--- task_categories: - question-answering language: - ms tags: - knowledge pretty_name: MalayMMLU size_categories: - 10K

English | Bahasa Melayu

📄 Paper • GitHub logoCode • 📜 Poster ## Introduction MalayMMLU is the first multitask language understanding (MLU) for Malay Language. The benchmark comprises 24,213 questions spanning both primary (Year 1-6) and secondary (Form 1-5) education levels in Malaysia, encompassing 5 broad topics that further divide into 22 subjects.

| **Category** | **Subjects** | |----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | **STEM** | Computer Science (Secondary), Biology (Secondary), Chemistry (Secondary), Computer Literacy (Secondary), Mathematics (Primary, Secondary), Additional Mathematics (Secondary), Design and Technology (Primary, Secondary), Core Science (Primary, Secondary), Information and Communication Technology (Primary), Automotive Technology (Secondary) | | **Language** | Malay Language (Primary, Secondary) | | **Social science** | Geography (Secondary), Local Studies (Primary), History (Primary, Secondary) | | **Others** | Life Skills (Primary, Secondary), Principles of Accounting (Secondary), Economics (Secondary), Business (Secondary), Agriculture (Secondary) | | **Humanities** | Quran and Sunnah (Secondary), Islam (Primary, Secondary), Sports Science Knowledge (Secondary) | ## Result #### Zero-shot results of LLMs on MalayMMLU (First token accuracy)
Organization Model Vision Acc.
Language Humanities STEM Social Science Others Average
Random 38.01 42.09 36.31 36.01 38.07 38.02
YTL Ilmu 0.1 87.77 89.26 86.66 85.27 86.40 86.98
OpenAI GPT-4o 87.12 88.12 83.83 82.58 83.09 84.98
GPT-4 82.90 83.91 78.80 77.29 77.33 80.11
GPT-4o mini 82.03 81.50 78.51 75.67 76.30 78.78
GPT-3.5 69.62 71.01 67.17 66.70 63.73 67.78
Meta LLaMA-3.1 (70B) 78.75 82.59 78.96 77.20 75.32 78.44
LLaMA-3.3 (70B) 78.82 80.46 78.71 75.79 73.85 77.38
LLaMA-3.1 (8B) 65.47 67.17 64.10 62.59 62.13 64.24
LLaMA-3 (8B) 63.93 66.21 62.26 62.97 61.38 63.46
LLaMA-2 (13B) 45.58 50.72 44.13 44.55 40.87 45.26
LLaMA-2 (7B) 47.47 52.74 48.71 50.72 48.19 49.61
LLaMA-3.2 (3B) 58.52 60.66 56.65 54.06 52.75 56.45
LLaMA-3.2 (1B) 38.88 43.30 40.65 40.56 39.55 40.46
Qwen (Alibaba) Qwen 2.5 (72B) 79.09 79.95 80.88 75.80 75.05 77.79
Qwen-2.5 (32B) 76.96 76.70 79.74 72.35 70.88 74.83
Qwen-2-VL (7B) 68.16 63.62 67.58 60.38 59.08 63.49
Qwen-2-VL (2B) 58.22 55.56 57.51 53.67 55.10 55.83
Qwen-1.5 (14B) 64.47 60.64 61.97 57.66 58.05 60.47
Qwen-1.5 (7B) 60.13 59.14 58.62 54.26 54.67 57.18
Qwen-1.5 (4B) 48.39 52.01 51.37 50.00 49.10 49.93
Qwen-1.5 (1.8B) 42.70 43.37 43.68 43.12 44.42 43.34
Zhipu GLM-4-Plus 78.04 75.63 77.49 74.07 72.66 75.48
GLM-4-Air 67.88 69.56 70.20 66.06 66.18 67.60
GLM-4-Flash 63.52 65.69 66.31 63.21 63.59 64.12
GLM-4 63.39 56.72 54.40 57.24 55.00 58.07
GLM-4†† (9B) 58.51 60.48 56.32 55.04 53.97 56.87
Google Gemma-2 (9B) 75.83 72.83 75.07 69.72 70.33 72.51
Gemma (7B) 45.53 50.92 46.13 47.33 46.27 47.21
Gemma (2B) 46.50 51.15 49.20 48.06 48.79 48.46
SAIL (Sea) Sailor† (14B) 78.40 72.88 69.63 69.47 68.67 72.29
Sailor† (7B) 74.54 68.62 62.79 64.69 63.61 67.58
Mesolitica MaLLaM-v2.5 Small‡ 73.00 71.00 70.00 72.00 70.00 71.53
MaLLaM-v2.5 Tiny‡ 67.00 66.00 68.00 69.00 66.00 67.32
MaLLaM-v2† (5B) 42.57 46.44 42.24 40.82 38.74 42.08
Cohere for AI Command R (32B) 71.68 71.49 66.68 67.19 63.64 68.47
OpenGVLab InternVL2 (40B) 70.36 68.49 64.88 65.93 60.54 66.51
Damo (Alibaba) SeaLLM-v2.5† (7B) 69.75 67.94 65.29 62.66 63.61 65.89
Mistral Pixtral (12B) 64.81 62.68 64.72 63.93 59.49 63.25
Mistral Small (22B) 65.19 65.03 63.36 61.58 59.99 63.05
Mistral-v0.3 (7B) 56.97 59.29 57.14 58.28 56.56 57.71
Mistral-v0.2 (7B) 56.23 59.86 57.10 56.65 55.22 56.92
Microsoft Phi-3 (14B) 60.07 58.89 60.91 58.73 55.24 58.72
Phi-3 (3.8B) 52.24 55.52 54.81 53.70 51.74 53.43
01.AI Yi-1.5 (9B) 56.20 53.36 57.47 50.53 49.75 53.08
Stability AI StableLM 2 (12B) 53.40 54.84 51.45 51.79 50.16 52.45
StableLM 2 (1.6B) 43.92 51.10 45.27 46.14 46.75 46.48
Baichuan Baichuan-2 (7B) 40.41 47.35 44.37 46.33 43.54 44.30
Yellow.ai Komodo† (7B) 43.62 45.53 39.34 39.75 39.48 41.72
Highest scores are bolded and second highest scores are underlined. † denotes LLMs fine-tuned with Southeast Asia datasets. †† denotes open-source GLM-4. ‡ result from https://mesolitica.com/mallam. ## Citation ```bibtex @InProceedings{MalayMMLU2024, author = {Poh, Soon Chang and Yang, Sze Jue and Tan, Jeraelyn Ming Li and Chieng, Lawrence Leroy Tze Yao and Tan, Jia Xuan and Yu, Zhenyu and Foong, Chee Mun and Chan, Chee Seng }, title = {MalayMMLU: A Multitask Benchmark for the Low-Resource Malay Language}, booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2024}, month = {November}, year = {2024}, } ``` ## Feedback Suggestions and opinions (both positive and negative) are greatly welcome. Please contact the author by sending email to `cs.chan at um.edu.my`.