law of universal gravity
const float dx = particle[j].x - particle[i].x;
const float dy = particle[j].y - particle[i].y;
const float dz = particle[j].z - particle[i].z;
const float drSquared = dx*dx + dy*dy + dz*dz + softening;
const float drPower32 = pow(drSquared, 3.0/2.0);
// Calculate the net force
Fx += dx / drPower32;
Fy += dy / drPower32;
Fz += dz / drPower32;
}
// Accelerate particles in response to the gravitational force
particle[i].vx += dt*Fx;
particle[i].vy += dt*Fy;
particle[i].vz += dt*Fz;
}
// Move particles according to their velocities
// O(N) work, so using a serial loop
for (int i = 0 ; i < nParticles; i++) {
particle[i].x += particle[i].vx*dt;
particle[i].y += particle[i].vy*dt;
particle[i].z += particle[i].vz*dt;
}
}
void dump(int iter, int nParticles, struct ParticleType* particle)
{
char filename[64];
snprintf(filename, 64, "output_%d.txt", iter);
FILE *f;
f = fopen(filename, "w+");
int i;
for (i = 0; i < nParticles; i++)
{
fprintf(f, "%e %e %e %e %e %e\n",
particle[i].x, particle[i].y, particle[i].z,
particle[i].vx, particle[i].vy, particle[i].vz);
}
fclose(f);
}
// Initialize random number generator and particles:
void init_rand(int nParticles, struct ParticleType* particle){
srand48(0x2020);
for (int i = 0; i < nParticles; i++)
{
particle[i].x = 2.0*drand48() - 1.0;
particle[i].y = 2.0*drand48() - 1.0;
particle[i].z = 2.0*drand48() - 1.0;
particle[i].vx = 2.0*drand48() - 1.0;
particle[i].vy = 2.0*drand48() - 1.0;
particle[i].vz = 2.0*drand48() - 1.0;
}
}
// Initialize (no random generator) particles
void init_norand(int nParticles, struct ParticleType* particle){
const float a=127.0/nParticles;
for (int i = 0; i < nParticles; i++)
{
particle[i].x = i*a;//2.0*drand48() - 1.0;
particle[i].y = i*a;//2.0*drand48() - 1.0;
particle[i].z = 1.0;//2.0*drand48() - 1.0;
particle[i].vx = 0.5;//2.0*drand48() - 1.0;
particle[i].vy = 0.5;//2.0*drand48() - 1.0;
particle[i].vz = 0.5;//2.0*drand48() - 1.0;
}
}
int main(const int argc, const char** argv)
{
// Problem size and other parameters
const int nParticles = (argc > 1 ? atoi(argv[1]) : 16384);
// Duration of test
const int nSteps = (argc > 2)?atoi(argv[2]):10;
// Particle propagation time step
const float dt = 0.0005f;
struct ParticleType* particle = malloc(nParticles*sizeof(struct ParticleType));
// Initialize random number generator and particles
//init_rand(nParticles, particle);
// Initialize (no random generator) particles
init_norand(nParticles, particle);
// Perform benchmark
printf("\nPropagating %d particles using 1 thread...\n\n",
nParticles
);
double rate = 0, dRate = 0; // Benchmarking data
const int skipSteps = 3; // Skip first iteration (warm-up)
printf("\033[1m%5s %10s %10s %8s\033[0m\n", "Step", "Time, s", "Interact/s", "GFLOP/s"); fflush(stdout);
#pragma acc data copyin(particle[0:nParticles],dt)
for (int step = 1; step <= nSteps; step++) {
const double tStart = omp_get_wtime(); // Start timing
#pragma acc update host(particle[0:nParticles])
MoveParticles(nParticles, particle, dt);
#pragma acc update device(particle[0:nParticles])
const double tEnd = omp_get_wtime(); // End timing
const float HztoInts = ((float)nParticles)*((float)(nParticles-1)) ;
const float HztoGFLOPs = 20.0*1e-9*((float)(nParticles))*((float)(nParticles-1));
if (step > skipSteps) { // Collect statistics
rate += HztoGFLOPs/(tEnd - tStart);
dRate += HztoGFLOPs*HztoGFLOPs/((tEnd - tStart)*(tEnd-tStart));
}
printf("%5d %10.3e %10.3e %8.1f %s\n",
step, (tEnd-tStart), HztoInts/(tEnd-tStart), HztoGFLOPs/(tEnd-tStart), (step<=skipSteps?"*":""));
fflush(stdout);
#ifdef DUMP
dump(step, nParticles, particle);
#endif
}
rate/=(double)(nSteps-skipSteps);
dRate=sqrt(dRate/(double)(nSteps-skipSteps)-rate*rate);
printf("-----------------------------------------------------\n");
printf("\033[1m%s %4s \033[42m%10.1f +- %.1f GFLOP/s\033[0m\n",
"Average performance:", "", rate, dRate);
printf("-----------------------------------------------------\n");
printf("* - warm-up, not included in average\n\n");
free(particle);
}
|
0 | ALLM | ALLM/GOL/RGOL.R | library('foreach')
library('ggplot2')
library('animation')
library('reshape2')
library('anim.plots')
#install.packages("FFmpeg")
#install.ffmpeg()
#oopts = if (.Platform$OS.type == "windows") {
#ani.options(ffmpeg = "ffmpeg/bin/ffmpeg.exe")
#}
#ffmpeg -i animated.gif -movflags faststart -pix_fmt yuv420p -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" video.mp4
#ffmpeg -i GOL.mp4 -r 160 -filter:v "setpts=0.25*PTS" GOL_speed.mp4
# args:
args = commandArgs(trailingOnly=TRUE)
# test if there is at least one argument: if not, return an error
if (length(args)==0) {
stop("At least one argument must be supplied (input file).n", call.=FALSE)
}
rep = paste("./",args[1],sep="")
data = paste(rep,args[2],sep="/")
out = paste(rep,args[1],sep="/")
outmp4 = paste(out,"mp4",sep=".")
outmp4speed = paste(paste(out,"speed",sep="_"),"mp4",sep=".")
outgif = paste(out,"gif",sep=".")
cmdmp4 = paste(paste(paste("ffmpeg -i",outmp4,sep=" "),"-r 8 -filter:v setpts=0.025*PTS",sep=" "),outmp4speed,sep=" ")
cmdgif = paste(paste(paste("ffmpeg -i",outmp4speed,sep=" "),"-vf fps=5,scale=450:-1",sep=" "),outgif,sep=" ")
print(data)
print(out)
print(outmp4)
print(outmp4speed)
print(cmdmp4)
print(outgif)
print(cmdgif)
# Converts the current grid (matrix) to a ggplot2 image
grid_to_ggplot <- function(subgrid) {
subgrid$V <- factor(ifelse(subgrid$V, "Alive", "Dead"))
#print(subgrid)
p <- ggplot(subgrid, aes(x = J, y = I, z = V, color = V))
p <- p + geom_tile(aes(fill = V))
p + scale_fill_manual(values = c("Dead" = "blue", "Alive" = "red"))
}
grid = read.csv(data)
grid2 = subset(grid, grid$T==110)
saveVideo({
for(i in 0:160){
if(i<=110){
subgrid = subset(grid, grid$T==i);print(i)}
else{subgrid = grid2;print(i)}
grid_ggplot <- grid_to_ggplot(subgrid)
print(grid_ggplot)
}
}, video.name = outmp4, clean = TRUE)
#saveVideo({
#for(i in 0:160){
# subgrid = subset(grid, grid$T==i)
# print(i)
# grid_ggplot <- grid_to_ggplot(subgrid)
# print(grid_ggplot)
#}
#}, video.name = outmp4, clean = TRUE)
#system("ffmpeg -i GOL.mp4 -r 8 -filter:v setpts=0.025*PTS GOL_speed.mp4")
system(cmdmp4, intern=TRUE)
#system("ffmpeg -i GOL_speed.mp4 -vf fps=5,scale=450:-1 GOL_speed.gif")
system(cmdgif, intern=TRUE)
|
0 | ALLM | ALLM/GOL/main.cc | #include "GOL.h"
#include <bits/stdc++.h>
#include <cstdio>
// g++ -std=c++17 -pg -g -O0 -Wall ex6v3.cpp -o run
// valgrind --leak-check=yes ./run
// gprof -l run *.out > analysis.txt
using namespace std;
#ifdef CASE
#define GENREP() ((CASE==0)?("Random"):((CASE==1)?("Clown"):((CASE==2)?("Canon"):("Custom"))))
#endif
int main(int argc, char *argv[], char *envp[]){
// Display each command-line argument.
cout << "\nCommand-line arguments:\n";
for( int count = 0; count < argc; count++ ){
cout << " argv[" << count << "] " << argv[count] << "\n";
}
/*for( int i = 0; envp[i]!=NULL; i++ ){
cout << " envp[" << i << "] " << envp[i] << "\n";
}*/
string UserChoice;
string InitFile;
int dimi=100, dimj=90;
if(CASE>2){
UserChoice = argv[1];
if(argv[2] != NULL){InitFile = argv[2];}else{InitFile = "mat.txt";}
}else{UserChoice = GENREP();}
cout<<" CASE "<<GENREP()<<" UserChoice "<<UserChoice<<"\n";
int iterationNB = 160;
GOL game(dimi, dimj, UserChoice, InitFile);
//GOL* game(0);
//game = new GOL(dimi, dimj, UserChoice, InitFile);
game.initialisation();
game.saveSolution(0);
for(int ite = 1; ite<iterationNB+1; ite++){
game.play();
game.saveSolution(ite);
}
//delete game;
//game = 0;
return 0;
}
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/Code_Dirichlet_LAST/main.f90 | !-----------------------------------
! MAIN : PROGRAMME PRINCIPAL
!-----------------------------------
Program main
!-------------modules-----------------!
USE mpi
use mod_parametres
use mod_charge
use mod_comm
use mod_sol
use mod_fonctions
use mod_gradconj
use mod_matsys
!--------------------------------------!
Implicit None
!REAL POUR CONNAITRE LE TEMPS D'EXECUTION TOTAL ET DE CERTAINES SUBROUTINES
REAL(PR) :: TPS1, TPS2, MAX_TPS
REAL(PR) :: MINU, MAXU
REAL(PR) :: RED_MINU, RED_MAXU
REAL(PR) :: RED_SUMC, MAXC, TPSC1, TPSC2
REAL(PR) :: STA, STB, STM
!------------INIT REGION PARA-----------------!
!********* DEBUT REGION PARA:
CALL MPI_INIT(stateinfo) !INITIALISATION DU //LISME
CALL MPI_COMM_RANK(MPI_COMM_WORLD,rang,stateinfo) !ON RECUPERE LES RANGS
!AU SEIN DE L'ENSEMBLE MPI_COMM_WORLD
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,Np,stateinfo) !ET LE NOMBRE DU PROCESSUS
!---------------------------------------------!
!******** READ USERCHOICE FOR CT AND SHARE IT WITH OTHER PROCESS
IF(rang==0)THEN
Print*,"______RESOLUTION DE L'ÉQUATION : DD SCHWARZ ADDITIVES //______"
!---initialisation des variables cas test-------------
Print*,"Donnez le cas test (1,2 ou 3):"
Read*,CT
PRINT*," POUR VISUALISATION ENTREZ 1, SINON 0"
read*,sysmove
END IF
CALL MPI_BCAST(CT,1,MPI_INTEGER,0,MPI_COMM_WORLD,stateinfo)
CALL MPI_BCAST(sysmove,1,MPI_INTEGER,0,MPI_COMM_WORLD,stateinfo)
TPS1=MPI_WTIME()
!******** COMPUTE SOME MATRIX_G DATA & GEO TIME DATA
nnz_g=5*Na_g-2*Nx_g-2*Ny_g !nb d'elt non nul dans la matrice A_g
IF(rang==0)THEN
print*,"Nombre éléments non nuls du domaine A_g non DD ADDITIVE : nnz_g=",nnz_g
print*,'Nombre de ligne Nx_g, colonne Ny_g de A_g',Nx_g,Ny_g
Print*,"Lx=",Lx
Print*,"Ly=",Ly
Print*,"D=",D
Print*," "
Print*,"dx=",dx
Print*,"dy=",dy
Print*,"dt",dt
Print*,"Tfinal=",Tf,"secondes"
Print*," "
print*,"alpha=",alpha
print*,"beta=",beta
print*,"gamma=",gamma
Print*," "
END IF
!******* SET UP ONE TAG FILE NAMED TAG TO i/o:
TAG=10+rang
WRITE(rank,fmt='(1I3)')rang !WATCH OUT IF rang>999
!******* COMPUTE SIZE OF LOCAL DD OVER LOCAL MATRIX A_l SIZE
OPEN(TAG,file='CHARGE/CHARGE'//trim(adjustl(rank))//'.dat')
CALL MODE1(rang, Np, S1, S2, it1, itN)!-->DISTRIBUTION DE LA CHARGE PAR PROCESS
S1_old = S1; S2_old = S2; it1_old = it1; itN_old = itN
WRITE(TAG,*)'AVANT OVERLAP', S1, S2, it1, itN
CALL CHARGE_OVERLAP(Np, rang, S1, S2, it1, itN)!-->MODIFICATION DE LA CHARGE EN FONCTION DE L'OVERLAP
WRITE(TAG,*)'APRES OVERLAP', S1, S2, it1, itN
!SET SIZE OF MATRICES AND INTEGER CONTROL SIZE:
Nx_l = S2 - S1 + 1; Ny_l = Ny_g; Na_l = Nx_l * Ny_l
nnz_l = 5 * Na_l - 2 * Nx_l - 2 * Ny_l
crtl_nnz_l = (Nx_l*Ny_l) + 2 * (Nx_l) * (Ny_l - 1) + 2 * (Nx_l - 1) * (Ny_l)
WRITE(TAG,*)'Nxl,Ny_l,Na_l', Nx_l, Ny_l, Na_l
WRITE(TAG,*)'nnz_l,crtl_nnz_l', nnz_l,crtl_nnz_l
CLOSE(TAG)
!COMPUTE SIZE D,C AND CRTL_L_nnz:
D_rows = Ny_l; D_nnz = D_rows+2*(D_rows-1)
C_rows = Ny_l; C_nnz = C_rows
crtl_L1_nnz = D_nnz+C_nnz
crtl_L2_nnz = (Nx_l-2)*(D_nnz+2*C_nnz)
crtl_L3_nnz = D_nnz+C_nnz
sum_crtl_L_nnz = crtl_L1_nnz+crtl_L2_nnz+crtl_L3_nnz
crtl_L1_nnz_Nxl_EQV_1 = D_nnz
IF(Nx_l > 1)THEN
IF(crtl_nnz_l/=nnz_l .AND. nnz_l/=sum_crtl_L_nnz)THEN
PRINT*,'ERROR,RANG=',rang,'Local Matrix A_l.rows,A_l.cols',Nx_l,Ny_l,nnz_l,&
&'A_l_nnz,crtl_nnz_l,sum_crtl_L_nnz',nnz_l,crtl_nnz_l,sum_crtl_L_nnz
GOTO 9999
END IF
ELSE IF(Nx_l == 1)THEN
IF(crtl_nnz_l/=nnz_l .AND. nnz_l/=crtl_L1_nnz_Nxl_EQV_1)THEN
PRINT*,'ERROR,RANG=',rang,'Local Matrix A_l.rows,A_l.cols',Nx_l,Ny_l,nnz_l,&
&'A_l_nnz,crtl_nnz_l,crtl_L1_nnz_Nxl_EQV_1',nnz_l,crtl_nnz_l,crtl_L1_nnz_Nxl_EQV_1
GOTO 9999
END IF
END IF
!******* COMPUTE CARTESIAN GRID OVER PROCESS i.e CHARGE APPLY TO X,Y,T
IF(Np/=1)THEN
CALL param_para(rang,Np,S1,S2,Ny_l,X,Y,T)
ELSE
CALL param(X,Y,T)
PRINT*,'NBR PROCESS = 1'
END IF
!****** ALLOCATE Uo ET U
ALLOCATE(U(it1:itN),Uo(it1:itN))
Uo=1._PR !-->CI pour le gradient conjugué
U=1._PR !-->vecteur solution initialisé
call WR_U(U,0)!-->SAVE SOL
CALL matsys_v2(nnz_l,Nx_l,Ny_l,AA,IA,JA)!-->on construit A
OPEN(TAG,file='MAT_VIZU/matrice_A_'//trim(adjustl(rank))//'.dat')!-->POUR VISUALISER LES MATRICES
DO i=1,nnz_l
WRITE(TAG,*)AA(i),IA(i),JA(i)
END DO
CLOSE(TAG)
ALLOCATE(F(it1:itN))!-->SECOND MEMBRE:F=Uo+dt*SOURCE_FUNCTION+CL
ALLOCATE(UG(it1-Ny_g:it1-1),UD(itN+1:itN+Ny_g))!-->VECTEURS POUR ECHANGER LES PARTIES IMMERGEES
UG = 0.0_PR; UD = 0.0_PR!-->INITITALISATION
!---boucle principale (résolution systeme) et ecriture a chaque itération---
Print*,"----------DÉBUT DU CALCUL DE LA SOLUTION------------"
Pivot=(Np-mod(Np,2))/2!-->PIVOT DE COMMUNICATION POUR COMM_PTOP_2WAY:
RED_SUMC = 0.0_PR
IF(Np>1)THEN
timeloop:Do i=1,Nt!BOUCLE EN TEMPS
err = 1.0_PR; step = 1; Norm2 = 0.0_PR
!STA = MPI_WTIME()
schwarzloop:DO WHILE(err>err_LIM .OR. step<3)!BOUCLE POUR LA CONVERGENCE DE SCHWARZ
step = step +1
Norm1 = Norm2
call vectsource_FULL(CT,U,UG,UD,S1,S2,X,Y,T(i),F)!CALCUL DU SECOND MEMBRE
call MOD_gradconj_SPARSE(AA,IA,JA,f,Uo,U,res,k,it1,itN)!RESOLUTION DU SYSTEME
!call BICGSTAB(it1,itN,AA,IA,JA,U,F,0.0000000001_PR)
!call MOD_jacobi_SPARSE(AA,IA,JA,F,Uo,U,res,k)
TPSC1 = MPI_WTIME()
call COMM_PTOP(U,UG,UD)!COMMUNICATION DE LA SOLUTION AUX FRONTIERES IMMERGEES
!call COMM_PTOP_2WAY(U,UG,UD)!-->une petite reduction du temps des communications(pour Np>=5)
TPSC2 = MPI_WTIME()
RED_SUMC = RED_SUMC + (TPSC2-TPSC1)
Uo=U !SWAP
if(rang==0)then!CALCUL DE LA NORME 2 SUR LES PARTIES CORRESPONDANT AUX FRONTIERES IMMERGEE DU VECTEURS SOLUTION
C1 = DOT_PRODUCT(U(itN-Ny_l+1:itN),U(itN-Ny_l+1:itN))
else if(rang==Np-1)then
C1 = DOT_PRODUCT(U(it1:it1+Ny_l-1),U(it1:it1+Ny_l-1))
else
C1 = DOT_PRODUCT(U(it1:it1+Ny_l-1),U(it1:it1+Ny_l-1))+DOT_PRODUCT(U(itN-Ny_l+1:itN),U(itN-Ny_l+1:itN))
end if
!POSSIBILITE DE FAIRE CE CALCUL SUR TOUT LE DOMAINE APRES OVERLAP OU BIEN AVANT OVERLAP:
!C1 = DOT_PRODUCT(U(it1:itN),U(it1:itN))
!C1 = DOT_PRODUCT(U(it1_old:itN_old),U(it1_old:itN_old))
Call MPI_ALLREDUCE(C1,Norm2,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,stateinfo)
Norm2 = SQRT(Norm2)!CALCUL DE LA NORME 2
err = abs(Norm1-Norm2)!CALCUL DE L'ERREUR
END DO schwarzloop
!STB = MPI_WTIME()
if(mod(i,10)==0)then
print*,'it temps',i
end if
End Do timeloop
!CALL MPI_ALLREDUCE(STB-STA,STM,1,MPI_DOUBLE,MPI_MAX,MPI_COMM_WORLD,stateinfo)
!PRINT*,'STM',STM,'STEP',STEP
ELSE IF(Np==1)THEN
Do i=1,Nt
call vectsource_FULL(CT,U,UG,UD,S1,S2,X,Y,T(i),F)
call MOD_gradconj_SPARSE(AA,IA,JA,f,Uo,U,res,k,it1,itN)
!call MOD_jacobi_SPARSE(AA,IA,JA,F,Uo,U,res,k)
Uo=U !SWAP
if(mod(i,10)==0)then
print*,'it temps',i
end if
End Do
END IF
!SAVE SOL :
call WR_U(U,Nt)
DEALLOCATE(UG,UD)
!WRITE SOL EXACTE:
IF(CT < 3)THEN
call UEXACT(U,CT)
END IF
RED_MINU = minval(U)
RED_MAXU = maxval(U)
!POUR LES TEMPS DE CALCULS:
CALL MPI_ALLREDUCE(RED_MINU,MINU,1,MPI_DOUBLE_PRECISION,MPI_MIN,MPI_COMM_WORLD,stateinfo)
CALL MPI_ALLREDUCE(RED_MAXU,MAXU,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
if(Np>1)then
CALL MPI_ALLREDUCE(RED_SUMC,MAXC,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
end if
DEALLOCATE(U,Uo,X,Y,T,AA,IA,JA,F)
TPS2=MPI_WTIME()
CALL MPI_ALLREDUCE(TPS2-TPS1,MAX_TPS,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
IF(rang==0)THEN
PRINT*,'TEMPS CALCUL=',MAX_TPS,' TEMPS COMM=',MAXC
END IF
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
IF(crtl_nnz_l == nnz_l)THEN
GOTO 6666
END IF
9999 PRINT*,rang,'GOTO9999crtl_nnz_l /= nnz_l ERROR',crtl_nnz_l,nnz_l
6666 PRINT*,rang,'GOTO6666NEXT INSTRUCTION IS MPI_FINALIZE',crtl_nnz_l,nnz_l
!---ecriture solution finale--------------------------
call CONCAT_VIZU_ONLY_Nt(sysmove,MINU,MAXU)
CALL MPI_FINALIZE(stateinfo)
Print*,"------------------CALCUL TERMINÉ--------------------"
!----------------------------------------------
CONTAINS
Subroutine CONCAT_VIZU(sysmove)
Integer, Intent(INOUT):: sysmove
CHARACTER(LEN=3):: NNT
CHARACTER(LEN=1)::ESPACE
CHARACTER(LEN=20)::NFILE,OUT_FILE
INTEGER::i
!VIZUALISATION SEQUENTIELLE: ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE RANG DIFFERENTS DANS UN FICHIER
IF(rang==0.AND.sysmove==1)THEN
ESPACE=' '
DO i=0,Nt
WRITE(NNT,fmt='(1I3)')i;
NFILE='U_ME*'//'_T'//trim(adjustl(NNT));OUT_FILE='UT_'//trim(adjustl(NNT))//'.dat'
!ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE RANG DIFFERENTS DANS UN FICHIER
CALL system('cat SOL_NUMERIQUE/'//NFILE//' >> SOL_NUMERIQUE/'//OUT_FILE)
CALL system('rm SOL_NUMERIQUE/'//NFILE)
OPEN(20,file='SOL_NUMERIQUE/'//OUT_FILE,position='append')
SELECT CASE(CT)!ICI IL FAUT RAJOUTER LES POINTS AUX COINS DU DOMAINES
CASE(1)
WRITE(20,*)0.0d0,0.0d0,0.0d0;WRITE(20,*)Lx,0.0d0,0.0d0
WRITE(20,*)0.0d0,Ly,0.0d0;WRITE(20,*)Lx,Ly,0.0d0
CASE(2)
WRITE(20,*)0.0d0,0.0d0,1.0d0;WRITE(20,*)Lx,0.0d0,1.0d0+sin(Lx)
WRITE(20,*)0.0d0,Ly,cos(Ly);WRITE(20,*)Lx,Ly,cos(Ly)+sin(Lx)
CASE(3)
WRITE(20,*)0.0d0,0.0d0,0.5d0;WRITE(20,*)Lx,0.0d0,0.5d0!TEMPERATURES IMPOSEES DIFFERENTES, ON MOYENNE:((G+H)/2)
WRITE(20,*)0.0d0,Ly,0.5d0;WRITE(20,*)Lx,Ly,0.5d0
END SELECT
WRITE(20,fmt='(1A1)')ESPACE
WRITE(20,fmt='(1A1)')ESPACE
CLOSE(20)
!ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE TEMPS DIFFERENTS DANS UN FICHIER
CALL system('cat SOL_NUMERIQUE/'//OUT_FILE//' >> SOL_NUMERIQUE/U.dat')
CALL system('rm SOL_NUMERIQUE/'//OUT_FILE)
END DO
!A LA FIN, IL RESTE UN FICHIER OU LA SOLUTION EN TEMPS EST SOUS FORME D'INDEX GNUPLOT
!ON APPELLE LA SUBROUTIEN DE VISUALISATION:
CALL VIZU_SOL_NUM(CT)
END IF
End Subroutine CONCAT_VIZU
Subroutine CONCAT_VIZU_ONLY_Nt(sysmove,MINU,MAXU)
Integer, Intent(INOUT):: sysmove
REAL(PR), Intent(IN) :: MINU, MAXU
CHARACTER(LEN=3):: NNT
CHARACTER(LEN=1)::ESPACE
CHARACTER(LEN=20)::NFILE,OUT_FILE
INTEGER::i
!VIZUALISATION SEQUENTIELLE: ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE RANG DIFFERENTS DANS UN FICHIER
IF(rang==0.AND.sysmove==1)THEN
ESPACE=' '
DO i=Nt,Nt
WRITE(NNT,fmt='(1I3)')i;
NFILE='U_ME*'//'_T'//trim(adjustl(NNT));OUT_FILE='UT_'//trim(adjustl(NNT))//'.dat'
!ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE RANG DIFFERENTS DANS UN FICHIER
CALL system('cat SOL_NUMERIQUE/'//NFILE//' >> SOL_NUMERIQUE/'//OUT_FILE)
CALL system('rm SOL_NUMERIQUE/'//NFILE)
OPEN(20,file='SOL_NUMERIQUE/'//OUT_FILE,position='append')
SELECT CASE(CT)!ICI IL FAUT RAJOUTER LES POINTS AUX COINS DU DOMAINES
CASE(1)
WRITE(20,*)0.0d0,0.0d0,0.0d0;WRITE(20,*)Lx,0.0d0,0.0d0
WRITE(20,*)0.0d0,Ly,0.0d0;WRITE(20,*)Lx,Ly,0.0d0
CASE(2)
WRITE(20,*)0.0d0,0.0d0,1.0d0;WRITE(20,*)Lx,0.0d0,1.0d0+sin(Lx)
WRITE(20,*)0.0d0,Ly,cos(Ly);WRITE(20,*)Lx,Ly,cos(Ly)+sin(Lx)
CASE(3)
WRITE(20,*)0.0d0,0.0d0,0.5d0;WRITE(20,*)Lx,0.0d0,0.5d0!TEMPERATURES IMPOSEES DIFFERENTES, ON MOYENNE:((G+H)/2)
WRITE(20,*)0.0d0,Ly,0.5d0;WRITE(20,*)Lx,Ly,0.5d0
END SELECT
WRITE(20,fmt='(1A1)')ESPACE
WRITE(20,fmt='(1A1)')ESPACE
CLOSE(20)
!ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE TEMPS DIFFERENTS DANS UN FICHIER
CALL system('cat SOL_NUMERIQUE/'//OUT_FILE//' >> SOL_NUMERIQUE/U.dat')
CALL system('rm SOL_NUMERIQUE/'//OUT_FILE)
END DO
!A LA FIN, IL RESTE UN FICHIER OU LA SOLUTION EN TEMPS EST SOUS FORME D'INDEX GNUPLOT
!ON APPELLE LA SUBROUTIEN DE VISUALISATION:
!CALL VIZU_SOL_NUM(CT)
CALL VIZU_SOL_NUM_ONLY_Nt(CT,MINU,MAXU)
END IF
End Subroutine CONCAT_VIZU_ONLY_Nt
End Program main
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/Code_Dirichlet_LAST/mod_charge.f90 | module mod_charge
use mod_parametres
Implicit None
CONTAINS
!**************************
!^ y Ny
!|
!|
!|
!1---------> x Nx
!*************************
!SE BASE SUR LA CHARGE EN X POUR CALCULER LA CHARGE TOTALE(GLOBALE)
!INDUIT POUR MOD(DIM,Np)/=0 UNE DIFFERENCE DE CHARGE = A Ny ENTRE 2 PROCS
!UTILISABLE POUR Np<=INTER_X
Subroutine MODE1(rang, Np, S1, S2, it1, itN)
Integer, Intent(IN) :: rang, Np
Integer, Intent(OUT) :: S1, S2,it1, itN
!CHARGE EN X :
CALL CHARGE_X(rang, Np, S1, S2)
!CHARGE TOT :
CALL CHARGE_TOT(S1, S2, it1, itN)
End Subroutine MODE1
!REPARTITION CLASSIQUE DE LA CHARGE EN X
Subroutine CHARGE_X(rang, Np, S1,S2)
Integer, Intent(IN) :: rang, Np
Integer, Intent(OUT) :: S1, S2
REAL :: CO_RE !COEFFICIANT DE REPARTITION
IF(Np == 1)THEN
S1 = 1; S2 = Nx_g
ELSE
CO_RE=(Nx_g)/(Np)
If(rang < mod(Nx_g,Np))Then
S1 = rang*(CO_RE+1) + 1; S2 = (rang+1) * (CO_RE+1)
Else
S1 = 1 + mod(Nx_g,Np) + rang*CO_RE; S2 = S1+CO_RE-1
End If
END IF
End Subroutine CHARGE_X
!CHARGE TOTALE SUR LA NUMEROTATION GLOBALE
Subroutine CHARGE_TOT(S1, S2, it1, itN)
Integer, Intent(IN) :: S1, S2
Integer, Intent(OUT) :: it1, itN
it1 = (S1-1)*Ny_g+1; itN = S2*Ny_g
End Subroutine CHARGE_TOT
!RE-COMPUTE CHARGE WITH OVERLAP
Subroutine CHARGE_OVERLAP(Np, rang, S1, S2, it1, itN)
Implicit None
Integer, Intent(IN) ::Np, rang
Integer, Intent(INOUT) ::S1, S2, it1, itN
!Le (-1) sur overlap pour retirer la frontiere
!immergée qui passe en CL
!WE PUT A Ny_g BECAUSE Ny_l == Ny_g and Ny_l is defined after this subroutine
!Also Because IT'S a 1D DD
!IF WE WANT TO SET UP A 2D DD I WILL NEED DO REPLACE Ny_g BY Ny_l
!AND MAKE OTHER MODIFICATION
IF(rang == 0)THEN
S2 = S2 + (overlap-1)
itN = itN + (overlap-1) * Ny_g
ELSE IF(rang == Np-1)THEN
S1 = S1 - (overlap-1)
it1 = it1 - (overlap-1) * Ny_g
ELSE
S1 = S1 - (overlap-1)
S2 = S2 + (overlap-1)
it1 = it1 - (overlap-1) * Ny_g
itN = itN + (overlap-1) * Ny_g
END IF
End Subroutine CHARGE_OVERLAP
end module mod_charge
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/Code_Dirichlet_LAST/mod_comm.f90 | module mod_comm
use mpi
use mod_parametres
Implicit None
CONTAINS
! UG et UD les parties du vecteur solution U Correspondant à/aux frontière(s)
! immergée(s).
Subroutine COMM_PTOP(U,UG,UD)
Real(PR), DImension(it1:itN), Intent(IN):: U
Real(PR), DImension(it1-Ny_g:it1-1), Intent(INOUT):: UG
Real(PR), DImension(itN+1:itN+Ny_g), Intent(INOUT):: UD
Integer:: A, B, C, D, iD1, iD2, iG1, iG2
B = itN - 2*(overlap-1)*Ny_g; A = B - (Ny_g-1)
C = it1 +2*(overlap-1)*Ny_g; D = C + (Ny_g-1)
iD1 = itN + 1; iD2 = itN + Ny_g
iG1 = it1 - Ny_g; iG2 = it1 -1
IF(rang == 0)THEN ! rang tag channel
CALL MPI_SEND(U(A:B),Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(UD(iD1:iD2),Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
ELSE IF(rang > 0 .AND. rang<Np-1)THEN
CALL MPI_RECV(UG(iG1:iG2),Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_SEND(U(C:D),Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
CALL MPI_SEND(U(A:B),Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(UD(iD1:iD2),Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
ELSE IF(rang == Np-1)THEN
CALL MPI_RECV(UG(iG1:iG2),Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_SEND(U(C:D),Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
END IF
End Subroutine COMM_PTOP
Subroutine COMM_PTOP_2WAY(U,UG,UD)
Real(PR), DImension(it1:itN), Intent(IN):: U
Real(PR), DImension(it1-Ny_g:it1-1), Intent(INOUT):: UG
Real(PR), DImension(itN+1:itN+Ny_g), Intent(INOUT):: UD
Integer:: A, B, C, D, iD1, iD2, iG1, iG2
B = itN - 2*(overlap-1)*Ny_g; A = B - (Ny_g-1)
C = it1 +2*(overlap-1)*Ny_g; D = C + (Ny_g-1)
iD1 = itN + 1; iD2 = itN + Ny_g
iG1 = it1 - Ny_g; iG2 = it1 -1
IF(rang == 0)THEN ! rang tag channel
CALL MPI_SEND(U(A:B),Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(UD(iD1:iD2),Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
ELSE IF(rang > 0 .AND. rang<Pivot)THEN
CALL MPI_RECV(UG(iG1:iG2),Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_SEND(U(C:D),Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
CALL MPI_SEND(U(A:B),Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(UD(iD1:iD2),Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
ELSE IF(rang >= Pivot .AND. rang < Np-1)THEN
CALL MPI_RECV(UD(iD1:iD2),Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_SEND(U(A:B),Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_SEND(U(C:D),Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(UG(iG1:iG2),Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
ELSE IF(rang == Np-1)THEN
CALL MPI_SEND(U(C:D),Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(UG(iG1:iG2),Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
END IF
End Subroutine COMM_PTOP_2WAY
end module mod_comm
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/Code_Dirichlet_LAST/mod_fonctions.f90 | !---------------------------------------------
! CE MODULE CONTIENT LES FONCTIONS
! DES TERMES SOURCES DE L'EQUATION
!---------------------------------------------
Module mod_fonctions
!---modules-------------------
use mod_parametres
!-----------------------------
Implicit None
Contains
!CT --> tag pour moduler les fct suivant le CAS test
!(x,y,t) --> coordonnees espace et le temps
!---fonction f premier exemple(terme source)---
Real(PR) Function f1(CT,x,y,t)
Integer, Intent(In) :: CT
Real(PR), Intent(In) :: x, y, t
f1 = 0.0_PR
If ( CT == 1 ) Then
f1 = 2._PR * (y*(1._PR-y)+x*(1._PR-x))
Else IF ( CT == 2 ) Then
f1 = sin(x) + cos(y)
Else If ( CT == 3 ) Then
f1 = exp(-((x-(Lx/2._PR))**2._PR)) * exp(-((y-(Ly/2._PR))**2._PR))&
*cos((pi/2._PR)*t)
End If
End Function f1
!----------------------------------------------
!---fonction g premier exemple( bords haut/bas)-Conditions limites
Real(PR) Function g1(CT,x,y,t)
Integer, Intent(In) :: CT
Real(PR), Intent(In) :: x,y,t
g1 = 0.0_PR
If ( CT == 1 ) Then
g1 = 0._PR
Else IF ( CT == 2 ) Then
g1 = sin(x) + cos(y)
Else If ( CT == 3 ) Then
g1 = 0._PR
End If
End Function g1
!----------------------------------------------
!---function h premier exemple(bord gauche/droite)-Condition Limites
Real(PR) Function h1(CT,x,y,t)
Integer, Intent(In) :: CT
Real(PR), Intent(In) :: x,y,t
h1 = 0.0_PR
If ( CT == 1 ) Then
h1 = 0._PR
Else IF ( CT == 2 ) Then
h1 = sin(x) + cos(y)
Else If ( CT == 3 ) Then
h1 = 1._PR
End If
End Function h1
!---Fonctions donnant les vecteurs Xi,Yj,Tn---------------
!Pour discretiser espace et le temps:
!verision sequentiel
Subroutine param(X,Y,T)
Implicit None
!---variables-------------------------
real(PR), Dimension(:), Allocatable, Intent(InOut) :: X
real(PR), Dimension(:), Allocatable, Intent(InOut) :: Y
real(PR), Dimension(:), Allocatable, Intent(InOut) :: T
Integer :: i
!-------------------------------------
ALLOCATE(Y(0:Ny_g+1),T(0:Nt+1),X(0:Nx_g+1))
Do i=0,Ny_g+1
Y(i)=i*dy
End Do
Do i=0,Nt+1
T(i)=i*dt
End Do
DO i=0,Nx_g+1
X(i)=i*dx
END DO
LBX = lbound(X,1)
UBX = ubound(X,1)
End Subroutine param
!version parallele:
Subroutine param_para(rang,Np,S1,S2,Ny_l,X,Y,T)
Implicit None
!---variables-------------------------
Integer, Intent(IN) :: rang, Np, S1, S2, Ny_l
real(PR), Dimension(:), Allocatable, Intent(InOut) :: X
real(PR), Dimension(:), Allocatable, Intent(InOut) :: Y
real(PR), Dimension(:), Allocatable, Intent(InOut) :: T
Integer :: i
!-------------------------------------
ALLOCATE(Y(0:Ny_l+1),T(0:Nt+1))
Do i=0,Ny_l+1
Y(i)=i*dy
End Do
Do i=0,Nt+1
T(i)=i*dt
End Do
IF(rang == 0)THEN
ALLOCATE(X(S1-1:S2))
Do i=S1-1,S2
X(i)=i*dx
End Do
ELSE IF(rang == Np-1)THEN
ALLOCATE(X(S1:S2+1))
DO i=S1,S2+1
X(i)=i*dx
END DO
ELSE
ALLOCATE(X(S1:S2))
DO i=S1,S2
X(i)=i*dx
END DO
END IF
LBX = lbound(X,1)
UBX = ubound(X,1)
End Subroutine param_para
!-------------------------------------------------------------
End Module mod_fonctions
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/Code_Dirichlet_LAST/mod_gradconj.f90 | !-----------------------------------------
! CE MODULE CONTIENT LE GRADIENT CONJUGUÉ
! EN PLEIN ET EN CREUX (FORMAT COORDONNES)
!-----------------------------------------
Module mod_gradconj
!---modules----------------
use mod_parametres
use mod_fonctions
!--------------------------
Implicit None
Contains
!---GRADIENT CONJUGUÉ POUR UNE MATRICE A PLEINE---------
Subroutine gradconj(A,b,x0,x,beta,k,n)
!---variables------------------------------------
Integer, Intent(In) :: n !taille vecteur solution (=taille de la matrice carrée)
Real(PR), Dimension(:,:), Intent(In) :: A !matrice à inverser
Real(PR), Dimension(:), Intent(In) :: b,x0 ! b second membre, x0 CI
Real(PR), Dimension(:), Intent(Out) :: x !solution finale
Real(PR), Intent(Out) :: beta !norme du résidu
Real(PR), Dimension(:), Allocatable :: p,z,r1,r2
Real(PR) :: alpha,gamma,eps
Integer, Intent(Out) :: k !nb d'itération pr convergence
Integer :: kmax
!-------------------------------------------------
eps=0.01_PR
kmax=150
Allocate(p(n),z(n),r1(n),r2(n))
r1=b-matmul(A,x0)
p=r1
beta=sqrt(sum(r1*r1))
k=0
Do While (beta>eps .and. k<=kmax)
z=matmul(A,p)
alpha=dot_product(r1,r1)/dot_product(z,p)
x=x+alpha*p
r2=r1-alpha*z
gamma=dot_product(r2,r2)/dot_product(r1,r1)
p=r2+gamma*p
beta=sqrt(sum(r1*r1))
k=k+1
r1=r2
End Do
If (k>kmax) then
Print*,"Tolérance non atteinte:",beta
End If
Deallocate(p,z,r1,r2)
End Subroutine gradconj
!----------------------------------------------------
!---GRADIENT CONJUGUÉ POUR MATRICE CREUSE AU FORMAT COORDONNÉES-----
!---A PARALLELISER : PRODUIT MATRICE/VECTEUR + PRODUIT SCALAIRE
Subroutine gradconj_SPARSE(AA,IA,JA,F,x0,x,b,k,n)
Implicit None
!---variables ---------------------------------------
Integer, Intent(In) :: n !taille vecteur solution
Real(PR), Dimension(:), Intent(In) :: AA
Integer, Dimension(:), Intent(In) :: IA,JA
Real(PR), Dimension(:), Intent(In) :: f,x0 !f=vect source , x0=CI
Real(PR), Dimension(:), Intent(InOut) :: x !solution finale
Real(PR), Intent(Out) :: b !norme du résidu
Real(PR), Dimension(:), Allocatable :: p,z,r1,r2
Real(PR) :: a,g,eps
Integer, Intent(Out) :: k !nb d'itérations pour convergence
Integer :: kmax !nb d'itérations max
!-----------------------------------------------------
eps=0.01_PR
kmax=1500
Allocate(p(n),z(n),r1(n),r2(n))
!---paralléliser------------------------
r1=f-MatVecSPARSE(AA,IA,JA,x0)
!-------------------------------------
p=r1
b=sqrt(sum(r1*r1))
k=0
Do While (b>eps .and. k<=kmax)
!---paralléliser------------------
z=MatVecSPARSE(AA,IA,JA,p)
!---------------------------------
a=dot_product(r1,r1)/dot_product(z,p)
x=x+a*p
r2=r1-a*z
g=dot_product(r2,r2)/dot_product(r1,r1)
p=r2+g*p
b=sqrt(sum(r1*r1))
k=k+1
r1=r2
End Do
If (k>kmax) then
Print*,"Tolérance non atteinte:",b
End If
Deallocate(p,z,r1,r2)
End Subroutine gradconj_SPARSE
!--------------------------------------------------------------
!---FONCTION PRODUIT MATxVEC EN SPARSE-------------------------
Function MatVecSPARSE(AA,IA,JA,x) Result(y)
!Produit MatriceSPARSE.vecteur plein (x) retourne vecteur plein(y)
!---variables------------------------------------------
Real(PR), Dimension(:), Intent(In) :: AA,x
Integer, Dimension(:), Intent(In) :: IA,JA
Real(PR), Dimension(Size(x)) :: y
Integer :: i,n,nnz
!--------------------------------------------------------
n=Size(x,1)
nnz=Size(AA,1)
y(1:n)=0._PR
Do i=1,nnz
if (IA(i)==0) then
print*,"element IA nul pour i =",i
end if
y(IA(i))=y(IA(i))+AA(i)*x(JA(i))
End Do
End Function MatVecSPARSE
!---------------------------------------------------------------
!GC COO FORMAT BUILD FOR global numerotation over x
Subroutine MOD_gradconj_SPARSE(AA,IA,JA,f,x0,x,b,k,it1,itN)
Implicit None
!---variables ---------------------------------------
Integer, Intent(In) :: it1,itN !taille vecteur solution
Real(PR), Dimension(:), Intent(In) :: AA
Integer, Dimension(:), Intent(In) :: IA,JA
Real(PR), Dimension(it1:itN), Intent(In) :: f,x0 !f=vect source , x0=CI
Real(PR), Dimension(it1:itN), Intent(InOut) :: x !solution finale
Real(PR), Intent(Out) :: b !norme du résidu
Real(PR), Dimension(:), Allocatable :: p,z,r1,r2
Real(PR) :: a,g,eps
Integer, Intent(Out) :: k !nb d'itérations pour convergence
Integer :: kmax !nb d'itérations max
!-----------------------------------------------------
eps=0.0000000001_PR
kmax=2*Na_l!1500
Allocate(p(it1:itN),z(it1:itN),r1(it1:itN),r2(it1:itN))
!---paralléliser------------------------
r1=f-MOD_MatVecSPARSE(AA,IA,JA,x0,it1,itN)
!-------------------------------------
p=r1
b=sqrt(sum(r1*r1))
k=0
Do While (b>eps .and. k<=kmax)
!---paralléliser------------------
z=MOD_MatVecSPARSE(AA,IA,JA,p,it1,itN)
!---------------------------------
a=dot_product(r1,r1)/dot_product(z,p)
x=x+a*p
r2=r1-a*z
g=dot_product(r2,r2)/dot_product(r1,r1)
p=r2+g*p
b=sqrt(sum(r1*r1))
k=k+1
r1=r2
!PRINT*,'k,b',k,b
End Do
If (k>kmax) then
Print*,"Tolérance non atteinte:",b
End If
Deallocate(p,z,r1,r2)
End Subroutine MOD_gradconj_SPARSE
!--------------------------------------------------------------
!---FONCTION PRODUIT MATxVEC EN SPARSE-------------------------
Function MOD_MatVecSPARSE(AA,IA,JA,x,it1,itN) Result(y)
!Produit MatriceSPARSE.vecteur plein (x) retourne vecteur plein(y)
!---variables------------------------------------------
INTEGER,INTENT(IN)::it1,itN
Real(PR), Dimension(:), Intent(In) :: AA
Real(PR), Dimension(it1:itN), Intent(In) ::x
Integer, Dimension(:), Intent(In) :: IA,JA
Real(PR), Dimension(it1:itN) :: y
Integer :: i,n,nnz,val
!--------------------------------------------------------
n=Size(x,1)
!PRINT*,'***',n,itN-it1+1
nnz=Size(AA,1)
y(it1:itN)=0._PR
val=(it1-1)
Do i=1,nnz
if (IA(i)==0) then
print*,"element IA nul pour i =",i
end if
!PRINT*,i,IA(i),val+IA(i),JA(i),val+JA(i),x(val+JA(i))
y(val+IA(i))=y(val+IA(i))+AA(i)*x(val+JA(i))
End Do
End Function MOD_MatVecSPARSE
!---------------------------------------------------------------
Subroutine MOD_jacobi_SPARSE(AA,IA,JA,F,x0,x,resnorm,k)
!-----variables---------------------
Real(PR), Dimension(nnz_l), Intent(In) :: AA
Integer, Dimension(nnz_l), Intent(In) :: IA,JA
Real(PR), Dimension(it1:itN), Intent(InOut) :: F,x0 !f=vect source , x0=CI
Real(PR), Dimension(it1:itN), Intent(InOut) :: x !solution finale
Real(PR), Intent(Out) :: resnorm !norme du résidu
Real(PR), Dimension(:), Allocatable :: r
Real(PR) :: eps,somme
Integer, Intent(InOut) :: k !nb d'itérations pour convergence
Integer :: kmax,pp,val,ii,borne !nb d'itérations max
ALLOCATE(r(it1:itN))
borne=nnz_l+1
x=x0
eps = 0.0000000001_PR
kmax = 2*Na_l*Na_l
r = F-MOD_MatVecSPARSE(AA,IA,JA,x0,it1,itN) !résidu initial
resnorm = sqrt(sum(r*r)) !norme 2 du résidu
k = 0 !initialisation itération
boucle_resolution: Do While ((resnorm>eps) .and. (k<kmax))
k=k+1
!on calcule xi^k+1=(1/aii)*(bi-sum(j=1,n;j/=i)aij*xj^k)
x0=0._PR
pp=1;val=it1-1
boucle_xi: Do ii=1,Na_l
!calcul de la somme des aij*xj^k pour j=1,n;j/=i
somme = 0.0_PR;
!!$ if(rang==0)then
!!$ PRINT*,'ii,pp,k,nnz_l,ubound IA',ii,pp,k,nnz_l,ubound(IA,1),nnz_l+1
!!$ end if
DO WHILE((pp<borne) .AND. (ii==IA(pp)))
IF (IA(pp) /= JA(pp)) THEN
somme= somme + x(val+JA(pp)) * AA(pp)
END IF
!!$ if(rang==0)then
!!$ PRINT*,'ii,pp,IA(pp),JA(pp),AA(pp),x(JA(pp))',ii,pp,IA(pp),JA(pp),AA(pp),x(val+JA(pp))
!!$ end if
pp=pp+1
!PRINT*,'pp',pp
if(pp==borne)then !because the do while check both pp<borne and ii==IA(pp),maybe due to makefile
! he should break when pp>=borne and don't check ii==IA(pp)
GOTO 7777
end if
END DO
!calcul du nouveau xi
7777 x0(val+ii)=(1._PR/alpha)*(F(val+ii)-somme)
x0(val+ii)=(1._PR/alpha)*(F(val+ii)-somme)!;print*,'t',rang
End Do boucle_xi
x=x0
!on calcule le nouveau résidu
r = F - MOD_MatVecSPARSE(AA,IA,JA,x,it1,itN)
! calcul de la norme 2 du résidu
resnorm = sqrt(sum(r*r))
!print*,resnorm,k
End Do boucle_resolution
If (k>kmax) then
Print*,"Tolérance non atteinte:",resnorm
End If
DEALLOCATE(r)
End Subroutine MOD_jacobi_SPARSE
Subroutine BICGSTAB(it1,itN,AA,IA,JA,x,b,eps)
Implicit None
Integer, intent(IN) :: it1, itN
Real(PR), Dimension(:), intent(IN) :: AA
Integer, Dimension(:), intent(IN) :: IA, JA
Real(PR), Dimension(:), intent(INOUT) :: x
Real(PR), Dimension(:), intent(IN) :: b
Real(PR), intent(IN) :: eps
Real(PR), Dimension(it1:itN) :: r0, v, p ,r, h, s, t
Real(PR) :: rho_i, rho_im1, alpha_CG, w, beta_cg
Real(PR) :: omega
Real(PR) :: beta
Integer :: k, kmax
kmax = 2*Na_l*Na_l
omega = 1.0_PR
r0 = b -MOD_MatVecSPARSE(AA, IA, JA, x, it1, itN)
r = r0
rho_im1 = 1.0_PR; alpha_CG = 1.0_PR; w = 1.0_PR
v = 0.0_PR; p = 0.0_PR
k = 0
beta = SQRT(DOT_PRODUCT(r0,r0))
DO WHILE(beta>eps.AND.k<kmax)
rho_i = DOT_PRODUCT(r0,r)
beta_CG = (rho_i/rho_im1)*(alpha_CG/w)
p = r + beta_CG*(p-v*w)
v = MOD_MatVecSPARSE(AA,IA,JA,p,it1,itN)
alpha_CG = rho_i/DOT_PRODUCT(r0,v)
h = x + p*alpha_CG
s = r - v*alpha_CG
t = MOD_MatVecSPARSE(AA,IA,JA,s,it1,itN)
w = DOT_PRODUCT(t,s)/DOT_PRODUCT(t,t)
x = h + s*w
r = s - t*w
beta = DOT_PRODUCT(r,r)
rho_im1 = rho_i
k = k+1
END DO
!PRINT*,'kmax,k',kmax,k
End Subroutine BICGSTAB
End Module mod_gradconj
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/Code_Dirichlet_LAST/mod_matsys.f90 | !----------------------------------------------------
! CE MODULE CONTIENT LA CONSTRUCTION DE LA MATRICE A
! ET LE VECTEUR SOURCE F
!----------------------------------------------------
Module mod_matsys
!---modules-------------------
Use mod_parametres
Use mod_fonctions
Use mod_gradconj
!-----------------------------
Implicit None
Contains
!--- SUBROUTINE QUI CONSTRUIT LA MATRICE A : UN SEUL APPEL ----------------------
!--- COO FORMAT: AA contient elements non nuls, IA et JA numéro de la ligne, colonne
!--- de element non nul.
Subroutine matsys_v2(nnz,Nx_l,Ny_l,AA,IA,JA)
Integer, Intent(IN) ::nnz,Nx_l,Ny_l
Real(PR), Dimension(:), Allocatable, Intent(Out) :: AA
Integer, Dimension(:), Allocatable, Intent(Out) :: IA,JA
Integer :: k, mul2, d1, d2, mul1
k = 1; mul2 = Nx_l*Ny_l; mul1 = Ny_l*(Nx_l-1)+1
ALLOCATE(AA(nnz),IA(nnz),JA(nnz))
!L1-----------------------------------------------------------
IF(Nx_l > 1)THEN
CALL L1(Ny_l,nnz,k,AA,IA,JA)
!CRTL nnz_L1
IF(k /= crtl_L1_nnz)THEN
PRINT*,'ERROR L1_nnz','RANG',rang,'k_L1',k,'/=','crtl_L1_nnz',crtl_L1_nnz
AA=0._PR;IA=0;JA=0
END IF
ELSE IF(Nx_l == 1)THEN
CALL L1_NXL_eqv_1(Ny_l,nnz,k,AA,IA,JA)
IF(k /= crtl_L1_nnz_Nxl_EQV_1)THEN
PRINT*,'ERROR L1_nnz','RANG',rang,'k_L1',k,'/=','crtl_L1_nnz_Nxl_EQV_1',crtl_L1_nnz_Nxl_EQV_1
AA=0._PR;IA=0;JA=0
END IF
END IF
!L2-----------------------------------------------------------
IF(Nx_l>2)THEN
d1 = Ny_l+1; d2 = 2*Ny_l
CALL L2(Nx_l,Ny_l,nnz,d1,d2,k,AA,IA,JA)
IF(k /= crtl_L1_nnz + crtl_L2_nnz)THEN
PRINT*,'ERROR L2_nnz','RANG',rang,'k_L2',k-crtl_L1_nnz,'/=','crtl_L2_nnz',crtl_L2_nnz
AA=0._PR;IA=0;JA=0
END IF
END IF
!L3-----------------------------------------------------------
IF(Nx_l>1)THEN
CALL L3(mul1,mul2,Ny_l,nnz,k,AA,IA,JA)
PRINT*,'rang',rang,'k',k,'FIN L3'
IF(k /= sum_crtl_L_nnz)THEN
PRINT*,'ERROR L3_nnz','RANG',rang,'k_L3',k-crtl_L1_nnz-crtl_L2_nnz,'/=','crtl_L3_nnz',crtl_L3_nnz
AA=0._PR;IA=0;JA=0
END IF
END IF
END Subroutine matsys_v2
Subroutine L1_NXL_eqv_1(Ny_l,nnz,k,AA,IA,JA)
INTEGER,INTENT(IN)::Ny_l,nnz
INTEGER,INTENT(INOUT)::k
Real(PR), Dimension(nnz), Intent(Out) :: AA
Integer, Dimension(nnz), Intent(Out) :: IA,JA
Integer::d
!ONLY WHEN A PROCES GOT Nx_l==1
DO d = 1, Ny_l
IF(d == 1)THEN
AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
ELSE IF(d>1 .AND. d<Ny_l)THEN
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
ELSE IF(d == Ny_l)THEN
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
END IF
END DO
End Subroutine L1_NXL_eqv_1
Subroutine L1(Ny_l,nnz,k,AA,IA,JA)
INTEGER,INTENT(IN)::Ny_l,nnz
INTEGER,INTENT(INOUT)::k
Real(PR), Dimension(nnz), Intent(Out) :: AA
Integer, Dimension(nnz), Intent(Out) :: IA,JA
Integer::d,hit
DO d = 1, Ny_l
IF(d == 1)THEN
AA(k)=alpha; IA(k)=d; JA(k)=d
DO hit = d+1, d+Ny_l, Ny_l-1
IF(hit == d+1)THEN
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=hit
ELSE
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=hit
END IF
END DO
ELSE IF(d>1 .AND. d<Ny_l)THEN
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
ELSE IF(d == Ny_l)THEN
DO hit = d-1, d
IF(hit == d-1)THEN
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=hit
ELSE
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=hit
END IF
END DO
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
END IF
END DO
End Subroutine L1
SUBROUTINE TRACK(k,d)
INTEGER,INTENT(INOUT)::k,d
IF(rang==0)THEN
PRINT*,'RANG',rang,'TRACK k,d',k,d
END IF
END SUBROUTINE TRACK
Subroutine L2(Nx_l,Ny_l,nnz,d1,d2,k,AA,IA,JA)
Integer, Intent(IN) :: Nx_l, Ny_l, nnz
Integer, Intent(INOUT) :: d1, d2, k
Real(PR), Dimension(nnz), Intent(Out) :: AA
Integer, Dimension(nnz), Intent(Out) :: IA,JA
INTEGER :: i, d
DO i = 1, Nx_l-2
DO d = d1,d2
IF(d == d1)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
ELSE IF(d>d1 .AND. d<d2)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
ELSE IF(d == d2)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
END IF
END DO
d1 = d2+1; d2=d2+Ny_l
END DO
End Subroutine L2
Subroutine L3(mul1,mul2,Ny_l,nnz,k,AA,IA,JA)
Integer, Intent(IN) :: mul1, mul2, Ny_l, nnz
Integer, Intent(INOUT) :: k
Real(PR), Dimension(nnz), Intent(Out) :: AA
Integer, Dimension(nnz), Intent(Out) :: IA,JA
INTEGER :: d
DO d = mul1, mul2
IF(d == mul1)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
ELSE IF(d>mul1 .AND. d<mul2)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
ELSE IF(d == mul2)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
END IF
END DO
End Subroutine L3
!--------SUBROUTINE DU SECOND MEMBRE EN FONCTION DE L'ITERATION N ET DU VECTEUR U--------
!--------ET DES CONDITIONS AUX LIMITES
Subroutine vectsource(CT,U,S1,S2,X,Y,T,F)
Implicit None
!---variables----------------------------------
Integer, Intent(In) :: CT, S1, S2
Real(PR), Dimension(it1:itN), Intent(In) :: U
Real(PR), Dimension(LBX:UBX), Intent(IN) :: X
Real(PR), Dimension(0:Ny_g+1), Intent(IN) :: Y !BECAUSE DD 1D => Ny_l == Ny_g
Real(PR), Intent(IN) :: T
Real(PR), Dimension(it1:itN), Intent(INOUT) :: F
Integer :: i,j,k
DO i = S1, S2
DO j = 1, Ny_g
k = j + (i-1)*Ny_g
F(k) = dt * f1(CT,X(i),Y(j),T)
IF(i == 1)THEN
F(k) = F(k) - h1(CT,X(i-1),Y(j),T)*beta
ELSE IF(i == Nx_g)THEN
F(k) = F(k) - h1(CT,X(i+1),Y(j),T)*beta
END IF
IF(j == 1)THEN
F(k) = F(k) - g1(CT,X(i),Y(j-1),T)*gamma
ELSE IF(j == Ny_g)THEN
F(k) = F(k) - g1(CT,X(i),Y(j+1),T)*gamma
END IF
END DO
END DO
F = F +U
End Subroutine vectsource
!DANS LE CAS DE LA DECOMPOSITION DE DOMAINE:
Subroutine vectsource_FULL(CT,U,UG,UD,S1,S2,X,Y,T,F)
Implicit None
!---variables----------------------------------
Integer, Intent(In) :: CT, S1, S2
Real(PR), Dimension(it1:itN), Intent(In) :: U
Real(PR), Dimension(it1-Ny_g:it1-1), Intent(In) :: UG
Real(PR), Dimension(itN+1:itN+Ny_g), Intent(In) :: UD
Real(PR), Dimension(LBX:UBX), Intent(IN) :: X
Real(PR), Dimension(0:Ny_g+1), Intent(IN) :: Y !BECAUSE DD 1D => Ny_l == Ny_g
Real(PR), Intent(IN) :: T
Real(PR), Dimension(it1:itN), Intent(INOUT) :: F
Integer :: i,j,k
DO i = S1, S2
DO j = 1, Ny_g
k = j + (i-1)*Ny_g
F(k) = dt * f1(CT,X(i),Y(j),T)
IF(i == 1)THEN
F(k) = F(k) - h1(CT,X(i-1),Y(j),T)*beta
ELSE IF(i == S1 )THEN !.AND. rang /= 0)THEN not needed with the current order if... else if
F(k) = F(k) - beta * UG(k-Ny_g) !CL dirichlet frontiere immergee
ELSE IF(i == Nx_g)THEN
!PRINT*,'RANG',rang,'it1,itN',it1,itN,'LBX,UBX',lbound(X,1),UBOUND(X,1),'k',k,'i,j',i,j
F(k) = F(k) - h1(CT,X(i+1),Y(j),T)*beta
ELSE IF(i == S2)THEN !.AND. rang /= Np-1)THEN not needed with the current order else if... else if
F(k) = F(k) - beta * UD(k+Ny_g) !CL dirichlet frontiere immergee
END IF
IF(j == 1)THEN
F(k) = F(k) - g1(CT,X(i),Y(j-1),T)*gamma
ELSE IF(j == Ny_g)THEN
F(k) = F(k) - g1(CT,X(i),Y(j+1),T)*gamma
END IF
END DO
END DO
F = F +U
End Subroutine vectsource_FULL
End Module mod_matsys
!!$DO d = 1, Ny_l
!!$ IF(d == 1)THEN
!!$ AA(k)=alpha; IA(k)=d; JA(k)=d
!!$ DO hit = d+1, d+Ny_l, Ny_l-1
!!$ IF(hit == d+1)THEN
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=hit
!!$ ELSE
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=hit
!!$ END IF
!!$ END DO
!!$ ELSE IF(d>1 .AND. d<Ny_l)THEN
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
!!$ k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
!!$ ELSE IF(d == Ny_l)THEN
!!$ DO hit = d-1, d
!!$ IF(hit == d-1)THEN
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=hit
!!$ ELSE
!!$ k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=hit
!!$ END IF
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
!!$ END DO
!!$ END IF
!!$ END DO
!!$IF(Nx_l>2)THEN
!!$ d1 = Ny_l+1; d2 = 2*Ny_l
!!$ DO i = 1, Nx_l-2
!!$ DO d = d1,d2
!!$ IF(d == d1)THEN
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
!!$ k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
!!$ ELSE IF(d>d1 .AND. d<d2)THEN
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
!!$ k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
!!$ ELSE IF(d == d2)THEN
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
!!$ k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
!!$ END IF
!!$ END DO
!!$ d1 = d2+1; d2=d2+Ny_l
!!$ END DO
!!$ END IF
!!$Subroutine matsys(nnz,AA,IA,JA)
!!$ Integer, Intent(In) :: nnz
!!$ Real(PR), Dimension(:), Allocatable, Intent(Out) :: AA
!!$ Integer, Dimension(:), Allocatable, Intent(Out) :: IA,JA
!!$ Integer :: i,j,k
!!$ k=1
!!$ Allocate(AA(nnz),IA(nnz),JA(nnz))
!!$ Do i=1,na
!!$ Do j=1,na
!!$ If (i==j) Then !diagonale principale
!!$ AA(k)=alpha
!!$ IA(k)=i
!!$ JA(k)=j
!!$ k=k+1
!!$ ElseIf ((i==j-1) .and. (modulo(i,nx)/=0)) Then !diagonale sup
!!$ AA(k)=beta
!!$ IA(k)=i
!!$ JA(k)=j
!!$ k=k+1
!!$ ElseIf ((i==j+1) .and. (i/=1) .and. (modulo(j,ny)/=0)) Then !diagonale inf
!!$ AA(k)=beta
!!$ IA(k)=i
!!$ JA(k)=j
!!$ k=k+1
!!$ ElseIf (j==ny+i) Then !diagonale la plus a droite
!!$ AA(k)=gamma
!!$ IA(k)=i
!!$ JA(k)=j
!!$ k=k+1
!!$ ElseIf (i==j+nx) Then !diagonale la plus a gauche
!!$ AA(k)=gamma
!!$ IA(k)=i
!!$ JA(k)=j
!!$ k=k+1
!!$ End If
!!$ End Do
!!$ End Do
!!$End Subroutine matsys
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/Code_Dirichlet_LAST/mod_parametres.f90 | !-----------------------------------------------
! CE MODULE CONTIENT LES PARAMETRES DU PROBLEME
!-----------------------------------------------
Module mod_parametres
USE mpi
Implicit None
!---Précision des calculs -------------------
Integer, Parameter :: PR=8 !simple précision
!--------------------------------------------
!---Parametres géométriques-----------------
Real(PR), Parameter :: Lx=1._PR !Longueur de la barre
Real(PR), Parameter :: Ly=1._PR !Largeur de la barre
Real(PR), Parameter :: D=1._PR !Coefficient de diffusion
!--------------------------------------------
!PARAMETRE DE VISUALISATION:
INTEGER :: sysmove
!---Parametres numériques-------------------
!g means global Domain GLobal matrix WITHOUT DD ADDITIVE
!l means local Domain local matrix
Integer :: nnz_g
Integer, Parameter :: Nx_g=200 !lig nes de A (discrétisation en x)
Integer, Parameter :: Ny_g=100 !colonnes de A (discrétisation en y)
Integer, Parameter :: Na_g=Nx_g*Ny_g !taille de la matrice A
Integer, Parameter :: Nt=30 !discrétisation du temps
Real(PR), Parameter :: dx=1._PR/(Real(Nx_g)+1) ! pas en x
Real(PR), Parameter :: dy=1._PR/(Real(Ny_g)+1) ! pas en y
Real(PR), Parameter :: Tf=2.0_PR !temps final de la simulation
Real(PR), Parameter :: dt=Tf/(Real(Nt)) !pas de temps
Real(PR), Parameter :: pi=4._PR*atan(1._PR)
!----------------------------------------------------------------------------------------------------------------
Real(PR), Parameter :: alpha =1._PR+(2._PR*D*dt/(dx**2._PR))+(2._PR*D*dt/(dy**2._PR)) !
Real(PR), Parameter :: beta = (-D*dt)/(dx**2._PR) !AL ! CF coefficients matrice
Real(PR), Parameter :: gamma =(-D*dt)/(dy**2._PR) !AP
!----------------------------------------------------------------------------------------------------------------
!-------------------------------------------
!---PARAMETRES MPI--------------------------
INTEGER ::rang,Pivot
INTEGER ::Np
INTEGER ::stateinfo
INTEGER,DIMENSION(MPI_STATUS_SIZE)::status
CHARACTER(LEN=3) ::rank
INTEGER ::TAG !FOR TAG FILE
!------------------------------------------
!---DEFINE INTERVALLE SUIVANT Y PAR PROCS------
INTEGER ::S1_old, S2_old, it1_old, itN_old !avant call charge_overlap
INTEGER ::S1
INTEGER ::S2 !=> X_i^(rang) \in [|S1;S2|]
INTEGER ::it1
INTEGER ::itN !=> P(OMEGA^(rang)) \in [|it1;itN|]
!INTEGER ::overlapd
!INTEGER ::overlapg
INTEGER,PARAMETER::overlap=1
INTEGER ::Na_l !NBR rows or cols in local matrix
!na_loc == (S2-S1+1)*Ny
INTEGER ::Nx_l !Nx local will be set to S2-S1+1
INTEGER ::Ny_l
INTEGER ::nnz_l !nbr de non zero in local matrix
INTEGER ::crtl_nnz_l !control de nnz
!since a A_l matrix local is made by block D AND C such:
!avec s=alpha, x=gamma et v=beta:
![D][C][0][0] ! |s x 0 0| ! |v 0 0 0| ! A_l.rows=Nx_l*Ny_l=A_l.cols
![C][D][C][0] ![D]=|x s x 0| ![C]=|0 v 0 0| ! D.rows=D.cols=Ny_l
![0][C][D][C] ! |0 x s x| ! |0 0 v 0| ! C.cols=C.rows=Ny_l
![0][0][C][D] ! |0 0 x s| ! |0 0 0 v| !We got (Nx_l) [D] block & (Nx_l-1) [C] upper block
!& (Nx_l-1) [C] lower block
!SUCH THAT crtl_nnz_l=(Nx_l*Ny_l) + 2 * (Nx_l) * (Ny_l - 1) + 2 * (Nx_l - 1) * (Ny_l)
INTEGER ::D_rows !will be set to Ny_l
INTEGER ::D_nnz !will be set to D_rows+2*(D_rows-1)
INTEGER ::C_rows !will be set to Ny_l
INTEGER ::C_nnz !will be set to C_rows
! WE DEFINE a control nnz_l parameter over L1, L2, L3 such that:
!|[D][C][0][0]| = [L1]
INTEGER ::crtl_L1_nnz !will be set to D_nnz+C_nnz
!|[C][D][C][0]| = [L2]
!|[0][C][D][C]|
INTEGER ::crtl_L2_nnz !will be set to (Nx_l-2)*(D_nnz+2*C_nnz)
!|[0][0][C][D]| = [L3]
INTEGER ::crtl_L3_nnz !will be set to D_nnz+C_nnz
!SUCH THAT THE RELATION (*) NEED TO BE .TRUE.:
!(*)crtl_L1_nnz+crtl_L2_nnz+crtl_L3_nnz = crtl_nnz_l = nnz_l
INTEGER ::sum_crtl_L_nnz !sum of crtl_Li_nnz
!DANS LE CAS OU Nx_l == 1:
INTEGER :: crtl_L1_nnz_Nxl_EQV_1 ! will be set to D_nnz
!---variables---------------------------------!
Real(PR), Dimension(:), Allocatable :: X
Real(PR), Dimension(:), Allocatable :: Y !Ny_g+2
Real(PR), Dimension(:), Allocatable :: T !Nt+2
Real(PR), Dimension(:), Allocatable :: AA
Integer, Dimension(:), Allocatable :: IA,JA
Real(PR), Dimension(:), Allocatable :: U,Uo,F !Na_l
Real(Pr), Dimension(:), Allocatable :: UG, UD ! CL FROM BORDER IMMERGEE need to be set at zero
Real(PR) :: res,t1,t2 !résidu du grandconj
Integer :: k,i,j,it,CT
INTEGER ::LBX !init in mod_fonctions, para_param
INTEGER ::UBX
!VARIABLES POUR LA BOUCLE SCHWARZ, CONVERGENCE DD:
REAL(PR) :: Norm1, Norm2, C1, err
REAL(PR), PARAMETER :: err_LIM = 0.0000000001_PR
INTEGER :: step
End Module mod_parametres
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/Code_Dirichlet_LAST/mod_sol.f90 | module mod_sol
use mpi
use mod_parametres
IMPLICIT NONE
!*** MODULE ModSOL POUR DONNER LA SOLUTION EXACTE ET
!*** POUR GERER L'ENREGISTREMENT DE LA SOLUTION DANS DES FICHIERS
!*** SUBROUTINE POUR APPELLER UN SCRIPT GNUPLOT POUR LA VISUALISATION
CONTAINS
SUBROUTINE UEXACT(U,userchoice)!userchoice==CT
INTEGER,INTENT(INOUT)::userchoice
REAL(PR),DIMENSION(it1:itN),INTENT(IN)::U
REAL(PR),DIMENSION(:),ALLOCATABLE::UEXA,DIFF
REAL(PR)::ErrN2_RED,ErrN2,Ninf_RED,Ninf
CHARACTER(len=3)::CAS!rank,CAS
!INITIALISATION DE UEXA SUIVANT LE CAS SOURCE
ALLOCATE(UEXA(it1:itN))
WRITE(CAS,fmt='(1I3)')userchoice
OPEN(TAG,file='EXACTE_ERREUR/SOL_EXACTE_CAS'//trim(adjustl(CAS))//'_ME'//trim(adjustl(rank))//'.dat')
SELECT CASE(userchoice)
CASE(1)!F1
DO i=S1,S2
DO j=1,Ny_g
k=j+(i-1)*Ny_g
UEXA(k)=X(i)*(1-X(i))*Y(j)*(1-Y(j))
WRITE(TAG,*)X(i),Y(j),UEXA(k)
END DO
END DO
CASE(2)!F2
DO i=S1,S2
DO j=1,Ny_g
k=j+(i-1)*Ny_g
UEXA(k)=sin(X(i))+cos(Y(j))
WRITE(TAG,*)X(i),Y(j),UEXA(k)
END DO
END DO
CASE DEFAULT!F3 PAS DE SOL EXACTE
PRINT*,'PAS DE SOLUTION EXACTE POUR CE CAS (F3)'
END SELECT
CLOSE(TAG)
!SUR LE DOMAINE [|S1;S2|]x[|1;Ny_g|]:
!ERREUR NORME_2:
ALLOCATE(DIFF(it1:itN))
DIFF=UEXA-U(it1:itN)
ErrN2_RED=DOT_PRODUCT(DIFF,DIFF)
CALL MPI_ALLREDUCE(ErrN2_RED,ErrN2,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,stateinfo)
ErrN2=SQRT(ErrN2)
!ERREUR NORME INFINIE
Ninf_RED=MAXVAL(ABS(UEXA(it1:itN)-U(it1:itN)))
CALL MPI_ALLREDUCE(Ninf_RED,Ninf,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
PRINT*,'PAR DOMAINE: ','ERREUR NORME 2 :=',ErrN2,' ERREUR NORME INFINIE :=',Ninf
OPEN(TAG,file='EXACTE_ERREUR/ErrABSOLUE_PAR_DOMAINE'//trim(adjustl(CAS))//'_ME'//trim(adjustl(rank))//'.dat')
DO i=S1,S2
DO j=1,Ny_g!GAP(i,1),GAP(i,2)
k=j+(i-1)*Ny_g!Ny_g
WRITE(TAG,*)X(i),Y(j),-DIFF(k)
END DO
END DO
CLOSE(TAG)
!SUR LE DOMAINE [|S1_old;S2_old|]x[|1;Ny_g|]:
ErrN2_RED=0.0_PR; ErrN2=0.0_PR; Ninf_RED=0.0_PR; Ninf=0.0_PR
!DIFF(it1_old:itN_old)=UEXA(it1_old:itN_old)-U(it1_old:itN_old)
ErrN2_RED=DOT_PRODUCT(DIFF(it1_old:itN_old),DIFF(it1_old:itN_old))
CALL MPI_ALLREDUCE(ErrN2_RED,ErrN2,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,stateinfo)
ErrN2=SQRT(ErrN2)
Ninf_RED=MAXVAL(ABS(UEXA(it1_old:itN_old)-U(it1_old:itN_old)))
CALL MPI_ALLREDUCE(Ninf_RED,Ninf,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
PRINT*,'SUR [|S1old;S2old|]: ','ERREUR NORME 2 :=',ErrN2,' ERREUR NORME INFINIE :=',Ninf
OPEN(TAG,file='EXACTE_ERREUR/ErrABSOLUE_oldDD'//trim(adjustl(CAS))//'_ME'//trim(adjustl(rank))//'.dat')
DO i=S1_old,S2_old
DO j=1,Ny_g!GAP(i,1),GAP(i,2)
k=j+(i-1)*Ny_g!Ny_g
WRITE(TAG,*)X(i),Y(j),-DIFF(k)
END DO
END DO
CLOSE(TAG)
DEALLOCATE(DIFF,UEXA)
END SUBROUTINE UEXACT
SUBROUTINE WR_U(U,IT_TEMPS)
INTEGER,INTENT(IN)::IT_TEMPS
REAL(PR),DIMENSION(it1_old:itN_old),INTENT(INOUT)::U
CHARACTER(len=3)::CAS
CHARACTER(len=3)::Ntps
INTEGER::i,j
WRITE(CAS,fmt='(1I3)')CT;WRITE(Ntps,fmt='(1I3)')IT_TEMPS
OPEN(10+rang,file='SOL_NUMERIQUE/U_ME'//trim(adjustl(rank))&
//'_T'//trim(adjustl(Ntps)))
SELECT CASE(CT)
CASE(1)
DO i=S1_old,S2_old
DO j=1,Ny_g
k=j+(i-1)*Ny_g
IF(i-1==0)THEN
WRITE(10+rang,*)0.0_PR,Y(j),0.0_PR
END IF
IF(i+1==Nx_g+1)THEN
WRITE(10+rang,*)Lx,Y(j),0.0_PR
END IF
IF(j-1==0)THEN
WRITE(10+rang,*)X(i),0.0_PR,0.0_PR
END IF
IF(j+1==Ny_g+1)THEN
WRITE(10+rang,*)X(i),Ly,0.0_PR
END IF
WRITE(10+rang,*)X(i),Y(j),U(k)
END DO
END DO
CASE(2)
DO i=S1_old,S2_old
DO j=1,Ny_g
k=j+(i-1)*Ny_g
IF(i==1)THEN!BC OUEST (H)
WRITE(10+rang,*)0.0_PR,Y(j),cos(Y(j))
END IF
IF(i==Nx_g)THEN!BC EST (H)
WRITE(10+rang,*)Lx,Y(j),cos(Y(j))+sin(Lx)
END IF
IF(j==1)THEN!BC SUD (G)
WRITE(10+rang,*)X(i),0.0_PR,1.0_PR+sin(X(i))
END IF
IF(j==Ny_g)THEN!BC NORD (G)
WRITE(10+rang,*)X(i),Ly,cos(Ly)+sin(X(i))
END IF
WRITE(10+rang,*)X(i),Y(j),U(k)
END DO
END DO
CASE(3)
DO i=S1_old,S2_old
DO j=1,Ny_g
k=j+(i-1)*Ny_g
IF(i-1==0)THEN!BC OUEST OU EST (H)
WRITE(10+rang,*)0.0_PR,Y(j),1.0_PR
END IF
IF(i+1==Nx_g+1)THEN!BC OUEST OU EST (H)
WRITE(10+rang,*)Lx,Y(j),1.0_PR
END IF
IF(j-1==0)THEN!BC SUD OU NORD (G)
WRITE(10+rang,*)X(i),0.0_PR,0.0_PR
END IF
IF(j+1==Ny_g+1)THEN!BC SUD OU NORD (G)
WRITE(10+rang,*)X(i),Ly,0.0_PR
END IF
WRITE(10+rang,*)X(i),Y(j),U(k)
END DO
END DO
END SELECT
CLOSE(10+rang)
END SUBROUTINE WR_U
SUBROUTINE VIZU_SOL_NUM(userchoice)!sequentiel call by proc 0 at the end
INTEGER,INTENT(INOUT)::userchoice
CHARACTER(LEN=12)::VIZU
INTEGER::vi1,vi2
VIZU='VIZU_PLT.plt'
PRINT*,'*****************************************************************************************'
PRINT*,'************** VISUALISATION SOLUTION POUR LE CAS #',userchoice,' ***********************'
PRINT*,'*****************************************************************************************'
PRINT*,'************* SACHANT QUE DT=',dt,'ET ITMAX=',Nt,':'
PRINT*,'*****************************************************************************************'
PRINT*,'** ENTREZ LE NUMERO DE L''ITERATION A LAQUELLE VOUS VOULEZ COMMENCER LA VISUALISATION **'
READ*,vi1
PRINT*,'*****************************************************************************************'
PRINT*,'*****************************************************************************************'
PRINT*,'*** ENTREZ LE NUMERO DE L''ITERATION A LAQUELLE VOUS VOULEZ STOPPER LA VISUALISATION ***'
READ*,vi2
PRINT*,'*****************************************************************************************'
PRINT*,'*****************************************************************************************'
OPEN(50,file=VIZU)
SELECT CASE(userchoice)
CASE(1)
WRITE(50,*)'set cbrange[0:1]'
CASE(2)
WRITE(50,*)'set cbrange[0.8:2]'
CASE(3)
WRITE(50,*)'set cbrange[0:1]'
END SELECT
WRITE(50,*)'set dgrid3d,',Nx_g+2,',',Ny_g+2; WRITE(50,*)'set hidden3d'; WRITE(50,*)'set pm3d'
WRITE(50,*)'do for [i=',vi1,':',vi2,']{splot ''SOL_NUMERIQUE/U.dat'' index i u 1:2:3 with pm3d at sb}'
CLOSE(50)
call system('gnuplot -p VIZU_PLT.plt')
END SUBROUTINE VIZU_SOL_NUM
SUBROUTINE VIZU_SOL_NUM_ONLY_Nt(userchoice,MINU,MAXU)!sequentiel call by proc 0 at the end
INTEGER,INTENT(INOUT) :: userchoice
REAL(PR),INTENT(IN) :: MINU, MAXU
CHARACTER(LEN=12)::VIZU
VIZU='VIZU_PLT.plt'
PRINT*,'*****************************************************************************************'
PRINT*,'************** VISUALISATION SOLUTION POUR LE CAS #',userchoice,' ***********************'
PRINT*,'*****************************************************************************************'
PRINT*,'************* SACHANT QUE DT=',dt,'ET ITMAX=',Nt,':'
PRINT*,'*****************************************************************************************'
PRINT*,'** VISUALISATION AU TEMPS FINAL **'
PRINT*, (Nt)*dt,' secondes'
PRINT*,'*****************************************************************************************'
OPEN(50,file=VIZU)
SELECT CASE(userchoice)
CASE(1)
WRITE(50,*)'set cbrange[',MINU,':',MAXU,']'
CASE(2)
WRITE(50,*)'set cbrange[',MINU,':',MAXU,']'
CASE(3)
WRITE(50,*)'set cbrange[',MINU,':',MAXU,']'
END SELECT
WRITE(50,*)'set dgrid3d,',Nx_g+2,',',Ny_g+2; WRITE(50,*)'set hidden3d'; WRITE(50,*)'set pm3d'
WRITE(50,*)'splot ''SOL_NUMERIQUE/U.dat'' u 1:2:3 with pm3d at sb'
CLOSE(50)
call system('gnuplot -p VIZU_PLT.plt')
END SUBROUTINE VIZU_SOL_NUM_ONLY_Nt
end module mod_sol
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/DD_Neuman_TRUE_LAST/main.f90 | !-----------------------------------
! MAIN : PROGRAMME PRINCIPAL
!-----------------------------------
Program main
!-------------modules-----------------!
USE mpi
use mod_parametres
use mod_charge
use mod_comm
use mod_sol
use mod_fonctions
use mod_gradconj
use mod_gmres
use mod_matsys
!--------------------------------------!
Implicit None
INTEGER :: DIMKRYLOV
INTEGER :: ILOOP
!VARIABLES POUR SAVE LE TEMPS DE CALCUL:
REAL(PR) :: TPS1, TPS2, MAX_TPS
REAL(PR) :: MINU, MAXU
REAL(PR) :: RED_MINU, RED_MAXU
REAL(PR) :: RED_SUMC, MAXC, TPSC1, TPSC2
REAL(PR) :: STA, STB, STM
!------------INIT REGION PARA-----------------!
!********* DEBUT REGION PARA:
CALL MPI_INIT(stateinfo) !INITIALISATION DU //LISME
CALL MPI_COMM_RANK(MPI_COMM_WORLD,rang,stateinfo) !ON RECUPERE LES RANGS
!AU SEIN DE L'ENSEMBLE MPI_COMM_WORLD
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,Np,stateinfo) !ET LE NOMBRE DU PROCESSUS
!---------------------------------------------!
!******** READ USERCHOICE FOR CT AND SHARE IT WITH OTHER PROCESS
IF(rang==0)THEN
CALL SYSTEM('make cleanREP')
Print*,"______RESOLUTION DE L'ÉQUATION : DD SCHWARZ ADDITIVES //______"
!---initialisation des variables cas test-------------
Print*,"Donnez le cas test (1,2 ou 3):"
Read*,CT
PRINT*," POUR VISUALISATION ENTREZ 1, SINON 0"
read*,sysmove
END IF
CALL MPI_BCAST(CT,1,MPI_INTEGER,0,MPI_COMM_WORLD,stateinfo)
CALL MPI_BCAST(sysmove,1,MPI_INTEGER,0,MPI_COMM_WORLD,stateinfo)
TPS1=MPI_WTIME()
!******** COMPUTE SOME MATRIX_G DATA & GEO TIME DATA
nnz_g=5*Na_g-2*Nx_g-2*Ny_g !nb d'elt non nul dans la matrice A_g
IF(rang==0)THEN
print*,"Nombre éléments non nuls du domaine A_g non DD ADDITIVE : nnz_g=",nnz_g
print*,'Nombre de ligne Nx_g, colonne Ny_g de A_g',Nx_g,Ny_g
Print*,"Lx=",Lx
Print*,"Ly=",Ly
Print*,"D=",D
Print*," "
Print*,"dx=",dx
Print*,"dy=",dy
Print*,"dt",dt
Print*,"Tfinal=",Tf,"secondes"
Print*," "
print*,"alpha=",alpha
print*,"beta=",beta
print*,"gamma=",gamma
Print*," "
END IF
!******* SET UP ONE TAG FILE NAMED TAG TO i/o:
TAG=10+rang
WRITE(rank,fmt='(1I3)')rang !WATCH OUT IF rang>999
!******* COMPUTE SIZE OF LOCAL DD OVER LOCAL MATRIX A_l SIZE:
OPEN(TAG,file='CHARGE/CHARGE'//trim(adjustl(rank))//'.dat')
CALL MODE1(rang, Np, S1, S2, it1, itN)!-->DISTRIBUTION DE LA CHARGE PAR PROCESSUS
S1_old = S1; S2_old = S2; it1_old = it1; itN_old = itN
WRITE(TAG,*)'AVANT OVERLAP', S1, S2, it1, itN
CALL CHARGE_OVERLAP(Np, rang, S1, S2, it1, itN)!-->MODIFICATION DE LA CHARGE POUR DIRICHLET
WRITE(TAG,*)'APRES OVERLAP DIRICHLET', S1, S2, it1, itN
CALL CHARGE_NEUMAN(it1, itN, rang, Np, S1, S2)!-->MODIFICATION DE LA CHARGE CALCULEE PAR (CHARGE_OVERLAP) POUR NEUMANN
WRITE(TAG,*)'OVERLAP FINAL NEUMAN', S1, S2, it1, itN
Nx_l = S2 - S1 + 1; Ny_l = Ny_g; Na_l = Nx_l * Ny_l
nnz_l = 5 * Na_l - 2 * Nx_l - 2 * Ny_l
crtl_nnz_l = (Nx_l*Ny_l) + 2 * (Nx_l) * (Ny_l - 1) + 2 * (Nx_l - 1) * (Ny_l)
WRITE(TAG,*)'Nxl,Ny_l,Na_l', Nx_l, Ny_l, Na_l
WRITE(TAG,*)'nnz_l,crtl_nnz_l', nnz_l,crtl_nnz_l
CLOSE(TAG)
!CALCUL DES DIMMENSIONS DES MATRICES:
D_rows = Ny_l; D_nnz = D_rows+2*(D_rows-1)
C_rows = Ny_l; C_nnz = C_rows
crtl_L1_nnz = D_nnz+C_nnz
crtl_L2_nnz = (Nx_l-2)*(D_nnz+2*C_nnz)
crtl_L3_nnz = D_nnz+C_nnz
sum_crtl_L_nnz = crtl_L1_nnz+crtl_L2_nnz+crtl_L3_nnz
crtl_L1_nnz_Nxl_EQV_1 = D_nnz
!test pour la verification du nombre de non zero des matrices locales:
IF(Nx_l > 1)THEN
IF(crtl_nnz_l/=nnz_l .AND. nnz_l/=sum_crtl_L_nnz)THEN
PRINT*,'ERROR,RANG=',rang,'Local Matrix A_l.rows,A_l.cols',Nx_l,Ny_l,nnz_l,&
&'A_l_nnz,crtl_nnz_l,sum_crtl_L_nnz',nnz_l,crtl_nnz_l,sum_crtl_L_nnz
GOTO 9999
END IF
ELSE IF(Nx_l == 1)THEN
IF(crtl_nnz_l/=nnz_l .AND. nnz_l/=crtl_L1_nnz_Nxl_EQV_1)THEN
PRINT*,'ERROR,RANG=',rang,'Local Matrix A_l.rows,A_l.cols',Nx_l,Ny_l,nnz_l,&
&'A_l_nnz,crtl_nnz_l,crtl_L1_nnz_Nxl_EQV_1',nnz_l,crtl_nnz_l,crtl_L1_nnz_Nxl_EQV_1
GOTO 9999
END IF
END IF
!******* COMPUTE CARTESIAN GRID OVER PROCESS i.e CHARGE APPLY TO X,Y,T
IF(Np/=1)THEN
CALL param_para(rang,Np,S1,S2,Ny_l,X,Y,T)
ELSE
CALL param(X,Y,T)
PRINT*,'EN SEQUENTIEL'
END IF
!****** ALLOCATE Uo ET U
ALLOCATE(U(it1:itN),Uo(it1:itN))
Uo = 1._PR !CI pour le gradient conjugué
U = 1._PR !vecteur solution initialisé
!SAVE SOL :
call WR_U(U,0)
CALL matsys_v2(nnz_l,Nx_l,Ny_l,AA,IA,JA)!-->on construit A au format COO (AA,IA,JA)
OPEN(TAG,file='MAT_VIZU/matrice_A_'//trim(adjustl(rank))//'.dat')!-->POUR VISUALISER LES MATRICES
DO i=1,nnz_l
WRITE(TAG,*)AA(i),IA(i),JA(i)
END DO
CLOSE(TAG)
ALLOCATE(F(it1:itN))!-->SECOND MEMBRE
ALLOCATE(UG(LBUG:UBUG),UD(LBUD:UBUD))
UG = 0.0_PR; UD = 0.0_PR !-->INITITALISATION
!---boucle principale (résolution systeme) et ecriture a chaque itération---
Print*,"----------DÉBUT DU CALCUL DE LA SOLUTION------------"
Pivot=(Np-mod(Np,2))/2 !-->!PIVOT DE COMMUNICATION:
RED_SUMC = 0.0_PR
DIMKRYLOV = 5!Na_l-5
IF(Np>1)THEN
boucle_temps:Do ILOOP=1,Nt !-->BOUCLE EN TEMPS
err = 1.0_PR; step = 1; Norm2 = 0.0_PR
!STA = MPI_WTIME()
boucle_CV_SWHARZ:Do while(err>err_LIM .OR. step<3)!-->BOUCLE POUR CONVERGENCE DE SCHWARZ
step = step +1
Norm1 = Norm2
!Norm2 = 0.0_PR
call vectsource_FULL(CT,U,UG,UD,S1,S2,X,Y,T(ILOOP),F)!-->SECOND MEMBRE F=Uo+dt*SOURCE_TERME+CL
!call MOD_gradconj_SPARSE(AA,IA,JA,f,Uo,U,res,k,it1,itN)
!call MOD_jacobi_SPARSE(AA,IA,JA,F,Uo,U,res,k)
call BICGSTAB(it1, itN, AA, IA, JA, U, F, 0.0000000001_PR)! solver le plus adapté au PB
!call GMres_COO(AA,IA,JA,F,Uo,U,res,k,Na_l,it1,itN,DIMKRYLOV)! mal interfacé
TPSC1 = MPI_WTIME()
!CALL COMM_PTOP_2WAY(U,UG,UD)!-->UNE PETITE REDUCTION DU TEMPS DE COMMUNICATION(NP>=5)
call COMM_PTOP(U,UG,UD)!-->COMMUNICATION DES FRONTIERES "IMMERGEE"
TPSC2 = MPI_WTIME()
RED_SUMC = RED_SUMC + (TPSC2-TPSC1)
Uo=U !-->SWAP
!POUR LE CALCUL DE L'ERREUR DE SCHWARZ(C1,Nomr1,Norm2,err):
if(rang==0)then
C1 = DOT_PRODUCT(U(itN-Ny_l+1:itN),U(itN-Ny_l+1:itN))
else if(rang==Np-1)then
C1 = DOT_PRODUCT(U(it1:it1+Ny_l-1),U(it1:it1+Ny_l-1))
else
C1 = DOT_PRODUCT(U(it1:it1+Ny_l-1),U(it1:it1+Ny_l-1)) +DOT_PRODUCT(U(itN-Ny_l+1:itN),U(itN-Ny_l+1:itN))
end if
!C1 = DOT_PRODUCT(U(it1:itN),U(it1:itN))!-->AUTRE METHODE POUR LE CALCUL DE C1
Call MPI_ALLreduce(C1,Norm2,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,stateinfo)
Norm2 = SQRT(Norm2)
err = abs(Norm1-Norm2)
!PRINT*,'err=',err,'step',step,'Norm2',Norm2,'Norm1',Norm1
END DO boucle_CV_SWHARZ
!STB = MPI_WTIME()
if(mod(ILOOP,10)==0)then
Print*,'IT TEMPS',ILOOP
end if
End DO boucle_temps
!CALL MPI_ALLREDUCE(STB-STA,STM,1,MPI_DOUBLE,MPI_MAX,MPI_COMM_WORLD,stateinfo)
!PRINT*,'STM',STM,'STEP',STEP
ELSE IF(Np==1)THEN
bboucle_temps:Do ILOOP=1,Nt
call vectsource_FULL(CT,U,UG,UD,S1,S2,X,Y,T(ILOOP),F)
!call MOD_gradconj_SPARSE(AA,IA,JA,f,Uo,U,res,k,it1,itN)
!call MOD_jacobi_SPARSE(AA,IA,JA,F,Uo,U,res,k)
call BICGSTAB(it1, itN, AA, IA, JA, U, F, 0.000000000001_PR)
!call GMres_COO(AA,IA,JA,F,Uo,U,res,k,Na_l,it1,itN,DIMKRYLOV)
Uo=U !SWAP
if(mod(ILOOP,10)==0)then
Print*,'IT TEMPS',ILOOP
end if
End DO bboucle_temps
END IF
!----------------------------------------------
!SAVE SOL :
call WR_U(U,Nt)
DEALLOCATE(UG,UD)
!WRITE SOL EXACTE:
IF(CT<3)THEN
call UEXACT(U,CT)
END IF
RED_MINU = minval(U)
RED_MAXU = maxval(U)
CALL MPI_ALLREDUCE(RED_MINU,MINU,1,MPI_DOUBLE_PRECISION,MPI_MIN,MPI_COMM_WORLD,stateinfo)
CALL MPI_ALLREDUCE(RED_MAXU,MAXU,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
if(Np>1)then
CALL MPI_ALLREDUCE(RED_SUMC,MAXC,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
end if
DEALLOCATE(U,Uo,X,Y,T,AA,IA,JA,F)
TPS2=MPI_WTIME()
CALL MPI_ALLREDUCE(TPS2-TPS1,MAX_TPS,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
IF(rang==0)THEN
PRINT*,'TEMPS CALCUL=',MAX_TPS,' TEMPS COMM=',MAXC
END IF
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
IF(crtl_nnz_l == nnz_l)THEN
GOTO 6666
END IF
9999 PRINT*,rang,'GOTO9999crtl_nnz_l /= nnz_l ERROR',crtl_nnz_l,nnz_l
6666 PRINT*,rang,'GOTO6666NEXT INSTRUCTION IS MPI_FINALIZE',crtl_nnz_l,nnz_l
!---ecriture solution finale--------------------------
!call CONCAT_VIZU(sysmove)
call CONCAT_VIZU_ONLY_Nt(sysmove,MINU,MAXU)
CALL MPI_FINALIZE(stateinfo)
CONTAINS
Subroutine CONCAT_VIZU(sysmove)
Integer, Intent(INOUT):: sysmove
CHARACTER(LEN=3):: NNT
CHARACTER(LEN=1)::ESPACE
CHARACTER(LEN=20)::NFILE,OUT_FILE
INTEGER::i
!VIZUALISATION SEQUENTIELLE: ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE RANG DIFFERENTS DANS UN FICHIER
IF(rang==0.AND.sysmove==1)THEN
ESPACE=' '
DO i=Nt,Nt!0,Nt
WRITE(NNT,fmt='(1I3)')i;
NFILE='U_ME*'//'_T'//trim(adjustl(NNT));OUT_FILE='UT_'//trim(adjustl(NNT))//'.dat'
!ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE RANG DIFFERENTS DANS UN FICHIER
CALL system('cat SOL_NUMERIQUE/'//NFILE//' >> SOL_NUMERIQUE/'//OUT_FILE)
CALL system('rm SOL_NUMERIQUE/'//NFILE)
OPEN(20,file='SOL_NUMERIQUE/'//OUT_FILE,position='append')
SELECT CASE(CT)!ICI IL FAUT RAJOUTER LES POINTS AUX COINS DU DOMAINES
CASE(1)
WRITE(20,*)0.0d0,0.0d0,0.0d0;WRITE(20,*)Lx,0.0d0,0.0d0
WRITE(20,*)0.0d0,Ly,0.0d0;WRITE(20,*)Lx,Ly,0.0d0
CASE(2)
WRITE(20,*)0.0d0,0.0d0,1.0d0;WRITE(20,*)Lx,0.0d0,1.0d0+sin(Lx)
WRITE(20,*)0.0d0,Ly,cos(Ly);WRITE(20,*)Lx,Ly,cos(Ly)+sin(Lx)
CASE(3)
WRITE(20,*)0.0d0,0.0d0,0.5d0;WRITE(20,*)Lx,0.0d0,0.5d0!TEMPERATURES IMPOSEES DIFFERENTES, ON MOYENNE:((G+H)/2)
WRITE(20,*)0.0d0,Ly,0.5d0;WRITE(20,*)Lx,Ly,0.5d0
END SELECT
WRITE(20,fmt='(1A1)')ESPACE
WRITE(20,fmt='(1A1)')ESPACE
CLOSE(20)
!ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE TEMPS DIFFERENTS DANS UN FICHIER
CALL system('cat SOL_NUMERIQUE/'//OUT_FILE//' >> SOL_NUMERIQUE/U.dat')
CALL system('rm SOL_NUMERIQUE/'//OUT_FILE)
END DO
!A LA FIN, IL RESTE UN FICHIER OU LA SOLUTION EN TEMPS EST SOUS FORME D'INDEX GNUPLOT
!ON APPELLE LA SUBROUTIEN DE VISUALISATION:
CALL VIZU_SOL_NUM(CT)
END IF
End Subroutine CONCAT_VIZU
Subroutine CONCAT_VIZU_ONLY_Nt(sysmove,MINU,MAXU)
Integer, Intent(INOUT):: sysmove
REAL(PR), Intent(IN) :: MINU, MAXU
CHARACTER(LEN=3):: NNT
CHARACTER(LEN=1)::ESPACE
CHARACTER(LEN=20)::NFILE,OUT_FILE
INTEGER::i
!VIZUALISATION SEQUENTIELLE: ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE RANG DIFFERENTS DANS UN FICHIER
IF(rang==0.AND.sysmove==1)THEN
ESPACE=' '
DO i=Nt,Nt
WRITE(NNT,fmt='(1I3)')i;
NFILE='U_ME*'//'_T'//trim(adjustl(NNT));OUT_FILE='UT_'//trim(adjustl(NNT))//'.dat'
!ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE RANG DIFFERENTS DANS UN FICHIER
CALL system('cat SOL_NUMERIQUE/'//NFILE//' >> SOL_NUMERIQUE/'//OUT_FILE)
CALL system('rm SOL_NUMERIQUE/'//NFILE)
OPEN(20,file='SOL_NUMERIQUE/'//OUT_FILE,position='append')
SELECT CASE(CT)!ICI IL FAUT RAJOUTER LES POINTS AUX COINS DU DOMAINES
CASE(1)
WRITE(20,*)0.0d0,0.0d0,0.0d0;WRITE(20,*)Lx,0.0d0,0.0d0
WRITE(20,*)0.0d0,Ly,0.0d0;WRITE(20,*)Lx,Ly,0.0d0
CASE(2)
WRITE(20,*)0.0d0,0.0d0,1.0d0;WRITE(20,*)Lx,0.0d0,1.0d0+sin(Lx)
WRITE(20,*)0.0d0,Ly,cos(Ly);WRITE(20,*)Lx,Ly,cos(Ly)+sin(Lx)
CASE(3)
WRITE(20,*)0.0d0,0.0d0,0.5d0;WRITE(20,*)Lx,0.0d0,0.5d0!TEMPERATURES IMPOSEES DIFFERENTES, ON MOYENNE:((G+H)/2)
WRITE(20,*)0.0d0,Ly,0.5d0;WRITE(20,*)Lx,Ly,0.5d0
END SELECT
WRITE(20,fmt='(1A1)')ESPACE
WRITE(20,fmt='(1A1)')ESPACE
CLOSE(20)
!ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE TEMPS DIFFERENTS DANS UN FICHIER
CALL system('cat SOL_NUMERIQUE/'//OUT_FILE//' >> SOL_NUMERIQUE/U.dat')
CALL system('rm SOL_NUMERIQUE/'//OUT_FILE)
END DO
!A LA FIN, IL RESTE UN FICHIER OU LA SOLUTION EN TEMPS EST SOUS FORME D'INDEX GNUPLOT
!ON APPELLE LA SUBROUTIEN DE VISUALISATION:
!CALL VIZU_SOL_NUM(CT)
CALL VIZU_SOL_NUM_ONLY_Nt(CT,MINU,MAXU)
END IF
End Subroutine CONCAT_VIZU_ONLY_Nt
End Program main
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/DD_Neuman_TRUE_LAST/mod_charge.f90 | module mod_charge
use mod_parametres
Implicit None
CONTAINS
!**************************
!^ y Ny
!|
!|
!|
!1---------> x Nx
!*************************
!SE BASE SUR LA CHARGE EN X POUR CALCULER LA CHARGE TOTALE(GLOBALE)
!INDUIT POUR MOD(DIM,Np)/=0 UNE DIFFERENCE DE CHARGE = A Ny ENTRE 2 PROCS
!UTILISABLE POUR Np<=INTER_X
Subroutine MODE1(rang, Np, S1, S2, it1, itN)
Integer, Intent(IN) :: rang, Np
Integer, Intent(OUT) :: S1, S2,it1, itN
!CHARGE EN X :
CALL CHARGE_X(rang, Np, S1, S2)
!CHARGE TOT :
CALL CHARGE_TOT(S1, S2, it1, itN)
End Subroutine MODE1
!REPARTITION CLASSIQUE DE LA CHARGE EN X
Subroutine CHARGE_X(rang, Np, S1,S2)
Integer, Intent(IN) :: rang, Np
Integer, Intent(OUT) :: S1, S2
REAL :: CO_RE !COEFFICIANT DE REPARTITION
IF(Np == 1)THEN
S1 = 1; S2 = Nx_g
ELSE
CO_RE=(Nx_g)/(Np)
If(rang < mod(Nx_g,Np))Then
S1 = rang*(CO_RE+1) + 1; S2 = (rang+1) * (CO_RE+1)
Else
S1 = 1 + mod(Nx_g,Np) + rang*CO_RE; S2 = S1+CO_RE-1
End If
END IF
End Subroutine CHARGE_X
!CHARGE TOTALE SUR LA NUMEROTATION GLOBALE
Subroutine CHARGE_TOT(S1, S2, it1, itN)
Integer, Intent(IN) :: S1, S2
Integer, Intent(OUT) :: it1, itN
it1 = (S1-1)*Ny_g+1; itN = S2*Ny_g
End Subroutine CHARGE_TOT
!RE-COMPUTE CHARGE WITH OVERLAP
Subroutine CHARGE_OVERLAP(Np, rang, S1, S2, it1, itN)
Implicit None
Integer, Intent(IN) ::Np, rang
Integer, Intent(INOUT) ::S1, S2, it1, itN
!Le (-1) sur overlap pour retirer la frontiere
!immergée qui passe en CL
!WE PUT A Ny_g BECAUSE Ny_l == Ny_g and Ny_l is defined after this subroutine
!Also Because IT'S a 1D DD
!IF WE WANT TO SET UP A 2D DD I WILL NEED DO REPLACE Ny_g BY Ny_l
!AND MAKE OTHER MODIFICATION
IF(rang == 0)THEN
S2 = S2 + (overlap-1)
itN = itN + (overlap-1) * Ny_g
ELSE IF(rang == Np-1)THEN
S1 = S1 - (overlap-1)
it1 = it1 - (overlap-1) * Ny_g
ELSE
S1 = S1 - (overlap-1)
S2 = S2 + (overlap-1)
it1 = it1 - (overlap-1) * Ny_g
itN = itN + (overlap-1) * Ny_g
END IF
End Subroutine CHARGE_OVERLAP
subroutine CHARGE_NEUMAN(it1, itN, rang, Np, S1, S2)
implicit none
Integer, Intent(IN) :: rang, Np
Integer, Intent(INOUT) :: it1, itN, S1, S2
if (rang==0) then
itN = itN+Ny_g
S2=S2+1
else if (rang==Np-1) then
it1 = it1-Ny_g
S1=S1-1
else
it1 = it1-Ny_g
itN = itN+Ny_g
S1=S1-1
S2=S2+1
end if
end subroutine CHARGE_NEUMAN
end module mod_charge
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/DD_Neuman_TRUE_LAST/mod_comm.f90 | module mod_comm
use mpi
use mod_parametres
Implicit None
CONTAINS
Subroutine COMM_PTOP(U,UG,UD)
Real(PR), Dimension(it1:itN), Intent(IN):: U
Real(PR), Dimension(LBUG:UBUG), Intent(INOUT):: UG
Real(PR), Dimension(LBUD:UBUD), Intent(INOUT):: UD
IF(rang == 0)THEN ! rang tag channel
CALL MPI_SEND(U(A:B),2*Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(UD(LBUD:UBUD),2*Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
ELSE IF(rang > 0 .AND. rang<Np-1)THEN
CALL MPI_RECV(UG(LBUG:UBUG),2*Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_SEND(U(C:DD),2*Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
CALL MPI_SEND(U(A:B),2*Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(UD(LBUD:UBUD),2*Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
ELSE IF(rang == Np-1)THEN
CALL MPI_RECV(UG(LBUG:UBUG),2*Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_SEND(U(C:DD),2*Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
END IF
End Subroutine COMM_PTOP
Subroutine COMM_PTOP_2WAY(U,UG,UD)
Real(PR), Dimension(it1:itN), Intent(IN):: U
Real(PR), Dimension(LBUG:UBUG), Intent(INOUT):: UG
Real(PR), Dimension(LBUD:UBUD), Intent(INOUT):: UD
IF(rang == 0)THEN ! rang tag channel
CALL MPI_SEND(U(A:B),2*Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(UD(LBUD:UBUD),2*Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
ELSE IF(rang > 0 .AND. rang<Pivot)THEN
CALL MPI_RECV(UG(LBUG:UBUG),2*Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_SEND(U(C:DD),2*Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
CALL MPI_SEND(U(A:B),2*Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(UD(LBUD:UBUD),2*Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
ELSE IF(rang >= Pivot .AND. rang < Np-1)THEN
CALL MPI_RECV(UD(LBUD:UBUD),2*Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_SEND(U(A:B),2*Ny_g,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_SEND(U(C:DD),2*Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(UG(LBUG:UBUG),2*Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
ELSE IF(rang == Np-1)THEN
CALL MPI_SEND(U(C:DD),2*Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(UG(LBUG:UBUG),2*Ny_g,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
END IF
End Subroutine COMM_PTOP_2WAY
end module mod_comm
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/DD_Neuman_TRUE_LAST/mod_constr_mat.f90 | module mod_constr_mat
use mod_parametres
implicit none
!-->set a_neuman=1.0_PR et b_neuman=0.0000001_PR pour retrouver les mêmes ordres de grandeurs des erreurs L2 qu'avec le sequentiel ou dirichlet
Real(PR), Parameter :: a_neuman = 0.5_PR
Real(PR), Parameter :: b_neuman = 0.5_PR
REAL(PR), Parameter :: c_neuman = a_neuman/b_neuman
Real(PR), Parameter :: alpha_neuman_H = 1._PR -2._PR*beta -2._PR*gamma +((D*dt*a_neuman)/(dx*b_neuman)) +beta
! Les coefficients alpha changent pour les Ny première
! et/ou dernières lignes des matrices dans le cas des CLs de Neuman
Real(PR), Parameter :: alpha_neuman_B = 1._PR -2._PR*beta -2._PR*gamma +((D*dt*a_neuman)/(dx*b_neuman)) +beta
contains
Subroutine L1_NXL_eqv_1(Ny_l,nnz,k,AA,IA,JA)
INTEGER,INTENT(IN)::Ny_l,nnz
INTEGER,INTENT(INOUT)::k
Real(PR), Dimension(nnz), Intent(Out) :: AA
Integer, Dimension(nnz), Intent(Out) :: IA,JA
Integer::d
!ONLY WHEN A PROCES GOT Nx_l==1
DO d = 1, Ny_l
IF(d == 1)THEN
AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
ELSE IF(d>1 .AND. d<Ny_l)THEN
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
ELSE IF(d == Ny_l)THEN
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
END IF
END DO
End Subroutine L1_NXL_eqv_1
Subroutine L1(Ny_l,nnz,k,AA,IA,JA)
INTEGER,INTENT(IN)::Ny_l,nnz
INTEGER,INTENT(INOUT)::k
Real(PR), Dimension(nnz), Intent(Out) :: AA
Integer, Dimension(nnz), Intent(Out) :: IA,JA
Integer::d,hit
DO d = 1, Ny_l
IF(d == 1)THEN
AA(k)=alpha; IA(k)=d; JA(k)=d
DO hit = d+1, d+Ny_l, Ny_l-1
IF(hit == d+1)THEN
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=hit
ELSE
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=hit
END IF
END DO
ELSE IF(d>1 .AND. d<Ny_l)THEN
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
ELSE IF(d == Ny_l)THEN
DO hit = d-1, d
IF(hit == d-1)THEN
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=hit
ELSE
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=hit
END IF
END DO
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
END IF
END DO
End Subroutine L1
SUBROUTINE TRACK(k,d)
INTEGER,INTENT(INOUT)::k,d
IF(rang==0)THEN
PRINT*,'RANG',rang,'TRACK k,d',k,d
END IF
END SUBROUTINE TRACK
Subroutine L2(Nx_l,Ny_l,nnz,d1,d2,k,AA,IA,JA)
Integer, Intent(IN) :: Nx_l, Ny_l, nnz
Integer, Intent(INOUT) :: d1, d2, k
Real(PR), Dimension(nnz), Intent(Out) :: AA
Integer, Dimension(nnz), Intent(Out) :: IA,JA
INTEGER :: i, d
DO i = 1, Nx_l-2
DO d = d1,d2
IF(d == d1)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
ELSE IF(d>d1 .AND. d<d2)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
ELSE IF(d == d2)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
END IF
END DO
d1 = d2+1; d2=d2+Ny_l
END DO
End Subroutine L2
Subroutine L3(mul1,mul2,Ny_l,nnz,k,AA,IA,JA)
Integer, Intent(IN) :: mul1, mul2, Ny_l, nnz
Integer, Intent(INOUT) :: k
Real(PR), Dimension(nnz), Intent(Out) :: AA
Integer, Dimension(nnz), Intent(Out) :: IA,JA
INTEGER :: d
DO d = mul1, mul2
IF(d == mul1)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
ELSE IF(d>mul1 .AND. d<mul2)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
ELSE IF(d == mul2)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
END IF
END DO
End Subroutine L3
Subroutine L1_Neuman(Ny_l,nnz,k,AA,IA,JA)
IMPLICIT NONE
INTEGER,INTENT(IN)::Ny_l,nnz
INTEGER,INTENT(INOUT)::k
Real(PR), Dimension(nnz), Intent(Out) :: AA
Integer, Dimension(nnz), Intent(Out) :: IA,JA
Integer::d,hit
DO d = 1, Ny_l
IF(d == 1)THEN
AA(k)=alpha_neuman_H
IA(k)=d
JA(k)=d
DO hit = d+1, d+Ny_l, Ny_l-1
IF(hit == d+1)THEN
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=hit
ELSE
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=hit
END IF
END DO
ELSE IF(d>1 .AND. d<Ny_l)THEN
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha_neuman_H; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
ELSE IF(d == Ny_l)THEN
DO hit = d-1, d
IF(hit == d-1)THEN
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=hit
ELSE
k=k+1; AA(k)=alpha_neuman_H; IA(k)=d; JA(k)=hit
END IF
END DO
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
END IF
END DO
End Subroutine L1_Neuman
Subroutine L3_neuman(mul1,mul2,Ny_l,nnz,k,AA,IA,JA)
IMPLICIT NONE
Integer, Intent(IN) :: mul1, mul2, Ny_l, nnz
Integer, Intent(INOUT) :: k
Real(PR), Dimension(nnz), Intent(Out) :: AA
Integer, Dimension(nnz), Intent(Out) :: IA,JA
INTEGER :: d
DO d = mul1, mul2
IF(d == mul1)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=alpha_neuman_B; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
ELSE IF(d>mul1 .AND. d<mul2)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha_neuman_B; IA(k)=d; JA(k)=d
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
ELSE IF(d == mul2)THEN
k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
k=k+1; AA(k)=alpha_neuman_B; IA(k)=d; JA(k)=d
END IF
END DO
End Subroutine L3_neuman
end module mod_constr_mat
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/DD_Neuman_TRUE_LAST/mod_fonctions.f90 | !---------------------------------------------
! CE MODULE CONTIENT LES FONCTIONS
! DES TERMES SOURCES DE L'EQUATION
!---------------------------------------------
Module mod_fonctions
!---modules-------------------
use mod_parametres
!-----------------------------
Implicit None
Contains
!---fonction f premier exemple(terme source)---
Real(PR) Function f1(CT,x,y,t)
Integer, Intent(In) :: CT
Real(PR), Intent(In) :: x,y,t
f1 = 0.0_PR
If (CT==1) Then
f1=2._PR*(y*(1._PR-y)+x*(1._PR-x))
Else IF (CT==2) Then
f1=sin(x)+cos(y)
Else If (CT==3) Then
f1=exp(-((x-(Lx/2._PR))**2._PR))*exp(-((y-(Ly/2._PR))**2._PR))&
*cos((pi/2._PR)*t)
End If
End Function f1
!----------------------------------------------
!---fonction g premier exemple( bords haut/bas)-
Real(PR) Function g1(CT,x,y,t)
Integer, Intent(In) :: CT
Real(PR), Intent(In) :: x,y,t
g1 = 0.0_PR
If (CT==1) Then
g1=0._PR
Else IF (CT==2) Then
g1=sin(x)+cos(y)
Else If (CT==3) Then
g1=0._PR
End If
End Function g1
!----------------------------------------------
!---function h premier exemple(bord gauche/droite)
Real(PR) Function h1(CT,x,y,t)
Integer, Intent(In) :: CT
Real(PR), Intent(In) :: x,y,t
h1 = 0.0_PR
If (CT==1) Then
h1=0._PR
Else IF (CT==2) Then
h1=sin(x)+cos(y)
Else If (CT==3) Then
h1=1._PR
End If
End Function h1
!---Fonctions donnant les vecteurs Xi,Yj,Tn---------------
Subroutine param(X,Y,T)
Implicit None
!---variables-------------------------
real(PR), Dimension(:), Allocatable, Intent(InOut) :: X
real(PR), Dimension(:), Allocatable, Intent(InOut) :: Y
real(PR), Dimension(:), Allocatable, Intent(InOut) :: T
Integer :: i
!-------------------------------------
ALLOCATE(Y(0:Ny_g+1),T(0:Nt+1),X(0:Nx_g+1))
Do i=0,Ny_g+1
Y(i)=i*dy
End Do
Do i=0,Nt+1
T(i)=i*nt
End Do
DO i=0,Nx_g+1
X(i)=i*dx
END DO
!SET VARIABLES SIZE USED MANY TIMES
!FOR x VECTOR:
LBX = lbound(X,1) ; UBX = ubound(X,1)
!FOR UD AND UG VECTORS TO RECV:
LBUD = itN+1-2*Ny_g ; UBUD = itN
LBUG = it1 ; UBUG = it1-1+2*Ny_g
!FOR VECTOR SIZE TO SEND:
A = (itN - 2*overlap*Ny_g) +1; B = A + 2*Ny_g -1
DD = (it1 + 2*overlap*Ny_g) -1; C = DD - 2*Ny_g +1
End Subroutine param
Subroutine param_para(rang,Np,S1,S2,Ny_l,X,Y,T)
Implicit None
!---variables-------------------------
Integer, Intent(IN) :: rang, Np, S1, S2, Ny_l
real(PR), Dimension(:), Allocatable, Intent(InOut) :: X
real(PR), Dimension(:), Allocatable, Intent(InOut) :: Y
real(PR), Dimension(:), Allocatable, Intent(InOut) :: T
Integer :: i
!-------------------------------------
ALLOCATE(Y(0:Ny_l+1),T(0:Nt+1))
Do i=0,Ny_l+1
Y(i)=i*dy
End Do
Do i=0,Nt+1
T(i)=i*nt
End Do
IF(rang == 0)THEN
ALLOCATE(X(S1-1:S2))
Do i=S1-1,S2
X(i)=i*dx
End Do
ELSE IF(rang == Np-1)THEN
ALLOCATE(X(S1:S2+1))
DO i=S1,S2+1
X(i)=i*dx
END DO
ELSE
ALLOCATE(X(S1:S2))
DO i=S1,S2
X(i)=i*dx
END DO
END IF
!SET VARIABLES SIZE USED MANY TIMES
!FOR x VECTOR:
LBX = lbound(X,1) ; UBX = ubound(X,1)
!FOR UD AND UG VECTORS TO RECV:
LBUD = itN+1-2*Ny_g ; UBUD = itN
LBUG = it1 ; UBUG = it1-1+2*Ny_g
!FOR VECTOR SIZE TO SEND:
A = (itN - 2*overlap*Ny_g) +1; B = A + 2*Ny_g -1
DD = (it1 + 2*overlap*Ny_g) -1; C = DD - 2*Ny_g +1
End Subroutine param_para
!-------------------------------------------------------------
End Module mod_fonctions
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/DD_Neuman_TRUE_LAST/mod_gmres.f90 | module mod_gmres
USE mod_parametres
USE mod_fonctions
Implicit None
Contains
!---FONCTION PRODUIT MATxVEC EN SPARSE-------------------------
Function MatVecSPARSE(AA,IA,JA,x) Result(y)
Implicit None
!Produit MatriceSPARSE.vecteur plein (x) retourne vecteur plein(y)
!---variables------------------------------------------
Real(PR), Dimension(:), Intent(In) :: AA,x
Integer, Dimension(:), Intent(In) :: IA,JA
Real(PR), Dimension(Size(x)) :: y
Integer :: i,n,nnz
!--------------------------------------------------------
n=Size(x,1)
nnz=Size(AA,1)
y(1:n)=0._PR
Do i=1,nnz
if (IA(i)==0) then
!print*,"element IA nul pour i =",i
end if
y(IA(i))=y(IA(i))+AA(i)*x(JA(i))
End Do
End Function MatVecSPARSE
!---------------------------------------------------------------
!---FONCTION PRODUIT MATxVEC EN SPARSE-------------------------
Function COL_MatVecSPARSE(AA,IA,JA,x,dim) Result(y)
Implicit None
!Produit MatriceSPARSE.vecteur plein (x) retourne vecteur plein(y)
!---variables------------------------------------------
Integer, Intent(IN) :: dim
Real(PR), Dimension(:), Intent(In) :: AA
Real(PR), Dimension(1:dim,1), Intent(In) :: x
Integer, Dimension(:), Intent(In) :: IA,JA
Real(PR), Dimension(dim) :: y
Integer :: i,nnz
!--------------------------------------------------------
!n=Size(x,1)
nnz=Size(AA,1)
y(1:dim)=0._PR
Do i=1,nnz
if (IA(i)==0) then
!print*,"element IA nul pour i =",i
end if
y(IA(i))=y(IA(i))+AA(i)*x(JA(i),1)
End Do
End Function COL_MatVecSPARSE
!---------------------------------------------------------------
Subroutine GMres_COO(AA,IA,JA,f,x0,x,b,k,dim,it1,itN,DIMKRYLOV)
Implicit None
!-----Variables: dim = Na_l
Integer, Intent(IN) :: dim, it1, itN, DIMKRYLOV
Real(PR), Dimension(:), Intent(In) :: AA
Integer, Dimension(:), Intent(In) :: IA,JA
Real(PR), Dimension(it1:itN), Intent(In) :: f,x0 !f=vect source , x0=CI
Real(PR), Dimension(it1:itN), Intent(InOut) :: x !solution finale
Real(PR), Intent(Out) :: b !norme du résidu
Integer, Intent(Out) :: k !nb d'itérations pour convergence
Integer :: m ! m = DIMKRYLOV
Integer :: kmax !nb d'itérations max
Real(PR) ::beta !norm2 de r
Real(PR) :: eps !tol solver
! Rescale: Bufferx(1:dim) = x(it1:itN) so natural dot_product
Real(PR), Dimension(:), Allocatable :: Bufferx0, Bufferx, Bufferf
!---- Vectors & Matrix used for GMres:
Real(PR),dimension(1:dim,1:DIMKRYLOV+1)::Vm
!Real(PR),dimension(1:m+1,1:m)::Hm_
Real(PR),dimension(:,:),allocatable::Hm_
Real(PR),dimension(1:DIMKRYLOV+1,1:DIMKRYLOV)::Rm_
Real(PR),dimension(1:DIMKRYLOV+1,1:DIMKRYLOV+1)::Qm_
Real(PR),dimension(1:dim,1:DIMKRYLOV)::FF !Vm+1.Hm_
Real(PR),dimension(1:DIMKRYLOV+1)::gm_
Real(PR),dimension(1:DIMKRYLOV)::y !sol de Rm.y=gm
Real(PR),dimension(1:dim)::Vmy
Real(PR),dimension(1:dim)::AX
Real(PR),dimension(1:dim)::z,p,r
Allocate(Bufferx0(1:itN-it1+1))
Bufferx0(1:dim) = x0(it1:itN)
Allocate(Bufferx(1:itN-it1+1))
Bufferx(1:dim) = x(it1:itN)
Allocate(Bufferf(1:itN-it1+1))
Bufferf(1:dim) = f(it1:itN)
m = DIMKRYLOV
beta=0.0_PR
k=0
!**INITIALISATION DE ro=b-AXo:MatVecSPARSE(AA,IA,JA,x)
r=Bufferf-MatVecSPARSE(AA,IA,JA,Bufferx0)
beta = DOT_PRODUCT(r,r)
beta = sqrt(beta)
eps = 0.00001_PR
kmax = dim**2
boucle_eps_kmax:DO WHILE(beta>eps .AND. k<kmax)
!Construction DE LA BASE Vm et de Hm_
ALLOCATE(Hm_(1:m+1,1:m))
CALL arnoldi_reortho(dim,m,AA,IA,JA,r,beta,Vm,Hm_)
!Decomposion QR de Hm_ pour avoir Qm_ et Rm_
Rm_ = Hm_
DEALLOCATE(Hm_)
CALL givens_QR_opt2(dim,m,Rm_,Qm_)
!CALL givens_QR_opt(dim,m,Hm_,Qm_,Rm_)
!Setup gm_ = transpose(Qm_). beta*e1
gm_LOOP:DO i = 1,m+1
gm_(i) = beta * Qm_(1,i)
END DO gm_LOOP
!Resolution DE Rm.y=gm où Rm=Rm_(1:m,:)et gm= gm_(1:m)
y(m)=gm_(m)/Rm_(m,m)
moindrecarre:do j=m-1,1,-1
y(j)=gm_(j)
do c=j+1,m
y(j)=y(j)-Rm_(j,c)*y(c)
end do
y(j)=y(j)/Rm_(j,j)
end do moindrecarre
!Calcul de Vmy
Vmy=MATMUL(Vm(1:dim,1:m),y)
!CALCUL de X=X+Vm.y
Bufferx=Bufferx+Vmy
!Actualisation r:
r=bufferf-MatVecSPARSE(AA,IA,JA,Bufferx)
beta=sqrt(DOT_PRODUCT(r,r))
k=k+1
! PRINT*,'APRES k=k+1',k,beta
if(rang==0)then
print*,'gmres rang,k,res',rang,k,beta
end if
END DO boucle_eps_kmax
b = beta
x(it1:itN) = Bufferx(1:dim)
Deallocate(Bufferx0,Bufferx,Bufferf)
End Subroutine GMres_COO
!----------
!$$$$$$$$$$$$$$$$ARNOLDI MGS REORTHO$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
subroutine arnoldi_reortho(dim,m,AA,IA,JA,ro,beta,Vm,Hm_)!v,Vm,Hm_)
Implicit None
!la notation Hm_ pour la barre up du Hm correspondant
!à la notation theorique
!m nbr de colonne de Vm ; Vm appartient à M_n,m(R), n =dim ici
integer,intent(in)::dim,m
!on utilise m pour fixer la dimension de Vm,
!base constituée des (vi)i
Real(PR),dimension(1:dim),intent(in)::ro
Real(PR),intent(in)::beta
!ro=b-Axo
!beta =||ro|| au carré
!Real(PR),dimension(1:dim),intent(inout)::v
!v vecteur constituant les colonnes de Vm
Real(PR), Dimension(:), Intent(In) :: AA
Integer, Dimension(:), Intent(In) :: IA,JA
!Real(PR),dimension(1:dim,1:dim),intent(in)::A
Real(PR),dimension(1:dim,1:m+1),intent(out)::Vm
Real(PR),dimension(1:m+1,1:m),intent(out)::Hm_
Real(PR),dimension(1:dim)::z,Av
!z vecteur de stockage pour calcul de v
!Av pour stocker A.v_j ,v_j la colonne de Vm
Real(PR)::pscal,nz,tmp !nz pour calculer la norme de z
integer::k,i,j,c,d
!**INITIALISATION DE v:
Vm=0.0_PR
Hm_=0.0_PR
!v=ro/beta !v1
do i=1,dim
Vm(i,1)=ro(i)/beta
end do
!**CALCUL DE z:
j=0
do while(j<m)
j=j+1
!$$CALCUL DE A.v:
Av=0.0_PR
Av = Av + COL_MatVecSPARSE(AA,IA,JA,Vm(1:dim,j),dim)
z=Av
do i=1,j
!$$CALCUL DE SUM(<Avj|vi>.vi)
pscal=0.0_PR
pscal=DOT_PRODUCT(Av,Vm(1:dim,i))
Hm_(i,j)=pscal
z=z-Hm_(i,j)*Vm(:,i)
end do!fin do i
!$$$$$REORTHO
do i=1,j!j
tmp=0.0_PR
tmp=DOT_PRODUCT(z,Vm(:,i))
z=z-tmp*Vm(:,i)
Hm_(i,j)=Hm_(i,j)+tmp
end do
!$$CALCUL DE ||z||:
nz=0.0_PR
nz=DOT_PRODUCT(z,z)
nz=sqrt(nz)
Hm_(j+1,j)=nz
!$$CONDITION ARRET HEUREUX:
if(abs(Hm_(j+1,j))<0.00000001_PR)then
j=m+1!stop
else !end if
!$$FIN CONDITION ARRET HEUREUX
!$$ACTUALISATION/CALCUL DE Vm(:,j+1); v_(j+1) la j+1 ieme cows de Vm
Vm(:,j+1)=z !/Hm_(j+1,j)
Vm(:,j+1)=Vm(:,j+1)/nz
end if
! PRINT*,'MGS_REORTHO',j
end do
end subroutine arnoldi_reortho
subroutine givens_QR_opt2(dim,m,Rm_,Qm_)!Hm_,Qm_,Rm_)
Implicit None
integer,intent(in)::dim,m
!real,dimension(1:m+1,1:m),intent(in)::Hm_
Real(PR),dimension(1:m+1,1:m),intent(inout)::Rm_
Real(PR),dimension(1:m+1,1:m+1),intent(out)::Qm_
Real(PR)::c,s
Real(PR)::coef1,coef2,coef_a,coef_b
Real(PR)::TQ1,TQ2,TQ3,TQ4
Real(PR)::Qg,Qd
integer::i,j,k,l
!Rm_=Hm_
Qm_=0.0_PR
do i=1,m+1
Qm_(i,i)=1.0_PR!?stock_T_Qm_(i,i)=1.
end do
do j=1,m!-1!m
do l=j+1,j+1,-1!m+1,j+1,-1 !DE j+1 à j+1 car Hm_ forme de Hessenberg
coef1=Rm_(l,j);coef2=Rm_(l-1,j)
c=coef1*coef1+coef2*coef2;c=sqrt(c)
s=c
c=coef2/c;s=-coef1/s
TQ1=c !T_Qm_(l,l)=c
TQ2=c !T_Qm_(l-1,l-1)=c
TQ3=-s !T_Qm_(l-1,l)=-s
TQ4=s !T_Qm_(l,l-1)=s
do k=j,m
coef_a=Rm_(l-1,k);coef_b=Rm_(l,k)
Rm_(l-1,k)=c*coef_a-s*coef_b
Rm_(l,k)=s*coef_a+c*coef_b
end do
Rm_(l,j)=0.0_PR
TQ3=-TQ3
TQ4=-TQ4
if(j==1 .AND. l==j+1)then
Qm_(l,l)=TQ1;Qm_(l-1,l-1)=TQ2;Qm_(l-1,l)=TQ3;Qm_(l,l-1)=TQ4
else
do i=1,m+1
Qg=Qm_(i,l-1);Qd=Qm_(i,l)
Qm_(i,l-1)=Qg*TQ2+Qd*TQ4
Qm_(i,l)=Qg*TQ3+Qd*TQ1
end do
end if
end do !fin do l
! PRINT*,'GIVENS',j
end do !fin do j
end subroutine givens_QR_opt2
end module mod_gmres
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/DD_Neuman_TRUE_LAST/mod_gradconj.f90 | !-----------------------------------------
! CE MODULE CONTIENT LE GRADIENT CONJUGUÉ
! EN PLEIN ET EN CREUX (FORMAT COORDONNES)
!-----------------------------------------
Module mod_gradconj
!---modules----------------
use mod_parametres
use mod_fonctions
!--------------------------
Implicit None
Contains
!---GRADIENT CONJUGUÉ POUR UNE MATRICE A PLEINE---------
Subroutine gradconj(A,b,x0,x,beta,k,n)
!---variables------------------------------------
Integer, Intent(In) :: n !taille vecteur solution (=taille de la matrice carrée)
Real(PR), Dimension(:,:), Intent(In) :: A !matrice à inverser
Real(PR), Dimension(:), Intent(In) :: b,x0 ! b second membre, x0 CI
Real(PR), Dimension(:), Intent(Out) :: x !solution finale
Real(PR), Intent(Out) :: beta !norme du résidu
Real(PR), Dimension(:), Allocatable :: p,z,r1,r2
Real(PR) :: alpha,gamma,eps
Integer, Intent(Out) :: k !nb d'itération pr convergence
Integer :: kmax
!-------------------------------------------------
eps=0.01_PR
kmax=150
Allocate(p(n),z(n),r1(n),r2(n))
r1=b-matmul(A,x0)
p=r1
beta=sqrt(sum(r1*r1))
k=0
Do While (beta>eps .and. k<=kmax)
z=matmul(A,p)
alpha=dot_product(r1,r1)/dot_product(z,p)
x=x+alpha*p
r2=r1-alpha*z
gamma=dot_product(r2,r2)/dot_product(r1,r1)
p=r2+gamma*p
beta=sqrt(sum(r1*r1))
k=k+1
r1=r2
End Do
If (k>kmax) then
Print*,"Tolérance non atteinte:",beta
End If
Deallocate(p,z,r1,r2)
End Subroutine gradconj
!----------------------------------------------------
!---GRADIENT CONJUGUÉ POUR MATRICE CREUSE AU FORMAT COORDONNÉES-----
!---A PARALLELISER : PRODUIT MATRICE/VECTEUR + PRODUIT SCALAIRE
Subroutine gradconj_SPARSE(AA,IA,JA,F,x0,x,b,k,n)
Implicit None
!---variables ---------------------------------------
Integer, Intent(In) :: n !taille vecteur solution
Real(PR), Dimension(:), Intent(In) :: AA
Integer, Dimension(:), Intent(In) :: IA,JA
Real(PR), Dimension(:), Intent(In) :: f,x0 !f=vect source , x0=CI
Real(PR), Dimension(:), Intent(InOut) :: x !solution finale
Real(PR), Intent(Out) :: b !norme du résidu
Real(PR), Dimension(:), Allocatable :: p,z,r1,r2
Real(PR) :: a,g,eps
Integer, Intent(Out) :: k !nb d'itérations pour convergence
Integer :: kmax !nb d'itérations max
!-----------------------------------------------------
eps=0.01_PR
kmax=1500
Allocate(p(n),z(n),r1(n),r2(n))
!---paralléliser------------------------
r1=f-MatVecSPARSE(AA,IA,JA,x0)
!-------------------------------------
p=r1
b=sqrt(sum(r1*r1))
k=0
Do While (b>eps .and. k<=kmax)
!---paralléliser------------------
z=MatVecSPARSE(AA,IA,JA,p)
!---------------------------------
a=dot_product(r1,r1)/dot_product(z,p)
x=x+a*p
r2=r1-a*z
g=dot_product(r2,r2)/dot_product(r1,r1)
p=r2+g*p
b=sqrt(sum(r1*r1))
k=k+1
r1=r2
End Do
If (k>kmax) then
Print*,"Tolérance non atteinte:",b
End If
Deallocate(p,z,r1,r2)
End Subroutine gradconj_SPARSE
!--------------------------------------------------------------
!---FONCTION PRODUIT MATxVEC EN SPARSE-------------------------
Function MatVecSPARSE(AA,IA,JA,x) Result(y)
!Produit MatriceSPARSE.vecteur plein (x) retourne vecteur plein(y)
!---variables------------------------------------------
Real(PR), Dimension(:), Intent(In) :: AA,x
Integer, Dimension(:), Intent(In) :: IA,JA
Real(PR), Dimension(Size(x)) :: y
Integer :: i,n,nnz
!--------------------------------------------------------
n=Size(x,1)
nnz=Size(AA,1)
y(1:n)=0._PR
Do i=1,nnz
if (IA(i)==0) then
print*,"element IA nul pour i =",i
end if
y(IA(i))=y(IA(i))+AA(i)*x(JA(i))
End Do
End Function MatVecSPARSE
!---------------------------------------------------------------
!GC COO FORMAT BUILD FOR global numerotation over x
Subroutine MOD_gradconj_SPARSE(AA,IA,JA,f,x0,x,b,k,it1,itN)
Implicit None
!---variables ---------------------------------------
Integer, Intent(In) :: it1,itN !taille vecteur solution
Real(PR), Dimension(:), Intent(In) :: AA
Integer, Dimension(:), Intent(In) :: IA,JA
Real(PR), Dimension(it1:itN), Intent(In) :: f,x0 !f=vect source , x0=CI
Real(PR), Dimension(it1:itN), Intent(InOut) :: x !solution finale
Real(PR), Intent(Out) :: b !norme du résidu
Real(PR), Dimension(:), Allocatable :: p,z,r1,r2
Real(PR) :: a,g,eps
Integer, Intent(Out) :: k !nb d'itérations pour convergence
Integer :: kmax !nb d'itérations max
!-----------------------------------------------------
eps=0.000001_PR
kmax=1500
Allocate(p(it1:itN),z(it1:itN),r1(it1:itN),r2(it1:itN))
!---paralléliser------------------------
r1=f-MOD_MatVecSPARSE(AA,IA,JA,x0,it1,itN)
!-------------------------------------
p=r1
b=sqrt(sum(r1*r1))
k=0
Do While (b>eps .and. k<=kmax)
!---paralléliser------------------
z=MOD_MatVecSPARSE(AA,IA,JA,p,it1,itN)
!---------------------------------
a=dot_product(r1,r1)/dot_product(z,p)
x=x+a*p
r2=r1-a*z
g=dot_product(r2,r2)/dot_product(r1,r1)
p=r2+g*p
b=sqrt(sum(r1*r1))
k=k+1
r1=r2
!PRINT*,'k,b',k,b
End Do
If (k>kmax) then
Print*,"Tolérance non atteinte:",b
End If
Deallocate(p,z,r1,r2)
End Subroutine MOD_gradconj_SPARSE
!--------------------------------------------------------------
!---FONCTION PRODUIT MATxVEC EN SPARSE-------------------------
Function MOD_MatVecSPARSE(AA,IA,JA,x,it1,itN) Result(y)
!Produit MatriceSPARSE.vecteur plein (x) retourne vecteur plein(y)
!---variables------------------------------------------
INTEGER,INTENT(IN)::it1,itN
Real(PR), Dimension(:), Intent(In) :: AA
Real(PR), Dimension(it1:itN), Intent(In) ::x
Integer, Dimension(:), Intent(In) :: IA,JA
Real(PR), Dimension(it1:itN) :: y
Integer :: i,n,nnz,val
!--------------------------------------------------------
n=Size(x,1)
!PRINT*,'***',n,itN-it1+1
nnz=Size(AA,1)
y(it1:itN)=0._PR
val=(it1-1)
Do i=1,nnz
if (IA(i)==0) then
print*,"element IA nul pour i =",i
end if
!PRINT*,i,IA(i),val+IA(i),JA(i),val+JA(i),x(val+JA(i))
y(val+IA(i))=y(val+IA(i))+AA(i)*x(val+JA(i))
End Do
End Function MOD_MatVecSPARSE
!---------------------------------------------------------------
Subroutine MOD_jacobi_SPARSE(AA,IA,JA,F,x0,x,resnorm,k)
!-----variables---------------------
Real(PR), Dimension(nnz_l), Intent(In) :: AA
Integer, Dimension(nnz_l), Intent(In) :: IA,JA
Real(PR), Dimension(it1:itN), Intent(InOut) :: F,x0 !f=vect source , x0=CI
Real(PR), Dimension(it1:itN), Intent(InOut) :: x !solution finale
Real(PR), Intent(Out) :: resnorm !norme du résidu
Real(PR), Dimension(:), Allocatable :: r
Real(PR) :: eps,somme
Integer, Intent(InOut) :: k !nb d'itérations pour convergence
Integer :: kmax,pp,val,ii,borne !nb d'itérations max
ALLOCATE(r(it1:itN))
borne=nnz_l+1
x=x0
eps = 0.000001_PR
kmax = 100000
r = F-MOD_MatVecSPARSE(AA,IA,JA,x0,it1,itN) !résidu initial
resnorm = sqrt(sum(r*r)) !norme 2 du résidu
k = 0 !initialisation itération
boucle_resolution: Do While ((resnorm>eps) .and. (k<kmax))
k=k+1
!on calcule xi^k+1=(1/aii)*(bi-sum(j=1,n;j/=i)aij*xj^k)
x0=0._PR
pp=1;val=it1-1
boucle_xi: Do ii=1,Na_l
!calcul de la somme des aij*xj^k pour j=1,n;j/=i
somme = 0.0_PR;
!!$ if(rang==0)then
!!$ PRINT*,'ii,pp,k,nnz_l,ubound IA',ii,pp,k,nnz_l,ubound(IA,1),nnz_l+1
!!$ end if
DO WHILE((pp<borne) .AND. (ii==IA(pp)))
IF (IA(pp) /= JA(pp)) THEN
somme= somme + x(val+JA(pp)) * AA(pp)
END IF
!!$ if(rang==0)then
!!$ PRINT*,'ii,pp,IA(pp),JA(pp),AA(pp),x(JA(pp))',ii,pp,IA(pp),JA(pp),AA(pp),x(val+JA(pp))
!!$ end if
pp=pp+1
!PRINT*,'pp',pp
if(pp==borne)then !because the do while check both pp<borne and ii==IA(pp),maybe due to makefile
! he should break when pp>=borne and don't check ii==IA(pp)
GOTO 7777
end if
END DO
!calcul du nouveau xi
7777 x0(val+ii)=(1._PR/alpha)*(F(val+ii)-somme)
x0(val+ii)=(1._PR/alpha)*(F(val+ii)-somme)!;print*,'t',rang
End Do boucle_xi
x=x0
!on calcule le nouveau résidu
r = F - MOD_MatVecSPARSE(AA,IA,JA,x,it1,itN)
! calcul de la norme 2 du résidu
resnorm = sqrt(sum(r*r))
if(mod(k,1000)==0)then
print*,resnorm,k
end if
End Do boucle_resolution
If (k>kmax) then
Print*,"Tolérance non atteinte:",resnorm
End If
DEALLOCATE(r)
print*,"converge avec eps=",resnorm
End Subroutine MOD_jacobi_SPARSE
subroutine BICGSTAB(it1, itN, AA, IA, JA, x, b, eps)
implicit none
Integer, Intent(IN) :: it1, itN
real(PR), dimension(:), intent(In) :: AA
integer, dimension(:), intent(In) :: IA, JA
real(PR), dimension(it1:itN), intent(InOut) :: x
real(PR), dimension(it1:itN), intent(In) :: b
real(PR), intent(In) :: eps
real(PR), dimension(it1:itN) :: r0, v, p, r, h, s, t
real(PR) :: rho_i, rho_im1, alpha_CG, omega, w, beta_CG
Real(PR) :: beta_res
integer :: kmax
integer :: k
omega = 1.0_PR
!x = 0._PR
r0 = b - MOD_MatVecSPARSE(AA,IA,JA,x,it1,itN)
r = r0
beta_res = SQRT(DOT_PRODUCT(r0,r0))
rho_im1 = 1._PR; alpha_CG = 1._PR; w = 1._PR
v = 0._PR; p = 0._PR
k = 0
kmax = 2*Na_l*Na_l
!do while((maxval(abs(r))>eps) .and. (k<kmax))
do while( beta_res >eps .and. (k<kmax) )
rho_i = dot_product(r0, r)
beta_CG = (rho_i/rho_im1)*(alpha_CG/w)
p = r+beta_CG*(p-v*w)
v = MOD_MatVecSPARSE(AA,IA,JA,p,it1,itN)
alpha_CG = rho_i/dot_product(r0, v)
h = x+p*alpha_CG
s = r-v*alpha_CG
t = MOD_MatVecSPARSE(AA,IA,JA,s,it1,itN)
w = dot_product(t, s)/dot_product(t, t)
x = h+s*w
r = s-t*w
beta_res = SQRT(DOT_PRODUCT(r,r))
rho_im1 = rho_i
k = k+1
end do
!PRINT*,'RESIDU=',maxval(abs(r))
end subroutine BICGSTAB
End Module mod_gradconj
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/DD_Neuman_TRUE_LAST/mod_matsys.f90 | !----------------------------------------------------
! CE MODULE CONTIENT LA CONSTRUCTION DE LA MATRICE A
! ET LE VECTEUR SOURCE F
!----------------------------------------------------
Module mod_matsys
!---modules-------------------
Use mod_parametres
Use mod_fonctions
Use mod_gradconj
Use mod_constr_mat
!-----------------------------
Implicit None
Contains
!--- SUBROUTINE QUI CONSTRUIT LA MATRICE A : UN SEUL APPEL ----------------------
Subroutine matsys_v2(nnz,Nx_l,Ny_l,AA,IA,JA)
Integer, Intent(IN) ::nnz,Nx_l,Ny_l
Real(PR), Dimension(:), Allocatable, Intent(Out) :: AA
Integer, Dimension(:), Allocatable, Intent(Out) :: IA,JA
Integer :: k, mul2, d1, d2, mul1
k = 1; mul2 = Nx_l*Ny_l; mul1 = Ny_l*(Nx_l-1)+1
ALLOCATE(AA(nnz),IA(nnz),JA(nnz))
!L1-----------------------------------------------------------
IF(Nx_l > 1)THEN
if (rang/=0) then
CALL L1_neuman(Ny_l,nnz,k,AA,IA,JA)
else
CALL L1(Ny_l,nnz,k,AA,IA,JA)
end if
!CRTL nnz_L1
IF(k /= crtl_L1_nnz)THEN
PRINT*,'ERROR L1_nnz','RANG',rang,'k_L1',k,'/=','crtl_L1_nnz',crtl_L1_nnz
AA=0._PR;IA=0;JA=0
END IF
ELSE IF(Nx_l == 1)THEN
CALL L1_NXL_eqv_1(Ny_l,nnz,k,AA,IA,JA)
IF(k /= crtl_L1_nnz_Nxl_EQV_1)THEN
PRINT*,'ERROR L1_nnz','RANG',rang,'k_L1',k,'/=','crtl_L1_nnz_Nxl_EQV_1',crtl_L1_nnz_Nxl_EQV_1
AA=0._PR;IA=0;JA=0
END IF
END IF
!L2-----------------------------------------------------------
IF(Nx_l>2)THEN
d1 = Ny_l+1; d2 = 2*Ny_l
CALL L2(Nx_l,Ny_l,nnz,d1,d2,k,AA,IA,JA)
IF(k /= crtl_L1_nnz + crtl_L2_nnz)THEN
PRINT*,'ERROR L2_nnz','RANG',rang,'k_L2',k-crtl_L1_nnz,'/=','crtl_L2_nnz',crtl_L2_nnz
AA=0._PR;IA=0;JA=0
END IF
END IF
!L3-----------------------------------------------------------
IF(Nx_l>1)THEN
if (rang/=Np-1) then
CALL L3_neuman(mul1,mul2,Ny_l,nnz,k,AA,IA,JA)
else
CALL L3(mul1,mul2,Ny_l,nnz,k,AA,IA,JA)
end if
PRINT*,'rang',rang,'k',k,'FIN L3'
IF(k /= sum_crtl_L_nnz)THEN
PRINT*,'ERROR L3_nnz','RANG',rang,'k_L3',k-crtl_L1_nnz-crtl_L2_nnz,'/=','crtl_L3_nnz',crtl_L3_nnz
AA=0._PR;IA=0;JA=0
END IF
END IF
END Subroutine matsys_v2
!--------SUBROUTINE DU VECTEUR SOURCE EN FONCTION DE L'ITERATION N ET DU VECTEUR U--------
Subroutine vectsource(CT,U,S1,S2,X,Y,T,F)
Implicit None
!---variables----------------------------------
Integer, Intent(In) :: CT, S1, S2
Real(PR), Dimension(it1:itN), Intent(In) :: U
Real(PR), Dimension(LBX:UBX), Intent(IN) :: X
Real(PR), Dimension(0:Ny_g+1), Intent(IN) :: Y !BECAUSE DD 1D => Ny_l == Ny_g
Real(PR), Intent(IN) :: T
Real(PR), Dimension(it1:itN), Intent(INOUT) :: F
Integer :: i,j,k
DO i = S1, S2
DO j = 1, Ny_g
k = j + (i-1)*Ny_g
F(k) = dt * f1(CT,X(i),Y(j),T)
IF(i == 1)THEN
F(k) = F(k) - h1(CT,X(i-1),Y(j),T)*beta
ELSE IF(i == Nx_g)THEN
F(k) = F(k) - h1(CT,X(i+1),Y(j),T)*beta
END IF
IF(j == 1)THEN
F(k) = F(k) - g1(CT,X(i),Y(j-1),T)*gamma
ELSE IF(j == Ny_g)THEN
F(k) = F(k) - g1(CT,X(i),Y(j+1),T)*gamma
END IF
END DO
END DO
F = F +U
End Subroutine vectsource
Subroutine vectsource_FULL(CT,U,UG,UD,S1,S2,X,Y,T,F)
Implicit None
!---variables----------------------------------
Integer, Intent(In) :: CT, S1, S2
Real(PR), Dimension(it1:itN), Intent(In) :: U
Real(PR), Dimension(LBUG:UBUG), Intent(In) :: UG
Real(PR), Dimension(LBUD:UBUD), Intent(In) :: UD
Real(PR), Dimension(LBX:UBX), Intent(IN) :: X
Real(PR), Dimension(0:Ny_g+1), Intent(IN) :: Y !BECAUSE DD 1D => Ny_l == Ny_g
Real(PR), Intent(IN) :: T
Real(PR), Dimension(it1:itN), Intent(INOUT) :: F
Integer :: i,j,k
DO i = S1, S2
DO j = 1, Ny_g
k = j + (i-1)*Ny_g
F(k) = dt * f1(CT,X(i),Y(j),T)
IF(i == 1)THEN
F(k) = F(k) - h1(CT,X(i-1),Y(j),T)*beta
ELSE IF(i == S1 )THEN !.AND. rang /= 0)THEN not needed with the current order if... else if
F(k) = F(k) + (D*dt/dx)*UG(k)*c_neuman + beta*( UG(k+Ny_g)-UG(k) )
ELSE IF(i == Nx_g)THEN
F(k) = F(k) - h1(CT,X(i+1),Y(j),T)*beta
ELSE IF(i == S2)THEN !.AND. rang /= Np-1)THEN not needed with the current order else if... else if
F(k) = F(k) + (D*dt/dx)*UD(k)*c_neuman + beta*( UD(k-Ny_g)-UD(k) )
END IF
IF(j == 1)THEN
F(k) = F(k) - g1(CT,X(i),Y(j-1),T)*gamma
ELSE IF(j == Ny_g)THEN
F(k) = F(k) - g1(CT,X(i),Y(j+1),T)*gamma
END IF
END DO
END DO
F = F +U
End Subroutine vectsource_FULL
End Module mod_matsys
!!$DO d = 1, Ny_l
!!$ IF(d == 1)THEN
!!$ AA(k)=alpha; IA(k)=d; JA(k)=d
!!$ DO hit = d+1, d+Ny_l, Ny_l-1
!!$ IF(hit == d+1)THEN
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=hit
!!$ ELSE
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=hit
!!$ END IF
!!$ END DO
!!$ ELSE IF(d>1 .AND. d<Ny_l)THEN
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
!!$ k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
!!$ ELSE IF(d == Ny_l)THEN
!!$ DO hit = d-1, d
!!$ IF(hit == d-1)THEN
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=hit
!!$ ELSE
!!$ k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=hit
!!$ END IF
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
!!$ END DO
!!$ END IF
!!$ END DO
!!$IF(Nx_l>2)THEN
!!$ d1 = Ny_l+1; d2 = 2*Ny_l
!!$ DO i = 1, Nx_l-2
!!$ DO d = d1,d2
!!$ IF(d == d1)THEN
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
!!$ k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
!!$ ELSE IF(d>d1 .AND. d<d2)THEN
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
!!$ k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d+1
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
!!$ ELSE IF(d == d2)THEN
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d-Ny_l
!!$ k=k+1; AA(k)=gamma; IA(k)=d; JA(k)=d-1
!!$ k=k+1; AA(k)=alpha; IA(k)=d; JA(k)=d
!!$ k=k+1; AA(k)=beta; IA(k)=d; JA(k)=d+Ny_l
!!$ END IF
!!$ END DO
!!$ d1 = d2+1; d2=d2+Ny_l
!!$ END DO
!!$ END IF
!!$Subroutine matsys(nnz,AA,IA,JA)
!!$ Integer, Intent(In) :: nnz
!!$ Real(PR), Dimension(:), Allocatable, Intent(Out) :: AA
!!$ Integer, Dimension(:), Allocatable, Intent(Out) :: IA,JA
!!$ Integer :: i,j,k
!!$ k=1
!!$ Allocate(AA(nnz),IA(nnz),JA(nnz))
!!$ Do i=1,na
!!$ Do j=1,na
!!$ If (i==j) Then !diagonale principale
!!$ AA(k)=alpha
!!$ IA(k)=i
!!$ JA(k)=j
!!$ k=k+1
!!$ ElseIf ((i==j-1) .and. (modulo(i,nx)/=0)) Then !diagonale sup
!!$ AA(k)=beta
!!$ IA(k)=i
!!$ JA(k)=j
!!$ k=k+1
!!$ ElseIf ((i==j+1) .and. (i/=1) .and. (modulo(j,ny)/=0)) Then !diagonale inf
!!$ AA(k)=beta
!!$ IA(k)=i
!!$ JA(k)=j
!!$ k=k+1
!!$ ElseIf (j==ny+i) Then !diagonale la plus a droite
!!$ AA(k)=gamma
!!$ IA(k)=i
!!$ JA(k)=j
!!$ k=k+1
!!$ ElseIf (i==j+nx) Then !diagonale la plus a gauche
!!$ AA(k)=gamma
!!$ IA(k)=i
!!$ JA(k)=j
!!$ k=k+1
!!$ End If
!!$ End Do
!!$ End Do
!!$End Subroutine matsys
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/DD_Neuman_TRUE_LAST/mod_parametres.f90 | !-----------------------------------------------
! CE MODULE CONTIENT LES PARAMETRES DU PROBLEME
!-----------------------------------------------
Module mod_parametres
USE mpi
Implicit None
!---Précision des calculs -------------------
Integer, Parameter :: PR=8
!--------------------------------------------
!---Parametres géométriques-----------------
Real(PR), Parameter :: Lx=1._PR !Longueur de la barre
Real(PR), Parameter :: Ly=1._PR !Largeur de la barre
Real(PR), Parameter :: D=1._PR !Coefficient de diffusion
!--------------------------------------------
!PARAMETRE DE VISUALISATION:
INTEGER :: sysmove
!---Parametres numériques-------------------
!g means global Domain GLobal matrix WITHOUT DD ADDITIVE
!l means local Domain local matrix
Integer :: nnz_g
Integer, Parameter :: Nx_g=200 !lignes de A (discrétisation en x)
Integer, Parameter :: Ny_g=100 !colonnes de A (discrétisation en y)
Integer, Parameter :: Na_g=Nx_g*Ny_g !taille de la matrice A
Integer, Parameter :: Nt=30 !discrétisation du temps
Real(PR), Parameter :: dx=1._PR/(Real(Nx_g)+1) ! pas en x
Real(PR), Parameter :: dy=1._PR/(Real(Ny_g)+1) ! pas en y
Real(PR), Parameter :: Tf=2._PR !temps final de la simulation
Real(PR), Parameter :: dt=Tf/(Real(Nt)+1) !pas de temps
Real(PR), Parameter :: pi=4._PR*atan(1._PR)
Real(PR), Parameter :: alpha =1._PR+(2._PR*D*dt/(dx**2._PR))+(2._PR*D*dt/(dy**2._PR)) !
Real(PR), Parameter :: beta = (-D*dt)/(dx**2._PR) !AL ! CF coefficients matrice
Real(PR), Parameter :: gamma =(-D*dt)/(dy**2._PR) !AP ! 2 autres coef sont dans
! mod_constr_mat.f90
!-------------------------------------------
!---PARAMETRES MPI--------------------------
INTEGER ::rang,Pivot
INTEGER ::Np
INTEGER ::stateinfo
INTEGER,DIMENSION(MPI_STATUS_SIZE)::status
CHARACTER(LEN=3) ::rank
INTEGER ::TAG !FOR TAG FILE
!------------------------------------------
!---DEFINE INTERVALLE SUIVANT Y PAR PROCS------
INTEGER ::S1_old, S2_old, it1_old, itN_old !avant call charge_overlap
INTEGER ::S1
INTEGER ::S2 !=> X_i^(rang) \in [|S1;S2|]
INTEGER ::it1
INTEGER ::itN !=> P(OMEGA^(rang)) \in [|it1;itN|]
INTEGER ::overlapd
INTEGER ::overlapg
INTEGER,PARAMETER::overlap=1
INTEGER ::Na_l !NBR rows or cols in local matrix
!na_loc == (S2-S1+1)*Ny
INTEGER ::Nx_l !Nx local will be set to S2-S1+1
INTEGER ::Ny_l
INTEGER ::nnz_l !nbr de non zero in local matrix
INTEGER ::crtl_nnz_l !control de nnz
!since a A_l matrix local is made by block D AND C such:
![D][C][0][0] ! |s x 0 0| ! |v 0 0 0| ! A_l.rows=Nx_l*Ny_l=A_l.cols
![C][D][C][0] ![D]=|x s x 0| ![C]=|0 v 0 0| ! D.rows=D.cols=Ny_l
![0][C][D][C] ! |0 x s x| ! |0 0 v 0| ! C.cols=C.rows=Ny_l
![0][0][C][D] ! |0 0 x s| ! |0 0 0 v| !We got (Nx_l) [D] block & (Nx_l-1) [C] upper block
!& (Nx_l-1) [C] lower block
!SUCH THAT crtl_nnz_l=(Nx_l*Ny_l) + 2 * (Nx_l) * (Ny_l - 1) + 2 * (Nx_l - 1) * (Ny_l)
INTEGER ::D_rows !will be set to Ny_l
INTEGER ::D_nnz !will be set to D_rows+2*(D_rows-1)
INTEGER ::C_rows !will be set to Ny_l
INTEGER ::C_nnz !will be set to C_rows
! WE DEFINE a control nnz_l parameter over L1, L2, L3 such that:
!|[D][C][0][0]| = [L1] !avec s=alpha_newmann
INTEGER ::crtl_L1_nnz !will be set to D_nnz+C_nnz
!|[C][D][C][0]| = [L2] !avec s=alpha
!|[0][C][D][C]|
INTEGER ::crtl_L2_nnz !will be set to (Nx_l-2)*(D_nnz+2*C_nnz)
!|[0][0][C][D]| = [L3] !avec s=alpha_newmann
INTEGER ::crtl_L3_nnz !will be set to D_nnz+C_nnz
!SUCH THAT THE RELATION (*) NEED TO BE .TRUE.:
!(*)crtl_L1_nnz+crtl_L2_nnz+crtl_L3_nnz = crtl_nnz_l = nnz_l
INTEGER ::sum_crtl_L_nnz !sum of crtl_Li_nnz
!DANS LE CAS OU Nx_l == 1:
INTEGER :: crtl_L1_nnz_Nxl_EQV_1 ! will be set to D_nnz
!---variables---------------------------------!
Real(PR), Dimension(:), Allocatable :: X
Real(PR), Dimension(:), Allocatable :: Y !Ny_g+2
Real(PR), Dimension(:), Allocatable :: T !Nt+2
Real(PR), Dimension(:), Allocatable :: AA
Integer, Dimension(:), Allocatable :: IA,JA
Real(PR), Dimension(:), Allocatable :: U,Uo,F !Na_l
Real(Pr), Dimension(:), Allocatable :: UG, UD ! CL FROM BORDER IMMERGEE need to be set at zero
Real(PR) :: res,t1,t2 !résidu du grandconj
Integer :: k,i,j,it,CT
!--- VARIABLES DE REDUCTION POUR SIZE OF x, UD, UG
!initialisées in mod_fonctions.f90
INTEGER :: LBX
INTEGER :: UBX !it's set to lbound(x) and ubound(x)
INTEGER :: LBUD, LBUG !it's compute to set lbound(UD) and lbound(UG)
INTEGER :: UBUD, UBUG !it's compute to set ubound(UD) and ubound(UG)
!WILL BE SET TO:
! LBUD = itN+1-2*Ny_g || UBUD = itN
! LBUG = it1 || UBUG = it1-1+2*Ny_g
!NEXT VARIABLES WILL BE USED ITO mod_comm.f90
!FOR SIZE OF VECTORS SEND
INTEGER :: A, B
INTEGER :: C, DD
!A = (itN - 2*overlap*Ny_g) +1; B = A + 2*Ny_g -1
!C = DD - 2*Ny_g +1; DD = (it1 + 2*overlap*Ny_g) -1
!VARIABLES POUR LA BOUCLE SCHWARZ, CONVERGENCE DD:
REAL(PR) :: Norm1, Norm2, C1, err
REAL(PR), PARAMETER :: err_LIM = 0.0000000001_PR!0.0000001_PR
INTEGER :: step
End Module mod_parametres
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/DD_Neuman_TRUE_LAST/mod_sol.f90 | module mod_sol
use mpi
use mod_parametres
IMPLICIT NONE
!*** MODULE ModSOL POUR DONNER LA SOLUTION EXACTE ET
!*** POUR GERER L'ENREGISTREMENT DE LA SOLUTION DANS DES FICHIERS
!*** SUBROUTINE POUR APPELLER UN SCRIPT GNUPLOT POUR LA VISUALISATION
CONTAINS
SUBROUTINE UEXACT(U,userchoice)!userchoice==CT
INTEGER,INTENT(INOUT)::userchoice
REAL(PR),DIMENSION(it1:itN),INTENT(IN)::U
REAL(PR),DIMENSION(:),ALLOCATABLE::UEXA,DIFF
REAL(PR)::ErrN2_RED,ErrN2,Ninf_RED,Ninf
CHARACTER(len=3)::CAS!rank,CAS
!INITIALISATION DE UEXA SUIVANT LE CAS SOURCE
ALLOCATE(UEXA(it1:itN))
WRITE(CAS,fmt='(1I3)')userchoice
OPEN(TAG,file='EXACTE_ERREUR/SOL_EXACTE_CAS'//trim(adjustl(CAS))//'_ME'//trim(adjustl(rank))//'.dat')
SELECT CASE(userchoice)
CASE(1)!F1
DO i=S1,S2
DO j=1,Ny_g
k=j+(i-1)*Ny_g
UEXA(k)=X(i)*(1-X(i))*Y(j)*(1-Y(j))
WRITE(TAG,*)X(i),Y(j),UEXA(k)
END DO
END DO
CASE(2)!F2
DO i=S1,S2
DO j=1,Ny_g
k=j+(i-1)*Ny_g
UEXA(k)=sin(X(i))+cos(Y(j))
WRITE(TAG,*)X(i),Y(j),UEXA(k)
END DO
END DO
CASE DEFAULT!F3 PAS DE SOL EXACTE
PRINT*,'PAS DE SOLUTION EXACTE POUR CE CAS (F3)'
END SELECT
CLOSE(TAG)
!SUR LE DOMAINE [|S1;S2|]x[|1;Ny_g|]:
!ERREUR NORME_2:
ALLOCATE(DIFF(it1:itN))
DIFF=UEXA-U(it1:itN)
ErrN2_RED=DOT_PRODUCT(DIFF,DIFF)
CALL MPI_ALLREDUCE(ErrN2_RED,ErrN2,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,stateinfo)
ErrN2=SQRT(ErrN2)
!ERREUR NORME INFINIE
Ninf_RED=MAXVAL(ABS(UEXA(it1:itN)-U(it1:itN)))
CALL MPI_ALLREDUCE(Ninf_RED,Ninf,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
PRINT*,'PAR DOMAINE: ','ERREUR NORME 2 :=',ErrN2,' ERREUR NORME INFINIE :=',Ninf
OPEN(TAG,file='EXACTE_ERREUR/ErrABSOLUE_PAR_DOMAINE'//trim(adjustl(CAS))//'_ME'//trim(adjustl(rank))//'.dat')
DO i=S1,S2
DO j=1,Ny_g!GAP(i,1),GAP(i,2)
k=j+(i-1)*Ny_g!Ny_g
WRITE(TAG,*)X(i),Y(j),-DIFF(k)
END DO
END DO
CLOSE(TAG)
!SUR LE DOMAINE [|S1_old;S2_old|]x[|1;Ny_g|]:
ErrN2_RED=0.0_PR; ErrN2=0.0_PR; Ninf_RED=0.0_PR; Ninf=0.0_PR
!DIFF(it1_old:itN_old)=UEXA(it1_old:itN_old)-U(it1_old:itN_old)
ErrN2_RED=DOT_PRODUCT(DIFF(it1_old:itN_old),DIFF(it1_old:itN_old))
CALL MPI_ALLREDUCE(ErrN2_RED,ErrN2,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,stateinfo)
ErrN2=SQRT(ErrN2)
Ninf_RED=MAXVAL(ABS(UEXA(it1_old:itN_old)-U(it1_old:itN_old)))
CALL MPI_ALLREDUCE(Ninf_RED,Ninf,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
PRINT*,'SUR [|S1old;S2old|]: ','ERREUR NORME 2 :=',ErrN2,' ERREUR NORME INFINIE :=',Ninf
OPEN(TAG,file='EXACTE_ERREUR/ErrABSOLUE_oldDD'//trim(adjustl(CAS))//'_ME'//trim(adjustl(rank))//'.dat')
DO i=S1_old,S2_old
DO j=1,Ny_g!GAP(i,1),GAP(i,2)
k=j+(i-1)*Ny_g!Ny_g
WRITE(TAG,*)X(i),Y(j),-DIFF(k)
END DO
END DO
CLOSE(TAG)
DEALLOCATE(DIFF,UEXA)
END SUBROUTINE UEXACT
SUBROUTINE WR_U(U,IT_TEMPS)
INTEGER,INTENT(IN)::IT_TEMPS
REAL(PR),DIMENSION(it1_old:itN_old),INTENT(INOUT)::U
CHARACTER(len=3)::CAS
CHARACTER(len=3)::Ntps
INTEGER::i,j
WRITE(CAS,fmt='(1I3)')CT;WRITE(Ntps,fmt='(1I3)')IT_TEMPS
OPEN(10+rang,file='SOL_NUMERIQUE/U_ME'//trim(adjustl(rank))&
//'_T'//trim(adjustl(Ntps)))
SELECT CASE(CT)
CASE(1)
DO i=S1_old,S2_old
DO j=1,Ny_g
k=j+(i-1)*Ny_g
IF(i-1==0)THEN
WRITE(10+rang,*)0.0_PR,Y(j),0.0_PR
END IF
IF(i+1==Nx_g+1)THEN
WRITE(10+rang,*)Lx,Y(j),0.0_PR
END IF
IF(j-1==0)THEN
WRITE(10+rang,*)X(i),0.0_PR,0.0_PR
END IF
IF(j+1==Ny_g+1)THEN
WRITE(10+rang,*)X(i),Ly,0.0_PR
END IF
WRITE(10+rang,*)X(i),Y(j),U(k)
END DO
END DO
CASE(2)
DO i=S1_old,S2_old
DO j=1,Ny_g
k=j+(i-1)*Ny_g
IF(i==1)THEN!BC OUEST (H)
WRITE(10+rang,*)0.0_PR,Y(j),cos(Y(j))
END IF
IF(i==Nx_g)THEN!BC EST (H)
WRITE(10+rang,*)Lx,Y(j),cos(Y(j))+sin(Lx)
END IF
IF(j==1)THEN!BC SUD (G)
WRITE(10+rang,*)X(i),0.0_PR,1.0_PR+sin(X(i))
END IF
IF(j==Ny_g)THEN!BC NORD (G)
WRITE(10+rang,*)X(i),Ly,cos(Ly)+sin(X(i))
END IF
WRITE(10+rang,*)X(i),Y(j),U(k)
END DO
END DO
CASE(3)
DO i=S1_old,S2_old
DO j=1,Ny_g
k=j+(i-1)*Ny_g
IF(i-1==0)THEN!BC OUEST OU EST (H)
WRITE(10+rang,*)0.0_PR,Y(j),1.0_PR
END IF
IF(i+1==Nx_g+1)THEN!BC OUEST OU EST (H)
WRITE(10+rang,*)Lx,Y(j),1.0_PR
END IF
IF(j-1==0)THEN!BC SUD OU NORD (G)
WRITE(10+rang,*)X(i),0.0_PR,0.0_PR
END IF
IF(j+1==Ny_g+1)THEN!BC SUD OU NORD (G)
WRITE(10+rang,*)X(i),Ly,0.0_PR
END IF
WRITE(10+rang,*)X(i),Y(j),U(k)
END DO
END DO
END SELECT
CLOSE(10+rang)
END SUBROUTINE WR_U
SUBROUTINE VIZU_SOL_NUM(userchoice)!sequentiel call by proc 0 at the end
INTEGER,INTENT(INOUT)::userchoice
CHARACTER(LEN=12)::VIZU
INTEGER::vi1,vi2
VIZU='VIZU_PLT.plt'
PRINT*,'*****************************************************************************************'
PRINT*,'************** VISUALISATION SOLUTION POUR LE CAS #',userchoice,' ***********************'
PRINT*,'*****************************************************************************************'
PRINT*,'************* SACHANT QUE DT=',dt,'ET ITMAX=',Nt,':'
PRINT*,'*****************************************************************************************'
PRINT*,'** ENTREZ LE NUMERO DE L''ITERATION A LAQUELLE VOUS VOULEZ COMMENCER LA VISUALISATION **'
READ*,vi1
PRINT*,'*****************************************************************************************'
PRINT*,'*****************************************************************************************'
PRINT*,'*** ENTREZ LE NUMERO DE L''ITERATION A LAQUELLE VOUS VOULEZ STOPPER LA VISUALISATION ***'
READ*,vi2
PRINT*,'*****************************************************************************************'
PRINT*,'*****************************************************************************************'
OPEN(50,file=VIZU)
SELECT CASE(userchoice)
CASE(1)
WRITE(50,*)'set cbrange[0:0.5]'
CASE(2)
WRITE(50,*)'set cbrange[0.8:2]'
CASE(3)
WRITE(50,*)'set cbrange[0:1]'
END SELECT
WRITE(50,*)'set dgrid3d,',Nx_g+2,',',Ny_g+2; WRITE(50,*)'set hidden3d'; WRITE(50,*)'set pm3d'
!WRITE(50,*)'do for [i=',vi1,':',vi2,']{splot ''SOL_NUMERIQUE/U.dat'' index i u 1:2:3 with pm3d at sb}'
WRITE(50,*)'splot ''SOL_NUMERIQUE/U.dat''u 1:2:3 with pm3d at sb'
CLOSE(50)
call system('gnuplot -p VIZU_PLT.plt')
END SUBROUTINE VIZU_SOL_NUM
SUBROUTINE VIZU_SOL_NUM_ONLY_Nt(userchoice,MINU,MAXU)!sequentiel call by proc 0 at the end
INTEGER,INTENT(INOUT) :: userchoice
REAL(PR),INTENT(IN) :: MINU, MAXU
CHARACTER(LEN=12)::VIZU
VIZU='VIZU_PLT.plt'
PRINT*,'*****************************************************************************************'
PRINT*,'************** VISUALISATION SOLUTION POUR LE CAS #',userchoice,' ***********************'
PRINT*,'*****************************************************************************************'
PRINT*,'************* SACHANT QUE DT=',dt,'ET ITMAX=',Nt,':'
PRINT*,'*****************************************************************************************'
PRINT*,'** VISUALISATION AU TEMPS FINAL **'
PRINT*, (Nt)*dt,' secondes'
PRINT*,'*****************************************************************************************'
OPEN(50,file=VIZU)
SELECT CASE(userchoice)
CASE(1)
WRITE(50,*)'set cbrange[',MINU,':',MAXU,']'
CASE(2)
WRITE(50,*)'set cbrange[',MINU,':',MAXU,']'
CASE(3)
WRITE(50,*)'set cbrange[',MINU,':',MAXU,']'
END SELECT
WRITE(50,*)'set dgrid3d,',Nx_g+2,',',Ny_g+2; WRITE(50,*)'set hidden3d'; WRITE(50,*)'set pm3d'
WRITE(50,*)'splot ''SOL_NUMERIQUE/U.dat'' u 1:2:3 with pm3d at sb'
CLOSE(50)
call system('gnuplot -p VIZU_PLT.plt')
END SUBROUTINE VIZU_SOL_NUM_ONLY_Nt
end module mod_sol
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/MPI_EQ_CHALEUR/ModData.f90 | module ModData
implicit none
!Nx-2 noeuds interieurs suivant x
!Ny-2 noeuds interieurs suivant y
INTEGER,parameter::RK_DATA=8
!ModDATA CONTIENT LA SUBROUTINE POUR LIRE LE FICHIER DATA REMPLIT PAR L'UTILISATEUR
contains
subroutine INI_PARA(rang,Lx,Ly,D,Nx,Ny,PARAMETRES_USER,sysmove,userchoice,DT,ITER_TMAX)
integer,intent(in)::rang
!Lx, Ly longueur suivant x et y
!D coeff de diffusion
!Nx Ny nombre de noeuds dans la direction x et y
!ch nom du fichier à lire pour obtenir les para
real(RK_DATA),intent(out)::Lx,Ly,D,DT
integer,intent(out)::Nx,Ny,sysmove,userchoice,ITER_TMAX
character(len=4),intent(in)::PARAMETRES_USER
open(10+rang,file=PARAMETRES_USER)
read(10+rang,*)
read(10+rang,*)Lx,Ly,D,Nx,Ny!LX,Ly,Nx,Ny:PARAMETRES GEOMETRIQUES ET D: COEFF DIFFUSION
read(10+rang,*)
read(10+rang,*)sysmove!=1 => VISUALISATION SOLUTION; =0 => PAS DE VISUALISATION, JUSTE ECRITURE SOLUTION
read(10+rang,*)
read(10+rang,*)
read(10+rang,*)
read(10+rang,*)
read(10+rang,*)
read(10+rang,*)userchoice!LE CAS SOURCE:1=F1;2=F2;3=F3
read(10+rang,*)
read(10+rang,*)DT,ITER_TMAX!LE PAS DE TEMPS ET L'ITERATION MAX EN TEMPS
close(10+rang)
end subroutine INI_PARA
end module ModData
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/MPI_EQ_CHALEUR/ModF.f90 | module ModF
use mpi
implicit none
INTEGER,parameter::RK_F=8
! ModF CONTIENT:
!SUBROUTINES PERMETTANT DE CALCULER LES FONCTIONS SOURCES,
!LES FONCTIONS DE BORDS
contains
SUBROUTINE F1(it1,itN,S1,S2,INTER_Y,GAP,X,Y,F)
INTEGER,INTENT(IN)::it1,itN,S1,S2,INTER_Y
INTEGER,DIMENSION(S1:S2,1:2),INTENT(IN)::GAP
REAL(RK_F),DIMENSION(S1:S2),INTENT(IN)::X
REAL(RK_F),DIMENSION(1:INTER_Y),INTENT(IN)::Y
REAL(RK_F),DIMENSION(it1:itN),INTENT(OUT)::F
INTEGER::i,j,k
REAL(RK_F)::FX
DO i=S1,S2!CHARGE LOCALE EN X
FX=X(i)-X(i)**2!POUR i FIXER, ON PEUT NE CALCULER FX QU'UNE SEULE FOIS
DO j=GAP(i,1),GAP(i,2)!CHARGE LOCALE EN Y
k=j+(i-1)*INTER_Y!CHARGE GLOBALE
F(k)=2*(Y(j)-Y(j)**2)+2*FX!CALCUL FONCTION SOURCE
END DO
END DO
END SUBROUTINE F1
SUBROUTINE F2(it1,itN,S1,S2,INTER_Y,GAP,X,Y,F)
INTEGER,INTENT(IN)::it1,itN,S1,S2,INTER_Y
INTEGER,DIMENSION(S1:S2,1:2),INTENT(IN)::GAP
REAL(RK_F),DIMENSION(S1:S2),INTENT(IN)::X
REAL(RK_F),DIMENSION(1:INTER_Y),INTENT(IN)::Y
REAL(RK_F),DIMENSION(it1:itN),INTENT(OUT)::F
INTEGER::i,j,k
REAL(RK_F)::FX
DO i=S1,S2
FX=sin(X(i))!POUR i FIXER, ON PEUT NE CALCULER FX QU'UNE SEULE FOIS
DO j=GAP(i,1),GAP(i,2)
k=j+(i-1)*INTER_Y
F(k)=cos(Y(j))+FX
END DO
END DO
END SUBROUTINE F2
SUBROUTINE F3_FIXE(Lx,Ly,it1,itN,S1,S2,INTER_Y,GAP,X,Y,F)!ON NE STOCKE DANS LE VECTEUR F,
!QUE LA PARTIE FIXE DE F3
REAL(RK_F),INTENT(IN)::Lx,Ly
INTEGER,INTENT(IN)::it1,itN,S1,S2,INTER_Y
INTEGER,DIMENSION(S1:S2,1:2),INTENT(IN)::GAP
REAL(RK_F),DIMENSION(S1:S2),INTENT(IN)::X
REAL(RK_F),DIMENSION(1:INTER_Y),INTENT(IN)::Y
REAL(RK_F),DIMENSION(it1:itN),INTENT(OUT)::F
INTEGER::i,j,k
REAL(RK_F)::FX
DO i=S1,S2
FX=exp(-(X(i)-0.50d0*Lx)**2)!POUR i FIXER, ON PEUT NE CALCULER FX QU'UNE SEULE FOIS
DO j=GAP(i,1),GAP(i,2)
k=j+(i-1)*INTER_Y
F(k)=FX*exp(-(Y(j)-0.50d0*Ly)**2)
END DO
END DO
END SUBROUTINE F3_FIXE
SUBROUTINE WR_F(rang,it1,itN,INTER_Y,F,S1,S2,GAP,X,Y)! ECRITUE DE F DANS LE REPERTOIRE: F
INTEGER,INTENT(IN)::rang,it1,itN,S1,S2,INTER_Y
INTEGER,DIMENSION(S1:S2,1:2),INTENT(IN)::GAP
REAL(RK_F),DIMENSION(S1:S2),INTENT(IN)::X
REAL(RK_F),DIMENSION(1:INTER_Y),INTENT(IN)::Y
REAL(RK_F),DIMENSION(it1:itN),INTENT(IN)::F
INTEGER::i,j,k
CHARACTER(LEN=3)::rank
WRITE(rank,fmt='(1I3)')rang
OPEN(rang+10,file='F/F_'//trim(adjustl(rank))//'.dat')
DO i=S1,S2
DO j=GAP(i,1),GAP(i,2)
k=j+(i-1)*INTER_Y
WRITE(10+rang,*)X(i),Y(j),F(k)
END DO
END DO
CLOSE(10+rang)
END SUBROUTINE WR_F
SUBROUTINE BC(AP,AL,userchoice,S1,S2,GAP,it1,itN,INTER_Y,INTER_X&
,X,Y,DX,DY,Lx,Ly,VECT)!ON CALCUL LES CONDITIONS LIMITES(BC)
REAL(RK_F),INTENT(IN)::AP,AL!LES COEFF DE LA MATRICE
INTEGER,INTENT(IN)::userchoice,S1,S2,it1,itN,INTER_X,INTER_Y
INTEGER,DIMENSION(S1:S2,1:2),INTENT(IN)::GAP
REAL(RK_F),INTENT(IN)::DX,DY,Lx,Ly
REAL(RK_F),DIMENSION(S1:S2),INTENT(IN)::X
REAL(RK_F),DIMENSION(1:INTER_Y),INTENT(IN)::Y
REAL(RK_F),DIMENSION(it1:itN),INTENT(INOUT)::VECT
integer::i,j,k
real(RK_F)::G,H
SELECT CASE(userchoice)
CASE(2)!F2
DO i=S1,S2
DO j=GAP(i,1),GAP(i,2)
k=j+(i-1)*INTER_Y
IF(i==1)THEN!BC H
VECT(k)=VECT(k)+AL*cos(Y(j))
ELSE IF(i==INTER_X)THEN
VECT(k)=VECT(k)+AL*(cos(Y(j))+sin(Lx))
END IF
IF(j==1)THEN!BC G
VECT(k)=VECT(k)+AP*(1.0d0+sin(X(i)))
ELSE IF(j==INTER_Y)THEN
VECT(k)=VECT(k)+AP*(cos(Ly)+sin(X(i)))
END IF
END DO
END DO
CASE(3)!F3
IF(S1==1)THEN!BC
i=S1
DO j=GAP(i,1),GAP(i,2)
k=j+(i-1)*INTER_Y;VECT(k)=VECT(k)+AL !CAR:G=0 ET H=1
END DO
END IF
IF(S2==INTER_X)THEN!BC
i=S2
DO j=GAP(i,1),GAP(i,2)
k=j+(i-1)*INTER_Y;VECT(k)=VECT(k)+AL !CAR:G=0 ET H=1
END DO
END IF
END SELECT
END SUBROUTINE BC
end module ModF
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/MPI_EQ_CHALEUR/ModGC.f90 | module ModGC
use mpi
implicit none
INTEGER,PARAMETER::RK_GC=8
!ModGC CONTIENT:
!SUBROUTINE: GRADIENT CONJUGUE, 2 TYPES DE COMMUNICATION VECTEUR, PRODUIT MATRICE/VECTEUR
contains
!GRADIENT CONJUGUE:
SUBROUTINE GC(A,AP,AL,U,F,F_VAR,userchoice,DT,TOL,KMAX,it1,itN&
,INTER_Y,INTER_X,S1,S2,GAP,Np,rang,stateinfo,status,mode,r,z,p,&
Tpmv,Tcomm,Tall,PIVOT,NUM_tps)
REAL(RK_GC),INTENT(IN)::A,AP,AL
INTEGER,INTENT(IN)::it1,itN,INTER_Y,INTER_X,S1,S2,Np,rang,userchoice,KMAX,mode,PIVOT,NUM_tps
INTEGER,INTENT(IN),DIMENSION(S1:S2,1:2)::GAP
REAL(RK_GC),INTENT(IN)::DT,TOL,F_VAR
REAL(RK_GC),DIMENSION(it1-INTER_Y:itN+INTER_Y),INTENT(INOUT)::U
REAL(RK_GC),DIMENSION(it1:itN),INTENT(IN)::F
INTEGER,DIMENSION(MPI_STATUS_SIZE),INTENT(inout)::status
INTEGER,INTENT(INOUT)::stateinfo
REAL(RK_GC)::beta,beta_RED,alpha,beta_old,DOTzp_RED,DOTzp,gamma
REAL(RK_GC),DIMENSION(it1:itN),INTENT(INOUT)::r,z
REAL(RK_GC),DIMENSION(it1-INTER_Y:itN+INTER_Y),INTENT(INOUT)::p
REAL(RK_GC),INTENT(INOUT)::Tpmv,Tcomm,Tall!TEMPS (SUM) produit matrice/vecteur,communication vecteur, MPI_ALLREDUCE
REAL(RK_GC)::Tpmv_RED,Tcomm_RED,Tall_RED!VARIABLES DE REDUCTION
REAL(RK_GC)::Tp1,Tp2,Tc1,Tc2,Ta1,Ta2!TEMPS
!REAL(RK_GC),DIMENSION(:),ALLOCATABLE::r,p,z
INTEGER::it_GC
!ALLOCATE(r(it1:itN),z(it1:itN),p(it1-INTER_Y:itN+INTER_Y))
!INITIALISATION:
it_GC=0
r=0.0d0;z=0.0d0
!INITIALISATION TEMPS:
Tp1=0.0d0;Tp2=0.0d0;Ta1=0.0d0;Ta2=0.0d0;Tc1=0.0d0;Tc2=0.0d0
Tpmv_RED=0.0d0;Tcomm_RED=0.0d0;Tall_RED=0.0d0
Tpmv=0.0d0;Tcomm=0.0d0;Tall=0.0d0
!UN PRODUIT MATRICE/VECTEUR NECESSITE UNE COMM DE PARTIE DU VECTEUR ENTRE PROCS:
Tc1=MPI_WTIME()
IF(Np>1)THEN!DECOMMENTER LE MODE DE COMMUNICATION QUE VOUS VOULEZ, COMMENTER L'AUTRE
CALL COMM_VECT(status,stateinfo,rang,Np,U,it1,itN,INTER_Y,INTER_X,mode)
!CALL COMM_VECT_PIVOT(status,stateinfo,rang,Np,U,it1,itN,INTER_Y,INTER_X,mode,PIVOT)
END IF
Tc2=MPI_WTIME()
Tp1=MPI_WTIME()
CALL PMV(A,AP,AL,INTER_Y,INTER_X,it1,itN,r,U,S1,S2,GAP)
Tp2=MPI_WTIME()
!ON NE SOUHAITE PAS RECALCULER F3, NI STOCKER b=U+DT*F
SELECT CASE(userchoice)
CASE(3)!POUR F=F3, DANS CE CAS ON RAJOUTE LA VARIABLE EN TEMPS POUR LA FORCE F_VAR=cos(Pi*t/2)
r=-r+U(it1:itN)+DT*F_VAR*F!.EQV. r=b-A.U avec b=U(it1:itN)+DT*F_VAR*F
CASE DEFAULT!POUR F=F1 OU F=F2
r=-r+U(it1:itN)+DT*F!.EQV. r=b-A.U avec b=U(it1:itN)+DT*F
END SELECT
beta_RED=DOT_PRODUCT(r,r)!NORME2 AU CARRE DU RESIDU (PAR MORCEAU)
Ta1=MPI_WTIME()
CALL MPI_ALLREDUCE(beta_RED,beta,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,stateinfo)!reduction
Ta2=MPI_WTIME()
p(it1-INTER_Y:it1-1)=0.0d0;p(it1:itN)=r(it1:itN);p(itN+1:itN+INTER_Y)=0.0d0!p la direction de descente du GC
!TEMPS
Tpmv_RED=Tp2-Tp1;Tcomm_RED=Tc2-Tc1;Tall_RED=Ta2-Ta1;
DO WHILE(SQRT(beta)>TOL.AND.(it_GC<KMAX))!BOUCLE DE CONVERGENCE
!z=Ap, OBLIGATION DE FAIRE UNE COMM SUR p:
Tc1=MPI_WTIME()
IF(Np>1)THEN!DECOMMENTER LE MODE DE COMMUNICATION QUE VOUS VOULEZ, COMMENTER L'AUTRE
CALL COMM_VECT(status,stateinfo,rang,Np,p,it1,itN,INTER_Y,INTER_X,mode)
!CALL COMM_VECT_PIVOT(status,stateinfo,rang,Np,p,it1,itN,INTER_Y,INTER_X,mode,PIVOT)
END IF
Tc2=MPI_WTIME()
Tcomm_RED=Tcomm_RED+Tc2-Tc1
Tp1=MPI_WTIME()
CALL PMV(A,AP,AL,INTER_Y,INTER_X,it1,itN,z,p,S1,S2,GAP)!PRODUIT MATRICE VECTEUR
Tp2=MPI_WTIME()
Tpmv_RED=Tpmv_RED+Tp2-Tp1
!REDUCTION SUR DOT_PRODUCT(z,p):
DOTzp_RED=DOT_PRODUCT(z(it1:itN),p(it1:itN))
Ta1=MPI_WTIME()
CALL MPI_ALLREDUCE(DOTzp_RED,DOTzp,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,stateinfo)
Ta2=MPI_WTIME()
Tall_RED=Tall_RED+Ta2-Ta1
!CALCUL DE alpha le pas de descente:
alpha=beta/DOTzp
!ACTUALISATION DE U ET de r:
U(it1:itN)=U(it1:itN)+alpha*p(it1:itN)
r=r-alpha*z
!SAVE beta dans beta_old:
beta_old=beta
!ACTUALISATION DE BETA ET REDUCTION:
beta_RED=DOT_PRODUCT(r,r)
Ta1=MPI_WTIME()
CALL MPI_ALLREDUCE(beta_RED,beta,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,stateinfo)
Ta2=MPI_WTIME()
Tall_RED=Tall_RED+Ta2-Ta1
!CALCUL de gamma:
gamma=beta/beta_old
!ACTUALISATION DE LA DIRECTION DE DESCENTE p:
p(it1:itN)=r(it1:itN)+gamma*p(it1:itN)
!ACTUALISATION DE k:
it_GC=it_GC+1
END DO
!SORTIE DES MAX(SUM TEMPS):
CALL MPI_ALLREDUCE(Tcomm_RED,Tcomm,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
CALL MPI_ALLREDUCE(Tall_RED,Tall,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
CALL MPI_ALLREDUCE(Tpmv_RED,Tpmv,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
PRINT*,'it temps',NUM_tps,'it_GC',it_GC,'SQRT(beta)',SQRT(beta),'TOL',TOL,'RANG',rang
END SUBROUTINE GC
!POUR COMMUNIQUER DES PARTIES D'UN VECTEUR:
SUBROUTINE COMM_VECT(status,stateinfo,rang,NBR_P,ES,it1,itN,INTER_Y,INTER_X,mode)
INTEGER,DIMENSION(MPI_STATUS_SIZE),INTENT(inout)::status
INTEGER,INTENT(INOUT)::stateinfo
INTEGER,INTENT(IN)::rang,NBR_P,it1,itN,INTER_Y,INTER_X,mode
REAL(RK_GC),DIMENSION(it1-INTER_Y:itN+INTER_Y),INTENT(INOUT)::ES!LE VECTEUR A COMMUNIQUER
INTEGER::NP,NPP,T1M,T1MM,REQUEST,A,B
NP=itN+1;NPP=itN+INTER_Y;T1M=it1-1;T1MM=it1-INTER_Y
A=itN-INTER_Y+1;B=it1+INTER_Y-1
IF(NBR_P<=INTER_X)THEN
IF(rang==0)THEN
CALL MPI_SEND(ES(A:itN),INTER_Y,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(ES(NP:NPP),INTER_Y,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
!SEND PARTIE NORD DE ES AU RANG+1 ET RECV PARTIE SUD DE ES DU RANG+1
ELSE IF(rang>0.AND.rang<NBR_P-1)THEN
CALL MPI_RECV(ES(T1MM:T1M),INTER_Y,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_SEND(ES(it1:B),INTER_Y,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
!RECV PARTIE NORD DE ES DU RANG-1 ET SEND PARTIE SUD DE ES AU RANG-1
CALL MPI_SEND(ES(A:itN),INTER_Y,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(ES(NP:NPP),INTER_Y,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
!SEND PARTIE NORD DE ES AU RANG+1 ET RECV PARTIE SUD DE ES DU RANG+1
ELSE IF(rang==NBR_P-1)THEN
CALL MPI_RECV(ES(T1MM:T1M),INTER_Y,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_SEND(ES(it1:B),INTER_Y,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
!RECV PARTIE NORD DE ES DU RANG-1 ET SEND PARTIE SUD DE ES AU RANG-1
END IF
ELSE
CALL COMM_NP_SUP(NBR_P,rang,it1,itN,INTER_Y,ES,stateinfo,status)!SI Np>INTER_X
END IF
END SUBROUTINE COMM_VECT
! POUR LE MODE 2 DANS LE CAS Np>Nx-2, un processus peut avoir a send et recv
! pour plus de 1 processus de rang sup ou de rang inf:
! SANS TRI obligation de faire comm point à point avec remonté et descente pour transmettre l'information
subroutine COMM_NP_SUP(Np,rang,it1,itN,INTER,ENTER,stateinfo,status)
integer::k,wr!i,j,k,liste
integer,intent(in)::Np,rang,it1,itN,INTER!INTER=INTER_Y
integer,intent(inout)::stateinfo
integer,dimension(MPI_STATUS_SIZE),intent(inout)::status
real(RK_GC),dimension(it1-INTER:itN+INTER),intent(inout)::ENTER
INTEGER::A,B,C,D,E,F
A=itN-INTER+1;B=it1-INTER;C=it1-1;D=it1+INTER-1;E=itN+1;F=itN+INTER
k=0
wr=0
!** BOUCLE COMMUNICATION POINT A POINT: RANG SEND PARTIE NORD DE ES A RANG+1 ET RANG+1 RECV PARTIE NORD DE ES DE RANG
do wr=0,Np-1
if(wr==rang)then
if(rang<Np-1)then
call MPI_SEND(ENTER(A:itN),INTER,MPI_DOUBLE_PRECISION,rang+1,21,MPI_COMM_WORLD,stateinfo)
!call MPI_SEND(ENTER(itN-INTER+1:itN),INTER,MPI_DOUBLE_PRECISION,rang+1,21,MPI_COMM_WORLD,stateinfo)
end if
else if(rang==wr+1)then
call MPI_RECV(ENTER(B:C),INTER,MPI_DOUBLE_PRECISION,rang-1,21,MPI_COMM_WORLD,status,stateinfo)
!call MPI_RECV(ENTER(it1-INTER:it1-1),INTER,MPI_DOUBLE_PRECISION,rang-1,21,MPI_COMM_WORLD,status,stateinfo)
end if
end do
!** BOUCLE COMMUNICATION POINT A POINT: SENS INVERSE
do wr=Np-1,0,-1
if(wr==rang)then
if(rang>0)then
call MPI_SEND(ENTER(it1:D),INTER,MPI_DOUBLE_PRECISION,rang-1,31,MPI_COMM_WORLD,stateinfo)
!call MPI_SEND(ENTER(it1:it1+INTER-1),INTER,MPI_DOUBLE_PRECISION,rang-1,31,MPI_COMM_WORLD,stateinfo)
end if
else if(rang==wr-1)then
call MPI_RECV(ENTER(E:F),INTER,MPI_DOUBLE_PRECISION,rang+1,31,MPI_COMM_WORLD,status,stateinfo)
!call MPI_RECV(ENTER(itN+1:itN+INTER),INTER,MPI_DOUBLE_PRECISION,rang+1,31,MPI_COMM_WORLD,status,stateinfo)
end if
end do
end subroutine COMM_NP_SUP
!PRODUIT MATRICE VECTEUR PAR MORCEAU, ON NE STOCKE QUE LES TROIS COEFFICIANTS NON NULS DE LA MATRICE
!A,AP,AL, ETANT DONNE QUE LA MATRICE EST PENTADIAGONALE SDP, A COEFFICIANTS CONSTANTS PAR DIAGONALE
SUBROUTINE PMV(A,AP,AL,INTER_Y,INTER_X,it1,itN,E,V,S1,S2,GAP)
REAL(RK_GC),INTENT(IN)::A,AP,AL!COEF MATRICE
INTEGER,INTENT(IN)::INTER_Y,INTER_X,it1,itN,S1,S2
INTEGER,INTENT(IN),DIMENSION(S1:S2,1:2)::GAP
real(RK_GC),dimension(it1:itN),intent(out)::E !E=A.V
real(RK_GC),dimension(it1-INTER_Y:itN+INTER_Y),intent(out)::V
INTEGER::i,j,k
!BC=CONDITIONS LIMITES
DO i=S1,S2
IF(i==1)THEN!BC
DO j=GAP(1,1),GAP(1,2)
IF(j==1)THEN!BC
E(1)=A*V(1)-AP*V(2)-AL*V(1+INTER_Y)
ELSE IF(j<INTER_Y)THEN!BC
E(j)=-AP*V(j-1)+A*V(j)-AP*V(j+1)-AL*V(j+INTER_Y)
ELSE!BC
E(j)=-AP*V(INTER_Y-1)+A*V(INTER_Y)-AL*V(2*INTER_Y)
END IF
END DO
ELSE IF(i>1.AND.i<INTER_X)THEN
DO j=GAP(i,1),GAP(i,2)
k=j+(i-1)*INTER_Y
IF(j==1)THEN!BC
E(k)=-AL*V(k-INTER_Y)+A*V(k)-AP*V(k+1)-AL*V(k+INTER_Y)
ELSE IF(j<INTER_Y)THEN!PAS DE BC
E(k)=-AL*V(k-INTER_Y)-AP*V(k-1)+A*V(k)-AP*V(k+1)-AL*V(k+INTER_Y)
ELSE!BC
E(k)=-AL*V(k-INTER_Y)-AP*V(k-1)+A*V(k)-AL*V(k+INTER_Y)
END IF
END DO
ELSE!BC
DO j=GAP(i,1),GAP(i,2)
k=j+(i-1)*INTER_Y
IF(j==1)THEN!BC
E(k)=-AL*V(k-INTER_Y)+A*V(k)-AP*V(k+1)
ELSE IF(j<INTER_Y)THEN!BC
E(k)=-AL*V(k-INTER_Y)-AP*V(k-1)+A*V(k)-AP*V(k+1)
ELSE!BC
E(k)=-AL*V(k-INTER_Y)-AP*V(k-1)+A*V(k)
END IF
END DO
END IF
END DO
END SUBROUTINE PMV
! *********************************************************************************************************************************
! *********************************************************************************************************************************
! *********************************************************************************************************************************
! *********************************************************************************************************************************
! *********************************************************************************************************************************
!COMMUNICATION VERSION 2: 2_PtoP: POINT A POINT RANG INF AU PIVOT ET POINT A POINT RANG SUP AU PIVOT:
!BUG POUR NX=1002=NY, Err N2 ET Ninfinity SONT BONNES POUR DES TAILLES PLUS PETITES
SUBROUTINE COMM_VECT_PIVOT(status,stateinfo,rang,NBR_P,ES,it1,itN,INTER_Y,INTER_X,mode,PIVOT)
INTEGER,DIMENSION(MPI_STATUS_SIZE),INTENT(inout)::status
INTEGER,INTENT(INOUT)::stateinfo
INTEGER,INTENT(IN)::rang,NBR_P,it1,itN,INTER_Y,INTER_X,mode,PIVOT
REAL(RK_GC),DIMENSION(it1-INTER_Y:itN+INTER_Y),INTENT(INOUT)::ES!LE VECTEUR A COMMUNIQUER
INTEGER::NP,NPP,T1M,T1MM,REQUEST,A,B
NP=itN+1;NPP=itN+INTER_Y;T1M=it1-1;T1MM=it1-INTER_Y
A=itN-INTER_Y+1;B=it1+INTER_Y-1
IF(NBR_P<=INTER_X)THEN
IF(rang==0)THEN
CALL MPI_SEND(ES(A:itN),INTER_Y,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(ES(NP:NPP),INTER_Y,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
!SEND PARTIE NORD DE ES AU RANG+1 ET RECV PARTIE SUD DE ES DU RANG+1
ELSE IF(rang>0.AND.rang<PIVOT)THEN
CALL MPI_RECV(ES(T1MM:T1M),INTER_Y,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_SEND(ES(it1:B),INTER_Y,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
!RECV PARTIE NORD DE ES DU RANG-1 ET SEND PARTIE SUD DE ES AU RANG-1
CALL MPI_SEND(ES(A:itN),INTER_Y,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(ES(NP:NPP),INTER_Y,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
!SEND PARTIE NORD DE ES AU RANG+1 ET RECV PARTIE SUD DE ES DU RANG+1
ELSE IF(rang>=PIVOT.AND.rang<NBR_P-1)THEN
CALL MPI_RECV(ES(NP:NPP),INTER_Y,MPI_DOUBLE_PRECISION,rang+1,rang,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_SEND(ES(A:itN),INTER_Y,MPI_DOUBLE_PRECISION,rang+1,rang+1,MPI_COMM_WORLD,stateinfo)
CALL MPI_SEND(ES(it1:B),INTER_Y,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(ES(T1MM:T1M),INTER_Y,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
!RECV PARTIE NORD DE ES DU RANG-1 ET SEND PARTIE SUD DE ES AU RANG-1
ELSE!RANG=NBR_P-1
CALL MPI_SEND(ES(it1:B),INTER_Y,MPI_DOUBLE_PRECISION,rang-1,rang-1,MPI_COMM_WORLD,stateinfo)
CALL MPI_RECV(ES(T1MM:T1M),INTER_Y,MPI_DOUBLE_PRECISION,rang-1,rang,MPI_COMM_WORLD,status,stateinfo)
END IF
ELSE
CALL COMM_NP_SUP_PIVOT(NBR_P,rang,it1,itN,INTER_Y,ES,stateinfo,status,PIVOT)!SI Np>INTER_X
END IF
END SUBROUTINE COMM_VECT_PIVOT
!*********** UNIQUEMENT SI Np>INTER_X: ***********************************************
subroutine COMM_NP_SUP_PIVOT(Np,rang,it1,itN,INTER,ENTER,stateinfo,status,PIVOT)
integer::k,wr!i,j,k,liste
integer,intent(in)::Np,rang,it1,itN,INTER,PIVOT!INTER=INTER_Y
integer,intent(inout)::stateinfo
integer,dimension(MPI_STATUS_SIZE),intent(inout)::status
real(RK_GC),dimension(it1-INTER:itN+INTER),intent(inout)::ENTER
INTEGER::A,B,C,D,E,F
A=itN-INTER+1;B=it1-INTER;C=it1-1;D=it1+INTER-1;E=itN+1;F=itN+INTER
k=0
wr=0
IF(rang<PIVOT)THEN
!** BOUCLE COMMUNICATION POINT A POINT: RANG SEND PARTIE NORD DE ES A RANG+1 ET RANG+1 RECV PARTIE NORD DE ES DE RANG
do wr=0,PIVOT-2
if(wr==rang)then
if(rang<Np-1)then
call MPI_SEND(ENTER(A:itN),INTER,MPI_DOUBLE_PRECISION,rang+1,21,MPI_COMM_WORLD,stateinfo)
!call MPI_SEND(ENTER(itN-INTER+1:itN),INTER,MPI_DOUBLE_PRECISION,rang+1,21,MPI_COMM_WORLD,stateinfo)
end if
else if(rang==wr+1)then
call MPI_RECV(ENTER(B:C),INTER,MPI_DOUBLE_PRECISION,rang-1,21,MPI_COMM_WORLD,status,stateinfo)
!call MPI_RECV(ENTER(it1-INTER:it1-1),INTER,MPI_DOUBLE_PRECISION,rang-1,21,MPI_COMM_WORLD,status,stateinfo)
end if
end do
ELSE
!** BOUCLE COMMUNICATION POINT A POINT: SENS INVERSE
do wr=Np-1,PIVOT+1,-1
if(wr==rang)then
if(rang>0)then
call MPI_SEND(ENTER(it1:D),INTER,MPI_DOUBLE_PRECISION,rang-1,31,MPI_COMM_WORLD,stateinfo)
!call MPI_SEND(ENTER(it1:it1+INTER-1),INTER,MPI_DOUBLE_PRECISION,rang-1,31,MPI_COMM_WORLD,stateinfo)
end if
else if(rang==wr-1)then
call MPI_RECV(ENTER(E:F),INTER,MPI_DOUBLE_PRECISION,rang+1,31,MPI_COMM_WORLD,status,stateinfo)
!call MPI_RECV(ENTER(itN+1:itN+INTER),INTER,MPI_DOUBLE_PRECISION,rang+1,31,MPI_COMM_WORLD,status,stateinfo)
end if
end do
END IF
PRINT*,'ECHO1',RANG
!COMMUNICATION(ECHANGE) ENTRE PIVOT ET PIVOT-1:
IF(rang==PIVOT)THEN
CALL MPI_SEND(ENTER(it1:D),INTER,MPI_DOUBLE_PRECISION,rang-1,31,MPI_COMM_WORLD,stateinfo)
call MPI_RECV(ENTER(B:C),INTER,MPI_DOUBLE_PRECISION,rang-1,21,MPI_COMM_WORLD,status,stateinfo)
ELSE IF(rang==PIVOT-1)THEN
CALL MPI_RECV(ENTER(E:F),INTER,MPI_DOUBLE_PRECISION,rang+1,31,MPI_COMM_WORLD,status,stateinfo)
call MPI_SEND(ENTER(A:itN),INTER,MPI_DOUBLE_PRECISION,rang+1,21,MPI_COMM_WORLD,stateinfo)
END IF
PRINT*,'ECHO2',RANG
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
PRINT*,'ECHO3',RANG
!INVERSION:
IF(rang>=PIVOT)THEN
!** BOUCLE COMMUNICATION POINT A POINT: RANG SEND PARTIE NORD DE ES A RANG+1 ET RANG+1 RECV PARTIE NORD DE ES DE RANG
do wr=PIVOT,Np-2
if(wr==rang)then
if(rang<Np-1)then
call MPI_SEND(ENTER(A:itN),INTER,MPI_DOUBLE_PRECISION,rang+1,21,MPI_COMM_WORLD,stateinfo)
!call MPI_SEND(ENTER(itN-INTER+1:itN),INTER,MPI_DOUBLE_PRECISION,rang+1,21,MPI_COMM_WORLD,stateinfo)
end if
else if(rang==wr+1)then
call MPI_RECV(ENTER(B:C),INTER,MPI_DOUBLE_PRECISION,rang-1,21,MPI_COMM_WORLD,status,stateinfo)
!call MPI_RECV(ENTER(it1-INTER:it1-1),INTER,MPI_DOUBLE_PRECISION,rang-1,21,MPI_COMM_WORLD,status,stateinfo)
end if
end do
ELSE
!** BOUCLE COMMUNICATION POINT A POINT: SENS INVERSE
do wr=PIVOT-1,1,-1
if(wr==rang)then
if(rang>0)then
call MPI_SEND(ENTER(it1:D),INTER,MPI_DOUBLE_PRECISION,rang-1,31,MPI_COMM_WORLD,stateinfo)
!call MPI_SEND(ENTER(it1:it1+INTER-1),INTER,MPI_DOUBLE_PRECISION,rang-1,31,MPI_COMM_WORLD,stateinfo)
end if
else if(rang==wr-1)then
call MPI_RECV(ENTER(E:F),INTER,MPI_DOUBLE_PRECISION,rang+1,31,MPI_COMM_WORLD,status,stateinfo)
!call MPI_RECV(ENTER(itN+1:itN+INTER),INTER,MPI_DOUBLE_PRECISION,rang+1,31,MPI_COMM_WORLD,status,stateinfo)
end if
end do
END IF
end subroutine COMM_NP_SUP_PIVOT
! *********************************************************************************************************************************
! *********************************************************************************************************************************
! *********************************************************************************************************************************
! *********************************************************************************************************************************
!PGC NON UTILISE ICI:
SUBROUTINE PGC(A,AP,AL,U,F,F_VAR,userchoice,DT,TOL,KMAX,it1,itN&
,INTER_Y,INTER_X,S1,S2,GAP,Np,rang,stateinfo,status,mode,r,z,p)
REAL(RK_GC),INTENT(IN)::A,AP,AL
INTEGER,INTENT(IN)::it1,itN,INTER_Y,INTER_X,S1,S2,Np,rang,userchoice,KMAX,mode
INTEGER,INTENT(IN),DIMENSION(S1:S2,1:2)::GAP
REAL(RK_GC),INTENT(IN)::DT,TOL,F_VAR
REAL(RK_GC),DIMENSION(it1-INTER_Y:itN+INTER_Y),INTENT(INOUT)::U
REAL(RK_GC),DIMENSION(it1:itN),INTENT(IN)::F
INTEGER,DIMENSION(MPI_STATUS_SIZE),INTENT(inout)::status
INTEGER,INTENT(INOUT)::stateinfo
REAL(RK_GC)::beta,beta_RED,alpha,beta_old,DOTzp_RED,DOTzp,gamma
REAL(RK_GC),DIMENSION(it1:itN),INTENT(INOUT)::r,z
REAL(RK_GC),DIMENSION(it1-INTER_Y:itN+INTER_Y),INTENT(INOUT)::p
REAL(RK_GC),DIMENSION(it1:itN)::mp
INTEGER::k
!ALLOCATE(r(it1:itN),z(it1:itN),p(it1-INTER_Y:itN+INTER_Y))
!INITIALISATION:
k=0
r=0.0d0;z=0.0d0
!UN PRODUIT MATRICE/VECTEUR NECESSITE UNE COMM DE PARTIE DU VECTEUR ENTRE PROCS:
IF(Np>1)THEN
CALL COMM_VECT(status,stateinfo,rang,Np,U,it1,itN,INTER_Y,INTER_X,mode)
END IF
CALL PMV(A,AP,AL,INTER_Y,INTER_X,it1,itN,r,U,S1,S2,GAP)
!ON NE SOUHAITE PAS RECALCULER F3, NI STOCKER b=U+DT*F
SELECT CASE(userchoice)
CASE(3)!POUR F=F3, DANS CE CAS ON RAJOUTE LA VARIABLE EN TEMPS POUR LA FORCE F_VAR=cos(Pi*t/2)
r=-r+U(it1:itN)+DT*F_VAR*F!.EQV. r=b-A.U avec b=U(it1:itN)+DT*F_VAR*F
CASE DEFAULT!POUR F=F1 OU F=F2
r=-r+U(it1:itN)+DT*F!.EQV. r=b-A.U avec b=U(it1:itN)+DT*F
END SELECT
mp=r/A!LE PRECONDITIONNEUR DIAGONALE
beta_RED=DOT_PRODUCT(r,mp)!NORME2 AU CARRE DU RESIDU (PAR MORCEAU)
CALL MPI_ALLREDUCE(beta_RED,beta,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,stateinfo)!reduction
p(it1-INTER_Y:it1-1)=0.0d0;p(it1:itN)=mp(it1:itN);p(itN+1:itN+INTER_Y)=0.0d0!p la direction de descente du GC
DO WHILE(SQRT(beta)>TOL.AND.(k<KMAX))!BOUCLE DE CONVERGENCE
!z=Ap, OBLIGATION DE FAIRE UNE COMM SUR p:
IF(Np>1)THEN
CALL COMM_VECT(status,stateinfo,rang,Np,p,it1,itN,INTER_Y,INTER_X,mode)
END IF
CALL PMV(A,AP,AL,INTER_Y,INTER_X,it1,itN,z,p,S1,S2,GAP)!PRODUIT MATRICE VECTEUR
!REDUCTION SUR DOT_PRODUCT(z,p):
DOTzp_RED=DOT_PRODUCT(z(it1:itN),p(it1:itN))
CALL MPI_ALLREDUCE(DOTzp_RED,DOTzp,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,stateinfo)
!CALCUL DE alpha le pas de descente:
alpha=beta/DOTzp
!ACTUALISATION DE U ET de r:
U(it1:itN)=U(it1:itN)+alpha*p(it1:itN)
r=r-alpha*z
!SAVE beta dans beta_old:
beta_old=beta
!ACTUALISATION DE mp:
mp=r/A
!ACTUALISATION DE BETA ET REDUCTION:
beta_RED=DOT_PRODUCT(r,mp)
CALL MPI_ALLREDUCE(beta_RED,beta,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,stateinfo)
!CALCUL de gamma:
gamma=beta/beta_old
!ACTUALISATION DE LA DIRECTION DE DESCENTE p:
p(it1:itN)=mp(it1:itN)+gamma*p(it1:itN)
!ACTUALISATION DE k:
k=k+1
END DO
PRINT*,'k',k,'SQRT(beta)',SQRT(beta),'TOL',TOL,'RANG',rang
END SUBROUTINE PGC
end module ModGC
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/MPI_EQ_CHALEUR/ModSOL.f90 | module ModSOL
use mpi
IMPLICIT NONE
INTEGER,PARAMETER::RK_SOL=8
!*** MODULE ModSOL POUR DONNER LA SOLUTION EXACTE ET
!*** POUR GERER L'ENREGISTREMENT DE LA SOLUTION DANS DES FICHIERS
!*** SUBROUTINE POUR APPELLER UN SCRIPT GNUPLOT POUR LA VISUALISATION
CONTAINS
SUBROUTINE UEXACT(U,userchoice,it1,itN,INTER_Y,INTER_X,X,Y,S1,S2,GAP,stateinfo,rang)
INTEGER,INTENT(IN)::userchoice,it1,itN,INTER_Y,INTER_X,S1,S2,rang
INTEGER,DIMENSION(S1:S2,1:2),INTENT(IN)::GAP
INTEGER,INTENT(INOUT)::stateinfo
REAL(RK_SOL),DIMENSION(it1-INTER_Y:itN+INTER_Y),INTENT(IN)::U
REAL(RK_SOL),DIMENSION(S1:S2),INTENT(IN)::X
REAL(RK_SOL),DIMENSION(1:INTER_Y),INTENT(IN)::Y
REAL(RK_SOL),DIMENSION(:),ALLOCATABLE::UEXA,DIFF
integer::i,j,k
REAL(RK_SOL)::ErrN2_RED,ErrN2,Ninf_RED,Ninf
CHARACTER(len=3)::rank,CAS
!INITIALISATION DE UEXA SUIVANT LE CAS SOURCE
ALLOCATE(UEXA(it1:itN))
WRITE(rank,fmt='(1I3)')rang;WRITE(CAS,fmt='(1I3)')userchoice
OPEN(10+rang,file='EXACTE_ERREUR/SOL_EXACTE_'//trim(adjustl(CAS))//'_ME'//trim(adjustl(rank))//'.dat')
SELECT CASE(userchoice)
CASE(1)!F1
DO i=S1,S2
DO j=GAP(i,1),GAP(i,2)
k=j+(i-1)*INTER_Y
UEXA(k)=X(i)*(1-X(i))*Y(j)*(1-Y(j))
WRITE(10+rang,*)X(i),Y(j),UEXA(k)
END DO
END DO
CASE(2)!F2
DO i=S1,S2
DO j=GAP(i,1),GAP(i,2)
k=j+(i-1)*INTER_Y
UEXA(k)=sin(X(i))+cos(Y(j))
WRITE(10+rang,*)X(i),Y(j),UEXA(k)
END DO
END DO
CASE DEFAULT!F3 PAS DE SOL EXACTE
PRINT*,'PAS DE SOLUTION EXACTE POUR CE CAS (F3)'
END SELECT
CLOSE(10+rang)
!ERREUR NORME_2:
ALLOCATE(DIFF(it1:itN))
DIFF=UEXA-U(it1:itN)
ErrN2_RED=DOT_PRODUCT(DIFF,DIFF)
CALL MPI_ALLREDUCE(ErrN2_RED,ErrN2,1,MPI_DOUBLE_PRECISION,MPI_SUM,MPI_COMM_WORLD,stateinfo)
ErrN2=SQRT(ErrN2)
!ERREUR NORME INFINIE
Ninf_RED=MAXVAL(ABS(UEXA(it1:itN)-U(it1:itN)))
CALL MPI_ALLREDUCE(Ninf_RED,Ninf,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
PRINT*,'ERREUR NORME 2:=',ErrN2,' ERREUR NORME INFINIE:=',Ninf
OPEN(20+rang,file='EXACTE_ERREUR/ErrABSOLUE'//trim(adjustl(CAS))//'_ME'//trim(adjustl(rank))//'.dat')
DO i=S1,S2
DO j=GAP(i,1),GAP(i,2)
k=j+(i-1)*INTER_Y
WRITE(20+rang,*)X(i),Y(j),-DIFF(k)
END DO
END DO
CLOSE(20+rang)
DEALLOCATE(DIFF,UEXA)
END SUBROUTINE UEXACT
SUBROUTINE WR_U(U,it1,itN,INTER_X,INTER_Y,S1,S2,GAP,userchoice,rang,&
IT_TEMPS,IT_MAX,Lx,Ly,X,Y)
INTEGER,INTENT(IN)::userchoice,it1,itN,INTER_Y,INTER_X,S1,S2,rang,IT_TEMPS,IT_MAX
INTEGER,DIMENSION(S1:S2,1:2),INTENT(IN)::GAP
REAL(RK_SOL),INTENT(IN)::Lx,Ly
REAL(RK_SOL),DIMENSION(it1-INTER_Y:itN+INTER_Y),INTENT(IN)::U
REAL(RK_SOL),DIMENSION(S1:S2),INTENT(IN)::X
REAL(RK_SOL),DIMENSION(1:INTER_Y),INTENT(IN)::Y
integer::i,j,k
CHARACTER(len=3)::rank,CAS
CHARACTER(len=3)::Ntps
WRITE(rank,fmt='(1I3)')rang;WRITE(CAS,fmt='(1I3)')userchoice;WRITE(Ntps,fmt='(1I3)')IT_TEMPS
OPEN(10+rang,file='SOL_NUMERIQUE/U_ME'//trim(adjustl(rank))&
//'_T'//trim(adjustl(Ntps)))
SELECT CASE(userchoice)
CASE(1)
DO i=S1,S2
DO j=GAP(i,1),GAP(i,2)
k=j+(i-1)*INTER_Y
IF(i-1==0)THEN
WRITE(10+rang,*)0.0d0,Y(j),0.0d0
END IF
IF(i+1==INTER_X+1)THEN
WRITE(10+rang,*)Lx,Y(j),0.0d0
END IF
IF(j-1==0)THEN
WRITE(10+rang,*)X(i),0.0d0,0.0d0
END IF
IF(j+1==INTER_Y+1)THEN
WRITE(10+rang,*)X(i),Ly,0.0d0
END IF
WRITE(10+rang,*)X(i),Y(j),U(k)
END DO
END DO
CASE(2)
DO i=S1,S2
DO j=GAP(i,1),GAP(i,2)
k=j+(i-1)*INTER_Y
IF(i==1)THEN!BC OUEST (H)
WRITE(10+rang,*)0.0d0,Y(j),cos(Y(j))
END IF
IF(i==INTER_X)THEN!BC EST (H)
WRITE(10+rang,*)Lx,Y(j),cos(Y(j))+sin(Lx)
END IF
IF(j==1)THEN!BC SUD (G)
WRITE(10+rang,*)X(i),0.0d0,1.0d0+sin(X(i))
END IF
IF(j==INTER_Y)THEN!BC NORD (G)
WRITE(10+rang,*)X(i),Ly,cos(Ly)+sin(X(i))
END IF
WRITE(10+rang,*)X(i),Y(j),U(k)
END DO
END DO
CASE(3)
DO i=S1,S2
DO j=GAP(i,1),GAP(i,2)
k=j+(i-1)*INTER_Y
IF(i-1==0)THEN!BC OUEST OU EST (H)
WRITE(10+rang,*)0.0d0,Y(j),1.0d0
END IF
IF(i+1==INTER_X+1)THEN!BC OUEST OU EST (H)
WRITE(10+rang,*)Lx,Y(j),1.0d0
END IF
IF(j-1==0.OR.j+1==INTER_Y+1)THEN!BC SUD OU NORD (G)
WRITE(10+rang,*)X(i),Y(j),0.0d0
END IF
IF(j+1==INTER_Y+1)THEN!BC SUD OU NORD (G)
WRITE(10+rang,*)X(i),Ly,0.0d0
END IF
WRITE(10+rang,*)X(i),Y(j),U(k)
END DO
END DO
END SELECT
CLOSE(10+rang)
END SUBROUTINE WR_U
SUBROUTINE VIZU_SOL_NUM(userchoice,DT,ITMAX,Nx,Ny)
INTEGER,INTENT(INOUT)::userchoice,ITMAX,Nx,Ny
REAL(RK_SOL),INTENT(IN)::DT
CHARACTER(LEN=12)::VIZU
INTEGER::i1,i2,i
VIZU='VIZU_PLT.plt'
PRINT*,'*****************************************************************************************'
PRINT*,'************** VISUALISATION SOLUTION POUR LE CAS #',userchoice,' ***********************'
PRINT*,'*****************************************************************************************'
PRINT*,'************* SACHANT QUE DT=',DT,'ET ITMAX=',ITMAX,':'
PRINT*,'*****************************************************************************************'
PRINT*,'** ENTREZ LE NUMERO DE L''ITERATION A LAQUELLE VOUS VOULEZ COMMENCER LA VISUALISATION **'
READ*,i1
PRINT*,'*****************************************************************************************'
PRINT*,'*****************************************************************************************'
PRINT*,'*** ENTREZ LE NUMERO DE L''ITERATION A LAQUELLE VOUS VOULEZ STOPPER LA VISUALISATION ***'
READ*,i2
PRINT*,'*****************************************************************************************'
PRINT*,'*****************************************************************************************'
OPEN(10,file=VIZU)
SELECT CASE(userchoice)
CASE(1)
WRITE(10,*)'set cbrange[0:1]'
CASE(2)
WRITE(10,*)'set cbrange[0.8:2]'
CASE(3)
WRITE(10,*)'set cbrange[0:1]'
END SELECT
WRITE(10,*)'set dgrid3d,',Nx,',',Ny; WRITE(10,*)'set hidden3d'; WRITE(10,*)'set pm3d'
WRITE(10,*)'do for [i=',i1,':',i2,']{splot ''SOL_NUMERIQUE/U.dat'' index i u 1:2:3 with pm3d at sb}'
CLOSE(10)
call system('gnuplot -p VIZU_PLT.plt')
END SUBROUTINE VIZU_SOL_NUM
end module ModSOL
|
0 | ALLM/ADDITIVE_SCHWARZ_METHOD | ALLM/ADDITIVE_SCHWARZ_METHOD/MPI_EQ_CHALEUR/main.f90 | program main
use mpi
use ModData
use ModF
use ModGC
use ModSOL
implicit none
!********************************************************************************
!MAIN CONTIENT:
!L'INITIALISATION DES PARAMETRES DU PROBLEME ET VECTEURS
!LA BOUCLE ITERATIVE EN TEMPS POUR RESOUDRE A.U=b ET L'ECRITURE DE LA SOLUTION
!LE CODAGE DE LA SOLUTION EXACTE
!LA CONCATENATION DES FICHIERS SOLUTIONS (RANG ET TEMPS DEPENDANT)
!SUBROUTINES: POUR LE CODAGE EN ESPAGE, LA CHARGE LOCALE ET GLOBALE
!*******************************************************************************
INTEGER,parameter::RK_MAIN=8
!PARAMETRES DATA.F90:
INTEGER::userchoice,sysmove!choix du cas, choix visualisation sol
REAL(RK_MAIN)::Lx,Ly,D !LONG,LARG,COEF_DIFFUSION
INTEGER::Nx,Ny !NBR PTS EN X, EN Y
INTEGER::ITMAX!NBR ITERATION EN TEMPS
REAL(RK_MAIN)::DT!LE PAS DE TEMPS
!PAS D'ESPACE:
REAL(RK_MAIN)::DX,DY
!POUR LA CHARGE:
INTEGER::DIM!DIMENSION DE LA MATRICE:=NBR PTS DE CALCUL:=NBR PTS INT:= CHARGE A REPARTIR ENTRE PROCS
INTEGER::it1,itN !CHARGE NUMEROTATION GLO
INTEGER::S1,S2,INTER_X !LOCALE EN X, NBR_PTS INT EN X
INTEGER::INTER_Y !LOCALE FIXE(MODE1) EN Y:=NBR_PTS INT EN Y
INTEGER,DIMENSION(:,:),ALLOCATABLE::GAP !LOCALE MOBILE (MODE2) EN Y
!STOCKAGE D'ESPACE(UNIQUEMENT PTS INT)
REAL(RK_MAIN),DIMENSION(:),ALLOCATABLE::X,Y
!CONDI DE BORDS SI CST:(CAS 1 et CAS 3)
REAL(RK_MAIN)::G,H !G->SUD ET NORD(y=0 et y=Ly) H->OUEST ET EST(x=0 et x=lx)
!SI NON CST (CAS 2): pas de stockage mais calcul.
! VARIABLES TEMPS:
REAL(RK_MAIN)::t !le temps t=k*DT
INTEGER::k !l'ITERANT SUR LA BOUCLE EN TEMPS
!COEF DE LA MATRICE:
REAL(RK_MAIN)::A,AP,AL !A|AP|0|0|AL 1er ligne Nx=NY=6
!BORNE EN X ET EN Y:
INTEGER::IXMAX,IYMAX! on a Nx pts en X on va de 0 à Nx-1
!NOM FICHIER RANG:
CHARACTER(LEN=3)::rank
CHARACTER(LEN=4),parameter::PARAMETRES_USER='DATA'
CHARACTER(LEN=20)::NFILE,NT,OUT_FILE
CHARACTER(LEN=1)::ESPACE
!POUR ENVI PARA:
INTEGER::rang,Np,stateinfo
INTEGER,DIMENSION(MPI_STATUS_SIZE)::status
!MODE DE REPARTION:
INTEGER,PARAMETER::MODE=2
!VECTEURS U,F,b. A.U=b=UO+DT.F+CONDITIONS DE BORDS
REAL(RK_MAIN),DIMENSION(:),ALLOCATABLE::U,F!,b
REAL(RK_MAIN)::F_VAR
!TEMPS CPU:
REAL(RK_MAIN)::TPS1,TPS2,MAX_TPS
!TOLERANCE DU GC:
REAL(RK_MAIN),PARAMETER::TOL=0.0000000000000001d0!0.000000000001d0
!ITERATION DU GC:
INTEGER::KMAX
!VECTEUR DU GC:r=RESIDU,z=AP,p=DIRECTION DE DESCENTE
REAL(RK_MAIN),DIMENSION(:),ALLOCATABLE::r,z,p
!PI:
REAL(RK_MAIN),PARAMETER::PI=3.141592653589793
!TEMPS DES COMMUNICATION, PRODUIT MATRICE/VECTEUR, MPI_ALLREDUCE:
REAL(RK_GC)::Tpmv,Tcomm,Tall,MAX_pmv,MAX_comm,MAX_all,WR1,WR2,WR,MAX_WR
!PIVOT DE COMMUNICATION:
INTEGER::PIVOT
!****
INTEGER::i,j
!********* DEBUT REGION PARA:
CALL MPI_INIT(stateinfo) !INITIALISATION DU //LISME
CALL MPI_COMM_RANK(MPI_COMM_WORLD,rang,stateinfo) !ON RECUPERE LES RANGS AU SEIN DE L'ENSEMBLE MPI_COMM_WORLD
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,Np,stateinfo) !ET LE NOMBRE DU PROCESSUS
!INIT TEMPS CPU:
TPS1=MPI_WTIME()
!LECTURE DE DATA:
CALL INI_PARA(rang,Lx,Ly,D,Nx,Ny,PARAMETRES_USER,sysmove,userchoice,DT,ITMAX)
!INITIALISATION DES VARIABLES:
INTER_Y=Ny-2;INTER_X=Nx-2;IYMAX=Ny-1;IXMAX=Nx-1
DY=Ly/IYMAX;DX=Lx/IXMAX
!INITIALISATION DIMENSION MATRICE ET COEF MATRICE:
DIM=INTER_X*INTER_Y
AP=D*DT/(DY**2);AL=D*DT/(DX**2);A=1+2*AP+2*AL
!ON FIXE KMAX LE NOMBRE D'ITERATION DU GC:
KMAX=2*DIM !ON SAIT QUE LE GC CONVERGE EN DIM ITERATION, ON MET 2*DIM.
IF(MODE==1)THEN
!INITIALISATION REPARTITION SUIVANT LE MODE 1:
CALL MODE1(rang,Np,INTER_X,INTER_Y,S1,S2,it1,itN,DX,DY,X,Y)
!INFO: DANS LE REPERTOIRE M1, ON ENREGISTRE LA CHARGE PAR PROCS
WRITE(rank,fmt='(1I3)')rang
OPEN(rang+10,file='M1/MAP_'//trim(adjustl(rank))//'.dat')
DO i=S1,S2
DO j=1,INTER_Y
WRITE(10+rang,*)X(i),Y(j),rang
END DO
END DO
CLOSE(rang+10)
ALLOCATE(GAP(S1:S2,1:2));GAP(:,1)=1;GAP(:,2)=INTER_Y
ELSE IF(MODE==2)THEN
!INITIALISATION REPARTITION SUIVANT LE MODE 2:
CALL MODE2(rang,Np,DIM,IXMAX,INTER_X,INTER_Y,S1,S2,GAP,it1,itN,DX,DY,X,Y)
!INFO: DANS LE REPERTOIRE: M1, ON ENREGISTRE LA CHARGE PAR PROCS
WRITE(rank,fmt='(1I3)')rang
OPEN(rang+10,file='M1/MAP_'//trim(adjustl(rank))//'.dat')
DO i=S1,S2
DO j=GAP(i,1),GAP(i,2)
WRITE(10+rang,*)X(i),Y(j),rang
END DO
END DO
CLOSE(rang+10)
END IF
!INITIALISATION U,b,F,BC:
ALLOCATE(U(it1-INTER_Y:itN+INTER_Y),F(it1:itN))
!INITIALISATION DES TEMPS MAX:
MAX_TPS=0.0d0
MAX_pmv=0.0d0;MAX_comm=0.0d0;MAX_all=0.0d0
WR1=0.0d0;WR2=0.0d0;WR=0.0d0;MAX_WR=0.0d0
!PIVOT DE COMMUNICATION:
PIVOT=(Np-mod(Np,2))/2
!SELON LE CHOIX DE L'UTILISATEUR SUR LA FONCTION SOURCE:
SELECT CASE(userchoice)
CASE(1)!POUR F=F1=2*(y-y^2+x-x^2) ET G=H=0
U(it1:itN)=2.0d0! U=Uo=2: INITIALISATION
WR1=MPI_WTIME()!POUR LE TEMPS D'ECRITURE DE LA SOLUTION
CALL WR_U(U,it1,itN,INTER_X,INTER_Y,S1,S2,GAP,userchoice,rang,&
0,ITMAX,Lx,Ly,X,Y)!ON ENREGISTRE U Au TEMPS 0 sec (CF: REPERTOIRE SOL_NUMERIQUE)
WR2=MPI_WTIME()
WR=WR+WR2-WR1!POUR LE TEMPS D'ECRITURE DE LA SOLUTION
CALL F1(it1,itN,S1,S2,INTER_Y,GAP,X,Y,F)!ON CALCUL LA FONCTION SOURCE
CALL WR_F(rang,it1,itN,INTER_Y,F,S1,S2,GAP,X,Y) ! ON ENREGISTRE LA FONCTION SOURCE (CF REPERTOIRE: F)
F_VAR=0.0d0
ALLOCATE(r(it1:itN),z(it1:itN),p(it1-INTER_Y:itN+INTER_Y))! ALLOCATION DES VECTEUR POUR LE GC(GRADIENT CONJUGUE)
DO k=1,ITMAX! BOUCLE EN TEMPS POUR RESOUDRE: A.U=Uo+DT*F+CONDITIONS DE BORDS
U(it1-INTER_Y:it1-1)=0.0d0;U(itN+1:itN+INTER_Y)=0.0d0!A CHAQUE ITERATION EN TEMPS, LES BORDS U SONT REMIS A ZERO
CALL GC(A,AP,AL,U,F,F_VAR,userchoice,DT,TOL,KMAX,it1,itN&
,INTER_Y,INTER_X,S1,S2,GAP,Np,rang,stateinfo,status,mode,r,z,p,&
Tpmv,Tcomm,Tall,PIVOT,k)!ON APPELLE LE GC POUR CALCULER LA SOLUTION AU TEMPS k*DT
MAX_pmv=MAX_pmv+Tpmv;MAX_comm=MAX_comm+Tcomm;MAX_all=MAX_all+Tall!ON SUM SUR LES TEMPS MAX
WR1=MPI_WTIME()!POUR LE TEMPS D'ECRITURE DE LA SOLUTION
CALL WR_U(U,it1,itN,INTER_X,INTER_Y,S1,S2,GAP,userchoice,rang,&
k,ITMAX,Lx,Ly,X,Y)! ON ENREGISTRE LA SOLUTION U AU TEMPS k*DT (CF: REPERTOIRE SOL_NUMERIQUE)
WR2=MPI_WTIME()
WR=WR+WR2-WR1!POUR LE TEMPS D'ECRITURE DE LA SOLUTION
END DO
CASE(2)!POUR F=F2=G=H=SIN(x)+COS(y)
U(it1:itN)=2.0d0! U=Uo=2: INITIALISATION
WR1=MPI_WTIME()!POUR LE TEMPS D'ECRITURE DE LA SOLUTION
CALL WR_U(U,it1,itN,INTER_X,INTER_Y,S1,S2,GAP,userchoice,rang,&
0,ITMAX,Lx,Ly,X,Y)!ON ENREGISTRE U Au TEMPS 0 sec
WR2=MPI_WTIME()
WR=WR+WR2-WR1!POUR LE TEMPS D'ECRITURE DE LA SOLUTION
CALL F2(it1,itN,S1,S2,INTER_Y,GAP,X,Y,F)!ON CALCUL LA FONCTION SOURCE
CALL WR_F(rang,it1,itN,INTER_Y,F,S1,S2,GAP,X,Y) ! ON ENREGISTRE LA FONCTION SOURCE (CF REPERTOIRE: F)
F_VAR=0.0d0
ALLOCATE(r(it1:itN),z(it1:itN),p(it1-INTER_Y:itN+INTER_Y))! ALLOCATION DES VECTEUR POUR LE GC(GRADIENT CONJUGUE)
DO k=1,ITMAX! BOUCLE EN TEMPS POUR RESOUDRE: A.U=Uo+DT*F+CONDITIONS DE BORDS
U(it1-INTER_Y:it1-1)=0.0d0;U(itN+1:itN+INTER_Y)=0.0d0!A CHAQUE ITERATION EN TEMPS, LES BORDS U SONT REMIS A ZERO
CALL BC(AP,AL,userchoice,S1,S2,GAP,it1,itN,INTER_Y,INTER_X&
,X,Y,DX,DY,Lx,Ly,U(it1:itN))!LA BC EST NON NULLE ON DOIT L'APPELE A CHAQUE ITERATION EN TEMPS
CALL GC(A,AP,AL,U,F,F_VAR,userchoice,DT,TOL,KMAX,it1,itN&
,INTER_Y,INTER_X,S1,S2,GAP,Np,rang,stateinfo,status,mode,r,z,p,&
Tpmv,Tcomm,Tall,PIVOT,k)!ON APPELLE LE GC POUR CALCULER LA SOLUTION AU TEMPS k*DT
MAX_pmv=MAX_pmv+Tpmv;MAX_comm=MAX_comm+Tcomm;MAX_all=MAX_all+Tall!ON SUM SUR LES TEMPS MAX
WR1=MPI_WTIME()!POUR LE TEMPS D'ECRITURE DE LA SOLUTION
CALL WR_U(U,it1,itN,INTER_X,INTER_Y,S1,S2,GAP,userchoice,rang,&
k,ITMAX,Lx,Ly,X,Y)! ON ENREGISTRE LA SOLUTION U AU TEMPS k*DT (CF: REPERTOIRE SOL_NUMERIQUE)
WR2=MPI_WTIME()
WR=WR+WR2-WR1!POUR LE TEMPS D'ECRITURE DE LA SOLUTION
END DO
CASE(3)!POUR F=F3=EXP(-(X-0.5*Lx)^2)*EXP(-(Y-0.5*Ly)^2)*COS(0.5*t*Pi) ET G=0, H=1
U(it1:itN)=5.0d0! U=Uo=5: INITIALISATION
WR1=MPI_WTIME()!POUR LE TEMPS D'ECRITURE DE LA SOLUTION
CALL WR_U(U,it1,itN,INTER_X,INTER_Y,S1,S2,GAP,userchoice,rang,&
0,ITMAX,Lx,Ly,X,Y)!ON ENREGISTRE U Au TEMPS 0 sec
WR2=MPI_WTIME()
WR=WR+WR2-WR1!POUR LE TEMPS D'ECRITURE DE LA SOLUTION
CALL F3_FIXE(Lx,Ly,it1,itN,S1,S2,INTER_Y,GAP,X,Y,F)!ON CALCUL LA PARITE FIXE DE LA FONCTION SOURCE
CALL WR_F(rang,it1,itN,INTER_Y,F,S1,S2,GAP,X,Y) ! ON ENREGISTRE LA FONCTION SOURCE (CF REPERTOIRE: F)
ALLOCATE(r(it1:itN),z(it1:itN),p(it1-INTER_Y:itN+INTER_Y))! ALLOCATION DES VECTEUR POUR LE GC(GRADIENT CONJUGUE)
DO k=1,ITMAX! BOUCLE EN TEMPS POUR RESOUDRE: A.U=Uo+DT*F+CONDITIONS DE BORDS
U(it1-INTER_Y:it1-1)=0.0d0;U(itN+1:itN+INTER_Y)=0.0d0
t=k*DT! ICI PB INSTATIONNAIRE
F_VAR=cos(PI*t/2)! ON CALCUL LA PARTIE VARIABLE DE LA FONCTION SOURCE
CALL BC(AP,AL,userchoice,S1,S2,GAP,it1,itN,INTER_Y,INTER_X&
,X,Y,DX,DY,Lx,Ly,U(it1:itN))!LA BC EST NON NULLE ON DOIT L'APPELE A CHAQUE ITERATION EN TEMPS
CALL GC(A,AP,AL,U,F,F_VAR,userchoice,DT,TOL,KMAX,it1,itN&
,INTER_Y,INTER_X,S1,S2,GAP,Np,rang,stateinfo,status,mode,r,z,p,&
Tpmv,Tcomm,Tall,PIVOT,k)!APPELLE DU GC
MAX_pmv=MAX_pmv+Tpmv;MAX_comm=MAX_comm+Tcomm;MAX_all=MAX_all+Tall!ON SUM SUR LES TEMPS MAX
WR1=MPI_WTIME()!POUR LE TEMPS D'ECRITURE DE LA SOLUTION
CALL WR_U(U,it1,itN,INTER_X,INTER_Y,S1,S2,GAP,userchoice,rang,&
k,ITMAX,Lx,Ly,X,Y)! ON ENREGISTRE LA SOLUTION U AU TEMPS k*DT (CF: REPERTOIRE SOL_NUMERIQUE)
WR2=MPI_WTIME()
WR=WR+WR2-WR1!POUR LE TEMPS D'ECRITURE DE LA SOLUTION
END DO
END SELECT
CALL MPI_ALLREDUCE(WR,MAX_WR,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
DEALLOCATE(r,z,p)! VECTEUR POUR LE GC ON PEUT DEALLOCATE
!VERIFICATION AVEC UNE SOLUTION ANALYTIQUE POUR CAS 1 Et CAS 2:
IF(userchoice==1.OR.userchoice==2)THEN
CALL UEXACT(U,userchoice,it1,itN,INTER_Y,INTER_X,X,Y,S1,S2,GAP,stateinfo,rang)
END IF! VOIR LE REPERTOIRE: EXACTE_ERREUR
DEALLOCATE(U,F) !VECTEURS ET TABLEAU ON DEALLOCATE CAR ILS NE SONT PLUS APPELE
DEALLOCATE(X,Y,GAP)
!FIN TPS CPU:
TPS2=MPI_WTIME()
CALL MPI_ALLREDUCE(TPS2-TPS1,MAX_TPS,1,MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD,stateinfo)
!ON REND LE TEMPS TOTAL ET LA SUM DES TEMPS MAX:
IF(rang==0)THEN
PRINT*,'RANG',rang,'MAX TEMPS TOTAL=',MAX_TPS,'SUM_MAX:'
PRINT*,'COMM=',MAX_comm,'PMV=',MAX_pmv,'allRED=',MAX_all,'Ecriture=',MAX_WR
END IF
!********* FIN REGION PARA:
CALL MPI_FINALIZE(stateinfo)
!VIZUALISATION SEQUENTIELLE: ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE RANG DIFFERENTS DANS UN FICHIER
IF(rang==0.AND.sysmove==1)THEN
ESPACE=' '
DO i=0,ITMAX
WRITE(NT,fmt='(1I3)')i;
NFILE='U_ME*'//'_T'//trim(adjustl(NT));OUT_FILE='UT'//trim(adjustl(NT))//'.dat'
!ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE RANG DIFFERENTS DANS UN FICHIER
CALL system('cat SOL_NUMERIQUE/'//NFILE//' >> SOL_NUMERIQUE/'//OUT_FILE)
CALL system('rm SOL_NUMERIQUE/'//NFILE)
OPEN(10,file='SOL_NUMERIQUE/'//OUT_FILE,position='append')
SELECT CASE(userchoice)!ICI IL FAUT RAJOUTER LES POINTS AUX COINS DU DOMAINES
CASE(1)
WRITE(10,*)0.0d0,0.0d0,0.0d0;WRITE(10,*)Lx,0.0d0,0.0d0
WRITE(10,*)0.0d0,Ly,0.0d0;WRITE(10,*)Lx,Ly,0.0d0
CASE(2)
WRITE(10,*)0.0d0,0.0d0,1.0d0;WRITE(10,*)Lx,0.0d0,1.0d0+sin(Lx)
WRITE(10,*)0.0d0,Ly,cos(Ly);WRITE(10,*)Lx,Ly,cos(Ly)+sin(Lx)
CASE(3)
WRITE(10,*)0.0d0,0.0d0,0.5d0;WRITE(10,*)Lx,0.0d0,0.5d0!TEMPERATURES IMPOSEES DIFFERENTES, ON MOYENNE:((G+H)/2)
WRITE(10,*)0.0d0,Ly,0.5d0;WRITE(10,*)Lx,Ly,0.5d0
END SELECT
WRITE(10,fmt='(1A1)')ESPACE
WRITE(10,fmt='(1A1)')ESPACE
CLOSE(10)
!ON CONCATENE POUR UNE ITERATION EN TEMPS DONNEE, LES FICHIERS DE TEMPS DIFFERENTS DANS UN FICHIER
CALL system('cat SOL_NUMERIQUE/'//OUT_FILE//' >> SOL_NUMERIQUE/U.dat')
CALL system('rm SOL_NUMERIQUE/'//OUT_FILE)
END DO
!A LA FIN, IL RESTE UN FICHIER OU LA SOLUTION EN TEMPS EST SOUS FORME D'INDEX GNUPLOT
!ON APPELLE LA SUBROUTIEN DE VISUALISATION:
CALL VIZU_SOL_NUM(userchoice,DT,ITMAX,Nx,Ny)
END IF
contains
!************* !MODE DE REPARTITION 2: ********************************************************
!CALCUL LA CHARGE GLOBALE PAR PROCS POUR EN DEDUIRE LA CHARGE LOCALE EN X ET Y
!LA DIFFERENCE MAXIMALE DE CHARGE ENTRE 2 PROCS EST TOUJOURS DE 1
!UTILISABLE POUR 1<=Np<=DIM, DIM=INTER_X*INTER_Y LE NBR DE POINTS DE CALCULS
SUBROUTINE MODE2(rang,Np,DIM,IXMAX,INTER_X,INTER_Y,S1,S2,GAP,it1,itN,DX,DY,X,Y)
INTEGER,INTENT(in)::rang,Np,DIM,IXMAX,INTER_X,INTER_Y
REAL(RK_MAIN),INTENT(IN)::DX,DY
INTEGER,INTENT(out)::S1,S2,it1,itN
REAL(RK_MAIN),DIMENSION(:),ALLOCATABLE::X,Y
INTEGER,DIMENSION(:,:),ALLOCATABLE::GAP
CALL CHARGE_GLO(rang,Np,DIM,it1,itN)
CALL ALLOC_X(Np,IXMAX,INTER_Y,it1,itN,S1,S2)
CALL ALLOC_Y(rang,Np,S1,S2,it1,itN,INTER_Y,INTER_X,GAP)
ALLOCATE(X(S1:S2));ALLOCATE(Y(1:INTER_Y))
CALL SPACE_X(S1,S2,DX,X);CALL SPACE_Y(INTER_Y,DY,Y)
END SUBROUTINE MODE2
SUBROUTINE CHARGE_GLO(rang,Np,DIM,it1,itN)!CALCUL DE CHARGE CLASSIQUE
INTEGER,INTENT(in)::rang,Np,DIM
INTEGER,INTENT(out)::it1,itN
REAL::CO_RE
INTEGER::m
IF(Np==1)THEN
it1=1;itN=DIM
ELSE
CO_RE=DIM/Np;m=mod(DIM,Np)
IF(rang<m)THEN
it1=rang*(CO_RE+1)+1;itN=(rang+1)*(CO_RE+1)
ELSE
it1=1+m+rang*CO_RE;itN=it1+CO_re-1
END IF
END IF
END SUBROUTINE CHARGE_GLO
!CALCULE LA CHARGE LOCALE EN X EN UTILISANT LA CHARGE GLOBALE(it1:itN):
SUBROUTINE ALLOC_X(Np,IXMAX,INTER_Y,it1,itN,S1,S2)
INTEGER,INTENT(IN)::Np,IXMAX,INTER_Y,it1,itN
INTEGER,INTENT(out)::S1,S2
INTEGER::i,j,k,mult
INTEGER::AFF1,AFF2
IF(Np==1)THEN
S1=1;S2=IXMAX-1
ELSE
AFF1=0;AFF2=0
i=1
DO WHILE(i<IXMAX.AND.(AFF1+AFF2)<2)
mult=i*INTER_Y
IF((AFF1==0).AND. it1<=mult)THEN!PERMET DE DETERMINER LA PRJECTION DE it1 SUR L'AXE X
AFF1=1;S1=i
END IF
IF((AFF2==0).AND. itN<=mult)THEN!!PERMET DE DETERMINER LA PRJECTION DE itN SUR L'AXE X
AFF2=1;S2=i
END IF
IF(AFF1==0.OR.AFF2==0)THEN
i=i+1
END IF
END DO
END IF
END SUBROUTINE ALLOC_X
!ON UTILISE LA CHARGE EN X ET LA CHARGE GLOBALE POUR CALCULER LA CHARGE EN Y:
SUBROUTINE ALLOC_Y(rang,Np,S1,S2,it1,itN,INTER_Y,INTER_X,GAP)
INTEGER,INTENT(IN)::rang,Np,S1,S2,it1,itN,INTER_X,INTER_Y
INTEGER,DIMENSION(:,:),ALLOCATABLE::TAB
INTEGER,DIMENSION(:,:),ALLOCATABLE,INTENT(out)::GAP
INTEGER::i,j,k
IF(Np==1)THEN
ALLOCATE(GAP(1:INTER_X,1:2));GAP(:,1)=1;GAP(:,2)=INTER_Y
ELSE
ALLOCATE(TAB(S1:S2,0:INTER_Y+1))
TAB=0
k=it1;i=S1;j=0
DO WHILE(k<itN+1)!POUR k allant de it1 à itN (charge globale)
j=k-(i-1)*INTER_Y!ON CONNAIT k et i POUR TOUS LES PROCS, ON PEUT EN DEDUIRE j (i,j charges locales en X et Y)
TAB(i,j)=TAB(i,j-1)+1! ON COMPTE la charge en j
k=k+1
IF(j==INTER_Y)THEN!ON PASSE A LA COLONNE SUIVANTE
i=i+1
END IF
END DO
ALLOCATE(GAP(S1:S2,1:2))
DO i=S1,S2!CHARGE LOCALE EN X
DO j=1,INTER_Y!NBR LIGNE
IF(TAB(i,j)==1)THEN!<=>LE PREMIER ELEMENT CONNU DU PROCS DANS UNE COLONNE
GAP(i,1)=j! ON RECUREPE L'INFORMATION
END IF
IF(TAB(i,j)>TAB(i,j-1).AND.TAB(i,j)>TAB(i,j+1))THEN!LE PLUS GRAND ELEMENT DE TAB(,)
GAP(i,2)=j !<=>AU DERNIER ELEMENT CONNU DANS LA COLONNE PAR UN PROC
END IF
END DO
END DO
DEALLOCATE(TAB)
END IF
END SUBROUTINE ALLOC_Y
!********** !MODE 1 DE REPARTITION: ***********************************************************
!SE BASE SUR LA CHARGE EN X POUR CALCULER LA CHARGE TOTALE(GLOBALE)
!INDUIT POUR MOD(DIM,Np)/=0 UNE DIFFERENCE DE CHARGE = A INTER_Y ENTRE 2 PROCS
!UTILISABLE POUR Np<=INTER_X
SUBROUTINE MODE1(rang,Np,INTER_X,INTER_Y,S1,S2,it1,itN,DX,DY,X,Y)
INTEGER,INTENT(in)::rang,Np,INTER_X,INTER_Y
REAL(RK_MAIN),INTENT(IN)::DX,DY
INTEGER,INTENT(out)::S1,S2,it1,itN
REAL(RK_MAIN),DIMENSION(:),ALLOCATABLE::X,Y
!CHARGE EN X:
CALL CHARGE_X(rang,Np,INTER_X,S1,S2)
ALLOCATE(X(S1:S2),Y(1:INTER_Y))! LES PROCS CONNAISSENT TOUT DE Y
!CHARGE TOT:
CALL CHARGE_TOT(S1,S2,INTER_Y,it1,itN)
!INI ESPACE:
CALL SPACE_X(S1,S2,DX,X);CALL SPACE_Y(INTER_Y,DY,Y)
END SUBROUTINE MODE1
SUBROUTINE CHARGE_X(rang,Np,INTER_X,S1,S2)!REPERTITION CLASSIQUE DE LA CHARGE EN X
INTEGER,INTENT(in)::rang,Np,INTER_X
INTEGER,INTENT(OUT)::S1,S2
REAL::CO_RE!COEFF_REPARTION
IF(Np==1)THEN
S1=1;S2=INTER_X
ELSE
CO_RE=INTER_X/Np
IF(rang<mod(INTER_X,Np))THEN
S1=rang*(CO_RE+1)+1;S2=(rang+1)*(CO_RE+1)
ELSE
S1=1+mod(INTER_X,Np)+rang*CO_RE;S2=S1+CO_RE-1
END IF
END IF
END SUBROUTINE CHARGE_X
SUBROUTINE SPACE_X(S1,S2,DX,X)! DISCRETISATION DE L'ESPACE EN X
INTEGER,INTENT(IN)::S1,S2
REAL(RK_MAIN),INTENT(in)::DX
REAL(RK_MAIN),DIMENSION(S1:S2),INTENT(out)::X
INTEGER::i
DO i=S1,S2
X(i)=i*DX
END DO
END SUBROUTINE SPACE_X
SUBROUTINE SPACE_Y(INTER_Y,DY,Y)! DISCRETISATION DE L'ESPACE EN Y
INTEGER,INTENT(IN)::INTER_Y
REAL(RK_MAIN),INTENT(in)::DY
REAL(RK_MAIN),DIMENSION(1:INTER_Y),INTENT(out)::Y
INTEGER::j
DO j=1,INTER_Y
Y(j)=j*DY
END DO
END SUBROUTINE SPACE_Y
SUBROUTINE CHARGE_TOT(S1,S2,INTER_Y,it1,itN)! CHARGE GLOBALE PAR PROCS
INTEGER,INTENT(in)::S1,S2,INTER_Y
INTEGER,INTENT(out)::it1,itN
it1=(S1-1)*INTER_Y+1;itN=S2*INTER_Y
END SUBROUTINE CHARGE_TOT
end program main
|
0 | ALLM | ALLM/GPU_REDO/GPU_TILLING.cu | #include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_profiler_api.h>
#define SOFT 1e-20f
#define THREADS_PER_BLOCK 128
#define DUMP
#define BLOCK_SIZE 256
typedef struct { float4 *POS, *VIT; } PType;
void randomizeBodies(float *data, int n) {
for (int i = 0; i < n; i++) {
data[i] = 2.0f * (rand() / (float)RAND_MAX) - 1.0f;
}
}
void dump(int iter, int nParticles, PType pv)
{
char filename[64];
snprintf(filename, 64, "output_%d.txt", iter);
FILE *f;
f = fopen(filename, "w+");
int i;
for (i = 0; i < nParticles; i++)
{
fprintf(f, "%e %e %e %e %e %e\n",
pv.POS[i].x, pv.POS[i].y, pv.POS[i].z, pv.VIT[i].x, pv.VIT[i].y, pv.VIT[i].z);
}
fclose(f);
}
__global__
void bodyForce(float4 *p, float4 *v, float dt, int n) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < n) {
float Fx = 0.0f; float Fy = 0.0f; float Fz = 0.0f;
for (int tile = 0; tile < gridDim.x; tile++) {
__shared__ float3 p3[BLOCK_SIZE];
float4 tmp_pos = p[tile * blockDim.x + threadIdx.x];
p3[threadIdx.x] = make_float3(tmp_pos.x, tmp_pos.y, tmp_pos.z);
__syncthreads();
for (int j = 0; j < BLOCK_SIZE; j++) {
float dx = p3[j].x - p[i].x;
float dy = p3[j].y - p[i].y;
float dz = p3[j].z - p[i].z;
float distSqr = dx*dx + dy*dy + dz*dz + SOFT;
float invDist = rsqrtf(distSqr);
float invDist3 = invDist * invDist * invDist;
Fx += dx * invDist3; Fy += dy * invDist3; Fz += dz * invDist3;
}
__syncthreads();
}
v[i].x += dt*Fx; v[i].y += dt*Fy; v[i].z += dt*Fz;
}
}
int main(const int argc, const char** argv) {
int nBodies = 16384;
int nParticles;
if (argc > 1) nBodies = atoi(argv[1]);
nParticles = nBodies;
const float dt = 0.00005f; // time step
const int nIters = 10; // simulation iterations
int nSteps = nIters;
int bytes = 2*nBodies*sizeof(float4);
float *buf = (float*)malloc(bytes);
PType p = { (float4*)buf, ((float4*)buf) + nBodies };
randomizeBodies(buf, 8*nBodies); // Init pos / vit data
float *d_buf;
cudaMalloc(&d_buf, bytes);
PType d_p = { (float4*)d_buf, ((float4*)d_buf) + nBodies };
int nBlocks = (nBodies + BLOCK_SIZE - 1) / BLOCK_SIZE;
double totalTime = 0.0;
// Perform benchmark
printf("\nPropagating %d particles using 1 thread...\n\n",
nParticles
);
double rate = 0, dRate = 0; // Benchmarking data
const int skipSteps = 3; // Skip first iteration (warm-up)
printf("\033[1m%5s %10s %10s %8s\033[0m\n", "Step", "Time, s", "Interact/s", "GFLOP/s"); fflush(stdout);
cudaProfilerStart();
for (int step = 1; step <= nIters; step++) {
const double tStart = omp_get_wtime(); // Start timing
cudaMemcpy(d_buf, buf, bytes, cudaMemcpyHostToDevice);
bodyForce<<<nBlocks, BLOCK_SIZE>>>(d_p.POS, d_p.VIT, dt, nBodies);
cudaMemcpy(buf, d_buf, bytes, cudaMemcpyDeviceToHost);
const double tEnd = omp_get_wtime(); // End timing
for (int i = 0 ; i < nBodies; i++) { // integrate position
p.POS[i].x += p.VIT[i].x*dt;
p.POS[i].y += p.VIT[i].y*dt;
p.POS[i].z += p.VIT[i].z*dt;
}
const float HztoInts = ((float)nParticles)*((float)(nParticles-1)) ;
const float HztoGFLOPs = 20.0*1e-9*((float)(nParticles))*((float)(nParticles-1));
if (step > skipSteps) { // Collect statistics
rate += HztoGFLOPs/(tEnd - tStart);
dRate += HztoGFLOPs*HztoGFLOPs/((tEnd - tStart)*(tEnd-tStart));
}
printf("%5d %10.3e %10.3e %8.1f %s\n",
step, (tEnd-tStart), HztoInts/(tEnd-tStart), HztoGFLOPs/(tEnd-tStart), (step<=skipSteps?"*":""));
fflush(stdout);
dump(step, nBodies, p);
}
cudaProfilerStop();
free(buf);
cudaFree(d_buf);
//-------------------------------------------------------------------------------------------------------------------------
rate/=(double)(nSteps-skipSteps);
dRate=sqrt(dRate/(double)(nSteps-skipSteps)-rate*rate);
printf("-----------------------------------------------------\n");
printf("\033[1m%s %4s \033[42m%10.1f +- %.1f GFLOP/s\033[0m\n",
"Average performance:", "", rate, dRate);
printf("-----------------------------------------------------\n");
printf("* - warm-up, not included in average\n\n");
}
|
0 | ALLM | ALLM/GPU_REDO/nbody.c | #include <stdio.h>
#include <math.h>
#include <stdlib.h> // drand48
#include <omp.h>
#define DUMP
struct ParticleType {
float x, y, z;
float vx, vy, vz;
};
void MoveParticles(const int nParticles, struct ParticleType* const particle, const float dt) {
// Loop over particles that experience force
for (int i = 0; i < nParticles; i++) {
// Components of the gravity force on particle i
float Fx = 0, Fy = 0, Fz = 0;
// Loop over particles that exert force
for (int j = 0; j < nParticles; j++) {
// No self interaction
if (i != j) {
// Avoid singularity and interaction with self
const float softening = 1e-20;
// Newton's law of universal gravity
const float dx = particle[j].x - particle[i].x;
const float dy = particle[j].y - particle[i].y;
const float dz = particle[j].z - particle[i].z;
const float drSquared = dx*dx + dy*dy + dz*dz + softening;
const float drPower32 = pow(drSquared, 3.0/2.0);
// Calculate the net force
Fx += dx / drPower32;
Fy += dy / drPower32;
Fz += dz / drPower32;
}
}
// Accelerate particles in response to the gravitational force
particle[i].vx += dt*Fx;
particle[i].vy += dt*Fy;
particle[i].vz += dt*Fz;
}
// Move particles according to their velocities
// O(N) work, so using a serial loop
for (int i = 0 ; i < nParticles; i++) {
particle[i].x += particle[i].vx*dt;
particle[i].y += particle[i].vy*dt;
particle[i].z += particle[i].vz*dt;
}
}
void dump(int iter, int nParticles, struct ParticleType* particle)
{
char filename[64];
snprintf(filename, 64, "output_%d.txt", iter);
FILE *f;
f = fopen(filename, "w+");
int i;
for (i = 0; i < nParticles; i++)
{
fprintf(f, "%e %e %e %e %e %e\n",
particle[i].x, particle[i].y, particle[i].z,
particle[i].vx, particle[i].vy, particle[i].vz);
}
fclose(f);
}
// Initialize random number generator and particles:
void init_rand(int nParticles, struct ParticleType* particle){
srand48(0x2020);
for (int i = 0; i < nParticles; i++)
{
particle[i].x = 2.0*drand48() - 1.0;
particle[i].y = 2.0*drand48() - 1.0;
particle[i].z = 2.0*drand48() - 1.0;
particle[i].vx = 2.0*drand48() - 1.0;
particle[i].vy = 2.0*drand48() - 1.0;
particle[i].vz = 2.0*drand48() - 1.0;
}
}
// Initialize (no random generator) particles
void init_norand(int nParticles, struct ParticleType* particle){
const float a=127.0/nParticles;
for (int i = 0; i < nParticles; i++)
{
particle[i].x = i*a;//2.0*drand48() - 1.0;
particle[i].y = i*a;//2.0*drand48() - 1.0;
particle[i].z = 1.0;//2.0*drand48() - 1.0;
particle[i].vx = 0.5;//2.0*drand48() - 1.0;
particle[i].vy = 0.5;//2.0*drand48() - 1.0;
particle[i].vz = 0.5;//2.0*drand48() - 1.0;
}
}
void init_sphere(int nParticles, struct ParticleType* particle){
const float a = 0.0f, b = 0.0f, c = 0.0f;
const float r = 100.0f;
particle[0].x = 0.0f;
particle[0].y = 0.0f;
particle[0].z = r;
particle[0].vx = 0.0f;
particle[0].vy = 0.0f;
particle[0].vz = -r;
particle[1].x = 0.0f;
particle[1].y = 0.0f;
particle[1].z = -r;
particle[1].vx = 0.0f;
particle[1].vy = 0.0f;
particle[1].vz = r;
for (int i = 2; i < 3289; i++)
{ float eta = 2*3.14159265359/3287;
particle[i].x = r*cos(eta);
particle[i].y = r*sin(eta);
particle[i].z = 0.0f;
particle[i].vx = -r*cos(eta);
particle[i].vy = r*sin(eta);
particle[i].vz = 0.0f;
}
for (int i = 3289; i < nParticles; i++)
float eta = 2*3.14159265359/13095.0;
particle[i].x = r*cos(eta);
particle[i].y = r*sin(eta);
particle[i].z = 0.0f;
particle[i].vx = -r*cos(eta);
particle[i].vy = r*sin(eta);
particle[i].vz = -99.0f+0.01504391f;
}
}
int main(const int argc, const char** argv)
{
// Problem size and other parameters
const int nParticles = (argc > 1 ? atoi(argv[1]) : 16384);
// Duration of test
const int nSteps = (argc > 2)?atoi(argv[2]):10;
// Particle propagation time step
const float dt = 0.0005f;
struct ParticleType* particle = malloc(nParticles*sizeof(struct ParticleType));
// Initialize random number generator and particles
//init_rand(nParticles, particle);
// Initialize (no random generator) particles
init_norand(nParticles, particle);
// Perform benchmark
printf("\nPropagating %d particles using 1 thread...\n\n",
nParticles
);
double rate = 0, dRate = 0; // Benchmarking data
const int skipSteps = 3; // Skip first iteration (warm-up)
printf("\033[1m%5s %10s %10s %8s\033[0m\n", "Step", "Time, s", "Interact/s", "GFLOP/s"); fflush(stdout);
for (int step = 1; step <= nSteps; step++) {
const double tStart = omp_get_wtime(); // Start timing
MoveParticles(nParticles, particle, dt);
const double tEnd = omp_get_wtime(); // End timing
const float HztoInts = ((float)nParticles)*((float)(nParticles-1)) ;
const float HztoGFLOPs = 20.0*1e-9*((float)(nParticles))*((float)(nParticles-1));
if (step > skipSteps) { // Collect statistics
rate += HztoGFLOPs/(tEnd - tStart);
dRate += HztoGFLOPs*HztoGFLOPs/((tEnd - tStart)*(tEnd-tStart));
}
printf("%5d %10.3e %10.3e %8.1f %s\n",
step, (tEnd-tStart), HztoInts/(tEnd-tStart), HztoGFLOPs/(tEnd-tStart), (step<=skipSteps?"*":""));
fflush(stdout);
#ifdef DUMP
dump(step, nParticles, particle);
#endif
}
rate/=(double)(nSteps-skipSteps);
dRate=sqrt(dRate/(double)(nSteps-skipSteps)-rate*rate);
printf("-----------------------------------------------------\n");
printf("\033[1m%s %4s \033[42m%10.1f +- %.1f GFLOP/s\033[0m\n",
"Average performance:", "", rate, dRate);
printf("-----------------------------------------------------\n");
printf("* - warm-up, not included in average\n\n");
free(particle);
return 0;
}
|
0 | ALLM | ALLM/GPU_REDO/nbody_aos.cu | #include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <math.h>
#include <omp.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_profiler_api.h>
#define nPart 16384
#define THREADS_PER_BLOCK 256
#define DUMP
//-------------------------------------------------------------------------------------------------------------------------
//struct ParticleType{
// float x, y, z, vx, vy, vz;
//};
struct ParticleType{
float x[nPart],y[nPart],z[nPart];
float vx[nPart],vy[nPart],vz[nPart];
};
//-------------------------------------------------------------------------------------------------------------------------
//CUDA VERSION:
__global__ void MoveParticles_CUDA(const int nParticles, struct ParticleType* const particle){
// Particle propagation time step
const float dt = 0.0005f;
int i = threadIdx.x + blockIdx.x * blockDim.x;
if(i<nParticles){
float Fx=0.,Fy=0.,Fz=0.;
for(int j = 0; j< nParticles; j++){
//no self interaction:
if(i != j){
//avoid singularity and interaction with self:
const float softening = 1e-20;
//Newton's law of universal gravity:
const float dx = particle->x[j] - particle->x[i];
const float dy = particle->y[j] - particle->y[i];
const float dz = particle->z[j] - particle->z[i];
const float drSquared = dx*dx + dy*dy + dz*dz + softening;
const float drPower32 = pow(drSquared, 3.0/2.0);
//Calculate the net force:
Fx += dx / drPower32;
Fy += dy / drPower32;
Fz += dz / drPower32;
}//fi i!=j
}//j loop
//Accelerate particles in response to the gravitational force:
particle->vx[i] += dt*Fx;
particle->vy[i] += dt*Fy;
particle->vz[i] += dt*Fz;
}
}//fct MoveParticles_CUDA
//-------------------------------------------------------------------------------------------------------------------------
// Initialize random number generator and particles:
void init_rand(int nParticles, struct ParticleType* particle){
srand48(0x2020);
for (int i = 0; i < nParticles; i++)
{
particle->x[i] = 2.0*drand48() - 1.0;
particle->y[i] = 2.0*drand48() - 1.0;
particle->z[i] = 2.0*drand48() - 1.0;
particle->vx[i] = 2.0*drand48() - 1.0;
particle->vy[i] = 2.0*drand48() - 1.0;
particle->vz[i] = 2.0*drand48() - 1.0;
}
}
//-------------------------------------------------------------------------------------------------------------------------
// Initialize (no random generator) particles
void init_norand(int nParticles, struct ParticleType* const particle){
const float a=127.0/nParticles;
for (int i = 0; i < nParticles; i++)
{
particle->x[i] = i*a;//2.0*drand48() - 1.0;
particle->y[i] = i*a;//2.0*drand48() - 1.0;
particle->z[i] = 1.0;//2.0*drand48() - 1.0;
particle->vx[i] = 0.5;//2.0*drand48() - 1.0;
particle->vy[i] = 0.5;//2.0*drand48() - 1.0;
particle->vz[i] = 0.5;//2.0*drand48() - 1.0;
}
}
//-------------------------------------------------------------------------------------------------------------------------
void dump(int iter, int nParticles, struct ParticleType* particle)
{
char filename[64];
snprintf(filename, 64, "output_%d.txt", iter);
FILE *f;
f = fopen(filename, "w+");
int i;
for (i = 0; i < nParticles; i++)
{
fprintf(f, "%e %e %e %e %e %e\n",
particle->x[i], particle->y[i], particle->z[i], particle->vx[i], particle->vy[i], particle->vz[i]);
}
fclose(f);
}
//-------------------------------------------------------------------------------------------------------------------------
int main(const int argc, const char** argv)
{
// Problem size and other parameters
// const int nParticles = (argc > 1 ? atoi(argv[1]) : 16384);
const int nParticles=nPart;
// Duration of test
const int nSteps = (argc > 2)?atoi(argv[2]):10;
// Particle propagation time step
const float ddt = 0.0005f;
//-------------------------------------------------------------------------------------------------------------------------
//DEFINE SIZE:
int SIZE = sizeof(struct ParticleType);
//-------------------------------------------------------------------------------------------------------------------------
//DECLARATION & ALLOC particle ON HOST:
struct ParticleType* particle = (struct ParticleType*) malloc(SIZE);
//-------------------------------------------------------------------------------------------------------------------------
// Initialize random number generator and particles
srand48(0x2020);
//Initialize random number generator and particles
//init_rand(nParticles, particle);
// Initialize (no random generator) particles
init_norand(nParticles, particle);
//-------------------------------------------------------------------------------------------------------------------------
// Perform benchmark
printf("\nPropagating %d particles using %d thread...\n\n",
128 ,nParticles
);
double rate = 0, dRate = 0; // Benchmarking data
const int skipSteps = 3; // Skip first iteration (warm-up)
printf("\033[1m%5s %10s %10s %8s\033[0m\n", "Step", "Time, s", "Interact/s", "GFLOP/s"); fflush(stdout);
//-------------------------------------------------------------------------------------------------------------------------
cudaProfilerStart();
//-------------------------------------------------------------------------------------------------------------------------
struct ParticleType *particle_cuda;
cudaMalloc((void **)&particle_cuda, SIZE);
//-------------------------------------------------------------------------------------------------------------------------
// cudaMemcpy(particle_cuda, particle, SIZE, cudaMemcpyHostToDevice);
//-------------------------------------------------------------------------------------------------------------------------
for (int step = 1; step <= nSteps; step++) {
const double tStart = omp_get_wtime(); // Start timing
cudaMemcpy(particle_cuda, particle, SIZE, cudaMemcpyHostToDevice);
MoveParticles_CUDA<<<nParticles/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(nParticles, particle_cuda);
cudaMemcpy(particle, particle_cuda, SIZE, cudaMemcpyDeviceToHost);//need to do?
const double tEnd = omp_get_wtime(); // End timing
// Move particles according to their velocities
// O(N) work, so using a serial loop
for (int i = 0 ; i < nParticles; i++) {
particle->x[i] += particle->vx[i]*ddt;
particle->y[i] += particle->vy[i]*ddt;
particle->z[i] += particle->vz[i]*ddt;
}
const float HztoInts = ((float)nParticles)*((float)(nParticles-1)) ;
const float HztoGFLOPs = 20.0*1e-9*((float)(nParticles))*((float)(nParticles-1));
if (step > skipSteps) { // Collect statistics
rate += HztoGFLOPs/(tEnd - tStart);
dRate += HztoGFLOPs*HztoGFLOPs/((tEnd - tStart)*(tEnd-tStart));
}
printf("%5d %10.3e %10.3e %8.1f %s\n",
step, (tEnd-tStart), HztoInts/(tEnd-tStart), HztoGFLOPs/(tEnd-tStart), (step<=skipSteps?"*":""));
fflush(stdout);
#ifdef DUMP
dump(step, nParticles, particle);
#endif
}
cudaFree(particle_cuda);
//-------------------------------------------------------------------------------------------------------------------------
cudaProfilerStop();
//-------------------------------------------------------------------------------------------------------------------------
rate/=(double)(nSteps-skipSteps);
dRate=sqrt(dRate/(double)(nSteps-skipSteps)-rate*rate);
printf("-----------------------------------------------------\n");
printf("\033[1m%s %4s \033[42m%10.1f +- %.1f GFLOP/s\033[0m\n",
"Average performance:", "", rate, dRate);
printf("-----------------------------------------------------\n");
printf("* - warm-up, not included in average\n\n");
free(particle);
return 0;
}
|
0 | ALLM | ALLM/GPU_REDO/nbody_cuda.cu | #include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <math.h>
#include <omp.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_profiler_api.h>
#define THREADS_PER_BLOCK 128
#define DUMP
//-------------------------------------------------------------------------------------------------------------------------
struct ParticleType{
float x, y, z, vx, vy, vz;
};
//-------------------------------------------------------------------------------------------------------------------------
//CUDA VERSION:
__global__ void MoveParticles_CUDA(const int nParticles, struct ParticleType* const particle){
// Particle propagation time step
const float dt = 0.0005f;
float Fx = 0.0, Fy = 0.0, Fz = 0.0;
int i = threadIdx.x + blockIdx.x * blockDim.x;
if(i<nParticles){
for(int j = 0; j< nParticles; j++){
//no self interaction:
if(i != j){
//avoid singularity and interaction with self:
const float softening = 1e-20;
//Newton's law of universal gravity:
const float dx = particle[j].x - particle[i].x;
const float dy = particle[j].y - particle[i].y;
const float dz = particle[j].z - particle[i].z;
const float drSquared = dx*dx + dy*dy + dz*dz + softening;
const float drPower32 = pow(drSquared, 3.0/2.0);
//Calculate the net force:
Fx += dx / drPower32;
Fy += dy / drPower32;
Fz += dz / drPower32;
}//fi i!=j
}//j loop
//Accelerate particles in response to the gravitational force:
particle[i].vx += dt*Fx;
particle[i].vy += dt*Fy;
particle[i].vz += dt*Fz;
}
}//fct MoveParticles_CUDA
//-------------------------------------------------------------------------------------------------------------------------
// Initialize random number generator and particles:
void init_rand(int nParticles, struct ParticleType* particle){
srand48(0x2020);
for (int i = 0; i < nParticles; i++)
{
particle[i].x = 2.0*drand48() - 1.0;
particle[i].y = 2.0*drand48() - 1.0;
particle[i].z = 2.0*drand48() - 1.0;
particle[i].vx = 2.0*drand48() - 1.0;
particle[i].vy = 2.0*drand48() - 1.0;
particle[i].vz = 2.0*drand48() - 1.0;
}
}
//-------------------------------------------------------------------------------------------------------------------------
// Initialize (no random generator) particles
void init_norand(int nParticles, struct ParticleType* particle){
const float a=127.0/nParticles;
for (int i = 0; i < nParticles; i++)
{
particle[i].x = i*a;//2.0*drand48() - 1.0;
particle[i].y = i*a;//2.0*drand48() - 1.0;
particle[i].z = 1.0;//2.0*drand48() - 1.0;
particle[i].vx = 0.5;//2.0*drand48() - 1.0;
particle[i].vy = 0.5;//2.0*drand48() - 1.0;
particle[i].vz = 0.5;//2.0*drand48() - 1.0;
}
}
void init_sphere(int nParticles, struct ParticleType* particle){
const float a = 0.0f, b = 0.0f, c = 0.0f;
const float r = 100.0f;
particle[0].x = 0.0f;
particle[0].y = 0.0f;
particle[0].z = r;
particle[0].vx = 0.0f;
particle[0].vy = 0.0f;
particle[0].vz = -r;
particle[1].x = 0.0f;
particle[1].y = 0.0f;
particle[1].z = -r;
particle[1].vx = 0.0f;
particle[1].vy = 0.0f;
particle[1].vz = r;
for (int i = 2; i < 3289; i++)
{ float eta = 2*3.14159265359/3287;
particle[i].x = r*cos(eta);
particle[i].y = r*sin(eta);
particle[i].z = 0.0f;
particle[i].vx = -r*cos(eta);
particle[i].vy = r*sin(eta);
particle[i].vz = 0.0f;
}
for (int i = 3289; i < nParticles; i++)
float eta = 2*3.14159265359/13095.0;
particle[i].x = r*cos(eta);
particle[i].y = r*sin(eta);
particle[i].z = 0.0f;
particle[i].vx = -r*cos(eta);
particle[i].vy = r*sin(eta);
particle[i].vz = -99.0f+0.01504391f;
}
}
//-------------------------------------------------------------------------------------------------------------------------
void dump(int iter, int nParticles, struct ParticleType* particle)
{
char filename[64];
snprintf(filename, 64, "output_%d.txt", iter);
FILE *f;
f = fopen(filename, "w+");
int i;
for (i = 0; i < nParticles; i++)
{
fprintf(f, "%e %e %e %e %e %e\n",
particle[i].x, particle[i].y, particle[i].z, particle[i].vx, particle[i].vy, particle[i].vz);
}
fclose(f);
}
//-------------------------------------------------------------------------------------------------------------------------
int main(const int argc, const char** argv)
{
// Problem size and other parameters
const int nParticles = (argc > 1 ? atoi(argv[1]) : 16384);
// Duration of test
const int nSteps = (argc > 2)?atoi(argv[2]):10;
// Particle propagation time step
const float ddt = 0.0005f;
//-------------------------------------------------------------------------------------------------------------------------
//DEFINE SIZE:
int SIZE = nParticles * sizeof(struct ParticleType);
//-------------------------------------------------------------------------------------------------------------------------
//DECLARATION & ALLOC particle ON HOST:
struct ParticleType* particle = (struct ParticleType*) malloc(SIZE);
//-------------------------------------------------------------------------------------------------------------------------
// Initialize random number generator and particles
srand48(0x2020);
// Initialize random number generator and particles
//init_rand(nParticles, particle);
// Initialize (no random generator) particles
init_norand(nParticles, particle);
//-------------------------------------------------------------------------------------------------------------------------
// Perform benchmark
printf("\nPropagating %d particles using 1 thread...\n\n",
nParticles
);
double rate = 0, dRate = 0; // Benchmarking data
const int skipSteps = 3; // Skip first iteration (warm-up)
printf("\033[1m%5s %10s %10s %8s\033[0m\n", "Step", "Time, s", "Interact/s", "GFLOP/s"); fflush(stdout);
//-------------------------------------------------------------------------------------------------------------------------
cudaProfilerStart();
//-------------------------------------------------------------------------------------------------------------------------
struct ParticleType *particle_cuda;
cudaMalloc((void **)&particle_cuda, SIZE);
//-------------------------------------------------------------------------------------------------------------------------
cudaMemcpy(particle_cuda, particle, SIZE, cudaMemcpyHostToDevice);
//-------------------------------------------------------------------------------------------------------------------------
for (int step = 1; step <= nSteps; step++) {
const double tStart = omp_get_wtime(); // Start timing
cudaMemcpy(particle_cuda, particle, SIZE, cudaMemcpyHostToDevice);
MoveParticles_CUDA<<<nParticles/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(nParticles, particle_cuda);
cudaMemcpy(particle, particle_cuda, SIZE, cudaMemcpyDeviceToHost);//need to do?
const double tEnd = omp_get_wtime(); // End timing
// Move particles according to their velocities
// O(N) work, so using a serial loop
for (int i = 0 ; i < nParticles; i++) {
particle[i].x += particle[i].vx*ddt;
particle[i].y += particle[i].vy*ddt;
particle[i].z += particle[i].vz*ddt;
}
const float HztoInts = ((float)nParticles)*((float)(nParticles-1)) ;
const float HztoGFLOPs = 20.0*1e-9*((float)(nParticles))*((float)(nParticles-1));
if (step > skipSteps) { // Collect statistics
rate += HztoGFLOPs/(tEnd - tStart);
dRate += HztoGFLOPs*HztoGFLOPs/((tEnd - tStart)*(tEnd-tStart));
}
printf("%5d %10.3e %10.3e %8.1f %s\n",
step, (tEnd-tStart), HztoInts/(tEnd-tStart), HztoGFLOPs/(tEnd-tStart), (step<=skipSteps?"*":""));
fflush(stdout);
#ifdef DUMP
dump(step, nParticles, particle);
#endif
}
cudaFree(particle_cuda);
//-------------------------------------------------------------------------------------------------------------------------
cudaProfilerStop();
//-------------------------------------------------------------------------------------------------------------------------
rate/=(double)(nSteps-skipSteps);
dRate=sqrt(dRate/(double)(nSteps-skipSteps)-rate*rate);
printf("-----------------------------------------------------\n");
printf("\033[1m%s %4s \033[42m%10.1f +- %.1f GFLOP/s\033[0m\n",
"Average performance:", "", rate, dRate);
printf("-----------------------------------------------------\n");
printf("* - warm-up, not included in average\n\n");
free(particle);
return 0;
}
|
0 | ALLM | ALLM/GPU_REDO/nbody_cudaV2.cu | #include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <math.h>
#include <omp.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_profiler_api.h>
#define THREADS_PER_BLOCK 128
#define DUMP
//-------------------------------------------------------------------------------------------------------------------------
struct PType{
float x,y,z;
};
//-------------------------------------------------------------------------------------------------------------------------
//CUDA VERSION:
__global__ void MoveParticles_CUDA(const int nParticles, struct PType* const POS, struct PType* const VIT){
// Particle propagation time step
const float dt = 0.0005f;
float Fx = 0.0, Fy = 0.0, Fz = 0.0;
int i = threadIdx.x + blockIdx.x * blockDim.x;
if(i<nParticles){
for(int j = 0; j< nParticles; j++){
//no self interaction:
if(i != j){
//avoid singularity and interaction with self:
const float softening = 1e-20;
//Newton's law of universal gravity:
const float dx = POS[j].x - POS[i].x;
const float dy = POS[j].y - POS[i].y;
const float dz = POS[j].z - POS[i].z;
const float drSquared = dx*dx + dy*dy + dz*dz + softening;
const float drPower32 = pow(drSquared, 3.0/2.0);
//Calculate the net force:
Fx += dx / drPower32;
Fy += dy / drPower32;
Fz += dz / drPower32;
}//fi i!=j
}//j loop
//Accelerate particles in response to the gravitational force:
VIT[i].x += dt*Fx;
VIT[i].y += dt*Fy;
VIT[i].z += dt*Fz;
}
}//fct MoveParticles_CUDA
//-------------------------------------------------------------------------------------------------------------------------
// Initialize random number generator and particles:
void init_rand(int nParticles, struct PType* POS, struct PType* VIT){
srand48(0x2020);
for (int i = 0; i < nParticles; i++)
{
POS[i].x = 2.0*drand48() - 1.0;
POS[i].y = 2.0*drand48() - 1.0;
POS[i].z = 2.0*drand48() - 1.0;
VIT[i].x = 2.0*drand48() - 1.0;
VIT[i].y = 2.0*drand48() - 1.0;
VIT[i].z = 2.0*drand48() - 1.0;
}
}
//-------------------------------------------------------------------------------------------------------------------------
// Initialize (no random generator) particles
void init_norand(int nParticles, struct PType* POS, struct PType* VIT){
const float a=127.0/nParticles;
for (int i = 0; i < nParticles; i++)
{
POS[i].x = i*a;//2.0*drand48() - 1.0;
POS[i].y = i*a;//2.0*drand48() - 1.0;
POS[i].z = 1.0;//2.0*drand48() - 1.0;
VIT[i].x = 0.5;//2.0*drand48() - 1.0;
VIT[i].y = 0.5;//2.0*drand48() - 1.0;
VIT[i].z = 0.5;//2.0*drand48() - 1.0;
}
}
void init_sphere(int nParticles, struct ParticleType* particle){
const float a = 0.0f, b = 0.0f, c = 0.0f;
const float r = 100.0f;
particle[0].x = 0.0f;
particle[0].y = 0.0f;
particle[0].z = r;
particle[0].vx = 0.0f;
particle[0].vy = 0.0f;
particle[0].vz = -r;
particle[1].x = 0.0f;
particle[1].y = 0.0f;
particle[1].z = -r;
particle[1].vx = 0.0f;
particle[1].vy = 0.0f;
particle[1].vz = r;
for (int i = 2; i < 3289; i++)
{ float eta = 2*3.14159265359/3287;
particle[i].x = r*cos(eta);
particle[i].y = r*sin(eta);
particle[i].z = 0.0f;
particle[i].vx = -r*cos(eta);
particle[i].vy = r*sin(eta);
particle[i].vz = 0.0f;
}
for (int i = 3289; i < nParticles; i++)
float eta = 2*3.14159265359/13095.0;
particle[i].x = r*cos(eta);
particle[i].y = r*sin(eta);
particle[i].z = 0.0f;
particle[i].vx = -r*cos(eta);
particle[i].vy = r*sin(eta);
particle[i].vz = -99.0f+0.01504391f;
}
}
//-------------------------------------------------------------------------------------------------------------------------
void dump(int iter, int nParticles, struct PType* POS, struct PType* VIT)
{
char filename[64];
snprintf(filename, 64, "output_%d.txt", iter);
FILE *f;
f = fopen(filename, "w+");
int i;
for (i = 0; i < nParticles; i++)
{
fprintf(f, "%e %e %e %e %e %e\n",
POS[i].x, POS[i].y, POS[i].z, VIT[i].x, VIT[i].y, VIT[i].z);
}
fclose(f);
}
//-------------------------------------------------------------------------------------------------------------------------
int main(const int argc, const char** argv)
{
// Problem size and other parameters
const int nParticles = (argc > 1 ? atoi(argv[1]) : 16384);
// Duration of test
const int nSteps = (argc > 2)?atoi(argv[2]):10;
// Particle propagation time step
const float ddt = 0.0005f;
//-------------------------------------------------------------------------------------------------------------------------
//DEFINE SIZE:
int SIZE = nParticles * sizeof(struct PType);
//-------------------------------------------------------------------------------------------------------------------------
//DECLARATION & ALLOC particle ON HOST:
struct PType* POS = (struct PType*) malloc(SIZE);
struct PType* VIT = (struct PType*) malloc(SIZE);
//-------------------------------------------------------------------------------------------------------------------------
// Initialize random number generator and particles
srand48(0x2020);
// Initialize random number generator and particles
//init_rand(nParticles, POS, VIT);
// Initialize (no random generator) particles
init_norand(nParticles, POS, VIT);
//-------------------------------------------------------------------------------------------------------------------------
// Perform benchmark
printf("\nPropagating %d particles using 1 thread...\n\n",
nParticles
);
double rate = 0, dRate = 0; // Benchmarking data
const int skipSteps = 3; // Skip first iteration (warm-up)
printf("\033[1m%5s %10s %10s %8s\033[0m\n", "Step", "Time, s", "Interact/s", "GFLOP/s"); fflush(stdout);
//-------------------------------------------------------------------------------------------------------------------------
cudaProfilerStart();
//-------------------------------------------------------------------------------------------------------------------------
struct PType *POS_cuda;
cudaMalloc((void **)&POS_cuda, SIZE);
//cudaMemcpy(POS_cuda, POS, SIZE, cudaMemcpyHostToDevice);
//-------------------------------------------------------------------------------------------------------------------------
struct PType *VIT_cuda;
cudaMalloc((void **)&VIT_cuda, SIZE);
//cudaMemcpy(VIT_cuda, VIT, SIZE, cudaMemcpyHostToDevice);
//-------------------------------------------------------------------------------------------------------------------------
for (int step = 1; step <= nSteps; step++) {
const double tStart = omp_get_wtime(); // Start timing
cudaMemcpy(POS_cuda, POS, SIZE, cudaMemcpyHostToDevice);
cudaMemcpy(VIT_cuda, VIT, SIZE, cudaMemcpyHostToDevice);
MoveParticles_CUDA<<<nParticles/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(nParticles, POS_cuda, VIT_cuda);
cudaMemcpy(POS, POS_cuda, SIZE, cudaMemcpyDeviceToHost);
cudaMemcpy(VIT, VIT_cuda, SIZE, cudaMemcpyDeviceToHost);
const double tEnd = omp_get_wtime(); // End timing
// Move particles according to their velocities
// O(N) work, so using a serial loop
for (int i = 0 ; i < nParticles; i++) {
POS[i].x += VIT[i].x*ddt;
POS[i].y += VIT[i].y*ddt;
POS[i].z += VIT[i].z*ddt;
}
const float HztoInts = ((float)nParticles)*((float)(nParticles-1)) ;
const float HztoGFLOPs = 20.0*1e-9*((float)(nParticles))*((float)(nParticles-1));
if (step > skipSteps) { // Collect statistics
rate += HztoGFLOPs/(tEnd - tStart);
dRate += HztoGFLOPs*HztoGFLOPs/((tEnd - tStart)*(tEnd-tStart));
}
printf("%5d %10.3e %10.3e %8.1f %s\n",
step, (tEnd-tStart), HztoInts/(tEnd-tStart), HztoGFLOPs/(tEnd-tStart), (step<=skipSteps?"*":""));
fflush(stdout);
#ifdef DUMP
dump(step, nParticles, POS, VIT);
#endif
}
cudaFree(POS_cuda);
cudaFree(VIT_cuda);
//-------------------------------------------------------------------------------------------------------------------------
cudaProfilerStop();
//-------------------------------------------------------------------------------------------------------------------------
rate/=(double)(nSteps-skipSteps);
dRate=sqrt(dRate/(double)(nSteps-skipSteps)-rate*rate);
printf("-----------------------------------------------------\n");
printf("\033[1m%s %4s \033[42m%10.1f +- %.1f GFLOP/s\033[0m\n",
"Average performance:", "", rate, dRate);
printf("-----------------------------------------------------\n");
printf("* - warm-up, not included in average\n\n");
free(POS);
free(VIT);
return 0;
}
|
0 | ALLM | ALLM/GPU_REDO/nbody_omp.c | #include <stdio.h>
#include <math.h>
#include <stdlib.h> // drand48
#include <omp.h>
#define DUMP
struct ParticleType {
float x, y, z;
float vx, vy, vz;
};
void MoveParticles(const int nParticles, struct ParticleType* const particle, const float dt) {
int i,j;
float Fx,Fy,Fz;
// Loop over particles that experience force
#pragma omp parallel for private(j)
for (i = 0; i < nParticles; i++) {
// Components of the gravity force on particle i
Fx = 0, Fy = 0, Fz = 0;
// Loop over particles that exert force
for (j = 0; j < nParticles; j++) {
// No self interaction
//if (i != j) {
// Avoid singularity and interaction with self
const float softening = 1e-20;
// Newton's law of universal gravity
const float dx = particle[j].x - particle[i].x;
const float dy = particle[j].y - particle[i].y;
const float dz = particle[j].z - particle[i].z;
const float drSquared = dx*dx + dy*dy + dz*dz + softening;
const float drPower32 = pow(drSquared, 3.0/2.0);
// Calculate the net force
Fx += dx / drPower32;
Fy += dy / drPower32;
Fz += dz / drPower32;
//}
}
// Accelerate particles in response to the gravitational force
particle[i].vx += dt*Fx;
particle[i].vy += dt*Fy;
particle[i].vz += dt*Fz;
}
// Move particles according to their velocities
// O(N) work, so using a serial loop
#pragma omp parallel for
for (int i = 0 ; i < nParticles; i++) {
particle[i].x += particle[i].vx*dt;
particle[i].y += particle[i].vy*dt;
particle[i].z += particle[i].vz*dt;
}
}
void dump(int iter, int nParticles, struct ParticleType* particle)
{
char filename[64];
snprintf(filename, 64, "output_%d.txt", iter);
FILE *f;
f = fopen(filename, "w+");
int i;
for (i = 0; i < nParticles; i++)
{
fprintf(f, "%e %e %e %e %e %e\n",
particle[i].x, particle[i].y, particle[i].z,
particle[i].vx, particle[i].vy, particle[i].vz);
}
fclose(f);
}
// Initialize random number generator and particles:
void init_rand(int nParticles, struct ParticleType* particle){
srand48(0x2020);
#pragma omp parallel for
for (int i = 0; i < nParticles; i++)
{
particle[i].x = 2.0*drand48() - 1.0;
particle[i].y = 2.0*drand48() - 1.0;
particle[i].z = 2.0*drand48() - 1.0;
particle[i].vx = 2.0*drand48() - 1.0;
particle[i].vy = 2.0*drand48() - 1.0;
particle[i].vz = 2.0*drand48() - 1.0;
}
}
// Initialize (no random generator) particles
void init_norand(int nParticles, struct ParticleType* particle){
const float a=127.0/nParticles;
#pragma omp parallel for
for (int i = 0; i < nParticles; i++)
{
particle[i].x = i*a;//2.0*drand48() - 1.0;
particle[i].y = i*a;//2.0*drand48() - 1.0;
particle[i].z = 1.0;//2.0*drand48() - 1.0;
particle[i].vx = 0.5;//2.0*drand48() - 1.0;
particle[i].vy = 0.5;//2.0*drand48() - 1.0;
particle[i].vz = 0.5;//2.0*drand48() - 1.0;
}
}
int main(const int argc, const char** argv)
{
// Problem size and other parameters
const int nParticles = (argc > 1 ? atoi(argv[1]) : 16384);
// Duration of test
const int nSteps = (argc > 2)?atoi(argv[2]):10;
// Particle propagation time step
const float dt = 0.0005f;
struct ParticleType* particle = malloc(nParticles*sizeof(struct ParticleType));
// Initialize random number generator and particles
//init_rand(nParticles, particle);
// Initialize (no random generator) particles
init_norand(nParticles, particle);
// Perform benchmark
printf("\nPropagating %d particles using 1 thread...\n\n",
nParticles
);
double rate = 0, dRate = 0; // Benchmarking data
const int skipSteps = 3; // Skip first iteration (warm-up)
printf("\033[1m%5s %10s %10s %8s\033[0m\n", "Step", "Time, s", "Interact/s", "GFLOP/s"); fflush(stdout);
for (int step = 1; step <= nSteps; step++) {
const double tStart = omp_get_wtime(); // Start timing
MoveParticles(nParticles, particle, dt);
const double tEnd = omp_get_wtime(); // End timing
const float HztoInts = ((float)nParticles)*((float)(nParticles-1)) ;
const float HztoGFLOPs = 20.0*1e-9*((float)(nParticles))*((float)(nParticles-1));
if (step > skipSteps) { // Collect statistics
rate += HztoGFLOPs/(tEnd - tStart);
dRate += HztoGFLOPs*HztoGFLOPs/((tEnd - tStart)*(tEnd-tStart));
}
printf("%5d %10.3e %10.3e %8.1f %s\n",
step, (tEnd-tStart), HztoInts/(tEnd-tStart), HztoGFLOPs/(tEnd-tStart), (step<=skipSteps?"*":""));
fflush(stdout);
#ifdef DUMP
dump(step, nParticles, particle);
#endif
}
rate/=(double)(nSteps-skipSteps);
dRate=sqrt(dRate/(double)(nSteps-skipSteps)-rate*rate);
printf("-----------------------------------------------------\n");
printf("\033[1m%s %4s \033[42m%10.1f +- %.1f GFLOP/s\033[0m\n",
"Average performance:", "", rate, dRate);
printf("-----------------------------------------------------\n");
printf("* - warm-up, not included in average\n\n");
free(particle);
return 0;
}
|
0 | ALLM | ALLM/GPU_REDO/openacc.c | #include <stdio.h>
#include <math.h>
#include <stdlib.h> // drand48
#include <omp.h>
#define DUMP
struct ParticleType {
float x, y, z;
float vx, vy, vz;
};
void MoveParticles(const int nParticles, struct ParticleType* const particle, const float dt) {
int i,j;
float Fx,Fy,Fz;
// Loop over particles that experience force
#pragma parallel loop//acc kernels async(2) wait(1)
for (i = 0; i < nParticles; i++) {
// Components of the gravity force on particle i
Fx = 0, Fy = 0, Fz = 0;
// Loop over particles that exert force
//#pragma acc parallel loop independent reduction(+:Fx,Fy,Fz)
for (j = 0; j < nParticles; j++) {
// No self interaction
// Avoid singularity and interaction with self
const float softening = 1e-20;
// Newton's law of universal gravity
const float dx = particle[j].x - particle[i].x;
const float dy = particle[j].y - particle[i].y;
const float dz = particle[j].z - particle[i].z;
const float drSquared = dx*dx + dy*dy + dz*dz + softening;
const float drPower32 = pow(drSquared, 3.0/2.0);
// Calculate the net force
Fx += dx / drPower32;
Fy += dy / drPower32;
Fz += dz / drPower32;
}
// Accelerate particles in response to the gravitational force
particle[i].vx += dt*Fx;
particle[i].vy += dt*Fy;
particle[i].vz += dt*Fz;
}
// Move particles according to their velocities
// O(N) work, so using a serial loop
for (int i = 0 ; i < nParticles; i++) {
particle[i].x += particle[i].vx*dt;
particle[i].y += particle[i].vy*dt;
particle[i].z += particle[i].vz*dt;
}
}
void dump(int iter, int nParticles, struct ParticleType* particle)
{
char filename[64];
snprintf(filename, 64, "output_%d.txt", iter);
FILE *f;
f = fopen(filename, "w+");
int i;
for (i = 0; i < nParticles; i++)
{
fprintf(f, "%e %e %e %e %e %e\n",
particle[i].x, particle[i].y, particle[i].z,
particle[i].vx, particle[i].vy, particle[i].vz);
}
fclose(f);
}
// Initialize random number generator and particles:
void init_rand(int nParticles, struct ParticleType* particle){
srand48(0x2020);
for (int i = 0; i < nParticles; i++)
{
particle[i].x = 2.0*drand48() - 1.0;
particle[i].y = 2.0*drand48() - 1.0;
particle[i].z = 2.0*drand48() - 1.0;
particle[i].vx = 2.0*drand48() - 1.0;
particle[i].vy = 2.0*drand48() - 1.0;
particle[i].vz = 2.0*drand48() - 1.0;
}
}
// Initialize (no random generator) particles
void init_norand(int nParticles, struct ParticleType* particle){
const float a=127.0/nParticles;
for (int i = 0; i < nParticles; i++)
{
particle[i].x = i*a;//2.0*drand48() - 1.0;
particle[i].y = i*a;//2.0*drand48() - 1.0;
particle[i].z = 1.0;//2.0*drand48() - 1.0;
particle[i].vx = 0.5;//2.0*drand48() - 1.0;
particle[i].vy = 0.5;//2.0*drand48() - 1.0;
particle[i].vz = 0.5;//2.0*drand48() - 1.0;
}
}
int main(const int argc, const char** argv)
{
// Problem size and other parameters
const int nParticles = (argc > 1 ? atoi(argv[1]) : 16384);
// Duration of test
const int nSteps = (argc > 2)?atoi(argv[2]):10;
// Particle propagation time step
const float dt = 0.0005f;
struct ParticleType* particle = malloc(nParticles*sizeof(struct ParticleType));
// Initialize random number generator and particles
//init_rand(nParticles, particle);
// Initialize (no random generator) particles
init_norand(nParticles, particle);
// Perform benchmark
printf("\nPropagating %d particles using 1 thread...\n\n",
nParticles
);
double rate = 0, dRate = 0; // Benchmarking data
const int skipSteps = 3; // Skip first iteration (warm-up)
printf("\033[1m%5s %10s %10s %8s\033[0m\n", "Step", "Time, s", "Interact/s", "GFLOP/s"); fflush(stdout);
#pragma acc data copyin(particle[0:nParticles],dt)
for (int step = 1; step <= nSteps; step++) {
const double tStart = omp_get_wtime(); // Start timing
#pragma acc update host(particle[0:nParticles])
MoveParticles(nParticles, particle, dt);
#pragma acc update device(particle[0:nParticles])
const double tEnd = omp_get_wtime(); // End timing
const float HztoInts = ((float)nParticles)*((float)(nParticles-1)) ;
const float HztoGFLOPs = 20.0*1e-9*((float)(nParticles))*((float)(nParticles-1));
if (step > skipSteps) { // Collect statistics
rate += HztoGFLOPs/(tEnd - tStart);
dRate += HztoGFLOPs*HztoGFLOPs/((tEnd - tStart)*(tEnd-tStart));
}
printf("%5d %10.3e %10.3e %8.1f %s\n",
step, (tEnd-tStart), HztoInts/(tEnd-tStart), HztoGFLOPs/(tEnd-tStart), (step<=skipSteps?"*":""));
fflush(stdout);
#ifdef DUMP
dump(step, nParticles, particle);
#endif
}
rate/=(double)(nSteps-skipSteps);
dRate=sqrt(dRate/(double)(nSteps-skipSteps)-rate*rate);
printf("-----------------------------------------------------\n");
printf("\033[1m%s %4s \033[42m%10.1f +- %.1f GFLOP/s\033[0m\n",
"Average performance:", "", rate, dRate);
printf("-----------------------------------------------------\n");
printf("* - warm-up, not included in average\n\n");
free(particle);
}
|
0 | ALLM | ALLM/MAILLAGE/barycentre.f90 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!Programme adapté au prog de base pour connaitre si oui ou non un point est dans le triangle grâce aux oordonnées barycentriques w1 w2 w3 du point
!!!!A modifier pour qu'ils renvoient les signes des coordonnées barycentriques
logical function in_triangle(Ptarget,CO3P)
implicit none
Real(PR), Dimension(2), Intent(IN) :: Ptarget !X Y
Real(PR), Dimension(6), Intent(IN) :: CO3P !X1 Y1 X2 Y2 X3 Y3
!Real(PR), Intent(IN) :: WIZ ! What IS ZERO i.e la tol pour Dist
Real(PR) :: A123, P12,P23,P31
Real(PR)::xP2_3,yP2_3,xP3_1,yP2_3,xP1_2,yP1_2,w1,w2,w3
!Calcul de l'aire du triangle
P12=COP3(1)*COP3(4)-COP3(2)*COP3(3)
P23=COP3(3)*COP3(6)-COP3(4)*COP3(5)
P31=COP3(5)*COP3(2)-COP3(6)*COP3(1)
A123=abs((P12+P23+P31)/2)
!Calcul des coordonnées des 'différences' des sommets
xP2_3=COP3(3)-COP3(5); yP2_3=COP3(4)-COP3(6);
xP3_1=COP3(5)-COP3(1); yP3_1=COP3(6)-COP3(2);
xP1_2=COP3(1)-COP3(3); yP1_2=COP3(2)-COP3(4);
!Calcul des coordonnées barycentriques
w1=(P23-Ptarget(1)*yP2_3+Ptarget(2)*xP2_3)/A123
w2=(P31-Ptarget(1)*yP3_1+Ptarget(2)*xP3_1)/A123
w3=(P12-Ptarget(1)*yP1_2+Ptarget(2)*xP1_2)/A123
IF(w1>0 .and. w2>0 .and. w3>0)THEN
in_triangle = .TRUE.
ELSE
in_triangle = .FALSE.
END IF
end function in_triangle
|
0 | ALLM | ALLM/MULTI_COEURS/aos.c | #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#define SIZE 50000000
typedef struct {
float a,b,c,d,e,f,g,h;
} s_t;
void wr_time(int echo, double sum_main, double sum){
int j;
FILE *fpp;
fpp = fopen ("time.txt", "a");
if(echo == 0){fputs("temps cpu: main func compute \n", fpp );}
fprintf(fpp, " aos.c %f %f \n", sum_main, sum );
fclose(fpp);
}
void wr(s_t *a){
int j;
FILE *fp;
fp = fopen ("val.txt", "a");
fputs(" j .a .b .d \n", fp );
for(j=0; j<32; j++){
fprintf(fp, "%d %f %f %f \n",j, a[j].a,a[j].b,a[j].d );
}
fclose(fp);
}
void compute(s_t *a) {
int i;
for (i=4; i<SIZE; i++) {//boucle elements
a[i].a=(a[i-1].b * 0.42 + a[i-3].d * 0.32);
//fprintf(stderr,"wwi=%d %f %f %f %f\n",i,a[i].a,a[i-1].b,a[i-3].d,0.42*a[i-1].b+0.32*a[i-3].d);
a[i].b = a[i].c / 7.56+ a[i].f;
a[i].c = a[i].d + a[i].g*a[i].d;
a[i].d = .567111/sqrt(a[i].f*a[i].f + a[i].h*a[i].h);
a[i].e*=exp(-a[i].d);
//fprintf(stderr,".g %f \n",a[i].g);
if (a[i].f + a[i].g>1e-3){a[i].f = (a[i].f - a[i].g)*(a[i].f + a[i].g);}
//fprintf(stderr,". i= %d i-4= %d gi-4 %f gi %f bi %f di %f \n",i,i-4,a[i-4].g,a[i].g,a[i].b,a[i].d);
a[i].g = a[i-4].g + .1;
//fprintf(stderr,". apres i= %d i-4= %d gi-4 %f gi %f bi %f di %f \n",i,i-4,a[i-4].g,a[i].g,a[i].b,a[i].d);
//fprintf(stderr,".g %f \n",a[i].g);
a[i].h = .3*a[i].h + .2;
}
}
int main() {
int i,j;
float percent;
clock_t tm1, tm2, tc1, tc2;
double sum_main, sum;
s_t *a;
a=(s_t *)malloc(sizeof(s_t)*SIZE);
tm1 = tm2 = tc1 = tc2 = sum = 0.0;
/* Initialization */
tm1 = clock();
for (i=0; i<SIZE; i++){a[i].a=a[i].b=a[i].c=a[i].d=a[i].e=a[i].f=a[i].g=a[i].h=1./(i+1);}
//fprintf(stderr,"%f %f %f %f\n",a[8].a,a[7].b,a[5].d,0.42*a[7].b+0.32*a[5].d);
//wr(a);
/* Computation */
for(i=0;i<100;i++) {//boucle temps
tc1 =clock();
//fprintf(stderr,".g av compute %f \n",a[8].g);
//for(j=0;j<2*8;j++){fprintf(stderr,"temps= %d j=%d a.b %f a.d %f \n", i, j, a[j].b, a[j].d);}
compute(a);
//wr(a);
//for(j=0;j<2*8;j++){fprintf(stderr,"temps= %d j=%d a.a %f a.h %f \n", i, j, a[j].a, a[j].h);}
tc2 =clock();
sum = sum + ( (double) (tc2-tc1) ) /CLOCKS_PER_SEC ;
if((i % 10)==0 ){
percent = (i* (float) 100) / ((float) 99);
fprintf(stderr,"\r TPS CODE= %f In progress %f %% ",sum, percent);fflush(stdout);
}
//fprintf(stderr,".");
//fprintf(stderr,"*** %f %f %f %f\n",a[8].a,a[7].b,a[5].d,0.42*a[7].b+0.32*a[5].d);
}
tm2 = clock();
sum_main = ((double) (tm2-tm1))/CLOCKS_PER_SEC;
fprintf(stderr,"%f ",a[10].a);
fprintf(stderr,"\n");
fprintf(stderr, "alloc a==s_t: %ld\n",sizeof(s_t)*SIZE );
/*for(i=0; i<SIZE; i++){
fprintf(stderr, "%d %f %f %f \n",i, a[i].a,a[i].b,a[i].c );}
wr(a);*/
int echo=1;
wr_time(echo, sum_main, sum);
free(a);
return 0;
}
|
0 | ALLM | ALLM/MULTI_COEURS/aos_C1.c | #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#define SIZE 50000000
#define BLOCK 8
#define QO SIZE/BLOCK
typedef struct {
float a,b,c,d,e,f,g,h;
} s_t;
typedef struct {
float gtmp;
} s_t_temp;
void init_bd_gtmp(s_t_temp *btmp, s_t_temp *dtmp, int i){
int j, jj, jjj;
j = (i-1)*BLOCK;
for(jj=0; jj<BLOCK; jj++){
jjj = j+jj;
btmp[jj].gtmp=dtmp[jj].gtmp=1./(jjj+1);
//fprintf(stderr,"jjj= %d co= %f a[%d].a= %f \n",jjj, 1./(jjj+1), jj, a[jj].a);
}
}
void init_s_t(s_t *a, int i){
int j, jj, jjj;
j = (i-1)*BLOCK;
for(jj=0; jj<BLOCK; jj++){
jjj = j+jj;
a[jj].a=a[jj].b=a[jj].c=a[jj].d=a[jj].e=a[jj].f=a[jj].g=a[jj].h=1./(jjj+1);
//fprintf(stderr,"jjj= %d co= %f a[%d].a= %f \n",jjj, 1./(jjj+1), jj, a[jj].a);
}
}
void wr_time(int echo, double sum_main, double sum){
int j;
FILE *fpp;
fpp = fopen ("time.txt", "a");
if(echo == 0){fputs("temps cpu: main func compute \n", fpp );}
else{fprintf(fpp, "aos_C1.c %f %f \n", sum_main, sum );}
fclose(fpp);
}
void wr(s_t *a){
int j;
FILE *fp;
fp = fopen ("val_C1.txt", "a");
fputs("j .a .b .d \n", fp );
for(j=0; j<BLOCK; j++){
fprintf(fp, "%d %f %f %f \n",j, a[j].a,a[j].b,a[j].d );
}
fclose(fp);
}
void compute(s_t *a) {
int i;
for (i=4; i<8; i++) {//boucle elements
a[i].a=(a[i-1].b * 0.42 + a[i-3].d * .32);
//fprintf(stderr,"B47 i=%d %f %f %f %f\n",i,a[i].a,a[i-1].b,a[i-3].d,0.42*a[i-1].b+0.32*a[i-3].d);
a[i].b = a[i].c / 7.56+ a[i].f;
a[i].c = a[i].d + a[i].g*a[i].d;
a[i].d = .567111/sqrt(a[i].f*a[i].f + a[i].h*a[i].h);
a[i].e*=exp(-a[i].d);
if (a[i].f + a[i].g>1e-3)
a[i].f = (a[i].f - a[i].g)*(a[i].f + a[i].g);
a[i].g = a[i-4].g + .1;
a[i].h = .3*a[i].h + .2;
}
}
void compute_s_t(s_t *a, s_t_temp *gtmp, s_t_temp *btmp, s_t_temp *dtmp, int it) {
int i, j;
int temps;
for(temps=0; temps<100; temps++){//boucle temps
for(j=0;j<BLOCK-1;j++){btmp[j].gtmp=a[j].c / 7.56+ a[j].f;}
for(j=0;j<BLOCK-3;j++){dtmp[j].gtmp=.567111/sqrt(a[j].f*a[j].f + a[j].h*a[j].h);}
//a[i].a=(a[i-1].b * 0.42 + a[i-3].d * .32);
a[0].a=(btmp[7].gtmp * 0.42 + dtmp[5].gtmp * .32);
//fprintf(stderr,"$$temps= %d a7.b %f a5.d %f \n", temps, btmp[7].gtmp, dtmp[5].gtmp);
//fprintf(stderr, "temps= %d \n",temps);
//a[0].a=(a[3].b * 0.42 + a[1].d * .32);
//fprintf(stderr, "%d %f %f %f \n",temps, a[0].a,a[3].b,a[1].d );
a[1].a=(btmp[0].gtmp * 0.42 + dtmp[6].gtmp * .32);
a[2].a=(btmp[1].gtmp * 0.42 + dtmp[7].gtmp * .32);
a[3].a=(btmp[2].gtmp * 0.42 + dtmp[0].gtmp * .32);
//fprintf(stderr,"!!temps= %d a2.b %f a0.d %f \n", temps, a[2].b, a[0].d);
a[4].a=(btmp[3].gtmp * 0.42 + dtmp[1].gtmp * .32);
//fprintf(stderr, "%d %f %f %f \n",temps, a[4].a,a[3].b,a[1].d );
a[5].a=(btmp[4].gtmp * 0.42 + dtmp[2].gtmp * .32);
//fprintf(stderr,"??temps= %d a4.b %f a0.d %f \n", temps, a[4].b, a[4].d);
a[6].a=(btmp[5].gtmp * 0.42 + dtmp[3].gtmp * .32);
a[7].a=(btmp[6].gtmp * 0.42 + dtmp[4].gtmp * .32);
//a[i].b = a[i].c / 7.56+ a[i].f;
a[0].b = a[0].c / 7.56+ a[0].f;
a[1].b = a[1].c / 7.56+ a[1].f;
a[2].b = a[2].c / 7.56+ a[2].f;
a[3].b = a[3].c / 7.56+ a[3].f;
a[4].b = a[4].c / 7.56+ a[4].f;
a[5].b = a[5].c / 7.56+ a[5].f;
a[6].b = a[6].c / 7.56+ a[6].f;
a[7].b = a[7].c / 7.56+ a[7].f;
//SWAP:
//for(j=0;j<BLOCK;j++){btmp[j].gtmp=a[j].b;}
//fprintf(stderr,"temps= %d a7.b %f a5.d %f \n", temps, a[7].b, a[5].d);
//a[i].c = a[i].d + a[i].g*a[i].d;
a[0].c = a[0].d + a[0].g*a[0].d;
a[1].c = a[1].d + a[1].g*a[1].d;
a[2].c = a[2].d + a[2].g*a[2].d;
a[3].c = a[3].d + a[3].g*a[3].d;
a[4].c = a[4].d + a[4].g*a[4].d;
a[5].c = a[5].d + a[5].g*a[5].d;
a[6].c = a[6].d + a[6].g*a[6].d;
a[7].c = a[7].d + a[7].g*a[7].d;
//a[i].d = .567111/sqrt(a[1].f*a[i].f + a[i].h*a[i].h);
/*a[].d = .567111/sqrt(a[].f*a[].f + a[].h*a[].h);*/
a[0].d = .567111/sqrt(a[0].f*a[0].f + a[0].h*a[0].h);
a[1].d = .567111/sqrt(a[1].f*a[1].f + a[1].h*a[1].h);
a[2].d = .567111/sqrt(a[2].f*a[2].f + a[2].h*a[2].h);
a[3].d = .567111/sqrt(a[3].f*a[3].f + a[3].h*a[3].h);
a[4].d = .567111/sqrt(a[4].f*a[4].f + a[4].h*a[4].h);
a[5].d = .567111/sqrt(a[5].f*a[5].f + a[5].h*a[5].h);
a[6].d = .567111/sqrt(a[6].f*a[6].f + a[6].h*a[6].h);
a[7].d = .567111/sqrt(a[7].f*a[7].f + a[7].h*a[7].h);
//SWAP:
// for(j=0;j<BLOCK;j++){dtmp[j].gtmp=a[j].d;}
//a[i].e*=exp(-a[i].d);
a[0].e *= exp(-a[0].d);
a[1].e *= exp(-a[1].d);
a[2].e *= exp(-a[2].d);
a[3].e *= exp(-a[3].d);
a[4].e *= exp(-a[4].d);
a[5].e *= exp(-a[5].d);
a[6].e *= exp(-a[6].d);
a[7].e *= exp(-a[7].d);
for(i=0; i<BLOCK; i++){
//if (a[i].f + gm[i].gtmp>1e-3){a[i].f = (a[i].f - gm[i].gtmp)*(a[i].f + gm[i].gtmp);}
if (a[i].f + a[i].g>1e-3){a[i].f = (a[i].f - a[i].g)*(a[i].f + a[i].g);}
}
//a[i].g = a[i-4].g + .1;
a[0].g = gtmp[0].gtmp + 0.1;
a[1].g = gtmp[1].gtmp + 0.1;
a[2].g = gtmp[2].gtmp + 0.1;
a[3].g = gtmp[3].gtmp + 0.1;
a[4].g = gtmp[4].gtmp + 0.1;
a[5].g = gtmp[5].gtmp + 0.1;
a[6].g = gtmp[6].gtmp + 0.1;
a[7].g = gtmp[7].gtmp + 0.1;
//gtmp[0:7].gtmp = a[0:7].g;
/*gtmp[0].gtmp = a[4].g;
gtmp[1].gtmp = a[5].g;
gtmp[2].gtmp = a[6].g;
gtmp[3].gtmp = a[7].g;
gtmp[4].gtmp = a[4].g//+ .1;
gtmp[5].gtmp = a[5].g//+ .1;
gtmp[6].gtmp = a[6].g//+ .1;
gtmp[7].gtmp = a[7].g//+ .1;*/
//a[i].h = .3*a[i].h + .2;
a[0].h = .3*a[0].h + .2;
a[1].h = .3*a[1].h + .2;
a[2].h = .3*a[2].h + .2;
a[3].h = .3*a[3].h + .2;
a[4].h = .3*a[4].h + .2;
a[5].h = .3*a[5].h + .2;
a[6].h = .3*a[6].h + .2;
a[7].h = .3*a[7].h + .2;
//wr(a);
//for(j=0;j<BLOCK;j++){fprintf(stderr,"temps= %d [8:15] j=%d a.a %f a.h %f \n", temps, j, a[j].a, a[j].h);}
}
}
int main() {
int i, j;
float percent;
int echo;
clock_t tm1, tm2, tc1, tc2;
double sum_main, sum;
s_t *a;
s_t_temp *gtmp, *btmp, *dtmp;
a = (s_t *)malloc(sizeof(s_t)*BLOCK);
gtmp = (s_t_temp *)malloc(sizeof(s_t_temp)*BLOCK);
btmp = (s_t_temp *)malloc(sizeof(s_t_temp)*BLOCK);
dtmp = (s_t_temp *)malloc(sizeof(s_t_temp)*BLOCK);
tm1 = tm2 = tc1 = tc2 = sum = sum_main = 0.0;
echo = 0;
wr_time(echo, sum_main, sum);
/* Initialization */
init_s_t(a, 1);
//wr(a);
//boucle temps
for(i=0;i<100;i++){
/*fprintf(stderr,"temps= %d a7.b %f a5.d %f \n", i, a[7].b, a[5].d);
fprintf(stderr,"!!temps= %d a2.b %f a0.d %f \n", i, a[2].b, a[0].d);
fprintf(stderr,"??temps= %d a4.b %f a4.d %f \n", i, a[4].b, a[4].d);*/
compute(a);
//wr(a);
//for(j=0;j<BLOCK;j++){fprintf(stderr,"temps= %d [0:7] j=%d a.h %f a.f %f \n", i, j, a[j].a, a[j].h);}
}
tm1 = clock();
/* Computation */
for(i=2;i<QO+1;i++) {//boucle elements
/*INITIALIZATION*/
btmp[7].gtmp = a[7].b;
dtmp[7].gtmp = a[7].d;
dtmp[6].gtmp = a[6].d;
dtmp[5].gtmp = a[5].d;
gtmp[0].gtmp = a[4].g;
gtmp[1].gtmp = a[5].g;
gtmp[2].gtmp = a[6].g;
gtmp[3].gtmp = a[7].g;
gtmp[4].gtmp = a[4].g+0.1;
gtmp[5].gtmp = a[5].g+0.1;
gtmp[6].gtmp = a[6].g+0.1;
gtmp[7].gtmp = a[7].g+0.1;
init_s_t(a, i);
//init_bd_gtmp(btmp, dtmp, i-1);
/*gtmp[0].gtmp = a[0].g+ .1;
gtmp[1].gtmp = a[1].g+ .1;
gtmp[2].gtmp = a[2].g+ .1;
gtmp[3].gtmp = a[3].g+ .1;
gtmp[4].gtmp = a[0].g+ .2;
gtmp[5].gtmp = a[1].g+ .2;
gtmp[6].gtmp = a[2].g+ .2;
gtmp[7].gtmp = a[3].g+ .2;*/
//for(j=0;j<BLOCK;j++){fprintf(stderr,"B816 j gtmp.gtmp j=%d %f \n", j, gtmp[j].gtmp);}
//fprintf(stderr,"a[%d].a= %f \n", 2, a[2].a);
//gtmp[].gtmp = a[].g; //already swap by init_s_t?!
tc1 =clock();
//for(j=0;j<BLOCK;j++){fprintf(stderr,"B816 av compute a.g j=%d %f \n", j, a[j].g);}
compute_s_t(a, gtmp, btmp, dtmp, i);
//for(j=0;j<BLOCK;j++){fprintf(stderr,"B816 j=%d %f %f \n", j, a[j].a, a[j].g);}
//if(i==1){
//fprintf(stderr,"!!! a[%d].a= %f \n", 2, a[2].a);
//fprintf(stderr,"%f ",a[2].a);
//fprintf(stderr,"\n");
//}
tc2 =clock();
if((i == 2) ){fprintf(stderr,"%f \n",a[2].a);}
sum = sum + ( (double) (tc2-tc1) ) /CLOCKS_PER_SEC ;
if((i % 10000)==0 ){
percent = (i* (float) 100) / ((float) QO);
fprintf(stderr,"\r TPS CODE= %f In progress %f %% ",sum, percent);fflush(stdout);
}
}
tm2 = clock();
sum_main = ((double) (tm2-tm1))/CLOCKS_PER_SEC;
fprintf(stderr,"\n");
//fprintf(stderr,"%f ",a[2].a);
//fprintf(stderr,"\n");
fprintf(stderr, "alloc a==s_t: %ld \n",sizeof(s_t)*BLOCK+3*sizeof(s_t_temp)*BLOCK );
/*for(i=0; i<SIZE; i++){
fprintf(stderr, "%d %f %f %f \n",i, a[i].a,a[i].b,a[i].c );}
wr(a);*/
echo=1;
wr_time(echo, sum_main, sum);
free(a);
free(gtmp);
free(btmp);
free(dtmp);
return 0;
}
|
0 | ALLM | ALLM/NANIKA/nanika.py | from pathlib import Path
import getopt, sys, os, shutil
from langchain_community.document_loaders import (
DirectoryLoader, UnstructuredPDFLoader, TextLoader,
PythonLoader, UnstructuredImageLoader,
UnstructuredExcelLoader, UnstructuredWordDocumentLoader, UnstructuredXMLLoader,
UnstructuredCSVLoader, UnstructuredPowerPointLoader, UnstructuredODTLoader,
UnstructuredMarkdownLoader
)
from langchain_community.embeddings import OllamaEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
#from langchain.indexes import VectorstoreIndexCreator
from langchain.prompts import ChatPromptTemplate, PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.chat_models import ChatOllama
from langchain_core.runnables import RunnablePassthrough
from langchain.retrievers.multi_query import MultiQueryRetriever
def routerloader(obj):
loader = []
accumulator = []
if os.path.isfile(obj):
Fname = os.path.basename(obj)
if Fname.endswith(".pdf"):
loader = UnstructuredPDFLoader(str(obj), mode="single", strategy="hi_res",
show_progress=True, use_multithreading=True)
if Fname.endswith(".txt") or Fname.endswith(".py"):
loader = TextLoader(obj, autodetect_encoding = True)
# BEGIN F90 C .h CPP As TextLoader
if Fname.endswith(".f90") or Fname.endswith(".c") or Fname.endswith(".h") or Fname.endswith(".cpp"):
loader = TextLoader(obj, autodetect_encoding = True)
# END F90 C .h CPP As TextLoader
if Fname.endswith(".py"):
loader = PythonLoader(obj)
if Fname.endswith(".png") or Fname.endswith(".jpg"):
loader = UnstructuredImageLoader(str(obj), mode="single", strategy="hi_res",
show_progress=True, use_multithreading=True)
if Fname.endswith(".xlsx") or Fname.endswith(".xls"):
loader = UnstructuredExcelLoader(str(obj), mode="single", strategy="hi_res",
show_progress=True, use_multithreading=True)
if Fname.endswith(".odt"):
loader = UnstructuredODTLoader(str(obj), mode="single", strategy="hi_res",
show_progress=True, use_multithreading=True)
if Fname.endswith(".csv"):
loader = UnstructuredCSVLoader(str(obj), mode="single", strategy="hi_res",
show_progress=True, use_multithreading=True)
if Fname.endswith(".pptx"):
loader = UnstructuredPowerPointLoader(str(obj), mode="single", strategy="hi_res",
show_progress=True, use_multithreading=True)
if Fname.endswith(".md"):
loader = UnstructuredMarkdownLoader(str(obj), mode="single", strategy="hi_res",
show_progress=True, use_multithreading=True)
if Fname.endswith(".org"):
loader = UnstructuredOrgModeLoader(str(obj), mode="single", strategy="hi_res",
show_progress=True, use_multithreading=True)
accumulator.extend(loader.load())
elif os.path.isdir(obj):
if any(File.endswith(".pdf") for File in os.listdir(obj)):
abc={'mode': "single", 'strategy': "hi_res"}
loader = DirectoryLoader(
obj, glob="**/*.pdf", loader_cls=UnstructuredPDFLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
if any(File.endswith(".txt") for File in os.listdir(obj)):
abc={'autodetect_encoding': True}
loader = DirectoryLoader(
obj, glob="**/*.txt", loader_cls=TextLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
# BEGIN F90 C .h CPP As TextLoader
if any(File.endswith(".f90") for File in os.listdir(obj)):
abc={'autodetect_encoding': True}
loader = DirectoryLoader(
obj, glob="**/*.f90", loader_cls=TextLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
if any(File.endswith(".c") for File in os.listdir(obj)):
abc={'autodetect_encoding': True}
loader = DirectoryLoader(
obj, glob="**/*.c", loader_cls=TextLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
if any(File.endswith(".h") for File in os.listdir(obj)):
abc={'autodetect_encoding': True}
loader = DirectoryLoader(
obj, glob="**/*.h", loader_cls=TextLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
if any(File.endswith(".cpp") for File in os.listdir(obj)):
abc={'autodetect_encoding': True}
loader = DirectoryLoader(
obj, glob="**/*.cpp", loader_cls=TextLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
# END F90 C .h CPP As TextLoader
if any(File.endswith(".py") for File in os.listdir(obj)):
loader = DirectoryLoader(
obj, glob="**/*.py", loader_cls=PythonLoader,
show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
if any(File.endswith(".png") for File in os.listdir(obj)):
abc={'mode': "single", 'strategy': "hi_res"}
loader = DirectoryLoader(
obj, glob="**/*.png", loader_cls=UnstructuredImageLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
if any(File.endswith(".jpg") for File in os.listdir(obj)):
abc={'mode': "single", 'strategy': "hi_res"}
loader = DirectoryLoader(
obj, glob="**/*.jpg", loader_cls=UnstructuredImageLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
if any(File.endswith(".xls") for File in os.listdir(obj)):
abc={'mode': "single", 'strategy': "hi_res"}
loader = DirectoryLoader(
obj, glob="**/*.xls", loader_cls=UnstructuredExcelLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
if any(File.endswith(".xlsx") for File in os.listdir(obj)):
abc={'mode': "single", 'strategy': "hi_res"}
loader = DirectoryLoader(
obj, glob="**/*.xlsx", loader_cls=UnstructuredExcelLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
if any(File.endswith(".odt") for File in os.listdir(obj)):
abc={'mode': "single", 'strategy': "hi_res"}
loader = DirectoryLoader(
obj, glob="**/*.odt", loader_cls=UnstructuredODTLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
if any(File.endswith(".csv") for File in os.listdir(obj)):
abc={'mode': "single", 'strategy': "hi_res"}
loader = DirectoryLoader(
obj, glob="**/*.csv", loader_cls=UnstructuredCSVLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
if any(File.endswith(".pptx") for File in os.listdir(obj)):
abc={'mode': "single", 'strategy': "hi_res"}
loader = DirectoryLoader(
obj, glob="**/*.pptx", loader_cls=UnstructuredPowerPointLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
if any(File.endswith(".md") for File in os.listdir(obj)):
abc={'mode': "single", 'strategy': "hi_res"}
loader = DirectoryLoader(
obj, glob="**/*.md", loader_cls=UnstructuredMarkdownLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
if any(File.endswith(".org") for File in os.listdir(obj)):
abc={'mode': "single", 'strategy': "hi_res"}
loader = DirectoryLoader(
obj, glob="**/*.org", loader_cls=UnstructuredOrgModeLoader,
loader_kwargs=abc, show_progress=True, use_multithreading=True
)
accumulator.extend(loader.load())
return accumulator
def loaddata(data_path):
documents = []
for data in data_path:
documents.extend(routerloader(data))
return documents
def remove_blankline(d):
text = d.page_content.replace('\n\n','\n')
d.page_content = text
return d
def initfromcmdlineargs():
PDF_ROOT_DIR = ""
IDOC_PATH = []
VDB_PATH = "./default_chroma_vdb"
COLLECTION_NAME = "default_collection_name"
MODEL_NAME = ""
EMBEDDING_NAME = ""
REUSE_VDB = False
DISPLAY_DOC = False
argumentlist = sys.argv[1:]
options = "hm:e:i:v:c:r:d:"
long_options = ["help",
"model_name=",
"embedding_name=",
"inputdocs_path=",
"vdb_path=",
"collection_name=",
"reuse=",
"display_doc="]
try:
arguments, values = getopt.getopt(argumentlist, options, long_options)
for currentArgument, currentValue in arguments:
print("currArg ", currentArgument, " currVal", currentValue)
if currentArgument in ("-h", "--help"):
print ("Displaying Help:")
print ("-h or --help to get this help msg")
print ("-m or --model_name name of the model used, ex:phi3")
print ("-e or --embedding_name name of the embedding model used, ex:nomic-embed-text")
print ("-i or --inputdocs_path path list between \" \" to folders or files to be used for RAG")
print ("-v or --vdb_path path to the directory used as a vector database")
print ("-c or --collection_name name of the vector database collection")
print ("Collection name Rules:")
print ("(1) contains 3-63 characters")
print ("(2) starts and ends with an alphanumeric character")
print ("(3) otherwise contains only alphanumeric characters, underscores or hyphens (-)")
print ("(4) contains no two consecutive periods (..) and")
print ("(5) is not a valid IPv4 address")
print ("-r or --reuse str True or False reuse vector database")
print("-d or --display_doc str Tur or False whether or not to display partially input documents")
print("Command line arguments example:")
print("python --model_name MyModelName --embedding_name MyEmbeddingModel \ ")
print("--inputdocs_path \"My/Path/To/folder1 My/Path/To/folder2 My/Path/To/file1\" \ ")
print("--collection_name MyCollectionName \ ")
print("--reuse False --display-doc False")
exit()
elif currentArgument in ("-m", "--model_name"):
MODEL_NAME = currentValue
elif currentArgument in ("-e", "--embedding_name"):
EMBEDDING_NAME = currentValue
elif currentArgument in ("-i", "--inputdocs_path"):
for i in currentValue.split(" "):
if (len(i) != 0):
if (os.path.isfile(i)) or ((os.path.isdir(i)) and (len(os.listdir(i)) != 0)):
IDOC_PATH.append(Path(i))
elif currentArgument in ("-v", "--vdb_path"):
VDB_PATH = Path(currentValue)
elif currentArgument in ("-c", "--collection_name"):
COLLECTION_NAME = currentValue
elif currentArgument in ("-r", "--reuse"):
if currentValue.casefold() == "true":
REUSE_VDB = True
else:
REUSE_VDB = False
elif currentArgument in ("-d", "--display_doc"):
if currentValue.casefold() == "true":
DISPLAY_DOC = True
else:
DISPLAY_DOC = False
return MODEL_NAME, EMBEDDING_NAME, IDOC_PATH, VDB_PATH, COLLECTION_NAME, REUSE_VDB, DISPLAY_DOC
except getopt.error as err:
print (str(err))
exit()
def create_vdb(splitted_data, embedding, vdb_path, collection_name, reuse_vdb):
"""Create a vector database from the documents"""
Isvectordb = False
if vdb_path.exists():
if any(vdb_path.iterdir()):
if reuse_vdb == True:
vectordb = Chroma(persist_directory=str(vdb_path),
embedding_function=embedding,
collection_name=collection_name)
print("vectordb._collection.count() ", vectordb._collection.count())
Isvectordb = True
print(f"vector database REUSED in {vdb_path}")
else:
shutil.rmtree(str(vdb_path))
print(f"vector database REMOVED in {vdb_path}")
else:
vdb_path.mkdir(parents=True)
if Isvectordb == False:
vectordb = Chroma.from_documents(
documents=splitted_data,
embedding=embedding,
persist_directory=str(vdb_path), # Does not accept Path
collection_name=collection_name
)
print(f"vector database CREATED in {vdb_path}")
return vectordb
#----------------------------------------------------------------------------------------------------------#
#----------------------------------------------------------------------------------------------------------#
print("#-----------------------------------#")
print("# INPUTS ARGS #")
print("#-----------------------------------#")
MODEL_NAME, EMBEDDING_NAME, IDOC_PATH, VDB_PATH, COLLECTION_NAME, REUSE_VDB, DISPLAY_DOC = initfromcmdlineargs()
print("MODEL NAME::", MODEL_NAME)
print("EMBEDDING NAME::", EMBEDDING_NAME)
print("INPUT DOCS PATH::", IDOC_PATH)
print("VDB PATH::", VDB_PATH)
print("COLLECTION NAME::", COLLECTION_NAME)
print("REUSE VDB ::", REUSE_VDB)
print("DISPLAY DOC ::", DISPLAY_DOC)
print("#-----------------------------------#")
print("# STARTING DATA LOAD AND SPLIT #")
print("#-----------------------------------#")
splitted_data = None
if REUSE_VDB is False:
# Load datas
documents = loaddata(IDOC_PATH)
print("documents length::", len(documents))
if DISPLAY_DOC is True:
for i in range(len(documents)):
print("Printing document ", i, " :")
print(documents[i].page_content[0:300])
documents = [remove_blankline(d) for d in documents]
if DISPLAY_DOC is True:
for i in range(len(documents)):
print("Printing document after remove_blankline() ", i, " :")
print(documents[i].page_content[0:300])
# Split and chunk
splitter = RecursiveCharacterTextSplitter(
chunk_size=300,
chunk_overlap=30,
separators=["\n\n", "\n", r"(?<=\. )", " ", "",
"\u200b","\uff0c","\u3001","\uff0e","\u3002",]
)
splitted_data = splitter.split_documents(documents)
if DISPLAY_DOC is True:
for i in range(len(splitted_data)):
print("Printing splitted_data ", i, " :")
print(splitted_data[i].page_content[0:300])
# Split and chunk
print("#-----------------------------------#")
print("# STARTING VECTOR DATABASE #")
print("#-----------------------------------#")
# Embedding Using Ollama
ollama_embeddings = OllamaEmbeddings(
model=EMBEDDING_NAME,
show_progress=True
)
# Add to vector database
vectordb = create_vdb(splitted_data,
ollama_embeddings,
Path(VDB_PATH),
COLLECTION_NAME,
REUSE_VDB)
print("vectordb._collection.count() ", vectordb._collection.count())
print("#-----------------------------------#")
print("# STARTING LLM AND PROMPT RAG #")
print("#-----------------------------------#")
# LLM model
local_model = MODEL_NAME
llm = ChatOllama(model=local_model, temperature=0)
QUERY_PROMPT = PromptTemplate(
input_variables=["question"],
template="""You are an AI language model assistant. Your task is to generate four
different versions of the given user question to retrieve relevant documents from
a vector database. By generating multiple perspectives on the user question, your
goal is to help the user overcome some of the limitations of the distance-based
similarity search. Provide these alternative questions separated by newlines.
Original question: {question}""",
)
retriever = MultiQueryRetriever.from_llm(
vectordb.as_retriever(),
llm,
prompt=QUERY_PROMPT
)
# RAG prompt
template = """Answer the question based ONLY on the following context:
{context}
Question: {question}
"""
print("*"*20)
prompt = ChatPromptTemplate.from_template(template)
print("*"*20)
chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
question = ""
print("#-----------------------------------#")
print("# STARTING RAG Q&A #")
print("#-----------------------------------#")
question = ""
while True:
print("*"*20)
print("Enter a QUESTION: (to exit enter q or quit)")
question = input("")
if question.casefold() == "q" or question.casefold() == "quit":
print("End QA")
break
else:
response = chain.invoke(question)
print(response)
|
0 | ALLM/RAPPORT_STOKES_CODE_FREEFEM | ALLM/RAPPORT_STOKES_CODE_FREEFEM/CT1_PENA_ADAPT/CT1_PENA_ADAPT.edp.edp | // SOLVE STOKES EQUATION *
// FOR AN INCOMPRESSIBLE FLOW VISCOUS FUID *
// Re<<1 *
// Stationary Mode *
//***********************************************************************
//load "parms_FreeFem"
// Trace de l'éxécution dans un fichier
ofstream ufile("LOG_CT1_PENA_ADAPT_UMFPACK.txt");
ofstream gfile("LOG_CT1_PENA_ADAPT_GMRES.txt");
int Gcpt;
int Ucpt;
string knu;
//*****************************************************************************
// *** SET PARAMETER FLOW:
real mu=1.0; //DYNAMIQUE VISCOSITY
real Uo=1.0; //CARACTERISTIC SPEED
// *** DEFINE FUNCTION VOL:
real f1=1.0,f2=1.0; // *** DEFINE FUNCTION VOL:
int DKSP; //DIM KRYLOV (<=>m)
real PREP; //tol solver
int IDPREP; //DUAL DE PREP POUR SPLOT
real[int] TPREP(4); //precision du solver
int[int] DTPREP(4); //et dual du tableau pour splot
TPREP[0] = 1.0e-6;
DTPREP[0]=4;
TPREP[1] = 1.0e-8;
DTPREP[1]=3;
TPREP[2] = 1.0e-10;
DTPREP[2]=2;
TPREP[3] = 1.0e-12;
DTPREP[3]=1;
int S1 = TPREP.n; //ON STOCK LA SIZE
real[int] perturbation(9); //pour la perturbation,
int[int] Dperturbation(9); // et Dperturbation pour les splots (chgt de var)
perturbation[0]=10.0;
Dperturbation[0]=9;
perturbation[1]=1.0;
Dperturbation[1]=8;
perturbation[2]=0.1;
Dperturbation[2]=7;
perturbation[3]=0.001;
Dperturbation[3]=6;
perturbation[4]=0.000015;
Dperturbation[4]=5;
perturbation[5]=0.00001;
Dperturbation[5]=4;
perturbation[6]=0.0000015;
Dperturbation[6]=3;
perturbation[7]=0.000001;
Dperturbation[7]=2;
perturbation[8]=0.0000001;
Dperturbation[8]=1;
int S2 = perturbation.n;
real tmps1,tmps2; // TEMPS SOLVER
for(int NUMSOLVER=0;NUMSOLVER<2;++NUMSOLVER) //BOUCLE SUR LE SOLVER, 0->UMFPACK & 1->GMRES
{//BOUCLE NUMSOLVER
for(int iprep=0; iprep<S1; iprep=iprep+1)
{ //BOUCLE PRECISION DU SOLVER GMRES
PREP = TPREP[iprep];
IDPREP = DTPREP[iprep];
for(int iperturbation=0; iperturbation<S2; ++iperturbation)
{ //BOUCLE SUR LA PERTURBATION
int PTEDGE=10;
//POINTS SEED PAR COTE DU MESH
// *** DEFINE MESH BY BORDER THEN BY BUILD:
mesh CT1; // SIMILI OF REF TRIANGULAR MESH
border LOW(t=0,1) {x=t;y=0;label=1;}; // LOWER BORDER
border DIAG(t=1,0) {x=t;y=1-t;label=2;}; // DIAG BORDER
border LEFT(t=1,0) {x=0;y=t;label=3;}; // LEFT BORDER
CT1=buildmesh( LOW(PTEDGE) + DIAG(PTEDGE+PTEDGE/3) + LEFT(PTEDGE) );
fespace Vh(CT1, P1b); //FOR VITESSE
Vh u1, u2;
Vh v1, v2; //v is test function, u true unknow
fespace Qh(CT1,P1); //FOR PRESSURE
Qh p;
Qh q;
for(int k=0;k<4;++k) //BOUCLE SUR MESH
{
if((NUMSOLVER==0 & iprep==0) | (NUMSOLVER==1))
{
if(k==0){knu="k_zero.eps";}
if(k==1){knu="k_un.eps";}
if(k==2){knu="k_deux.eps";}
if(k==3){knu="k_trois.eps";}
plot(LOW(PTEDGE)+DIAG(PTEDGE)+LEFT(PTEDGE));
plot(CT1, ps=knu);
p=0.0;
q=0;
u1=0;
v1=0;
u2=0;
v2=0;
macro GRAD(u) [dx(u), dy(u)]//
macro DIV(u1,u2) (dx(u1)+dy(u2))//
if(NUMSOLVER==0 & iprep==0)
{
DKSP = Vh.ndof+Qh.ndof; // dimKrylov here also the real Vh.ndof+Qh.ndof for the current mesh
tmps1 = clock();
problem STOKES([u1,u2,p],[v1,v2,q],solver=UMFPACK)=int2d(CT1)(mu*(GRAD(u1)' *GRAD(v1)+GRAD(u2)' *GRAD(v2))
-p*DIV(v1,v2)-DIV(u1,u2)*q-p*q*perturbation[iperturbation])+int2d(CT1)(f1*v1+f2*v2)+on(1,2,3,u1=x,u2=-y);
STOKES;
tmps2 = clock();
if(k!=4){CT1 = adaptmesh(CT1,[u1,u2],p,err=0.015,nbvx=2000);}
}
else if(NUMSOLVER == 1)
{
DKSP = Vh.ndof+Qh.ndof; // dimKrylov here also the real Vh.ndof+Qh.ndof for the current mesh
tmps1 = clock();
problem STOKES([u1,u2,p],[v1,v2,q],solver=GMRES,dimKrylov=DKSP,eps=PREP,nbiter=Vh.ndof+2*Qh.ndof)=int2d(CT1)(mu*(GRAD(u1)' *GRAD(v1)+GRAD(u2)' *GRAD(v2))
-p*DIV(v1,v2)-DIV(u1,u2)*q-p*q*perturbation[iperturbation])+int2d(CT1)(f1*v1+f2*v2)+on(1,2,3,u1=x,u2=-y);
STOKES;
tmps2 = clock();
if(k!=4){CT1 = adaptmesh(CT1,[u1,u2],p,err=0.01,nbvx=2000);}
}
//SOLUTION ANALYTIQUE
Vh ue1,ue2;
Qh pe;
ue1=x;
ue2=-y;
pe=x+y-2.0/3.0;
if(NUMSOLVER==0 & iprep==0)
{
// Calcul des erreurs
real normeL2, errL2, errPL2, NpL2;
normeL2 = sqrt( int2d(CT1) ( (ue1)^2+(ue2)^2 ) );
errL2 = sqrt( int2d(CT1) ( (u1-ue1)^2+(u2-ue2)^2 ) );
NpL2 = sqrt( int2d(CT1)((pe)^2));
errPL2 = sqrt( int2d(CT1) (p-pe)^2);
cout<< "UMFPACK " << perturbation[iperturbation] << " " << DKSP << " " << errL2/normeL2 << " " << errPL2/NpL2 << " " << tmps2-tmps1 <<endl;
cout << " UMFPACK ERR L2 RELATIVE=" << "sur la vitesse:" << errL2/normeL2 << endl;
cout << " UMFPACK ERR L2 RELATIVE=" << "sur la pression:" << errPL2/NpL2 <<endl;
//ufile << perturbation[iperturbation] << " " << Vh.ndof+Qh.ndof << " " << errL2/normeL2 << " " << errPL2/NpL2 << " " << tmps2-tmps1 <<endl;
ufile << Dperturbation[iperturbation] << " " << DKSP << " " << errL2/normeL2 << " " << errPL2/NpL2 << " " << tmps2-tmps1 <<endl;
}
else if(NUMSOLVER == 1)
{
// Calcul des erreurs
real normeL2, errL2, errPL2, NpL2;
normeL2 = sqrt( int2d(CT1) ( (ue1)^2+(ue2)^2 ) );
errL2 = sqrt( int2d(CT1) ( (u1-ue1)^2+(u2-ue2)^2 ) );
NpL2 = sqrt( int2d(CT1)((pe)^2));
errPL2 = sqrt( int2d(CT1) (p-pe)^2);
//cout << Vh.ndof+Qh.ndof <<" "<< errL2/normeL2 <<" "<< errPL2/NpL2<<" "<< tmps2-tmps1 << " " << perturbation[iperturbation] << " DIMKRYLOV= "<< DKSP << " eps= "<<PREP<<endl;
//gfile << Vh.ndof+Qh.ndof <<" "<< errL2/normeL2 <<" "<< errPL2/NpL2<<" "<< tmps2-tmps1<< " " << perturbation[iperturbation] << " DIMKRYLOV= "<< DKSP << " eps= "<<PREP<<endl;
cout <<"GMRES " << PREP << " " << perturbation[iperturbation] << " " << DKSP << " " << DKSP << " " << errL2/normeL2 << " " << errPL2/NpL2 << " " << tmps2-tmps1 <<endl;
cout << " GMRES ERR L2 RELATIVE=" << "sur la vitesse:" << errL2/normeL2 << endl;
cout << " GMRES ERR L2 RELATIVE=" << "sur la pression:" << errPL2/NpL2 <<endl;
gfile << IDPREP << " " << Dperturbation[iperturbation] << " " << DKSP << " " << DKSP << " " << errL2/normeL2 << " " << errPL2/NpL2 << " " << tmps2-tmps1 <<endl;
}
}
}//FIN BOUCLE mesh
if(NUMSOLVER==0 & iprep==0){
ufile <<" "<<endl;
ufile <<" "<<endl;}
}//FIN BOUCLE PERTURBATION
if(NUMSOLVER==1){
gfile <<" "<<endl;
gfile <<" "<<endl;}
}//FIN BOUCLE Precision
}//FIN BOUCLE NUMSOLVER
Gcpt = S1 * S2;//= size(TPREP)*size(PERTURBATION)
Ucpt = S2;
|
0 | ALLM/RAPPORT_STOKES_CODE_FREEFEM | ALLM/RAPPORT_STOKES_CODE_FREEFEM/CT1_PENA_REG/stokes_CT1_pen.edp | // SOLVE STOKES EQUATION *
// FOR AN INCOMPRESSIBLE FLOW VISCOUS FUID *
// Re<<1 *
// Stationary Mode *
//***********************************************************************
//load "parms_FreeFem"
// Trace de l'éxécution dans un fichier
ofstream ufile("LOG_CT1_PENA_UMFPACK.txt");
ofstream gfile("LOG_CT1_PENA_GMRES.txt");
int Gcpt;
int Ucpt;
string knu;
//*****************************************************************************
// *** SET PARAMETER FLOW:
real mu=1.0; //DYNAMIQUE VISCOSITY
real Uo=1.0; //CARACTERISTIC SPEED
// *** DEFINE FUNCTION VOL:
real f1=1.0,f2=1.0; // *** DEFINE FUNCTION VOL:
int DKSP; //DIM KRYLOV (<=>m)
real PREP; //tol solver
int IDPREP; //DUAL DE PREP POUR SPLOT
real[int] TPREP(4); //precision du solver
int[int] DTPREP(4); //et dual du tableau pour splot
TPREP[0] = 1.0e-6;
DTPREP[0]=4;
TPREP[1] = 1.0e-8;
DTPREP[1]=3;
TPREP[2] = 1.0e-10;
DTPREP[2]=2;
TPREP[3] = 1.0e-12;
DTPREP[3]=1;
int S1 = TPREP.n; //ON STOCK LA SIZE
real[int] perturbation(12); //pour la perturbation,
int[int] Dperturbation(12); // et Dperturbation pour les splots (chgt de var)
perturbation[0]=10.0;
Dperturbation[0]=9;
perturbation[1]=1.0;
Dperturbation[1]=8;
perturbation[2]=0.1;
Dperturbation[2]=7;
perturbation[3]=0.001;
Dperturbation[3]=6;
perturbation[4]=0.000015;
Dperturbation[4]=5;
perturbation[5]=0.00001;
Dperturbation[5]=4;
perturbation[6]=0.0000015;
Dperturbation[6]=3;
perturbation[7]=0.000001;
Dperturbation[7]=2;
perturbation[8]=0.0000001;
Dperturbation[8]=1;
perturbation[9]=0.00000001;
Dperturbation[9]=0;
perturbation[10]=0.000000001;
Dperturbation[10]=-1;
perturbation[11]=0.0000000001;
Dperturbation[11]=-2;
int S2 = perturbation.n;
real tmps1,tmps2; // TEMPS SOLVER
//*****************************************************************************
// *** SET MESH:
//*****************************************************************************
// *** SET SEED MESH:
//PREP = 1.0e-6;
for(int NUMSOLVER=0;NUMSOLVER<2;++NUMSOLVER) //BOUCLE SUR LE SOLVER, 0->UMFPACK & 1->GMRES
{//BOUCLE NUMSOLVER
for(int iprep=0; iprep<S1; iprep=iprep+1)
{ //BOUCLE PRECISION DU SOLVER GMRES
PREP = TPREP[iprep];
IDPREP = DTPREP[iprep];
for(int iperturbation=0; iperturbation<8; ++iperturbation)//S2
{ //BOUCLE SUR LA PERTURBATION
for(int k=0;k<4;k=k+1) //BOUCLE SUR MESH: k in [|0;3|]
{
if(k==0){knu="k_zero.eps";}
if(k==1){knu="k_un.eps";}
if(k==2){knu="k_deux.eps";}
if(k==3){knu="k_trois.eps";}
int PTEDGE=k*10+10; //SEED utilisée pour le nbr de point par border
//POINTS SEED PAR COTE DU MESH
// *** DEFINE MESH BY BORDER THEN BY BUILD:
mesh CT1; // SIMILI OF REF TRIANGULAR MESH
border LOW(t=0,1) {x=t;y=0;label=1;}; // LOWER BORDER
border DIAG(t=1,0) {x=t;y=1-t;label=2;}; // DIAG BORDER
border LEFT(t=1,0) {x=0;y=t;label=3;}; // LEFT BORDER
CT1=buildmesh( LOW(PTEDGE) + DIAG(PTEDGE+PTEDGE/3) + LEFT(PTEDGE) );
//border DIAG a une seed differente pour equilibrage(=>maillage homogène)
plot(LOW(PTEDGE)+DIAG(PTEDGE)+LEFT(PTEDGE));
plot(CT1, ps=knu);
// *** END SET MESH.
//******************************************************************************
//******************************************************************************
// *** CALLING MIXT SPACE WITH STABLE ELEM:
fespace Vh(CT1, P1b); //FOR VITESSE
Vh u1, u2;
Vh v1, v2; //v is test function, u true unknow
fespace Qh(CT1,P1); //FOR PRESSURE
Qh p;
Qh q;
//p=0.0; //q is test function, p true unknow
// *** CONSTRUCTION OF STOKES PB:
// *** 1ere METHOD TO DEFINE AND SOLVE STOKES: on utilise plutot la seconde méthode
/*problem STOKES([u1,u2,p],[v1,v2,q])=int2d(CT1)(mu*(dx(u1)*dx(v1)+dy(u1)*dy(v1)+dx(u2)*dx(v2)+dy(u2)*dy(v2))
-p*(dx(v1)+dy(v2))-q*(dx(u1)+dy(u2)))+int2d(CT1)((p*q)*0.001 )
+int2d(CT1) (f1*v1+f2*v2)+on(1,2,3,u1=0.0,u2=0.0);*/
// *** 2nd METHOD TO DEFINE AND SOLVE STOKES:VIA MACRO
p=0.0;
macro GRAD(u) [dx(u), dy(u)]//
macro DIV(u1,u2) (dx(u1)+dy(u2))//
if(NUMSOLVER==0 & iprep==0)
{
tmps1 = clock();
problem STOKES([u1,u2,p],[v1,v2,q],solver=UMFPACK)=int2d(CT1)(mu*(GRAD(u1)' *GRAD(v1)+GRAD(u2)' *GRAD(v2))
-p*DIV(v1,v2)-DIV(u1,u2)*q-p*q*perturbation[iperturbation])+int2d(CT1)(f1*v1+f2*v2)+on(1,2,3,u1=x,u2=-y);
STOKES;
tmps2 = clock();
}
else if(NUMSOLVER == 1)
{
DKSP = Vh.ndof+Qh.ndof; // dimKrylov
tmps1 = clock();
problem STOKES([u1,u2,p],[v1,v2,q],solver=GMRES,dimKrylov=DKSP,eps=PREP,nbiter=2*Vh.ndof+2*Qh.ndof)=int2d(CT1)(mu*(GRAD(u1)' *GRAD(v1)+GRAD(u2)' *GRAD(v2))
-p*DIV(v1,v2)-DIV(u1,u2)*q-p*q*perturbation[iperturbation])+int2d(CT1)(f1*v1+f2*v2)+on(1,2,3,u1=x,u2=-y);
STOKES;
tmps2 = clock();
}
// for(int i=0;i<u1[].n;++i){
// cout<<u1[][i]<<" "<<u2[][i]<<endl;}
//plot(u1, fill=true,value=true,boundary=true,wait=true);
//plot([u1,u2],p,ps="stokes_exple.eps",value=true) ;
//SOLUTION ANALYTIQUE
Vh ue1,ue2;
Qh pe;
ue1=x;
ue2=-y;
//for (int i=0; i<ue1.n;i++)
// cout << "ue1" << " " << ue1[][i] << endl;
pe=x+y-2.0/3.0;
//plot([ue1,ue2], fill=true,value=true,boundary=true,wait=true);
//plot(pe, cmm="Pressure");
if(NUMSOLVER==0 & iprep==0)
{
// Calcul des erreurs
real normeL2, errL2, errPL2, NpL2;
normeL2 = sqrt( int2d(CT1) ( (ue1)^2+(ue2)^2 ) );
errL2 = sqrt( int2d(CT1) ( (u1-ue1)^2+(u2-ue2)^2 ) );
NpL2 = sqrt( int2d(CT1)((pe)^2));
errPL2 = sqrt( int2d(CT1) (p-pe)^2);
cout<< "UMFPACK " << perturbation[iperturbation] << " " << Vh.ndof+Qh.ndof << " " << errL2/normeL2 << " " << errPL2/NpL2 << " " << tmps2-tmps1 <<endl;
cout << " UMFPACK ERR L2 RELATIVE=" << "sur la vitesse:" << errL2/normeL2 << endl;
cout << " UMFPACK ERR L2 RELATIVE=" << "sur la pression:" << errPL2/NpL2 <<endl;
//ufile << perturbation[iperturbation] << " " << Vh.ndof+Qh.ndof << " " << errL2/normeL2 << " " << errPL2/NpL2 << " " << tmps2-tmps1 <<endl;
ufile << Dperturbation[iperturbation] << " " << Vh.ndof+Qh.ndof << " " << errL2/normeL2 << " " << errPL2/NpL2 << " " << tmps2-tmps1 <<endl;
}
else if(NUMSOLVER == 1)
{
// Calcul des erreurs
real normeL2, errL2, errPL2, NpL2;
normeL2 = sqrt( int2d(CT1) ( (ue1)^2+(ue2)^2 ) );
errL2 = sqrt( int2d(CT1) ( (u1-ue1)^2+(u2-ue2)^2 ) );
NpL2 = sqrt( int2d(CT1)((pe)^2));
errPL2 = sqrt( int2d(CT1) (p-pe)^2);
//cout << Vh.ndof+Qh.ndof <<" "<< errL2/normeL2 <<" "<< errPL2/NpL2<<" "<< tmps2-tmps1 << " " << perturbation[iperturbation] << " DIMKRYLOV= "<< DKSP << " eps= "<<PREP<<endl;
//gfile << Vh.ndof+Qh.ndof <<" "<< errL2/normeL2 <<" "<< errPL2/NpL2<<" "<< tmps2-tmps1<< " " << perturbation[iperturbation] << " DIMKRYLOV= "<< DKSP << " eps= "<<PREP<<endl;
cout <<"GMRES " << PREP << " " << perturbation[iperturbation] << " " << Vh.ndof+Qh.ndof << " " << DKSP << " " << errL2/normeL2 << " " << errPL2/NpL2 << " " << tmps2-tmps1 <<endl;
cout << " GMRES ERR L2 RELATIVE=" << "sur la vitesse:" << errL2/normeL2 << endl;
cout << " GMRES ERR L2 RELATIVE=" << "sur la pression:" << errPL2/NpL2 <<endl;
gfile << IDPREP << " " << Dperturbation[iperturbation] << " " << Vh.ndof+Qh.ndof << " " << DKSP << " " << errL2/normeL2 << " " << errPL2/NpL2 << " " << tmps2-tmps1 <<endl;
}
}//FIN BOUCLE mesh
if(NUMSOLVER==0 & iprep==0){
ufile <<" "<<endl;
ufile <<" "<<endl;}//pour faire des index pour gnuplot
}//FIN BOUCLE PERTURBATION
if(NUMSOLVER==1){
gfile <<" "<<endl;
gfile <<" "<<endl;}//pour faire des index pour gnuplot
}//FIN BOUCLE Precision
}//FIN BOUCLE NUMSOLVER
Gcpt = S1 * S2;//= size(TPREP)*size(PERTURBATION)
Ucpt = S2;
|
0 | ALLM/RAPPORT_STOKES_CODE_FREEFEM | ALLM/RAPPORT_STOKES_CODE_FREEFEM/CT1_UZAWA_REG_ADAPT/stokes_CT1_uzawa_RETRY.edp | /*******************************************************************
DÉFINITION DES ESPACES ET DES VARIABLES
********************************************************************/
ofstream file("LOG_CT1_UZAWA.txt");
//Définition des opérateurs utiles à la résolution
macro Grad(u) [dx(u),dy(u)] //EOM
macro Div(u1,u2) (dx(u1)+dy(u2)) //EOM
/* -Delta u + gradP = 0
div u =0 */
string knu;
real tmps1;
real tmps2;
real[int] prep(2);
prep[0]=1e-6;
prep[1]=1e-12;
for(int iprep=0;iprep<2;++iprep)//boucle precision
{
for(int k=0;k<5;++k)//boucle mesh
{
if(k==0){knu="k_zero.eps";}
if(k==1){knu="k_un.eps";}
if(k==2){knu="k_deux.eps";}
if(k==3){knu="k_trois.eps";}
if(k==4){knu="k_quatre.eps";}
int PTEDGE=10+10*k; //POINTS SEED PAR COTE DU MESH
// *** DEFINE MESH BY BORDER THEN BY BUILD:
mesh Th; // SIMILI OF REF TRIANGULAR MESH
border LOW(t=0,1) {x=t;y=0;label=1;}; // LOWER BORDER
border DIAG(t=1,0) {x=t;y=1-t;label=2;}; // DIAG BORDER
border LEFT(t=1,0) {x=0;y=t;label=3;}; // LEFT BORDER
Th=buildmesh( LOW(PTEDGE) + DIAG(PTEDGE+PTEDGE/3) + LEFT(PTEDGE) );
plot(Th, wait=false ,ps=knu);
real AreaDomain=Th.area;
// parameter in the Uzawa method, we define the value as 1 here
real alpha = 1; //alpha = wopt = 1/(1+beta) //beta==1
real nu=1.0; //VISCOSITE DYNAMIQUE
fespace Uh(Th,[P1b,P1b]); // fonction space for u=(u1,u2)
fespace Ph(Th,P1); // function space for p
fespace Ph0(Th,P0);
Uh [u1,u2],[v1,v2],[usave1,usave2];
Ph p, q;
Uh [uh1,uh2],[uvisu1,uvisu2];
Ph ph,pvisu;
// Setting for the analytic solution
real beta = 0.44; // to be change with each different case
func ue1= x;
func ue2= -y;
func pe= x+y-(2./3.);
func dxue1= 1.0;
func dyue1= 0.0;
func dxue2= 0.0;
func dyue2= -1.0;
func f1= 1;
func f2= 1;
[uvisu1,uvisu2]=[ue1,ue2];
pvisu=pe;
// variational formulation to define:
varf a([u1,u2],[v1,v2])=int2d(Th)(Grad(u1)'*Grad(v1)+Grad(u2)'*Grad(v2))+int2d(Th)(f1*v1+f2*v2)
+on(1,2,3,u1=ue1,u2=ue2);
varf bc1([u1,u2],[v1,v2])=on(1,2,3,u1=1,u2=1);
varf b([u1,u2],[q])= int2d(Th)(Div(u1,u2)*q);
varf c([p],[q])=int2d(Th)(p*q);
matrix A=a(Uh,Uh,tgv=-1,solver=GMRES,eps=prep[iprep],dimKrylov=Uh.ndof+Ph.ndof);
//matrix A=a(Uh,Uh,tgv=-1,solver=CG,eps=prep[iprep]);
//matrix A=a(Uh,Uh,tgv=-1,solver=UMFPACK);
matrix B=b(Uh,Ph,solver=GMRES,eps=prep[iprep],dimKrylov=Uh.ndof+Ph.ndof);
matrix Bt=B';
matrix C=c(Ph,Ph,solver=CG,eps=prep[iprep]); // set solver=CG, to avoird the alert message from C^-1;
real[int] F=a(0,Uh,tgv=-1); //Boundary conditions
real[int] BC=bc1(0,Uh,tgv=-1); //Boundary conditions
Uh [b1,b2];
func real[int] DJ(real[int] &u)
{
real[int] Au=A*u;
return Au; // return of global variable ok
};
p=0;
real epsgc= 1e-10;
// Uzawa iteration
int inumOuter=0;
tmps1 = clock();
while(inumOuter<10000){
b1[]=Bt*p[]; b1[]+=F; // second membre Au=Btu+F
b1[]= BC ? F : b1[];
u1[]= BC? F: u1[];
LinearCG(DJ,u1[],b1[],veps=epsgc,nbiter=2000,verbosity=0);
epsgc=-abs(epsgc);
real[int] Bu1=B*u1[];
Bu1*=alpha;
real normBu1=sqrt(Bu1'*Bu1);
if (normBu1<1e-10) break;
// update for p
real[int] ptemp(p[].n);
ptemp=C^-1*Bu1; // C p^{k+1}=C p^{k} - alpha Bu
p[]-=ptemp;
p[]-=int2d(Th)(p)/AreaDomain;
cout<< "inumOuter "<<inumOuter<<endl;
inumOuter++;
}
tmps2 = clock();
ph=p;
[uh1,uh2]=[u1,u2]; // save the solution of exact uzawa method
real normeL2vit, errL2vit;
normeL2vit = sqrt( int2d(Th) ( (ue1)^2+(ue2)^2) );//= sqrt( int3d(Th) (normeL2vit ) );
errL2vit = sqrt( int2d(Th) ( (u1-ue1)^2+(u2-ue2)^2) ); //sqrt( int3d(Th) ((errL2vit)^2 ) )
real NPL2,EPL2;
NPL2 = sqrt(int2d(Th) (pe^2) );
EPL2 = sqrt(int2d(Th) ((p-pe)^2) );
cout << "ERR L2 RELATIVE VITESSE =" << errL2vit/normeL2vit << endl;
cout << "ERR L2 RELATIVE PRESSION=" << EPL2/NPL2 <<endl;
plot([uh1,uh2],ph,wait=false,value=1,fill=0,ps="numericalsolutionu.eps",cmm="Numerical solution uh, ph");
file << prep[iprep]<<" "<<Uh.ndof+Ph.ndof<<" "<<errL2vit/normeL2vit<<" "<<EPL2/NPL2<<" "<<tmps2-tmps1<<endl;
}//fin boucle MESH
file <<" "<<endl;
file <<" "<<endl;
}//fin boucle precision
|
0 | ALLM/RAPPORT_STOKES_CODE_FREEFEM | ALLM/RAPPORT_STOKES_CODE_FREEFEM/CT1_UZAWA_REG_ADAPT/stokes_CT1_uzawa_RETRY_ADAPT.edp | /*******************************************************************
DÉFINITION DES ESPACES ET DES VARIABLES
********************************************************************/
//load "Element_Mixte"
/* -Delta u + gradP = 0
div u =0 */
//Définition des opérateurs utiles à la résolution
macro Grad(u) [dx(u),dy(u)] //EOM
macro Div(u1,u2) (dx(u1)+dy(u2)) //EOM
int k=2;
int PTEDGE=10*2^k; //POINTS SEED PAR COTE DU MESH
// *** DEFINE MESH BY BORDER THEN BY BUILD:
mesh Th; // SIMILI OF REF TRIANGULAR MESH
border LOW(t=0,1) {x=t;y=0;label=1;}; // LOWER BORDER
border DIAG(t=1,0) {x=t;y=1-t;label=2;}; // DIAG BORDER
border LEFT(t=1,0) {x=0;y=t;label=3;}; // LEFT BORDER
Th=buildmesh( LOW(PTEDGE) + DIAG(PTEDGE+PTEDGE/3) + LEFT(PTEDGE) );
real AreaDomain=Th.area;
real alpha = 1;
real nu=1.0; //VISCOSITE DYNAMIQUE
fespace Uh(Th,[P2,P2]); // fonction space for u=(u1,u2)
fespace Ph(Th,P1); // function space for p
fespace Ph0(Th,P0);
Uh [u1,u2],[v1,v2],[usave1,usave2];
Ph p, q;
Uh [uh1,uh2],[uvisu1,uvisu2];
Ph ph,pvisu;
// analytic solution
real beta = 0.44;
func ue1= x;
func ue2= -y;
func pe= x+y-(2./3.);
func dxue1= 1.0;
func dyue1= 0.0;
func dxue2= 0.0;
func dyue2= -1.0;
func f1= 1;
func f2= 1;
[uvisu1,uvisu2]=[ue1,ue2];
pvisu=pe;
fespace Vh(Th,[P2,P2]);
Vh [s1,s2];
[s1,s2]=[x,-y];
//MESH ADAPT DONC ON DOIT RECONSTRUIRE LES MATRICES A CHAQUE ADAPTATION:
macro buildmat(){
varf a([u1,u2],[v1,v2])=int2d(Th)(Grad(u1)'*Grad(v1)+Grad(u2)'*Grad(v2))+int2d(Th)(f1*v1+f2*v2)
+on(1,2,3,u1=ue1,u2=ue2);
varf bc1([u1,u2],[v1,v2])=on(1,2,3,u1=1,u2=1);
varf b([u1,u2],[q])= int2d(Th)(Div(u1,u2)*q);
varf c([p],[q])=int2d(Th)(p*q);
matrix A=a(Uh,Uh,tgv=-1,solver=GMRES);
matrix B=b(Uh,Ph);
matrix Bt=B';
matrix C=c(Ph,Ph,solver=CG);
real[int] F=a(0,Uh,tgv=-1);
real[int] BC=bc1(0,Uh,tgv=-1);
Uh [b1,b2];
}//
//CONSTRUCTION INITIALE:
varf a([u1,u2],[v1,v2])=int2d(Th)(Grad(u1)'*Grad(v1)+Grad(u2)'*Grad(v2))+int2d(Th)(f1*v1+f2*v2)
+on(1,2,3,u1=ue1,u2=ue2);
varf bc1([u1,u2],[v1,v2])=on(1,2,3,u1=1,u2=1);
varf b([u1,u2],[q])= int2d(Th)(Div(u1,u2)*q);
varf c([p],[q])=int2d(Th)(p*q);
matrix A=a(Uh,Uh,tgv=-1,solver=GMRES);
matrix B=b(Uh,Ph);
matrix Bt=B';
matrix C=c(Ph,Ph,solver=CG);
real[int] F=a(0,Uh,tgv=-1);
real[int] BC=bc1(0,Uh,tgv=-1);
Uh [b1,b2];
func real[int] DJ(real[int] &u)
{
real[int] Au=A*u;
return Au; // return of global variable ok
};
p=0;
real epsgc= 1e-10;
// Uzawa iteration
int inumOuter=0;
while(inumOuter<500){ //A AUGMENTER SI BESOIN DE PRECISION
b1[]=Bt*p[]; b1[]+=F; // second member Au=Btu+F
b1[]= BC ? F : b1[];
u1[]= BC? F: u1[];
LinearCG(DJ,u1[],b1[],veps=epsgc,nbiter=2000,verbosity=0);
epsgc=-abs(epsgc);
real[int] Bu1=B*u1[];
Bu1*=alpha;
real normBu1=sqrt(Bu1'*Bu1);
if (normBu1<1e-10) break;
// update for p
real[int] ptemp(p[].n);
ptemp=C^-1*Bu1; // C p^{k+1}=C p^{k} - alpha Bu
p[]-=ptemp;
p[]-=int2d(Th)(p)/AreaDomain;
cout<< "inumOuter "<<inumOuter<<" Uh.ndof "<<Uh.ndof<<" u1.n "<<u1.n<<endl;
//ON ADAPT TOUTE LES 10 ITERATIONS, ET ON REBUILD LES MATRICES
if(inumOuter%10==0){Th = adaptmesh(Th,[u1,u2],p,err=0.001);plot(Th);buildmat}
inumOuter++;
}
ph=p;
[uh1,uh2]=[u1,u2]; // save the solution of exact uzawa method
real normeL2vit, errL2vit;
normeL2vit = sqrt( int2d(Th) ( (ue1)^2+(ue2)^2) );//= sqrt( int3d(Th) (normeL2vit ) );
errL2vit = sqrt( int2d(Th) ( (u1-ue1)^2+(u2-ue2)^2) ); //sqrt( int3d(Th) ((errL2vit)^2 ) )
real NPL2,EPL2;
NPL2 = sqrt(int2d(Th) (pe^2) );
EPL2 = sqrt(int2d(Th) ((p-pe)^2) );
cout << "ERR L2 RELATIVE VITESSE =" << errL2vit/normeL2vit<<" "<<u1.n<<" "<<Th.nv<<" "<<Th.nt << endl;
cout << "ERR L2 RELATIVE PRESSION=" << EPL2/NPL2 <<endl;
plot([u1,u2],p,wait=true,value=1,fill=0,ps="numericalsolutionu.eps",cmm="Numerical solution uh, ph");
ofstream ufile("V.txt");
for(int i=0;i<u1.n;i+=2){
ufile <<u1[][i]<<" "<<s1[][i]<<" "<<u1[][i+1]<<" "<<s1[][i+1]<<endl;
}
|
0 | ALLM/RAPPORT_STOKES_CODE_FREEFEM | ALLM/RAPPORT_STOKES_CODE_FREEFEM/CT2_UZAWA_PENALISATION/stokes_CT2_pen.edp | /******************************************************************************
CAS TEST 2 : ÉQUATION DE STOKES SUR UN MAILLAGE CUBIQUE 3D
MÉTHODE DE RÉSOLUTION : PÉNALISATION
*******************************************************************************/
load "msh3" // module de génération de maillage 3D
load "medit" // Module de sortie graphique en temps réel
include "Cube.idp" // Module contenant la construction du maillage cubique 3D
load "iovtk" //pour l'écriture au format .vtk
// ofstream afile("CT2_pen_MER_p1bp1.txt");
/*******************************************************************
DÉFINITION DES ESPACES ET DES VARIABLES
********************************************************************/
//**********CONSTRUCTION DU MAILLAGE
int nb=10; // Nombre de points par arete pour le maillage
mesh3 Th=meshgen(nb); // Génération du maillage d'apres Cube.idp
//*********ESPACES DE RÉSOLUTION
fespace VVh(Th,[P1b,P1b,P1b]); // Espace pour la vitesse [u1,u2,u3]
fespace QQh(Th,P1); // Espace pour la pression p
VVh [u1,u2,u3], [v1,v2,v3];
QQh p, q;
//*********OPÉRATEURS ET VARIABLES UTILES
macro Grad(u) [dx(u),dy(u),dz(u)] //
macro div(u1,u2,u3) (dx(u1)+dy(u2)+dz(u3)) //
real nu=1.0; // Viscosité dynamique
//Définition des vitesses et pression analytiques pour le cas test
func ue1=x;
func ue2=y;
func ue3=-2*z;
func pe=x+y+z-(3./2.);
//Définition du second membre de l'équation de Stokes
func f=1.;
/*******************************************************************
RÉSOLUTION DU PROBLÈME VARIATIONNEL
********************************************************************/
//*******VARIABLES DE RÉSOLUTION
real t1,t2,pen;
cout << "----------------------------" << endl;
t1=clock(); // START CHRONO
pen=1e-10; // Coefficient de pénalisation
int dimk=0.5*(VVh.ndof+QQh.ndof); // Dimension de l'espace de KRYLOV pour GMRES
int ite=2*dimk; // Nombre d'itérations pour le solveur
//*******PROBLEME VARIATIONNEL
solve Stokes([u1,u2,u3,p],[v1,v2,v3,q],solver=GMRES,eps=1e-10,dimKrylov=dimk,
nbiter=ite) =
// solve Stokes([u1,u2,u3,p],[v1,v2,v3,q],solver=UMFPACK)=
int3d(Th)( Grad(u1)'*Grad(v1) + Grad(u2)'*Grad(v2) + Grad(u3)'*Grad(v3)
- div(u1,u2,u3)*q - div(v1,v2,v3)*p - pen*q*p )
+int3d(Th)(-f*(v1+v2+v3))
+ on(1,2,3,4,5,6,u1=ue1,u2=ue2,u3=ue3,p=pe);
t2=clock(); // STOP CHRONO
/*******************************************************************
CALCUL DES ERREURS ET AFFICHAGE DES SORTIES
********************************************************************/
real normeL2vit, errL2vit;
real normeL2press, errL2press;
//Pour la vitesse
normeL2vit = sqrt( int3d(Th) ( (ue1)^2+(ue2)^2+(ue3)^2) );
errL2vit = sqrt( int3d(Th) ( (u1-ue1)^2+(u2-ue2)^2+(u3-ue3)^2) );
//Pour la pression
normeL2press = sqrt( int3d(Th) ( (pe)^2 ));
errL2press = sqrt( int3d(Th) ( (p-pe)^2 ) );
//AFFICHAGE DES ERREURS À L'ECRAN
//afile << VVh.ndof+QQh.ndof << " " << pen << " "<<
//(errL2vit/normeL2vit+errL2press/normeL2press)*0.5 << " "<< t2-t1 << endl;
cout << "pour V" << VVh.ndof << endl;
cout << "pour P" << QQh.ndof << endl;
cout << "-----------------------" << endl;
cout << "ERR L2 RELATIVE VITESSE =" << errL2vit/normeL2vit << endl;
cout << "ERR L2 RELATIVE PRESSION =" << errL2press/normeL2press << endl;
cout << "Temps CPU :" << t2-t1 << endl;
//plot([ux,uz],value=true,cmm="cut y=1");
/********************************************************************
ÉCRITURE DES FICHIERS SOLUTIONS AU FORMAT VTK
********************************************************************/
// int[int] Order = [1];
// string DataName = "Vitesse";
// savevtk("vit.vtk", Th,[u1,u2,u3], dataname=DataName, order=Order);
// DataName="Pression";
// savevtk("p.vtk", Th, p, dataname=DataName, order=Order);
//AFFICHAGE DES SOLUTIONS FINALES SUR LE MAILLAGE AVEC MEDIT
// medit("vit",Th,[u1,u2,u3]);
// medit("p",Th,p);
|
0 | ALLM/RAPPORT_STOKES_CODE_FREEFEM | ALLM/RAPPORT_STOKES_CODE_FREEFEM/CT2_UZAWA_PENALISATION/stokes_CT2_uzawa.edp | /* RÉSOLUTION DE L'ÉQUATION DE STOKES STATIONNAIRE
SUR UN CUBE UNITAIRE (CT2) AVEC LA MÉTHODE D'UZAWA
-Delta u + gradP = 0
div u =0 */
/*******************************************************************
DÉFINITION DES ESPACES ET DES VARIABLES
********************************************************************/
/* MODULES */
load "msh3"
load "medit" // dynamics load tools for 3d.
include "Cube.idp"
load "iovtk"
//ofstream afile("CT2_uzawa_mesh_p1p0test.txt");
// Création du maillage
int nb=5;
mesh3 Th=meshgen(nb);
//medit("Cube", Th); //affichage du maillage initial avec MEDIT
// Définition des éléments finis utilisés:
fespace VVh(Th,[P1,P1,P1]); //Pour la vitesse
fespace QQh(Th,P1); // Pour la pression
//Définition des opérateurs utiles à la résolution
macro Grad(u) [dx(u),dy(u),dz(u)] //
macro div(u1,u2,u3) (dx(u1)+dy(u2)+dz(u3)) //
real nu=1.0; //VISCOSITE DYNAMIQUE
VVh [u1,u2,u3], [v1,v2,v3]; //vecteurs vitesse et vecteurs vitesse tests
QQh p, q; //vecteur pression et pression tests
//Définition des vitesses et pression analytiques pour le cas test
func ue1=x;
func ue2=y;
func ue3=-2*z;
func pe=x+y+z-(3./2.);
//Définition du second membre de l'équation de Stokes
func f=1.;
/********************************************************************
Assemblage matrices problème général + fonctions
********************************************************************/
//----------Création de la matrice A du problème (vitesse)
varf aaa([u1, u2, u3], [v1, v2, v3])=
int3d(Th)(nu*( Grad(u1)'*Grad(v1) + Grad(u2)'*Grad(v2) + Grad(u3)'*Grad(v3) ))
+int3d(Th)(f*(v1+v2+v3))
+ on(1,2,3,4,5,6,u1=ue1,u2=ue2,u3=ue3);
matrix AA = aaa(VVh, VVh, solver=GMRES, tgv=-1); //matrice A du PB VAR
//----------Conditions aux limites pour les vitesses
varf bc1([u1, u2, u3], [v1, v2, v3])=on(1,2,3,4,5,6,u1=1,u2=1,u3=1);
//----------Matrice de masse
varf massp(p,q) = int3d(Th)(p * q);
matrix Mp = massp(QQh, QQh, solver=CG);
//----------Conditions aux limites + forces exterieures
real[int] F=aaa(0,VVh,tgv=-1), G=bc1(0,VVh,tgv=-1);
//----------Création de la matrice B pour le PB VAR
varf bbb([u1,u2,u3], [q]) = int3d(Th)(div(u1,u2,u3)*q );
matrix DB = bbb(VVh,QQh); // La matrice B du PB VAR
matrix DBT = DB'; //B transposée
VVh [b1,b2,b3]; // vecteur pour les conditions aux limites
//----------Conditions aux limites
real[int] bbc = aaa(0, VVh ,tgv=-1); // Dirichlet
//---------Fonction d'appel pour le GC
func real[int] DJ(real[int] &u){
real[int] au=AA*u;
return au;
}
//--------Intialisation pour la pression et résolution système linéaire
p[]=0.;
real areadomain = 1.;
int inumouter=0;
real epsgc=1e-10;
real norm=1.;
/********************************************************************
BOUCLE RÉSOLUTION CG + CALCUL DE P AVEC UZAWA
********************************************************************/
real t1,t2;
t1=clock();
while (inumouter<10000){
//cout << inumouter << endl;
b1[]=DBT*p[];
b1[]+=F;
b1[]=G ? F : b1[];
u1[]=G ? F : u1[];
LinearCG(DJ, u1[],b1[],veps=epsgc,nbiter=2*(VVh.ndof+QQh.ndof),eps=1e-12,
verbosity=0);
epsgc=-abs(epsgc);
real[int] bu1=DB*u1[];
real alpha=1.;
bu1*=alpha;
real normbu1=sqrt(bu1'*bu1);
norm=normbu1;
if (normbu1<1e-20){
break;
}
real[int] ptemp(p[].n);
ptemp=Mp^-1*bu1;
p[]-=ptemp;
p[]-=int3d(Th)(p)/areadomain;//int3d(Th)(p);
inumouter++;
}
t2=clock();
/*******************************************************************
CALCUL DES ERREURS ET AFFICHAGE DES SORTIES
********************************************************************/
real normeL2vit, errL2vit;
real normeL2press, errL2press;
//Pour la vitesse
normeL2vit = sqrt( int3d(Th) ( (ue1)^2+(ue2)^2+(ue3)^2) );
errL2vit = sqrt( int3d(Th) ( (u1-ue1)^2+(u2-ue2)^2+(u3-ue3)^2) );
//Pour la pression
normeL2press = sqrt( int3d(Th) ( (pe)^2 ));
errL2press = sqrt( int3d(Th) ( (p-pe)^2 ) );
//AFFICHAGE DES ERREURS À L'ECRAN
cout << "ERR L2 RELATIVE VITESSE =" << errL2vit/normeL2vit << endl;
cout << "ERR L2 RELATIVE PRESSION =" << errL2press/normeL2press << endl;
//afile << VVh.ndof+QQh.ndof << " "<< errL2vit/normeL2vit << " "<< errL2press/normeL2press << " "<< t2-t1 << endl;
cout << "pour V" << VVh.ndof << endl;
cout << "pour P" << QQh.ndof << endl;
cout << "Temps CPU" << t2-t1 << endl;
/********************************************************************
ÉCRITURE DES FICHIERS SOLUTIONS AU FORMAT VTK
********************************************************************/
// int[int] Order = [1];
// string DataName = "Vitesse";
// savevtk("vit.vtk", Th,[u1,u2,u3], dataname=DataName, order=Order);
// DataName="Pression";
// savevtk("p.vtk", Th, p, dataname=DataName, order=Order);
//AFFICHAGE DES SOLUTIONS FINALES SUR LE MAILLAGE AVEC MEDIT
// medit("vit",Th,[u1,u2,u3]);
// medit("p",Th,p);
|
0 | ALLM/RAPPORT_STOKES_CODE_FREEFEM | ALLM/RAPPORT_STOKES_CODE_FREEFEM/CT3_PENA/stokes_CT3.edp | include "cylindre2.idp"
load "iovtk"
// Espaces de résolution
//fespace VVh(Th,[P1b,P1b,P1b]);
fespace VVh(Th,[P2,P2,P2]);
fespace QQh(Th,P1);
//Définition des opérateurs utiles à la résolution
macro Grad(u) [dx(u),dy(u),dz(u)] // EOM
macro div(u1,u2,u3) (dx(u1)+dy(u2)+dz(u3)) //EOM
real nu = 1.0;
real L = 4.0; //a modifier dans cylindre2.idp :=zbound[0,L]
real Rayon = 1.0; //Rayon du cylindre
real CLZ; // CL sur u3 (dirichlet homogene) en z=0 si on veut faire le test du debit(cf projet)
real cstpression; //a calculer analytiquement pour avoir pression moyenne nulle
// Variables à résoudre dans le calcul
VVh [u1,u2,u3], [v1,v2,v3];
QQh p, q;
// Variables solution exacte
func ue1 = 0.0;
func ue2 = 0.0;
func ue3 = 1-x*x-y*y;
cstpression = 2*L; //VIA etude theorique
func pe = -4*z+cstpression;//VIA etude theorique
VVh [u1exa,u2exa,u3exa];
[u1exa,u2exa,u3exa] = [0.0,0.0,1-x*x-y*y];
// Définition du terme source
real f = 0.0;
// Coeff penalisation
real pena = 1e-7;
//CLZ:
CLZ = 1.0-(0.5*Rayon*Rayon);// ==0.5 car Rayon=1
/*******************************************************************
RÉSOLUTION DU PROBLÈME VARIATIONNEL
********************************************************************/
real tmps1,tmps2; //temps de calcul
/* MÉTHODE DE PÉNALISATION */
p = 0;
// //Problème Variationnel
//GMRES,eps=1e-6,nbiter=2*VVh.ndof+2*QQh.ndof,dimKrylov=VVh.ndof
tmps1 = clock();
solve Stokes([u1,u2,u3,p],[v1,v2,v3,q],solver=UMFPACK) =
int3d(Th)( nu*(Grad(u1)'*Grad(v1) + Grad(u2)'*Grad(v2) + Grad(u3)'*Grad(v3))
- div(u1,u2,u3)*q - div(v1,v2,v3)*p - pena*q*p )
+int3d(Th)(-f*(v1+v2+v3))
+on(3,u1=0.0,u2=0.0,u3 = ue3,p=pe) //Contour cylindre vitesse nulle
+on(2,u1=0.0,u2=0.0,u3 = ue3,p=pe) //Entrée
+on(1,u1=0.0,u2=0.0,u3 = ue3,p=pe); //Sortie
tmps2 = clock();
/* ÉCRITURE FICHIERS */
// Écriture de la solution au format .vtk
//int[int] Order = [1];
//string DataName = "U";
//savevtk("u1.vtk",Th,u1, dataname=DataName, order=Order);
// savevtk("u2.vtk",Th,u2, dataname=DataName, order=Order);
// savevtk("u3.vtk",Th,u3, dataname=DataName, order=Order);
//savevtk("press.vtk",Th,p, dataname=DataName, order=Order);
/*******************************************************************
CALCUL DES ERREURS ET AFFICHAGE DES SORTIES
********************************************************************/
real normeL2vit, errL2vit, normeL2press, errL2press;
//Pour la vitesse
normeL2vit = 0.0;
errL2vit = 0.0;
//le calcul de norme:
for(int i=0; i<u3.n-2;i=i+3){//i=i+3 car la solution sur toutes les composantes est save dans la compo u3.
normeL2vit = normeL2vit + (0.0)^2 + (0.0)^2 + (u3exa[][i+2])^2 ;
errL2vit = errL2vit + (u1[][i]-0.0)^2 + (u2[][i+1]-0.0)^2 + (u3[][i+2]-u3exa[][i+2])^2;
//cout<< "u1 "<<u1[][i]<< " u2 "<<u2[][i+1]<< " u3 "<<u3[][i+2]<<" u3exa "<<u3exa[][i+2]<<endl;
}
normeL2vit = sqrt( int3d(Th) ( normeL2vit) );
errL2vit = sqrt( int3d(Th) ( errL2vit ) );
//Pour la pression
normeL2press = sqrt( int3d(Th) ( (pe)^2 ));
errL2press = sqrt( int3d(Th) ( (p-pe)^2 ) );
cout << "NDOF " << VVh.ndof+QQh.ndof << " VVh.NDOF " << VVh.ndof << " u1.n " << u1.n << endl;
cout << "ERR L2 RELATIVE VITESSE =" << errL2vit/normeL2vit << endl;
cout << "ERR L2 RELATIVE PRESSION =" << errL2press/normeL2press << endl;
cout << "TEMPS DE CALCUL en Sec "<< tmps2-tmps1<<" deb out "<< int2d(Th,1)(u3)*(pi*Rayon*Rayon) << endl;
//string DataName2 = "P";
//savevtk("vitesse.vtk", Th,u3, dataname=DataName2, order=Order);
medit("vit",Th,u3);
medit("Press",Th,p);
/*
POUR VISUALISER AVEC MEDIT:
cliquer sur la fenetre
faire au clavier
m pour les couleurs
B (maj+b), puis G(maj+g) et A(maj+a) pour boxe grille axe
fn F1 pour une coupe
*/
|
0 | ALLM/RAPPORT_STOKES_CODE_FREEFEM | ALLM/RAPPORT_STOKES_CODE_FREEFEM/UZAWA-CT3/stokes_CT3_uza.edp | /* RÉSOLUTION DE L'ÉQUATION DE STOKES STATIONNAIRE
SUR UN CYLINDRE AVEC LA MÉTHODE D'UZAWA
-Delta u + gradP = 0
div u =0 */
/*******************************************************************
DÉFINITION DES ESPACES ET DES VARIABLES
********************************************************************/
/* MODULES */
include "cylindre2.idp"
load "iovtk"
//ofstream afile("CT3_uzawa.txt");
// Définition des éléments finis utilisés:
fespace VVh(Th,[P2,P2,P2]); //Pour la vitesse
fespace QQh(Th,P1); // Pour la pression
//Définition des opérateurs utiles à la résolution
macro Grad(u) [dx(u),dy(u),dz(u)] //
macro div(u1,u2,u3) (dx(u1)+dy(u2)+dz(u3)) //
real nu=1.0; //VISCOSITE DYNAMIQUE
VVh [u1,u2,u3], [v1,v2,v3]; //vecteurs vitesse et vecteurs vitesse tests
QQh p, q; //vecteur pression et pression tests
//Définition des vitesses et pression analytiques pour le cas test
func ue1=0.;
func ue2=0.;
func ue3=1.-x*x-y*y;
real L=5.0;//SI modification de L, pensez a aussi modifier zbound[0,L] dans le .idp
real Rayon=1.0;
real cstpression=2.*L;
func pe=-4.*z+cstpression;
//Définition du second membre de l'équation de Stokes
func f=0.;
func CLZ=1-0.5*Rayon*Rayon;//=0.5; car rayon=1//SI ON VEUT METTRE UNE VITESSE CST EN Z=0 CF PROJET
/********************************************************************
Assemblage matrices problème général + fonctions
********************************************************************/
//----------Création de la matrice A du problème (vitesse)
varf aaa([u1, u2, u3], [v1, v2, v3])=
int3d(Th)(nu*( Grad(u1)'*Grad(v1) + Grad(u2)'*Grad(v2) + Grad(u3)'*Grad(v3) ))
+int3d(Th)(f*(v1+v2+v3))
+ on(1,u1=0.0,u2=0.0,u3=ue3) //z=L sortie
+ on(3,u1=0.0,u2=0.0,u3=ue3) //r=R latéral
+ on(2,u1=0.0,u2=0.0,u3=ue3); //z=0 entrée
// pour les CL issues du calcul du debit faire:
/*+ on(1,u1=0.0,u2=0.0) //z=L sortie
+ on(3,u1=0.0,u2=0.0,u3=ue3) //r=R latéral
+ on(2,u1=0.0,u2=0.0,u3=CLZ); //z=0 entrée*/
matrix AA = aaa(VVh, VVh, solver=GMRES, tgv=-1); //matrice A du PB VAR
//----------Conditions aux limites pour les vitesses
varf bc1([u1, u2, u3], [v1, v2, v3])=on(1,2,3,u1=1,u2=1,u3=1);
//----------Matrice de masse
varf massp(p,q) = int3d(Th)(p * q);
matrix Mp = massp(QQh, QQh, solver=CG);
//----------Conditions aux limites + forces exterieures
real[int] F=aaa(0,VVh,tgv=-1), G=bc1(0,VVh,tgv=-1);
//----------Création de la matrice B pour le PB VAR
varf bbb([u1,u2,u3], [q]) = int3d(Th)(div(u1,u2,u3)*q );
matrix DB = bbb(VVh,QQh); // La matrice B du PB VAR
matrix DBT = DB'; //B transposée
VVh [b1,b2,b3]; // vecteur pour les conditions aux limites
//----------Conditions aux limites
real[int] bbc = aaa(0, VVh ,tgv=-1); // Dirichlet
//---------Fonction d'appel pour le GC
func real[int] DJ(real[int] &u){
real[int] au=AA*u;
return au;
}
//--------Intialisation pour la pression et résolution système linéaire
p[]=0.;
real rayon=1.;
real areadomain = pi*rayon*rayon*L;
int inumouter=0;
real epsgc=1e-10;
real norm=1.;
/********************************************************************
BOUCLE RÉSOLUTION CG + CALCUL DE P AVEC UZAWA
********************************************************************/
real t1,t2;
t1=clock();
while (inumouter<2000){//AUGMENTER LA BORNE DE inumouter POUR UNE MEILLEUR CONVERGENCE
cout << inumouter << endl;
//calcul second membre
b1[]=DBT*p[];
b1[]+=F;
//switch second membre
b1[]=G ? F : b1[];
u1[]=G ? F : u1[];
//resolution de la vitesse:
LinearCG(DJ, u1[],b1[],veps=epsgc,nbiter=2*(VVh.ndof+QQh.ndof),eps=1e-12,
verbosity=5);
epsgc=-abs(epsgc);
real[int] bu1=DB*u1[];//DIVERGENCE VITESSE
real alpha=1.;
bu1*=alpha;//alpha=1/(1+Rbeta), ici Rbeta=1
real normbu1=sqrt(bu1'*bu1);
norm=normbu1;
if (normbu1<1e-10){//condition sur la norme de la divergence, possibilité de la diminuer ex:1e-12
break;
}
//resolution pour la pression:
real[int] ptemp(p[].n);
ptemp=Mp^-1*bu1;
p[]-=ptemp;
p[]-=int3d(Th)(p)/areadomain;
inumouter++;
}
t2=clock();
/*******************************************************************
CALCUL DES ERREURS ET AFFICHAGE DES SORTIES
********************************************************************/
real normeL2vit, errL2vit;
real normeL2press, errL2press;
//Pour la vitesse
normeL2vit = sqrt( int3d(Th) ( (ue1)^2+(ue2)^2+(ue3)^2) );
errL2vit = sqrt( int3d(Th) ( (u1-ue1)^2+(u2-ue2)^2+(u3-ue3)^2) );
//Pour la pression
normeL2press = sqrt( int3d(Th) ( (pe)^2 ));
errL2press = sqrt( int3d(Th) ( (p-pe)^2 ) );
//AFFICHAGE DES ERREURS À L'ECRAN
cout <<"********************************************************************"<<endl;
cout << "ERR L2 RELATIVE VITESSE ALL DOMAINE =" << errL2vit/normeL2vit << endl;
cout << "ERR L2 RELATIVE PRESSION ALL DOMAINE =" << errL2press/normeL2press << endl;
cout << "TEMPS " << t2-t1 << " ndof " << VVh.ndof+QQh.ndof <<" DEBIT OUT " << int2d(Th,1)(u3)*pi*Rayon*Rayon<< endl;
cout << " DEBIT IN " << int2d(Th,2)(u3)*pi*Rayon*Rayon <<" DEBIT OUT " << int2d(Th,1)(u3)*pi*Rayon*Rayon<< endl;
cout <<"********************************************************************"<<endl;
cout <<"********************************************************************"<<endl;
//pour z=L:
//Pour la vitesse SUR LA FACE z=L
normeL2vit = sqrt( int2d(Th,1) ( (ue1)^2+(ue2)^2+(ue3)^2) );
errL2vit = sqrt( int2d(Th,1) ( (u1-ue1)^2+(u2-ue2)^2+(u3-ue3)^2) );
//Pour la pression SUR LA FACE z=L
normeL2press = sqrt( int2d(Th,1) ( (pe)^2 ));
errL2press = sqrt( int2d(Th,1) ( (p-pe)^2 ) );
cout <<"********************************************************************"<<endl;
cout << "ERR L2 RELATIVE VITESSE EN Z=L = " << errL2vit/normeL2vit << endl;
cout << "ERR L2 RELATIVE PRESSION EN Z=L = " << errL2press/normeL2press << endl;
cout <<"********************************************************************"<<endl;
//afile << VVh.ndof+QQh.ndof << " "<< errL2vit/normeL2vit << " "<< errL2press/normeL2press << " "<< t2-t1 << endl;
// mesh cut=square(nb,nb,[x,y]);
// fespace Vcut(cut,P2);
// Vcut ux=u1(x,0.5,y);
// Vcut uz=u3(x,0.5,y);
// Vcut p2=p(x,0.5,y);
//plot([ux,uz],value=true,cmm="cut y=1");
//}
/********************************************************************
ÉCRITURE DES FICHIERS SOLUTIONS AU FORMAT VTK
********************************************************************/
// int[int] Order = [1];
// string DataName = "Vitesse";
// savevtk("vit.vtk", Th,[u1,u2,u3], dataname=DataName, order=Order);
// DataName="Pression";
// savevtk("p.vtk", Th, p, dataname=DataName, order=Order);
//AFFICHAGE DES SOLUTIONS FINALES SUR LE MAILLAGE AVEC MEDIT
medit("vit",Th,u3);
medit("p",Th,p);
|
0 | ALLM/Savitzky-Golay-Filtering | ALLM/Savitzky-Golay-Filtering/src/SavitzkyGolayFIR.m | function [FIRFiltersCoeff, MatrixOfDiffFilter, frame_half_len] = SavitzkyGolayFIR(order, framelen)
% designs a Savitzky-Golay Finite Impulse Response (FIR) smothing filter with polynomial order order and frame lenght framelen.
% INPUTS:
% order -- polynomial order positive odd integer
% framelen -- Frame lenght, specified as a positive odd integer. it Must be greater than order.
%
% OUTPUTS:
% b -- Time-varying FIR filter coefficiants (matrix)
% g -- Matrix of differentiation filters (matrix)
% f -- frame half lenght
arguments
order (1,1) double {mustBeNumeric, mustBeReal, mustBePositive, mustBeGreaterThanOrEqual(order,0)}
framelen (1,1) double {mustBeNumeric, mustBeReal, mustBePositive, mustBeGreaterThan(framelen,order)}
end
% framelen rounding case
if mod( framelen,1) ~= 0
framelen = round( framelen);
warning("framelen was rounded to the nearest integer.");
end
% framelen must be odd
if mod( framelen,2) ~= 1
warning("framelen must be odd, provided framelen was not odd. Continuing with framelen = framelen + 1");
framelen = framelen + 1;
end
% order rounding case
if mod( order,1) ~= 0
order = round(order);
warning("order was rounded to the nearest integer.");
end
% Get frame half lenght and Vandermonde(-frame_half_len:frame_half_len)
%fliptype = 'fliplr';
fliptype = 'none';
[frame_half_len, vander_obj] = GetVander( framelen, fliptype);
VanderMatrix = vander_obj( :,framelen:-1:framelen - order);
% Compute (B)FIRFiltersCoeff and (G)MatrixOfDiffFilter
[~,R] = qr( VanderMatrix,0);
MatrixOfDiffFilter = (R'*R)\VanderMatrix';
MatrixOfDiffFilter = VanderMatrix/R/R';
FIRFiltersCoeff = MatrixOfDiffFilter * VanderMatrix';
end
function [frame_half_len, vander_obj] = GetVander( framelen, fliptype)
arguments
framelen (1,1) double {mustBeNumeric, mustBeReal, mustBePositive, mustBeGreaterThan(framelen,1)}
fliptype (1,:) char {mustBeMember(fliptype,{'none','fliplr'})} = 'none'
end
frame_half_len = ( framelen - 1) / 2;
if strcmp( fliptype,'fliplr')
vander_obj = fliplr( vander( -frame_half_len:frame_half_len));
else
vander_obj = vander( -frame_half_len:frame_half_len);
end
end
|
0 | ALLM/Savitzky-Golay-Filtering | ALLM/Savitzky-Golay-Filtering/src/sgolayfilt.m | function smoothed_data = sgolayfilt(input_data, order, framelen, mode, trst, cval)
% designs a Savitzky-Golay Finite Impulse Response (FIR) smothing filter with polynomial order order and frame lenght framelen.
% INPUTS:
% input_data -- data to be smoothed
% order -- polynomial order positive odd integer
% framelen -- Frame lenght, specified as a positive odd integer. it Must be greater than order.
% mode -- 'mirror' Repeats the values at the edges in reverse order. The value closest to the edge is not included.
% -- 'nearest' The extension contains the nearest input value.
% -- 'constant' The extension contains the value given by the cval argument.
% -- 'wrap' The extension contains the values from the other end of the array.
% -- 'classic' Use transient for edges, steady at frame_half_len
% -- 'default' Use of transient for edges, steady at frame_half_len+1
% trst -- transient "yes" or "no" wether to use transient reconstruction for edges at begin and end for mode != classic and default. default "yes".
% cval Value to fill past the edges of the input if mode is ‘constant’. Default is 0.0.
% OUTPUTS:
% smoothed_data -- filtered data
arguments
input_data {mustBeNumeric, mustBeReal}
order (1,1) double {mustBeNumeric, mustBeReal, mustBePositive, mustBeGreaterThanOrEqual(order,0)}
framelen (1,1) double {mustBeNumeric, mustBeReal, mustBePositive, mustBeGreaterThan(framelen,order)}
mode (1,:) char {mustBeMember(mode,{'mirror','constant','nearest','wrap','classic','default'})} = 'default'
trst (1,:) char {mustBeMember(trst,{'yes','no'})} = 'yes'
cval (1,1) double {mustBeNumeric, mustBeReal} = 0.
end
[FIRFiltersCoeff, MatrixOfDiffFilter, frame_half_len] = SavitzkyGolayFIR( order, framelen);
if length(size(input_data)>1)
if size(input_data,1)<size(input_data,2)
padded_data = input_data';
else
padded_data = input_data;
end
else
padded_data = input_data;
end
begin = 1;
if ~strcmp(mode, 'default') & ~strcmp(mode, 'classic') %if mode!='default'
switch mode
case 'mirror'
nb = input_data( begin + 1);
ne = input_data( end - 1);
case 'constant'
nb = cval;
ne = cval;
case 'nearest'
nb = input_data( begin);
ne = input_data( end);
case 'wrap'
nb = input_data( end - 1 + 1);
ne = input_data( begin + 1 - 1);
end
for i = 2:frame_half_len
switch mode
case 'mirror'
nb = [input_data( begin + i); nb];
ne = [ne; input_data( end - i)];
case 'constant'
nb = [cval; nb];
ne = [ne; cval];
case 'nearest'
nb = [input_data( begin); nb];
ne = [ne; input_data( end)];
case 'wrap'
nb = [input_data( end - i + 1); nb];
ne = [ne; input_data( begin + i - 1)];
end
end
padded_data = [nb; padded_data; ne];
switch trst
case 'no'
smoothed_data = conv( padded_data, FIRFiltersCoeff( frame_half_len+1, :), 'valid');
case 'yes'
steady = conv( padded_data, FIRFiltersCoeff( frame_half_len+1, :), 'valid');
ybeg = FIRFiltersCoeff( begin:frame_half_len,:) * padded_data( begin:framelen);
yend = FIRFiltersCoeff( framelen - frame_half_len + 1:framelen, :) * padded_data(end - framelen + 1: end);
smoothed_data = steady;
smoothed_data( begin:frame_half_len) = ybeg;
smoothed_data( end - frame_half_len +1:end) = yend;
end
else
a = 0;
if strcmp(mode, 'default')
a = 1;
end
steady = conv( padded_data, FIRFiltersCoeff( frame_half_len+a, :), 'same');
ybeg = FIRFiltersCoeff( begin:frame_half_len,:) * padded_data( begin:framelen);
yend = FIRFiltersCoeff( framelen - frame_half_len + 1:framelen, :) * padded_data(end - framelen + 1: end);
smoothed_data = steady;
smoothed_data( begin:frame_half_len) = ybeg;
smoothed_data( end - frame_half_len +1:end) = yend;
end %end if mode!='default'
end
|
0 | ALLM/Savitzky-Golay-Filtering | ALLM/Savitzky-Golay-Filtering/test/SGolay_Differentiation.m | % Generate a signal that consists of a 0.2 Hz sinusoid embedded in white Gaussian noise and sampled four times a second for 20 seconds.
dt = 0.25;
t = (0:dt:20-1)';
freq = 0.2; % frequency
omega = 2.0*pi*freq; % pulsation i.e angular frequency, omega*t angle in radians.
Amp = 5.0; % Amplitude
x = Amp*sin(omega*t)+0.5*randn(size(t));
% Estimate the first three derivatives of the sinusoid using the Savitzky-Golay method. Use 25-sample frames and fifth order polynomials. Divide the columns by powers of dt to scale the derivatives correctly.
order = 5
framelen = 25;
[FIRFiltersCoeff, MatrixOfDiffFilter, frame_half_len] = SavitzkyGolayFIR(order, framelen);
dx = zeros(length(x),4);
for p = 0:3
coeff = factorial(p)/(-dt)^p;
dx(:,p+1) = conv(x, coeff * MatrixOfDiffFilter(:,p+1), 'same');
end
% Plot the original signal, the smoothed sequence, and the derivative estimates.
plot(x,'.-')
hold on
plot(dx)
hold off
legend('x','x (smoothed)','x''','x''''', 'x''''''')
title('Savitzky-Golay Derivative Estimates')
|
0 | ALLM/Savitzky-Golay-Filtering | ALLM/Savitzky-Golay-Filtering/test/SGolay_FilteringSpeechSignal.m | load mtlb;
t = (0:length(mtlb)-1)/Fs;
rd = 9;
fl = 21;
mirror = sgolayfilt(mtlb,rd,fl,'mirror');
wrap = sgolayfilt(mtlb,rd,fl,'wrap');
classic = sgolayfilt(mtlb,rd,fl,'classic');
default = sgolayfilt(mtlb,rd,fl,'default');
subplot(2,2,1)
plot(t,mtlb)
hold on
plot(t,mirror)
axis([0.2 0.22 -3 2])
title('mirror')
grid
subplot(2,2,2)
plot(t,mtlb)
hold on
plot(t,wrap)
axis([0.2 0.22 -3 2])
title('wrap')
grid
subplot(2,2,3)
plot(t,mtlb)
hold on
plot(t,classic)
axis([0.2 0.22 -3 2])
title('classic')
grid
subplot(2,2,4)
plot(t,mtlb)
hold on
plot(t,default)
axis([0.2 0.22 -3 2])
title('.default')
grid
|
0 | ALLM/Savitzky-Golay-Filtering | ALLM/Savitzky-Golay-Filtering/test/SGolay_SmoothingOfNoisySinusoid.m | % Generate a signal that consists of a 0.2 Hz sinusoid embedded in white Gaussian noise and sampled five times a second for 200 seconds.
dt = 1.0/5.0;
LB = 0.;
UB = 200.;
t = (LB:dt:UB-dt)';
freq = 0.2; % frequency Hz
omega = 2.0*pi*freq; % angular frequency (pulsation) rad/s
Amp = 5.0; % amplitude
x = Amp*sin(omega*t) + randn(size(t));
% Use sgolay to smooth the signal. Use 21-sample frames and fourth order polynomials.
order = 4;
framelen = 21;
[FIRFiltersCoeff, MatrixOfDiffFilter, frame_half_len] = SavitzkyGolayFIR(order, framelen);
% Compute the steady-state portion of the signal by convolving it with the center row of b.
ycenter = conv(x,FIRFiltersCoeff(frame_half_len+1,:),'valid');
%Compute the transients. Use the last rows of b for the startup and the first rows of b for the terminal.
ybegin = FIRFiltersCoeff(end:-1:frame_half_len+2,:) * x(framelen:-1:1);
yend = FIRFiltersCoeff(frame_half_len:-1:1,:) * x(end:-1:end-(framelen-1));
%Concatenate the transients and the steady-state portion to generate the complete smoothed signal. Plot the original signal and the Savitzky-Golay estimate.
y = [ybegin; ycenter; yend];
plot([x y])
legend('Noisy Sinusoid','S-G smoothed sinusoid')
|
0 | ALLM/Savitzky-Golay-Filtering | ALLM/Savitzky-Golay-Filtering/test/SteadyStateAndTransientSGFilters.m | % Generate a random signal and smooth it using sgolay. Specify a polynomial order of 3 and a frame length of 11. Plot the original and smoothed signals.
lx = 34; % lenght
x = randn(lx, 1); % signal
disp("size(x)");
display(size(x));
% Use sgolay to smooth the signal. Use 11-sample frames and third order polynomials.
order = 3;
framelen = 11;
frame_half_len = (framelen - 1) / 2;
[FIRFiltersCoeff, MatrixOfDiffFilter, frame_half_len] = SavitzkyGolayFIR(order, framelen);
% Compute the steady-state portion of the signal by convolving it with the center row of b.
ycenter = conv(x,FIRFiltersCoeff(frame_half_len,:),'same');
%ycenter = conv(x,FIRFiltersCoeff((framelen+1)/2,:),'same');
plot(x,':');
hold on
plot(ycenter,'.-')
%Samples close to the signal edges cannot be placed at the center of a symmetric window and have to be treated differently.
%To determine the startup transient, matrix multiply the first (framelen-1)/2 rows of B by the first framelen samples of the signal.
ybeg = FIRFiltersCoeff(1:frame_half_len,:) * x(1:framelen);
%To determine the terminal transient, matrix multiply the final (framelen-1)/2 rows of B by the final framelen samples of the signal.
yend = FIRFiltersCoeff(framelen-frame_half_len+1:framelen,:) * x(lx-framelen+1:lx);
%Concatenate the transients and the steady-state portion to generate the complete signal.
cmplt = ycenter;
cmplt(1:frame_half_len) = ybeg;
cmplt(lx-frame_half_len+1:lx) = yend;
disp("size(cmplt)");
display(size(cmplt));
plot(cmplt)
legend('Signal','Steady','complete')
|
0 | ALLM/Savitzky-Golay-Filtering | ALLM/Savitzky-Golay-Filtering/test/UsingSgolayfilt_SteadyStateAndTransientSGFilters.m | % Generate a random signal and smooth it using sgolay. Specify a polynomial order of 3 and a frame length of 11. Plot the original and smoothed signals.
%rng(1)
lx = 34; % lenght
x = randn(lx, 1); % signal
% Use sgolay to smooth the signal. Use 11-sample frames and third order polynomials.
order = 3;
framelen = 11;
frame_half_len = (framelen - 1) / 2;
modes = ["mirror" "constant" "nearest" "wrap" "classic" "default"]
plot(x,':');
hold on
for i = 1:6
smoothed_data = sgolayfilt(x, order, framelen, modes(i),'yes');
plot(smoothed_data,'-+');
end
%plot(smoothed_data,'.-');
[FIRFiltersCoeff, MatrixOfDiffFilter, frame_half_len] = SavitzkyGolayFIR(order, framelen);
% Compute the steady-state portion of the signal by convolving it with the center row of b.
ycenter = conv(x,FIRFiltersCoeff(frame_half_len,:),'same');
plot(ycenter)
%Samples close to the signal edges cannot be placed at the center of a symmetric window and have to be treated differently.
%To determine the startup transient, matrix multiply the first (framelen-1)/2 rows of B by the first framelen samples of the signal.
ybeg = FIRFiltersCoeff(1:frame_half_len,:) * x(1:framelen);
%To determine the terminal transient, matrix multiply the final (framelen-1)/2 rows of B by the final framelen samples of the signal.
yend = FIRFiltersCoeff(framelen-frame_half_len+1:framelen,:) * x(lx-framelen+1:lx);
%Concatenate the transients and the steady-state portion to generate the complete signal.
cmplt = ycenter;
cmplt(1:frame_half_len) = ybeg;
cmplt(lx-frame_half_len+1:lx) = yend;
plot(cmplt,'.-');
legend('Signal',"mirror","constant","nearest","wrap","classic","def",'Steady','complete');
|
0 | ALLM/Savitzky-Golay-Filtering | ALLM/Savitzky-Golay-Filtering/test/test_cutx.m | % Gathering signal's file informations
fileID = fopen("cut_x.txt","r");
formatSpec = '%f';
sizex = [1 Inf];
% Savitzky-Golay parameters
polynomial_order = 3;
framelen = 11;
derivative_order = 1;
% Reading from a file the input signal to be filtered
x = fscanf(fileID,formatSpec, sizex);
x_max = max(x);
% Filtering Normalized (Norm 1) input signal using SavitzkyGolay Method
y = sgolayfilt(x/x_max, polynomial_order, framelen,'classic');
% Ploting Normalized input signal
plot(x/x_max,':');
hold("on");
% Ploting output/filtered signal
plot(y,':');
legend('signal', 'filtered signal with 0-th derivative');
|
0 | ALLM/Savitzky-Golay-Filtering | ALLM/Savitzky-Golay-Filtering/test/test_signal_zlens.m | % Gathering signal's file informations
fileID = fopen("signal_zlens.txt","r");
formatSpec = '%f';
sizex = [1 inf];
abs_X = 0.0:0.025:0.8;
% Savitzky-Golay parameters
polynomial_order = 7;
framelen = 13;
derivative_order = 1;
% Reading from a file the input signal to be filtered
%x = fscanf(fileID,formatSpec, sizex);
data=load("signal_zlens.txt");
data_size = size(data);
nrows = data_size(1,1);
ncols = data_size(1,2);
path="~/Bureau/GitHub_repo/Savitzky-Golay-Filtering/data/output/signal_zlens"
def = figure;
for i = 1:ncols
subplot(3,6,i);
x = data(:, i);
x_max = max(x);
y = sgolayfilt(x/x_max, polynomial_order, framelen);
plot(x/x_max,'b');
hold("on");
plot(y,'r');
txt = sprintf('curve %i',i);
txt = strcat('filtered signal', txt);
txt = strcat('default ', txt);
title(txt);
grid;
end
saveas(def, strcat(path,"/default"), "pdf");
savefig(def, strcat(path,"/default"));
hold off;
classic = figure;
for i = 1:ncols
subplot(3,6,i);
x = data(:, i);
x_max = max(x);
y = sgolayfilt(x/x_max, polynomial_order, framelen, "classic");
plot(x/x_max,'b');
hold("on");
plot(y,'r');
txt = sprintf('curve %i',i);
txt = strcat('filtered signal', txt);
txt = strcat('classic', txt);
grid;
end
saveas(classic, strcat(path,"/classic"), "pdf");
savefig(classic, strcat(path,"/classic"));
hold off;
near = figure;
for i = 1:ncols
subplot(3,6,i);
x = data(:, i);
x_max = max(x);
y = sgolayfilt(x/x_max, polynomial_order, framelen, "nearest");
plot(x/x_max,'b');
hold("on");
plot(y,'r');
txt = sprintf('curve %i',i);
txt = strcat('filtered signal', txt);
txt = strcat('nearest-trst', txt);
title(txt);
grid;
end
saveas(near, strcat(path,"/nearest"), "pdf");
savefig(near, strcat(path,"/nearest"));
hold off;
near2 = figure;
for i = 1:ncols
subplot(3,6,i);
x = data(:, i);
x_max = max(x);
y = sgolayfilt(x/x_max, polynomial_order, framelen, "nearest","no");
plot(x/x_max,'b');
hold("on");
plot(y,'r');
txt = sprintf('curve %i',i);
txt = strcat('filtered signal', txt);
txt = strcat('nearest-notrst', txt);
title(txt);
grid;
end
saveas(near2, strcat(path,"/nearest-no-trst"), "pdf");
savefig(near2, strcat(path,"/nearest-no-trst"));
|
0 | ALLM/TER2019 | ALLM/TER2019/CODE_F90_MPI/ModMatrice.f90 | module ModMatrice
use ModMesh
use MPI
implicit none
integer,parameter::nbr_point_par_ele=3,nombre_node=10181,nombre_ddl=2
contains
!JACOBIENNE DE LA TRANSFORMATION
subroutine JACOBIENNE(T_node,T_conn,jac,i,nbr_tri)
integer,intent(in)::i,nbr_tri
TYPE(tab_node),intent(in)::T_node
integer,dimension(1:nbr_tri,1:5),intent(in)::T_conn
real(rki),dimension(1:2,1:2),intent(out)::jac
integer::P1,P2,P3
!i : itérant sur la liste des connectivité des élé triangle
!P numero du noeud de l'élément
jac=0.d0
P1=T_conn(i,2);P2=T_conn(i,3);P3=T_conn(i,4)
jac(1,1)=T_node%c_node(P2,1)-T_node%c_node(P1,1);jac(1,2)=T_node%c_node(P2,2)-T_node%c_node(P1,2)
jac(2,1)=T_node%c_node(P3,1)-T_node%c_node(P1,1);jac(2,2)=T_node%c_node(P3,2)-T_node%c_node(P1,2)
end subroutine JACOBIENNE
!DETERMINANT DE J
subroutine DETERMINANT_JAC(jac,det)
real(rki),dimension(1:2,1:2),intent(in)::jac
real(rki),intent(out)::det
det=0.
det=jac(1,1)*jac(2,2)-jac(1,2)*jac(2,1)
end subroutine DETERMINANT_JAC
!INVERSE DE LA JACOBIENNE:
subroutine INVERSE_JAC(jac,det,inv_jac)
real(rki),dimension(1:2,1:2),intent(in)::jac
real(rki),dimension(1:2,1:2),intent(out)::inv_jac
real(rki),intent(in)::det
real(rki)::inv_det
inv_jac=0.
!call DETERMINANT_JAC(jac,det)
inv_det=1/det
inv_jac(1,1)=jac(2,2);inv_jac(2,1)=-jac(2,1)
inv_jac(1,2)=-jac(1,2);inv_jac(2,2)=jac(1,1)
inv_jac=inv_det*inv_jac
end subroutine INVERSE_JAC
!MATRICE MODIFIEE DE INV_J POUR CORRESPONDRE A LA FORMULATION DU PB
subroutine Q_INV_J(inv_jac,Q)
real(rki),dimension(1:2,1:2),intent(in)::inv_jac
real(rki),dimension(1:3,1:4),intent(out)::Q
Q=0.
Q(1,1)=inv_jac(1,1);Q(1,2)=inv_jac(1,2);Q(1,3:4)=0.
Q(2,1:2)=0.;Q(2,3)=inv_jac(2,1);Q(2,4)=inv_jac(2,2)
Q(3,1)=inv_jac(2,1);Q(3,2)=inv_jac(2,2);Q(3,3)=inv_jac(1,1);Q(3,4)=inv_jac(1,2)
end subroutine Q_INV_J
!RETOURNE B i.e Q.DN avec DN derivé fct de forme dans base ele ref
subroutine GRAD_N(Q,DN,B)
real(rki),dimension(1:3,1:4),intent(in)::Q
real(rki),dimension(1:4,1:6),intent(in)::DN
real(rki),dimension(1:3,1:6),intent(inout)::B !B:=OPERATEUR DERIVATION dans la base de ref :epsilon=B.dpl(élé)
integer::i,j,k
B=0.
DO i=1,3
DO j=1,6
DO k=1,4
B(i,j)=B(i,j)+Q(i,k)*DN(k,j)
END DO
END DO
END DO
! ou B=MATMUL(Q,DN)
end subroutine GRAD_N
!MATRICE DE RIGIDITE ELEMENTAIRE DE l'ELEMENT CONSIDERE:
subroutine MATRICE_RIGIDITE_ELEMENT(B,HOOK,det,K_ele)
real(rki),dimension(1:3,1:6),intent(in)::B
real(rki),dimension(1:3,1:3),intent(in)::HOOK
real(rki),intent(in)::det
real(rki),dimension(1:6,1:6),intent(out)::K_ele
real(rki),dimension(1:6,1:3)::inter
real(rki),dimension(1:6,1:6)::trans
real(rki)::ep
integer::i,j,k
ep=1
K_ele=0.
inter=0.
!inter=tranpose(B)*HOOK:
DO j=1,6
DO i=1,3
DO k=1,3
inter(j,i)=inter(j,i)+B(k,j)*HOOK(k,i)
END DO
END DO
END DO
!SINON FAIRE inter=MATMUL(TRANSPOSE(B),HOOK)
!k_ele=inter*B:
DO i=1,6
DO j=1,6
DO k=1,3
K_ele(i,j)=K_ele(i,j)+inter(i,k)*B(k,j)
END DO
END DO
END DO
!SINON FAIRE K_ele=MATMUL(inter,B)
K_ele=0.5*ABS(det)*K_ele!*ep
!!$trans=TRANSPOSE(K_ele)
!!$PRINT*,' '
!!$PRINT*,'K_ele'
!!$DO i=1,6
!!$ PRINT*,K_ele(i,:)!-trans(i,:)
!!$END DO
end subroutine MATRICE_RIGIDITE_ELEMENT
SUBROUTINE DPL_IMPO(K_ele,T_conn,T_node,nbr_tri,i,condi_x,condi_y)
real(rki),dimension(1:6,1:6),intent(inout)::K_ele
integer,intent(in)::i,nbr_tri
TYPE(tab_node),intent(in)::T_node
integer,dimension(1:nbr_tri,1:5),intent(in)::T_conn
real(rki),intent(in)::condi_x,condi_y
integer::P1,P2,P3,k1,k,k2
real(rki)::a,b
!i : itérant sur la liste des connectivité des élé triangle
!P numero du noeud de l'élément
P1=T_conn(i,2);P2=T_conn(i,3);P3=T_conn(i,4)
DO k=2,4
IF((T_node%c_node(T_conn(i,k),1)==condi_x))THEN !dpl bloqué en x=condi_x, i.e dpl(x)=0:
k1=2*k-3 !bijection
a=K_ele(k1,k1);K_ele(k1,:)=0.0d0;K_ele(:,k1)=0.0d0;K_ele(k1,k1)=1.0d0!a*nbr_tri
PRINT*,'CONDI_X',T_node%c_node(T_conn(i,k),1)
ELSE IF((T_node%c_node(T_conn(i,k),2)==condi_y))THEN !dpl bloqué en y=condi_y, i.e dpl(y)=0:
k2=2*k-2 !bijection
b=K_ele(k2,k2);K_ele(k2,:)=0.0d0;k_ele(:,k2)=0.0d0;K_ele(k2,k2)=1.0d0!b*nbr_tri
PRINT*,'CONDI_Y',T_node%c_node(T_conn(i,k),2)
END IF
END DO
END SUBROUTINE DPL_IMPO
!SUBROUTINE DE LOCALISATION:
subroutine LOC_i(n,NDDL,nbr_tri,T_conn,i,localisation)
integer,intent(in)::n,NDDL,nbr_tri
integer,dimension(1:nbr_tri,1:5),intent(in)::T_conn
integer,intent(in)::i
integer,dimension(1:n*NDDL),intent(out)::localisation
integer::j,k,l
localisation=0
k=1
DO WHILE(k<n*NDDL+1)
DO j=2,4 !1,n de 2à4 car stocke colonne 2à4
DO l=1,NDDL
localisation(k)=(T_conn(i,j)-1)*NDDL+l
k=k+1
END DO
END DO
END DO
end subroutine LOC_i
!PRE-TRI
SUBROUTINE PRE_TRI(T1,T2,T3,NBR_C,SIZE,rang,L1,L2,L3,RC1,RC2,RC3,status,stateinfo)
integer,dimension(MPI_STATUS_SIZE),intent(inout)::status
INTEGER,intent(in)::T1,T2,T3,NBR_C,SIZE,rang !L1=TAB_CL(1,:), SIZE = la taille de L1
INTEGER,intent(inout)::stateinfo
INTEGER,dimension(1:SIZE),intent(in)::L1,L2 !L2=TAB_CL(2,:)
REAL(rki),dimension(1:SIZE),intent(in)::L3 !L3=TAB_V(:)
INTEGER,dimension(1:4)::PIV1,PIV2,other
INTEGER::cpt,t,i,j,he,TAILLE,GAP
INTEGER,dimension(:),allocatable::EX1,EX2
real(rki),dimension(:),allocatable::EX3
INTEGER,dimension(:),allocatable,intent(out)::RC1,RC2
real(rki),dimension(:),allocatable,intent(out)::RC3
INTEGER::TAG
CHARACTER(len=3)::rank
PIV1(1)=0;PIV1(2)=T1;PIV1(3)=T2;PIV1(4)=T3
PIV2(1)=T1;PIV2(2)=T2;PIV2(3)=T3;PIV2(4)=NBR_C
write(rank,fmt='(i3.3)')rang
DO t=3,0,-1!0,3 SI ON FAIT LA BOUCLE DE t=0,3 IL Y A UN BUG: PIV1(4)==0 ALORS QU'IL VAUT T3
cpt=0
DO j=1,SIZE
IF(L1(j)<=PIV2(t+1))THEN
IF(L1(j)>PIV1(t+1))THEN
cpt=cpt+1
END IF
END IF
END DO
IF(cpt>0)THEN
ALLOCATE (EX1(1:cpt),EX2(1:cpt),EX3(1:cpt));TAG=1
ELSE
TAG=0
END IF
cpt=0
TAILLE=0;other=0
IF(rang/=t)THEN
IF(TAG==1)THEN
DO i=1,SIZE
IF((L1(i)>PIV1(t+1)).AND.(L1(i)<=PIV2(t+1)))THEN
cpt=cpt+1
EX1(cpt)=L1(i);EX2(cpt)=L2(i);EX3(cpt)=L3(i)
END IF
END DO
END IF
call MPI_SEND(cpt,1,MPI_INTEGER,t,10+rang+t,MPI_COMM_WORLD,stateinfo)
IF(TAG==1)THEN
CALL MPI_SEND(EX1(1:cpt),cpt,MPI_INTEGER,t,30+rang+t,MPI_COMM_WORLD,stateinfo)
CALL MPI_SEND(EX2(1:cpt),cpt,MPI_INTEGER,t,60+rang+t,MPI_COMM_WORLD,stateinfo)
CALL MPI_SEND(EX3(1:cpt),cpt,MPI_DOUBLE_PRECISION,t,90+rang+t,MPI_COMM_WORLD,stateinfo)
DEALLOCATE(EX1,EX2,EX3)
END IF
ELSE
IF(TAG==1)THEN
DO i=1,SIZE
IF((L1(i)>PIV1(t+1)).AND.(L1(i)<=PIV2(t+1)))THEN
cpt=cpt+1
EX1(cpt)=L1(i);EX2(cpt)=L2(i);EX3(cpt)=L3(i)
END IF
END DO
END IF
other(rang)=cpt
TAILLE=cpt
DO he=0,3
IF(he/=t)THEN
CALL MPI_RECV(other(he),1,MPI_INTEGER,he,10+he+t,MPI_COMM_WORLD,status,stateinfo)
TAILLE=TAILLE+other(he)
END IF
END DO
ALLOCATE(RC1(1:TAILLE),RC2(1:TAILLE),RC3(1:TAILLE))
IF(TAG==1)THEN
DO i=1,other(rang)
RC1(i)=EX1(i);RC2(i)=EX2(i);RC3(i)=EX3(i)
END DO
DEALLOCATE(EX1,EX2,EX3)
END IF
GAP=other(rang)
DO he=0,3
IF(other(he)>0.AND.he/=t)THEN!t ou rang)then
CALL MPI_RECV(RC1(GAP+1:GAP+other(he)),other(he),MPI_INTEGER,he,30+he+t,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_RECV(RC2(GAP+1:GAP+other(he)),other(he),MPI_INTEGER,he,60+he+t,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_RECV(RC3(GAP+1:GAP+other(he)),other(he),MPI_DOUBLE_PRECISION,he,90+he+t,MPI_COMM_WORLD,status,stateinfo)
GAP=GAP+other(he)
END IF
END DO
END IF
END DO
PRINT*,'RANG',rang,'FIN BOUCLE t, t=',t
END SUBROUTINE PRE_TRI
!POUR LE FORMAT SPARSE:
SUBROUTINE MAKE_A_LISTE1(rang,NNZ_LOW_PART,CHARGE_ME,ite,it1,k_ite,n_NDDL,LOC,K_ele,TAB_CL,TAB_V)
integer,intent(in)::rang,NNZ_LOW_PART,CHARGE_ME,ite,it1,n_NDDL
!itération actuelle
!nbr non zero dans la partie triangulaire inferieur de K_ele
!nbr d'élément traité par chaque proc
integer,dimension(1:n_NDDL),intent(in)::LOC
real(rki),dimension(1:n_NDDL,1:n_NDDL),intent(in)::K_ele
integer,intent(inout)::k_ite
integer,dimension(1:NNZ_LOW_PART*CHARGE_ME,1:2),intent(out)::TAB_CL
!STOCK cows rows where NNZ in K_ele_exp
real(rki),dimension(1:NNZ_LOW_PART*CHARGE_ME),intent(out)::TAB_V
!STOCK VAL nnz de K_ele_exp partie trian inf
integer::i,j
character(len=3)::rank
WRITE(rank,fmt='(i3.3)')rang
!integer::lenght
!lenght=NNZ_LOW_PART*CHARGE_ME
!TAB_CL=0;TAB_V=0.d0
IF(ite==it1)THEN
k_ite=1
END IF
!***POUR "simuler" un format CCS SYMETRIQUE
!k_ite=1
DO j=1,n_NDDL
DO i=1,n_NDDL !j,n_NDDL
!IF(LOC(i)>=LOC(j))THEN
IF(K_ele(i,j)/=0.d0)THEN
TAB_CL(k_ite,1)=LOC(j);TAB_CL(k_ite,2)=LOC(i)
TAB_V(k_ite)=K_ele(i,j)
k_ite=k_ite+1
ELSE
TAB_CL(k_ite,1)=0;TAB_CL(k_ite,2)=0
TAB_V(k_ite)=0.d0
k_ite=k_ite+1
END IF
!END IF
END DO
END DO
END SUBROUTINE MAKE_A_LISTE1
subroutine EXPANSER_RIGIDITE_LOCALE(K_ele,localisation,n,NDDL,Nd,K_ele_expansee)
integer,intent(in)::n,NDDL,Nd
integer,dimension(1:n*NDDL),intent(in)::localisation
real(rki),dimension(1:n*NDDL,1:n*NDDL),intent(in)::K_ele
real(rki),dimension(1:Nd*NDDL,1:Nd*NDDL),intent(out)::K_ele_expansee
integer::k,l
PRINT*,'DANS EXPANSER RIGIDITE LOC'
K_ele_expansee=0.d0
DO k=1,n*NDDL
print*,'ex_ri_loc',' k=',k
DO l=1,n*NDDL
!print*,'l=',l
K_ele_expansee(localisation(k),localisation(l))=K_ele(k,l)
END DO
END DO
PRINT*,'FIN EXP RIG LOC'
end subroutine EXPANSER_RIGIDITE_LOCALE
!******************************************************************************************************
subroutine FORCE_LOCALE_SUIVANT_Y(nume,P,longueur,n,Nd,NDDL,nbr_tri,T_node,T_conn,F_LOCALE,MODEL)
real(rki),intent(in)::P,longueur
integer,intent(in)::nume,n,Nd,NDDL,nbr_tri,MODEL
TYPE(tab_node),intent(in)::T_node
integer,dimension(1:nbr_tri,1:5),intent(in)::T_conn
real(rki),dimension(1:n*NDDL),intent(out)::F_LOCALE
!integer::i,k,j,l
integer::P1,P2,P3
real(rki)::X1,X2,X3,Y1,Y2,Y3,ep
ep=0.00003
F_LOCALE=0.d0
P1=T_conn(nume,2);P2=T_conn(nume,3);P3=T_conn(nume,4)
X1=T_node%c_node(P1,1);X2=T_node%c_node(P2,1);X3=T_node%c_node(P3,1)
Y1=T_node%c_node(P1,2);Y2=T_node%c_node(P2,2);Y3=T_node%c_node(P3,2)
SELECT CASE(MODEL)
CASE(0)
IF(Y1==0. .AND. Y2==0.)THEN
F_LOCALE(2)=-P*abs(X1-X2)*0.5;F_LOCALE(4)=F_LOCALE(2)
ELSE IF(Y1==0. .AND. Y3==0.)THEN
F_LOCALE(2)=-P*abs(X1-X3)*0.5;F_LOCALE(6)=F_LOCALE(2)
ELSE IF(Y2==0. .AND. Y3==0.)THEN
F_LOCALE(4)=-P*abs(X2-X3)*0.5;F_LOCALE(6)=F_LOCALE(4)
ELSE IF(Y1==longueur .AND. Y2==longueur)THEN
F_LOCALE(2)=P*abs(X1-X2)*0.5;F_LOCALE(4)=F_LOCALE(2)
ELSE IF(Y1==longueur .AND. Y3==longueur)THEN
F_LOCALE(2)=P*abs(X1-X3)*0.5;F_LOCALE(6)=F_LOCALE(2)
ELSE IF(Y2==longueur .AND. Y3==longueur)THEN
F_LOCALE(4)=P*abs(X2-X3)*0.5;F_LOCALE(6)=F_LOCALE(4)
END IF
CASE(1)
IF(Y1==longueur .AND. Y2==longueur)THEN
F_LOCALE(2)=P*abs(X1-X2)*0.5;F_LOCALE(4)=F_LOCALE(2)
ELSE IF(Y1==longueur .AND. Y3==longueur)THEN
F_LOCALE(2)=P*abs(X1-X3)*0.5;F_LOCALE(6)=F_LOCALE(2)
ELSE IF(Y2==longueur .AND. Y3==longueur)THEN
F_LOCALE(4)=P*abs(X2-X3)*0.5;F_LOCALE(6)=F_LOCALE(4)
END IF
END SELECT
end subroutine FORCE_LOCALE_SUIVANT_Y
subroutine FORCE_LOCALE_SUIVANT_X(nume,P,largeur,n,Nd,NDDL,nbr_tri,T_node,T_conn,F_LOCALE)
real(rki),intent(in)::P,largeur
integer,intent(in)::nume,n,Nd,NDDL,nbr_tri
TYPE(tab_node),intent(in)::T_node
integer,dimension(1:nbr_tri,1:5),intent(in)::T_conn
real(rki),dimension(1:n*NDDL),intent(out)::F_LOCALE
!integer::i,k,j,l
integer::P1,P2,P3
real(rki)::X1,X2,X3,Y1,Y2,Y3
F_LOCALE=0.0d0
P1=T_conn(nume,2);P2=T_conn(nume,3);P3=T_conn(nume,4)
X1=T_node%c_node(P1,1);X2=T_node%c_node(P2,1);X3=T_node%c_node(P3,1)
Y1=T_node%c_node(P1,2);Y2=T_node%c_node(P2,2);Y3=T_node%c_node(P3,2)
!PRINT*,'Y ',Y1,' ',Y2,' ',Y3,'longueur',longueur,' P',P1,' ',P2,' ',P3
!P=E_L*facteur_de_dpl !159*10**9*0.001
!!$ IF(X1==0.0d0 .AND. X2==0.0d0)THEN
!!$ !PRINT*,'$$$$$$$$$$$$$$$$$$$$$1',-P*abs(Y1-Y2)*0.5,' ',abs(Y1-Y2)
!!$ F_LOCALE(1)=-P*abs(Y1-Y2)*0.5;F_LOCALE(3)=F_LOCALE(1)
!!$ ELSE IF(X1==0.0d0 .AND. X3==0.0d0)THEN
!!$ !PRINT*,'$$$$$$$$$$$$$$2'
!!$ F_LOCALE(1)=-P*abs(Y1-Y3)*0.5;F_LOCALE(5)=F_LOCALE(1)
!!$ ELSE IF(X2==0.0d0 .AND. X3==0.0d0)THEN
!!$ !PRINT*,'$$$$$$$$$$$$$$$3'
!!$ F_LOCALE(3)=-P*abs(Y2-Y3)*0.5;F_LOCALE(5)=F_LOCALE(3)
IF(ABS(X1-largeur)<=0.0000001 .AND. ABS(X2-largeur)<=0.0000001)THEN!(X1==largeur .AND. X2==largeur)THEN
!PRINT*,'$$$$$$$$$$*******************$$$$$$$$$$$$$$$$$$$$$$$4',abs(Y1-Y2)
F_LOCALE(1)=P*abs(Y1-Y2)*0.5;F_LOCALE(3)=F_LOCALE(1)
ELSE IF(ABS(X1-largeur)<=0.0000001 .AND. ABS(X3-largeur)<=0.0000001)THEN!(X1==largeur .AND. X3==largeur)THEN
!PRINT*,'*********5'
F_LOCALE(1)=P*abs(Y1-Y3)*0.5;F_LOCALE(5)=F_LOCALE(1)
ELSE IF(ABS(X2-largeur)<=0.0000001 .AND. ABS(X3-largeur)<=0.0000001)THEN!(X2==largeur .AND. X3==largeur)THEN
!PRINT*,'********6'
F_LOCALE(3)=P*abs(Y2-Y3)*0.5;F_LOCALE(5)=F_LOCALE(3)
END IF
end subroutine FORCE_LOCALE_SUIVANT_X
subroutine FORCE_LOCALE_SUIVANT_Y_EXPANSEE(n,NDDL,Nd,localisation,F_LOCALE,F_EXPANSEE)
integer,intent(in)::n,NDDL,Nd
integer,dimension(1:n*NDDL),intent(in)::localisation
real(rki),dimension(1:n*NDDL),intent(in)::F_LOCALE
real(rki),dimension(1:Nd*NDDL),intent(out)::F_EXPANSEE
integer::k,rank
F_EXPANSEE=0.d0
DO k=1,n*NDDL
F_EXPANSEE(localisation(k))=F_LOCALE(k)
END DO
end subroutine FORCE_LOCALE_SUIVANT_Y_EXPANSEE
subroutine node_loc(n,NDDL,nbr_tri,ite,rang,localisation,T_conn)
integer,intent(in)::n,NDDL,nbr_tri,ite,rang
integer,dimension(1:n*NDDL),intent(in)::localisation
integer,dimension(1:nbr_tri,1:5),intent(in)::T_conn
integer::k,j
character(len=3)::rank
write(rank,fmt='(i3.3)')rang
OPEN(10+rang,file='NODE_LOC'//trim(adjustl(rank))//'.dat',position='append')
DO j=2,4
WRITE(10+rang,*)T_conn(ite,1),T_conn(ite,j),localisation(1:6)
END DO
CLOSE(10+rang)
end subroutine node_loc
SUBROUTINE WR_K(userchoice,Nd,NDDL,NNZ)
integer,intent(inout)::userchoice
integer,intent(in)::Nd,NDDL,NNZ
!character(len=21),parameter::R_F='CLV_PC001_RANK000.dat'
character(len=10),parameter::R_F='CCS000.dat'
character(len=10),parameter::W_R='K_VIEW.vtk'
integer::i,j,a,b,d,err
real(rki)::c
real(rki),dimension(:,:),allocatable::K
K=0.d0
SELECT CASE(userchoice)
CASE(1)
err=0
ALLOCATE(K(1:Nd*NDDL,1:ND*NDDL))
!allocate(K(1:Nd*NDDL))
K=0.d0
OPEN(30,file=W_R)
write(30,fmt='(1A26)') '# vtk DataFile Version 3.0'
write(30,fmt='(1A4)') 'cell'
write(30,fmt='(1A5)') 'ASCII'
write(30,fmt='(1A25)') 'DATASET STRUCTURED_POINTS'
write(30,fmt='(1A11,1I5,1A1,1I5,1A2)') 'DIMENSIONS ', Nd*NDDL ,' ' , Nd*NDDL, ' 1'
write(30,fmt='(1A12)') 'ORIGIN 0 0 0'
write(30,fmt='(1A13)') 'SPACING 1 1 1'
write(30,fmt='(1A11,1I9)') 'POINT_DATA ' , (Nd*NDDL)**2
write(30,fmt='(1A18)') 'SCALARS cell float'
write(30,fmt='(1A20)') 'LOOKUP_TABLE default'
i=1
OPEN(40,file=R_F)
i=1
DO WHILE(i<NNZ+1)
READ(40,*)a,b,c,d
PRINT*,'i=',i,' ',a,b,c,d
K(b,a)=c
i=i+1
PRINT*,'i=',i
END DO
DO i=1,Nd*NDDL
WRITE(30,*)K(i,:)
END DO
CLOSE(40)
CLOSE(30)
deallocate(K)
userchoice=0
if(err<0)then
print*,'fin de fichier '
else
print*,'erreur de lecture'
end if
CASE DEFAULT
userchoice=0
END SELECT
END SUBROUTINE WR_K
subroutine SAVE_K_me(Nd,NDDL,K_GLOBALE,rang,num_pc,stateinfo,status)
integer,dimension(MPI_STATUS_SIZE),intent(inout)::status
integer,intent(inout)::stateinfo
integer,intent(in)::Nd,NDDL,rang,num_pc
real(rki),dimension(1:Nd*NDDL,1:Nd*NDDL),intent(in)::K_GLOBALE
character(len=3)::rank,pc
integer::i,j
write(rank,fmt='(i3.3)')rang
write(pc,fmt='(i3.3)')num_pc
open(20+rang,file='PC_'//trim(adjustl(pc))//'_pour_'//'K_'//trim(adjustl(rank))//'.dat')
DO j=1,Nd*NDDL
DO i=1,ND*NDDL
write(20+rang,*)K_GLOBALE(i,j)
END DO
END DO
close(20+rang)
end subroutine SAVE_K_ME
subroutine VIEW_K_GLOBALE(Nd,NDDL,K_GLOBALE)
integer,intent(in)::Nd,NDDL
real(rki),dimension(1:Nd*NDDL,1:Nd*NDDL),intent(in)::K_GLOBALE
real(rki),dimension(1:Nd*NDDL)::A
integer::i,j
open(20,file='view_K_globale.vtk')
write(20,*)'# vtk DataFile Version 3.0'
write(20,*)'cell'
write(20,*)'ASCII'
write(20,*)'DATASET STRUCTURED_POINTS'
write(20,*)'DIMENSIONS ',Nd*NDDL,' ',Nd*NDDL,' 1'
write(20,*)'ORIGIN 0 0 0 '
write(20,*)'SPACING 1 1 1'
write(20,*)'POINT_DATA ',(Nd*NDDL)**2
write(20,*)'SCALARS cell float'
write(20,*)'LOOKUP_TABLE default'
DO j=1,Nd*NDDL
A(:)=K_GLOBALE(:,j)
!DO i=1,ND*NDDL
!IF(K_GLOBALE(i,j)==0.d0)THEN
write(20,*)A(:)
!END DO
END DO
close(20)
end subroutine VIEW_K_GLOBALE
end module ModMatrice
|
0 | ALLM/TER2019 | ALLM/TER2019/CODE_F90_MPI/ModMesh.f90 | Module ModMesh
implicit none
integer,parameter::rki=8
TYPE tab_node
integer,dimension(:),allocatable::n_node
real(rki),dimension(:,:),allocatable::c_node !1::x, 2::y, 3::z
END TYPE tab_node
!LES 2 TYPES SUIVANT SONT POUR STOCKER LES NODES QUI SONT SUR LES LIGNES EN SUD ET NORD
!C'EST POUR LES FORCES
TYPE info_pts
integer::num_node
real(rki)::x_node,y_node
END TYPE info_pts
TYPE TAB_INFO
TYPE(info_pts),dimension(1:6)::liste
END TYPE TAB_INFO
contains
subroutine read_mesh(mesh_file,nbr_node,nbr_tri,T_node,T_conn,rang,MARK1,MARK2)
character(len=*),intent(in)::mesh_file
character(len=25)::CHEMIN
integer,intent(in)::nbr_node,nbr_tri,rang,MARK1,MARK2
!MARK1 1ere ligne où les éléments sont triangles, MARK2 dernière ligne où les élé sont triangles
integer::k,j,b,c,n1,n2,n3,n4,n5,n6,n7,n8,T
real::a !a,b,c dummy variables
real(rki)::x,y,z !x,y,z coordonnées nodes
integer::num_node !numero du node
TYPE(tab_node),intent(out)::T_node
integer,dimension(1:nbr_tri,1:5),intent(out)::T_conn
ALLOCATE(T_node%n_node(1:nbr_node),T_node%c_node(1:nbr_node,1:3))
CHEMIN='./MESH/'//mesh_file
open(10,file=CHEMIN)!mesh_file)
k=1
DO WHILE(k<6)
READ(10,*)
k=k+1
END DO
PRINT*,'k=',k
T=0
DO WHILE(k<nbr_node+6)
read(10,*)num_node,x,y,z
T=T+1
T_node%n_node(num_node)=num_node
T_node%c_node(num_node,1)=x
T_node%c_node(num_node,2)=y
T_node%c_node(num_node,3)=z
IF(RANG==0)THEN
PRINT*,'k=',k,' ',T_node%n_node(num_node),T_node%c_node(num_node,:)
END IF
!print*,'k=',k,' ',num_node,x,y,z
k=k+1
END DO
PRINT*,k
!k=10187
read(10,*) !lit $EndNodes
k=k+1
PRINT*,k
read(10,*) !lit $Elements
k=k+1
PRINT*,k
read(10,*) !lit NBR d'ele total
k=k+1
PRINT*,k,'avvv'
DO WHILE(k<MARK1)
read(10,*)
k=k+1
END DO
j=1
DO WHILE(k<MARK2+1)
k=k+1 !on lit cette ligne
read(10,*)n1,n2,n3,n4,n5,n6,n7,n8
!PRINT*,k,' ',n1,n2,n3,n4,n5,n6,n7,n8
T_conn(j,1)=n1 !num ele
T_conn(j,2)=n6;T_conn(j,3)=n7;T_conn(j,4)=n8 !num sommets
T_conn(j,5)=n5 !num elementary tag
IF(rang==0)THEN
PRINT*,j,' ',T_conn(j,1),T_conn(j,2),T_conn(j,3),T_conn(j,4),T_conn(j,5)
END IF
j=j+1
END DO
close(10)
PRINT*,'NBR NODES= ',nbr_node,' T=',T,' j=',j-1
end subroutine read_mesh
SUBROUTINE READ_DATA(rang,file_name,mesh_name,Nd,N_TRI,FIRST_ROW,LAST_ROW,KMAX,TOL&
,PMAX,STEP,N_STEP,MODEL,LONG,LARG,RAY,condi_x,condi_y)!,DIR)
INTEGER,intent(in)::rang
CHARACTER(LEN=*),intent(in)::file_name
CHARACTER(LEN=*),intent(out)::mesh_name
INTEGER,intent(out)::Nd,N_TRI,FIRST_ROW,LAST_ROW,KMAX!,DIR
REAL(rki),intent(out)::TOL
REAL(rki),intent(out)::PMAX
INTEGER,intent(out)::STEP,N_STEP,MODEL
REAL(rki),intent(out)::LONG,LARG,RAY,condi_x,condi_y
OPEN(10+rang,file=file_name)
read(10+rang,*)
read(10+rang,*)mesh_name
read(10+rang,*)
read(10+rang,*)Nd
read(10+rang,*)
read(10+rang,*)N_TRI
read(10+rang,*)
read(10+rang,*)FIRST_ROW
read(10+rang,*)
read(10+rang,*)LAST_ROW
read(10+rang,*)
read(10+rang,*)KMAX
read(10+rang,*)
read(10+rang,*)TOL
!read(10+rang,*)
!read(10+rang,*)DIR
read(10+rang,*)
read(10+rang,*)PMAX
read(10+rang,*)
read(10+rang,*)STEP
read(10+rang,*)
read(10+rang,*)N_STEP
read(10+rang,*)
read(10+rang,*)MODEL
read(10+rang,*)
read(10+rang,*)LONG
read(10+rang,*)
read(10+rang,*)LARG
read(10+rang,*)
read(10+rang,*)RAY
read(10+rang,*)
read(10+rang,*)condi_x
read(10+rang,*)
read(10+rang,*)condi_y
CLOSE(10+rang)
END SUBROUTINE READ_DATA
SUBROUTINE DEFORMEE_DPL(rang,INPUT_MESH,OUTPUT_DEF,OUTPUT_X,OUTPUT_Y,Nd,SOLX,SOLY)
INTEGER,intent(in)::rang,Nd
CHARACTER(LEN=*),intent(in)::INPUT_MESH
CHARACTER(LEN=*),intent(out)::OUTPUT_DEF,OUTPUT_X,OUTPUT_Y
REAL(rki),DIMENSION(1:Nd),intent(in)::SOLX,SOLY
integer::k,a
real(rki)::x,y,z
character(len=25)::CHEMIN
CHEMIN='./MESH/'//INPUT_MESH
IF(rang==0)THEN
OPEN(10,file=CHEMIN)!INPUT_MESH)
OPEN(20,file=OUTPUT_DEF)
READ(10,*);READ(10,*);READ(10,*);READ(10,*);READ(10,*)
DO k=1,Nd
READ(10,*)a,x,y,z
WRITE(20,*)a,x+SOLX(k),y+SOLY(k),z
END DO
CLOSE(20)
CLOSE(10)
ELSE IF(rang==1)THEN
OPEN(30,file=OUTPUT_X)
DO k=1,Nd
WRITE(30,*)k,SOLX(k)
END DO
CLOSE(30)
ELSE IF(rang==2)THEN
OPEN(40,file=OUTPUT_Y)
DO k=1,Nd
WRITE(40,*)k,SOLY(k)
END DO
CLOSE(40)
END IF
END SUBROUTINE DEFORMEE_DPL
SUBROUTINE MAP_RESIDUS(rang,OUTPUT_X,OUTPUT_Y,Nd,SOLX,SOLY)
INTEGER,intent(in)::rang,Nd
CHARACTER(LEN=*),intent(out)::OUTPUT_X,OUTPUT_Y
REAL(rki),DIMENSION(1:Nd),intent(in)::SOLX,SOLY
integer::k
real(rki)::x,y,z
IF(rang==0)THEN
OPEN(30,file=OUTPUT_X)
DO k=1,Nd
WRITE(30,*)k,SOLX(k)
END DO
CLOSE(30)
ELSE IF(rang==3)THEN
OPEN(40,file=OUTPUT_Y)
DO k=1,Nd
WRITE(40,*)k,SOLY(k)
END DO
CLOSE(40)
END IF
END SUBROUTINE MAP_RESIDUS
end Module ModMesh
|
0 | ALLM/TER2019 | ALLM/TER2019/CODE_F90_MPI/ModPGC.f90 | module ModPGC
use mpi
use ModMesh
implicit none
contains
subroutine PGC(rang,it1,itN,NNZ_P,kmax,TOL,stateinfo,status,X,VAL,J_IND,I_cpt,b,Nd,NDDL,RES,H_NM)
integer,intent(in)::rang,it1,itN,NNZ_P,Nd,NDDL,kmax
real(rki),intent(in)::TOL
CHARACTER(LEN=*),intent(in)::H_NM
!NNZ_P := nbr de non zero par processeur
integer,intent(inout)::stateinfo
integer,dimension(MPI_STATUS_SIZE),intent(inout)::status
real(rki),dimension(it1:itN),intent(inout)::X
real(rki),dimension(it1:itN),intent(out)::RES
real(rki),dimension(1:NNZ_P),intent(in)::VAL !ele non nul
integer,dimension(1:NNZ_P),intent(in)::J_ind !num des cols ou ele non nul
integer,dimension(1:itN-it1+2),intent(in)::I_cpt
real(rki),dimension(it1:itN),intent(in)::b
real(rki),dimension(it1:itN)::r,z
real(rki),dimension(1:Nd*NDDL)::p,Ap
real(rki)::beta,alpha,gamma
real(rki)::beta_P,alpha_p
real(rki)::drz,dApp,drz_old !<r|z>, <Ap|p>
real(rki)::drz_P,dApp_P
integer,dimension(1:2,1:4)::CHARGE
integer::k
IF(rang==0)THEN
OPEN(20,file='./RES/'//trim(H_NM)//'res.txt')
END IF
!INI:
beta=0;beta_P=0;k=0
CALL COMM_CHARGE(rang,stateinfo,status,it1,itN,CHARGE)
PRINT*,'FIN COMM_CHARGE'
!INITIALISATION DE X à Xo=0.0d0:
X=0.0d0
!ro=b-A*X et beta =norm2(ro):
r(it1:itN)=b(it1:itN)
beta_P=DOT_PRODUCT(r(it1:itN),r(it1:itN))
PRINt*,'INIT beta_P'
CALL REDUCTION_REEL(rang,stateinfo,status,beta,beta_P)
beta=sqrt(beta)
PRINT*,'REDUCTION INITIALE DE beta'
!zo=INV_DIAG(A).ro: (precondi jacobi)
CALL PRE_DIAG(rang,it1,itN,NNZ_P,Nd,NDDL,VAL,J_IND,I_cpt,z(it1:itN),r(it1:itN))
!INI p à z:
p(it1:itN)=z(it1:itN)
PRINT*,'INIT zo et po'
IF(rang==0)THEN
WRITE(20,*)k,beta
END IF
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
PRINT*,'DEBUT BOUCLE PGC'
DO WHILE((k<kmax+1) .AND. (beta>TOL))
k=k+1
!CALCUL DE Ap_k: Ap=A.p
!SEND&RECV POUR QUE TOUS LES PROCS connaissent P(1:Nd*NDDL):
CALL SEND_RECV_VECT(rang,CHARGE,Nd,NDDL,stateinfo,status,p)
CALL SP_PMV(rang,it1,itN,NNZ_P,Nd,NDDL,VAL,J_IND,I_cpt,p,Ap)
!CALCUL de <Ap|p>:
dApp_P=DOT_PRODUCT(Ap(it1:itN),p(it1:itN))
CALL REDUCTION_REEL(rang,stateinfo,status,dApp,dApp_P)
!CALCUL de <r|z>:
drz_P=DOT_PRODUCT(r(it1:itN),z(it1:itN))
CALL REDUCTION_REEL(rang,stateinfo,status,drz,drz_P)
!on doit stocker drz dans dzr_old:
drz_old=drz
!CALCUL de alpha_k: alpha=<r|z>/<Ap|p>:
alpha=drz/dApp
!CALCUL DE X_k+1:=X_k+alpha_k.p_k:
X(it1:itN)=X(it1:itN)+alpha*p(it1:itN)
!CALCUL DE r_k+1=r_k-alpha_k*Ap_k:
r(it1:itN)=r(it1:itN)-alpha*Ap(it1:itN)
!CALCUL DE z_k+1=INV_DIAG(A)*r:
CALL PRE_DIAG(rang,it1,itN,NNZ_P,Nd,NDDL,VAL,J_IND,I_cpt,z(it1:itN),r(it1:itN))
!RECALCUL DE <r|z>:
drz_P=DOT_PRODUCT(r(it1:itN),z(it1:itN))
CALL REDUCTION_REEL(rang,stateinfo,status,drz,drz_P)
!CALCUL DE GAMMA:=drz/drz_old
gamma=drz/drz_old
!CALCUL DE P_K+1=Z_K+GAMMA*P_K:
p(it1:itN)=z(it1:itN)+gamma*p(it1:itN)
!CALCUL DE LA NORME DU RESIDU BETA:
beta_P=DOT_PRODUCT(r(it1:itN),r(it1:itN))
CALL REDUCTION_REEL(rang,stateinfo,status,beta,beta_P)
beta=sqrt(beta)
IF(rang==0)THEN
WRITE(20,*)k,beta
PRINT*,'k=',k,' beta=',beta,'TOL',TOL
END IF
END DO
IF(rang==0)THEN
CLOSE(20)
END IF
RES=r
end subroutine PGC
subroutine COMM_CHARGE(rang,stateinfo,status,it1,itN,CHARGE)
integer,intent(in)::rang,it1,itN
integer,intent(inout)::stateinfo
integer,dimension(MPI_STATUS_SIZE),intent(inout)::status
integer,dimension(1:2,1:4),intent(out)::CHARGE
integer::i,he
CHARGE(1,rang+1)=it1;CHARGE(2,rang+1)=itN
DO he=0,3
IF(rang/=he)THEN
CALL MPI_SEND(CHARGE(1:2,rang+1),2,MPI_INTEGER,he,10+rang,MPI_COMM_WORLD,stateinfo)
ELSE
DO i=0,3
IF(i/=rang)THEN
CALL MPI_RECV(charge(1:2,i+1),2,MPI_INTEGER,i,10+i,MPI_COMM_WORLD,status,stateinfo)
END IF
END DO
END IF
END DO
end subroutine COMM_CHARGE
subroutine SEND_RECV_VECT(rang,CHARGE,Nd,NDDL,stateinfo,status,V_P)
integer,intent(in)::rang,Nd,NDDL
integer,dimension(1:2,1:4),intent(in)::CHARGE
integer,intent(inout)::stateinfo
integer,dimension(MPI_STATUS_SIZE),intent(inout)::status
real(rki),dimension(1:Nd*NDDL),intent(inout)::V_P
!real(rki),dimension(1:Nd*NDDL),intent(out)::V
integer::i,he,G,D
DO he=0,3
IF(rang/=he)THEN
G=CHARGE(1,rang+1);D=CHARGE(2,rang+1)
CALL MPI_SEND(V_P(G:D),D-G+1,MPI_DOUBLE_PRECISION,he,10+rang,MPI_COMM_WORLD,stateinfo)
ELSE
DO i=0,3
IF(i/=rang)THEN
G=CHARGE(1,i+1);D=CHARGE(2,i+1)
CALL MPI_RECV(V_P(G:D),D-G+1,MPI_DOUBLE_PRECISION,i,10+i,MPI_COMM_WORLD,status,stateinfo)
END IF
END DO
END IF
END DO
end subroutine SEND_RECV_VECT
subroutine REDUCTION_REEL(rang,stateinfo,status,R,R_P)
integer,intent(in)::rang
integer,intent(inout)::stateinfo
integer,dimension(MPI_STATUS_SIZE),intent(inout)::status
real(rki),intent(in)::R_P
real(rki),intent(inout)::R
real(rki)::reduc
integer::he
!*** SEND R_P:
IF(rang/=0)THEN
CALL MPI_SEND(R_P,1,MPI_DOUBLE_PRECISION,0,10+rang,MPI_COMM_WORLD,stateinfo)
ELSE
R=R_P
do he=1,3
CALL MPI_RECV(reduc,1,MPI_DOUBLE_PRECISION,he,10+he,MPI_COMM_WORLD,status,stateinfo)
R=R+reduc
end do
END IF
!*** SEND R:
IF(rang==0)THEN
do he=1,3
CALL MPI_SEND(R,1,MPI_DOUBLE_PRECISION,he,10+he,MPI_COMM_WORLD,stateinfo)
end do
ELSE
CALL MPI_RECV(R,1,MPI_DOUBLE_PRECISION,0,10+rang,MPI_COMM_WORLD,status,stateinfo)
END IF
end subroutine REDUCTION_REEL
subroutine PRE_DIAG(rang,it1,itN,NNZ_P,Nd,NDDL,VAL,J_IND,I_cpt,z,r)
integer,intent(in)::rang,it1,itN,NNZ_P,Nd,NDDL
real(rki),dimension(1:NNZ_P),intent(in)::VAL
integer,dimension(1:NNZ_P),intent(in)::J_IND
integer,dimension(1:itN-it1+2),intent(in)::I_cpt
real(rki),dimension(it1:itN),intent(out)::z !z=INV_DIAG(A).r
real(rki),dimension(it1:itN),intent(in)::r !le residu
!INV_DIAG := l'inverse de DIAG(A) pour le preconditionneur, avec A.X=b
integer::i,k,a,C,d,b,NNZ_R
!NNZ_P := nbr de non zero par processeur
!NNZ_R := nbr de non zero par ligne par proc
d=0;a=1;b=0;C=0
DO i=it1,itN
NNZ_R=I_cpt(a+1)-I_cpt(a)
IF(NNZ_R/=0)THEN
DO k=1,NNZ_R
b=k+d
C=J_IND(b)
if(C==i)then
z(i)=r(C)/VAL(b)
end if
END DO
d=d+NNZ_R
END IF
a=a+1
END DO
end subroutine PRE_DIAG
!PRODUIT MATRICE VECTEUR:
subroutine SP_PMV(rang,it1,itN,NNZ_P,Nd,NDDL,VAL,J_IND,I_cpt,VECT,PMV)
integer,intent(in)::rang,it1,itN,NNZ_P,Nd,NDDL
real(rki),dimension(1:NNZ_P),intent(in)::VAL
integer,dimension(1:NNZ_P),intent(in)::J_IND
integer,dimension(1:itN-it1+2),intent(in)::I_cpt
real(rki),dimension(1:Nd*NDDL),intent(in)::VECT
real(rki),dimension(1:Nd*NDDL),intent(out)::PMV
integer::i,j,k,a,b,d,C,NNZ_R
d=0;a=1;b=0;C=0;PMV=0.0d0
DO i=it1,itN
NNZ_R=I_cpt(a+1)-I_cpt(a)
IF(NNZ_R/=0)THEN
do k=1,NNZ_R
b=d+k
C=J_IND(b)
PMV(i)=PMV(i)+VAL(b)*VECT(C)
end do
d=d+NNZ_R
END IF
a=a+1
END DO
end subroutine SP_PMV
!FORMAT SPARSE
subroutine CCS(S_SIZE,Nd,NDDL,CCS_it1,CCS_itN,S_CL,S_V,VAL,J_IND,I_cpt)
integer,intent(in)::S_SIZE,Nd,NDDL,CCS_it1,CCS_itN
integer,dimension(1:S_SIZE,1:2),intent(in)::S_CL
real(rki),dimension(1:S_SIZE),intent(in)::S_V
real(rki),dimension(1:S_SIZE),intent(out)::VAL
integer,dimension(1:S_SIZE),intent(out)::J_IND
integer,dimension(1:(CCS_itN-CCS_it1)+2),intent(out)::I_cpt
!integer,dimension(1:(Nd*NDDL)+1),intent(out)::I_cpt
integer::i,j,k,NNZ_R,cpt
I_cpt(1)=1;cpt=0;k=0
DO i=CCS_it1,CCS_itN
NNZ_R=0;k=k+1
DO j=1,S_SIZE
IF(S_CL(j,1)==i)THEN
NNZ_R=NNZ_R+1;cpt=cpt+1
VAL(cpt)=S_V(j);J_IND(cpt)=S_CL(j,2)
END IF
END DO
I_cpt(k+1)=NNZ_R+I_cpt(k)
END DO
end subroutine CCS
subroutine SEND_RECV_F_GLO(rang,CHARGE,it1,itN,Nd,NDDL,stateinfo,status,V_P,F_GP)
integer,intent(in)::rang,Nd,NDDL,it1,itN
integer,dimension(1:2,1:4),intent(in)::CHARGE
integer,intent(inout)::stateinfo
integer,dimension(MPI_STATUS_SIZE),intent(inout)::status
real(rki),dimension(it1:itN),intent(inout)::V_P
real(rki),dimension(1:Nd*NDDL),intent(inout)::F_GP !F_GLOBAL PAR PROC
real(rki),dimension(:),allocatable::V_reduc
integer::i,he,G,D
ALLOCATE(V_reduc(it1:itN))
V_P(it1:itN)=F_GP(it1:itN)
DO he=0,3
IF(rang/=he)THEN
G=CHARGE(1,he+1);D=CHARGE(2,he+1)
CALL MPI_SEND(F_GP(G:D),D-G+1,MPI_DOUBLE_PRECISION,he,10+rang,MPI_COMM_WORLD,stateinfo)
ELSE
DO i=0,3
IF(i/=rang)THEN
!G=CHARGE(1,rang+1);D=CHARGE(2,rang+1)
!CALL MPI_RECV(V_reduc(G:D),D-G+1,MPI_DOUBLE_PRECISION,i,10+i,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_RECV(V_reduc(it1:itN),itN-it1+1,MPI_DOUBLE_PRECISION,i,10+i,MPI_COMM_WORLD,status,stateinfo)
V_P(it1:itN)=V_P(it1:itN)+V_reduc(it1:itN)
END IF
END DO
END IF
END DO
DEALLOCATE(V_reduc)
end subroutine SEND_RECV_F_GLO
subroutine SEND_RECV_SOL(rang,CHARGE,CCS_it1,CCS_itN,Nd,NDDL,stateinfo,status,X,SOL_X,SOL_Y)
integer,intent(in)::rang,Nd,NDDL,CCS_it1,CCS_itN
integer,dimension(1:2,1:4),intent(in)::CHARGE
integer,intent(inout)::stateinfo
integer,dimension(MPI_STATUS_SIZE),intent(inout)::status
real(rki),dimension(CCS_it1:CCS_itN),intent(in)::X
real(rki),dimension(1:Nd),intent(inout)::SOL_X,SOL_Y !DPL_X DPL_Y PAR PROC
real(rki),dimension(:),allocatable::SOL_Xreduc1,SOL_Yreduc1,SOL_Xreduc2,SOL_Yreduc2
integer::i,he,G,D,k,SIZE_X,a,b
a=0;b=0
ALLOCATE(SOL_Xreduc1(1:Nd),SOL_Yreduc1(1:Nd),SOL_Xreduc2(1:Nd),SOL_Yreduc2(1:Nd))
SIZE_X=CCS_itN-CCS_it1+1
SOL_X=0.0d0;SOL_Y=0.0d0
SOL_Xreduc1=0.0d0;SOL_Yreduc1=0.0d0;SOL_Xreduc2=0.0d0;SOL_Yreduc2=0.0d0
DO k=CCS_it1,CCS_itN
IF(mod(k,2)==0)THEN
SOL_Y(k/2)=X(k)
ELSE
a=(k-mod(k,2))/2+mod(k,2)
SOL_X(a)=X(k)
END IF
END DO
SOL_Xreduc2=SOL_X
SOL_Yreduc2=SOL_Y
DO he=0,3
IF(rang/=he)THEN
!G=CHARGE(1,rang+1);D=CHARGE(2,rang+1)
CALL MPI_SEND(SOL_Xreduc2(1:Nd),Nd,MPI_DOUBLE_PRECISION,he,10+rang,MPI_COMM_WORLD,stateinfo)
CALL MPI_SEND(SOL_Yreduc2(1:Nd),Nd,MPI_DOUBLE_PRECISION,he,10+rang,MPI_COMM_WORLD,stateinfo)
ELSE
DO i=0,3
IF(i/=rang)THEN
!G=CHARGE(1,i+1);D=CHARGE(2,i+1)
CALL MPI_RECV(SOL_Xreduc1(1:Nd),Nd,MPI_DOUBLE_PRECISION,i,10+i,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_RECV(SOL_Yreduc1(1:Nd),Nd,MPI_DOUBLE_PRECISION,i,10+i,MPI_COMM_WORLD,status,stateinfo)
SOL_X=SOL_X+SOL_Xreduc1
SOL_Y=SOL_Y+SOL_Yreduc1
END IF
END DO
END IF
END DO
DEALLOCATE(SOL_Xreduc1,SOL_Yreduc1,SOL_Xreduc2,SOL_Yreduc2)
end subroutine SEND_RECV_SOL
SUBROUTINE FIRST_REDUCTION_SIGMA_OU_DEF(rang,Nd,COEF_POND,SIGMA_GLO,DUMMY1,DUMMY2,stateinfo,status)
!OPERATION DE REDUCTION FACON TRI PAIR-IMPAIR:
integer,intent(inout)::stateinfo
integer,dimension(MPI_STATUS_SIZE),intent(inout)::status
INTEGER,intent(in)::rang,Nd
INTEGER,dimension(1:Nd),intent(inout)::COEF_POND
INTEGER,dimension(:),allocatable,intent(inout)::DUMMY2
REAL(rki),dimension(1:Nd),intent(inout)::SIGMA_GLO
REAL(rki),dimension(:),allocatable,intent(inout)::DUMMY1
IF(rang==1)THEN
CALL MPI_SEND(COEF_POND(1:Nd),Nd,MPI_INTEGER,0,30,MPI_COMM_WORLD,stateinfo)
CALL MPI_SEND(SIGMA_GLO(1:Nd),Nd,MPI_DOUBLE_PRECISION,0,31,MPI_COMM_WORLD,stateinfo)
ELSE IF(rang==0)THEN
ALLOCATE(DUMMY1(1:Nd),DUMMY2(1:Nd))
CALL MPI_RECV(DUMMY2(1:Nd),Nd,MPI_INTEGER,1,30,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_RECV(DUMMY1(1:Nd),Nd,MPI_DOUBLE_PRECISION,1,31,MPI_COMM_WORLD,status,stateinfo)
COEF_POND=COEF_POND+DUMMY2
SIGMA_GLO=SIGMA_GLO+DUMMY1
DEALLOCATE(DUMMY1,DUMMY2)
ELSE IF(rang==2)THEN
CALL MPI_SEND(COEF_POND(1:Nd),Nd,MPI_INTEGER,3,40,MPI_COMM_WORLD,stateinfo)
CALL MPI_SEND(SIGMA_GLO(1:Nd),Nd,MPI_DOUBLE_PRECISION,3,41,MPI_COMM_WORLD,stateinfo)
ELSE IF(rang==3)THEN
ALLOCATE(DUMMY1(1:Nd),DUMMY2(1:Nd))
CALL MPI_RECV(DUMMY2(1:Nd),Nd,MPI_INTEGER,2,40,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_RECV(DUMMY1(1:Nd),Nd,MPI_DOUBLE_PRECISION,2,41,MPI_COMM_WORLD,status,stateinfo)
COEF_POND=COEF_POND+DUMMY2
SIGMA_GLO=SIGMA_GLO+DUMMY1
DEALLOCATE(DUMMY1,DUMMY2)
END IF
END SUBROUTINE FIRST_REDUCTION_SIGMA_OU_DEF
end module ModPGC
|
0 | ALLM/TER2019 | ALLM/TER2019/CODE_F90_MPI/ModParra.f90 | MODULE ModParra
use mpi
implicit none
CONTAINS
subroutine CHARGE(rang,Np,it1,itN,CHARGE_TOT,enplus)
integer,intent(in)::rang,Np,CHARGE_TOT,enplus
integer,intent(out)::it1,itN
real::coeff_repartition
coeff_repartition=CHARGE_TOT/Np
SELECT CASE(Np)
CASE(1)
it1=1
itN=CHARGE_TOT
CASE DEFAULT
if(rang<mod(CHARGE_TOT,Np))then
it1=rang*(coeff_repartition+1)+1
it1=it1+enplus
itN=(rang+1)*(coeff_repartition+1)
itN=itN+enplus
print*,'RANGRANG',rang,' coeff rep=',coeff_repartition,' mod(chargetot,Np)', mod(CHARGE_TOT,Np)
else
it1=1+mod(CHARGE_TOT,Np)+rang*coeff_repartition
it1=it1+enplus
itN=it1+coeff_repartition-1
!itN=itN
end if
END SELECT
print*,'je suis proc',rang,'je vais de',it1,'à',itN
end subroutine CHARGE
END MODULE ModParra
|
0 | ALLM/TER2019 | ALLM/TER2019/CODE_F90_MPI/ModTri.f90 | module ModTri
use ModMesh
use mpi
implicit none
contains
SUBROUTINE DOUBLON(SIZE,rang,T_CL,T_V,Z)
INTEGER,intent(in)::SIZE,rang
INTEGER,dimension(1:SIZE,1:2),intent(inout)::T_CL
REAL(rki),dimension(1:SIZE),intent(inout)::T_V
INTEGER,intent(out)::Z !NBR DE ZERO
INTEGER::i,j
!ON SUPPOSE QUE T_V(:)/=0
DO j=1,SIZE-1
IF(T_V(j)/=0)THEN
DO i=j+1,SIZE
IF(T_V(i)/=0)THEN
!PRINT*,'RANG',rang,j,i,'DOUBLON'
IF((T_CL(j,1)==T_CL(i,1)).AND.(T_CL(j,2)==T_CL(i,2)))THEN
T_V(j)=T_V(j)+T_V(i);T_V(i)=0
END IF
END IF
END DO
END IF
END DO
Z=0
DO i=1,SIZE
IF(T_V(i)==0.d0)THEN
Z=Z+1
END IF
END DO
END SUBROUTINE DOUBLON
SUBROUTINE TRI_CR(SIZE,Z,rang,T_CL,T_V,S_CL,S_V,NNZ)!TRI OVER ALL T_CL(:,1) ET T_CL(:,2)
INTEGER,intent(in)::SIZE,Z,rang
INTEGER,dimension(1:SIZE,1:2),intent(in)::T_CL
INTEGER,dimension(1:SIZE)::T_TRI
REAL(rki),dimension(1:SIZE),intent(in)::T_V
INTEGER,intent(out)::NNZ
INTEGER,dimension(:,:),intent(out),allocatable::S_CL
REAL(rki),dimension(:),intent(out),allocatable::S_V
INTEGER::i,j,DIM,pt
DIM=SIZE-Z
ALLOCATE(S_CL(1:DIM,1:2),S_V(1:DIM))
T_TRI=0;S_CL=0;S_V=0.d0
DO j=1,SIZE
!PRINT*,'RANG',RANG,'j=',j
IF(T_V(j)/=0)THEN
!PRINT*,'RANG',rang,'IF'
DO i=1,SIZE
!PRINT*,'RANG',rang,'i=',i
IF(T_V(i)/=0)THEN
!PRINT*,'RANG',rang,j,i,'TRI'
IF(T_Cl(j,1)==T_CL(i,1).AND.T_CL(j,2)>=T_CL(i,2))THEN
T_TRI(j)=T_TRI(j)+1
ELSE IF(T_CL(j,1)>T_CL(i,1))THEN
T_TRI(j)=T_TRI(j)+1
END IF
END IF
END DO
END IF
END DO
DO i=1,SIZE
IF(T_TRI(i)/=0)THEN
pt=T_TRI(i)
S_CL(pt,1)=T_CL(i,1);S_CL(pt,2)=T_CL(i,2);S_V(pt)=T_V(i);
END IF
END DO
NNZ=0
DO i=1,DIM
IF(S_V(i)/=0)THEN
NNZ=NNZ+1
END IF
END DO
PRINT*,'RANG',rang,'DIM',DIM,'NNZ',NNZ
END SUBROUTINE TRI_CR
end module ModTri
|
0 | ALLM/TER2019 | ALLM/TER2019/CODE_F90_MPI/main.f90 | program main
use ModMesh
use ModMatrice
use ModParra
use ModTri
use mpi
use ModPGC
implicit none
!mpirun -n 4 --mca pml ob1 ./a.out
integer::rang,Np,stateinfo,me
integer,dimension(MPI_STATUS_SIZE)::status
integer::num_pc,indice,userchoice
!POUR LE MAILLAGE:
INTEGER::PX,PY,P1,P2,P3
INTEGER::MARK1,MARK2 ! cf ModMesh.f90 pour info
!n:nbr de noeuds par élé, ici 3
!NDDL:nbr de degre de liberté aux noeuds, ici 2
!Nd:nbr de noeuds total
!taille matrice rigidité locale: n.NDDL par n.NDDL
!taille matrice globale et expansee: Nd.NDDL par Nd.NDDL
!POUR DEFINIR LES NOMS DES FICHIERS
character(len=20)::mesh_file
character(len=3)::rank,N_PC,u_dir
character(len=4)::INPUT_DATA
character(len=25)::DEF_NODE
character(len=25)::DEF_X,DEF_Y,RES_X,RES_Y
!*** POUR MEF
integer::nbr_node,nbr_tri,Nd
INTEGER::it1,itn,CHARGE_TOT,CHARGE_ME,k_ite
integer::i,j,k,l,he,compteur_ite,NNZ,NNZ1,NNZ2,NNZ0,NNZ3,TRUE_NNZ,NZ
integer,parameter::n=3,NDDL=2
integer::n_NDDL
!T_node TABLEAU DE CORD DES NOEUDS
TYPE(tab_node)::T_node
!ALLOCATE(T_node%n_node(1:nbr_node),T_node%c_node(1:nbr_node,1:3))
integer,dimension(:,:),allocatable::T_conn
!*** POUR MEF
real(rki),dimension(1:2,1:2)::jac,inv_jac
real(rki),dimension(1:3,1:4)::Q
real(rki),dimension(1:4,1:6)::DN !DERIVE FCT DE FORME DANS BASE ELE REF
real(rki),dimension(1:3,1:6)::B
real(rki),dimension(1:3,1:3)::HOOK
real(rki),dimension(1:6,1:6)::K_ele
real(rki),dimension(1:6,1:3)::inter
integer,dimension(1:n*NDDL)::localisation
integer,dimension(1:n*NDDL,1:3)::liste
!CONDITION DPL BLOQUE:
real(rki)::condi_x,condi_y
INTEGER::MODEL !POUR SAVOIR SI 1/4 DE PLAQUE OU ENTIERE
!*** POUR TRI
INTEGER::T1,T2,T3,Z !Z nbr ZERO
INTEGER::TAILLE
INTEGER,dimension(:),allocatable::RC1,RC2
real(rki),dimension(:),allocatable::RC3
integer,dimension(:,:),allocatable::TAB_CL,T_CL,T01_CL,T23_CL,L01_CL,L23_CL,T03_CL,L03_CL,S_CL
real(rki),dimension(:),allocatable::TAB_V,T_V,T01_V,T23_V,L01_V,L23_V,T03_V,L03_V,S_V
!*** POUR MEF
real(rki)::det
REAL(rki)::longueur,largeur,RAY
REAL(rki)::P,P_MAX
INTEGER::N_P
INTEGER::N_STEP,STEP
real(rki),dimension(1:n*NDDL)::F_LOCALE
real(rki),dimension(:),allocatable::F_LOCALE_EXPANSEE,F_GLOBAL,F
!*** POUR PGC ET FORMAT CCS:
real(rki)::TOL
integer::CCS_it1,CCS_itN,AA,BB,CC,DD,KMAX
real(rki),dimension(:),allocatable::VAL
integer,dimension(:),allocatable::J_IND
integer,dimension(:),allocatable::I_cpt
real(rki),dimension(:),allocatable::X,SOLX,SOLY,RES,RESX,RESY
integer,dimension(1:2,1:4)::TAB_IT,TAB_CHARGE
!*** POUR CALCUL DE SIGMA ET DEFORMATION:
INTEGER::DIR,DIR_ALL,TRACE
REAL(rki),dimension(1:6)::DPL
REAL(rki),dimension(1:3)::SIGMA_LOC,DEF_LOC
REAL(rki),dimension(1:3,1:6)::AB
REAL(rki),dimension(:),allocatable::SIGMA_GLO,DUMMY1,DEF_GLO,DUMMY3
INTEGER,dimension(:),allocatable::COEF_POND,DUMMY2,COEF_POND_2,DUMMY4 !coeff de pondération
!*** POUR LES MODULE E_XX,E_YYou G_XY:
!REAL(rki),dimension(:),allocatable::MOD_ING
REAL(rki)::MOY_MOD_ING,SOM_SIG,SOM_DEF,X_TRACE,Y_TRACE !moyenne et point de niveau pour relever S_YY sur la ligne
INTEGER::CPT_TRACE,H_A,H_B
CHARACTER(len=20)::HOST_NM
!*** CPU TIME
real(rki)::start,end
!******************************************************
!******************************************************
CALL MPI_INIT(stateinfo) !DEBUT REGION //
CALL MPI_COMM_RANK(MPI_COMM_WORLD,rang,stateinfo)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,Np,stateinfo)
PRINT*,'AFFICHAGE NBR PROC:'
IF(rang==0)THEN
PRINT*,'**********************************'
PRINT*,'NOMBRE DE PROCESSUS ACTIF:',Np
PRINT*,'**********************************'
END IF
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
PRINT*,'|'
PRINT*,'PROCESSUS #',rang
PRINT*,'|'
IF(rang==0)THEN
PRINT*,'**********************************'
END IF
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
!******************************************************
indice=0
!INI
n_NDDL=n*NDDL
!condi_dpl:
!condi_x=0.0125d0;condi_y=0.08d0
!condi_x=0.036d0;condi_y=0.0d0!0.2305d0
!INITIALAISATION DN:
DN=0.0d0
DN(1,1)=-1.0d0;DN(1,3)=1.0d0;DN(2,1)=-1.0d0;DN(2,5)=1.0d0;DN(3,2)=-1.0d0;DN(3,4)=1.0d0
DN(4,2)=-1.0d0;DN(4,6)=1.0d0
!INITIALISATION DE HOOK: on switch c11 avec c22 car traction sens y
HOOK=0.d0
!OTCH2:
HOOK(1,1)=43.0630d0;HOOK(2,2)=HOOK(1,1)
HOOK(1,2)=13.4340d0;HOOK(2,1)=HOOK(1,2)
HOOK(3,3)=14.8140d0
HOOK=HOOK*10**9
HOOK(1,3)=0.0d0;HOOK(3,1)=0.0d0;HOOK(2,3)=0.0d0;HOOK(3,2)=0.0d0
!mesh_file='HOLE.o.msh'
write(rank,fmt='(i3.3)')rang
!mesh_file='HOLE_'//trim(adjustl(rank))//'.o.msh'
!*** LECTURE DE DATA.txt POUR LES PARAMETRES DU CODE:
INPUT_DATA='DATA'!.txt'
CALL READ_DATA(rang,INPUT_DATA,mesh_file,nbr_node,nbr_tri,MARK1,MARK2,KMAX,TOL,P_MAX,STEP,N_STEP &
,MODEL,longueur,largeur,RAY,condi_x,condi_y)!,DIR)
SELECT CASE(MODEL)
CASE(1)
X_TRACE=0.0d0;Y_TRACE=0.0d0
CASE(0)
X_TRACE=largeur/2.0d0;Y_TRACE=longueur/2.0d0
END SELECT
num_pc=1
write(N_PC,fmt='(i3.3)')num_pc
Nd=nbr_node
CHARGE_TOT=nbr_tri
!BOUCLE POUR VARTIATION DE CHARGE ET EVENTUELLLEMENT SI L'ON VEUT DISTRIBUER LA BOUCLE SUR PLUSIEURS PC:
CALL hostnm(HOST_NM)!LE NOM DU PC
IF(STEP==1)THEN
IF(HOST_NM=='foissac')THEN
CALL CHARGE(rang,5,H_A,H_B,N_STEP,0)!!H_A=1;H_B=10
ELSE IF(HOST_NM=='enlene')THEN
CALL CHARGE(rang,5,H_A,H_B,N_STEP,0)
ELSE IF(HOST_NM=='combarelles')THEN
CALL CHARGE(rang,5,H_A,H_B,N_STEP,0)! H_A=21;H_B=30
ELSE IF(HOST_NM=='cosquer')THEN
CALL CHARGE(rang,5,H_A,H_B,N_STEP,0)!H_A=31;H_B=40
ELSE IF(HOST_NM=='cussac')THEN
CALL CHARGE(rang,5,H_A,H_B,N_STEP,0)!H_A=41;H_B=50
END IF
ELSE IF(STEP==0)THEN
HOST_NM='DELL'
H_A=1;H_B=1;N_STEP=1
END IF
P=0.0d0
DO N_P=H_A,H_B
P=P+N_P*(P_MAX/N_STEP)!N_P*POURCENTAGE_P*P_MAX
ALLOCATE(T_conn(1:nbr_tri,1:5))
ALLOCATE(F_LOCALE_EXPANSEE(1:Nd*NDDL),F_GLOBAL(1:Nd*NDDL))
F_GLOBAL=0.d0
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
PRINT*,'READ MESH'
call read_mesh(mesh_file,nbr_node,nbr_tri,T_node,T_conn,rang,MARK1,MARK2)
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
!*** DEFINITION DES CHARGES PAR PROCESSEURS
CALL CHARGE(rang,Np,it1,itN,CHARGE_TOT,0)!CHARGE_TOT=4970,enplus)
CHARGE_ME=itN-it1+1
CALL COMM_CHARGE(rang,stateinfo,status,it1,itN,TAB_CHARGE)
ALLOCATE(TAB_CL(1:36*CHARGE_ME,1:2),TAB_V(1:36*CHARGE_ME))
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
compteur_ite=1
PRINT*,'DEBUT BOUCLE MEF'
start=MPI_Wtime()
DO i=it1,itN !1,nbr_tri
PRINT*,'RANG',rang,'i=',i
call JACOBIENNE(T_node,T_conn,jac,i,nbr_tri)
call DETERMINANT_JAC(jac,det)
call INVERSE_JAC(jac,det,inv_jac)
call Q_INV_J(inv_jac,Q)
call GRAD_N(Q,DN,B)
call MATRICE_RIGIDITE_ELEMENT(B,HOOK,det,K_ele)
!pour les dpl bloqué:
IF(MODEL==1)THEN !MODEL 1/4 DE PLAQUE
call DPL_IMPO(K_ele,T_conn,T_node,nbr_tri,i,condi_x,condi_y)
END IF
call LOC_i(n,NDDL,nbr_tri,T_conn,i,localisation)
!**************************************************************************************
CALL MAKE_A_LISTE1(rang,36,CHARGE_ME,i,it1,k_ite,n_NDDL,localisation,K_ele,TAB_CL,TAB_V) !POUR FORMAT CREUX
!21 pour low tri part but use ful matrix i.e 6*6=36
!*************************************************************************************
call FORCE_LOCALE_SUIVANT_Y(i,P,longueur,n,Nd,NDDL,nbr_tri,T_node,T_conn,F_LOCALE,MODEL)
!*********************************************************************************************
call FORCE_LOCALE_SUIVANT_Y_EXPANSEE(n,NDDL,Nd,localisation,F_LOCALE,F_LOCALE_EXPANSEE)
F_GLOBAL=F_GLOBAL+F_LOCALE_EXPANSEE
!*********************************************************************************************
compteur_ite=compteur_ite+1
END DO !FIN BOUCLE i
end=MPI_Wtime()
OPEN(60+rang,file='./TPS_CPU/'//trim(HOST_NM)//'temps_cpu.txt',position='append')
write(60+rang,*)'RANG=',rang,'MEF_1',end-start
CLOSE(60+rang)
DEALLOCATE(F_LOCALE_EXPANSEE)
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
PRINT*,'FIN BOUCLE'
!*******************PRE_TRI*********************************
!*** POUR TRI PAR ORDRE CROISSANT SUR LES COLS DE K_GLOBALE
!*** EN VUE DU FORMAT CCS
T1=((Nd*NDDL)-mod((Nd*NDDL),4))/4;T2=2*T1;T3=3*T1
PRINT*,size(TAB_V),mod(size(TAB_V),4),T1,T2,T3,Nd*NDDL
start=MPI_Wtime()
CALL PRE_TRI(T1,T2,T3,Nd*NDDL,size(TAB_V),rang,TAB_CL(:,1),TAB_CL(:,2),TAB_V,RC1,RC2,RC3,status,stateinfo)
end=MPI_Wtime()
OPEN(60+rang,file='./TPS_CPU/'//trim(HOST_NM)//'temps_cpu.txt',position='append')
write(60+rang,*)'RANG=',rang,'PRE_TRI',end-start
CLOSE(60+rang)
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
DEALLOCATE(TAB_CL,TAB_V)
IF(size(RC1)>0)THEN
ALLOCATE(TAB_CL(1:size(RC1),1:2),TAB_V(1:size(RC1)))
TAB_CL(:,1)=RC1;TAB_CL(:,2)=RC2;TAB_V=RC3
PRINT*,TAB_CL(1:3,1)
END IF
DEALLOCATE(RC1,RC2,RC3)
PRINT*,'FIN PRE TRI'
!*********************TRI*************************************
PRINT*,'DEBUT TRI:'
start=MPI_Wtime()
IF(SIZE(TAB_V)>0)THEN!(SIZE(RC1)>0)THEN
CALL DOUBLON(size(TAB_V),rang,TAB_CL,TAB_V,Z)
CALL TRI_CR(size(TAB_V),Z,rang,TAB_CL,TAB_V,S_CL,S_V,NNZ)
END IF
end=MPI_Wtime()
OPEN(60+rang,file='./TPS_CPU/'//trim(HOST_NM)//'temps_cpu.txt',position='append')
write(60+rang,*)'RANG=',rang,'TRI',end-start
CLOSE(60+rang)
DEALLOCATE(TAB_CL,TAB_V)
!*******************FIN TRI*********************************
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
PRINT*,'RANG',rang,' PREMIER TRI DONE'
!*** ON REMPLIT LE FORMAT CCS (A est SYM DONC CCS=CCR)
CCS_it1=minval(S_CL(:,1));CCS_itN=maxval(S_CL(:,1))
ALLOCATE(VAL(1:size(S_V)),J_IND(1:size(S_V)),I_cpt(1:(CCS_itN-CCS_it1)+2))!I_cpt(1:(Nd*NDDL)+1))
start=MPI_Wtime()
CALL CCS(size(S_V),Nd,NDDL,CCS_it1,CCS_itN,S_CL,S_V,VAL,J_IND,I_cpt)
end=MPI_Wtime()
OPEN(60+rang,file='./TPS_CPU/'//trim(HOST_NM)//'temps_cpu.txt',position='append')
write(60+rang,*)'RANG=',rang,'CCS',end-start,' NNZ=',size(VAL)
CLOSE(60+rang)
!***POUR VERIFICATION DECOMMENTER:
!!$ open(30+rang,file='SPARSE'//trim(adjustl(rank))//'.dat')
!!$ BB=CCS_it1;CC=0
!!$ DO i=1,size(I_cpt)-1!NNZ!21*CHARGE_ME
!!$ AA=I_cpt(i+1)-I_cpt(i)
!!$ IF(AA/=0)THEN
!!$ DO j=1,AA
!!$ write(30+rang,*)BB,J_IND(j+CC),VAL(j+CC)!,TRUE_NNZ!,NNZ!21*CHARGE_ME
!!$ END DO
!!$ END IF
!!$ BB=BB+1;CC=CC+AA
!!$ END DO
!!$ close(30+rang)
DEALLOCATE (S_CL,S_V)
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
PRINT*,'rang=',rang,'it1 itN=',it1,itN
!*** SWITCH DE LA CHARGE PAR PROCS POUR EN VUE DU SOLVEUR:
it1=CCS_it1;itN=CCS_itN
PRINT*,'rang=',rang,'CCS_it1 CCS_itN=',CCS_it1,CCS_itN
!*** CELA S'APPARENTE A UNE OPERATION DE REDUCTION PAR PARTIE
!*** SUR F_GLOBAL POUR QUE TOUT LES PROCS AIENT L'ADDITION DE F_GLOBAL SUR LEUR it1:itN
!*** STOCKE DANS F:
ALLOCATE(F(it1:itN))
CALL COMM_CHARGE(rang,stateinfo,status,it1,itN,TAB_IT)
CALL SEND_RECV_F_GLO(rang,TAB_IT,it1,itN,Nd,NDDL,stateinfo,status,F,F_GLOBAL)
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
DEALLOCATE(F_GLOBAL)
!*** ALLOC SOL INIT ET PGC:
ALLOCATE(X(it1:itN),RES(it1:itN))
!TOL=0.000001
PRINT*,'DEBUT PGC PRECONDITIONEUR DIAGONAL'
start=MPI_Wtime()
CALL PGC(rang,it1,itN,size(VAL),KMAX,TOL,stateinfo,status,X,VAL,J_IND,I_cpt,F,Nd,NDDL,RES,HOST_NM)
end=MPI_Wtime()
OPEN(60+rang,file='./TPS_CPU/'//trim(HOST_NM)//'temps_cpu.txt',position='append')
write(60+rang,*)'RANG=',rang,'PGC+WR_res',end-start,' NNZ=',size(VAL),'it1',it1,'itN',itN
CLOSE(60+rang)
ALLOCATE(SOLX(1:Nd),SOLY(1:Nd))
ALLOCATE(RESX(1:Nd),RESY(1:Nd))
CALL SEND_RECV_SOL(rang,TAB_IT,CCS_it1,CCS_itN,Nd,NDDL,stateinfo,status,X,SOLX,SOLY)
CALL SEND_RECV_SOL(rang,TAB_IT,CCS_it1,CCS_itN,Nd,NDDL,stateinfo,status,RES,RESX,RESY)
DEALLOCATE(X,F,RES)
PRINT*,'rang=',rang,' SOL_X(1:5)',SOLX(1:5)
!*** MODIFICATION DU FICHIER DE MAILLAGE POUR VOIR LA DEFORMEE:
DEF_NODE='./DPL/'//trim(HOST_NM)//'NODE.txt'
DEF_X='./DPL/'//trim(HOST_NM)//'DPL_X.txt'
DEF_Y='./DPL/'//trim(HOST_NM)//'DPL_Y.txt'
RES_X='./RES/'//trim(HOST_NM)//'RES_X.txt'
RES_Y='./RES/'//trim(HOST_NM)//'RES_Y.txt'
CALL DEFORMEE_DPL(rang,mesh_file,DEF_NODE,DEF_X,DEF_Y,Nd,SOLX,SOLY)
CALL MAP_RESIDUS(rang,RES_X,RES_Y,Nd,RESX,RESY)
!***
DEALLOCATE(VAl,J_IND,I_cpt)
DEALLOCATE(RESX,RESY)
!*** CALCUL DES DEFORMATION ET DE SIGMA:
DO DIR_ALL=1,3
DIR=DIR_ALL
write(u_dir,fmt='(i3.3)')DIR
ALLOCATE(DEF_GLO(1:Nd),COEF_POND_2(1:Nd))
DEF_GLO=0.d0;COEF_POND_2=0
ALLOCATE(SIGMA_GLO(1:Nd),COEF_POND(1:Nd))
SIGMA_GLO=0.d0;COEF_POND=0
!DIR=2
compteur_ite=1
PRINT*,'DEBUT BOUCLE POUR CALCUL DE SIGMA'
start=MPI_WTIME()
DO i=TAB_CHARGE(1,rang+1),TAB_CHARGE(2,rang+1)
!PRINT*,'RANG',rang,'i=',i
call JACOBIENNE(T_node,T_conn,jac,i,nbr_tri)
call DETERMINANT_JAC(jac,det)
call INVERSE_JAC(jac,det,inv_jac)
call Q_INV_J(inv_jac,Q)
call GRAD_N(Q,DN,B)
!FORMATION DE DPL
T1=T_conn(i,2);T2=T_conn(i,3);T3=T_conn(i,4)
DPL(1)=SOLX(T1);DPL(2)=SOLY(T1)
DPL(3)=SOLX(T2);DPL(4)=SOLY(T2)
DPL(5)=SOLX(T3);DPL(6)=SOLY(T3)
!PRINT*,'rang',rang,'T1',T1,'SOLX(T1)',SOLX(T1),'DPL(1)',DPL(1)
!CALCUL DE DEFORMATION: DEF_LOC:
DEF_LOC=MATMUL(B,DPL)
!CALCUL DE SIGMA_LOC:
SIGMA_LOC=MATMUL(HOOK,DEF_LOC)
!REDUCTION/EXTRAPOLATION AUX NOEUDS DE DEFORMATION: SIGMA_GLO:
DEF_GLO(T1)=DEF_GLO(T1)+DEF_LOC(DIR);COEF_POND_2(T1)=COEF_POND_2(T1)+1
DEF_GLO(T2)=DEF_GLO(T2)+DEF_LOC(DIR);COEF_POND_2(T2)=COEF_POND_2(T2)+1
DEF_GLO(T3)=DEF_GLO(T3)+DEF_LOC(DIR);COEF_POND_2(T3)=COEF_POND_2(T3)+1
!REDUCTION/EXTRAPOLATION AUX NOEUDS DE SIGMA: SIGMA_GLO:
SIGMA_GLO(T1)=SIGMA_GLO(T1)+SIGMA_LOC(DIR);COEF_POND(T1)=COEF_POND(T1)+1
SIGMA_GLO(T2)=SIGMA_GLO(T2)+SIGMA_LOC(DIR);COEF_POND(T2)=COEF_POND(T2)+1
SIGMA_GLO(T3)=SIGMA_GLO(T3)+SIGMA_LOC(DIR);COEF_POND(T3)=COEF_POND(T3)+1
compteur_ite=compteur_ite+1
END DO !FIN BOUCLE i
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
IF(DIR_ALL==3)THEN
DEALLOCATE(SOLX,SOLY)
END IF
!OPERATION DE REDUCTION FACON TRI PAIR-IMPAIR:
CALL FIRST_REDUCTION_SIGMA_OU_DEF(rang,Nd,COEF_POND,SIGMA_GLO,DUMMY1,DUMMY2,stateinfo,status)
CALL FIRST_REDUCTION_SIGMA_OU_DEF(rang,Nd,COEF_POND_2,DEF_GLO,DUMMY3,DUMMY4,stateinfo,status)
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
!LAST_REDUCTION POUR DEFORMATION:
IF(rang==3)THEN
CALL MPI_SEND(COEF_POND_2(1:Nd),Nd,MPI_INTEGER,0,50,MPI_COMM_WORLD,stateinfo)
CALL MPI_SEND(DEF_GLO(1:Nd),Nd,MPI_DOUBLE_PRECISION,0,51,MPI_COMM_WORLD,stateinfo)
DEALLOCATE(DEF_GLO,COEF_POND_2)
ELSE IF(rang==0)THEN
ALLOCATE(DUMMY3(1:Nd),DUMMY4(1:Nd))
CALL MPI_RECV(DUMMY4(1:Nd),Nd,MPI_INTEGER,3,50,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_RECV(DUMMY3(1:Nd),Nd,MPI_DOUBLE_PRECISION,3,51,MPI_COMM_WORLD,status,stateinfo)
COEF_POND_2=COEF_POND_2+DUMMY4
DEF_GLO=DEF_GLO+DUMMY3
DEALLOCATE(DUMMY3,DUMMY4)
IF(DIR_ALL==1)THEN
OPEN(60,file='./DEF/'//trim(HOST_NM)//'def_xx.txt')
ELSE IF(DIR_ALL==2)THEN
OPEN(60,file='./DEF/'//trim(HOST_NM)//'def_yy.txt')
ELSE IF(DIR_ALL==3)THEN
OPEN(60,file='./DEF/'//trim(HOST_NM)//'def_xy.txt')
END IF
DO i=1,Nd
DEF_GLO(i)=DEF_GLO(i)/COEF_POND_2(i)
WRITE(60,*)i,DEF_GLO(i)
END DO
CLOSE(60)
IF(DIR_ALL==2)THEN
open(90,file='./DEF/'//trim(HOST_NM)//'TRACE_DEF_YY.txt')
CPT_TRACE=0
SOM_DEF=0.0d0
DO i=1,Nd
TRACE=T_node%n_node(i)
!PRINT*,'TRACE=',TRACE,' T_node%c_node(TRACE)=',T_node%c_node(TRACE,2)
IF(T_node%c_node(TRACE,2)==Y_TRACE .AND. T_node%c_node(TRACE,1)>=X_TRACE )THEN
write(90,*)T_node%c_node(TRACE,1)-RAY,DEF_GLO(TRACE)
!PRINT*,T_node%c_node(TRACE,1),SIGMA_GLO(TRACE)
END IF
SOM_DEF=SOM_DEF+DEF_GLO(TRACE)
CPT_TRACE=CPT_TRACE+1
END DO
SOM_DEF=SOM_DEF/CPT_TRACE
close(90)
END IF
DEALLOCATE(COEF_POND_2)!DEALLOCATE(DEF_GLO,COEF_POND_2)
ELSE
DEALLOCATE(DEF_GLO,COEF_POND_2)
END IF
!LAST_REDUCTION POUR SIGMA:
IF(rang==3)THEN
CALL MPI_SEND(COEF_POND(1:Nd),Nd,MPI_INTEGER,0,50,MPI_COMM_WORLD,stateinfo)
CALL MPI_SEND(SIGMA_GLO(1:Nd),Nd,MPI_DOUBLE_PRECISION,0,51,MPI_COMM_WORLD,stateinfo)
DEALLOCATE(SIGMA_GLO,COEF_POND)
ELSE IF(rang==0)THEN
ALLOCATE(DUMMY1(1:Nd),DUMMY2(1:Nd))
CALL MPI_RECV(DUMMY2(1:Nd),Nd,MPI_INTEGER,3,50,MPI_COMM_WORLD,status,stateinfo)
CALL MPI_RECV(DUMMY1(1:Nd),Nd,MPI_DOUBLE_PRECISION,3,51,MPI_COMM_WORLD,status,stateinfo)
COEF_POND=COEF_POND+DUMMY2
SIGMA_GLO=SIGMA_GLO+DUMMY1
DEALLOCATE(DUMMY1,DUMMY2)
IF(DIR_ALL==1)THEN
OPEN(60,file='./SIGMA/'//trim(HOST_NM)//'sigma_xx.txt')
ELSE IF(DIR_ALL==2)THEN
OPEN(60,file='./SIGMA/'//trim(HOST_NM)//'sigma_yy.txt')
ELSE IF(DIR_ALL==3)THEN
OPEN(60,file='./SIGMA/'//trim(HOST_NM)//'sigma_xy.txt')
END IF
DO i=1,Nd
SIGMA_GLO(i)=SIGMA_GLO(i)/COEF_POND(i)
WRITE(60,*)i,SIGMA_GLO(i)
END DO
CLOSE(60)
IF(DIR_ALL==2)THEN
open(90,file='./SIGMA/'//trim(HOST_NM)//'TRACE_SIGMA_YY.txt')
open(95,file='./MODULE_EVO/'//trim(HOST_NM)//'ELASTICITE_LIN.txt',position='append')
SOM_SIG=0.d0
CPT_TRACE=0
DO i=1,Nd
TRACE=T_node%n_node(i)
!PRINT*,'TRACE=',TRACE,' T_node%c_node(TRACE)=',T_node%c_node(TRACE,2)
IF(T_node%c_node(TRACE,2)==Y_TRACE .AND. T_node%c_node(TRACE,1)>=X_TRACE )THEN
write(90,*)T_node%c_node(TRACE,1)-RAY,SIGMA_GLO(TRACE)
!PRINT*,T_node%c_node(TRACE,1),SIGMA_GLO(TRACE)
END IF
SOM_SIG=SOM_SIG+SIGMA_GLO(TRACE)
CPT_TRACE=CPT_TRACE+1
END DO
close(90)
SOM_SIG=SOM_SIG/CPT_TRACE
WRITE(95,*)SOM_DEF,SOM_SIG,P
close(95)
END IF
DEALLOCATE(COEF_POND)!DEALLOCATE(SIGMA_GLO,COEF_POND)
ELSE
DEALLOCATE(SIGMA_GLO,COEF_POND)
END IF
IF(rang==0)THEN
!allocate(MOD_ING(1:Nd))
MOY_MOD_ING=0.0d0
DO i=1,Nd
MOY_MOD_ING=MOY_MOD_ING+SIGMA_GLO(i)/DEF_GLO(i)
!MOD_ING(i)=SIGMA_GLO(i)/DEF_GLO(i)
!MOY_MOD_ING=MOY_MOD_ING+MOD_ING(i)
END DO
MOY_MOD_ING=MOY_MOD_ING/Nd
OPEN(10+DIR_ALL,file='./MODULE_EVO/'//trim(HOST_NM)//'EVO_MOD_ING_4AVERAGE'//trim(adjustl(u_dir))//'.txt',POSITION='APPEND')
WRITE(10+DIR_ALL,*)P,MOY_MOD_ING
CLOSE(10+DIR_ALL)
DEALLOCATE(SIGMA_GLO,DEF_GLO)
END IF
end=MPI_WTIME()
OPEN(70+rang,file='./TPS_CPU/'//trim(HOST_NM)//'temps_cpu.txt',position='append')
!write(70+rang,*)'RANG=',rang,'MEF2+SIGMA',end-start
IF(DIR_ALL==1)THEN
write(70+rang,*)'RANG=',rang,'MEF2+SIGMA_XX',end-start
ELSE IF(DIR_ALL==2)THEN
write(70+rang,*)'RANG=',rang,'MEF2+SIGMA_YY',end-start
ELSE IF(DIR_ALL==3)THEN
write(70+rang,*)'RANG=',rang,'MEF2+SIGMA_XY',end-start
END IF
CLOSE(70+rang)
END DO
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
DEALLOCATE(T_node%n_node,T_node%c_node)
DEALLOCATE(T_conn)
PRINT*,'DEALLOCATE T_node et T_conn'
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
END DO
CALL MPI_BARRIER(MPI_COMM_WORLD,stateinfo)
CALL MPI_FINALIZE(stateinfo)
end program main
|
0 | ALLM/TER2019/CODE_F90_MPI | ALLM/TER2019/CODE_F90_MPI/DEF/poi.f90 | program poi
implicit none
integer::i,k
REAL(kind=8)::DX,DY,SUM_DX,SUM_DY,POISSON
POISSON=0.0d0;SUM_DX=0.0d0;SUM_DY=0.0d0
OPEN(10,file='DELLdef_xx.txt')
DO i=1,27430
READ(10,*)k,DX
SUM_DX=SUM_DX+DX
END DO
CLOSE(10)
OPEN(11,file='DELLdef_yy.txt')
DO i=1,27430
READ(11,*)k,DY
SUM_DY=SUM_DY+DY
END DO
CLOSE(11)
POISSON=-SUM_DX/SUM_DY
PRINT*,'POI=',POISSON
end program poi
|
0 | ALLM | ALLM/test-mipp/benchfmadd.R | library(ggplot2)
df <- read.csv("./benchfmadd.csv")
p <- ggplot(data = df, aes(x=Mem, y=Time, color=optim, group=optim))+geom_line()
p <- p + ggtitle("fmadd") + labs(y = "Time (ms)", x = "Memory (Mb)")
ggsave("bench.pdf", plot=p)
transform <- subset(df, optim == "transform")
mipp <- subset(df, optim == "mipp")
for(i in 1:length(mipp$type)) {
mipp$TotSpeedUp[i] = transform$Total[i] / mipp$Total[i]
mipp$SpeedUp[i] = transform$Time[i] / mipp$Time[i]
print(mipp$SpeedUp[i])
}
p <- ggplot(data = mipp, aes(x=Mem, y=SpeedUp))+geom_line()
p <- p + ggtitle("fmadd") + labs(y = "SpeedUp", x = "Memory (Mb)")
ggsave("SpeedUp.pdf", plot=p)
#p <- p+facet_grid(Sthetac ~ Sic+Swhichc+l)+labs(y="Backward error")+labs(x="Solver iter.") |
0 | ALLM | ALLM/test-mipp/benchfmadd.bash | #!/bin/bash
#-DNELE=$power
CFLAGS="-O3 -funroll-loops -floop-unroll-and-jam -march=cascadelake -mavx512f -mavx512dq -mavx512ifma"
for p in {30..6..-1}
do
power=$((2 ** $p))
g++ $CFLAGS -DTYPE=double -DNSAMPLE=20 -DOPTIM=transform -o fmadd fmadd.cpp
./fmadd $power
done
for p in {30..6..-1}
do
power=$((2 ** $p))
g++ $CFLAGS -DTYPE=double -DNSAMPLE=20 -DOPTIM=mipp -o mippfmadd mipp_fmadd.cpp
./mippfmadd $power
done
echo "DONE" |
0 | ALLM | ALLM/test-mipp/fmadd.cpp | #include <bits/stdc++.h>
// #include <algorithm>
// using namespace std;
#define xstr(s) str(s)
#define str(s) #s
/*
#ifndef NELE
#define NELE 3
#endif
*/
#ifndef TYPE
#define TYPE double
#endif
#ifndef NSAMPLE
#define NSAMPLE 1
#endif
#ifndef OPTIM
#define OPTIM classic
#endif
#define STROPTIM xstr(OPTIM)
#define STRTYPE xstr(TYPE)
inline bool IsFileExist(const std::string &name) {
std::ifstream f(name.c_str());
return f.good();
}
int main(int argc, char *argv[]) {
int ierr = 0;
long NELE = std::stol(argv[1]);
std::vector<TYPE> A(NELE, 1);
std::vector<TYPE> B(NELE, 2);
std::vector<TYPE> C(NELE, 3);
std::vector<TYPE> RES(NELE, 0);
double Mem = 4 * NELE * sizeof(TYPE) / 1000000.; // MB
auto t_before = std::chrono::steady_clock::now();
for (long i = 0; i < NSAMPLE; i++) {
std::transform(A.begin(), A.end(), B.begin(), RES.begin(),
std::multiplies<TYPE>());
std::transform(C.begin(), C.end(), RES.begin(), RES.begin(),
std::plus<TYPE>());
}
auto t_after = std::chrono::steady_clock::now();
auto d_delta = t_after - t_before;
auto decod_time_ms = (float)d_delta.count() * 0.000001f;
std::cout << STRTYPE << " " << STROPTIM << '\n';
std::cout << "time: " << decod_time_ms / NSAMPLE << " ms" << std::endl;
std::cout << "cumulative time: " << decod_time_ms << " ms over " << NSAMPLE
<< " Mem MB " << Mem << std::endl;
TYPE sum = std::accumulate(RES.begin(), RES.end(), (double)0.0);
std::cout << ((5 * (double)NELE) == sum) << " " << (5) * NELE << " " << sum
<< '\n';
std::ofstream tabledb;
auto fname = "benchfmadd.csv";
auto header = "type,Total,Time,NSample,Mem,optim";
auto isfile = IsFileExist(fname);
if (!isfile) {
tabledb.open(fname, std::ios::app);
tabledb << header << "\n";
tabledb.close();
}
tabledb.open(fname, std::ios::app);
tabledb << STRTYPE << "," << decod_time_ms << "," << decod_time_ms / NSAMPLE
<< "," << NSAMPLE << "," << Mem << "," << STROPTIM << "\n";
tabledb.close();
return ierr;
} |
0 | ALLM | ALLM/test-mipp/mipp_fmadd.cpp | #include "mipp/mipp.h"
#include <bits/stdc++.h>
// #include <algorithm>
// using namespace std;
#define xstr(s) str(s)
#define str(s) #s
/*
#ifndef NELE
#define NELE 3
#endif
*/
#ifndef TYPE
#define TYPE double
#endif
#ifndef NSAMPLE
#define NSAMPLE 1
#endif
#ifndef OPTIM
#define OPTIM classic
#endif
#define STROPTIM xstr(OPTIM)
#define STRTYPE xstr(TYPE)
inline bool IsFileExist(const std::string &name) {
std::ifstream f(name.c_str());
return f.good();
}
int main(int argc, char *argv[]) {
int ierr = 0;
long NELE = std::stol(argv[1]);
mipp::vector<TYPE> A(NELE, 1);
mipp::vector<TYPE> B(NELE, 2);
mipp::vector<TYPE> C(NELE, 3);
mipp::vector<TYPE> RES(NELE, 0);
mipp::Reg<TYPE> rA, rB, rC, rR;
double Mem = 4 * (double)NELE * sizeof(TYPE) / 1000000.; // MB
auto t_before = std::chrono::steady_clock::now();
for (long i = 0; i < NSAMPLE; i++) {
for (long l = 0; l < NELE; l += mipp::N<TYPE>()) {
rA.load(&A[l]);
rB.load(&B[l]);
rC.load(&C[l]);
rR.load(&RES[l]);
rR = rA * rB + rC;
rR.store(&RES[l]);
}
}
auto t_after = std::chrono::steady_clock::now();
auto d_delta = t_after - t_before;
auto decod_time_ms = (float)d_delta.count() * 0.000001f;
std::cout << STRTYPE << " " << STROPTIM << '\n';
std::cout << "time: " << decod_time_ms / NSAMPLE << " ms" << std::endl;
std::cout << "cumulative time: " << decod_time_ms << " ms over " << NSAMPLE
<< " Mem MB " << Mem << std::endl;
TYPE sum = std::accumulate(RES.begin(), RES.end(), (double)0.0);
// std::cout << (5) * NELE << " " << sum << '\n';
std::cout << ((5 * (double)NELE) == sum) << " " << (5) * NELE << " " << sum
<< '\n';
std::ofstream tabledb;
auto fname = "benchfmadd.csv";
auto header = "type,Total,Time,NSample,Mem,optim";
auto isfile = IsFileExist(fname);
if (!isfile) {
tabledb.open(fname, std::ios::app);
tabledb << header << "\n";
tabledb.close();
}
tabledb.open(fname, std::ios::app);
tabledb << STRTYPE << "," << decod_time_ms << "," << decod_time_ms / NSAMPLE
<< "," << NSAMPLE << "," << Mem << "," << STROPTIM << "\n";
tabledb.close();
return ierr;
} |
0 | ALLM | ALLM/testgemm/gemmloop.c | #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef TYPE
#define TYPE float
#endif
#define max(a, b) (((a) < (b)) ? (b) : (a))
#define min(a, b) (((a) < (b)) ? (a) : (b))
int GetDim(long *m, long *n, long *k, int argc, char **argv) {
int ierr = EXIT_SUCCESS;
char *endPtr = NULL;
if (argc != 4) {
printf("Trying to Compute C = A*B + C\n");
printf("Please rerun with:/t./exec m n k\n");
printf("Where A is mxk; B is kxn; C is mxk\n");
exit(ierr);
} else {
*m = strtol(argv[1], &endPtr, 10);
*n = strtol(argv[2], &endPtr, 10);
*k = strtol(argv[3], &endPtr, 10);
printf("m = %ld\tn = %ld\tk = %ld\n", *m, *n, *k);
}
return ierr;
}
int FillMat(long nrow, long ncol, TYPE val, TYPE *Mat) {
int ierr = EXIT_SUCCESS;
if (!Mat) {
return EXIT_FAILURE;
}
size_t size = nrow * ncol;
for (size_t i = 0; i < size; i++) {
Mat[i] = val;
}
return ierr;
}
int ShowMat(long nrow, long nr1, long nr2, long nc1, long nc2, TYPE *Mat) {
int ierr = EXIT_SUCCESS;
if (!Mat) {
return EXIT_FAILURE;
}
for (long i = nr1; i < nr2; i++) {
for (long j = nc1; j < nc2; j++) {
// printf("%ld\t", i + j * nrow);
printf("%lf\t", Mat[i + j * nrow]);
}
printf("\n");
}
return ierr;
}
int main(int argc, char **argv) {
int ierr = EXIT_SUCCESS;
TYPE *A = NULL;
TYPE *B = NULL;
TYPE *C = NULL;
double Mem = 0.;
const TYPE alpha = 1;
const TYPE beta = 1;
long m = 0, n = 0, k = 0;
long lda = 0, ldb = 0, ldc = 0;
size_t Asize = m * k;
size_t Bsize = k * n;
size_t Csize = m * n;
ierr = GetDim(&m, &n, &k, argc, argv);
printf("m = %ld\tn = %ld\tk = %ld\n", m, n, k);
A = (TYPE *)calloc(Asize, sizeof(TYPE));
B = (TYPE *)calloc(Bsize, sizeof(TYPE));
C = (TYPE *)calloc(Csize, sizeof(TYPE));
ierr = FillMat(m, k, 1., A);
ierr = FillMat(m, k, 2., B);
ierr = FillMat(m, k, 3., C);
ierr = ShowMat(m, max(0, 2), min(5, m), max(0, 2), min(5, k), A);
free(A);
free(B);
free(C);
A = NULL;
B = NULL;
C = NULL;
return ierr;
} |
0 | ALLM/testgemm | ALLM/testgemm/LIBTG/TGInstaller.bash | #!/bin/bash
exp=$PWD/example
srcp=$PWD/src
CFLT="-O3 -march=native -DITYPE=I64 -DTYPE=float -DETYPE=TGFloat"
CDBL="-O3 -march=native -DITYPE=I64 -DTYPE=double -DETYPE=TGDouble"
CCX32="-O3 -march=native -DITYPE=I64 -DTYPE=comple32 -DETYPE=TGComple32"
CCX64="-O3 -march=native -DITYPE=I64 -DTYPE=comple64 -DETYPE=TGComple64"
for i in "flt" "dbl" "cx32" "cx64"
do
echo "Case $i"
cat $exp/$i > $exp/Makefile.am
cat $srcp/$i > $srcp/Makefile.am
autoconf
automake --add-missing
if [[ "$i" = "flt" ]]
then
CFLAGS=$CFLT
#./configure --prefix=$PWD/build
#make
#make install
elif [[ "$i" = "dbl" ]]
then
CFLAGS=$CDBL
./configure --prefix=$PWD/build
make
make install
elif [[ "$i" = "cx32" ]]
then
CFLAGS=$CCX32
elif [[ "$i" = "cx64" ]]
then
CFLAGS=$CCX64
fi
echo $CFLAGS
#./configure --prefix=$PWD/build CFLAGS=$CFLAGS
done
echo "" > $exp/Makefile.am
echo "" > $srcp/Makefile.am |
0 | ALLM/testgemm/LIBTG | ALLM/testgemm/LIBTG/example/gemmloop.c | #include "datatype.h"
int main(int argc, char **argv) {
int ierr = EXIT_SUCCESS;
tg_scalar_t *A = NULL;
tg_scalar_t *B = NULL;
tg_scalar_t *C = NULL;
tg_fixdbl_t Mem = 0.;
const tg_scalar_t alpha = 1;
const tg_scalar_t beta = 1;
tg_int_t m = 0, n = 0, k = 0;
tg_int_t lda = 0, ldb = 0, ldc = 0;
printf("size of tg_scalar_t %zu double %zu float %zu\n", tg_size_of(ETYPE),
tg_size_of(TGDouble), tg_size_of(TGFloat));
#if TYPE == tg_float_t
printf("CASE TGFloat\n");
#elif TYPE == tg_double_t
printf("CASE TGDouble\n");
#endif
ierr = GetDim(&m, &n, &k, &lda, &ldb, &ldc, argc, argv);
printf("%zu\n", SIZE_MAX);
printf("m = %ld\tn = %ld\tk = %ld\n", m, n, k);
printf("lda = %ld\tldb = %ld\tldc = %ld\n", lda, ldb, ldc);
size_t Asize = m * k;
size_t Bsize = k * n;
size_t Csize = m * n;
A = (TYPE *)calloc(Asize, sizeof(TYPE));
B = (TYPE *)calloc(Bsize, sizeof(TYPE));
C = (TYPE *)calloc(Csize, sizeof(TYPE));
ierr = FillMat(m, k, 1., A);
ierr = FillMat(m, k, 2., B);
ierr = FillMat(m, k, 3., C);
ierr = ShowMat(m, max(0, 2), min(5, m), max(0, 2), min(5, k), A);
free(A);
free(B);
free(C);
A = NULL;
B = NULL;
C = NULL;
tg_mat_t matA = TGMATNULL();
matA.nr = m;
matA.nc = k;
matA.ldnr = lda;
matA.ldnc = lda;
matA.rowcol_order = TGRowMajor;
matA.coeftype = ETYPE;
TGAlloc(&matA);
ierr = TGFillMat2(&matA);
tg_rectrange_t range = {.nr1 = 0, .nr2 = lda, .nc1 = 0, .nc2 = lda};
ierr = TGShowMat(range, &matA);
range = (tg_rectrange_t){
.nr1 = min(2, m), .nr2 = min(5, m), .nc1 = min(2, k), .nc2 = min(5, k)};
ierr = TGShowMat(range, &matA);
TGExit(&matA);
return ierr;
} |
0 | ALLM/testgemm/LIBTG | ALLM/testgemm/LIBTG/include/datatype.h | #ifndef _datatype_h_
#define _datatype_h_
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef int32_t tg_int32_t;
typedef int64_t tg_int64_t;
typedef uint32_t tg_uint32_t;
typedef uint64_t tg_uint64_t;
typedef double tg_fixdbl_t;
typedef float tg_fixflt_t;
typedef double tg_double_t;
typedef float tg_float_t;
/**
* Compiler numbers (Extracted form PaRSEC project)
**/
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
/* Windows and non-Intel compiler */
#include <complex>
typedef std::complex<float> tg_complex32_t;
typedef std::complex<double> tg_complex64_t;
#else
typedef float _Complex tg_complex32_t;
typedef double _Complex tg_complex64_t;
#endif
#if !defined(__cplusplus) && defined(HAVE_COMPLES_H)
#include <complex.h>
#else
#ifdef __cplusplus
extern "C" {
#endif
/**
* These declaration will not clash with C++ provides because
* the names in C++ are name-mangled.
*/
extern double cabs(tg_complex64_t z);
extern double creal(tg_complex64_t z);
extern double cimag(tg_complex64_t z);
extern float cabsf(tg_complex32_t z);
extern float crealf(tg_complex32_t z);
extern float cimagf(tg_complex32_t z);
extern tg_complex64_t conj(tg_complex64_t z);
extern tg_complex64_t csqrt(tg_complex64_t z);
extern tg_complex32_t conjf(tg_complex32_t z);
extern tg_complex32_t csqrtf(tg_complex32_t z);
#ifdef __cplusplus
}
#endif
#endif /* HAVE_COMPLEX_H */
#ifndef TYPE
#define TYPE other
#endif
#if TYPE == float
#undef TYPE
#define TYPE tg_float_t
#define ETYPE TGFloat
typedef tg_float_t tg_scalar_t;
#elif TYPE == double
#undef TYPE
#define TYPE tg_double_t
#define ETYPE TGDouble
typedef tg_double_t tg_scalar_t;
#elif TYPE == cx32
#undef TYPE
#define TYPE tg_complex32_t
#define ETYPE TGComplex32
typedef tg_complex32_t tg_scalar_t;
#elif TYPE == cx64
#undef TYPE
#define TYPE tg_complex64_t
#define ETYPE TGComplex64
typedef tg_complex64_t tg_scalar_t;
#else
#error Undefined TYPE not supported
exit(EXIT_SUCCESS);
#endif // TYPE
#ifndef ITYPE
#define ITYPE I32
#endif
#if ITYPE == I32
#undef ITYPE
#define ITYPE tg_int32_t
typedef tg_int32_t tg_int_t;
typedef tg_uint32_t tg_uint_t;
#elif ITYPE == I64
#undef ITYPE
#define ITYPE tg_int64_t
typedef tg_int64_t tg_int_t;
typedef tg_uint64_t tg_uint_t;
#else
#error Undefined ITYPE not supported
exit(EXIT_SUCCESS);
#endif // TYPE
#define max(a, b) (((a) < (b)) ? (b) : (a))
#define min(a, b) (((a) < (b)) ? (a) : (b))
typedef enum tg_rc_major_order_e {
TGRowMajor, /**< Row major order >*/
TGColMajor /**< Col major order >*/
} tg_rc_major_order_t;
typedef enum tg_coeftype_e {
TGFloat = 2,
TGDouble = 3,
TGComplex32 = 4,
TGComplex64 = 5
} tg_coeftype_t;
struct tg_rectrange_s;
typedef struct tg_rectrange_s {
tg_int_t nr1;
tg_int_t nr2;
tg_int_t nc1;
tg_int_t nc2;
} tg_rectrange_t;
struct tg_mat_s;
typedef struct tg_mat_s {
tg_rc_major_order_t rowcol_order;
tg_coeftype_t coeftype;
tg_int_t nr;
tg_int_t nc;
tg_int_t ldnr;
tg_int_t ldnc;
void *val;
} tg_mat_t;
#define TGMATNULL() \
{ \
.rowcol_order = TGColMajor, .coeftype = TGDouble, .nr = 0, .nc = 0, \
.ldnr = 0, .ldnc = 0, .val = NULL \
}
struct tg_submat_s;
typedef struct tg_submat_s {
tg_rectrange_t rectrange;
tg_mat_t *mat;
} tg_submat_t;
static inline size_t tg_size_of(tg_coeftype_t type) {
switch (type) {
case TGFloat:
return sizeof(float);
case TGDouble:
return sizeof(double);
case TGComplex32:
return 2 * sizeof(float);
case TGComplex64:
return 2 * sizeof(double);
default:
fprintf(stderr, "tg_size_of: invalid type parameter\n");
assert(0);
return sizeof(double);
}
}
#endif /* _datatype_h_ */ |
0 | ALLM/testgemm/LIBTG | ALLM/testgemm/LIBTG/src/tgutils.c | #include "include/datatype.h"
void TGFill(tg_int_t pos, tg_scalar_t filler, tg_scalar_t *scalar) {
scalar[pos] = filler;
}
void TGShow(tg_int_t pos, tg_scalar_t *scalar) {
printf("%f ", (tg_scalar_t)scalar[pos]);
}
void TGAlloc(tg_mat_t *mat) {
if (mat->val == NULL) {
size_t valsize = (size_t)mat->ldnr * (size_t)mat->ldnc;
mat->val = calloc(valsize, tg_size_of(mat->coeftype));
}
}
void TGExit(tg_mat_t *mat) {
if (mat->val != NULL) {
free(mat->val);
mat->val = NULL;
}
}
int TGFillMat(tg_scalar_t val, tg_mat_t *mat) {
int ierr = EXIT_SUCCESS;
if (!mat) {
return EXIT_FAILURE;
if (!mat->val) {
return EXIT_FAILURE;
}
}
size_t size = mat->ldnr * mat->ldnc;
for (size_t i = 0; i < size; i++) {
TGFill(i, val, mat->val);
}
return ierr;
}
int TGFillMat2(tg_mat_t *mat) {
int ierr = EXIT_SUCCESS;
size_t i = 0, j = 0, offset = 0;
size_t imax = (size_t)mat->ldnr;
size_t jmax = (size_t)mat->ldnc;
if (!mat) {
return EXIT_FAILURE;
if (!mat->val) {
return EXIT_FAILURE;
}
}
if (mat->rowcol_order == TGRowMajor) {
offset = (size_t)mat->ldnc;
printf("\toffset=%zu\n", offset);
for (i = 0; i < imax; i++) {
size_t k = offset * i;
for (j = 0; j < jmax; j++) {
printf("\ti=%zu\tj=%zu\tl=%zu\n", i, j, j + k);
TGFill(j + k, (tg_scalar_t)(j + k), (tg_scalar_t *)mat->val);
}
}
} else if (mat->rowcol_order == TGColMajor) {
offset = mat->ldnr;
printf("\toffset=%zu\n", offset);
for (j = 0; j < jmax; j++) {
size_t k = offset * j;
for (i = 0; i < imax; i++) {
printf("\tj=%zu\ti=%zu\tl=%zu\n", j, i, i + k);
TGFill(i + k, (tg_scalar_t)(i + k), (tg_scalar_t *)mat->val);
}
}
}
return ierr;
}
int TGShowMat(tg_rectrange_t range, tg_mat_t *mat) {
int ierr = EXIT_SUCCESS;
size_t i = 0, j = 0, offset = 0;
tg_int_t imin = range.nr1;
tg_int_t jmin = range.nc1;
tg_int_t imax = range.nr2;
tg_int_t jmax = range.nc2;
printf("RANGE\n");
printf("%zu\t%zu\t%zu\t%zu\n", range.nr1, range.nr2, range.nc1, range.nc2);
printf("%zu\t%zu\t%zu\t%zu\n", imin, imax, jmin, jmax);
if (!mat) {
return EXIT_FAILURE;
if (!mat->val) {
return EXIT_FAILURE;
}
}
if (mat->rowcol_order == TGRowMajor) {
offset = mat->ldnc;
for (i = imin; i < imax; i++) {
size_t k = offset * i;
for (j = jmin; j < jmax; j++) {
TGShow(j + k, (tg_scalar_t *)mat->val);
}
printf("\n");
}
} else if (mat->rowcol_order == TGColMajor) {
offset = mat->ldnr;
for (j = jmin; j < jmax; j++) {
size_t k = offset * j;
for (i = imin; i < imax; i++) {
TGShow(i + k, (tg_scalar_t *)mat->val);
}
printf("\n");
}
}
return ierr;
}
int FillMat(tg_int_t nrow, tg_int_t ncol, tg_scalar_t val, tg_scalar_t *Mat) {
int ierr = EXIT_SUCCESS;
if (!Mat) {
return EXIT_FAILURE;
}
size_t size = nrow * ncol;
for (size_t i = 0; i < size; i++) {
Mat[i] = val;
}
return ierr;
}
int ShowMat(tg_int_t nrow, tg_int_t nr1, tg_int_t nr2, tg_int_t nc1,
tg_int_t nc2, TYPE *Mat) {
int ierr = EXIT_SUCCESS;
tg_int_t i = 0;
tg_int_t j = 0;
if (!Mat) {
return EXIT_FAILURE;
}
for (i = nr1; i < nr2; i++) {
for (j = nc1; j < nc2; j++) {
printf("%lf\t", Mat[i + j * nrow]);
}
printf("\n");
}
return ierr;
}
int GetDim(tg_int_t *m, tg_int_t *n, tg_int_t *k, tg_int_t *lda, tg_int_t *ldb,
tg_int_t *ldc, int argc, char **argv) {
int ierr = EXIT_SUCCESS;
char *endPtr = NULL;
if (argc != 7) {
printf("Trying to Compute C = A*B + C\n");
printf("Please rerun with:/t./exec m n k lda ldb ldc\n");
printf("Where A is mxk inside ldaxlda; B is kxn inside ldbxldb; C is mxk "
"inside ldcxldc\n");
exit(ierr);
} else {
*m = strtol(argv[1], &endPtr, 10);
*n = strtol(argv[2], &endPtr, 10);
*k = strtol(argv[3], &endPtr, 10);
*lda = strtol(argv[4], &endPtr, 10);
*ldb = strtol(argv[5], &endPtr, 10);
*ldc = strtol(argv[6], &endPtr, 10);
printf("m = %ld\tn = %ld\tk = %ld\n", *m, *n, *k);
printf("lda = %ld\tldb = %ld\tldc = %ld\n", *lda, *ldb, *ldc);
}
return ierr;
} |
0 | ALLM/M2 | ALLM/M2/lapack/lapack_testing.py | #!/usr/bin/env python3
###############################################################################
# lapack_testing.py
###############################################################################
from subprocess import Popen, STDOUT, PIPE
import os, sys, math
import getopt
# Arguments
try:
opts, args = getopt.getopt(sys.argv[1:], "hd:b:srep:t:n",
["help", "dir=", "bin=", "short", "run", "error","prec=","test=","number"])
except getopt.error as msg:
print(msg)
print("for help use --help")
sys.exit(2)
short_summary = False
with_file = True
just_errors = False
prec='x'
test='all'
only_numbers = False
test_dir='TESTING'
bin_dir='bin/Release'
for o, a in opts:
if o in ("-h", "--help"):
print(sys.argv[0]+" [-h|--help] [-d dir |--dir dir] [-s |--short] [-r |--run] [-e |--error] [-p p |--prec p] [-t test |--test test] [-n | --number]")
print(" - h is to print this message")
print(" - r is to use to run the LAPACK tests then analyse the output (.out files). By default, the script will not run all the LAPACK tests")
print(" - d [dir] indicates the location of the LAPACK testing directory (.out files). By default, the script will use {:s}.".format(test_dir))
print(" - b [bin] indicates the location of the LAPACK binary files. By default, the script will use {:s}.".format(bin_dir))
print(" LEVEL OF OUTPUT")
print(" - e is to print only the error summary")
print(" - s is to print a short summary")
print(" - n is to print the numbers of failing tests (turn on summary mode)")
print(" SELECTION OF TESTS:")
print(" - p [s/c/d/z/x] is to indicate the PRECISION to run:")
print(" s=single")
print(" d=double")
print(" sd=single/double")
print(" c=complex")
print(" z=double complex")
print(" cz=complex/double complex")
print(" x=all [DEFAULT]")
print(" - t [lin/eig/mixed/rfp/all] is to indicate which TEST FAMILY to run:")
print(" lin=Linear Equation")
print(" eig=Eigen Problems")
print(" mixed=mixed-precision")
print(" rfp=rfp format")
print(" all=all tests [DEFAULT]")
print(" EXAMPLES:")
print(" ./lapack_testing.py -n")
print(" Will return the numbers of failed tests by analyzing the LAPACK output")
print(" ./lapack_testing.py -n -r -p s")
print(" Will return the numbers of failed tests in REAL precision by running the LAPACK Tests then analyzing the output")
print(" ./lapack_testing.py -n -p s -t eig ")
print(" Will return the numbers of failed tests in REAL precision by analyzing only the LAPACK output of EIGEN testings")
sys.exit(0)
else:
if o in ("-s", "--short"):
short_summary = True
if o in ("-r", "--run"):
with_file = False
if o in ("-e", "--error"):
just_errors = True
if o in ( '-p', '--prec' ):
prec = a
if o in ( '-b', '--bin' ):
bin_dir = a
if o in ( '-d', '--dir' ):
test_dir = a
if o in ( '-t', '--test' ):
test = a
if o in ( '-n', '--number' ):
only_numbers = True
short_summary = True
# process options
abs_bin_dir=os.path.abspath(bin_dir)
os.chdir(test_dir)
execution=1
summary="\n\t\t\t--> LAPACK TESTING SUMMARY <--\n";
if with_file: summary+= "\t\tProcessing LAPACK Testing output found in the "+test_dir+" directory\n";
summary+="SUMMARY \tnb test run \tnumerical error \tother error \n";
summary+="================ \t===========\t=================\t================ \n";
nb_of_test=0
# Add current directory to the path for subshells of this shell
# Allows the popen to find local files in both windows and unixes
os.environ["PATH"] = os.environ["PATH"]+":."
# Define a function to open the executable (different filenames on unix and Windows)
def run_summary_test( f, cmdline, short_summary):
nb_test_run=0
nb_test_fail=0
nb_test_illegal=0
nb_test_info=0
if with_file:
if not os.path.exists(cmdline):
error_message=cmdline+" file not found"
r=1
if short_summary: return [nb_test_run,nb_test_fail,nb_test_illegal,nb_test_info]
else:
pipe = open(cmdline,'r')
r=0
else:
cmdline = os.path.join(abs_bin_dir, cmdline)
outfile=cmdline.split()[4]
#pipe = open(outfile,'w')
p = Popen(cmdline, shell=True)#, stdout=pipe)
p.wait()
#pipe.close()
r=p.returncode
pipe = open(outfile,'r')
error_message=cmdline+" did not work"
if r != 0 and not with_file:
print("---- TESTING " + cmdline.split()[0] + "... FAILED(" + error_message +") !")
for line in pipe.readlines():
f.write(str(line))
elif r != 0 and with_file and not short_summary:
print("---- WARNING: please check that you have the LAPACK output : "+cmdline+"!")
print("---- WARNING: with the option -r, we can run the LAPACK testing for you")
# print "---- "+error_message
else:
for line in pipe.readlines():
f.write(str(line))
words_in_line=line.split()
if (line.find("run)")!=-1):
# print line
whereisrun=words_in_line.index("run)")
nb_test_run+=int(words_in_line[whereisrun-2])
if (line.find("out of")!=-1):
if not short_summary: print(line, end=' ')
whereisout= words_in_line.index("out")
nb_test_fail+=int(words_in_line[whereisout-1])
if ((line.find("illegal")!=-1) or (line.find("Illegal")!=-1)):
if not short_summary: print(line, end=' ')
nb_test_illegal+=1
if (line.find(" INFO")!=-1):
if not short_summary: print(line, end=' ')
nb_test_info+=1
if with_file:
pipe.close()
f.flush();
return [nb_test_run,nb_test_fail,nb_test_illegal,nb_test_info]
# If filename cannot be opened, send output to sys.stderr
filename = "testing_results.txt"
try:
f = open(filename, 'w')
except IOError:
f = sys.stdout
if not short_summary:
print(" ")
print("---------------- Testing LAPACK Routines ----------------")
print(" ")
print("-- Detailed results are stored in", filename)
dtypes = (
("s", "d", "c", "z"),
("REAL ", "DOUBLE PRECISION", "COMPLEX ", "COMPLEX16 "),
)
if prec=='s':
range_prec=[0]
elif prec=='d':
range_prec=[1]
elif prec=='sd':
range_prec=[0,1]
elif prec=='c':
range_prec=[2]
elif prec=='z':
range_prec=[3]
elif prec=='cz':
range_prec=[2,3]
else:
prec='x';
range_prec=list(range(4))
if test=='lin':
range_test=[16]
elif test=='mixed':
range_test=[17]
range_prec=[1,3]
elif test=='rfp':
range_test=[18]
elif test=='dmd':
range_test=[20]
elif test=='eig':
range_test=list(range(16))
else:
range_test=list(range(19))
list_results = [
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
]
for dtype in range_prec:
letter = dtypes[0][dtype]
name = dtypes[1][dtype]
if not short_summary:
print(" ")
print("------------------------- %s ------------------------" % name)
print(" ")
sys.stdout.flush()
dtests = (
("nep", "sep", "se2", "svd",
letter+"ec",letter+"ed",letter+"gg",
letter+"gd",letter+"sb",letter+"sg",
letter+"bb","glm","gqr",
"gsv","csd","lse",
letter+"test", letter+dtypes[0][dtype-1]+"test",letter+"test_rfp",letter+"dmd"),
("Nonsymmetric-Eigenvalue-Problem", "Symmetric-Eigenvalue-Problem", "Symmetric-Eigenvalue-Problem-2-stage", "Singular-Value-Decomposition",
"Eigen-Condition","Nonsymmetric-Eigenvalue","Nonsymmetric-Generalized-Eigenvalue-Problem",
"Nonsymmetric-Generalized-Eigenvalue-Problem-driver", "Symmetric-Eigenvalue-Problem", "Symmetric-Eigenvalue-Generalized-Problem",
"Banded-Singular-Value-Decomposition-routines", "Generalized-Linear-Regression-Model-routines", "Generalized-QR-and-RQ-factorization-routines",
"Generalized-Singular-Value-Decomposition-routines", "CS-Decomposition-routines", "Constrained-Linear-Least-Squares-routines",
"Linear-Equation-routines", "Mixed-Precision-linear-equation-routines","RFP-linear-equation-routines","Dynamic-Mode-Decomposition"),
(letter+"nep", letter+"sep", letter+"se2", letter+"svd",
letter+"ec",letter+"ed",letter+"gg",
letter+"gd",letter+"sb",letter+"sg",
letter+"bb",letter+"glm",letter+"gqr",
letter+"gsv",letter+"csd",letter+"lse",
letter+"test", letter+dtypes[0][dtype-1]+"test",letter+"test_rfp",letter+"dmd"),
)
for dtest in range_test:
nb_of_test=0
# NEED TO SKIP SOME PRECISION (namely s and c) FOR PROTO MIXED PRECISION TESTING
if dtest==17 and (letter=="s" or letter=="c"):
continue
if with_file:
cmdbase=dtests[2][dtest]+".out"
else:
if dtest==16:
# LIN TESTS
cmdbase="xlintst"+letter+" < "+dtests[0][dtest]+".in > "+dtests[2][dtest]+".out"
elif dtest==17:
# PROTO LIN TESTS
cmdbase="xlintst"+letter+dtypes[0][dtype-1]+" < "+dtests[0][dtest]+".in > "+dtests[2][dtest]+".out"
elif dtest==18:
# PROTO LIN TESTS
cmdbase="xlintstrf"+letter+" < "+dtests[0][dtest]+".in > "+dtests[2][dtest]+".out"
elif dtest==20:
# DMD EIG TESTS
cmdbase="xdmdeigtst"+letter+" < "+dtests[0][dtest]+".in > "+dtests[2][dtest]+".out"
else:
# EIG TESTS
cmdbase="xeigtst"+letter+" < "+dtests[0][dtest]+".in > "+dtests[2][dtest]+".out"
if not just_errors and not short_summary:
print("Testing "+name+" "+dtests[1][dtest]+"-"+cmdbase, end=' ')
# Run the process: either to read the file or run the LAPACK testing
nb_test = run_summary_test(f, cmdbase, short_summary)
list_results[0][dtype]+=nb_test[0]
list_results[1][dtype]+=nb_test[1]
list_results[2][dtype]+=nb_test[2]
list_results[3][dtype]+=nb_test[3]
got_error=nb_test[1]+nb_test[2]+nb_test[3]
if not short_summary:
if nb_test[0] > 0 and not just_errors:
print("passed: "+str(nb_test[0]))
if nb_test[1] > 0:
print("failing to pass the threshold: "+str(nb_test[1]))
if nb_test[2] > 0:
print("Illegal Error: "+str(nb_test[2]))
if nb_test[3] > 0:
print("Info Error: "+str(nb_test[3]))
if got_error > 0 and just_errors:
print("ERROR IS LOCATED IN "+name+" "+dtests[1][dtest]+" [ "+cmdbase+" ]")
print("")
if not just_errors:
print("")
# elif (got_error>0):
# print dtests[2][dtest]+".out \t"+str(nb_test[1])+"\t"+str(nb_test[2])+"\t"+str(nb_test[3])
sys.stdout.flush()
if (list_results[0][dtype] > 0 ):
percent_num_error=float(list_results[1][dtype])/float(list_results[0][dtype])*100
percent_error=float(list_results[2][dtype]+list_results[3][dtype])/float(list_results[0][dtype])*100
else:
percent_num_error=0
percent_error=0
summary+=name+"\t"+str(list_results[0][dtype])+"\t\t"+str(list_results[1][dtype])+"\t("+"%.3f" % percent_num_error+"%)\t"+str(list_results[2][dtype]+list_results[3][dtype])+"\t("+"%.3f" % percent_error+"%)\t""\n"
list_results[0][4]+=list_results[0][dtype]
list_results[1][4]+=list_results[1][dtype]
list_results[2][4]+=list_results[2][dtype]
list_results[3][4]+=list_results[3][dtype]
if only_numbers:
print(str(list_results[1][4])+"\n"+str(list_results[2][4]+list_results[3][4]))
else:
print(summary)
if (list_results[0][4] > 0 ):
percent_num_error=float(list_results[1][4])/float(list_results[0][4])*100
percent_error=float(list_results[2][4]+list_results[3][4])/float(list_results[0][4])*100
else:
percent_num_error=0
percent_error=0
if (prec=='x'):
print("--> ALL PRECISIONS\t"+str(list_results[0][4])+"\t\t"+str(list_results[1][4])+"\t("+"%.3f" % percent_num_error+"%)\t"+str(list_results[2][4]+list_results[3][4])+"\t("+"%.3f" % percent_error+"%)\t""\n")
if list_results[0][4] == 0:
print("NO TESTS WERE ANALYZED, please use the -r option to run the LAPACK TESTING")
# This may close the sys.stdout stream, so make it the last statement
f.close()
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/caxpy.f | *> \brief \b CAXPY
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CAXPY(N,CA,CX,INCX,CY,INCY)
*
* .. Scalar Arguments ..
* COMPLEX CA
* INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
* COMPLEX CX(*),CY(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CAXPY constant times a vector plus a vector.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> number of elements in input vector(s)
*> \endverbatim
*>
*> \param[in] CA
*> \verbatim
*> CA is COMPLEX
*> On entry, CA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] CX
*> \verbatim
*> CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> storage spacing between elements of CX
*> \endverbatim
*>
*> \param[in,out] CY
*> \verbatim
*> CY is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> storage spacing between elements of CY
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup axpy
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
*> modified 12/3/93, array(1) declarations changed to array(*)
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CAXPY(N,CA,CX,INCX,CY,INCY)
*
* -- Reference BLAS level1 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX CA
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
COMPLEX CX(*),CY(*)
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I,IX,IY
* ..
* .. External Functions ..
REAL SCABS1
EXTERNAL SCABS1
* ..
IF (N.LE.0) RETURN
IF (SCABS1(CA).EQ.0.0E+0) RETURN
IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
*
* code for both increments equal to 1
*
DO I = 1,N
CY(I) = CY(I) + CA*CX(I)
END DO
ELSE
*
* code for unequal increments or equal increments
* not equal to 1
*
IX = 1
IY = 1
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
DO I = 1,N
CY(IY) = CY(IY) + CA*CX(IX)
IX = IX + INCX
IY = IY + INCY
END DO
END IF
*
RETURN
*
* End of CAXPY
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/ccopy.f | *> \brief \b CCOPY
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CCOPY(N,CX,INCX,CY,INCY)
*
* .. Scalar Arguments ..
* INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
* COMPLEX CX(*),CY(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CCOPY copies a vector x to a vector y.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> number of elements in input vector(s)
*> \endverbatim
*>
*> \param[in] CX
*> \verbatim
*> CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> storage spacing between elements of CX
*> \endverbatim
*>
*> \param[out] CY
*> \verbatim
*> CY is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> storage spacing between elements of CY
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup copy
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
*> modified 12/3/93, array(1) declarations changed to array(*)
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CCOPY(N,CX,INCX,CY,INCY)
*
* -- Reference BLAS level1 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
COMPLEX CX(*),CY(*)
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I,IX,IY
* ..
IF (N.LE.0) RETURN
IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
*
* code for both increments equal to 1
*
DO I = 1,N
CY(I) = CX(I)
END DO
ELSE
*
* code for unequal increments or equal increments
* not equal to 1
*
IX = 1
IY = 1
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
DO I = 1,N
CY(IY) = CX(IX)
IX = IX + INCX
IY = IY + INCY
END DO
END IF
RETURN
*
* End of CCOPY
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/cdotc.f | *> \brief \b CDOTC
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* COMPLEX FUNCTION CDOTC(N,CX,INCX,CY,INCY)
*
* .. Scalar Arguments ..
* INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
* COMPLEX CX(*),CY(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CDOTC forms the dot product of two complex vectors
*> CDOTC = X^H * Y
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> number of elements in input vector(s)
*> \endverbatim
*>
*> \param[in] CX
*> \verbatim
*> CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> storage spacing between elements of CX
*> \endverbatim
*>
*> \param[in] CY
*> \verbatim
*> CY is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> storage spacing between elements of CY
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup dot
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
*> modified 12/3/93, array(1) declarations changed to array(*)
*> \endverbatim
*>
* =====================================================================
COMPLEX FUNCTION CDOTC(N,CX,INCX,CY,INCY)
*
* -- Reference BLAS level1 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
COMPLEX CX(*),CY(*)
* ..
*
* =====================================================================
*
* .. Local Scalars ..
COMPLEX CTEMP
INTEGER I,IX,IY
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG
* ..
CTEMP = (0.0,0.0)
CDOTC = (0.0,0.0)
IF (N.LE.0) RETURN
IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
*
* code for both increments equal to 1
*
DO I = 1,N
CTEMP = CTEMP + CONJG(CX(I))*CY(I)
END DO
ELSE
*
* code for unequal increments or equal increments
* not equal to 1
*
IX = 1
IY = 1
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
DO I = 1,N
CTEMP = CTEMP + CONJG(CX(IX))*CY(IY)
IX = IX + INCX
IY = IY + INCY
END DO
END IF
CDOTC = CTEMP
RETURN
*
* End of CDOTC
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/cdotu.f | *> \brief \b CDOTU
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* COMPLEX FUNCTION CDOTU(N,CX,INCX,CY,INCY)
*
* .. Scalar Arguments ..
* INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
* COMPLEX CX(*),CY(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CDOTU forms the dot product of two complex vectors
*> CDOTU = X^T * Y
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> number of elements in input vector(s)
*> \endverbatim
*>
*> \param[in] CX
*> \verbatim
*> CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> storage spacing between elements of CX
*> \endverbatim
*>
*> \param[in] CY
*> \verbatim
*> CY is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCY ) )
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> storage spacing between elements of CY
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup dot
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
*> modified 12/3/93, array(1) declarations changed to array(*)
*> \endverbatim
*>
* =====================================================================
COMPLEX FUNCTION CDOTU(N,CX,INCX,CY,INCY)
*
* -- Reference BLAS level1 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
COMPLEX CX(*),CY(*)
* ..
*
* =====================================================================
*
* .. Local Scalars ..
COMPLEX CTEMP
INTEGER I,IX,IY
* ..
CTEMP = (0.0,0.0)
CDOTU = (0.0,0.0)
IF (N.LE.0) RETURN
IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
*
* code for both increments equal to 1
*
DO I = 1,N
CTEMP = CTEMP + CX(I)*CY(I)
END DO
ELSE
*
* code for unequal increments or equal increments
* not equal to 1
*
IX = 1
IY = 1
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
DO I = 1,N
CTEMP = CTEMP + CX(IX)*CY(IY)
IX = IX + INCX
IY = IY + INCY
END DO
END IF
CDOTU = CTEMP
RETURN
*
* End of CDOTU
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/cgbmv.f | *> \brief \b CGBMV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
*
* .. Scalar Arguments ..
* COMPLEX ALPHA,BETA
* INTEGER INCX,INCY,KL,KU,LDA,M,N
* CHARACTER TRANS
* ..
* .. Array Arguments ..
* COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGBMV performs one of the matrix-vector operations
*>
*> y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or
*>
*> y := alpha*A**H*x + beta*y,
*>
*> where alpha and beta are scalars, x and y are vectors and A is an
*> m by n band matrix, with kl sub-diagonals and ku super-diagonals.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the operation to be performed as
*> follows:
*>
*> TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
*>
*> TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
*>
*> TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> On entry, M specifies the number of rows of the matrix A.
*> M must be at least zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the number of columns of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*> KL is INTEGER
*> On entry, KL specifies the number of sub-diagonals of the
*> matrix A. KL must satisfy 0 .le. KL.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*> KU is INTEGER
*> On entry, KU specifies the number of super-diagonals of the
*> matrix A. KU must satisfy 0 .le. KU.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, N )
*> Before entry, the leading ( kl + ku + 1 ) by n part of the
*> array A must contain the matrix of coefficients, supplied
*> column by column, with the leading diagonal of the matrix in
*> row ( ku + 1 ) of the array, the first super-diagonal
*> starting at position 2 in row ku, the first sub-diagonal
*> starting at position 1 in row ( ku + 2 ), and so on.
*> Elements in the array A that do not correspond to elements
*> in the band matrix (such as the top left ku by ku triangle)
*> are not referenced.
*> The following program segment will transfer a band matrix
*> from conventional full matrix storage to band storage:
*>
*> DO 20, J = 1, N
*> K = KU + 1 - J
*> DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
*> A( K + I, J ) = matrix( I, J )
*> 10 CONTINUE
*> 20 CONTINUE
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. LDA must be at least
*> ( kl + ku + 1 ).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
*> and at least
*> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
*> Before entry, the incremented array X must contain the
*> vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is COMPLEX
*> On entry, BETA specifies the scalar beta. When BETA is
*> supplied as zero then Y need not be set on input.
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*> Y is COMPLEX array, dimension at least
*> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
*> and at least
*> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
*> Before entry, the incremented array Y must contain the
*> vector y. On exit, Y is overwritten by the updated vector y.
*> If either m or n is zero, then Y not referenced and the function
*> performs a quick return.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup gbmv
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*> The vector and matrix arguments are not referenced when N = 0, or M = 0
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,
+ BETA,Y,INCY)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX ALPHA,BETA
INTEGER INCX,INCY,KL,KU,LDA,M,N
CHARACTER TRANS
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER (ONE= (1.0E+0,0.0E+0))
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP
INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
LOGICAL NOCONJ
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX,MIN
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ .NOT.LSAME(TRANS,'C')) THEN
INFO = 1
ELSE IF (M.LT.0) THEN
INFO = 2
ELSE IF (N.LT.0) THEN
INFO = 3
ELSE IF (KL.LT.0) THEN
INFO = 4
ELSE IF (KU.LT.0) THEN
INFO = 5
ELSE IF (LDA.LT. (KL+KU+1)) THEN
INFO = 8
ELSE IF (INCX.EQ.0) THEN
INFO = 10
ELSE IF (INCY.EQ.0) THEN
INFO = 13
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CGBMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
NOCONJ = LSAME(TRANS,'T')
*
* Set LENX and LENY, the lengths of the vectors x and y, and set
* up the start points in X and Y.
*
IF (LSAME(TRANS,'N')) THEN
LENX = N
LENY = M
ELSE
LENX = M
LENY = N
END IF
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (LENX-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (LENY-1)*INCY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the band part of A.
*
* First form y := beta*y.
*
IF (BETA.NE.ONE) THEN
IF (INCY.EQ.1) THEN
IF (BETA.EQ.ZERO) THEN
DO 10 I = 1,LENY
Y(I) = ZERO
10 CONTINUE
ELSE
DO 20 I = 1,LENY
Y(I) = BETA*Y(I)
20 CONTINUE
END IF
ELSE
IY = KY
IF (BETA.EQ.ZERO) THEN
DO 30 I = 1,LENY
Y(IY) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40 I = 1,LENY
Y(IY) = BETA*Y(IY)
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF (ALPHA.EQ.ZERO) RETURN
KUP1 = KU + 1
IF (LSAME(TRANS,'N')) THEN
*
* Form y := alpha*A*x + y.
*
JX = KX
IF (INCY.EQ.1) THEN
DO 60 J = 1,N
TEMP = ALPHA*X(JX)
K = KUP1 - J
DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
Y(I) = Y(I) + TEMP*A(K+I,J)
50 CONTINUE
JX = JX + INCX
60 CONTINUE
ELSE
DO 80 J = 1,N
TEMP = ALPHA*X(JX)
IY = KY
K = KUP1 - J
DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
Y(IY) = Y(IY) + TEMP*A(K+I,J)
IY = IY + INCY
70 CONTINUE
JX = JX + INCX
IF (J.GT.KU) KY = KY + INCY
80 CONTINUE
END IF
ELSE
*
* Form y := alpha*A**T*x + y or y := alpha*A**H*x + y.
*
JY = KY
IF (INCX.EQ.1) THEN
DO 110 J = 1,N
TEMP = ZERO
K = KUP1 - J
IF (NOCONJ) THEN
DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + A(K+I,J)*X(I)
90 CONTINUE
ELSE
DO 100 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + CONJG(A(K+I,J))*X(I)
100 CONTINUE
END IF
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
110 CONTINUE
ELSE
DO 140 J = 1,N
TEMP = ZERO
IX = KX
K = KUP1 - J
IF (NOCONJ) THEN
DO 120 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + A(K+I,J)*X(IX)
IX = IX + INCX
120 CONTINUE
ELSE
DO 130 I = MAX(1,J-KU),MIN(M,J+KL)
TEMP = TEMP + CONJG(A(K+I,J))*X(IX)
IX = IX + INCX
130 CONTINUE
END IF
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
IF (J.GT.KU) KX = KX + INCX
140 CONTINUE
END IF
END IF
*
RETURN
*
* End of CGBMV
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/cgemm.f | *> \brief \b CGEMM
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
* .. Scalar Arguments ..
* COMPLEX ALPHA,BETA
* INTEGER K,LDA,LDB,LDC,M,N
* CHARACTER TRANSA,TRANSB
* ..
* .. Array Arguments ..
* COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGEMM performs one of the matrix-matrix operations
*>
*> C := alpha*op( A )*op( B ) + beta*C,
*>
*> where op( X ) is one of
*>
*> op( X ) = X or op( X ) = X**T or op( X ) = X**H,
*>
*> alpha and beta are scalars, and A, B and C are matrices, with op( A )
*> an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANSA
*> \verbatim
*> TRANSA is CHARACTER*1
*> On entry, TRANSA specifies the form of op( A ) to be used in
*> the matrix multiplication as follows:
*>
*> TRANSA = 'N' or 'n', op( A ) = A.
*>
*> TRANSA = 'T' or 't', op( A ) = A**T.
*>
*> TRANSA = 'C' or 'c', op( A ) = A**H.
*> \endverbatim
*>
*> \param[in] TRANSB
*> \verbatim
*> TRANSB is CHARACTER*1
*> On entry, TRANSB specifies the form of op( B ) to be used in
*> the matrix multiplication as follows:
*>
*> TRANSB = 'N' or 'n', op( B ) = B.
*>
*> TRANSB = 'T' or 't', op( B ) = B**T.
*>
*> TRANSB = 'C' or 'c', op( B ) = B**H.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> On entry, M specifies the number of rows of the matrix
*> op( A ) and of the matrix C. M must be at least zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the number of columns of the matrix
*> op( B ) and the number of columns of the matrix C. N must be
*> at least zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> On entry, K specifies the number of columns of the matrix
*> op( A ) and the number of rows of the matrix op( B ). K must
*> be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, ka ), where ka is
*> k when TRANSA = 'N' or 'n', and is m otherwise.
*> Before entry with TRANSA = 'N' or 'n', the leading m by k
*> part of the array A must contain the matrix A, otherwise
*> the leading k by m part of the array A must contain the
*> matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. When TRANSA = 'N' or 'n' then
*> LDA must be at least max( 1, m ), otherwise LDA must be at
*> least max( 1, k ).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX array, dimension ( LDB, kb ), where kb is
*> n when TRANSB = 'N' or 'n', and is k otherwise.
*> Before entry with TRANSB = 'N' or 'n', the leading k by n
*> part of the array B must contain the matrix B, otherwise
*> the leading n by k part of the array B must contain the
*> matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> On entry, LDB specifies the first dimension of B as declared
*> in the calling (sub) program. When TRANSB = 'N' or 'n' then
*> LDB must be at least max( 1, k ), otherwise LDB must be at
*> least max( 1, n ).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is COMPLEX
*> On entry, BETA specifies the scalar beta. When BETA is
*> supplied as zero then C need not be set on input.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX array, dimension ( LDC, N )
*> Before entry, the leading m by n part of the array C must
*> contain the matrix C, except when beta is zero, in which
*> case C need not be set on entry.
*> On exit, the array C is overwritten by the m by n matrix
*> ( alpha*op( A )*op( B ) + beta*C ).
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> On entry, LDC specifies the first dimension of C as declared
*> in the calling (sub) program. LDC must be at least
*> max( 1, m ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup gemm
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 3 Blas routine.
*>
*> -- Written on 8-February-1989.
*> Jack Dongarra, Argonne National Laboratory.
*> Iain Duff, AERE Harwell.
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
*> Sven Hammarling, Numerical Algorithms Group Ltd.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,
+ BETA,C,LDC)
*
* -- Reference BLAS level3 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX ALPHA,BETA
INTEGER K,LDA,LDB,LDC,M,N
CHARACTER TRANSA,TRANSB
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
* ..
*
* =====================================================================
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX
* ..
* .. Local Scalars ..
COMPLEX TEMP
INTEGER I,INFO,J,L,NROWA,NROWB
LOGICAL CONJA,CONJB,NOTA,NOTB
* ..
* .. Parameters ..
COMPLEX ONE
PARAMETER (ONE= (1.0E+0,0.0E+0))
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
*
* Set NOTA and NOTB as true if A and B respectively are not
* conjugated or transposed, set CONJA and CONJB as true if A and
* B respectively are to be transposed but not conjugated and set
* NROWA and NROWB as the number of rows of A and B respectively.
*
NOTA = LSAME(TRANSA,'N')
NOTB = LSAME(TRANSB,'N')
CONJA = LSAME(TRANSA,'C')
CONJB = LSAME(TRANSB,'C')
IF (NOTA) THEN
NROWA = M
ELSE
NROWA = K
END IF
IF (NOTB) THEN
NROWB = K
ELSE
NROWB = N
END IF
*
* Test the input parameters.
*
INFO = 0
IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
+ (.NOT.LSAME(TRANSA,'T'))) THEN
INFO = 1
ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
+ (.NOT.LSAME(TRANSB,'T'))) THEN
INFO = 2
ELSE IF (M.LT.0) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (K.LT.0) THEN
INFO = 5
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
INFO = 8
ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
INFO = 10
ELSE IF (LDC.LT.MAX(1,M)) THEN
INFO = 13
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CGEMM ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
*
* And when alpha.eq.zero.
*
IF (ALPHA.EQ.ZERO) THEN
IF (BETA.EQ.ZERO) THEN
DO 20 J = 1,N
DO 10 I = 1,M
C(I,J) = ZERO
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1,N
DO 30 I = 1,M
C(I,J) = BETA*C(I,J)
30 CONTINUE
40 CONTINUE
END IF
RETURN
END IF
*
* Start the operations.
*
IF (NOTB) THEN
IF (NOTA) THEN
*
* Form C := alpha*A*B + beta*C.
*
DO 90 J = 1,N
IF (BETA.EQ.ZERO) THEN
DO 50 I = 1,M
C(I,J) = ZERO
50 CONTINUE
ELSE IF (BETA.NE.ONE) THEN
DO 60 I = 1,M
C(I,J) = BETA*C(I,J)
60 CONTINUE
END IF
DO 80 L = 1,K
TEMP = ALPHA*B(L,J)
DO 70 I = 1,M
C(I,J) = C(I,J) + TEMP*A(I,L)
70 CONTINUE
80 CONTINUE
90 CONTINUE
ELSE IF (CONJA) THEN
*
* Form C := alpha*A**H*B + beta*C.
*
DO 120 J = 1,N
DO 110 I = 1,M
TEMP = ZERO
DO 100 L = 1,K
TEMP = TEMP + CONJG(A(L,I))*B(L,J)
100 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
110 CONTINUE
120 CONTINUE
ELSE
*
* Form C := alpha*A**T*B + beta*C
*
DO 150 J = 1,N
DO 140 I = 1,M
TEMP = ZERO
DO 130 L = 1,K
TEMP = TEMP + A(L,I)*B(L,J)
130 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
140 CONTINUE
150 CONTINUE
END IF
ELSE IF (NOTA) THEN
IF (CONJB) THEN
*
* Form C := alpha*A*B**H + beta*C.
*
DO 200 J = 1,N
IF (BETA.EQ.ZERO) THEN
DO 160 I = 1,M
C(I,J) = ZERO
160 CONTINUE
ELSE IF (BETA.NE.ONE) THEN
DO 170 I = 1,M
C(I,J) = BETA*C(I,J)
170 CONTINUE
END IF
DO 190 L = 1,K
TEMP = ALPHA*CONJG(B(J,L))
DO 180 I = 1,M
C(I,J) = C(I,J) + TEMP*A(I,L)
180 CONTINUE
190 CONTINUE
200 CONTINUE
ELSE
*
* Form C := alpha*A*B**T + beta*C
*
DO 250 J = 1,N
IF (BETA.EQ.ZERO) THEN
DO 210 I = 1,M
C(I,J) = ZERO
210 CONTINUE
ELSE IF (BETA.NE.ONE) THEN
DO 220 I = 1,M
C(I,J) = BETA*C(I,J)
220 CONTINUE
END IF
DO 240 L = 1,K
TEMP = ALPHA*B(J,L)
DO 230 I = 1,M
C(I,J) = C(I,J) + TEMP*A(I,L)
230 CONTINUE
240 CONTINUE
250 CONTINUE
END IF
ELSE IF (CONJA) THEN
IF (CONJB) THEN
*
* Form C := alpha*A**H*B**H + beta*C.
*
DO 280 J = 1,N
DO 270 I = 1,M
TEMP = ZERO
DO 260 L = 1,K
TEMP = TEMP + CONJG(A(L,I))*CONJG(B(J,L))
260 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
270 CONTINUE
280 CONTINUE
ELSE
*
* Form C := alpha*A**H*B**T + beta*C
*
DO 310 J = 1,N
DO 300 I = 1,M
TEMP = ZERO
DO 290 L = 1,K
TEMP = TEMP + CONJG(A(L,I))*B(J,L)
290 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
300 CONTINUE
310 CONTINUE
END IF
ELSE
IF (CONJB) THEN
*
* Form C := alpha*A**T*B**H + beta*C
*
DO 340 J = 1,N
DO 330 I = 1,M
TEMP = ZERO
DO 320 L = 1,K
TEMP = TEMP + A(L,I)*CONJG(B(J,L))
320 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
330 CONTINUE
340 CONTINUE
ELSE
*
* Form C := alpha*A**T*B**T + beta*C
*
DO 370 J = 1,N
DO 360 I = 1,M
TEMP = ZERO
DO 350 L = 1,K
TEMP = TEMP + A(L,I)*B(J,L)
350 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
360 CONTINUE
370 CONTINUE
END IF
END IF
*
RETURN
*
* End of CGEMM
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/cgemv.f | *> \brief \b CGEMV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
*
* .. Scalar Arguments ..
* COMPLEX ALPHA,BETA
* INTEGER INCX,INCY,LDA,M,N
* CHARACTER TRANS
* ..
* .. Array Arguments ..
* COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGEMV performs one of the matrix-vector operations
*>
*> y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or
*>
*> y := alpha*A**H*x + beta*y,
*>
*> where alpha and beta are scalars, x and y are vectors and A is an
*> m by n matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the operation to be performed as
*> follows:
*>
*> TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
*>
*> TRANS = 'T' or 't' y := alpha*A**T*x + beta*y.
*>
*> TRANS = 'C' or 'c' y := alpha*A**H*x + beta*y.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> On entry, M specifies the number of rows of the matrix A.
*> M must be at least zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the number of columns of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, N )
*> Before entry, the leading m by n part of the array A must
*> contain the matrix of coefficients.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. LDA must be at least
*> max( 1, m ).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
*> and at least
*> ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
*> Before entry, the incremented array X must contain the
*> vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is COMPLEX
*> On entry, BETA specifies the scalar beta. When BETA is
*> supplied as zero then Y need not be set on input.
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*> Y is COMPLEX array, dimension at least
*> ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
*> and at least
*> ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
*> Before entry with BETA non-zero, the incremented array Y
*> must contain the vector y. On exit, Y is overwritten by the
*> updated vector y.
*> If either m or n is zero, then Y not referenced and the function
*> performs a quick return.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup gemv
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*> The vector and matrix arguments are not referenced when N = 0, or M = 0
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX ALPHA,BETA
INTEGER INCX,INCY,LDA,M,N
CHARACTER TRANS
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER (ONE= (1.0E+0,0.0E+0))
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY
LOGICAL NOCONJ
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ .NOT.LSAME(TRANS,'C')) THEN
INFO = 1
ELSE IF (M.LT.0) THEN
INFO = 2
ELSE IF (N.LT.0) THEN
INFO = 3
ELSE IF (LDA.LT.MAX(1,M)) THEN
INFO = 6
ELSE IF (INCX.EQ.0) THEN
INFO = 8
ELSE IF (INCY.EQ.0) THEN
INFO = 11
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CGEMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
NOCONJ = LSAME(TRANS,'T')
*
* Set LENX and LENY, the lengths of the vectors x and y, and set
* up the start points in X and Y.
*
IF (LSAME(TRANS,'N')) THEN
LENX = N
LENY = M
ELSE
LENX = M
LENY = N
END IF
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (LENX-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (LENY-1)*INCY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through A.
*
* First form y := beta*y.
*
IF (BETA.NE.ONE) THEN
IF (INCY.EQ.1) THEN
IF (BETA.EQ.ZERO) THEN
DO 10 I = 1,LENY
Y(I) = ZERO
10 CONTINUE
ELSE
DO 20 I = 1,LENY
Y(I) = BETA*Y(I)
20 CONTINUE
END IF
ELSE
IY = KY
IF (BETA.EQ.ZERO) THEN
DO 30 I = 1,LENY
Y(IY) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40 I = 1,LENY
Y(IY) = BETA*Y(IY)
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF (ALPHA.EQ.ZERO) RETURN
IF (LSAME(TRANS,'N')) THEN
*
* Form y := alpha*A*x + y.
*
JX = KX
IF (INCY.EQ.1) THEN
DO 60 J = 1,N
TEMP = ALPHA*X(JX)
DO 50 I = 1,M
Y(I) = Y(I) + TEMP*A(I,J)
50 CONTINUE
JX = JX + INCX
60 CONTINUE
ELSE
DO 80 J = 1,N
TEMP = ALPHA*X(JX)
IY = KY
DO 70 I = 1,M
Y(IY) = Y(IY) + TEMP*A(I,J)
IY = IY + INCY
70 CONTINUE
JX = JX + INCX
80 CONTINUE
END IF
ELSE
*
* Form y := alpha*A**T*x + y or y := alpha*A**H*x + y.
*
JY = KY
IF (INCX.EQ.1) THEN
DO 110 J = 1,N
TEMP = ZERO
IF (NOCONJ) THEN
DO 90 I = 1,M
TEMP = TEMP + A(I,J)*X(I)
90 CONTINUE
ELSE
DO 100 I = 1,M
TEMP = TEMP + CONJG(A(I,J))*X(I)
100 CONTINUE
END IF
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
110 CONTINUE
ELSE
DO 140 J = 1,N
TEMP = ZERO
IX = KX
IF (NOCONJ) THEN
DO 120 I = 1,M
TEMP = TEMP + A(I,J)*X(IX)
IX = IX + INCX
120 CONTINUE
ELSE
DO 130 I = 1,M
TEMP = TEMP + CONJG(A(I,J))*X(IX)
IX = IX + INCX
130 CONTINUE
END IF
Y(JY) = Y(JY) + ALPHA*TEMP
JY = JY + INCY
140 CONTINUE
END IF
END IF
*
RETURN
*
* End of CGEMV
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/cgerc.f | *> \brief \b CGERC
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
*
* .. Scalar Arguments ..
* COMPLEX ALPHA
* INTEGER INCX,INCY,LDA,M,N
* ..
* .. Array Arguments ..
* COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGERC performs the rank 1 operation
*>
*> A := alpha*x*y**H + A,
*>
*> where alpha is a scalar, x is an m element vector, y is an n element
*> vector and A is an m by n matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> On entry, M specifies the number of rows of the matrix A.
*> M must be at least zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the number of columns of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension at least
*> ( 1 + ( m - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the m
*> element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in] Y
*> \verbatim
*> Y is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCY ) ).
*> Before entry, the incremented array Y must contain the n
*> element vector y.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, N )
*> Before entry, the leading m by n part of the array A must
*> contain the matrix of coefficients. On exit, A is
*> overwritten by the updated matrix.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. LDA must be at least
*> max( 1, m ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup ger
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX ALPHA
INTEGER INCX,INCY,LDA,M,N
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP
INTEGER I,INFO,IX,J,JY,KX
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX
* ..
*
* Test the input parameters.
*
INFO = 0
IF (M.LT.0) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (INCY.EQ.0) THEN
INFO = 7
ELSE IF (LDA.LT.MAX(1,M)) THEN
INFO = 9
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CGERC ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through A.
*
IF (INCY.GT.0) THEN
JY = 1
ELSE
JY = 1 - (N-1)*INCY
END IF
IF (INCX.EQ.1) THEN
DO 20 J = 1,N
IF (Y(JY).NE.ZERO) THEN
TEMP = ALPHA*CONJG(Y(JY))
DO 10 I = 1,M
A(I,J) = A(I,J) + X(I)*TEMP
10 CONTINUE
END IF
JY = JY + INCY
20 CONTINUE
ELSE
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (M-1)*INCX
END IF
DO 40 J = 1,N
IF (Y(JY).NE.ZERO) THEN
TEMP = ALPHA*CONJG(Y(JY))
IX = KX
DO 30 I = 1,M
A(I,J) = A(I,J) + X(IX)*TEMP
IX = IX + INCX
30 CONTINUE
END IF
JY = JY + INCY
40 CONTINUE
END IF
*
RETURN
*
* End of CGERC
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/cgeru.f | *> \brief \b CGERU
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
*
* .. Scalar Arguments ..
* COMPLEX ALPHA
* INTEGER INCX,INCY,LDA,M,N
* ..
* .. Array Arguments ..
* COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGERU performs the rank 1 operation
*>
*> A := alpha*x*y**T + A,
*>
*> where alpha is a scalar, x is an m element vector, y is an n element
*> vector and A is an m by n matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> On entry, M specifies the number of rows of the matrix A.
*> M must be at least zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the number of columns of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension at least
*> ( 1 + ( m - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the m
*> element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in] Y
*> \verbatim
*> Y is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCY ) ).
*> Before entry, the incremented array Y must contain the n
*> element vector y.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, N )
*> Before entry, the leading m by n part of the array A must
*> contain the matrix of coefficients. On exit, A is
*> overwritten by the updated matrix.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. LDA must be at least
*> max( 1, m ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup ger
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX ALPHA
INTEGER INCX,INCY,LDA,M,N
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP
INTEGER I,INFO,IX,J,JY,KX
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
*
* Test the input parameters.
*
INFO = 0
IF (M.LT.0) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (INCY.EQ.0) THEN
INFO = 7
ELSE IF (LDA.LT.MAX(1,M)) THEN
INFO = 9
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CGERU ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through A.
*
IF (INCY.GT.0) THEN
JY = 1
ELSE
JY = 1 - (N-1)*INCY
END IF
IF (INCX.EQ.1) THEN
DO 20 J = 1,N
IF (Y(JY).NE.ZERO) THEN
TEMP = ALPHA*Y(JY)
DO 10 I = 1,M
A(I,J) = A(I,J) + X(I)*TEMP
10 CONTINUE
END IF
JY = JY + INCY
20 CONTINUE
ELSE
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (M-1)*INCX
END IF
DO 40 J = 1,N
IF (Y(JY).NE.ZERO) THEN
TEMP = ALPHA*Y(JY)
IX = KX
DO 30 I = 1,M
A(I,J) = A(I,J) + X(IX)*TEMP
IX = IX + INCX
30 CONTINUE
END IF
JY = JY + INCY
40 CONTINUE
END IF
*
RETURN
*
* End of CGERU
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/chbmv.f | *> \brief \b CHBMV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
*
* .. Scalar Arguments ..
* COMPLEX ALPHA,BETA
* INTEGER INCX,INCY,K,LDA,N
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHBMV performs the matrix-vector operation
*>
*> y := alpha*A*x + beta*y,
*>
*> where alpha and beta are scalars, x and y are n element vectors and
*> A is an n by n hermitian band matrix, with k super-diagonals.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the band matrix A is being supplied as
*> follows:
*>
*> UPLO = 'U' or 'u' The upper triangular part of A is
*> being supplied.
*>
*> UPLO = 'L' or 'l' The lower triangular part of A is
*> being supplied.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> On entry, K specifies the number of super-diagonals of the
*> matrix A. K must satisfy 0 .le. K.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, N )
*> Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
*> by n part of the array A must contain the upper triangular
*> band part of the hermitian matrix, supplied column by
*> column, with the leading diagonal of the matrix in row
*> ( k + 1 ) of the array, the first super-diagonal starting at
*> position 2 in row k, and so on. The top left k by k triangle
*> of the array A is not referenced.
*> The following program segment will transfer the upper
*> triangular part of a hermitian band matrix from conventional
*> full matrix storage to band storage:
*>
*> DO 20, J = 1, N
*> M = K + 1 - J
*> DO 10, I = MAX( 1, J - K ), J
*> A( M + I, J ) = matrix( I, J )
*> 10 CONTINUE
*> 20 CONTINUE
*>
*> Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
*> by n part of the array A must contain the lower triangular
*> band part of the hermitian matrix, supplied column by
*> column, with the leading diagonal of the matrix in row 1 of
*> the array, the first sub-diagonal starting at position 1 in
*> row 2, and so on. The bottom right k by k triangle of the
*> array A is not referenced.
*> The following program segment will transfer the lower
*> triangular part of a hermitian band matrix from conventional
*> full matrix storage to band storage:
*>
*> DO 20, J = 1, N
*> M = 1 - J
*> DO 10, I = J, MIN( N, J + K )
*> A( M + I, J ) = matrix( I, J )
*> 10 CONTINUE
*> 20 CONTINUE
*>
*> Note that the imaginary parts of the diagonal elements need
*> not be set and are assumed to be zero.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. LDA must be at least
*> ( k + 1 ).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the
*> vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is COMPLEX
*> On entry, BETA specifies the scalar beta.
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*> Y is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCY ) ).
*> Before entry, the incremented array Y must contain the
*> vector y. On exit, Y is overwritten by the updated vector y.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup hbmv
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*> The vector and matrix arguments are not referenced when N = 0, or M = 0
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX ALPHA,BETA
INTEGER INCX,INCY,K,LDA,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER (ONE= (1.0E+0,0.0E+0))
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP1,TEMP2
INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX,MIN,REAL
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (K.LT.0) THEN
INFO = 3
ELSE IF (LDA.LT. (K+1)) THEN
INFO = 6
ELSE IF (INCX.EQ.0) THEN
INFO = 8
ELSE IF (INCY.EQ.0) THEN
INFO = 11
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHBMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
* Set up the start points in X and Y.
*
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (N-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (N-1)*INCY
END IF
*
* Start the operations. In this version the elements of the array A
* are accessed sequentially with one pass through A.
*
* First form y := beta*y.
*
IF (BETA.NE.ONE) THEN
IF (INCY.EQ.1) THEN
IF (BETA.EQ.ZERO) THEN
DO 10 I = 1,N
Y(I) = ZERO
10 CONTINUE
ELSE
DO 20 I = 1,N
Y(I) = BETA*Y(I)
20 CONTINUE
END IF
ELSE
IY = KY
IF (BETA.EQ.ZERO) THEN
DO 30 I = 1,N
Y(IY) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40 I = 1,N
Y(IY) = BETA*Y(IY)
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF (ALPHA.EQ.ZERO) RETURN
IF (LSAME(UPLO,'U')) THEN
*
* Form y when upper triangle of A is stored.
*
KPLUS1 = K + 1
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 60 J = 1,N
TEMP1 = ALPHA*X(J)
TEMP2 = ZERO
L = KPLUS1 - J
DO 50 I = MAX(1,J-K),J - 1
Y(I) = Y(I) + TEMP1*A(L+I,J)
TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
50 CONTINUE
Y(J) = Y(J) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
60 CONTINUE
ELSE
JX = KX
JY = KY
DO 80 J = 1,N
TEMP1 = ALPHA*X(JX)
TEMP2 = ZERO
IX = KX
IY = KY
L = KPLUS1 - J
DO 70 I = MAX(1,J-K),J - 1
Y(IY) = Y(IY) + TEMP1*A(L+I,J)
TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
IX = IX + INCX
IY = IY + INCY
70 CONTINUE
Y(JY) = Y(JY) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
IF (J.GT.K) THEN
KX = KX + INCX
KY = KY + INCY
END IF
80 CONTINUE
END IF
ELSE
*
* Form y when lower triangle of A is stored.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 100 J = 1,N
TEMP1 = ALPHA*X(J)
TEMP2 = ZERO
Y(J) = Y(J) + TEMP1*REAL(A(1,J))
L = 1 - J
DO 90 I = J + 1,MIN(N,J+K)
Y(I) = Y(I) + TEMP1*A(L+I,J)
TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
90 CONTINUE
Y(J) = Y(J) + ALPHA*TEMP2
100 CONTINUE
ELSE
JX = KX
JY = KY
DO 120 J = 1,N
TEMP1 = ALPHA*X(JX)
TEMP2 = ZERO
Y(JY) = Y(JY) + TEMP1*REAL(A(1,J))
L = 1 - J
IX = JX
IY = JY
DO 110 I = J + 1,MIN(N,J+K)
IX = IX + INCX
IY = IY + INCY
Y(IY) = Y(IY) + TEMP1*A(L+I,J)
TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
110 CONTINUE
Y(JY) = Y(JY) + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
120 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHBMV
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/chemm.f | *> \brief \b CHEMM
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
* .. Scalar Arguments ..
* COMPLEX ALPHA,BETA
* INTEGER LDA,LDB,LDC,M,N
* CHARACTER SIDE,UPLO
* ..
* .. Array Arguments ..
* COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHEMM performs one of the matrix-matrix operations
*>
*> C := alpha*A*B + beta*C,
*>
*> or
*>
*> C := alpha*B*A + beta*C,
*>
*> where alpha and beta are scalars, A is an hermitian matrix and B and
*> C are m by n matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> On entry, SIDE specifies whether the hermitian matrix A
*> appears on the left or right in the operation as follows:
*>
*> SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
*>
*> SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the hermitian matrix A is to be
*> referenced as follows:
*>
*> UPLO = 'U' or 'u' Only the upper triangular part of the
*> hermitian matrix is to be referenced.
*>
*> UPLO = 'L' or 'l' Only the lower triangular part of the
*> hermitian matrix is to be referenced.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> On entry, M specifies the number of rows of the matrix C.
*> M must be at least zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the number of columns of the matrix C.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, ka ), where ka is
*> m when SIDE = 'L' or 'l' and is n otherwise.
*> Before entry with SIDE = 'L' or 'l', the m by m part of
*> the array A must contain the hermitian matrix, such that
*> when UPLO = 'U' or 'u', the leading m by m upper triangular
*> part of the array A must contain the upper triangular part
*> of the hermitian matrix and the strictly lower triangular
*> part of A is not referenced, and when UPLO = 'L' or 'l',
*> the leading m by m lower triangular part of the array A
*> must contain the lower triangular part of the hermitian
*> matrix and the strictly upper triangular part of A is not
*> referenced.
*> Before entry with SIDE = 'R' or 'r', the n by n part of
*> the array A must contain the hermitian matrix, such that
*> when UPLO = 'U' or 'u', the leading n by n upper triangular
*> part of the array A must contain the upper triangular part
*> of the hermitian matrix and the strictly lower triangular
*> part of A is not referenced, and when UPLO = 'L' or 'l',
*> the leading n by n lower triangular part of the array A
*> must contain the lower triangular part of the hermitian
*> matrix and the strictly upper triangular part of A is not
*> referenced.
*> Note that the imaginary parts of the diagonal elements need
*> not be set, they are assumed to be zero.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. When SIDE = 'L' or 'l' then
*> LDA must be at least max( 1, m ), otherwise LDA must be at
*> least max( 1, n ).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX array, dimension ( LDB, N )
*> Before entry, the leading m by n part of the array B must
*> contain the matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> On entry, LDB specifies the first dimension of B as declared
*> in the calling (sub) program. LDB must be at least
*> max( 1, m ).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is COMPLEX
*> On entry, BETA specifies the scalar beta. When BETA is
*> supplied as zero then C need not be set on input.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX array, dimension ( LDC, N )
*> Before entry, the leading m by n part of the array C must
*> contain the matrix C, except when beta is zero, in which
*> case C need not be set on entry.
*> On exit, the array C is overwritten by the m by n updated
*> matrix.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> On entry, LDC specifies the first dimension of C as declared
*> in the calling (sub) program. LDC must be at least
*> max( 1, m ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup hemm
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 3 Blas routine.
*>
*> -- Written on 8-February-1989.
*> Jack Dongarra, Argonne National Laboratory.
*> Iain Duff, AERE Harwell.
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
*> Sven Hammarling, Numerical Algorithms Group Ltd.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
* -- Reference BLAS level3 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX ALPHA,BETA
INTEGER LDA,LDB,LDC,M,N
CHARACTER SIDE,UPLO
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
* ..
*
* =====================================================================
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX,REAL
* ..
* .. Local Scalars ..
COMPLEX TEMP1,TEMP2
INTEGER I,INFO,J,K,NROWA
LOGICAL UPPER
* ..
* .. Parameters ..
COMPLEX ONE
PARAMETER (ONE= (1.0E+0,0.0E+0))
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
*
* Set NROWA as the number of rows of A.
*
IF (LSAME(SIDE,'L')) THEN
NROWA = M
ELSE
NROWA = N
END IF
UPPER = LSAME(UPLO,'U')
*
* Test the input parameters.
*
INFO = 0
IF ((.NOT.LSAME(SIDE,'L')) .AND.
+ (.NOT.LSAME(SIDE,'R'))) THEN
INFO = 1
ELSE IF ((.NOT.UPPER) .AND.
+ (.NOT.LSAME(UPLO,'L'))) THEN
INFO = 2
ELSE IF (M.LT.0) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
INFO = 7
ELSE IF (LDB.LT.MAX(1,M)) THEN
INFO = 9
ELSE IF (LDC.LT.MAX(1,M)) THEN
INFO = 12
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHEMM ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
* And when alpha.eq.zero.
*
IF (ALPHA.EQ.ZERO) THEN
IF (BETA.EQ.ZERO) THEN
DO 20 J = 1,N
DO 10 I = 1,M
C(I,J) = ZERO
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1,N
DO 30 I = 1,M
C(I,J) = BETA*C(I,J)
30 CONTINUE
40 CONTINUE
END IF
RETURN
END IF
*
* Start the operations.
*
IF (LSAME(SIDE,'L')) THEN
*
* Form C := alpha*A*B + beta*C.
*
IF (UPPER) THEN
DO 70 J = 1,N
DO 60 I = 1,M
TEMP1 = ALPHA*B(I,J)
TEMP2 = ZERO
DO 50 K = 1,I - 1
C(K,J) = C(K,J) + TEMP1*A(K,I)
TEMP2 = TEMP2 + B(K,J)*CONJG(A(K,I))
50 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = TEMP1*REAL(A(I,I)) + ALPHA*TEMP2
ELSE
C(I,J) = BETA*C(I,J) + TEMP1*REAL(A(I,I)) +
+ ALPHA*TEMP2
END IF
60 CONTINUE
70 CONTINUE
ELSE
DO 100 J = 1,N
DO 90 I = M,1,-1
TEMP1 = ALPHA*B(I,J)
TEMP2 = ZERO
DO 80 K = I + 1,M
C(K,J) = C(K,J) + TEMP1*A(K,I)
TEMP2 = TEMP2 + B(K,J)*CONJG(A(K,I))
80 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = TEMP1*REAL(A(I,I)) + ALPHA*TEMP2
ELSE
C(I,J) = BETA*C(I,J) + TEMP1*REAL(A(I,I)) +
+ ALPHA*TEMP2
END IF
90 CONTINUE
100 CONTINUE
END IF
ELSE
*
* Form C := alpha*B*A + beta*C.
*
DO 170 J = 1,N
TEMP1 = ALPHA*REAL(A(J,J))
IF (BETA.EQ.ZERO) THEN
DO 110 I = 1,M
C(I,J) = TEMP1*B(I,J)
110 CONTINUE
ELSE
DO 120 I = 1,M
C(I,J) = BETA*C(I,J) + TEMP1*B(I,J)
120 CONTINUE
END IF
DO 140 K = 1,J - 1
IF (UPPER) THEN
TEMP1 = ALPHA*A(K,J)
ELSE
TEMP1 = ALPHA*CONJG(A(J,K))
END IF
DO 130 I = 1,M
C(I,J) = C(I,J) + TEMP1*B(I,K)
130 CONTINUE
140 CONTINUE
DO 160 K = J + 1,N
IF (UPPER) THEN
TEMP1 = ALPHA*CONJG(A(J,K))
ELSE
TEMP1 = ALPHA*A(K,J)
END IF
DO 150 I = 1,M
C(I,J) = C(I,J) + TEMP1*B(I,K)
150 CONTINUE
160 CONTINUE
170 CONTINUE
END IF
*
RETURN
*
* End of CHEMM
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/chemv.f | *> \brief \b CHEMV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
*
* .. Scalar Arguments ..
* COMPLEX ALPHA,BETA
* INTEGER INCX,INCY,LDA,N
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHEMV performs the matrix-vector operation
*>
*> y := alpha*A*x + beta*y,
*>
*> where alpha and beta are scalars, x and y are n element vectors and
*> A is an n by n hermitian matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
*>
*> UPLO = 'U' or 'u' Only the upper triangular part of A
*> is to be referenced.
*>
*> UPLO = 'L' or 'l' Only the lower triangular part of A
*> is to be referenced.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, N )
*> Before entry with UPLO = 'U' or 'u', the leading n by n
*> upper triangular part of the array A must contain the upper
*> triangular part of the hermitian matrix and the strictly
*> lower triangular part of A is not referenced.
*> Before entry with UPLO = 'L' or 'l', the leading n by n
*> lower triangular part of the array A must contain the lower
*> triangular part of the hermitian matrix and the strictly
*> upper triangular part of A is not referenced.
*> Note that the imaginary parts of the diagonal elements need
*> not be set and are assumed to be zero.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. LDA must be at least
*> max( 1, n ).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the n
*> element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is COMPLEX
*> On entry, BETA specifies the scalar beta. When BETA is
*> supplied as zero then Y need not be set on input.
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*> Y is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCY ) ).
*> Before entry, the incremented array Y must contain the n
*> element vector y. On exit, Y is overwritten by the updated
*> vector y.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup hemv
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*> The vector and matrix arguments are not referenced when N = 0, or M = 0
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX ALPHA,BETA
INTEGER INCX,INCY,LDA,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER (ONE= (1.0E+0,0.0E+0))
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP1,TEMP2
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX,REAL
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (LDA.LT.MAX(1,N)) THEN
INFO = 5
ELSE IF (INCX.EQ.0) THEN
INFO = 7
ELSE IF (INCY.EQ.0) THEN
INFO = 10
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHEMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
* Set up the start points in X and Y.
*
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (N-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (N-1)*INCY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the triangular part
* of A.
*
* First form y := beta*y.
*
IF (BETA.NE.ONE) THEN
IF (INCY.EQ.1) THEN
IF (BETA.EQ.ZERO) THEN
DO 10 I = 1,N
Y(I) = ZERO
10 CONTINUE
ELSE
DO 20 I = 1,N
Y(I) = BETA*Y(I)
20 CONTINUE
END IF
ELSE
IY = KY
IF (BETA.EQ.ZERO) THEN
DO 30 I = 1,N
Y(IY) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40 I = 1,N
Y(IY) = BETA*Y(IY)
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF (ALPHA.EQ.ZERO) RETURN
IF (LSAME(UPLO,'U')) THEN
*
* Form y when A is stored in upper triangle.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 60 J = 1,N
TEMP1 = ALPHA*X(J)
TEMP2 = ZERO
DO 50 I = 1,J - 1
Y(I) = Y(I) + TEMP1*A(I,J)
TEMP2 = TEMP2 + CONJG(A(I,J))*X(I)
50 CONTINUE
Y(J) = Y(J) + TEMP1*REAL(A(J,J)) + ALPHA*TEMP2
60 CONTINUE
ELSE
JX = KX
JY = KY
DO 80 J = 1,N
TEMP1 = ALPHA*X(JX)
TEMP2 = ZERO
IX = KX
IY = KY
DO 70 I = 1,J - 1
Y(IY) = Y(IY) + TEMP1*A(I,J)
TEMP2 = TEMP2 + CONJG(A(I,J))*X(IX)
IX = IX + INCX
IY = IY + INCY
70 CONTINUE
Y(JY) = Y(JY) + TEMP1*REAL(A(J,J)) + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
80 CONTINUE
END IF
ELSE
*
* Form y when A is stored in lower triangle.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 100 J = 1,N
TEMP1 = ALPHA*X(J)
TEMP2 = ZERO
Y(J) = Y(J) + TEMP1*REAL(A(J,J))
DO 90 I = J + 1,N
Y(I) = Y(I) + TEMP1*A(I,J)
TEMP2 = TEMP2 + CONJG(A(I,J))*X(I)
90 CONTINUE
Y(J) = Y(J) + ALPHA*TEMP2
100 CONTINUE
ELSE
JX = KX
JY = KY
DO 120 J = 1,N
TEMP1 = ALPHA*X(JX)
TEMP2 = ZERO
Y(JY) = Y(JY) + TEMP1*REAL(A(J,J))
IX = JX
IY = JY
DO 110 I = J + 1,N
IX = IX + INCX
IY = IY + INCY
Y(IY) = Y(IY) + TEMP1*A(I,J)
TEMP2 = TEMP2 + CONJG(A(I,J))*X(IX)
110 CONTINUE
Y(JY) = Y(JY) + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
120 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHEMV
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/cher.f | *> \brief \b CHER
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
*
* .. Scalar Arguments ..
* REAL ALPHA
* INTEGER INCX,LDA,N
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* COMPLEX A(LDA,*),X(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHER performs the hermitian rank 1 operation
*>
*> A := alpha*x*x**H + A,
*>
*> where alpha is a real scalar, x is an n element vector and A is an
*> n by n hermitian matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
*>
*> UPLO = 'U' or 'u' Only the upper triangular part of A
*> is to be referenced.
*>
*> UPLO = 'L' or 'l' Only the lower triangular part of A
*> is to be referenced.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is REAL
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the n
*> element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, N )
*> Before entry with UPLO = 'U' or 'u', the leading n by n
*> upper triangular part of the array A must contain the upper
*> triangular part of the hermitian matrix and the strictly
*> lower triangular part of A is not referenced. On exit, the
*> upper triangular part of the array A is overwritten by the
*> upper triangular part of the updated matrix.
*> Before entry with UPLO = 'L' or 'l', the leading n by n
*> lower triangular part of the array A must contain the lower
*> triangular part of the hermitian matrix and the strictly
*> upper triangular part of A is not referenced. On exit, the
*> lower triangular part of the array A is overwritten by the
*> lower triangular part of the updated matrix.
*> Note that the imaginary parts of the diagonal elements need
*> not be set, they are assumed to be zero, and on exit they
*> are set to zero.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. LDA must be at least
*> max( 1, n ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup her
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CHER(UPLO,N,ALPHA,X,INCX,A,LDA)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
REAL ALPHA
INTEGER INCX,LDA,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),X(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP
INTEGER I,INFO,IX,J,JX,KX
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX,REAL
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (LDA.LT.MAX(1,N)) THEN
INFO = 7
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHER ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
*
* Set the start point in X if the increment is not unity.
*
IF (INCX.LE.0) THEN
KX = 1 - (N-1)*INCX
ELSE IF (INCX.NE.1) THEN
KX = 1
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the triangular part
* of A.
*
IF (LSAME(UPLO,'U')) THEN
*
* Form A when A is stored in upper triangle.
*
IF (INCX.EQ.1) THEN
DO 20 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(J))
DO 10 I = 1,J - 1
A(I,J) = A(I,J) + X(I)*TEMP
10 CONTINUE
A(J,J) = REAL(A(J,J)) + REAL(X(J)*TEMP)
ELSE
A(J,J) = REAL(A(J,J))
END IF
20 CONTINUE
ELSE
JX = KX
DO 40 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(JX))
IX = KX
DO 30 I = 1,J - 1
A(I,J) = A(I,J) + X(IX)*TEMP
IX = IX + INCX
30 CONTINUE
A(J,J) = REAL(A(J,J)) + REAL(X(JX)*TEMP)
ELSE
A(J,J) = REAL(A(J,J))
END IF
JX = JX + INCX
40 CONTINUE
END IF
ELSE
*
* Form A when A is stored in lower triangle.
*
IF (INCX.EQ.1) THEN
DO 60 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(J))
A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(J))
DO 50 I = J + 1,N
A(I,J) = A(I,J) + X(I)*TEMP
50 CONTINUE
ELSE
A(J,J) = REAL(A(J,J))
END IF
60 CONTINUE
ELSE
JX = KX
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(JX))
A(J,J) = REAL(A(J,J)) + REAL(TEMP*X(JX))
IX = JX
DO 70 I = J + 1,N
IX = IX + INCX
A(I,J) = A(I,J) + X(IX)*TEMP
70 CONTINUE
ELSE
A(J,J) = REAL(A(J,J))
END IF
JX = JX + INCX
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHER
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/cher2.f | *> \brief \b CHER2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
*
* .. Scalar Arguments ..
* COMPLEX ALPHA
* INTEGER INCX,INCY,LDA,N
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHER2 performs the hermitian rank 2 operation
*>
*> A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
*>
*> where alpha is a scalar, x and y are n element vectors and A is an n
*> by n hermitian matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array A is to be referenced as
*> follows:
*>
*> UPLO = 'U' or 'u' Only the upper triangular part of A
*> is to be referenced.
*>
*> UPLO = 'L' or 'l' Only the lower triangular part of A
*> is to be referenced.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the n
*> element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in] Y
*> \verbatim
*> Y is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCY ) ).
*> Before entry, the incremented array Y must contain the n
*> element vector y.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, N )
*> Before entry with UPLO = 'U' or 'u', the leading n by n
*> upper triangular part of the array A must contain the upper
*> triangular part of the hermitian matrix and the strictly
*> lower triangular part of A is not referenced. On exit, the
*> upper triangular part of the array A is overwritten by the
*> upper triangular part of the updated matrix.
*> Before entry with UPLO = 'L' or 'l', the leading n by n
*> lower triangular part of the array A must contain the lower
*> triangular part of the hermitian matrix and the strictly
*> upper triangular part of A is not referenced. On exit, the
*> lower triangular part of the array A is overwritten by the
*> lower triangular part of the updated matrix.
*> Note that the imaginary parts of the diagonal elements need
*> not be set, they are assumed to be zero, and on exit they
*> are set to zero.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. LDA must be at least
*> max( 1, n ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup her2
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX ALPHA
INTEGER INCX,INCY,LDA,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),X(*),Y(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP1,TEMP2
INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX,REAL
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (INCY.EQ.0) THEN
INFO = 7
ELSE IF (LDA.LT.MAX(1,N)) THEN
INFO = 9
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHER2 ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
*
* Set up the start points in X and Y if the increments are not both
* unity.
*
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (N-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (N-1)*INCY
END IF
JX = KX
JY = KY
END IF
*
* Start the operations. In this version the elements of A are
* accessed sequentially with one pass through the triangular part
* of A.
*
IF (LSAME(UPLO,'U')) THEN
*
* Form A when A is stored in the upper triangle.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 20 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(Y(J))
TEMP2 = CONJG(ALPHA*X(J))
DO 10 I = 1,J - 1
A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
10 CONTINUE
A(J,J) = REAL(A(J,J)) +
+ REAL(X(J)*TEMP1+Y(J)*TEMP2)
ELSE
A(J,J) = REAL(A(J,J))
END IF
20 CONTINUE
ELSE
DO 40 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(Y(JY))
TEMP2 = CONJG(ALPHA*X(JX))
IX = KX
IY = KY
DO 30 I = 1,J - 1
A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
IX = IX + INCX
IY = IY + INCY
30 CONTINUE
A(J,J) = REAL(A(J,J)) +
+ REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
ELSE
A(J,J) = REAL(A(J,J))
END IF
JX = JX + INCX
JY = JY + INCY
40 CONTINUE
END IF
ELSE
*
* Form A when A is stored in the lower triangle.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 60 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(Y(J))
TEMP2 = CONJG(ALPHA*X(J))
A(J,J) = REAL(A(J,J)) +
+ REAL(X(J)*TEMP1+Y(J)*TEMP2)
DO 50 I = J + 1,N
A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2
50 CONTINUE
ELSE
A(J,J) = REAL(A(J,J))
END IF
60 CONTINUE
ELSE
DO 80 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(Y(JY))
TEMP2 = CONJG(ALPHA*X(JX))
A(J,J) = REAL(A(J,J)) +
+ REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
IX = JX
IY = JY
DO 70 I = J + 1,N
IX = IX + INCX
IY = IY + INCY
A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2
70 CONTINUE
ELSE
A(J,J) = REAL(A(J,J))
END IF
JX = JX + INCX
JY = JY + INCY
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHER2
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/cher2k.f | *> \brief \b CHER2K
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
* .. Scalar Arguments ..
* COMPLEX ALPHA
* REAL BETA
* INTEGER K,LDA,LDB,LDC,N
* CHARACTER TRANS,UPLO
* ..
* .. Array Arguments ..
* COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHER2K performs one of the hermitian rank 2k operations
*>
*> C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C,
*>
*> or
*>
*> C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C,
*>
*> where alpha and beta are scalars with beta real, C is an n by n
*> hermitian matrix and A and B are n by k matrices in the first case
*> and k by n matrices in the second case.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array C is to be referenced as
*> follows:
*>
*> UPLO = 'U' or 'u' Only the upper triangular part of C
*> is to be referenced.
*>
*> UPLO = 'L' or 'l' Only the lower triangular part of C
*> is to be referenced.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the operation to be performed as
*> follows:
*>
*> TRANS = 'N' or 'n' C := alpha*A*B**H +
*> conjg( alpha )*B*A**H +
*> beta*C.
*>
*> TRANS = 'C' or 'c' C := alpha*A**H*B +
*> conjg( alpha )*B**H*A +
*> beta*C.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix C. N must be
*> at least zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> On entry with TRANS = 'N' or 'n', K specifies the number
*> of columns of the matrices A and B, and on entry with
*> TRANS = 'C' or 'c', K specifies the number of rows of the
*> matrices A and B. K must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, ka ), where ka is
*> k when TRANS = 'N' or 'n', and is n otherwise.
*> Before entry with TRANS = 'N' or 'n', the leading n by k
*> part of the array A must contain the matrix A, otherwise
*> the leading k by n part of the array A must contain the
*> matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. When TRANS = 'N' or 'n'
*> then LDA must be at least max( 1, n ), otherwise LDA must
*> be at least max( 1, k ).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX array, dimension ( LDB, kb ), where kb is
*> k when TRANS = 'N' or 'n', and is n otherwise.
*> Before entry with TRANS = 'N' or 'n', the leading n by k
*> part of the array B must contain the matrix B, otherwise
*> the leading k by n part of the array B must contain the
*> matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> On entry, LDB specifies the first dimension of B as declared
*> in the calling (sub) program. When TRANS = 'N' or 'n'
*> then LDB must be at least max( 1, n ), otherwise LDB must
*> be at least max( 1, k ).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is REAL
*> On entry, BETA specifies the scalar beta.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX array, dimension ( LDC, N )
*> Before entry with UPLO = 'U' or 'u', the leading n by n
*> upper triangular part of the array C must contain the upper
*> triangular part of the hermitian matrix and the strictly
*> lower triangular part of C is not referenced. On exit, the
*> upper triangular part of the array C is overwritten by the
*> upper triangular part of the updated matrix.
*> Before entry with UPLO = 'L' or 'l', the leading n by n
*> lower triangular part of the array C must contain the lower
*> triangular part of the hermitian matrix and the strictly
*> upper triangular part of C is not referenced. On exit, the
*> lower triangular part of the array C is overwritten by the
*> lower triangular part of the updated matrix.
*> Note that the imaginary parts of the diagonal elements need
*> not be set, they are assumed to be zero, and on exit they
*> are set to zero.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> On entry, LDC specifies the first dimension of C as declared
*> in the calling (sub) program. LDC must be at least
*> max( 1, n ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup her2k
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 3 Blas routine.
*>
*> -- Written on 8-February-1989.
*> Jack Dongarra, Argonne National Laboratory.
*> Iain Duff, AERE Harwell.
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
*> Sven Hammarling, Numerical Algorithms Group Ltd.
*>
*> -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.
*> Ed Anderson, Cray Research Inc.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
* -- Reference BLAS level3 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX ALPHA
REAL BETA
INTEGER K,LDA,LDB,LDC,N
CHARACTER TRANS,UPLO
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
* ..
*
* =====================================================================
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX,REAL
* ..
* .. Local Scalars ..
COMPLEX TEMP1,TEMP2
INTEGER I,INFO,J,L,NROWA
LOGICAL UPPER
* ..
* .. Parameters ..
REAL ONE
PARAMETER (ONE=1.0E+0)
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
*
* Test the input parameters.
*
IF (LSAME(TRANS,'N')) THEN
NROWA = N
ELSE
NROWA = K
END IF
UPPER = LSAME(UPLO,'U')
*
INFO = 0
IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
INFO = 1
ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
+ (.NOT.LSAME(TRANS,'C'))) THEN
INFO = 2
ELSE IF (N.LT.0) THEN
INFO = 3
ELSE IF (K.LT.0) THEN
INFO = 4
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
INFO = 7
ELSE IF (LDB.LT.MAX(1,NROWA)) THEN
INFO = 9
ELSE IF (LDC.LT.MAX(1,N)) THEN
INFO = 12
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHER2K',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
+ (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
*
* And when alpha.eq.zero.
*
IF (ALPHA.EQ.ZERO) THEN
IF (UPPER) THEN
IF (BETA.EQ.REAL(ZERO)) THEN
DO 20 J = 1,N
DO 10 I = 1,J
C(I,J) = ZERO
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1,N
DO 30 I = 1,J - 1
C(I,J) = BETA*C(I,J)
30 CONTINUE
C(J,J) = BETA*REAL(C(J,J))
40 CONTINUE
END IF
ELSE
IF (BETA.EQ.REAL(ZERO)) THEN
DO 60 J = 1,N
DO 50 I = J,N
C(I,J) = ZERO
50 CONTINUE
60 CONTINUE
ELSE
DO 80 J = 1,N
C(J,J) = BETA*REAL(C(J,J))
DO 70 I = J + 1,N
C(I,J) = BETA*C(I,J)
70 CONTINUE
80 CONTINUE
END IF
END IF
RETURN
END IF
*
* Start the operations.
*
IF (LSAME(TRANS,'N')) THEN
*
* Form C := alpha*A*B**H + conjg( alpha )*B*A**H +
* C.
*
IF (UPPER) THEN
DO 130 J = 1,N
IF (BETA.EQ.REAL(ZERO)) THEN
DO 90 I = 1,J
C(I,J) = ZERO
90 CONTINUE
ELSE IF (BETA.NE.ONE) THEN
DO 100 I = 1,J - 1
C(I,J) = BETA*C(I,J)
100 CONTINUE
C(J,J) = BETA*REAL(C(J,J))
ELSE
C(J,J) = REAL(C(J,J))
END IF
DO 120 L = 1,K
IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(B(J,L))
TEMP2 = CONJG(ALPHA*A(J,L))
DO 110 I = 1,J - 1
C(I,J) = C(I,J) + A(I,L)*TEMP1 +
+ B(I,L)*TEMP2
110 CONTINUE
C(J,J) = REAL(C(J,J)) +
+ REAL(A(J,L)*TEMP1+B(J,L)*TEMP2)
END IF
120 CONTINUE
130 CONTINUE
ELSE
DO 180 J = 1,N
IF (BETA.EQ.REAL(ZERO)) THEN
DO 140 I = J,N
C(I,J) = ZERO
140 CONTINUE
ELSE IF (BETA.NE.ONE) THEN
DO 150 I = J + 1,N
C(I,J) = BETA*C(I,J)
150 CONTINUE
C(J,J) = BETA*REAL(C(J,J))
ELSE
C(J,J) = REAL(C(J,J))
END IF
DO 170 L = 1,K
IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(B(J,L))
TEMP2 = CONJG(ALPHA*A(J,L))
DO 160 I = J + 1,N
C(I,J) = C(I,J) + A(I,L)*TEMP1 +
+ B(I,L)*TEMP2
160 CONTINUE
C(J,J) = REAL(C(J,J)) +
+ REAL(A(J,L)*TEMP1+B(J,L)*TEMP2)
END IF
170 CONTINUE
180 CONTINUE
END IF
ELSE
*
* Form C := alpha*A**H*B + conjg( alpha )*B**H*A +
* C.
*
IF (UPPER) THEN
DO 210 J = 1,N
DO 200 I = 1,J
TEMP1 = ZERO
TEMP2 = ZERO
DO 190 L = 1,K
TEMP1 = TEMP1 + CONJG(A(L,I))*B(L,J)
TEMP2 = TEMP2 + CONJG(B(L,I))*A(L,J)
190 CONTINUE
IF (I.EQ.J) THEN
IF (BETA.EQ.REAL(ZERO)) THEN
C(J,J) = REAL(ALPHA*TEMP1+
+ CONJG(ALPHA)*TEMP2)
ELSE
C(J,J) = BETA*REAL(C(J,J)) +
+ REAL(ALPHA*TEMP1+
+ CONJG(ALPHA)*TEMP2)
END IF
ELSE
IF (BETA.EQ.REAL(ZERO)) THEN
C(I,J) = ALPHA*TEMP1 + CONJG(ALPHA)*TEMP2
ELSE
C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 +
+ CONJG(ALPHA)*TEMP2
END IF
END IF
200 CONTINUE
210 CONTINUE
ELSE
DO 240 J = 1,N
DO 230 I = J,N
TEMP1 = ZERO
TEMP2 = ZERO
DO 220 L = 1,K
TEMP1 = TEMP1 + CONJG(A(L,I))*B(L,J)
TEMP2 = TEMP2 + CONJG(B(L,I))*A(L,J)
220 CONTINUE
IF (I.EQ.J) THEN
IF (BETA.EQ.REAL(ZERO)) THEN
C(J,J) = REAL(ALPHA*TEMP1+
+ CONJG(ALPHA)*TEMP2)
ELSE
C(J,J) = BETA*REAL(C(J,J)) +
+ REAL(ALPHA*TEMP1+
+ CONJG(ALPHA)*TEMP2)
END IF
ELSE
IF (BETA.EQ.REAL(ZERO)) THEN
C(I,J) = ALPHA*TEMP1 + CONJG(ALPHA)*TEMP2
ELSE
C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 +
+ CONJG(ALPHA)*TEMP2
END IF
END IF
230 CONTINUE
240 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHER2K
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/cherk.f | *> \brief \b CHERK
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
*
* .. Scalar Arguments ..
* REAL ALPHA,BETA
* INTEGER K,LDA,LDC,N
* CHARACTER TRANS,UPLO
* ..
* .. Array Arguments ..
* COMPLEX A(LDA,*),C(LDC,*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHERK performs one of the hermitian rank k operations
*>
*> C := alpha*A*A**H + beta*C,
*>
*> or
*>
*> C := alpha*A**H*A + beta*C,
*>
*> where alpha and beta are real scalars, C is an n by n hermitian
*> matrix and A is an n by k matrix in the first case and a k by n
*> matrix in the second case.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array C is to be referenced as
*> follows:
*>
*> UPLO = 'U' or 'u' Only the upper triangular part of C
*> is to be referenced.
*>
*> UPLO = 'L' or 'l' Only the lower triangular part of C
*> is to be referenced.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the operation to be performed as
*> follows:
*>
*> TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C.
*>
*> TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix C. N must be
*> at least zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> On entry with TRANS = 'N' or 'n', K specifies the number
*> of columns of the matrix A, and on entry with
*> TRANS = 'C' or 'c', K specifies the number of rows of the
*> matrix A. K must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is REAL
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, ka ), where ka is
*> k when TRANS = 'N' or 'n', and is n otherwise.
*> Before entry with TRANS = 'N' or 'n', the leading n by k
*> part of the array A must contain the matrix A, otherwise
*> the leading k by n part of the array A must contain the
*> matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. When TRANS = 'N' or 'n'
*> then LDA must be at least max( 1, n ), otherwise LDA must
*> be at least max( 1, k ).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is REAL
*> On entry, BETA specifies the scalar beta.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX array, dimension ( LDC, N )
*> Before entry with UPLO = 'U' or 'u', the leading n by n
*> upper triangular part of the array C must contain the upper
*> triangular part of the hermitian matrix and the strictly
*> lower triangular part of C is not referenced. On exit, the
*> upper triangular part of the array C is overwritten by the
*> upper triangular part of the updated matrix.
*> Before entry with UPLO = 'L' or 'l', the leading n by n
*> lower triangular part of the array C must contain the lower
*> triangular part of the hermitian matrix and the strictly
*> upper triangular part of C is not referenced. On exit, the
*> lower triangular part of the array C is overwritten by the
*> lower triangular part of the updated matrix.
*> Note that the imaginary parts of the diagonal elements need
*> not be set, they are assumed to be zero, and on exit they
*> are set to zero.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> On entry, LDC specifies the first dimension of C as declared
*> in the calling (sub) program. LDC must be at least
*> max( 1, n ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup herk
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 3 Blas routine.
*>
*> -- Written on 8-February-1989.
*> Jack Dongarra, Argonne National Laboratory.
*> Iain Duff, AERE Harwell.
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
*> Sven Hammarling, Numerical Algorithms Group Ltd.
*>
*> -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.
*> Ed Anderson, Cray Research Inc.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
*
* -- Reference BLAS level3 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
REAL ALPHA,BETA
INTEGER K,LDA,LDC,N
CHARACTER TRANS,UPLO
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),C(LDC,*)
* ..
*
* =====================================================================
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX,CONJG,MAX,REAL
* ..
* .. Local Scalars ..
COMPLEX TEMP
REAL RTEMP
INTEGER I,INFO,J,L,NROWA
LOGICAL UPPER
* ..
* .. Parameters ..
REAL ONE,ZERO
PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
* ..
*
* Test the input parameters.
*
IF (LSAME(TRANS,'N')) THEN
NROWA = N
ELSE
NROWA = K
END IF
UPPER = LSAME(UPLO,'U')
*
INFO = 0
IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
INFO = 1
ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
+ (.NOT.LSAME(TRANS,'C'))) THEN
INFO = 2
ELSE IF (N.LT.0) THEN
INFO = 3
ELSE IF (K.LT.0) THEN
INFO = 4
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
INFO = 7
ELSE IF (LDC.LT.MAX(1,N)) THEN
INFO = 10
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHERK ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
+ (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
*
* And when alpha.eq.zero.
*
IF (ALPHA.EQ.ZERO) THEN
IF (UPPER) THEN
IF (BETA.EQ.ZERO) THEN
DO 20 J = 1,N
DO 10 I = 1,J
C(I,J) = ZERO
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1,N
DO 30 I = 1,J - 1
C(I,J) = BETA*C(I,J)
30 CONTINUE
C(J,J) = BETA*REAL(C(J,J))
40 CONTINUE
END IF
ELSE
IF (BETA.EQ.ZERO) THEN
DO 60 J = 1,N
DO 50 I = J,N
C(I,J) = ZERO
50 CONTINUE
60 CONTINUE
ELSE
DO 80 J = 1,N
C(J,J) = BETA*REAL(C(J,J))
DO 70 I = J + 1,N
C(I,J) = BETA*C(I,J)
70 CONTINUE
80 CONTINUE
END IF
END IF
RETURN
END IF
*
* Start the operations.
*
IF (LSAME(TRANS,'N')) THEN
*
* Form C := alpha*A*A**H + beta*C.
*
IF (UPPER) THEN
DO 130 J = 1,N
IF (BETA.EQ.ZERO) THEN
DO 90 I = 1,J
C(I,J) = ZERO
90 CONTINUE
ELSE IF (BETA.NE.ONE) THEN
DO 100 I = 1,J - 1
C(I,J) = BETA*C(I,J)
100 CONTINUE
C(J,J) = BETA*REAL(C(J,J))
ELSE
C(J,J) = REAL(C(J,J))
END IF
DO 120 L = 1,K
IF (A(J,L).NE.CMPLX(ZERO)) THEN
TEMP = ALPHA*CONJG(A(J,L))
DO 110 I = 1,J - 1
C(I,J) = C(I,J) + TEMP*A(I,L)
110 CONTINUE
C(J,J) = REAL(C(J,J)) + REAL(TEMP*A(I,L))
END IF
120 CONTINUE
130 CONTINUE
ELSE
DO 180 J = 1,N
IF (BETA.EQ.ZERO) THEN
DO 140 I = J,N
C(I,J) = ZERO
140 CONTINUE
ELSE IF (BETA.NE.ONE) THEN
C(J,J) = BETA*REAL(C(J,J))
DO 150 I = J + 1,N
C(I,J) = BETA*C(I,J)
150 CONTINUE
ELSE
C(J,J) = REAL(C(J,J))
END IF
DO 170 L = 1,K
IF (A(J,L).NE.CMPLX(ZERO)) THEN
TEMP = ALPHA*CONJG(A(J,L))
C(J,J) = REAL(C(J,J)) + REAL(TEMP*A(J,L))
DO 160 I = J + 1,N
C(I,J) = C(I,J) + TEMP*A(I,L)
160 CONTINUE
END IF
170 CONTINUE
180 CONTINUE
END IF
ELSE
*
* Form C := alpha*A**H*A + beta*C.
*
IF (UPPER) THEN
DO 220 J = 1,N
DO 200 I = 1,J - 1
TEMP = ZERO
DO 190 L = 1,K
TEMP = TEMP + CONJG(A(L,I))*A(L,J)
190 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
200 CONTINUE
RTEMP = ZERO
DO 210 L = 1,K
RTEMP = RTEMP + REAL(CONJG(A(L,J))*A(L,J))
210 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(J,J) = ALPHA*RTEMP
ELSE
C(J,J) = ALPHA*RTEMP + BETA*REAL(C(J,J))
END IF
220 CONTINUE
ELSE
DO 260 J = 1,N
RTEMP = ZERO
DO 230 L = 1,K
RTEMP = RTEMP + REAL(CONJG(A(L,J))*A(L,J))
230 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(J,J) = ALPHA*RTEMP
ELSE
C(J,J) = ALPHA*RTEMP + BETA*REAL(C(J,J))
END IF
DO 250 I = J + 1,N
TEMP = ZERO
DO 240 L = 1,K
TEMP = TEMP + CONJG(A(L,I))*A(L,J)
240 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = ALPHA*TEMP
ELSE
C(I,J) = ALPHA*TEMP + BETA*C(I,J)
END IF
250 CONTINUE
260 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHERK
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/chpmv.f | *> \brief \b CHPMV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
*
* .. Scalar Arguments ..
* COMPLEX ALPHA,BETA
* INTEGER INCX,INCY,N
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* COMPLEX AP(*),X(*),Y(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHPMV performs the matrix-vector operation
*>
*> y := alpha*A*x + beta*y,
*>
*> where alpha and beta are scalars, x and y are n element vectors and
*> A is an n by n hermitian matrix, supplied in packed form.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the matrix A is supplied in the packed
*> array AP as follows:
*>
*> UPLO = 'U' or 'u' The upper triangular part of A is
*> supplied in AP.
*>
*> UPLO = 'L' or 'l' The lower triangular part of A is
*> supplied in AP.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*> AP is COMPLEX array, dimension at least
*> ( ( n*( n + 1 ) )/2 ).
*> Before entry with UPLO = 'U' or 'u', the array AP must
*> contain the upper triangular part of the hermitian matrix
*> packed sequentially, column by column, so that AP( 1 )
*> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
*> and a( 2, 2 ) respectively, and so on.
*> Before entry with UPLO = 'L' or 'l', the array AP must
*> contain the lower triangular part of the hermitian matrix
*> packed sequentially, column by column, so that AP( 1 )
*> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
*> and a( 3, 1 ) respectively, and so on.
*> Note that the imaginary parts of the diagonal elements need
*> not be set and are assumed to be zero.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the n
*> element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is COMPLEX
*> On entry, BETA specifies the scalar beta. When BETA is
*> supplied as zero then Y need not be set on input.
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*> Y is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCY ) ).
*> Before entry, the incremented array Y must contain the n
*> element vector y. On exit, Y is overwritten by the updated
*> vector y.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup hpmv
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*> The vector and matrix arguments are not referenced when N = 0, or M = 0
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX ALPHA,BETA
INTEGER INCX,INCY,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX AP(*),X(*),Y(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER (ONE= (1.0E+0,0.0E+0))
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP1,TEMP2
INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,REAL
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 6
ELSE IF (INCY.EQ.0) THEN
INFO = 9
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHPMV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
* Set up the start points in X and Y.
*
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (N-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (N-1)*INCY
END IF
*
* Start the operations. In this version the elements of the array AP
* are accessed sequentially with one pass through AP.
*
* First form y := beta*y.
*
IF (BETA.NE.ONE) THEN
IF (INCY.EQ.1) THEN
IF (BETA.EQ.ZERO) THEN
DO 10 I = 1,N
Y(I) = ZERO
10 CONTINUE
ELSE
DO 20 I = 1,N
Y(I) = BETA*Y(I)
20 CONTINUE
END IF
ELSE
IY = KY
IF (BETA.EQ.ZERO) THEN
DO 30 I = 1,N
Y(IY) = ZERO
IY = IY + INCY
30 CONTINUE
ELSE
DO 40 I = 1,N
Y(IY) = BETA*Y(IY)
IY = IY + INCY
40 CONTINUE
END IF
END IF
END IF
IF (ALPHA.EQ.ZERO) RETURN
KK = 1
IF (LSAME(UPLO,'U')) THEN
*
* Form y when AP contains the upper triangle.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 60 J = 1,N
TEMP1 = ALPHA*X(J)
TEMP2 = ZERO
K = KK
DO 50 I = 1,J - 1
Y(I) = Y(I) + TEMP1*AP(K)
TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
K = K + 1
50 CONTINUE
Y(J) = Y(J) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
KK = KK + J
60 CONTINUE
ELSE
JX = KX
JY = KY
DO 80 J = 1,N
TEMP1 = ALPHA*X(JX)
TEMP2 = ZERO
IX = KX
IY = KY
DO 70 K = KK,KK + J - 2
Y(IY) = Y(IY) + TEMP1*AP(K)
TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
IX = IX + INCX
IY = IY + INCY
70 CONTINUE
Y(JY) = Y(JY) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
KK = KK + J
80 CONTINUE
END IF
ELSE
*
* Form y when AP contains the lower triangle.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 100 J = 1,N
TEMP1 = ALPHA*X(J)
TEMP2 = ZERO
Y(J) = Y(J) + TEMP1*REAL(AP(KK))
K = KK + 1
DO 90 I = J + 1,N
Y(I) = Y(I) + TEMP1*AP(K)
TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
K = K + 1
90 CONTINUE
Y(J) = Y(J) + ALPHA*TEMP2
KK = KK + (N-J+1)
100 CONTINUE
ELSE
JX = KX
JY = KY
DO 120 J = 1,N
TEMP1 = ALPHA*X(JX)
TEMP2 = ZERO
Y(JY) = Y(JY) + TEMP1*REAL(AP(KK))
IX = JX
IY = JY
DO 110 K = KK + 1,KK + N - J
IX = IX + INCX
IY = IY + INCY
Y(IY) = Y(IY) + TEMP1*AP(K)
TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
110 CONTINUE
Y(JY) = Y(JY) + ALPHA*TEMP2
JX = JX + INCX
JY = JY + INCY
KK = KK + (N-J+1)
120 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHPMV
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/chpr.f | *> \brief \b CHPR
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP)
*
* .. Scalar Arguments ..
* REAL ALPHA
* INTEGER INCX,N
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* COMPLEX AP(*),X(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHPR performs the hermitian rank 1 operation
*>
*> A := alpha*x*x**H + A,
*>
*> where alpha is a real scalar, x is an n element vector and A is an
*> n by n hermitian matrix, supplied in packed form.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the matrix A is supplied in the packed
*> array AP as follows:
*>
*> UPLO = 'U' or 'u' The upper triangular part of A is
*> supplied in AP.
*>
*> UPLO = 'L' or 'l' The lower triangular part of A is
*> supplied in AP.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is REAL
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the n
*> element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*> AP is COMPLEX array, dimension at least
*> ( ( n*( n + 1 ) )/2 ).
*> Before entry with UPLO = 'U' or 'u', the array AP must
*> contain the upper triangular part of the hermitian matrix
*> packed sequentially, column by column, so that AP( 1 )
*> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
*> and a( 2, 2 ) respectively, and so on. On exit, the array
*> AP is overwritten by the upper triangular part of the
*> updated matrix.
*> Before entry with UPLO = 'L' or 'l', the array AP must
*> contain the lower triangular part of the hermitian matrix
*> packed sequentially, column by column, so that AP( 1 )
*> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
*> and a( 3, 1 ) respectively, and so on. On exit, the array
*> AP is overwritten by the lower triangular part of the
*> updated matrix.
*> Note that the imaginary parts of the diagonal elements need
*> not be set, they are assumed to be zero, and on exit they
*> are set to zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup hpr
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CHPR(UPLO,N,ALPHA,X,INCX,AP)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
REAL ALPHA
INTEGER INCX,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX AP(*),X(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP
INTEGER I,INFO,IX,J,JX,K,KK,KX
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,REAL
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHPR ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (ALPHA.EQ.REAL(ZERO))) RETURN
*
* Set the start point in X if the increment is not unity.
*
IF (INCX.LE.0) THEN
KX = 1 - (N-1)*INCX
ELSE IF (INCX.NE.1) THEN
KX = 1
END IF
*
* Start the operations. In this version the elements of the array AP
* are accessed sequentially with one pass through AP.
*
KK = 1
IF (LSAME(UPLO,'U')) THEN
*
* Form A when upper triangle is stored in AP.
*
IF (INCX.EQ.1) THEN
DO 20 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(J))
K = KK
DO 10 I = 1,J - 1
AP(K) = AP(K) + X(I)*TEMP
K = K + 1
10 CONTINUE
AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(J)*TEMP)
ELSE
AP(KK+J-1) = REAL(AP(KK+J-1))
END IF
KK = KK + J
20 CONTINUE
ELSE
JX = KX
DO 40 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(JX))
IX = KX
DO 30 K = KK,KK + J - 2
AP(K) = AP(K) + X(IX)*TEMP
IX = IX + INCX
30 CONTINUE
AP(KK+J-1) = REAL(AP(KK+J-1)) + REAL(X(JX)*TEMP)
ELSE
AP(KK+J-1) = REAL(AP(KK+J-1))
END IF
JX = JX + INCX
KK = KK + J
40 CONTINUE
END IF
ELSE
*
* Form A when lower triangle is stored in AP.
*
IF (INCX.EQ.1) THEN
DO 60 J = 1,N
IF (X(J).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(J))
AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(J))
K = KK + 1
DO 50 I = J + 1,N
AP(K) = AP(K) + X(I)*TEMP
K = K + 1
50 CONTINUE
ELSE
AP(KK) = REAL(AP(KK))
END IF
KK = KK + N - J + 1
60 CONTINUE
ELSE
JX = KX
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
TEMP = ALPHA*CONJG(X(JX))
AP(KK) = REAL(AP(KK)) + REAL(TEMP*X(JX))
IX = JX
DO 70 K = KK + 1,KK + N - J
IX = IX + INCX
AP(K) = AP(K) + X(IX)*TEMP
70 CONTINUE
ELSE
AP(KK) = REAL(AP(KK))
END IF
JX = JX + INCX
KK = KK + N - J + 1
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHPR
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/chpr2.f | *> \brief \b CHPR2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
*
* .. Scalar Arguments ..
* COMPLEX ALPHA
* INTEGER INCX,INCY,N
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* COMPLEX AP(*),X(*),Y(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHPR2 performs the hermitian rank 2 operation
*>
*> A := alpha*x*y**H + conjg( alpha )*y*x**H + A,
*>
*> where alpha is a scalar, x and y are n element vectors and A is an
*> n by n hermitian matrix, supplied in packed form.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the matrix A is supplied in the packed
*> array AP as follows:
*>
*> UPLO = 'U' or 'u' The upper triangular part of A is
*> supplied in AP.
*>
*> UPLO = 'L' or 'l' The lower triangular part of A is
*> supplied in AP.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the n
*> element vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*>
*> \param[in] Y
*> \verbatim
*> Y is COMPLEX array, dimension at least
*> ( 1 + ( n - 1 )*abs( INCY ) ).
*> Before entry, the incremented array Y must contain the n
*> element vector y.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> On entry, INCY specifies the increment for the elements of
*> Y. INCY must not be zero.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*> AP is COMPLEX array, dimension at least
*> ( ( n*( n + 1 ) )/2 ).
*> Before entry with UPLO = 'U' or 'u', the array AP must
*> contain the upper triangular part of the hermitian matrix
*> packed sequentially, column by column, so that AP( 1 )
*> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
*> and a( 2, 2 ) respectively, and so on. On exit, the array
*> AP is overwritten by the upper triangular part of the
*> updated matrix.
*> Before entry with UPLO = 'L' or 'l', the array AP must
*> contain the lower triangular part of the hermitian matrix
*> packed sequentially, column by column, so that AP( 1 )
*> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
*> and a( 3, 1 ) respectively, and so on. On exit, the array
*> AP is overwritten by the lower triangular part of the
*> updated matrix.
*> Note that the imaginary parts of the diagonal elements need
*> not be set, they are assumed to be zero, and on exit they
*> are set to zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup hpr2
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
*
* -- Reference BLAS level2 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX ALPHA
INTEGER INCX,INCY,N
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX AP(*),X(*),Y(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
* .. Local Scalars ..
COMPLEX TEMP1,TEMP2
INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,REAL
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (INCY.EQ.0) THEN
INFO = 7
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHPR2 ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
*
* Set up the start points in X and Y if the increments are not both
* unity.
*
IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
IF (INCX.GT.0) THEN
KX = 1
ELSE
KX = 1 - (N-1)*INCX
END IF
IF (INCY.GT.0) THEN
KY = 1
ELSE
KY = 1 - (N-1)*INCY
END IF
JX = KX
JY = KY
END IF
*
* Start the operations. In this version the elements of the array AP
* are accessed sequentially with one pass through AP.
*
KK = 1
IF (LSAME(UPLO,'U')) THEN
*
* Form A when upper triangle is stored in AP.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 20 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(Y(J))
TEMP2 = CONJG(ALPHA*X(J))
K = KK
DO 10 I = 1,J - 1
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
K = K + 1
10 CONTINUE
AP(KK+J-1) = REAL(AP(KK+J-1)) +
+ REAL(X(J)*TEMP1+Y(J)*TEMP2)
ELSE
AP(KK+J-1) = REAL(AP(KK+J-1))
END IF
KK = KK + J
20 CONTINUE
ELSE
DO 40 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(Y(JY))
TEMP2 = CONJG(ALPHA*X(JX))
IX = KX
IY = KY
DO 30 K = KK,KK + J - 2
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
IX = IX + INCX
IY = IY + INCY
30 CONTINUE
AP(KK+J-1) = REAL(AP(KK+J-1)) +
+ REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
ELSE
AP(KK+J-1) = REAL(AP(KK+J-1))
END IF
JX = JX + INCX
JY = JY + INCY
KK = KK + J
40 CONTINUE
END IF
ELSE
*
* Form A when lower triangle is stored in AP.
*
IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
DO 60 J = 1,N
IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(Y(J))
TEMP2 = CONJG(ALPHA*X(J))
AP(KK) = REAL(AP(KK)) +
+ REAL(X(J)*TEMP1+Y(J)*TEMP2)
K = KK + 1
DO 50 I = J + 1,N
AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
K = K + 1
50 CONTINUE
ELSE
AP(KK) = REAL(AP(KK))
END IF
KK = KK + N - J + 1
60 CONTINUE
ELSE
DO 80 J = 1,N
IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(Y(JY))
TEMP2 = CONJG(ALPHA*X(JX))
AP(KK) = REAL(AP(KK)) +
+ REAL(X(JX)*TEMP1+Y(JY)*TEMP2)
IX = JX
IY = JY
DO 70 K = KK + 1,KK + N - J
IX = IX + INCX
IY = IY + INCY
AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
70 CONTINUE
ELSE
AP(KK) = REAL(AP(KK))
END IF
JX = JX + INCX
JY = JY + INCY
KK = KK + N - J + 1
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHPR2
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/crotg.f90 | !> \brief \b CROTG generates a Givens rotation with real cosine and complex sine.
!
! =========== DOCUMENTATION ===========
!
! Online html documentation available at
! http://www.netlib.org/lapack/explore-html/
!
!> \par Purpose:
! =============
!>
!> \verbatim
!>
!> CROTG constructs a plane rotation
!> [ c s ] [ a ] = [ r ]
!> [ -conjg(s) c ] [ b ] [ 0 ]
!> where c is real, s is complex, and c**2 + conjg(s)*s = 1.
!>
!> The computation uses the formulas
!> |x| = sqrt( Re(x)**2 + Im(x)**2 )
!> sgn(x) = x / |x| if x /= 0
!> = 1 if x = 0
!> c = |a| / sqrt(|a|**2 + |b|**2)
!> s = sgn(a) * conjg(b) / sqrt(|a|**2 + |b|**2)
!> r = sgn(a)*sqrt(|a|**2 + |b|**2)
!> When a and b are real and r /= 0, the formulas simplify to
!> c = a / r
!> s = b / r
!> the same as in SROTG when |a| > |b|. When |b| >= |a|, the
!> sign of c and s will be different from those computed by SROTG
!> if the signs of a and b are not the same.
!>
!> \endverbatim
!>
!> @see lartg, @see lartgp
!
! Arguments:
! ==========
!
!> \param[in,out] A
!> \verbatim
!> A is COMPLEX
!> On entry, the scalar a.
!> On exit, the scalar r.
!> \endverbatim
!>
!> \param[in] B
!> \verbatim
!> B is COMPLEX
!> The scalar b.
!> \endverbatim
!>
!> \param[out] C
!> \verbatim
!> C is REAL
!> The scalar c.
!> \endverbatim
!>
!> \param[out] S
!> \verbatim
!> S is COMPLEX
!> The scalar s.
!> \endverbatim
!
! Authors:
! ========
!
!> \author Weslley Pereira, University of Colorado Denver, USA
!
!> \date December 2021
!
!> \ingroup rotg
!
!> \par Further Details:
! =====================
!>
!> \verbatim
!>
!> Based on the algorithm from
!>
!> Anderson E. (2017)
!> Algorithm 978: Safe Scaling in the Level 1 BLAS
!> ACM Trans Math Softw 44:1--28
!> https://doi.org/10.1145/3061665
!>
!> \endverbatim
!
! =====================================================================
subroutine CROTG( a, b, c, s )
integer, parameter :: wp = kind(1.e0)
!
! -- Reference BLAS level1 routine --
! -- Reference BLAS is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!
! .. Constants ..
real(wp), parameter :: zero = 0.0_wp
real(wp), parameter :: one = 1.0_wp
complex(wp), parameter :: czero = 0.0_wp
! ..
! .. Scaling constants ..
real(wp), parameter :: safmin = real(radix(0._wp),wp)**max( &
minexponent(0._wp)-1, &
1-maxexponent(0._wp) &
)
real(wp), parameter :: safmax = real(radix(0._wp),wp)**max( &
1-minexponent(0._wp), &
maxexponent(0._wp)-1 &
)
real(wp), parameter :: rtmin = sqrt( safmin )
! ..
! .. Scalar Arguments ..
real(wp) :: c
complex(wp) :: a, b, s
! ..
! .. Local Scalars ..
real(wp) :: d, f1, f2, g1, g2, h2, u, v, w, rtmax
complex(wp) :: f, fs, g, gs, r, t
! ..
! .. Intrinsic Functions ..
intrinsic :: abs, aimag, conjg, max, min, real, sqrt
! ..
! .. Statement Functions ..
real(wp) :: ABSSQ
! ..
! .. Statement Function definitions ..
ABSSQ( t ) = real( t )**2 + aimag( t )**2
! ..
! .. Executable Statements ..
!
f = a
g = b
if( g == czero ) then
c = one
s = czero
r = f
else if( f == czero ) then
c = zero
if( real(g) == zero ) then
r = abs(aimag(g))
s = conjg( g ) / r
elseif( aimag(g) == zero ) then
r = abs(real(g))
s = conjg( g ) / r
else
g1 = max( abs(real(g)), abs(aimag(g)) )
rtmax = sqrt( safmax/2 )
if( g1 > rtmin .and. g1 < rtmax ) then
!
! Use unscaled algorithm
!
! The following two lines can be replaced by `d = abs( g )`.
! This algorithm do not use the intrinsic complex abs.
g2 = ABSSQ( g )
d = sqrt( g2 )
s = conjg( g ) / d
r = d
else
!
! Use scaled algorithm
!
u = min( safmax, max( safmin, g1 ) )
gs = g / u
! The following two lines can be replaced by `d = abs( gs )`.
! This algorithm do not use the intrinsic complex abs.
g2 = ABSSQ( gs )
d = sqrt( g2 )
s = conjg( gs ) / d
r = d*u
end if
end if
else
f1 = max( abs(real(f)), abs(aimag(f)) )
g1 = max( abs(real(g)), abs(aimag(g)) )
rtmax = sqrt( safmax/4 )
if( f1 > rtmin .and. f1 < rtmax .and. &
g1 > rtmin .and. g1 < rtmax ) then
!
! Use unscaled algorithm
!
f2 = ABSSQ( f )
g2 = ABSSQ( g )
h2 = f2 + g2
! safmin <= f2 <= h2 <= safmax
if( f2 >= h2 * safmin ) then
! safmin <= f2/h2 <= 1, and h2/f2 is finite
c = sqrt( f2 / h2 )
r = f / c
rtmax = rtmax * 2
if( f2 > rtmin .and. h2 < rtmax ) then
! safmin <= sqrt( f2*h2 ) <= safmax
s = conjg( g ) * ( f / sqrt( f2*h2 ) )
else
s = conjg( g ) * ( r / h2 )
end if
else
! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
! Moreover,
! safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
! sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
! Also,
! g2 >> f2, which means that h2 = g2.
d = sqrt( f2 * h2 )
c = f2 / d
if( c >= safmin ) then
r = f / c
else
! f2 / sqrt(f2 * h2) < safmin, then
! sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
r = f * ( h2 / d )
end if
s = conjg( g ) * ( f / d )
end if
else
!
! Use scaled algorithm
!
u = min( safmax, max( safmin, f1, g1 ) )
gs = g / u
g2 = ABSSQ( gs )
if( f1 / u < rtmin ) then
!
! f is not well-scaled when scaled by g1.
! Use a different scaling for f.
!
v = min( safmax, max( safmin, f1 ) )
w = v / u
fs = f / v
f2 = ABSSQ( fs )
h2 = f2*w**2 + g2
else
!
! Otherwise use the same scaling for f and g.
!
w = one
fs = f / u
f2 = ABSSQ( fs )
h2 = f2 + g2
end if
! safmin <= f2 <= h2 <= safmax
if( f2 >= h2 * safmin ) then
! safmin <= f2/h2 <= 1, and h2/f2 is finite
c = sqrt( f2 / h2 )
r = fs / c
rtmax = rtmax * 2
if( f2 > rtmin .and. h2 < rtmax ) then
! safmin <= sqrt( f2*h2 ) <= safmax
s = conjg( gs ) * ( fs / sqrt( f2*h2 ) )
else
s = conjg( gs ) * ( r / h2 )
end if
else
! f2/h2 <= safmin may be subnormal, and h2/f2 may overflow.
! Moreover,
! safmin <= f2*f2 * safmax < f2 * h2 < h2*h2 * safmin <= safmax,
! sqrt(safmin) <= sqrt(f2 * h2) <= sqrt(safmax).
! Also,
! g2 >> f2, which means that h2 = g2.
d = sqrt( f2 * h2 )
c = f2 / d
if( c >= safmin ) then
r = fs / c
else
! f2 / sqrt(f2 * h2) < safmin, then
! sqrt(safmin) <= f2 * sqrt(safmax) <= h2 / sqrt(f2 * h2) <= h2 * (safmin / f2) <= h2 <= safmax
r = fs * ( h2 / d )
end if
s = conjg( gs ) * ( fs / d )
end if
! Rescale c and r
c = c * w
r = r * u
end if
end if
a = r
return
end subroutine
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/cscal.f | *> \brief \b CSCAL
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CSCAL(N,CA,CX,INCX)
*
* .. Scalar Arguments ..
* COMPLEX CA
* INTEGER INCX,N
* ..
* .. Array Arguments ..
* COMPLEX CX(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CSCAL scales a vector by a constant.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> number of elements in input vector(s)
*> \endverbatim
*>
*> \param[in] CA
*> \verbatim
*> CA is COMPLEX
*> On entry, CA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in,out] CX
*> \verbatim
*> CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> storage spacing between elements of CX
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup scal
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
*> modified 3/93 to return if incx .le. 0.
*> modified 12/3/93, array(1) declarations changed to array(*)
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CSCAL(N,CA,CX,INCX)
*
* -- Reference BLAS level1 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX CA
INTEGER INCX,N
* ..
* .. Array Arguments ..
COMPLEX CX(*)
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I,NINCX
* ..
* .. Parameters ..
COMPLEX ONE
PARAMETER (ONE= (1.0E+0,0.0E+0))
* ..
IF (N.LE.0 .OR. INCX.LE.0 .OR. CA.EQ.ONE) RETURN
IF (INCX.EQ.1) THEN
*
* code for increment equal to 1
*
DO I = 1,N
CX(I) = CA*CX(I)
END DO
ELSE
*
* code for increment not equal to 1
*
NINCX = N*INCX
DO I = 1,NINCX,INCX
CX(I) = CA*CX(I)
END DO
END IF
RETURN
*
* End of CSCAL
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/csrot.f | *> \brief \b CSROT
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CSROT( N, CX, INCX, CY, INCY, C, S )
*
* .. Scalar Arguments ..
* INTEGER INCX, INCY, N
* REAL C, S
* ..
* .. Array Arguments ..
* COMPLEX CX( * ), CY( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CSROT applies a plane rotation, where the cos and sin (c and s) are real
*> and the vectors cx and cy are complex.
*> jack dongarra, linpack, 3/11/78.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the vectors cx and cy.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in,out] CX
*> \verbatim
*> CX is COMPLEX array, dimension at least
*> ( 1 + ( N - 1 )*abs( INCX ) ).
*> Before entry, the incremented array CX must contain the n
*> element vector cx. On exit, CX is overwritten by the updated
*> vector cx.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> CX. INCX must not be zero.
*> \endverbatim
*>
*> \param[in,out] CY
*> \verbatim
*> CY is COMPLEX array, dimension at least
*> ( 1 + ( N - 1 )*abs( INCY ) ).
*> Before entry, the incremented array CY must contain the n
*> element vector cy. On exit, CY is overwritten by the updated
*> vector cy.
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> On entry, INCY specifies the increment for the elements of
*> CY. INCY must not be zero.
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*> C is REAL
*> On entry, C specifies the cosine, cos.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*> S is REAL
*> On entry, S specifies the sine, sin.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup rot
*
* =====================================================================
SUBROUTINE CSROT( N, CX, INCX, CY, INCY, C, S )
*
* -- Reference BLAS level1 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INCX, INCY, N
REAL C, S
* ..
* .. Array Arguments ..
COMPLEX CX( * ), CY( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, IX, IY
COMPLEX CTEMP
* ..
* .. Executable Statements ..
*
IF( N.LE.0 )
$ RETURN
IF( INCX.EQ.1 .AND. INCY.EQ.1 ) THEN
*
* code for both increments equal to 1
*
DO I = 1, N
CTEMP = C*CX( I ) + S*CY( I )
CY( I ) = C*CY( I ) - S*CX( I )
CX( I ) = CTEMP
END DO
ELSE
*
* code for unequal increments or equal increments not equal
* to 1
*
IX = 1
IY = 1
IF( INCX.LT.0 )
$ IX = ( -N+1 )*INCX + 1
IF( INCY.LT.0 )
$ IY = ( -N+1 )*INCY + 1
DO I = 1, N
CTEMP = C*CX( IX ) + S*CY( IY )
CY( IY ) = C*CY( IY ) - S*CX( IX )
CX( IX ) = CTEMP
IX = IX + INCX
IY = IY + INCY
END DO
END IF
RETURN
*
* End of CSROT
*
END
|
0 | ALLM/M2/lapack/BLAS | ALLM/M2/lapack/BLAS/SRC/csscal.f | *> \brief \b CSSCAL
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CSSCAL(N,SA,CX,INCX)
*
* .. Scalar Arguments ..
* REAL SA
* INTEGER INCX,N
* ..
* .. Array Arguments ..
* COMPLEX CX(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CSSCAL scales a complex vector by a real constant.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> number of elements in input vector(s)
*> \endverbatim
*>
*> \param[in] SA
*> \verbatim
*> SA is REAL
*> On entry, SA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in,out] CX
*> \verbatim
*> CX is COMPLEX array, dimension ( 1 + ( N - 1 )*abs( INCX ) )
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> storage spacing between elements of CX
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup scal
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
*> modified 3/93 to return if incx .le. 0.
*> modified 12/3/93, array(1) declarations changed to array(*)
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CSSCAL(N,SA,CX,INCX)
*
* -- Reference BLAS level1 routine --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
REAL SA
INTEGER INCX,N
* ..
* .. Array Arguments ..
COMPLEX CX(*)
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I,NINCX
* ..
* .. Parameters ..
REAL ONE
PARAMETER (ONE=1.0E+0)
* ..
* .. Intrinsic Functions ..
INTRINSIC AIMAG,CMPLX,REAL
* ..
IF (N.LE.0 .OR. INCX.LE.0 .OR. SA.EQ.ONE) RETURN
IF (INCX.EQ.1) THEN
*
* code for increment equal to 1
*
DO I = 1,N
CX(I) = CMPLX(SA*REAL(CX(I)),SA*AIMAG(CX(I)))
END DO
ELSE
*
* code for increment not equal to 1
*
NINCX = N*INCX
DO I = 1,NINCX,INCX
CX(I) = CMPLX(SA*REAL(CX(I)),SA*AIMAG(CX(I)))
END DO
END IF
RETURN
*
* End of CSSCAL
*
END
|