text
stringlengths
7
1.24M
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
518
# Builds CPU-only Docker image of PyTorch # Uses multi-staged approach to reduce size # Stage 1 FROM python:3.8-slim as compile-image ARG DEBIAN_FRONTEND=noninteractive RUN apt update RUN apt-get install -y --no-install-recommends \ build-essential \ git \ gcc # Setup virtual environment for Docker ENV VIRTUAL_ENV=/opt/venv RUN python3 -m venv ${VIRTUAL_ENV} # Make sure we use the virtualenv ENV PATH="${VIRTUAL_ENV}/bin:$PATH" WORKDIR /workspace # Install specific CPU torch wheel to save on space RUN python3 -m pip install --upgrade --no-cache-dir pip RUN python3 -m pip install --no-cache-dir \ jupyter \ git+https://github.com/huggingface/accelerate#egg=accelerate[testing,test_trackers] \ --extra-index-url https://download.pytorch.org/whl/cpu # Stage 2 FROM python:3.8-slim AS build-image COPY --from=compile-image /opt/venv /opt/venv RUN useradd -ms /bin/bash user USER user # Make sure we use the virtualenv ENV PATH="/opt/venv/bin:$PATH" CMD ["/bin/bash"]
accelerate/docker/accelerate-cpu/Dockerfile/0
{ "file_path": "accelerate/docker/accelerate-cpu/Dockerfile", "repo_id": "accelerate", "token_count": 380 }
0
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Moving between FSDP And DeepSpeed 🤗 Accelerate offers flexibilty of training frameworks, by integrating two extremely powerful tools for distributed training, namely [Pytorch FSDP](../usage_guides/fsdp) and [Microsoft DeepSpeed](../usage_guides/deepspeed). The aim of this tutorial is to draw parallels, as well as to outline potential differences, to empower the user to switch seamlessly between these two frameworks. <Tip> To switch between the frameworks, we recommend launching code 🤗 `accelerate launch` passing in the correct config file with `--config_file`, or passing in the respective arguments directly for [FSDP and DeepSpeed](../package_reference/cli#accelerate-launch) . Example 🤗 Accelerate configurations can be found here for [DeepSpeed](../usage_guides/deepspeed#accelerate-deepspeed-plugin) and [FSDP](../usage_guides/fsdp#how-it-works-out-of-the-box), or in the [example zoo under "Launch Configurations"](../usage_guides/explore) </Tip> <Tip warning={true}> This tutorial is for single-node, multi-GPU, scenarios only. </Tip> ## Configuring Functionalities Model tensors are split into different GPUs in an attempt to scale up model sizes; this is termed *sharding* in FSDP, and *partitioning* in DeepSpeed. FSDP sharding and DeepSpeed ZeRO (partitioning) stages are configured by `--fsdp_sharding_strategy`, and `--zero_stage`, respectively. In particular, FSDP `FULL_SHARD` maps to DeepSpeed ZeRO stage `3`; see this [comprehensive mapping between FSDP sharding and DeepSpeed ZeRO settings](../usage_guides/fsdp#mapping-between-fsdp-sharding-strategies-and-deepspeed-zero-stages). The below table summarizes and groups similar settings: Group | Framework | Configuration | Example | Restrictions (if any) --|--|--|--|-- sharding / partitioning | FSDP<br>DeepSpeed | `--fsdp_sharding_strategy`<br>`--zero_stage` | `1` (`FULL_SHARD`) <br>`3` | offload | FSDP<br>DeepSpeed | `--fsdp_offload_params`<br>`--offload_param_device`<br>`--offload_optimizer_device` | `true`<br>`cpu`<br>`cpu` | all or nothing <br><br> model loading | FSDP<br>DeepSpeed | <span style="white-space:nowrap;">`--fsdp_cpu_ram_efficient_loading`</span><br>`--zero3_init_flag` | `true`<br>`true` | <br>only ZeRO 3 efficient checkpointing | FSDP<br>DeepSpeed | `--fsdp_state_dict_type`<br>`--zero3_save_16bit_model` | `SHARDED_STATE_DICT`<br>`true` | <br>only ZeRO 3 weights prefetching | FSDP<br><br>DeepSpeed | `--fsdp_forward_prefetch`<br>`--fsdp_backward_prefetch`<br>None | `true`<br>`BACKWARD_PRE` | <br><br> model | FSDP<br><br>DeepSpeed | `--fsdp_auto_wrap_policy`<br><span style="white-space:nowrap;">`--fsdp_transformer_layer_cls_to_wrap`</span><br>None | `TRANSFORMER_BASED_WRAP`<br><Layer Class> |<br>Usually not needed <br>Transparent to user. parameters summoning | FSDP<br>DeepSpeed | `--fsdp_use_orig_params`<br>None | `true` | required for `torch.compile`<br>Transparent to user parameters syncing | FSDP<br>DeepSpeed | `--fsdp_sync_module_states`<br>None | `true` | training | FSDP<br>DeepSpeed | None<br>`--gradient_accumulation_steps`<br>`--gradient_clipping` | <br>`auto`<br>`auto` | Transparent to user For detailed descriptions of the above, refer to [🤗 `Accelerate` launch documentation](../package_reference/cli#accelerate-launch). <Tip> To access other DeepSpeed configurations, such as mixed precision settings, you need to pass in a `--deepspeed_config_file`, see the [documentation](../usage_guides/deepspeed#deepspeed-config-file). DeepSpeed can be also configured via [`DeepSpeedPlugin`], e.g., `DeepSpeedPlugin.zero_stage` is equivalent of `--zero_stage`, and `DeepSpeedPlugin.hf_ds_config` can be used to pass `--deepeed_config_file.` </Tip> <Tip> FSDP can be also configured via [`FullyShardedDataParallelPlugin`], e.g., `FullyShardedDataParallelPlugin.sharding_strategy` is equivalent of `--fsdp_sharding_strategy`. </Tip> ### Checkpointing Do note that while FSDP can be configured via `--fsdp_state_dict_type` to save either full / sharded checkpoints. <Tip> For DeepSpeed Zero3, one could pass a `--zero3_save_16bit_model true`, which conveniently consolidates the model to a single rank and saves; this is the FSDP equivalent of `fsdp_state_dict_type: FULL_STATE_DICT`. </Tip> <Tip warning={true}> For large models, consolidating the model to a single rank can be very slow. </Tip> <Tip> For quicker checkpointing, for FSDP use `fsdp_state_dict_type: SHARDED_STATE_DICT`, and for DeepSpeed Zero3 [use the `zero_to_fp32.py` script to post-convert sharded checkpoints](https://www.deepspeed.ai/tutorials/zero/#extracting-weights). </Tip> ### Offloading FSDP only allows *all-or-nothing* offload (i.e., either offload parameters, gradients, and optimizer, or keep them all in GPU), but DeepSpeed can offload parameters and optimizer differently. Furthermore, DeepSpeed also supports [offloading to NVME](https://www.deepspeed.ai/docs/config-json/#parameter-offloading). ### Prefetching FSDP allows two prefetching configurations `--fsdp_forward_prefetch` and `--fsdp_backward_prefetch` to improve overlap of comms / computation at a cost of extra memory, see [FSDP documentation](https://pytorch.org/docs/stable/fsdp.html). For DeepSpeed, the prefetching will be turned on when needed, and it turns on depending on certain hyper-params like `stage3_param_persistence_threshold`, `stage3_max_reuse_distance`, etc, [that can be configured for Zero3](https://www.deepspeed.ai/docs/config-json/#parameter-offloading); 🤗 `accelerate` may set these hyper-params automatically if you don't set those explicitly in the deepspeed config file. <Tip> For FSDP set `fsdp_backward_prefetch: BACKWARD_PRE` for improved throughputs if memory allows. </Tip> ### Model Loading While FSDP require an explicit `--fsdp_cpu_ram_efficient_loading true` to activate efficient model loading, 🤗 `transformers` will activate the similar feature whenever DeepSpeed Zero3 is used. <Tip> For FSDP, whenever setting `--fsdp_cpu_ram_efficient_loading true`, 🤗 `accelerate` will automatically set `sync_module_states` to true. For RAM efficient loading the weights will be loaded only in a singe rank, and thus requires `sync_module_states` to broadcast weights to other ranks. </Tip> ### Model FSDP requires an explicit `--fsdp_auto_wrap_policy` for the algorithm to decide how to schedule the all-gather and reduce-scatter operations. But for DeepSpeed this is transparent to the user. <Tip> For FSDP, simply set `fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP`. With the latest [`transformers`] versions, we try our best to figure out the suitable `fsdp_transformer_layer_cls_to_wrap` for HF transformers models. However, if you get an error regarding it, please specify this. </Tip> ### Parameters Summoning FSDP requires an explicit `--fsdp_use_orig_params` flag if using `torch.compile`, see [the pytorch documenation](https://pytorch.org/docs/stable/fsdp.html#module-torch.distributed.fsdp). For DeepSpeed this is transparent to the user. <Tip> For FSDP, when using `torch.compile` please set `fsdp_use_orig_params: True`. </Tip> ## Training Deepspeed requires explicit `--gradient_accumulation_steps` and `--gradient_clipping` flags. For FSDP this is transparent to the user. <Tip> When using DeepSpeed, set `gradient_accumulation_steps: "auto"` and `gradient_clipping: "auto"` to automatically pick up values set in the [`Accelerator`] or [`TrainingArguments`] (if using `transformers`). </Tip> ## On Differences in Data Precision Handling To discuss the how data precision is handled in both FSDP and Deepspeed, it is instructive to first give an overview of how model parameters are handled in these frameworks. Before the model / optimizer parameters are distributed across GPUs, parameter preparation is involved to first "flatten" them to one-dimensional [`torch.Tensor`](https://pytorch.org/docs/stable/tensors.html#torch-tensor). The implementation of FSDP / DeepSpeed varies in the respect of the `dtype` in which these "flattened" parameters are stored, and there are ramifications with regards to how [`torch.Optimizer`](https://pytorch.org/docs/stable/optim.html#module-torch.optim) allocate their `dtype`s. The table below outlines the processes for both frameworks; the "Local" column indicates the process occurring at a per-gpu level, therefore any memory overheads by upcasting should be understood to be amortized by the number of gpus used. <Tip> As a rule of thumb, for stable training with automatic mixed precision, all the trainable parameters have to be in `torch.float32`. </Tip> Process | Local | Framework | Details --|--|--|-- Loading, i.e., [`AutoModel.from_pretrained(..., torch_dtype=torch_dtype)`] | Preparation, i.e., creation of "flat params" | ✅ | FSDP<br>DeepSpeed | created in `torch_dtype`.<br> disregards `torch_dtype`, created in `float32`. Optimizer initialization | ✅ | FSDP<br>DeepSpeed | creates parameters in `torch_dtype`<br> creates parameters in `float32` Training Step, i.e, forward, backward, reduction | | FSDP<br>DeepSpeed | follows [`MixedPrecision`](https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.MixedPrecision)<br> follows `deepspeed_config_file` mixed precision settings. Optimizer (Pre-Step) | ✅ | FSDP<br>DeepSpeed | upcasting (if any) to `torch_dtype`<br>upcasted to `float32` Optimizer (Actual Step) | ✅ | FSDP<br>DeepSpeed | occurs in `torch_dtype` <br> occurs in `float32`. <Tip warning={true}> Therefore when using DeepSpeed a small number of GPUs, be aware of potentially significant memory overheads due to the upcasting during preperation. </Tip> <Tip> With FSDP, in the absence of mixed precision, it is possible to operate the [`torch.Optimizer`](https://pytorch.org/docs/stable/optim.html#module-torch.optim) in low precision `torch_dtype`, which may be helpful when using small number of GPUs. </Tip> <Tip warning={true}> With mixed precision, FSDP and DeepSpeed will upcast in the model preparation step (c.f. table above). But do note that FSDP will then save checkpoints in the upcasted precision; Deepspeed may still save low precision checkpoints if `--zero3_save_16bit_model` is specified. </Tip> To clarify the above table consider the concrete examples below; the optimizer pre- and actual step combined for brevity. With FSDP it is possible to operate in the two modes shown below, but DeepSpeed can only operate in one. Framework | Model Loading (`torch_dtype`) | Mixed Precision | Preparation (Local) | Training | Optimizer (Local) --|--|--|--|--|-- FSDP | bf16 | default (none) | bf16 | bf16 | bf16 FSDP | bf16 | bf16 | fp32 | bf16 | fp32 DeepSpeed | bf16 | bf16 | fp32 | bf16 | fp32
accelerate/docs/source/concept_guides/fsdp_and_deepspeed.md/0
{ "file_path": "accelerate/docs/source/concept_guides/fsdp_and_deepspeed.md", "repo_id": "accelerate", "token_count": 3547 }
1
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Intel® Extension for PyTorch [IPEX](https://github.com/intel/intel-extension-for-pytorch) is optimized for CPUs with AVX-512 or above, and functionally works for CPUs with only AVX2. So, it is expected to bring performance benefit for Intel CPU generations with AVX-512 or above while CPUs with only AVX2 (e.g., AMD CPUs or older Intel CPUs) might result in a better performance under IPEX, but not guaranteed. IPEX provides performance optimizations for CPU training with both Float32 and BFloat16. The usage of BFloat16 is the main focus of the following sections. Low precision data type BFloat16 has been natively supported on the 3rd Generation Xeon® Scalable Processors (aka Cooper Lake) with AVX512 instruction set and will be supported on the next generation of Intel® Xeon® Scalable Processors with Intel® Advanced Matrix Extensions (Intel® AMX) instruction set with further boosted performance. The Auto Mixed Precision for CPU backend has been enabled since PyTorch-1.10. At the same time, the support of Auto Mixed Precision with BFloat16 for CPU and BFloat16 optimization of operators has been massively enabled in Intel® Extension for PyTorch, and partially upstreamed to PyTorch master branch. Users can get better performance and user experience with IPEX Auto Mixed Precision. ## IPEX installation: IPEX release is following PyTorch, to install via pip: | PyTorch Version | IPEX version | | :---------------: | :----------: | | 2.0 | 2.0.0 | | 1.13 | 1.13.0 | | 1.12 | 1.12.300 | | 1.11 | 1.11.200 | | 1.10 | 1.10.100 | ``` pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu ``` Check more approaches for [IPEX installation](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/installation.html). ## How It Works For Training optimization in CPU 🤗 Accelerate has integrated [IPEX](https://github.com/intel/intel-extension-for-pytorch), all you need to do is enabling it through the config. **Scenario 1**: Acceleration of No distributed CPU training Run <u>accelerate config</u> on your machine: ```bash $ accelerate config ----------------------------------------------------------------------------------------------------------------------------------------------------------- In which compute environment are you running? This machine ----------------------------------------------------------------------------------------------------------------------------------------------------------- Which type of machine are you using? No distributed training Do you want to run your training on CPU only (even if a GPU / Apple Silicon device is available)? [yes/NO]:yes Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:yes Do you wish to optimize your script with torch dynamo?[yes/NO]:NO Do you want to use DeepSpeed? [yes/NO]: NO ----------------------------------------------------------------------------------------------------------------------------------------------------------- Do you wish to use FP16 or BF16 (mixed precision)? bf16 ``` This will generate a config file that will be used automatically to properly set the default options when doing ```bash accelerate launch my_script.py --args_to_my_script ``` For instance, here is how you would run the NLP example `examples/nlp_example.py` (from the root of the repo) with IPEX enabled. default_config.yaml that is generated after `accelerate config` ```bash compute_environment: LOCAL_MACHINE distributed_type: 'NO' downcast_bf16: 'no' ipex_config: ipex: true machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 1 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: true ``` ```bash accelerate launch examples/nlp_example.py ``` **Scenario 2**: Acceleration of distributed CPU training we use Intel oneCCL for communication, combined with Intel® MPI library to deliver flexible, efficient, scalable cluster messaging on Intel® architecture. you could refer the [here](https://huggingface.co/docs/transformers/perf_train_cpu_many) for the installation guide Run <u>accelerate config</u> on your machine(node0): ```bash $ accelerate config ----------------------------------------------------------------------------------------------------------------------------------------------------------- In which compute environment are you running? This machine ----------------------------------------------------------------------------------------------------------------------------------------------------------- Which type of machine are you using? multi-CPU How many different machines will you use (use more than 1 for multi-node training)? [1]: 4 ----------------------------------------------------------------------------------------------------------------------------------------------------------- What is the rank of this machine? 0 What is the IP address of the machine that will host the main process? 36.112.23.24 What is the port you will use to communicate with the main process? 29500 Are all the machines on the same local network? Answer `no` if nodes are on the cloud and/or on different network hosts [YES/no]: yes Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:yes Do you want accelerate to launch mpirun? [yes/NO]: yes Please enter the path to the hostfile to use with mpirun [~/hostfile]: ~/hostfile Enter the number of oneCCL worker threads [1]: 1 Do you wish to optimize your script with torch dynamo?[yes/NO]:NO How many processes should be used for distributed training? [1]:16 ----------------------------------------------------------------------------------------------------------------------------------------------------------- Do you wish to use FP16 or BF16 (mixed precision)? bf16 ``` For instance, here is how you would run the NLP example `examples/nlp_example.py` (from the root of the repo) with IPEX enabled for distributed CPU training. default_config.yaml that is generated after `accelerate config` ```bash compute_environment: LOCAL_MACHINE distributed_type: MULTI_CPU downcast_bf16: 'no' ipex_config: ipex: true machine_rank: 0 main_process_ip: 36.112.23.24 main_process_port: 29500 main_training_function: main mixed_precision: bf16 mpirun_config: mpirun_ccl: '1' mpirun_hostfile: /home/user/hostfile num_machines: 4 num_processes: 16 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: true ``` Set following env and using intel MPI to launch the training In node0, you need to create a configuration file which contains the IP addresses of each node (for example hostfile) and pass that configuration file path as an argument. If you selected to have Accelerate launch `mpirun`, ensure that the location of your hostfile matches the path in the config. ```bash $ cat hostfile xxx.xxx.xxx.xxx #node0 ip xxx.xxx.xxx.xxx #node1 ip xxx.xxx.xxx.xxx #node2 ip xxx.xxx.xxx.xxx #node3 ip ``` When Accelerate is launching `mpirun`, source the oneCCL bindings setvars.sh to get your Intel MPI environment, and then run your script using `accelerate launch`. Note that the python script and environment needs to exist on all of the machines being used for multi-CPU training. ```bash oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)") source $oneccl_bindings_for_pytorch_path/env/setvars.sh accelerate launch examples/nlp_example.py ``` Otherwise, if you selected not to have Accelerate launch `mpirun`, run the following command in node0 and **16DDP** will be enabled in node0,node1,node2,node3 with BF16 mixed precision. When using this method, the python script, python environment, and accelerate config file need to be present on all of the machines used for multi-CPU training. ```bash oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)") source $oneccl_bindings_for_pytorch_path/env/setvars.sh export CCL_WORKER_COUNT=1 export MASTER_ADDR=xxx.xxx.xxx.xxx #node0 ip export CCL_ATL_TRANSPORT=ofi mpirun -f hostfile -n 16 -ppn 4 accelerate launch examples/nlp_example.py ``` ## Related Resources - [Project's github](https://github.com/intel/intel-extension-for-pytorch) - [API docs](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/api_doc.html) - [Tuning guide](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html) - [Blogs & Publications](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/blogs_publications.html)
accelerate/docs/source/usage_guides/ipex.md/0
{ "file_path": "accelerate/docs/source/usage_guides/ipex.md", "repo_id": "accelerate", "token_count": 2636 }
2
#!/usr/bin/env python # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset without using HuggingFace Trainer. Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=text-generation """ # You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments. import argparse import json import logging import math import os import random from itertools import chain from pathlib import Path import datasets import torch import transformers from datasets import load_dataset from huggingface_hub import HfApi from torch.utils.data import DataLoader from tqdm.auto import tqdm from transformers import ( CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, AutoModelForCausalLM, AutoTokenizer, SchedulerType, default_data_collator, get_scheduler, ) from transformers.utils.versions import require_version from accelerate import Accelerator, DistributedType from accelerate.logging import get_logger from accelerate.utils import DummyOptim, DummyScheduler, set_seed logger = get_logger(__name__) require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt") MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a causal language modeling task") parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--validation_split_percentage", default=5, help="The percentage of the train set used as validation set in case there's no validation split", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=False, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--model_type", type=str, default=None, help="Model type to use if training from scratch.", choices=MODEL_TYPES, ) parser.add_argument( "--block_size", type=int, default=None, help=( "Optional input sequence length after tokenization. The training dataset will be truncated in block of" " this size for training. Default to the model max input length for single sentence inputs (take into" " account special tokens)." ), ) parser.add_argument( "--preprocessing_num_workers", type=int, default=None, help="The number of processes to use for the preprocessing.", ) parser.add_argument( "--overwrite_cache", type=bool, default=False, help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--no_keep_linebreaks", action="store_true", help="Do not keep line breaks when using TXT files." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) # New Code # # Whether to load the best model at the end of training parser.add_argument( "--load_best_model", action="store_true", help="Whether to load the best model at the end of training", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--report_to", type=str, default="all", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' ' `"wandb"`, `"comet_ml"`, and `"dvclive"`. Use `"all"` (default) to report to all integrations.' "Only applicable when `--with_tracking` is passed." ), ) args = parser.parse_args() # Sanity checks if args.dataset_name is None and args.train_file is None and args.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if args.train_file is not None: extension = args.train_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file." if args.validation_file is not None: extension = args.validation_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file." if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args # New Code # def evaluate(args, model, eval_dataloader, accelerator, eval_dataset): model.eval() losses = [] for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) loss = outputs.loss losses.append(accelerator.gather_for_metrics(loss.repeat(args.per_device_eval_batch_size))) losses = torch.cat(losses) try: eval_loss = torch.mean(losses) perplexity = math.exp(eval_loss) except OverflowError: perplexity = float("inf") return perplexity, eval_loss def main(): args = parse_args() # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers # in the environment # when using DeepSpeed, the `gradient_accumulation_steps` is properly set from the DeepSpeed plugin/config # or from `accelerate launch` via `--gradient_accumulation_steps` else # defaulting to the passed `args.gradient_accumulation_steps` accelerator = ( Accelerator( log_with=args.report_to, project_dir=args.output_dir, gradient_accumulation_steps=args.gradient_accumulation_steps, ) if args.with_tracking else Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps) ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: api = HfApi(token=args.hub_token) # Create repo (repo_name from args or inferred) repo_name = args.hub_model_id if repo_name is None: repo_name = Path(args.output_dir).absolute().name repo_id = api.create_repo(repo_name, exist_ok=True).repo_id with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( args.dataset_name, args.dataset_config_name, split=f"train[:{args.validation_split_percentage}%]", ) raw_datasets["train"] = load_dataset( args.dataset_name, args.dataset_config_name, split=f"train[{args.validation_split_percentage}%:]", ) else: data_files = {} dataset_args = {} if args.train_file is not None: data_files["train"] = args.train_file if args.validation_file is not None: data_files["validation"] = args.validation_file extension = args.train_file.split(".")[-1] if extension == "txt": extension = "text" dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks raw_datasets = load_dataset(extension, data_files=data_files, **dataset_args) # If no validation data is there, validation_split_percentage will be used to divide the dataset. if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{args.validation_split_percentage}%]", **dataset_args, ) raw_datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{args.validation_split_percentage}%:]", **dataset_args, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if args.config_name: config = AutoConfig.from_pretrained(args.config_name) elif args.model_name_or_path: config = AutoConfig.from_pretrained(args.model_name_or_path) else: config = CONFIG_MAPPING[args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer) elif args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if args.model_name_or_path: model = AutoModelForCausalLM.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, ) else: logger.info("Training new model from scratch") model = AutoModelForCausalLM.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Preprocessing the datasets. # First we tokenize all the texts. column_names = raw_datasets["train"].column_names text_column_name = "text" if "text" in column_names else column_names[0] def tokenize_function(examples): return tokenizer(examples[text_column_name]) with accelerator.main_process_first(): tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on dataset", ) if args.block_size is None: block_size = tokenizer.model_max_length if block_size > 1024: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " "Picking 1024 instead. You can change that default value by passing --block_size xxx." ) block_size = 1024 else: if args.block_size > tokenizer.model_max_length: logger.warning( f"The block_size passed ({args.block_size}) is larger than the maximum length for the model" f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(args.block_size, tokenizer.model_max_length) # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower # to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map with accelerator.main_process_first(): lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=args.preprocessing_num_workers, load_from_cache_file=not args.overwrite_cache, desc=f"Grouping texts in chunks of {block_size}", ) train_dataset = lm_datasets["train"] eval_dataset = lm_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader( eval_dataset, collate_fn=default_data_collator, batch_size=args.per_device_eval_batch_size ) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] # New Code # # Creates Dummy Optimizer if `optimizer` was specified in the config file else creates Adam Optimizer optimizer_cls = ( torch.optim.AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) optimizer = optimizer_cls(optimizer_grouped_parameters, lr=args.learning_rate) # On TPU, the tie weights in our model have been disconnected, so we need to restore the ties. if accelerator.distributed_type == DistributedType.XLA: model.tie_weights() # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / accelerator.gradient_accumulation_steps) overrode_max_train_steps = False if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True else: args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # New Code # # Creates Dummy Scheduler if `scheduler` was specified in the config file else creates `args.lr_scheduler_type` Scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) else: lr_scheduler = DummyScheduler( optimizer, total_num_steps=args.max_train_steps, warmup_num_steps=args.num_warmup_steps ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / accelerator.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Figure out how many steps we should save the Accelerator states checkpointing_steps = args.checkpointing_steps if checkpointing_steps is not None and checkpointing_steps.isdigit(): checkpointing_steps = int(checkpointing_steps) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if args.with_tracking: experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers("clm_no_trainer", experiment_config) # Train! total_batch_size = ( args.per_device_train_batch_size * accelerator.num_processes * accelerator.gradient_accumulation_steps ) logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {accelerator.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 best_metric = None best_metric_checkpoint = None # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint) accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") path = os.path.basename(args.resume_from_checkpoint) training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None completed_steps = starting_epoch * num_update_steps_per_epoch else: resume_step = int(training_difference.replace("step_", "")) starting_epoch = resume_step // num_update_steps_per_epoch resume_step -= starting_epoch * num_update_steps_per_epoch completed_steps = resume_step # update progress bar if resumed from checkpoint progress_bar.update(completed_steps) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 # skip new `skip_first_batches` to skip the batches when resuming from ckpt if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) else: # After the first iteration though, we need to go back to the original dataloader active_dataloader = train_dataloader for step, batch in enumerate(active_dataloader): # In particular, DeepSpeed handles `gradient_accumulation` via `DeepSpeedEngine`. # Below, we use `accelerator.accumulate` if the user # wants to switch to other approaches such as plain DDP, PyTorch FSDP ... # This avoids having to change any code as things are all handled across different distributed setups. with accelerator.accumulate(model): outputs = model(**batch) loss = outputs.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() if accelerator.sync_gradients: progress_bar.update(1) completed_steps += 1 # We keep track of the loss at each epoch if args.with_tracking: step_loss = accelerator.reduce(loss.detach().clone()).item() total_loss += step_loss if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0: output_dir = f"step_{completed_steps}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break perplexity, eval_loss = evaluate(args, model, eval_dataloader, accelerator, eval_dataset) logger.info(f"epoch {epoch}: perplexity: {perplexity} eval_loss: {eval_loss}") if args.with_tracking: accelerator.log( { "perplexity": perplexity, "eval_loss": eval_loss, "train_loss": total_loss / len(train_dataloader), "epoch": epoch, "step": completed_steps, }, step=completed_steps, ) if isinstance(checkpointing_steps, str) and checkpointing_steps == "epoch": accelerator.save_state(os.path.join(args.output_dir, f"epoch_{epoch}")) # New Code # # Tracks the best checkpoint and best metric if best_metric is None or best_metric > perplexity: best_metric = perplexity best_metric_checkpoint = os.path.join(args.output_dir, "best_checkpoint") accelerator.save_state(best_metric_checkpoint) accelerator.print(f"New best metric: {best_metric} at epoch {epoch}") accelerator.print(f"best_metric_checkpoint: {best_metric_checkpoint}") # New Code # # Loads the best checkpoint after the training is finished if args.load_best_model: accelerator.load_state(best_metric_checkpoint) # New Code # # Evaluates using the best checkpoint perplexity, eval_loss = evaluate(args, model, eval_dataloader, accelerator, eval_dataset) logger.info(f"Best model metrics: perplexity: {perplexity} eval_loss: {eval_loss}") if perplexity != best_metric: raise AssertionError( f"Best metric {best_metric} does not match the metric {perplexity} of the loaded best model." ) if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) # New Code # # Saves the whole/unpartitioned fp16 model when in ZeRO Stage-3 to the output directory if # `stage3_gather_16bit_weights_on_model_save` is True in DeepSpeed Config file or # `zero3_save_16bit_model` is True in DeepSpeed Plugin. # For Zero Stages 1 and 2, models are saved as usual in the output directory. # The model name saved is `pytorch_model.bin` unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save, state_dict=accelerator.get_state_dict(model), ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: api.upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ) with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: json.dump({"perplexity": perplexity, "eval_loss": eval_loss.item()}, f) if __name__ == "__main__": main()
accelerate/examples/by_feature/deepspeed_with_config_support.py/0
{ "file_path": "accelerate/examples/by_feature/deepspeed_with_config_support.py", "repo_id": "accelerate", "token_count": 12468 }
3
{ "fp16": { "enabled": true, "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto", "total_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "overlap_comm": true, "contiguous_gradients": true, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "sub_group_size": 1e9, "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": "auto" }, "gradient_accumulation_steps": 1, "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false }
accelerate/examples/deepspeed_config_templates/zero_stage3_config.json/0
{ "file_path": "accelerate/examples/deepspeed_config_templates/zero_stage3_config.json", "repo_id": "accelerate", "token_count": 657 }
4
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from manim import * class Stage1(Scene): def construct(self): mem = Rectangle(height=0.5,width=0.5) fill = Rectangle(height=0.46,width=0.46).set_stroke(width=0) cpu_left_col_base = [mem.copy() for i in range(6)] cpu_right_col_base = [mem.copy() for i in range(6)] cpu_left_col = VGroup(*cpu_left_col_base).arrange(UP, buff=0) cpu_right_col = VGroup(*cpu_right_col_base).arrange(UP, buff=0) cpu_rects = VGroup(cpu_left_col,cpu_right_col).arrange(RIGHT, buff=0) cpu_text = Text("CPU", font_size=24) cpu = Group(cpu_rects,cpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) cpu.move_to([-2.5,-.5,0]) self.add(cpu) gpu_base = [mem.copy() for i in range(1)] gpu_rect = VGroup(*gpu_base).arrange(UP,buff=0) gpu_text = Text("GPU", font_size=24) gpu = Group(gpu_rect,gpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) gpu.align_to(cpu, DOWN) gpu.set_x(gpu.get_x() - 1) self.add(gpu) model_base = [mem.copy() for i in range(6)] model_rect = VGroup(*model_base).arrange(RIGHT,buff=0) model_text = Text("Model", font_size=24) model = Group(model_rect,model_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN) model.move_to([3, -1., 0]) self.play( Create(cpu_left_col, run_time=1), Create(cpu_right_col, run_time=1), Create(gpu_rect, run_time=1), ) step_1 = MarkupText( f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.", font_size=24 ) key = Square(side_length=2.2) key.move_to([-5, 2, 0]) key_text = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model", font_size=18, ) key_text.move_to([-5, 2.4, 0]) step_1.move_to([2, 2, 0]) self.play( Write(step_1, run_time=2.5), Write(key_text), Write(key) ) self.add(model) cpu_targs = [] first_animations = [] second_animations = [] for i,rect in enumerate(model_base): cpu_target = Rectangle(height=0.46,width=0.46).set_stroke(width=0.).set_fill(YELLOW, opacity=0.7) cpu_target.move_to(rect) cpu_target.generate_target() cpu_target.target.height = 0.46/4 cpu_target.target.width = 0.46/3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN+LEFT), buff=0.02, direction=UP) cpu_target.target.set_x(cpu_target.target.get_x()+0.1) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target, direction=UP, buff=0.) else: cpu_target.target.next_to(cpu_targs[i-1].target, direction=RIGHT, buff=0.) cpu_targs.append(cpu_target) first_animations.append(rect.animate(run_time=0.5).set_stroke(YELLOW)) second_animations.append(MoveToTarget(cpu_target, run_time=1.5)) self.play(*first_animations) self.play(*second_animations) self.wait()
accelerate/manim_animations/big_model_inference/stage_1.py/0
{ "file_path": "accelerate/manim_animations/big_model_inference/stage_1.py", "repo_id": "accelerate", "token_count": 1904 }
5
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import contextlib import functools import json import math import os import re import shutil import sys import warnings from collections import OrderedDict from contextlib import contextmanager from functools import partial from types import MethodType from typing import Any, Callable, Union import torch import torch.utils.hooks as hooks from huggingface_hub import split_torch_state_dict_into_shards from .checkpointing import load_accelerator_state, load_custom_state, save_accelerator_state, save_custom_state from .data_loader import DataLoaderDispatcher, prepare_data_loader, skip_first_batches from .hooks import AlignDevicesHook from .logging import get_logger from .optimizer import AcceleratedOptimizer from .scheduler import AcceleratedScheduler from .state import AcceleratorState, GradientState, PartialState from .tracking import LOGGER_TYPE_TO_CLASS, GeneralTracker, filter_trackers from .utils import ( MODEL_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SAFE_WEIGHTS_PATTERN_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, WEIGHTS_PATTERN_NAME, AutocastKwargs, DataLoaderConfiguration, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FP8RecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, TorchDynamoPlugin, check_os_kernel, clean_state_dict_for_safetensors, compare_versions, convert_model, convert_outputs_to_fp32, extract_model_from_parallel, gather, gather_object, get_mixed_precision_context_manager, get_pretty_name, has_transformer_engine_layers, is_bf16_available, is_deepspeed_available, is_fp8_available, is_ipex_available, is_lomo_available, is_megatron_lm_available, is_mlu_available, is_msamp_available, is_npu_available, is_torch_version, is_torch_xla_available, is_xpu_available, load_fsdp_model, load_fsdp_optimizer, pad_across_processes, parse_choice_from_env, recursively_apply, reduce, release_memory, save, save_fsdp_model, save_fsdp_optimizer, wait_for_everyone, ) from .utils.constants import FSDP_PYTORCH_VERSION from .utils.modeling import get_state_dict_offloaded_model from .utils.other import is_compiled_module if is_deepspeed_available(): from .utils import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, ) if is_fp8_available(): import transformer_engine.common.recipe as te_recipe from transformer_engine.pytorch import fp8_autocast if is_megatron_lm_available(): from .utils import ( MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, megatron_lm_initialize, megatron_lm_prepare_data_loader, megatron_lm_prepare_model_optimizer_scheduler, ) from torch.distributed.algorithms.join import Join if is_torch_xla_available(): import torch_xla.amp as xamp import torch_xla.core.xla_model as xm import torch_xla.distributed.xla_multiprocessing as xmp if is_npu_available(check_device=False): import torch_npu # noqa: F401 try: from torch.optim.lr_scheduler import LRScheduler except ImportError: from torch.optim.lr_scheduler import _LRScheduler as LRScheduler logger = get_logger(__name__) # Sentinel values for defaults _split_batches = object() _dispatch_batches = object() _even_batches = object() _use_seedable_sampler = object() class Accelerator: """ Creates an instance of an accelerator for distributed training (on multi-GPU, TPU) or mixed precision training. Args: device_placement (`bool`, *optional*, defaults to `True`): Whether or not the accelerator should put objects on device (tensors yielded by the dataloader, model, etc...). mixed_precision (`str`, *optional*): Whether or not to use mixed precision training. Choose from 'no','fp16','bf16 or 'fp8'. Will default to the value in the environment variable `ACCELERATE_MIXED_PRECISION`, which will use the default value in the accelerate config of the current system or the flag passed with the `accelerate.launch` command. 'fp8' requires the installation of transformers-engine. gradient_accumulation_steps (`int`, *optional*, default to 1): The number of steps that should pass before gradients are accumulated. A number > 1 should be combined with `Accelerator.accumulate`. If not passed, will default to the value in the environment variable `ACCELERATE_GRADIENT_ACCUMULATION_STEPS`. Can also be configured through a `GradientAccumulationPlugin`. cpu (`bool`, *optional*): Whether or not to force the script to execute on CPU. Will ignore GPU available if set to `True` and force the execution on one process only. dataloader_config (`DataLoaderConfiguration`, *optional*): A configuration for how the dataloaders should be handled in distributed scenarios. deepspeed_plugin ([`~utils.DeepSpeedPlugin`], *optional*): Tweak your DeepSpeed related args using this argument. This argument is optional and can be configured directly using *accelerate config* fsdp_plugin ([`~utils.FullyShardedDataParallelPlugin`], *optional*): Tweak your FSDP related args using this argument. This argument is optional and can be configured directly using *accelerate config* megatron_lm_plugin ([`~utils.MegatronLMPlugin`], *optional*): Tweak your MegatronLM related args using this argument. This argument is optional and can be configured directly using *accelerate config* rng_types (list of `str` or [`~utils.RNGType`]): The list of random number generators to synchronize at the beginning of each iteration in your prepared dataloaders. Should be one or several of: - `"torch"`: the base torch random number generator - `"cuda"`: the CUDA random number generator (GPU only) - `"xla"`: the XLA random number generator (TPU only) - `"generator"`: the `torch.Generator` of the sampler (or batch sampler if there is no sampler in your dataloader) or of the iterable dataset (if it exists) if the underlying dataset is of that type. Will default to `["torch"]` for PyTorch versions <=1.5.1 and `["generator"]` for PyTorch versions >= 1.6. log_with (list of `str`, [`~utils.LoggerType`] or [`~tracking.GeneralTracker`], *optional*): A list of loggers to be setup for experiment tracking. Should be one or several of: - `"all"` - `"tensorboard"` - `"wandb"` - `"comet_ml"` If `"all"` is selected, will pick up all available trackers in the environment and initialize them. Can also accept implementations of `GeneralTracker` for custom trackers, and can be combined with `"all"`. project_config ([`~utils.ProjectConfiguration`], *optional*): A configuration for how saving the state can be handled. project_dir (`str`, `os.PathLike`, *optional*): A path to a directory for storing data such as logs of locally-compatible loggers and potentially saved checkpoints. step_scheduler_with_optimizer (`bool`, *optional*, defaults to `True`): Set `True` if the learning rate scheduler is stepped at the same time as the optimizer, `False` if only done under certain circumstances (at the end of each epoch, for instance). kwargs_handlers (list of [`~utils.KwargsHandler`], *optional*) A list of [`~utils.KwargsHandler`] to customize how the objects related to distributed training or mixed precision are created. See [kwargs](kwargs) for more information. dynamo_backend (`str` or [`~utils.DynamoBackend`], *optional*, defaults to `"no"`): Set to one of the possible dynamo backends to optimize your training with torch dynamo. gradient_accumulation_plugin ([`~utils.GradientAccumulationPlugin`], *optional*): A configuration for how gradient accumulation should be handled, if more tweaking than just the `gradient_accumulation_steps` is needed. **Available attributes:** - **device** (`torch.device`) -- The device to use. - **distributed_type** ([`~utils.DistributedType`]) -- The distributed training configuration. - **local_process_index** (`int`) -- The process index on the current machine. - **mixed_precision** (`str`) -- The configured mixed precision mode. - **num_processes** (`int`) -- The total number of processes used for training. - **optimizer_step_was_skipped** (`bool`) -- Whether or not the optimizer update was skipped (because of gradient overflow in mixed precision), in which case the learning rate should not be changed. - **process_index** (`int`) -- The overall index of the current process among all processes. - **state** ([`~state.AcceleratorState`]) -- The distributed setup state. - **sync_gradients** (`bool`) -- Whether the gradients are currently being synced across all processes. - **use_distributed** (`bool`) -- Whether the current configuration is for distributed training. """ def __init__( self, device_placement: bool = True, split_batches: bool = _split_batches, mixed_precision: PrecisionType | str | None = None, gradient_accumulation_steps: int = 1, cpu: bool = False, dataloader_config: DataLoaderConfiguration | None = None, deepspeed_plugin: DeepSpeedPlugin | None = None, fsdp_plugin: FullyShardedDataParallelPlugin | None = None, megatron_lm_plugin: MegatronLMPlugin | None = None, rng_types: list[str | RNGType] | None = None, log_with: str | LoggerType | GeneralTracker | list[str | LoggerType | GeneralTracker] | None = None, project_dir: str | os.PathLike | None = None, project_config: ProjectConfiguration | None = None, gradient_accumulation_plugin: GradientAccumulationPlugin | None = None, dispatch_batches: bool | None = _dispatch_batches, even_batches: bool = _even_batches, use_seedable_sampler: bool = _use_seedable_sampler, step_scheduler_with_optimizer: bool = True, kwargs_handlers: list[KwargsHandler] | None = None, dynamo_backend: DynamoBackend | str | None = None, ): self.trackers = [] if project_config is not None: self.project_configuration = project_config else: self.project_configuration = ProjectConfiguration(project_dir=project_dir) if project_dir is not None and self.project_dir is None: self.project_configuration.set_directories(project_dir) if mixed_precision is not None: mixed_precision = str(mixed_precision) if mixed_precision not in PrecisionType: raise ValueError( f"Unknown mixed_precision mode: {mixed_precision}. Choose between {PrecisionType.list()}" ) dynamo_plugin = TorchDynamoPlugin() if dynamo_backend is None else TorchDynamoPlugin(backend=dynamo_backend) if deepspeed_plugin is None: # init from env variables deepspeed_plugin = ( DeepSpeedPlugin() if os.environ.get("ACCELERATE_USE_DEEPSPEED", "false") == "true" else None ) else: assert isinstance( deepspeed_plugin, DeepSpeedPlugin ), "`deepspeed_plugin` must be an `accelerate.utils.DeepSpeedPlugin` object." os.environ["ACCELERATE_USE_DEEPSPEED"] = "true" # use DeepSpeed if plugin is provided if deepspeed_plugin: if not is_deepspeed_available(): raise ImportError("DeepSpeed is not installed => run `pip install deepspeed` or build it from source.") if is_mlu_available(): if compare_versions("deepspeed-mlu", "<", "0.10.1"): raise ImportError("DeepSpeed MLU version must be >= 0.10.1. Please update DeepSpeed MLU.") elif compare_versions("deepspeed", "<", "0.9.3"): raise ImportError("DeepSpeed version must be >= 0.9.3. Please update DeepSpeed.") mixed_precision = ( os.environ.get("ACCELERATE_MIXED_PRECISION", "no") if mixed_precision is None else mixed_precision ) deepspeed_plugin.set_mixed_precision(mixed_precision) deepspeed_plugin.set_deepspeed_weakref() if os.environ.get("ACCELERATE_USE_FSDP", "false") == "true" or isinstance( fsdp_plugin, FullyShardedDataParallelPlugin ): if is_torch_version("<", FSDP_PYTORCH_VERSION): raise ValueError(f"FSDP requires PyTorch >= {FSDP_PYTORCH_VERSION}") if fsdp_plugin is None: # init from env variables fsdp_plugin = ( FullyShardedDataParallelPlugin() if os.environ.get("ACCELERATE_USE_FSDP", "false") == "true" else None ) else: if not isinstance(fsdp_plugin, FullyShardedDataParallelPlugin): raise TypeError("`fsdp_plugin` must be a FullyShardedDataParallelPlugin object.") os.environ["ACCELERATE_USE_FSDP"] = "true" # use FSDP if plugin is provided if megatron_lm_plugin is None: # init from env variables megatron_lm_plugin = ( MegatronLMPlugin() if os.environ.get("ACCELERATE_USE_MEGATRON_LM", "false") == "true" else None ) else: if not isinstance(megatron_lm_plugin, MegatronLMPlugin): raise TypeError("`megatron_lm_plugin` must be a MegatronLMPlugin object.") os.environ["ACCELERATE_USE_MEGATRON_LM"] = "true" # use MegatronLM if plugin is provided if megatron_lm_plugin: if not is_megatron_lm_available(): raise ImportError("Megatron is not installed. please build it from source.") # Kwargs handlers self.ddp_handler = None self.scaler_handler = None self.init_handler = None self.fp8_recipe_handler = None self.autocast_handler = None self.has_lomo_optimizer = False if kwargs_handlers is not None: for handler in kwargs_handlers: assert isinstance( handler, KwargsHandler ), f"Unsupported kwargs handler passed: {handler}, must be one that inherits `accelerate.utils.KwargsHandler`." if isinstance(handler, DistributedDataParallelKwargs): if self.ddp_handler is not None: raise ValueError("You can only pass one `DistributedDataParallelKwargs` in `kwargs_handler`.") else: self.ddp_handler = handler elif isinstance(handler, GradScalerKwargs): if self.scaler_handler is not None: raise ValueError("You can only pass one `GradScalerKwargs` in `kwargs_handler`.") else: self.scaler_handler = handler elif isinstance(handler, InitProcessGroupKwargs): if self.init_handler is not None: raise ValueError("You can only pass one `InitProcessGroupKwargs` in `kwargs_handler`.") else: self.init_handler = handler elif isinstance(handler, FP8RecipeKwargs): if self.fp8_recipe_handler is not None: raise ValueError("You can only pass one `FP8RecipeKwargs` in `kwargs_handler`.") else: self.fp8_recipe_handler = handler elif isinstance(handler, AutocastKwargs): if self.autocast_handler is not None: raise ValueError("You can only pass one `AutocastKwargs` in `kwargs_handler`.") else: self.autocast_handler = handler kwargs = self.init_handler.to_kwargs() if self.init_handler is not None else {} self.state = AcceleratorState( mixed_precision=mixed_precision, cpu=cpu, dynamo_plugin=dynamo_plugin, deepspeed_plugin=deepspeed_plugin, fsdp_plugin=fsdp_plugin, megatron_lm_plugin=megatron_lm_plugin, _from_accelerator=True, **kwargs, ) self.delayed_fp8_autocast = False if self.fp8_recipe_handler is not None: # We already check if FP8 is available during `self.state` if self.state.mixed_precision != "fp8": raise ValueError("Passing in a `FP8RecipeKwargs` object requires setting `mixed_precision='fp8'`.") self.delayed_fp8_autocast = self.fp8_recipe_handler.backend == "TE" and self.distributed_type in ( DistributedType.MULTI_GPU, DistributedType.FSDP, ) trackers = filter_trackers(log_with, self.logging_dir) if len(trackers) < 1 and log_with is not None: warnings.warn(f"`log_with={log_with}` was passed but no supported trackers are currently installed.") self.log_with = trackers if ( (mixed_precision != "bf16") and getattr(self.state, "downcast_bfloat", False) and (self.state.distributedType != DistributedType.XLA) ): raise ValueError("Can only use `downcast_bf16` when using `mixed_precision='bf16'` and on a TPU") if gradient_accumulation_plugin is not None: if gradient_accumulation_steps != 1: raise ValueError( "You can only pass one of `gradient_accumulation_steps` and `gradient_accumulation_plugin`. Please only pass in the created `GradientAccumulationPlugin` object." ) else: gradient_accumulation_steps = int( parse_choice_from_env("ACCELERATE_GRADIENT_ACCUMULATION_STEPS", gradient_accumulation_steps) ) gradient_accumulation_plugin = GradientAccumulationPlugin(num_steps=gradient_accumulation_steps) self.gradient_state = GradientState( gradient_accumulation_plugin=gradient_accumulation_plugin, ) self.device_placement = device_placement if dataloader_config is None: dataloader_config = DataLoaderConfiguration() self.dataloader_config = dataloader_config # Deal with deprecated args # TODO: Remove in v1.0.0 deprecated_dl_args = {} if dispatch_batches is not _dispatch_batches: deprecated_dl_args["dispatch_batches"] = dispatch_batches self.dataloader_config.dispatch_batches = dispatch_batches if split_batches is not _split_batches: deprecated_dl_args["split_batches"] = split_batches self.dataloader_config.split_batches = split_batches if even_batches is not _even_batches: deprecated_dl_args["even_batches"] = even_batches self.dataloader_config.even_batches = even_batches if use_seedable_sampler is not _use_seedable_sampler: deprecated_dl_args["use_seedable_sampler"] = use_seedable_sampler self.dataloader_config.use_seedable_sampler = use_seedable_sampler if len(deprecated_dl_args) > 0: values = ", ".join([f"{k}={v}" for k, v in deprecated_dl_args.items()]) warnings.warn( f"Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: {deprecated_dl_args.keys()}. " "Please pass an `accelerate.DataLoaderConfiguration` instead: \n" f"dataloader_config = DataLoaderConfiguration({values})", FutureWarning, ) self.step_scheduler_with_optimizer = step_scheduler_with_optimizer # Mixed precision attributes self.scaler = None self.native_amp = False if ( self.state.mixed_precision == "fp16" and self.device.type != "cpu" and self.distributed_type not in (DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM) ): self.native_amp = True if self.device.type not in ("xpu", "cuda", "npu", "xla", "mlu") or is_torch_xla_available( check_is_tpu=True ): raise ValueError(f"fp16 mixed precision requires a GPU (not {self.device.type!r}).") kwargs = self.scaler_handler.to_kwargs() if self.scaler_handler is not None else {} if self.distributed_type == DistributedType.FSDP: from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler self.scaler = ShardedGradScaler(**kwargs) elif is_torch_xla_available(check_is_gpu=True): self.scaler = xamp.GradScaler(**kwargs) elif is_mlu_available(): self.scaler = torch.mlu.amp.GradScaler(**kwargs) elif is_npu_available(): self.scaler = torch.npu.amp.GradScaler(**kwargs) elif is_xpu_available(): self.scaler = torch.amp.GradScaler("xpu", **kwargs) else: self.scaler = torch.cuda.amp.GradScaler(**kwargs) elif self.state.mixed_precision == "bf16" and self.distributed_type not in ( DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM, ): if self.device.type in ["cpu", "xpu"]: self.native_amp = True else: self.native_amp = is_bf16_available(True) if mixed_precision == "bf16" and not self.native_amp and not is_torch_xla_available(): raise ValueError("bf16 mixed precision requires PyTorch >= 1.10 and a supported device.") elif self.state.mixed_precision == "fp8": # We always enable `native_amp` for FP8 self.native_amp = True # Start of internal step tracking self.step = 0 # Internal references to the training objects self._optimizers = [] self._models = [] self._schedulers = [] self._dataloaders = [] self._custom_objects = [] # Hooks self._load_model_state_pre_hook = OrderedDict() self._save_model_state_pre_hook = OrderedDict() # RNG Types self.rng_types = rng_types if self.rng_types is None: self.rng_types = ["generator"] # Set a flag tensor for early stopping and other breakpoints self.flag_tensor = None check_os_kernel() @property def use_distributed(self): """ Whether the Accelerator is configured for distributed training """ return self.state.use_distributed @property def distributed_type(self): return self.state.distributed_type @property def num_processes(self): return self.state.num_processes @property def process_index(self): return self.state.process_index @property def local_process_index(self): return self.state.local_process_index @property def device(self): return self.state.device @property def split_batches(self): return self.dataloader_config.split_batches @property def dispatch_batches(self): return self.dataloader_config.dispatch_batches @property def even_batches(self): return self.dataloader_config.even_batches @even_batches.setter def even_batches(self, value: bool): self.dataloader_config.even_batches = value @property def use_seedable_sampler(self): return self.dataloader_config.use_seedable_sampler @property def non_blocking(self): return self.dataloader_config.non_blocking @property def project_dir(self): return self.project_configuration.project_dir @property def logging_dir(self): return self.project_configuration.logging_dir @property def save_iteration(self): return self.project_configuration.iteration @property def is_main_process(self): """True for one process only.""" return self.state.is_main_process @property def is_local_main_process(self): """True for one process per server.""" return self.state.is_local_main_process @property def use_fp16(self): warnings.warn( "The `use_fp16` property is deprecated and will be removed in version 1.0 of Accelerate use " "`Accelerator.mixed_precision == 'fp16'` instead.", FutureWarning, ) return self.mixed_precision != "no" @property def is_last_process(self): return self.process_index == self.num_processes - 1 @property def mixed_precision(self): return self.state.mixed_precision @contextmanager def split_between_processes(self, inputs: list | tuple | dict | torch.Tensor, apply_padding: bool = False): """ Splits `input` between `self.num_processes` quickly and can be then used on that process. Useful when doing distributed inference, such as with different prompts. Note that when using a `dict`, all keys need to have the same number of elements. Args: inputs (`list`, `tuple`, `torch.Tensor`, or `dict` of `list`/`tuple`/`torch.Tensor`): The input to split between processes. apply_padding (`bool`, `optional`, defaults to `False`): Whether to apply padding by repeating the last element of the input so that all processes have the same number of elements. Useful when trying to perform actions such as `Accelerator.gather()` on the outputs or passing in less inputs than there are processes. If so, just remember to drop the padded elements afterwards. Example: ```python # Assume there are two processes from accelerate import Accelerator accelerator = Accelerator() with accelerator.split_between_processes(["A", "B", "C"]) as inputs: print(inputs) # Process 0 ["A", "B"] # Process 1 ["C"] with accelerator.split_between_processes(["A", "B", "C"], apply_padding=True) as inputs: print(inputs) # Process 0 ["A", "B"] # Process 1 ["C", "C"] ``` """ with PartialState().split_between_processes(inputs, apply_padding=apply_padding) as inputs: yield inputs def on_main_process(self, function: Callable[..., Any] = None): """ A decorator that will run the decorated function on the main process only. Can also be called using the `PartialState` class. Args: function (`Callable`): The function to decorate. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> @accelerator.on_main_process ... def print_something(): ... print("This will be printed by process 0 only.") >>> print_something() "This will be printed by process 0 only" ``` """ # For times when the `Accelerator` object itself utilizes this decorator. if function is None: if "Accelerator." in self.__qualname__: function = self else: raise ValueError( "The `on_main_process` decorator must be called with a function on an instantiated `Accelerator` object." ) def _inner(*args, **kwargs): return PartialState().on_main_process(function)(*args, **kwargs) return _inner def on_local_main_process(self, function: Callable[..., Any] = None): """ A decorator that will run the decorated function on the local main process only. Can also be called using the `PartialState` class. Args: function (`Callable`): The function to decorate. Example: ```python # Assume we have 2 servers with 4 processes each. from accelerate import Accelerator accelerator = Accelerator() @accelerator.on_local_main_process def print_something(): print("This will be printed by process 0 only on each server.") print_something() # On server 1: "This will be printed by process 0 only" # On server 2: "This will be printed by process 0 only" ``` """ # For times when the `Accelerator` object itself utilizes this decorator. if function is None: if "Accelerator." in self.__qualname__: function = self else: raise ValueError( "The `on_local_main_process` decorator must be called with a function on an instantiated `Accelerator` object." ) def _inner(*args, **kwargs): return PartialState().on_local_main_process(function)(*args, **kwargs) return _inner def on_last_process(self, function: Callable[..., Any]): """ A decorator that will run the decorated function on the last process only. Can also be called using the `PartialState` class. Args: function (`Callable`): The function to decorate. Example: ```python # Assume we have 4 processes. from accelerate import Accelerator accelerator = Accelerator() @accelerator.on_last_process def print_something(): print(f"Printed on process {accelerator.process_index}") print_something() "Printed on process 3" ``` """ # For times when the `Accelerator` object itself utilizes this decorator. if function is None: if "Accelerator." in self.__qualname__: function = self else: raise ValueError( "The `on_last_process` decorator must be called with a function on an instantiated `Accelerator` object." ) def _inner(*args, **kwargs): return PartialState().on_last_process(function)(*args, **kwargs) return _inner def on_process(self, function: Callable[..., Any] = None, process_index: int = None): """ A decorator that will run the decorated function on a given process index only. Can also be called using the `PartialState` class. Args: function (`Callable`, `optional`): The function to decorate. process_index (`int`, `optional`): The index of the process on which to run the function. Example: ```python # Assume we have 4 processes. from accelerate import Accelerator accelerator = Accelerator() @accelerator.on_process(process_index=2) def print_something(): print(f"Printed on process {accelerator.process_index}") print_something() "Printed on process 2" ``` """ # Initial construction of the decorator. if (self is not None) and (process_index is not None) and (function is None): return partial(self.on_process, process_index=process_index) # For times when the `Accelerator` object itself utilizes this decorator. if function is None: if "Accelerator." in self.__qualname__: function = self else: raise ValueError( "The `on_main_process` decorator must be called with a function on an instantiated `Accelerator` object." ) def _inner(*args, **kwargs): return PartialState().on_process(function, process_index)(*args, **kwargs) return _inner def on_local_process(self, function: Callable[..., Any] = None, local_process_index: int = None): """ A decorator that will run the decorated function on a given local process index only. Can also be called using the `PartialState` class. Args: function (`Callable`, *optional*): The function to decorate. local_process_index (`int`, *optional*): The index of the local process on which to run the function. Example: ```python # Assume we have 2 servers with 4 processes each. from accelerate import Accelerator accelerator = Accelerator() @accelerator.on_local_process(local_process_index=2) def print_something(): print(f"Printed on process {accelerator.local_process_index}") print_something() # On server 1: "Printed on process 2" # On server 2: "Printed on process 2" ``` """ # Initial construction of the decorator. if (self is not None) and (local_process_index is not None) and (function is None): return partial(self.on_local_process, local_process_index=local_process_index) # For times when the `Accelerator` object itself utilizes this decorator. if function is None: if "Accelerator." in self.__qualname__: function = self else: raise ValueError( "The `on_main_process` decorator must be called with a function on an instantiated `Accelerator` object." ) def _inner(*args, **kwargs): return PartialState().on_local_process(function, local_process_index)(*args, **kwargs) return _inner @contextmanager def main_process_first(self): """ Lets the main process go first inside a with block. The other processes will enter the with block after the main process exits. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> with accelerator.main_process_first(): ... # This will be printed first by process 0 then in a seemingly ... # random order by the other processes. ... print(f"This will be printed by process {accelerator.process_index}") ``` """ with self.state.main_process_first(): yield @contextmanager def local_main_process_first(self): """ Lets the local main process go inside a with block. The other processes will enter the with block after the main process exits. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> with accelerator.local_main_process_first(): ... # This will be printed first by local process 0 then in a seemingly ... # random order by the other processes. ... print(f"This will be printed by process {accelerator.local_process_index}") ``` """ with self.state.local_main_process_first(): yield @contextmanager def no_sync(self, model): """ A context manager to disable gradient synchronizations across DDP processes by calling `torch.nn.parallel.DistributedDataParallel.no_sync`. If `model` is not in DDP, this context manager does nothing Args: model (`torch.nn.Module`): PyTorch Module that was prepared with `Accelerator.prepare` Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> dataloader, model, optimizer = accelerator.prepare(dataloader, model, optimizer) >>> input_a = next(iter(dataloader)) >>> input_b = next(iter(dataloader)) >>> with accelerator.no_sync(): ... outputs = model(input_a) ... loss = loss_func(outputs) ... accelerator.backward(loss) ... # No synchronization across processes, only accumulate gradients >>> outputs = model(input_b) >>> accelerator.backward(loss) >>> # Synchronization across all processes >>> optimizer.step() >>> optimizer.zero_grad() ``` """ context = contextlib.nullcontext if self.use_distributed: context = getattr(model, "no_sync", context) with context(): yield @staticmethod @contextmanager def trigger_sync_in_backward(model): """Trigger the sync of the gradients in the next backward pass of the model after multiple forward passes under `Accelerator.no_sync` (only applicable in multi-GPU scenarios). If the script is not launched in distributed mode, this context manager does nothing. Args: model (`torch.nn.Module`): The model for which to trigger the gradient synchronization. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> dataloader, model, optimizer = accelerator.prepare(dataloader, model, optimizer) >>> with accelerator.no_sync(): ... loss_a = loss_func(model(input_a)) # first forward pass ... loss_b = loss_func(model(input_b)) # second forward pass >>> accelerator.backward(loss_a) # No synchronization across processes, only accumulate gradients >>> with accelerator.trigger_sync_in_backward(model): ... accelerator.backward(loss_b) # Synchronization across all processes >>> optimizer.step() >>> optimizer.zero_grad() ``` """ if not isinstance(model, torch.nn.parallel.DistributedDataParallel): yield return old_require_backward_grad_sync = model.require_backward_grad_sync old_require_forward_param_sync = model.require_forward_param_sync # EXPERIMENTAL: This will force grad sync during `backward()`, but it is unknown if it breaks other DDP features. # https://github.com/pytorch/pytorch/blob/e1502c0cdbfd17548c612f25d5a65b1e4b86224d/torch/nn/parallel/distributed.py#L1453-L1466 model.require_backward_grad_sync = True model.require_forward_param_sync = True # https://github.com/pytorch/pytorch/blob/e1502c0cdbfd17548c612f25d5a65b1e4b86224d/torch/csrc/distributed/c10d/reducer.cpp#L1371-L1402 model.reducer.prepare_for_backward([]) try: yield finally: model.require_backward_grad_sync = old_require_backward_grad_sync model.require_forward_param_sync = old_require_forward_param_sync def _do_sync(self): "Sets the right `sync_gradients` context and either resets or increases `self.step`" if self.gradient_state.sync_with_dataloader and self.gradient_state.end_of_dataloader: self.step = 0 self.gradient_state._set_sync_gradients(True) else: self.step += 1 self.gradient_state._set_sync_gradients((self.step % self.gradient_state.num_steps) == 0) @property def sync_gradients(self): return self.gradient_state.sync_gradients @sync_gradients.setter def sync_gradients(self, sync_gradients): self.gradient_state.sync_gradients = sync_gradients @property def gradient_accumulation_steps(self): return self.gradient_state.num_steps @gradient_accumulation_steps.setter def gradient_accumulation_steps(self, gradient_accumulation_steps): self.gradient_state.plugin_kwargs.update({"num_steps": gradient_accumulation_steps}) @contextmanager def accumulate(self, *models): """ A context manager that will lightly wrap around and perform gradient accumulation automatically Args: *models (list of `torch.nn.Module`): PyTorch Modules that were prepared with `Accelerator.prepare`. Models passed to `accumulate()` will skip gradient syncing during backward pass in distributed training Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(gradient_accumulation_steps=1) >>> dataloader, model, optimizer, scheduler = accelerator.prepare(dataloader, model, optimizer, scheduler) >>> for input, output in dataloader: ... with accelerator.accumulate(model): ... outputs = model(input) ... loss = loss_func(outputs) ... loss.backward() ... optimizer.step() ... scheduler.step() ... optimizer.zero_grad() ``` """ self._do_sync() allow_gradient_sync = ( self.sync_gradients # must sync if sync gradients need to complete an optimizer step or ( # the no_sync context stops the gradients from reducing during distributed training # bringing speedup (potentially at some costs). Here, no_sync can be prevented # by setting sync_each_batch = True. self.use_distributed # only relevant in distributed settings and self.gradient_state.plugin_kwargs.get("sync_each_batch", False) ) ) with contextlib.ExitStack() as cm_stack: for m in models: cm_stack.enter_context(contextlib.nullcontext() if allow_gradient_sync else self.no_sync(m)) yield @contextmanager def join_uneven_inputs(self, joinables, even_batches=None): """ A context manager that facilitates distributed training or evaluation on uneven inputs, which acts as a wrapper around `torch.distributed.algorithms.join`. This is useful when the total batch size does not evenly divide the length of the dataset. Args: joinables (`list[torch.distributed.algorithms.Joinable]`): A list of models or optimizers that subclass `torch.distributed.algorithms.Joinable`. Most commonly, a PyTorch Module that was prepared with `Accelerator.prepare` for DistributedDataParallel training. even_batches (`bool`, *optional*) If set, this will override the value of `even_batches` set in the `Accelerator`. If it is not provided, the default `Accelerator` value wil be used. <Tip warning={true}> `join_uneven_inputs` is only supported for Distributed Data Parallel training on multiple GPUs. For any other configuration, this method will have no effect. </Tip> <Tip warning={true}> Overidding `even_batches` will not affect iterable-style data loaders. </Tip> Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(even_batches=True) >>> ddp_model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader) >>> with accelerator.join_uneven_inputs([ddp_model], even_batches=False): ... for input, output in dataloader: ... outputs = model(input) ... loss = loss_func(outputs) ... loss.backward() ... optimizer.step() ... optimizer.zero_grad() ``` """ if self.distributed_type in ( DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_MLU, DistributedType.MULTI_XPU, ): dl_even_batches_values = [] if even_batches is not None: iterable_dl_seen = False # override value in batch sampler for map-style datasets for dl_idx, dl in enumerate(self._dataloaders): if isinstance(dl, DataLoaderDispatcher): iterable_dl_seen = True continue dl_even_batches_values.append((dl_idx, dl.batch_sampler.even_batches)) dl.batch_sampler.even_batches = even_batches if iterable_dl_seen: warnings.warn( "Overridding even_batches is only supported for map-style datasets, yet some dataloaders given were iterable" ) else: even_batches = self.even_batches enable_join = False if even_batches else True try: with Join(joinables, enable=enable_join, throw_on_early_termination=False): yield finally: # reset any batch samplers that have been modified for dl_idx, even_batches_value in dl_even_batches_values: self._dataloaders[dl_idx].batch_sampler.even_batches = even_batches_value else: # Even when disabled, Join expects models to subclass Joinable, so skip entirely for single process runs if self.distributed_type != DistributedType.NO: warnings.warn( "Joining uneven inputs is only supported for multi-GPU training, as a result `join_uneven_inputs` will have no effect." ) with contextlib.nullcontext(joinables): yield def print(self, *args, **kwargs): """ Drop in replacement of `print()` to only print once per server. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> accelerator.print("Hello world!") ``` """ self.state.print(*args, **kwargs) def _prepare_one(self, obj, first_pass=False, device_placement=None): # First pass of preparation: DataLoader, model, optimizer if first_pass: if isinstance(obj, torch.utils.data.DataLoader): return self.prepare_data_loader(obj, device_placement=device_placement) elif isinstance(obj, torch.nn.Module): return self.prepare_model(obj, device_placement=device_placement) elif isinstance(obj, torch.optim.Optimizer): optimizer = self.prepare_optimizer(obj, device_placement=device_placement) return optimizer # Second pass of preparation: LR scheduler (which need the full list of optimizers) elif isinstance(obj, LRScheduler): scheduler = self.prepare_scheduler(obj) return scheduler # Return the unprocessed object if previous criteria was not met return obj def prepare(self, *args, device_placement=None): """ Prepare all objects passed in `args` for distributed training and mixed precision, then return them in the same order. Args: *args (list of objects): Any of the following type of objects: - `torch.utils.data.DataLoader`: PyTorch Dataloader - `torch.nn.Module`: PyTorch Module - `torch.optim.Optimizer`: PyTorch Optimizer - `torch.optim.lr_scheduler.LRScheduler`: PyTorch LR Scheduler device_placement (`list[bool]`, *optional*): Used to customize whether automatic device placement should be performed for each object passed. Needs to be a list of the same length as `args`. Not compatible with DeepSpeed or FSDP. <Tip> You don't need to prepare a model if you only use it for inference without any kind of mixed precision </Tip> Examples: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> # Assume a model, optimizer, data_loader and scheduler are defined >>> model, optimizer, data_loader, scheduler = accelerator.prepare(model, optimizer, data_loader, scheduler) ``` ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> # Assume a model, optimizer, data_loader and scheduler are defined >>> device_placement = [True, True, False, False] >>> # Will place the first to items passed in automatically to the right device but not the last two. >>> model, optimizer, data_loader, scheduler = accelerator.prepare( ... model, optimizer, data_loader, scheduler, device_placement=device_placement ... ) ``` """ if device_placement is None: device_placement = [None for _ in args] elif self.distributed_type in (DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM): raise ValueError("You can't customize device placements with DeepSpeed or Megatron-LM.") elif len(device_placement) != len(args): raise ValueError( f"`device_placement` should be a list with {len(args)} elements (the number of objects passed)." ) for obj in args: # TODO: Look at enabling native TP training directly with a proper config if ( isinstance(obj, torch.nn.Module) and self.verify_device_map(obj) and self.distributed_type != DistributedType.NO and os.environ.get("ACCELERATE_BYPASS_DEVICE_MAP", "false") != "true" ): raise ValueError( "You can't train a model that has been loaded with `device_map='auto'` in any distributed mode." " Please rerun your script specifying `--num_processes=1` or by launching with `python {{myscript.py}}`." ) if self.distributed_type == DistributedType.DEEPSPEED: model_count = 0 for obj in args: if isinstance(obj, torch.nn.Module): model_count += 1 if model_count > 1: raise AssertionError( "You can't use same `Accelerator()` instance with multiple models when using DeepSpeed" ) # On TPUs, putting the model on the XLA device will create new parameters, so the corresponding optimizer will # have parameters disconnected from the model (so no training :-( ). # If the model and optimizer have parameters on different devices we raise an error. if self.distributed_type == DistributedType.XLA: model_device, optimizer_device = self._get_devices() if model_device is not None and optimizer_device is not None and model_device != optimizer_device: raise ValueError( "The model and the optimizer parameters are not on the same device, which probably means you " "created an optimizer around your model **before** putting on the device. Make sure the line " "model.to(device) is before the optimizer creation in your script or remove it entirely and use " "the flag default value for `device_placement` in your `Accelerator` to let it handle that " "part for you." ) # If we're dealing with device placement, this deals with that by... tpu_should_fix_optimizer = self.device_placement and self.distributed_type == DistributedType.XLA if tpu_should_fix_optimizer or (self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "TE"): # 1. grabbing old model parameters old_named_params = self._get_named_parameters(*args) if self.distributed_type in [DistributedType.MULTI_CPU, DistributedType.MULTI_XPU, DistributedType.NO]: if self.device.type == "cpu" and self.state.use_ipex: args = self._prepare_ipex_or_xpu(*args) elif self.device.type == "xpu" and is_xpu_available(): args = self._prepare_ipex_or_xpu(*args) if self.distributed_type == DistributedType.DEEPSPEED: result = self._prepare_deepspeed(*args) elif self.distributed_type == DistributedType.MEGATRON_LM: result = self._prepare_megatron_lm(*args) else: if self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "MSAMP": args = self._prepare_msamp(*args) # MS-AMP will handle the device placement device_placement = [False for _ in args] result = tuple( self._prepare_one(obj, first_pass=True, device_placement=d) for obj, d in zip(args, device_placement) ) result = tuple(self._prepare_one(obj, device_placement=d) for obj, d in zip(result, device_placement)) if tpu_should_fix_optimizer or (self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "TE"): # 2. grabbing new model parameters new_named_params = self._get_named_parameters(*result) # 3. building a map from the first to the second mapping = {p: new_named_params[n] for n, p in old_named_params.items()} # 4. using that map to update the parameters of the optimizer for obj in result: if isinstance(obj, torch.optim.Optimizer): obj._switch_parameters(mapping) for item in result: if any( item in container for container in (self._dataloaders, self._models, self._optimizers, self._schedulers) ): item._is_accelerate_prepared = True return result if len(result) > 1 else result[0] def prepare_model(self, model: torch.nn.Module, device_placement: bool = None, evaluation_mode: bool = False): """ Prepares a PyTorch model for training in any distributed setup. It is recommended to use [`Accelerator.prepare`] instead. Args: model (`torch.nn.Module`): A PyTorch model to prepare. You don't need to prepare a model if it is used only for inference without any kind of mixed precision device_placement (`bool`, *optional*): Whether or not to place the model on the proper device. Will default to `self.device_placement`. evaluation_mode (`bool`, *optional*, defaults to `False`): Whether or not to set the model for evaluation only, by just applying mixed precision and `torch.compile` (if configured in the `Accelerator` object). Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> # Assume a model is defined >>> model = accelerator.prepare_model(model) ``` """ if device_placement is None: device_placement = self.device_placement and self.distributed_type != DistributedType.FSDP self._models.append(model) # TODO: Look at enabling native TP training directly with a proper config if ( self.verify_device_map(model) and self.distributed_type != DistributedType.NO and os.environ.get("ACCELERATE_BYPASS_DEVICE_MAP", "false") != "true" ): raise ValueError( "You can't train a model that has been loaded with `device_map='auto'` in any distributed mode." " Please rerun your script specifying `--num_processes=1` or by launching with `python {{myscript.py}}`." ) if self.native_amp: model._original_forward = model.forward model_forward_func = model.forward.__func__ if hasattr(model.forward, "__func__") else model.forward autocast_context = get_mixed_precision_context_manager(self.native_amp, self.autocast_handler) new_forward = autocast_context(model_forward_func) if hasattr(model.forward, "__func__"): model.forward = MethodType(new_forward, model) model.forward = MethodType(convert_outputs_to_fp32(model.forward.__func__), model) else: model.forward = convert_outputs_to_fp32(new_forward) # We prepare fp8 after, allowing for bf16 autocast to happen first if getattr(self.fp8_recipe_handler, "backend", None) == "TE": if not has_transformer_engine_layers(model): with torch.no_grad(): convert_model(model) model._converted_to_transformer_engine = True kwargs = self.fp8_recipe_handler.to_kwargs() if self.fp8_recipe_handler is not None else {} if "fp8_format" in kwargs: kwargs["fp8_format"] = getattr(te_recipe.Format, kwargs["fp8_format"]) fp8_recipe = te_recipe.DelayedScaling(**kwargs) # If we are in DDP or FSDP, we delay `autocast` until after FSDP/DDP has been initialized # to make use of the process group if not self.delayed_fp8_autocast: model.forward = fp8_autocast(enabled=True, fp8_recipe=fp8_recipe)(model.forward) if (getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False)) and getattr( model, "hf_device_map", False ): model_devices = set(model.hf_device_map.values()) if len(model_devices) > 1 and self.distributed_type != DistributedType.NO: raise ValueError( "You can't train a model that has been loaded in 8-bit precision on multiple devices in any distributed mode." " In order to use 8-bit models that have been loaded across multiple GPUs the solution is to use Naive Pipeline Parallelism." " Therefore you should not specify that you are under any distributed regime in your accelerate config." ) elif len(model_devices) == 1: current_device = list(model_devices)[0] current_device_index = ( current_device.index if isinstance(current_device, torch.device) else current_device ) if torch.device(current_device_index) != self.device: # if on the first device (GPU 0) we don't care if (self.device.index is not None) or (current_device_index != 0): raise ValueError( "You can't train a model that has been loaded in 8-bit precision on a different device than the one " "you're training on. Make sure you loaded the model on the correct device using for example `device_map={'':torch.cuda.current_device()}` or `device_map={'':torch.xpu.current_device()}`" ) if "cpu" in model_devices or "disk" in model_devices: raise ValueError( "You can't train a model that has been loaded in 8-bit precision with CPU or disk offload." ) elif device_placement and not self.verify_device_map(model): model = model.to(self.device) if not evaluation_mode: if self.distributed_type in ( DistributedType.MULTI_GPU, DistributedType.MULTI_MLU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU, ): if any(p.requires_grad for p in model.parameters()): kwargs = self.ddp_handler.to_kwargs() if self.ddp_handler is not None else {} # TODO: Look at enabling native TP training directly with a proper config if os.environ.get("ACCELERATE_BYPASS_DEVICE_MAP", "false") != "true": device_ids, output_device = [self.local_process_index], self.local_process_index else: device_ids, output_device = None, None model = torch.nn.parallel.DistributedDataParallel( model, device_ids=device_ids, output_device=output_device, **kwargs ) if self.ddp_handler is not None: self.ddp_handler.register_comm_hook(model) elif self.distributed_type == DistributedType.FSDP: from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP # Check if the model is already a FSDP model due to `Manual Wrapping` and if so, # don't wrap it again # In case the model is already compiled using PyTorch 2.0 and the wrapped model in it # is a FSDP model, don't wrap it again is_type_fsdp = isinstance(model, FSDP) or ( is_compiled_module(model) and isinstance(model._orig_mod, FSDP) ) if not is_type_fsdp: self.state.fsdp_plugin.set_auto_wrap_policy(model) fsdp_plugin = self.state.fsdp_plugin kwargs = { "sharding_strategy": fsdp_plugin.sharding_strategy, "cpu_offload": fsdp_plugin.cpu_offload, "auto_wrap_policy": fsdp_plugin.auto_wrap_policy, "mixed_precision": fsdp_plugin.mixed_precision_policy, "sync_module_states": fsdp_plugin.sync_module_states, "backward_prefetch": fsdp_plugin.backward_prefetch, "forward_prefetch": fsdp_plugin.forward_prefetch, "use_orig_params": fsdp_plugin.use_orig_params, "param_init_fn": fsdp_plugin.param_init_fn, "ignored_modules": fsdp_plugin.ignored_modules, "limit_all_gathers": fsdp_plugin.limit_all_gathers, "device_id": self.device, } model = FSDP(model, **kwargs) if fsdp_plugin.activation_checkpointing: from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( CheckpointImpl, apply_activation_checkpointing, checkpoint_wrapper, ) apply_activation_checkpointing( model, checkpoint_wrapper_fn=functools.partial( checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT, ), auto_wrap_policy=fsdp_plugin.auto_wrap_policy, ) # In the event the model had been loaded in low precision, but # mixed precision had also been activated, then we follow DeepSpeed's # strategy to hold the parameters in full precision. # - assume that trainer.args.bf16 and trainer.args.fp16 are already checked against # fsdp_plugin.mixed_precision_policy. # - NOTE: we do not check the mixed_precision attribute on the FSDP root wrapper. # * this attribute will always set by init_utils.init_core_state so its always not None. # * mixed_precision.param_dtype only regards _fwd_bwd_param_dtype # * if model is loaded in 16bit, and even if mixed_precision.param_dtype is None, # we sill want to upcast the flat_param. if self.mixed_precision != "no": # if mixed precision is set upcasted_log = [] for module in FSDP.fsdp_modules(model): # Referencing DeepSpeed Zero3 # - in Init, params are converted to 16bit while partitioning. # - in accelerator.prepare, deepspeed.initalize is called to: # * creates the DeepSpeeedEngine. # * since zero_optimization() is True , calls engine._configure_zero_optimizer. # # Inside the DeepSpeed Zero3 optimizer configuration, which initalizes # DeepSpeedZeroOptimizer_Stage3, during which: # * trainable_param_groups are obtained from the attached optimizer # (already partitioned in 16bit). # * then _setup_for_real_optimizer -> _create_fp32_partitions # which performs the fp32 upcasting. # To mimick DeepSeepds's casting in FSDP, we look at the (single) FlatParameter held # within an FSDP wrapper. This FlatParameter will be seen by the optimizer. # - even though there is a torch.device('meta') guard below, we # expect _init_utils._init_param_handle_from_module to already # sync the parameter. if not module._has_params: continue # skip if FSDP module not managing parameters param = module._flat_param if ( param.dtype != torch.float32 and param.device != torch.device("meta") and param.requires_grad ): # keep log of names_params that was upcasted # NOTE: resorted to this because warnings.simplefilter("once") is somehow not working name_param_log = (module.module.__class__.__name__, ", ".join(module._flat_param._fqns)) if name_param_log not in upcasted_log: upcasted_log.append(name_param_log) # this works because of FSDP's _runtime_utils.lazy_init. # Have to be careful not to call anything before this that # triggers lazy_init (e.g., _is_fsdp_root). param.data = param.data.to(torch.float32) # upcasting module._handle._orig_param_dtype = torch.float32 # update # report the warnings # some messages can be quite repetitive, especially when reporting about layers that have identical architecture. if self.is_main_process: for name_log, param_log in upcasted_log: warnings.warn( f"Upcasted low precision parameters in {name_log} because mixed precision turned on in FSDP. " f"Affects: {param_log}." ) if len(upcasted_log) > 0: warnings.warn( "FSDP upcast of low precision parameters may affect the precision of model checkpoints." ) # if the previous and current models are same, delete the previous one if len(self._models) > 1 and (self._models[-2] is self._models[-1]): del self._models[-2] self._models[-1] = model elif self.distributed_type == DistributedType.MULTI_CPU: kwargs = self.ddp_handler.to_kwargs() if self.ddp_handler is not None else {} model = torch.nn.parallel.DistributedDataParallel(model, **kwargs) if self.ddp_handler is not None: self.ddp_handler.register_comm_hook(model) elif self.distributed_type == DistributedType.XLA and self.state.fork_launched: model = xmp.MpModelWrapper(model).to(self.device) # Now we can apply the FP8 autocast if self.delayed_fp8_autocast: model.forward = fp8_autocast(enabled=True, fp8_recipe=fp8_recipe, fp8_group=model.process_group)( model.forward ) # torch.compile should be called last and only if the model isn't already compiled. if self.state.dynamo_plugin.backend != DynamoBackend.NO and not is_compiled_module(model): if not is_torch_version(">=", "2.0"): raise ValueError("Using `torch.compile` requires PyTorch 2.0 or higher.") model = torch.compile(model, **self.state.dynamo_plugin.to_kwargs()) return model def _prepare_deepspeed(self, *args): import deepspeed deepspeed_plugin = self.state.deepspeed_plugin is_dataloader_present = any(isinstance(obj, torch.utils.data.DataLoader) for obj in args) result = [ self._prepare_one(obj, first_pass=True) if isinstance(obj, torch.utils.data.DataLoader) else obj for obj in args ] if deepspeed_plugin.is_auto("train_micro_batch_size_per_gpu"): if is_dataloader_present: batch_sizes = [obj.batch_size for obj in args if hasattr(obj, "batch_size")] if any(bs is None for bs in batch_sizes): raise ValueError( "At least one of the dataloaders passed to `accelerate.prepare()` has `None` as batch size. " "Please set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file " "or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`." ) if self.split_batches: batch_sizes = [batch_size // self.num_processes for batch_size in batch_sizes] batch_size_per_device = min(batch_sizes) if deepspeed_plugin.is_train_batch_min else max(batch_sizes) if len(batch_sizes) > 1: logger.info( "Since you passed both train and evaluation dataloader, `is_train_batch_min` (here " f"{deepspeed_plugin.is_train_batch_min} will decide the `train_batch_size` ({batch_size_per_device})." ) else: raise ValueError( "When using DeepSpeed, `accelerate.prepare()` requires you to pass at least one of training or evaluation dataloaders " "with `batch_size` attribute returning an integer value " "or alternatively set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file " "or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`." ) else: batch_size_per_device = deepspeed_plugin.get_value("train_micro_batch_size_per_gpu") # handle `gradient_accumulation_steps` when the value is `auto` deepspeed_plugin.fill_match( "gradient_accumulation_steps", must_match=False, gradient_accumulation_steps=self.gradient_accumulation_steps, ) config_kwargs = { "train_micro_batch_size_per_gpu": batch_size_per_device, "train_batch_size": batch_size_per_device * deepspeed_plugin.get_value("gradient_accumulation_steps") * self.num_processes, "gradient_clipping": 1.0, "zero_optimization.stage3_gather_16bit_weights_on_model_save": False, } model = None optimizer = None scheduler = None for obj in result: if isinstance(obj, torch.nn.Module): model = obj elif isinstance(obj, (torch.optim.Optimizer, DummyOptim)): optimizer = obj elif (isinstance(obj, (LRScheduler, DummyScheduler))) or ( type(obj).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES ): scheduler = obj if optimizer is not None: if "optimizer" in deepspeed_plugin.deepspeed_config and not isinstance(optimizer, (DummyOptim)): raise ValueError( "You cannot specify an optimizer in the config file and in the code at the same time. " "Please remove the optimizer from the config file or " "create `accelerate.utils.DummyOptim` in the code." ) elif "optimizer" not in deepspeed_plugin.deepspeed_config and isinstance(optimizer, (DummyOptim)): raise ValueError( "You cannot create a `DummyOptim` without specifying an optimizer in the config file." ) if isinstance(optimizer, (torch.optim.Optimizer)): deepspeed_plugin.deepspeed_config["zero_allow_untested_optimizer"] = True if scheduler is not None: if "scheduler" in deepspeed_plugin.deepspeed_config and not isinstance(scheduler, (DummyScheduler)): raise ValueError( "You cannot specify a scheduler in the config file and in the code at the same time. " "Please remove the scheduler from the config file or " "create `accelerate.utils.DummyScheduler` in the code." ) elif ( "scheduler" not in deepspeed_plugin.deepspeed_config and isinstance(scheduler, (DummyScheduler)) and scheduler.lr_scheduler_callable is None ): raise ValueError( "Either specify a scheduler in the config file or " "pass in the `lr_scheduler_callable` parameter when using `accelerate.utils.DummyScheduler`." ) if optimizer is not None and scheduler is not None: if isinstance(optimizer, (DummyOptim)) and not isinstance(scheduler, (DummyScheduler)): raise ValueError( "You can only specify `accelerate.utils.DummyScheduler` in the code when using " "`accelerate.utils.DummyOptim`." ) if model is not None: # if the model is an MOE, set the appropriate MOE layers as leaf Z3 modules deepspeed_plugin.set_moe_leaf_modules(model) # deal with config keys that use `auto` value and rely on model's hidden_size hidden_size_based_keys = [ "zero_optimization.reduce_bucket_size", "zero_optimization.stage3_prefetch_bucket_size", "zero_optimization.stage3_param_persistence_threshold", ] hidden_size_auto_keys = [x for x in hidden_size_based_keys if deepspeed_plugin.is_auto(x)] if len(hidden_size_auto_keys) > 0: reasoning = ( "therefore it's not possible to automatically fill out the following `auto` entries " + f"in the DeepSpeed config file: {hidden_size_auto_keys}. You can fix that by replacing " + "`auto` values for these keys with an integer value of your choice." ) if not hasattr(model, "config"): raise ValueError("Can't find `model.config` entry, " + reasoning) if hasattr(model.config, "hidden_size"): hidden_size = model.config.hidden_size elif hasattr(model.config, "hidden_sizes"): # if there are many hidden sizes pick the largest one hidden_size = max(model.config.hidden_sizes) else: raise ValueError( "Can find neither `model.config.hidden_size` nor `model.config.hidden_sizes`, " + reasoning ) config_kwargs.update( { "zero_optimization.reduce_bucket_size": hidden_size * hidden_size, "zero_optimization.stage3_prefetch_bucket_size": int(0.9 * hidden_size * hidden_size), "zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size, } ) if isinstance(optimizer, (DummyOptim)): config_kwargs.update( {"optimizer.params.lr": optimizer.lr, "optimizer.params.weight_decay": optimizer.weight_decay} ) if isinstance(scheduler, (DummyScheduler)) and scheduler.lr_scheduler_callable is None: max_lr = ( getattr(scheduler.optimizer, "lr", None) if getattr(scheduler.optimizer, "defaults", None) is None else scheduler.optimizer.defaults["lr"] ) config_kwargs.update( { "scheduler.params.warmup_min_lr": 0, "scheduler.params.warmup_max_lr": max_lr, "scheduler.params.warmup_num_steps": scheduler.warmup_num_steps, } ) if scheduler.total_num_steps is not None: config_kwargs["scheduler.params.total_num_steps"] = ( math.ceil(scheduler.total_num_steps / self.num_processes) if not self.split_batches else scheduler.total_num_steps ) deepspeed_plugin.deepspeed_config_process(must_match=False, **config_kwargs) self.deepspeed_config = deepspeed_plugin.deepspeed_config kwargs = dict(model=model, config_params=self.deepspeed_config) if optimizer is not None: if isinstance(optimizer, (DummyOptim)): kwargs["model_parameters"] = optimizer.params if isinstance(scheduler, (DummyScheduler)) and scheduler.lr_scheduler_callable is not None: kwargs["lr_scheduler"] = scheduler.lr_scheduler_callable else: if self.deepspeed_config["zero_optimization"].get("offload_optimizer", {}).get( "device", "none" ) != "none" and self.deepspeed_config.get("zero_force_ds_cpu_optimizer", True): from deepspeed.ops.adam import DeepSpeedCPUAdam defaults = {k: v for k, v in optimizer.defaults.items() if k in ["lr", "weight_decay"]} optimizer = DeepSpeedCPUAdam(optimizer.param_groups, **defaults) kwargs["optimizer"] = optimizer if scheduler is not None: if type(scheduler).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES: kwargs["lr_scheduler"] = scheduler engine, optimizer, _, lr_scheduler = deepspeed.initialize(**kwargs) if optimizer is not None: optimizer = DeepSpeedOptimizerWrapper(optimizer) if scheduler is not None: if lr_scheduler is None: scheduler = AcceleratedScheduler( scheduler, optimizer, step_with_optimizer=self.step_scheduler_with_optimizer, split_batches=self.split_batches, ) else: scheduler = DeepSpeedSchedulerWrapper(lr_scheduler, optimizer) for i in range(len(result)): if isinstance(result[i], torch.nn.Module): result[i] = engine elif isinstance(result[i], (torch.optim.Optimizer, DummyOptim)): result[i] = optimizer elif (isinstance(result[i], (LRScheduler, DummyScheduler))) or ( type(result[i]).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES ): result[i] = scheduler # pointing for deepspeed_engine_wrapped.backward() self.deepspeed_engine_wrapped = DeepSpeedEngineWrapper(engine) self._models.append(engine) if optimizer is not None: self._optimizers.append(optimizer) if scheduler is not None: self._schedulers.append(scheduler) if len(self._models) > 1: raise AssertionError( "You can't use same `Accelerator()` instance with multiple models when using DeepSpeed" ) return tuple(result) def _prepare_megatron_lm(self, *args): megatron_lm_plugin = self.state.megatron_lm_plugin micro_batch_size = None if not megatron_lm_plugin.megatron_dataset_flag: batch_sizes = [obj.batch_size for obj in args if hasattr(obj, "batch_size")] if len(batch_sizes) == 0: raise ValueError( "You must specify a training or evaluation dataloader in `accelerate.prepare()` when using Megatron-LM." ) micro_batch_size = min(batch_sizes) if megatron_lm_plugin.is_train_batch_min else max(batch_sizes) if len(batch_sizes) > 1: logger.info( "Since you passed both train and evaluation dataloader, `is_train_batch_min` (here " f"{megatron_lm_plugin.is_train_batch_min} will decide the `train_batch_size` ({micro_batch_size})." ) else: for obj in args: if isinstance(obj, MegatronLMDummyDataLoader): micro_batch_size = obj.dataset_args["micro_batch_size"] break if micro_batch_size is not None: dp_degree = self.num_processes // (megatron_lm_plugin.tp_degree * megatron_lm_plugin.pp_degree) megatron_lm_plugin.set_training_args(micro_batch_size, dp_degree) else: raise ValueError( "When you do not pass the dataloader parameter, the `data_parallel_size`, " "`micro_batch_size`, and `global_batch_size` megatron parameters will not be updated." ) model = None optimizer = None scheduler = None batch_data = None for obj in args: if isinstance(obj, torch.utils.data.DataLoader) and batch_data is None: batch_data = next(iter(obj)) elif isinstance(obj, torch.nn.Module): model = obj elif isinstance(obj, (torch.optim.Optimizer)): optimizer = obj elif isinstance(obj, (LRScheduler, MegatronLMDummyScheduler)): scheduler = obj if model is not None: megatron_lm_plugin.set_network_size_args(model, batch_data) if optimizer is not None: megatron_lm_plugin.set_optimizer_type(optimizer) if scheduler is not None: if not isinstance(scheduler, MegatronLMDummyScheduler): raise ValueError( "You can't use a custom scheduler with Megatron-LM. Please use the `accelerate.utils.MegatronLMDummyScheduler` instead." ) megatron_lm_plugin.set_scheduler_args(scheduler) # initialize megatron-lm megatron_lm_initialize(self, args_defaults=megatron_lm_plugin.megatron_lm_default_args) (model, optimizer, scheduler) = megatron_lm_prepare_model_optimizer_scheduler(self) self.wait_for_everyone() counter = 0 result = [] for obj in args: if isinstance(obj, torch.utils.data.DataLoader): result.append(megatron_lm_prepare_data_loader(self, obj)) counter += 1 elif isinstance(obj, MegatronLMDummyDataLoader): if counter == 0: obj.set_megatron_data_args() dataloaders = megatron_lm_prepare_data_loader(self, obj) result.append(dataloaders[counter]) counter += 1 else: result.append(obj) if model is not None: model = MegatronEngine(self, model, optimizer, scheduler) if optimizer is not None: optimizer = MegatronLMOptimizerWrapper(optimizer) if scheduler is not None: scheduler = MegatronLMSchedulerWrapper(scheduler, optimizer) for i in range(len(result)): if isinstance(result[i], torch.nn.Module): result[i] = model elif isinstance(result[i], torch.optim.Optimizer): result[i] = optimizer elif isinstance(result[i], MegatronLMDummyScheduler): result[i] = scheduler if model is not None: self._models.append(model) if len(self._models) > 1: raise AssertionError( "You can't use same `Accelerator()` instance with multiple models when using Megatron-LM" ) if optimizer is not None: self._optimizers.append(optimizer) if scheduler is not None: self._schedulers.append(scheduler) return tuple(result) def _prepare_ipex_or_xpu(self, *args): """ Prepares model and optimizer for training with IPEX or XPU acceleration. This covers 3 cases, IPEX compiled with CPU only support, IPEX compiled with XPU support and training with XPU pytorch backend available in stock pytorch starting from version 2.4. """ if self.state.use_ipex: if not is_ipex_available(): raise ImportError( "IPEX is not installed or IPEX's version does not match current PyTorch version. Please refer" " to https://github.com/intel/intel-extension-for-pytorch." ) model = None optimizer = None result = [obj for obj in args] for obj in result: if isinstance(obj, torch.nn.Module): model = obj model.train() elif isinstance(obj, (torch.optim.Optimizer)): optimizer = obj if optimizer is not None and model is not None: dtype = torch.bfloat16 if self.state.mixed_precision == "bf16" else None if self.device.type == "xpu": model = model.to(self.device) # ipex.optimize() is available only for IPEX, both IPEX-CPU and IPEX-XPU if is_ipex_available(): import intel_extension_for_pytorch as ipex model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=dtype, inplace=True, level="O1") for i in range(len(result)): if isinstance(result[i], torch.nn.Module): result[i] = model elif isinstance(result[i], (torch.optim.Optimizer)): result[i] = optimizer return tuple(result) def _prepare_msamp(self, *args): if not is_msamp_available(): raise ImportError( "MS-AMP was not found on your system. Please ensure that MS-AMP is available " " or choose `'te'` as the backend for FP8 mixed precision training." ) else: import msamp model, optimizer = None, None num_models, num_optimizers = 0, 0 result = [obj for obj in args] for obj in result: if isinstance(obj, torch.nn.Module): model = obj num_models += 1 elif isinstance(obj, (torch.optim.Optimizer)): optimizer = obj num_optimizers += 1 if optimizer is None or model is None: raise ValueError( "You must pass a model and an optimizer together to `accelerate.prepare()` when using MS-AMP." ) elif num_models > 1 or num_optimizers > 1: raise ValueError( f"You can't use multiple models ({num_models}) or optimizers {num_optimizers} with MS-AMP." ) else: model, optimizer = msamp.initialize(model, optimizer, opt_level=self.fp8_recipe_handler.opt_level) for i in range(len(result)): if isinstance(result[i], torch.nn.Module): result[i] = model elif isinstance(result[i], (torch.optim.Optimizer)): result[i] = optimizer return tuple(result) def prepare_data_loader( self, data_loader: torch.utils.data.DataLoader, device_placement=None, slice_fn_for_dispatch=None ): """ Prepares a PyTorch DataLoader for training in any distributed setup. It is recommended to use [`Accelerator.prepare`] instead. Args: data_loader (`torch.utils.data.DataLoader`): A vanilla PyTorch DataLoader to prepare device_placement (`bool`, *optional*): Whether or not to place the batches on the proper device in the prepared dataloader. Will default to `self.device_placement`. slice_fn_for_dispatch (`Callable`, *optional*`): If passed, this function will be used to slice tensors across `num_processes`. Will default to [`~utils.slice_tensors`]. This argument is used only when `dispatch_batches` is set to `True` and will be ignored otherwise. Example: ```python >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> data_loader = torch.utils.data.DataLoader(...) >>> data_loader = accelerator.prepare_data_loader(data_loader, device_placement=True) ``` """ # Ensure we can't double wrap a DataLoader due to `find_batch_size` if getattr(data_loader, "_is_accelerate_prepared", False): if data_loader not in self._dataloaders: self._dataloaders.append(data_loader) return data_loader if device_placement is None: device_placement = self.device_placement if self.distributed_type != DistributedType.XLA else False prepared_data_loader = prepare_data_loader( data_loader, self.device, num_processes=self.num_processes, process_index=self.process_index, split_batches=self.split_batches, put_on_device=device_placement, rng_types=self.rng_types.copy(), dispatch_batches=self.dispatch_batches, even_batches=self.even_batches, slice_fn_for_dispatch=slice_fn_for_dispatch, use_seedable_sampler=self.use_seedable_sampler, non_blocking=self.non_blocking, ) self._dataloaders.append(prepared_data_loader) return prepared_data_loader def prepare_optimizer(self, optimizer: torch.optim.Optimizer, device_placement=None): """ Prepares a PyTorch Optimizer for training in any distributed setup. It is recommended to use [`Accelerator.prepare`] instead. Args: optimizer (`torch.optim.Optimizer`): A vanilla PyTorch optimizer to prepare device_placement (`bool`, *optional*): Whether or not to place the optimizer on the proper device. Will default to `self.device_placement`. Example: ```python >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> optimizer = torch.optim.Adam(...) >>> optimizer = accelerator.prepare_optimizer(optimizer, device_placement=True) ``` """ if is_lomo_available(): # We need to import locally to avoid circular imports since lomo imports stuff from # transformers & accelerate from lomo_optim import AdaLomo, Lomo # Support multiple optimizers: https://github.com/huggingface/accelerate/pull/2695#discussion_r1589164607 self.has_lomo_optimizer |= isinstance(optimizer, (Lomo, AdaLomo)) # Ensure we can't double wrap an optimizer due to `find_batch_size` if getattr(optimizer, "_is_accelerate_prepared", False): if optimizer not in self._optimizers: self._optimizers.append(optimizer) return optimizer if device_placement is None: device_placement = self.device_placement optimizer = AcceleratedOptimizer(optimizer, device_placement=device_placement, scaler=self.scaler) self._optimizers.append(optimizer) return optimizer def prepare_scheduler(self, scheduler: LRScheduler): """ Prepares a PyTorch Scheduler for training in any distributed setup. It is recommended to use [`Accelerator.prepare`] instead. Args: scheduler (`torch.optim.lr_scheduler.LRScheduler`): A vanilla PyTorch scheduler to prepare Example: ```python >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> optimizer = torch.optim.Adam(...) >>> scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, ...) >>> scheduler = accelerator.prepare_scheduler(scheduler) ``` """ # Ensure we can't double wrap a scheduler due to `find_batch_size` if getattr(scheduler, "_is_accelerate_prepared", False): if scheduler not in self._schedulers: self._schedulers.append(scheduler) return scheduler # We try to find the optimizer associated with `scheduler`, the default is the full list. optimizer = self._optimizers for opt in self._optimizers: if getattr(scheduler, "optimizer", None) == opt.optimizer: optimizer = opt break scheduler = AcceleratedScheduler( scheduler, optimizer, step_with_optimizer=self.step_scheduler_with_optimizer, split_batches=self.split_batches, ) self._schedulers.append(scheduler) return scheduler def backward(self, loss, **kwargs): """ Scales the gradients in accordance to the `GradientAccumulationPlugin` and calls the correct `backward()` based on the configuration. Should be used in lieu of `loss.backward()`. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(gradient_accumulation_steps=2) >>> outputs = model(inputs) >>> loss = loss_fn(outputs, labels) >>> accelerator.backward(loss) ``` """ learning_rate = kwargs.get("learning_rate") if self.distributed_type != DistributedType.DEEPSPEED: # deepspeed handles loss scaling by gradient_accumulation_steps in its `backward` loss = loss / self.gradient_accumulation_steps if self.distributed_type == DistributedType.DEEPSPEED: self.deepspeed_engine_wrapped.backward(loss, **kwargs) elif self.distributed_type == DistributedType.MEGATRON_LM: return elif self.scaler is not None: self.scaler.scale(loss).backward(**kwargs) elif learning_rate is not None and self.has_lomo_optimizer: self.lomo_backward(loss, learning_rate) else: loss.backward(**kwargs) def set_trigger(self): """ Sets the internal trigger tensor to 1 on the current process. A latter check should follow using this which will check across all processes. Note: Does not require `wait_for_everyone()` Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> # Assume later in the training script >>> # `should_do_breakpoint` is a custom function to monitor when to break, >>> # e.g. when the loss is NaN >>> if should_do_breakpoint(loss): ... accelerator.set_trigger() >>> # Assume later in the training script >>> if accelerator.check_breakpoint(): ... break ``` """ self.flag_tensor = torch.tensor(1, device=self.device) def check_trigger(self): """ Checks if the internal trigger tensor has been set to 1 in any of the processes. If so, will return `True` and reset the trigger tensor to 0. Note: Does not require `wait_for_everyone()` Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> # Assume later in the training script >>> # `should_do_breakpoint` is a custom function to monitor when to break, >>> # e.g. when the loss is NaN >>> if should_do_breakpoint(loss): ... accelerator.set_trigger() >>> # Assume later in the training script >>> if accelerator.check_trigger(): ... break ``` """ # Now that we are outside `__init__`, we can initialize it if it is `None` on device if self.flag_tensor is None: self.flag_tensor = torch.tensor(0, device=self.device) flag_tensor = self.reduce(self.flag_tensor) if flag_tensor.item() >= 1: self.flag_tensor = torch.tensor(0, device=self.device) return True return False def unscale_gradients(self, optimizer=None): """ Unscale the gradients in mixed precision training with AMP. This is a noop in all other settings. Likely should be called through [`Accelerator.clip_grad_norm_`] or [`Accelerator.clip_grad_value_`] Args: optimizer (`torch.optim.Optimizer` or `list[torch.optim.Optimizer]`, *optional*): The optimizer(s) for which to unscale gradients. If not set, will unscale gradients on all optimizers that were passed to [`~Accelerator.prepare`]. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> model, optimizer = accelerator.prepare(model, optimizer) >>> outputs = model(inputs) >>> loss = loss_fn(outputs, labels) >>> accelerator.backward(loss) >>> accelerator.unscale_gradients(optimizer=optimizer) ``` """ if self.native_amp and self.mixed_precision == "fp16": if optimizer is None: # TODO: this unscales all optimizers where we should only unscale the one where parameters are. optimizer = self._optimizers elif not isinstance(optimizer, (tuple, list)): optimizer = [optimizer] for opt in optimizer: while isinstance(opt, AcceleratedOptimizer): opt = opt.optimizer self.scaler.unscale_(opt) def clip_grad_norm_(self, parameters, max_norm, norm_type=2): """ Should be used in place of `torch.nn.utils.clip_grad_norm_`. Returns: `torch.Tensor`: Total norm of the parameter gradients (viewed as a single vector). Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(gradient_accumulation_steps=2) >>> dataloader, model, optimizer, scheduler = accelerator.prepare(dataloader, model, optimizer, scheduler) >>> for input, target in dataloader: ... optimizer.zero_grad() ... output = model(input) ... loss = loss_func(output, target) ... accelerator.backward(loss) ... if accelerator.sync_gradients: ... accelerator.clip_grad_norm_(model.parameters(), max_grad_norm) ... optimizer.step() ``` """ if self.distributed_type == DistributedType.FSDP: self.unscale_gradients() parameters = [p for p in parameters] for model in self._models: if parameters == [p for p in model.parameters()]: return model.clip_grad_norm_(max_norm, norm_type) elif self.distributed_type == DistributedType.DEEPSPEED: # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed # We cannot return the gradient norm because DeepSpeed does it. return None elif self.distributed_type == DistributedType.XLA: # Reduce gradients first for XLA for acc_opt in self._optimizers: if not acc_opt.gradient_state.is_xla_gradients_synced: opt = acc_opt while isinstance(opt, AcceleratedOptimizer): opt = opt.optimizer gradients = xm._fetch_gradients(opt) # Use xm.all_reduce to perform an in-place all-reduce. Recusrsive all-reduce each tensor # one by one in self.reduce is non-inplace. xm.all_reduce("sum", gradients, scale=1.0 / self.num_processes) # Set is_xla_gradients_synced to True to avoid all-reduce twice in the AcceleratedOptimizer step. acc_opt.gradient_state.is_xla_gradients_synced = True self.unscale_gradients() return torch.nn.utils.clip_grad_norm_(parameters, max_norm, norm_type=norm_type) def clip_grad_value_(self, parameters, clip_value): """ Should be used in place of `torch.nn.utils.clip_grad_value_`. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(gradient_accumulation_steps=2) >>> dataloader, model, optimizer, scheduler = accelerator.prepare(dataloader, model, optimizer, scheduler) >>> for input, target in dataloader: ... optimizer.zero_grad() ... output = model(input) ... loss = loss_func(output, target) ... accelerator.backward(loss) ... if accelerator.sync_gradients: ... accelerator.clip_grad_value_(model.parameters(), clip_value) ... optimizer.step() ``` """ if self.distributed_type in [DistributedType.DEEPSPEED, DistributedType.FSDP]: raise Exception("DeepSpeed and FSDP do not support `clip_grad_value_`. Use `clip_grad_norm_` instead.") self.unscale_gradients() torch.nn.utils.clip_grad_value_(parameters, clip_value) def gather(self, tensor): """ Gather the values in *tensor* across all processes and concatenate them on the first dimension. Useful to regroup the predictions from all processes when doing evaluation. Note: This gather happens in all processes. Args: tensor (`torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`): The tensors to gather across all processes. Returns: `torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`: The gathered tensor(s). Note that the first dimension of the result is *num_processes* multiplied by the first dimension of the input tensors. Example: ```python >>> # Assuming four processes >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> process_tensor = torch.tensor([accelerator.process_index]) >>> gathered_tensor = accelerator.gather(process_tensor) >>> gathered_tensor tensor([0, 1, 2, 3]) ``` """ return gather(tensor) def gather_for_metrics(self, input_data, use_gather_object=False): """ Gathers `input_data` and potentially drops duplicates in the last batch if on a distributed system. Should be used for gathering the inputs and targets for metric calculation. Args: input (`torch.Tensor`, `object`, a nested tuple/list/dictionary of `torch.Tensor`, or a nested tuple/list/dictionary of `object`): The tensors or objects for calculating metrics across all processes use_gather_object(`bool`): Whether to forcibly use gather_object instead of gather (which is already done if all objects passed do not contain tensors). This flag can be useful for gathering tensors with different sizes that we don't want to pad and concatenate along the first dimension. Using it with GPU tensors is not well supported and inefficient as it incurs GPU -> CPU transfer since tensors would be pickled. Example: ```python >>> # Assuming two processes, with a batch size of 5 on a dataset with 9 samples >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> dataloader = torch.utils.data.DataLoader(range(9), batch_size=5) >>> dataloader = accelerator.prepare(dataloader) >>> batch = next(iter(dataloader)) >>> gathered_items = accelerator.gather_for_metrics(batch) >>> len(gathered_items) 9 ``` """ try: recursively_apply(lambda x: x, input_data, error_on_other_type=True) all_tensors = True except TypeError: all_tensors = False use_gather_object = use_gather_object or not all_tensors if use_gather_object: data = gather_object(input_data) else: data = self.gather(input_data) try: if self.gradient_state.end_of_dataloader: # at the end of a dataloader, `gather_for_metrics` regresses to # `gather` unless the dataset has a remainder so log. if self.gradient_state.remainder == -1: logger.info( "The used dataset had no length, returning gathered tensors. You should drop the remainder yourself." ) return data elif self.gradient_state.remainder > 0: # Last batch needs to be truncated on distributed systems as it contains additional samples def _adjust_samples(tensor): return tensor[: self.gradient_state.remainder] if use_gather_object: # gather_object put the objects in a list return _adjust_samples(data) else: return recursively_apply(_adjust_samples, data) else: # remainder is 0 # no remainder even though at end of dataloader, so nothing to do. return data else: # Not at the end of the dataloader, no need to adjust the tensors return data except Exception: # Dataset had no length or raised an error return data def reduce(self, tensor, reduction="sum", scale=1.0): """ Reduce the values in *tensor* across all processes based on *reduction*. Note: All processes get the reduced value. Args: tensor (`torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`): The tensors to reduce across all processes. reduction (`str`, *optional*, defaults to "sum"): A reduction type, can be one of 'sum', 'mean', or 'none'. If 'none', will not perform any operation. scale (`float`, *optional*, defaults to 1.0): A default scaling value to be applied after the reduce, only valied on XLA. Returns: `torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`: The reduced tensor(s). Example: ```python >>> # Assuming two processes >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> process_tensor = torch.arange(accelerator.num_processes) + 1 + (2 * accelerator.process_index) >>> process_tensor = process_tensor.to(accelerator.device) >>> reduced_tensor = accelerator.reduce(process_tensor, reduction="sum") >>> reduced_tensor tensor([4, 6]) ``` """ return reduce(tensor, reduction, scale) def pad_across_processes(self, tensor, dim=0, pad_index=0, pad_first=False): """ Recursively pad the tensors in a nested list/tuple/dictionary of tensors from all devices to the same size so they can safely be gathered. Args: tensor (nested list/tuple/dictionary of `torch.Tensor`): The data to gather. dim (`int`, *optional*, defaults to 0): The dimension on which to pad. pad_index (`int`, *optional*, defaults to 0): The value with which to pad. pad_first (`bool`, *optional*, defaults to `False`): Whether to pad at the beginning or the end. Returns: `torch.Tensor`, or a nested tuple/list/dictionary of `torch.Tensor`: The padded tensor(s). Example: ```python >>> # Assuming two processes, with the first processes having a tensor of size 1 and the second of size 2 >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> process_tensor = torch.arange(accelerator.process_index + 1).to(accelerator.device) >>> padded_tensor = accelerator.pad_across_processes(process_tensor) >>> padded_tensor.shape torch.Size([2]) ``` """ return pad_across_processes(tensor, dim=dim, pad_index=pad_index, pad_first=pad_first) def unwrap_model(self, model, keep_fp32_wrapper: bool = True): """ Unwraps the `model` from the additional layer possible added by [`~Accelerator.prepare`]. Useful before saving the model. Args: model (`torch.nn.Module`): The model to unwrap. keep_fp32_wrapper (`bool`, *optional*, defaults to `True`): Whether to not remove the mixed precision hook if it was added. Returns: `torch.nn.Module`: The unwrapped model. Example: ```python >>> # Assuming two GPU processes >>> from torch.nn.parallel import DistributedDataParallel >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> model = accelerator.prepare(MyModel()) >>> print(model.__class__.__name__) DistributedDataParallel >>> model = accelerator.unwrap_model(model) >>> print(model.__class__.__name__) MyModel ``` """ return extract_model_from_parallel(model, keep_fp32_wrapper) def wait_for_everyone(self): """ Will stop the execution of the current process until every other process has reached that point (so this does nothing when the script is only run in one process). Useful to do before saving a model. Example: ```python >>> # Assuming two GPU processes >>> import time >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> if accelerator.is_main_process: ... time.sleep(2) >>> else: ... print("I'm waiting for the main process to finish its sleep...") >>> accelerator.wait_for_everyone() >>> # Should print on every process at the same time >>> print("Everyone is here") ``` """ wait_for_everyone() @on_main_process def init_trackers(self, project_name: str, config: dict | None = None, init_kwargs: dict | None = {}): """ Initializes a run for all trackers stored in `self.log_with`, potentially with starting configurations Args: project_name (`str`): The name of the project. All trackers will save their data based on this config (`dict`, *optional*): Optional starting configuration to be logged. init_kwargs (`dict`, *optional*): A nested dictionary of kwargs to be passed to a specific tracker's `__init__` function. Should be formatted like so: ```python {"wandb": {"tags": ["tag_a", "tag_b"]}} ``` Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(log_with="tensorboard") >>> accelerator.init_trackers( ... project_name="my_project", ... config={"learning_rate": 0.001, "batch_size": 32}, ... init_kwargs={"tensorboard": {"flush_secs": 60}}, ... ) ``` """ for tracker in self.log_with: if issubclass(type(tracker), GeneralTracker): # Custom trackers are already initialized self.trackers.append(tracker) else: tracker_init = LOGGER_TYPE_TO_CLASS[str(tracker)] if tracker_init.requires_logging_directory: # We can skip this check since it was done in `__init__` self.trackers.append( tracker_init(project_name, self.logging_dir, **init_kwargs.get(str(tracker), {})) ) else: self.trackers.append(tracker_init(project_name, **init_kwargs.get(str(tracker), {}))) if config is not None: for tracker in self.trackers: tracker.store_init_configuration(config) def get_tracker(self, name: str, unwrap: bool = False): """ Returns a `tracker` from `self.trackers` based on `name` on the main process only. Args: name (`str`): The name of a tracker, corresponding to the `.name` property. unwrap (`bool`): Whether to return the internal tracking mechanism or to return the wrapped tracker instead (recommended). Returns: `GeneralTracker`: The tracker corresponding to `name` if it exists. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(log_with="tensorboard") >>> accelerator.init_trackers("my_project") >>> tensorboard_tracker = accelerator.get_tracker("tensorboard") ``` """ if len(self.trackers) > 0: for tracker in self.trackers: if tracker.name == name: return tracker.tracker if unwrap else tracker raise ValueError(f"{name} is not an available tracker stored inside the `Accelerator`.") # Handle tracker only made on main process return GeneralTracker(_blank=True) @on_main_process def log(self, values: dict, step: int | None = None, log_kwargs: dict | None = {}): """ Logs `values` to all stored trackers in `self.trackers` on the main process only. Args: values (`dict`): Values should be a dictionary-like object containing only types `int`, `float`, or `str`. step (`int`, *optional*): The run step. If included, the log will be affiliated with this step. log_kwargs (`dict`, *optional*): A nested dictionary of kwargs to be passed to a specific tracker's `log` function. Should be formatted like so: ```python {"wandb": {"tags": ["tag_a", "tag_b"]}} ``` Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(log_with="tensorboard") >>> accelerator.init_trackers("my_project") >>> accelerator.log({"loss": 0.5, "accuracy": 0.9}) ``` """ for tracker in self.trackers: tracker.log(values, step=step, **log_kwargs.get(tracker.name, {})) @on_main_process def end_training(self): """ Runs any special end training behaviors, such as stopping trackers on the main process only. Should always be called at the end of your script if using experiment tracking. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(log_with="tensorboard") >>> accelerator.init_trackers("my_project") >>> # Do training >>> accelerator.end_training() ``` """ for tracker in self.trackers: tracker.finish() def save(self, obj, f, safe_serialization=False): """ Save the object passed to disk once per machine. Use in place of `torch.save`. Args: obj (`object`): The object to save. f (`str` or `os.PathLike`): Where to save the content of `obj`. safe_serialization (`bool`, *optional*, defaults to `False`): Whether to save `obj` using `safetensors` Note: If `save_on_each_node` was passed in as a `ProjectConfiguration`, will save the object once per node, rather than only once on the main node. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> arr = [0, 1, 2, 3] >>> accelerator.save(arr, "array.pkl") ``` """ save( obj, f, save_on_each_node=self.project_configuration.save_on_each_node, safe_serialization=safe_serialization, ) def save_model( self, model: torch.nn.Module, save_directory: Union[str, os.PathLike], max_shard_size: Union[int, str] = "10GB", safe_serialization: bool = True, ): """ Save a model so that it can be re-loaded using load_checkpoint_in_model Arguments: model: (`torch.nn.Module`): Model to be saved. The model can be wrapped or unwraped. save_directory (`str` or `os.PathLike`): Directory to which to save. Will be created if it doesn't exist. max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). <Tip warning={true}> If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard which will be bigger than `max_shard_size`. </Tip> safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> model = ... >>> accelerator.save_model(model, save_directory) ``` """ if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(save_directory, exist_ok=True) # get the state_dict of the model if any( [ module._hf_hook.offload for module in model.modules() if hasattr(module, "_hf_hook") and isinstance(module._hf_hook, AlignDevicesHook) ] ): state_dict = get_state_dict_offloaded_model(model) else: if any(param.device == torch.device("meta") for param in model.parameters()): raise RuntimeError("You can't save the model since some parameters are on the meta device.") state_dict = self.get_state_dict(model) if safe_serialization: state_dict = clean_state_dict_for_safetensors(state_dict) weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME filename_pattern = SAFE_WEIGHTS_PATTERN_NAME if safe_serialization else WEIGHTS_PATTERN_NAME state_dict_split = split_torch_state_dict_into_shards( state_dict, filename_pattern=filename_pattern, max_shard_size=max_shard_size ) # Clean the folder from a previous save for filename in os.listdir(save_directory): full_filename = os.path.join(save_directory, filename) # If we have a shard file that is not going to be replaced, we delete it, but only from the main process # in distributed settings to avoid race conditions. weights_no_suffix = weights_name.replace(".bin", "") # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005 filename_no_suffix = filename.replace(".bin", "") reg = re.compile(r"(.*?)-\d{5}-of-\d{5}") if ( filename.startswith(weights_no_suffix) and os.path.isfile(full_filename) and filename not in state_dict_split.filename_to_tensors.keys() and reg.fullmatch(filename_no_suffix) is not None and PartialState().is_main_process ): os.remove(full_filename) # Save the model for filename, tensors in state_dict_split.filename_to_tensors.items(): shard = {tensor: state_dict[tensor] for tensor in tensors} self.save(shard, os.path.join(save_directory, filename), safe_serialization=safe_serialization) # Save index if sharded if state_dict_split.is_sharded: index = { "metadata": state_dict_split.metadata, "weight_map": state_dict_split.tensor_to_filename, } save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME save_index_file = os.path.join(save_directory, save_index_file) with open(save_index_file, "w", encoding="utf-8") as f: content = json.dumps(index, indent=2, sort_keys=True) + "\n" f.write(content) logger.info( f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be " f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the " f"index located at {save_index_file}." ) else: path_to_weights = os.path.join(save_directory, WEIGHTS_NAME) logger.info(f"Model weights saved in {path_to_weights}") def register_save_state_pre_hook(self, hook: Callable[..., None]) -> hooks.RemovableHandle: """ Registers a pre hook to be run before `save_checkpoint` is called in [`Accelerator.save_state`]. Args: hook (`Callable`): A function to be called in [`Accelerator.save_state`] before `save_checkpoint`. The hook should have the following signature: `hook(models: list[torch.nn.Module], weights: list[dict[str, torch.Tensor]], input_dir: str) -> None` The `models` argument are the models as saved in the accelerator state under `accelerator._models`, `weigths` argument are the state dicts of the `models`, and the `input_dir` argument is the `input_dir` argument passed to [`Accelerator.load_state`]. <Tip> Should only be used in conjunction with [`Accelerator.register_load_state_pre_hook`]. Can be useful to save configurations in addition to model weights. Can also be used to overwrite model saving with a customized method. In this case, make sure to remove already loaded weights from the weights list. </Tip> Returns: `torch.utils.hooks.RemovableHandle`: a handle that can be used to remove the added hook by calling `handle.remove()` """ handle = hooks.RemovableHandle(self._save_model_state_pre_hook) self._save_model_state_pre_hook[handle.id] = hook return handle def save_state(self, output_dir: str = None, safe_serialization: bool = True, **save_model_func_kwargs): """ Saves the current states of the model, optimizer, scaler, RNG generators, and registered objects to a folder. If a `ProjectConfiguration` was passed to the `Accelerator` object with `automatic_checkpoint_naming` enabled then checkpoints will be saved to `self.project_dir/checkpoints`. If the number of current saves is greater than `total_limit` then the oldest save is deleted. Each checkpoint is saved in seperate folders named `checkpoint_<iteration>`. Otherwise they are just saved to `output_dir`. <Tip> Should only be used when wanting to save a checkpoint during training and restoring the state in the same environment. </Tip> Args: output_dir (`str` or `os.PathLike`): The name of the folder to save all relevant weights and states. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). save_model_func_kwargs (`dict`, *optional*): Additional keyword arguments for saving model which can be passed to the underlying save function, such as optional arguments for DeepSpeed's `save_checkpoint` function. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> model, optimizer, lr_scheduler = ... >>> model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler) >>> accelerator.save_state(output_dir="my_checkpoint") ``` """ if self.project_configuration.automatic_checkpoint_naming: output_dir = os.path.join(self.project_dir, "checkpoints") os.makedirs(output_dir, exist_ok=True) if self.project_configuration.automatic_checkpoint_naming: folders = [os.path.join(output_dir, folder) for folder in os.listdir(output_dir)] if ( self.project_configuration.total_limit is not None and (len(folders) + 1 > self.project_configuration.total_limit) and self.is_main_process ): def _inner(folder): return list(map(int, re.findall(r"[\/]?([0-9]+)(?=[^\/]*$)", folder)))[0] folders.sort(key=_inner) logger.warning( f"Deleting {len(folders) + 1 - self.project_configuration.total_limit} checkpoints to make room for new checkpoint." ) for folder in folders[: len(folders) + 1 - self.project_configuration.total_limit]: shutil.rmtree(folder) output_dir = os.path.join(output_dir, f"checkpoint_{self.save_iteration}") if os.path.exists(output_dir): raise ValueError( f"Checkpoint directory {output_dir} ({self.save_iteration}) already exists. Please manually override `self.save_iteration` with what iteration to start with." ) self.wait_for_everyone() os.makedirs(output_dir, exist_ok=True) logger.info(f"Saving current state to {output_dir}") if self.distributed_type == DistributedType.XLA: # Finish running the previous step before checkpointing xm.mark_step() # Save the models taking care of FSDP and DeepSpeed nuances weights = [] for i, model in enumerate(self._models): if self.distributed_type == DistributedType.FSDP: logger.info("Saving FSDP model") save_fsdp_model(self.state.fsdp_plugin, self, model, output_dir, i) logger.info(f"FSDP Model saved to output dir {output_dir}") elif self.distributed_type == DistributedType.DEEPSPEED: logger.info("Saving DeepSpeed Model and Optimizer") ckpt_id = f"{MODEL_NAME}" if i == 0 else f"{MODEL_NAME}_{i}" model.save_checkpoint(output_dir, ckpt_id, **save_model_func_kwargs) logger.info(f"DeepSpeed Model and Optimizer saved to output dir {os.path.join(output_dir, ckpt_id)}") elif self.distributed_type == DistributedType.MEGATRON_LM: logger.info("Saving Megatron-LM Model, Optimizer and Scheduler") model.save_checkpoint(output_dir) logger.info(f"Megatron-LM Model , Optimizer and Scheduler saved to output dir {output_dir}") else: weights.append(self.get_state_dict(model, unwrap=False)) # Save the optimizers taking care of FSDP and DeepSpeed nuances optimizers = [] if self.distributed_type == DistributedType.FSDP: for i, opt in enumerate(self._optimizers): logger.info("Saving FSDP Optimizer") save_fsdp_optimizer(self.state.fsdp_plugin, self, opt, self._models[i], output_dir, i) logger.info(f"FSDP Optimizer saved to output dir {output_dir}") elif self.distributed_type not in [DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM]: optimizers = self._optimizers # Save the lr schedulers taking care of DeepSpeed nuances schedulers = [] if self.distributed_type == DistributedType.DEEPSPEED: for i, scheduler in enumerate(self._schedulers): if isinstance(scheduler, DeepSpeedSchedulerWrapper): continue schedulers.append(scheduler) elif self.distributed_type not in [DistributedType.MEGATRON_LM]: schedulers = self._schedulers # Save the samplers of the dataloaders dataloaders = self._dataloaders # Call model loading hooks that might have been registered with # accelerator.register_model_state_hook for hook in self._save_model_state_pre_hook.values(): hook(self._models, weights, output_dir) save_location = save_accelerator_state( output_dir, weights, optimizers, schedulers, dataloaders, self.state.process_index, self.scaler, save_on_each_node=self.project_configuration.save_on_each_node, safe_serialization=safe_serialization, ) for i, obj in enumerate(self._custom_objects): save_custom_state(obj, output_dir, i, save_on_each_node=self.project_configuration.save_on_each_node) self.project_configuration.iteration += 1 return save_location def register_load_state_pre_hook(self, hook: Callable[..., None]) -> hooks.RemovableHandle: """ Registers a pre hook to be run before [`load_checkpoint`] is called in [`Accelerator.load_state`]. Args: hook (`Callable`): A function to be called in [`Accelerator.load_state`] before `load_checkpoint`. The hook should have the following signature: `hook(models: list[torch.nn.Module], input_dir: str) -> None` The `models` argument are the models as saved in the accelerator state under `accelerator._models`, and the `input_dir` argument is the `input_dir` argument passed to [`Accelerator.load_state`]. <Tip> Should only be used in conjunction with [`Accelerator.register_save_state_pre_hook`]. Can be useful to load configurations in addition to model weights. Can also be used to overwrite model loading with a customized method. In this case, make sure to remove already loaded models from the models list. </Tip> Returns: `torch.utils.hooks.RemovableHandle`: a handle that can be used to remove the added hook by calling `handle.remove()` """ handle = hooks.RemovableHandle(self._load_model_state_pre_hook) self._load_model_state_pre_hook[handle.id] = hook return handle def load_state(self, input_dir: str = None, **load_model_func_kwargs): """ Loads the current states of the model, optimizer, scaler, RNG generators, and registered objects. <Tip> Should only be used in conjunction with [`Accelerator.save_state`]. If a file is not registered for checkpointing, it will not be loaded if stored in the directory. </Tip> Args: input_dir (`str` or `os.PathLike`): The name of the folder all relevant weights and states were saved in. Can be `None` if `automatic_checkpoint_naming` is used, and will pick up from the latest checkpoint. load_model_func_kwargs (`dict`, *optional*): Additional keyword arguments for loading model which can be passed to the underlying load function, such as optional arguments for DeepSpeed's `load_checkpoint` function or a `map_location` to load the model and optimizer on. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> model, optimizer, lr_scheduler = ... >>> model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler) >>> accelerator.load_state("my_checkpoint") ``` """ if input_dir is not None: # Check if folder exists input_dir = os.path.expanduser(input_dir) if not os.path.isdir(input_dir): raise ValueError(f"Tried to find {input_dir} but folder does not exist") elif self.project_configuration.automatic_checkpoint_naming: # Pick up from automatic checkpoint naming input_dir = os.path.join(self.project_dir, "checkpoints") folders = [os.path.join(input_dir, folder) for folder in os.listdir(input_dir)] def _inner(folder): return list(map(int, re.findall(r"[\/]?([0-9]+)(?=[^\/]*$)", folder)))[0] folders.sort(key=_inner) input_dir = folders[-1] else: raise ValueError("No input_dir provided and automatic checkpoint naming is disabled.") logger.info(f"Loading states from {input_dir}") # Load the models taking care of FSDP and DeepSpeed nuances models = [] for i, model in enumerate(self._models): if self.distributed_type == DistributedType.FSDP: logger.info("Loading FSDP model") load_fsdp_model(self.state.fsdp_plugin, self, model, input_dir, i) logger.info(f"FSDP Model loaded from input dir {input_dir}") elif self.distributed_type == DistributedType.DEEPSPEED: logger.info("Loading DeepSpeed Model and Optimizer") ckpt_id = f"{MODEL_NAME}" if i == 0 else f"{MODEL_NAME}_{i}" model.load_checkpoint(input_dir, ckpt_id, **load_model_func_kwargs) logger.info(f"DeepSpeed Model and Optimizer loaded from input dir {os.path.join(input_dir, ckpt_id)}") elif self.distributed_type == DistributedType.MEGATRON_LM: logger.info("Loading Megatron-LM Model, Optimizer and Scheduler") model.load_checkpoint(input_dir) logger.info(f"Megatron-LM Model , Optimizer and Scheduler loaded from input dir {input_dir}") else: models.append(model) # Load the optimizers taking care of FSDP and DeepSpeed nuances optimizers = [] if self.distributed_type == DistributedType.FSDP: for i, opt in enumerate(self._optimizers): logger.info("Loading FSDP Optimizer") load_fsdp_optimizer(self.state.fsdp_plugin, self, opt, self._models[i], input_dir, i) logger.info(f"FSDP Optimizer loaded from input dir {input_dir}") elif self.distributed_type not in [DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM]: optimizers = self._optimizers # Load the lr schedulers taking care of DeepSpeed nuances schedulers = [] if self.distributed_type == DistributedType.DEEPSPEED: for i, scheduler in enumerate(self._schedulers): if isinstance(scheduler, DeepSpeedSchedulerWrapper): continue schedulers.append(scheduler) elif self.distributed_type not in [DistributedType.MEGATRON_LM]: schedulers = self._schedulers dataloaders = self._dataloaders # Call model loading hooks that might have been registered with # accelerator.register_model_state_hook for hook in self._load_model_state_pre_hook.values(): hook(models, input_dir) map_location = load_model_func_kwargs.pop("map_location", None) if map_location is None: if self.num_processes > 1 and self.distributed_type in ( DistributedType.MULTI_GPU, DistributedType.MULTI_MLU, DistributedType.MULTI_NPU, ): map_location = "on_device" else: map_location = "cpu" load_accelerator_state( input_dir, models, optimizers, schedulers, dataloaders, self.state.process_index, self.scaler, map_location, **load_model_func_kwargs, ) custom_checkpoints = [ f for f in os.listdir(input_dir) if re.search(r"^custom_checkpoint_\d+\.pkl$", f) is not None ] if len(custom_checkpoints) != len(self._custom_objects): err = ( f"Number of custom checkpoints in folder {input_dir} does not match the number of registered objects:" ) err += f"\n\tFound checkpoints: {len(custom_checkpoints)}" err += f"\n\tRegistered objects: {len(self._custom_objects)}\n" err += "Please make sure to only load checkpoints from folders that were created with the same set of registered objects," err += "or avoid using `custom_checkpoint` in the filename for files in that same directory and load them in manually." raise RuntimeError(err) else: logger.info(f"Loading in {len(custom_checkpoints)} custom states") for index, obj in enumerate(self._custom_objects): load_custom_state(obj, input_dir, index) def free_memory(self, *objects): """ Will release all references to the internal objects stored and call the garbage collector. You should call this method between two trainings with different models/optimizers. Also will reset `Accelerator.step` to 0. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> model, optimizer, scheduler = ... >>> model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler) >>> model, optimizer, scheduler = accelerator.free_memory(model, optimizer, scheduler) ``` """ # Deepspeed needs a bit more prep that should be done first if hasattr(self, "deepspeed_engine_wrapped"): if self.deepspeed_engine_wrapped is not None: self.deepspeed_engine_wrapped.engine.destroy() self.deepspeed_engine_wrapped = None objects = release_memory(*objects) self._schedulers = [] self._optimizers = [] self._models = [] self._dataloaders = [] self.step = 0 return objects def clear(self, *objects): """ Alias for [`Accelerate.free_memory`], releases all references to the internal objects stored and call the garbage collector. You should call this method between two trainings with different models/optimizers. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> model, optimizer, scheduler = ... >>> model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler) >>> model, optimizer, scheduler = accelerator.clear(model, optimizer, scheduler) ``` """ return self.free_memory(*objects) def _get_named_parameters(self, *args): named_parameters = {} for obj in args: if isinstance(obj, torch.nn.Module): obj = extract_model_from_parallel(obj) named_parameters.update({n: p for n, p in obj.named_parameters()}) return named_parameters def _get_devices(self, *args): model_device = None optimizer_device = None for obj in args: # Loop through model parameters and stop at the first once we have its device. if isinstance(obj, torch.nn.Module): for param in obj.parameters(): model_device = param.device break # Loop through optimizer parameters groups and stop at the first once we have its device. if isinstance(obj, torch.optim.Optimizer): for param_group in obj.param_groups: if len(param_group["params"]) > 0: optimizer_device = param_group["params"][0].device break return (model_device, optimizer_device) def get_state_dict(self, model, unwrap=True): """ Returns the state dictionary of a model sent through [`Accelerator.prepare`] potentially without full precision. Args: model (`torch.nn.Module`): A PyTorch model sent through [`Accelerator.prepare`] unwrap (`bool`, *optional*, defaults to `True`): Whether to return the original underlying state_dict of `model` or to return the wrapped state_dict Returns: `dict`: The state dictionary of the model potentially without full precision. Example: ```python >>> import torch >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> net = torch.nn.Linear(2, 2) >>> net = accelerator.prepare(net) >>> state_dict = accelerator.get_state_dict(net) ``` """ if self.distributed_type == DistributedType.DEEPSPEED: if self.deepspeed_config["zero_optimization"]["stage"] == 3: if model.zero_gather_16bit_weights_on_model_save(): state_dict = model._zero3_consolidated_16bit_state_dict() else: raise ValueError( "Cannot get 16bit model weights because `stage3_gather_16bit_weights_on_model_save` in DeepSpeed config is False. " "To save the model weights in 16bit, set `stage3_gather_16bit_weights_on_model_save` to True in DeepSpeed config file or " "set `zero3_save_16bit_model` to True when using `accelerate config`. " "To save the full checkpoint, run `model.save_checkpoint(save_dir)` and use `zero_to_fp32.py` to recover weights." ) else: from deepspeed.checkpoint.utils import clone_tensors_for_torch_save state_dict = clone_tensors_for_torch_save(self.unwrap_model(model).state_dict()) elif self.distributed_type == DistributedType.FSDP: from torch.distributed.fsdp import FullStateDictConfig, StateDictType from torch.distributed.fsdp import FullyShardedDataParallel as FSDP full_state_dict_config = FullStateDictConfig(offload_to_cpu=True, rank0_only=True) with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT, full_state_dict_config): state_dict = model.state_dict() else: if unwrap: model = self.unwrap_model(model) state_dict = model.state_dict() return state_dict def register_for_checkpointing(self, *objects): """ Makes note of `objects` and will save or load them in during `save_state` or `load_state`. These should be utilized when the state is being loaded or saved in the same script. It is not designed to be used in different scripts. <Tip> Every `object` must have a `load_state_dict` and `state_dict` function to be stored. </Tip> Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> # Assume `CustomObject` has a `state_dict` and `load_state_dict` function. >>> obj = CustomObject() >>> accelerator.register_for_checkpointing(obj) >>> accelerator.save_state("checkpoint.pt") ``` """ invalid_objects = [] for obj in objects: if not hasattr(obj, "state_dict") or not hasattr(obj, "load_state_dict"): invalid_objects.append(obj) if len(invalid_objects) > 0: err = "All `objects` must include a `state_dict` and `load_state_dict` function to be stored. The following inputs are invalid:" for index, obj in enumerate(invalid_objects): err += f"\n\t- Item at index {index}, `{get_pretty_name(obj)}`" raise ValueError(err) self._custom_objects.extend(objects) @contextmanager def autocast(self, cache_enabled: bool = False, autocast_handler: AutocastKwargs = None): """ Will apply automatic mixed-precision inside the block inside this context manager, if it is enabled. Nothing different will happen otherwise. A different `autocast_handler` can be passed in to override the one set in the `Accelerator` object. This is useful in blocks under `autocast` where you want to revert to fp32. Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator(mixed_precision="fp16") >>> with accelerator.autocast(): ... train() ``` """ if cache_enabled: warnings.warn( "Passing `cache_enabled=True` to `accelerator.autocast` is deprecated and will be removed in v0.23.0. " "Please use the `AutocastKwargs` class instead and pass it to the `Accelerator` as a `kwarg_handler`.", FutureWarning, ) if self.autocast_handler is not None: self.autocast_handler.cache_enabled = True else: self.autocast_handler = AutocastKwargs(cache_enabled=True) if autocast_handler is None: autocast_handler = self.autocast_handler autocast_context = get_mixed_precision_context_manager(self.native_amp, autocast_handler) autocast_context.__enter__() # TODO: should the `yield` be in a try/finally block? yield autocast_context.__exit__(*sys.exc_info()) @property def optimizer_step_was_skipped(self): """ Whether or not the optimizer update was skipped (because of gradient overflow in mixed precision), in which case the learning rate should not be changed. """ for optimizer in self._optimizers: if optimizer.step_was_skipped: return True return False def skip_first_batches(self, dataloader, num_batches: int = 0): """ Creates a new `torch.utils.data.DataLoader` that will efficiently skip the first `num_batches`. Args: dataloader (`torch.utils.data.DataLoader`): The data loader in which to skip batches. num_batches (`int`, *optional*, defaults to 0): The number of batches to skip Example: ```python >>> from accelerate import Accelerator >>> accelerator = Accelerator() >>> dataloader, model, optimizer, scheduler = accelerator.prepare(dataloader, model, optimizer, scheduler) >>> skipped_dataloader = accelerator.skip_first_batches(dataloader, num_batches=2) >>> # for the first epoch only >>> for input, target in skipped_dataloader: ... optimizer.zero_grad() ... output = model(input) ... loss = loss_func(output, target) ... accelerator.backward(loss) ... optimizer.step() >>> # subsequent epochs >>> for input, target in dataloader: ... optimizer.zero_grad() ... ... ``` """ return skip_first_batches(dataloader, num_batches=num_batches) def __deepcopy__(self, memo): logger.info("Deep copying the `Accelerator` object, note that this will point to the same original object.") return self def verify_device_map(self, model: torch.nn.Module) -> bool: """ Verifies that `model` has not been prepared with big model inference with a device-map resembling `auto`. """ # Checks if any of the child modules has the attribute `hf_device_map` and this map has more than one entry. for m in model.modules(): if hasattr(m, "hf_device_map") and len(m.hf_device_map) > 1: return True return False def lomo_backward(self, loss: torch.Tensor, learning_rate: float) -> None: """ Runs backward pass on LOMO optimizers. """ if is_lomo_available(): # We need to import locally to avoid circular imports since lomo imports stuff from # transformers & accelerate from lomo_optim import AdaLomo, Lomo if learning_rate is None: raise ValueError("A learning rate must be passed in order to call backward pass with LOMO optimizers.") _backward_called = False for optimizer in self._optimizers: if isinstance(optimizer.optimizer, (Lomo, AdaLomo)): optimizer.optimizer.fused_backward(loss, learning_rate) _backward_called = True if not _backward_called: raise ValueError( "Backward pass not properly called on LOMO optimizers. Are you sure you passed a LOMO optimizer in accelerator.prepare()?" )
accelerate/src/accelerate/accelerator.py/0
{ "file_path": "accelerate/src/accelerate/accelerator.py", "repo_id": "accelerate", "token_count": 67924 }
6
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
accelerate/src/accelerate/memory_utils.py/0
{ "file_path": "accelerate/src/accelerate/memory_utils.py", "repo_id": "accelerate", "token_count": 237 }
7
#!/usr/bin/env python # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import ( BatchSampler, DataLoader, Dataset, IterableDataset, RandomSampler, TensorDataset, default_collate, ) from accelerate.accelerator import Accelerator, DataLoaderConfiguration from accelerate.utils.dataclasses import DistributedType NUM_ELEMENTS = 22 NUM_WORKERS = 4 BATCH_SIZE = 4 class DummyDataset(Dataset): def __len__(self): return NUM_ELEMENTS def __getitem__(self, index): squeeze = False if isinstance(index, int): index = [index] squeeze = True elif isinstance(index, slice): index = list(range(*index.indices(self.size))) else: index = list(index) batch = [{"index": i, "label": i % 2, "random_augmentation": torch.rand(1).item()} for i in index] if squeeze: batch = batch[0] return batch class DummyIterableDataset(IterableDataset): def __init__(self, data): self.data = data def __iter__(self): yield from self.data def create_accelerator(even_batches=True): dataloader_config = DataLoaderConfiguration(even_batches=even_batches) accelerator = Accelerator(dataloader_config=dataloader_config) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def create_dataloader(accelerator: Accelerator, dataset_size: int, batch_size: int, iterable: bool = False): """ Create a simple DataLoader to use during the test cases """ if iterable: dataset = DummyIterableDataset(torch.as_tensor(range(dataset_size))) else: dataset = TensorDataset(torch.as_tensor(range(dataset_size))) dl = DataLoader(dataset, batch_size=batch_size) dl = accelerator.prepare(dl) return dl def verify_dataloader_batch_sizes( accelerator: Accelerator, dataset_size: int, batch_size: int, process_0_expected_batch_sizes: List[int], process_1_expected_batch_sizes: List[int], ): """ A helper function for verifying the batch sizes coming from a prepared dataloader in each process """ dl = create_dataloader(accelerator=accelerator, dataset_size=dataset_size, batch_size=batch_size) batch_sizes = [len(batch[0]) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def test_default_ensures_even_batch_sizes(): accelerator = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( accelerator, dataset_size=3, batch_size=1, process_0_expected_batch_sizes=[1, 1], process_1_expected_batch_sizes=[1, 1], ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( accelerator, dataset_size=7, batch_size=2, process_0_expected_batch_sizes=[2, 2], process_1_expected_batch_sizes=[2, 2], ) def test_can_disable_even_batches(): accelerator = create_accelerator(even_batches=False) verify_dataloader_batch_sizes( accelerator, dataset_size=3, batch_size=1, process_0_expected_batch_sizes=[1, 1], process_1_expected_batch_sizes=[1], ) verify_dataloader_batch_sizes( accelerator, dataset_size=7, batch_size=2, process_0_expected_batch_sizes=[2, 2], process_1_expected_batch_sizes=[2, 1], ) def test_can_join_uneven_inputs(): accelerator = create_accelerator(even_batches=False) model = torch.nn.Linear(1, 1) ddp_model = accelerator.prepare(model) dl = create_dataloader(accelerator, dataset_size=3, batch_size=1) batch_idxs = [] with accelerator.join_uneven_inputs([ddp_model]): for batch_idx, batch in enumerate(dl): output = ddp_model(batch[0].float()) loss = output.sum() loss.backward() batch_idxs.append(batch_idx) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def test_join_raises_warning_for_non_ddp_distributed(accelerator): with warnings.catch_warnings(record=True) as w: with accelerator.join_uneven_inputs([Mock()]): pass assert issubclass(w[-1].category, UserWarning) assert "only supported for multi-GPU" in str(w[-1].message) def test_join_can_override_even_batches(): default_even_batches = True overridden_even_batches = False accelerator = create_accelerator(even_batches=default_even_batches) model = torch.nn.Linear(1, 1) ddp_model = accelerator.prepare(model) train_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1) valid_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1) with accelerator.join_uneven_inputs([ddp_model], even_batches=overridden_even_batches): train_dl_overridden_value = train_dl.batch_sampler.even_batches valid_dl_overridden_value = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def test_join_can_override_for_mixed_type_dataloaders(): default_even_batches = True overridden_even_batches = False accelerator = create_accelerator(even_batches=default_even_batches) model = torch.nn.Linear(1, 1) ddp_model = accelerator.prepare(model) create_dataloader(accelerator, dataset_size=3, batch_size=1, iterable=True) batch_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1) with warnings.catch_warnings(): warnings.filterwarnings("ignore") try: with accelerator.join_uneven_inputs([ddp_model], even_batches=overridden_even_batches): batch_dl_overridden_value = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def test_join_raises_warning_for_iterable_when_overriding_even_batches(): accelerator = create_accelerator() model = torch.nn.Linear(1, 1) ddp_model = accelerator.prepare(model) create_dataloader(accelerator, dataset_size=3, batch_size=1, iterable=True) with warnings.catch_warnings(record=True) as w: with accelerator.join_uneven_inputs([ddp_model], even_batches=False): pass assert issubclass(w[-1].category, UserWarning) assert "only supported for map-style datasets" in str(w[-1].message) def test_data_loader(data_loader, accelerator): # Prepare the DataLoader data_loader = accelerator.prepare(data_loader) all_examples = [] for i, batch in enumerate(data_loader): index, _ = accelerator.gather_for_metrics((batch["index"], batch["label"])) all_examples.extend(index.detach().cpu().numpy().tolist()) # Sort the examples sorted_all_examples = sorted(all_examples) # Check if all elements are present in the sorted list of iterated samples assert ( len(set(sorted_all_examples)) == NUM_ELEMENTS ), "Not all the dataset elements have been iterated in an epoch due to duplication of samples across processes." def main(): accelerator = create_accelerator() torch.manual_seed(accelerator.process_index) accelerator.print("Test that even_batches variable ensures uniform batches across processes") test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled") test_can_disable_even_batches() accelerator.print("Test joining uneven inputs") test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs") test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types") test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders") test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning") original_state = accelerator.state.distributed_type accelerator.state.distributed_type = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(accelerator) accelerator.state.distributed_type = original_state dataset = DummyDataset() # Conventional Dataloader with shuffle=False loader = DataLoader(dataset, shuffle=False, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS) test_data_loader(loader, accelerator) # Conventional Dataloader with shuffle=True loader = DataLoader(dataset, shuffle=True, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS) test_data_loader(loader, accelerator) # Dataloader with batch_sampler sampler = BatchSampler(RandomSampler(dataset), batch_size=BATCH_SIZE, drop_last=False) loader = DataLoader(dataset, batch_sampler=sampler, num_workers=NUM_WORKERS) test_data_loader(loader, accelerator) # Dataloader with sampler as an instance of `BatchSampler` sampler = BatchSampler(RandomSampler(dataset), batch_size=BATCH_SIZE, drop_last=False) loader = DataLoader(dataset, sampler=sampler, batch_size=None, collate_fn=default_collate, num_workers=NUM_WORKERS) test_data_loader(loader, accelerator) if __name__ == "__main__": main()
accelerate/src/accelerate/test_utils/scripts/test_distributed_data_loop.py/0
{ "file_path": "accelerate/src/accelerate/test_utils/scripts/test_distributed_data_loop.py", "repo_id": "accelerate", "token_count": 4052 }
8
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import importlib.metadata import os import warnings from functools import lru_cache import torch from packaging import version from packaging.version import parse from .environment import parse_flag_from_env, str_to_bool from .versions import compare_versions, is_torch_version # Try to run Torch native job in an environment with TorchXLA installed by setting this value to 0. USE_TORCH_XLA = parse_flag_from_env("USE_TORCH_XLA", default=True) _torch_xla_available = False if USE_TORCH_XLA: try: import torch_xla.core.xla_model as xm # noqa: F401 import torch_xla.runtime _torch_xla_available = True except ImportError: pass # Keep it for is_tpu_available. It will be removed along with is_tpu_available. _tpu_available = _torch_xla_available # Cache this result has it's a C FFI call which can be pretty time-consuming _torch_distributed_available = torch.distributed.is_available() def _is_package_available(pkg_name, metadata_name=None): # Check we're not importing a "pkg_name" directory somewhere but the actual library by trying to grab the version package_exists = importlib.util.find_spec(pkg_name) is not None if package_exists: try: # Some libraries have different names in the metadata _ = importlib.metadata.metadata(pkg_name if metadata_name is None else metadata_name) return True except importlib.metadata.PackageNotFoundError: return False def is_torch_distributed_available() -> bool: return _torch_distributed_available def is_ccl_available(): try: pass except ImportError: print( "Intel(R) oneCCL Bindings for PyTorch* is required to run DDP on Intel(R) GPUs, but it is not" " detected. If you see \"ValueError: Invalid backend: 'ccl'\" error, please install Intel(R) oneCCL" " Bindings for PyTorch*." ) return ( importlib.util.find_spec("torch_ccl") is not None or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None ) def get_ccl_version(): return importlib.metadata.version("oneccl_bind_pt") def is_pynvml_available(): return _is_package_available("pynvml") def is_pytest_available(): return _is_package_available("pytest") def is_msamp_available(): return _is_package_available("msamp", "ms-amp") def is_schedulefree_available(): return _is_package_available("schedulefree") def is_transformer_engine_available(): return _is_package_available("transformer_engine") def is_lomo_available(): return _is_package_available("lomo_optim") def is_fp8_available(): return is_msamp_available() or is_transformer_engine_available() def is_cuda_available(): """ Checks if `cuda` is available via an `nvml-based` check which won't trigger the drivers and leave cuda uninitialized. """ pytorch_nvml_based_cuda_check_previous_value = os.environ.get("PYTORCH_NVML_BASED_CUDA_CHECK") try: os.environ["PYTORCH_NVML_BASED_CUDA_CHECK"] = str(1) available = torch.cuda.is_available() finally: if pytorch_nvml_based_cuda_check_previous_value: os.environ["PYTORCH_NVML_BASED_CUDA_CHECK"] = pytorch_nvml_based_cuda_check_previous_value else: os.environ.pop("PYTORCH_NVML_BASED_CUDA_CHECK", None) return available @lru_cache def is_tpu_available(check_device=True): "Checks if `torch_xla` is installed and potentially if a TPU is in the environment" warnings.warn( "`is_tpu_available` is deprecated and will be removed in v0.27.0. " "Please use the `is_torch_xla_available` instead.", FutureWarning, ) # Due to bugs on the amp series GPUs, we disable torch-xla on them if is_cuda_available(): return False if check_device: if _tpu_available: try: # Will raise a RuntimeError if no XLA configuration is found _ = xm.xla_device() return True except RuntimeError: return False return _tpu_available @lru_cache def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False): """ Check if `torch_xla` is available. To train a native pytorch job in an environment with torch xla installed, set the USE_TORCH_XLA to false. """ assert not (check_is_tpu and check_is_gpu), "The check_is_tpu and check_is_gpu cannot both be true." if not _torch_xla_available: return False elif check_is_gpu: return torch_xla.runtime.device_type() in ["GPU", "CUDA"] elif check_is_tpu: return torch_xla.runtime.device_type() == "TPU" return True def is_deepspeed_available(): if is_mlu_available(): return _is_package_available("deepspeed", metadata_name="deepspeed-mlu") return _is_package_available("deepspeed") def is_pippy_available(): package_exists = _is_package_available("pippy", "torchpippy") if package_exists: pippy_version = version.parse(importlib.metadata.version("torchpippy")) return compare_versions(pippy_version, ">", "0.1.1") return False def is_bf16_available(ignore_tpu=False): "Checks if bf16 is supported, optionally ignoring the TPU" if is_torch_xla_available(check_is_tpu=True): return not ignore_tpu if is_cuda_available(): return torch.cuda.is_bf16_supported() if is_mps_available(): return False return True def is_4bit_bnb_available(): package_exists = _is_package_available("bitsandbytes") if package_exists: bnb_version = version.parse(importlib.metadata.version("bitsandbytes")) return compare_versions(bnb_version, ">=", "0.39.0") return False def is_8bit_bnb_available(): package_exists = _is_package_available("bitsandbytes") if package_exists: bnb_version = version.parse(importlib.metadata.version("bitsandbytes")) return compare_versions(bnb_version, ">=", "0.37.2") return False def is_bnb_available(): return _is_package_available("bitsandbytes") def is_torchvision_available(): return _is_package_available("torchvision") def is_megatron_lm_available(): if str_to_bool(os.environ.get("ACCELERATE_USE_MEGATRON_LM", "False")) == 1: if importlib.util.find_spec("megatron") is not None: try: megatron_version = parse(importlib.metadata.version("megatron-core")) if compare_versions(megatron_version, "==", "0.5.0"): return importlib.util.find_spec(".data", "megatron") except Exception as e: warnings.warn(f"Parse Megatron version failed. Exception:{e}") return False def is_transformers_available(): return _is_package_available("transformers") def is_datasets_available(): return _is_package_available("datasets") def is_peft_available(): return _is_package_available("peft") def is_timm_available(): return _is_package_available("timm") def is_aim_available(): package_exists = _is_package_available("aim") if package_exists: aim_version = version.parse(importlib.metadata.version("aim")) return compare_versions(aim_version, "<", "4.0.0") return False def is_tensorboard_available(): return _is_package_available("tensorboard") or _is_package_available("tensorboardX") def is_wandb_available(): return _is_package_available("wandb") def is_comet_ml_available(): return _is_package_available("comet_ml") def is_boto3_available(): return _is_package_available("boto3") def is_rich_available(): if _is_package_available("rich"): if "ACCELERATE_DISABLE_RICH" in os.environ: warnings.warn( "`ACCELERATE_DISABLE_RICH` is deprecated and will be removed in v0.22.0 and deactivated by default. Please use `ACCELERATE_ENABLE_RICH` if you wish to use `rich`." ) return not parse_flag_from_env("ACCELERATE_DISABLE_RICH", False) return parse_flag_from_env("ACCELERATE_ENABLE_RICH", False) return False def is_sagemaker_available(): return _is_package_available("sagemaker") def is_tqdm_available(): return _is_package_available("tqdm") def is_clearml_available(): return _is_package_available("clearml") def is_pandas_available(): return _is_package_available("pandas") def is_mlflow_available(): if _is_package_available("mlflow"): return True if importlib.util.find_spec("mlflow") is not None: try: _ = importlib.metadata.metadata("mlflow-skinny") return True except importlib.metadata.PackageNotFoundError: return False return False def is_mps_available(min_version="1.12"): # With torch 1.12, you can use torch.backends.mps # With torch 2.0.0, you can use torch.mps return is_torch_version(">=", min_version) and torch.backends.mps.is_available() and torch.backends.mps.is_built() def is_ipex_available(): def get_major_and_minor_from_version(full_version): return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor) _torch_version = importlib.metadata.version("torch") if importlib.util.find_spec("intel_extension_for_pytorch") is None: return False _ipex_version = "N/A" try: _ipex_version = importlib.metadata.version("intel_extension_for_pytorch") except importlib.metadata.PackageNotFoundError: return False torch_major_and_minor = get_major_and_minor_from_version(_torch_version) ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version) if torch_major_and_minor != ipex_major_and_minor: warnings.warn( f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*," f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again." ) return False return True @lru_cache def is_mlu_available(check_device=False): "Checks if `torch_mlu` is installed and potentially if a MLU is in the environment" if importlib.util.find_spec("torch_mlu") is None: return False import torch_mlu # noqa: F401 if check_device: try: # Will raise a RuntimeError if no MLU is found _ = torch.mlu.device_count() return torch.mlu.is_available() except RuntimeError: return False return hasattr(torch, "mlu") and torch.mlu.is_available() @lru_cache def is_npu_available(check_device=False): "Checks if `torch_npu` is installed and potentially if a NPU is in the environment" if importlib.util.find_spec("torch_npu") is None: return False import torch_npu # noqa: F401 if check_device: try: # Will raise a RuntimeError if no NPU is found _ = torch.npu.device_count() return torch.npu.is_available() except RuntimeError: return False return hasattr(torch, "npu") and torch.npu.is_available() @lru_cache def is_xpu_available(check_device=False): """ Checks if XPU acceleration is available either via `intel_extension_for_pytorch` or via stock PyTorch (>=2.4) and potentially if a XPU is in the environment """ "check if user disables it explicitly" if not parse_flag_from_env("ACCELERATE_USE_XPU", default=True): return False if is_ipex_available(): if is_torch_version("<=", "1.12"): return False import intel_extension_for_pytorch # noqa: F401 else: if is_torch_version("<=", "2.3"): return False if check_device: try: # Will raise a RuntimeError if no XPU is found _ = torch.xpu.device_count() return torch.xpu.is_available() except RuntimeError: return False return hasattr(torch, "xpu") and torch.xpu.is_available() def is_dvclive_available(): return _is_package_available("dvclive")
accelerate/src/accelerate/utils/imports.py/0
{ "file_path": "accelerate/src/accelerate/utils/imports.py", "repo_id": "accelerate", "token_count": 5098 }
9
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import itertools import json import os import tempfile from copy import deepcopy from pathlib import Path import torch from parameterized import parameterized from torch.utils.data import BatchSampler, DataLoader, RandomSampler, SequentialSampler from transformers import AutoConfig, AutoModel, AutoModelForCausalLM, get_scheduler from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed from transformers.utils import is_torch_bf16_available from accelerate.accelerator import Accelerator from accelerate.scheduler import AcceleratedScheduler from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, path_in_accelerate_package, require_deepspeed, require_huggingface_suite, require_multi_device, require_non_cpu, slow, ) from accelerate.test_utils.training import RegressionDataset, RegressionModel from accelerate.utils.dataclasses import DeepSpeedPlugin from accelerate.utils.deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, ) from accelerate.utils.other import patch_environment from accelerate.utils.versions import compare_versions set_seed(42) GPT2_TINY = "sshleifer/tiny-gpt2" MOBILEVIT = "apple/mobilevit-xx-small" QWEN_MOE = "peft-internal-testing/tiny-random-qwen-1.5-MoE" ZERO2 = "zero2" ZERO3 = "zero3" FP16 = "fp16" BF16 = "bf16" CUSTOM_OPTIMIZER = "custom_optimizer" CUSTOM_SCHEDULER = "custom_scheduler" DS_OPTIMIZER = "deepspeed_optimizer" DS_SCHEDULER = "deepspeed_scheduler" NO_CONFIG = "no_config" CONFIG_WITH_NO_HIDDEN_SIZE = "config_with_no_hidden_size" CONFIG_WITH_HIDDEN_SIZE = "config_with_hidden_size" CONFIG_WITH_HIDDEN_SIZES = "config_with_hidden_sizes" stages = [ZERO2, ZERO3] optims = [CUSTOM_OPTIMIZER, DS_OPTIMIZER] schedulers = [CUSTOM_SCHEDULER, DS_SCHEDULER] model_types = [NO_CONFIG, CONFIG_WITH_NO_HIDDEN_SIZE, CONFIG_WITH_HIDDEN_SIZE, CONFIG_WITH_HIDDEN_SIZES] if is_torch_bf16_available(): dtypes = [FP16, BF16] else: dtypes = [FP16] def parameterized_custom_name_func(func, param_num, param): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args)) return f"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test params = list(itertools.product(stages, dtypes)) optim_scheduler_params = list(itertools.product(optims, schedulers)) class DummyConfig: def __init__(self): self._name_or_path = "dummy" @require_deepspeed @require_non_cpu class DeepSpeedConfigIntegration(AccelerateTestCase): def setUp(self): super().setUp() self._test_file_path = inspect.getfile(self.__class__) path = Path(self._test_file_path).resolve() self.test_file_dir_str = str(path.parents[0]) self.ds_config_file = dict( zero2=f"{self.test_file_dir_str}/ds_config_zero2.json", zero3=f"{self.test_file_dir_str}/ds_config_zero3.json", ) # use self.get_config_dict(stage) to use these to ensure the original is not modified with open(self.ds_config_file[ZERO2], encoding="utf-8") as f: config_zero2 = json.load(f) with open(self.ds_config_file[ZERO3], encoding="utf-8") as f: config_zero3 = json.load(f) # The following setting slows things down, so don't enable it by default unless needed by a test. # It's in the file as a demo for users since we want everything to work out of the box even if slower. config_zero3["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = False self.ds_config_dict = dict(zero2=config_zero2, zero3=config_zero3) self.dist_env = dict( ACCELERATE_USE_DEEPSPEED="true", MASTER_ADDR="localhost", MASTER_PORT="10999", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1", ) def get_config_dict(self, stage): # As some tests modify the dict, always make a copy return deepcopy(self.ds_config_dict[stage]) @parameterized.expand(stages, name_func=parameterized_custom_name_func) def test_deepspeed_plugin(self, stage): # Test zero3_init_flag will be set to False when ZeRO stage != 3 deepspeed_plugin = DeepSpeedPlugin( gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=2, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=True, zero3_init_flag=True, ) assert not deepspeed_plugin.zero3_init_flag deepspeed_plugin.deepspeed_config = None # Test zero3_init_flag will be set to True only when ZeRO stage == 3 deepspeed_plugin = DeepSpeedPlugin( gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=3, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=True, zero3_init_flag=True, ) assert deepspeed_plugin.zero3_init_flag deepspeed_plugin.deepspeed_config = None # Test config files are loaded correctly deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=self.ds_config_file[stage], zero3_init_flag=True) if stage == ZERO2: assert not deepspeed_plugin.zero3_init_flag elif stage == ZERO3: assert deepspeed_plugin.zero3_init_flag # Test `gradient_accumulation_steps` is set to 1 if unavailable in config file with tempfile.TemporaryDirectory() as dirpath: ds_config = self.get_config_dict(stage) del ds_config["gradient_accumulation_steps"] with open(os.path.join(dirpath, "ds_config.json"), "w") as out_file: json.dump(ds_config, out_file) deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=os.path.join(dirpath, "ds_config.json")) assert deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"] == 1 deepspeed_plugin.deepspeed_config = None # Test `ValueError` is raised if `zero_optimization` is unavailable in config file with tempfile.TemporaryDirectory() as dirpath: ds_config = self.get_config_dict(stage) del ds_config["zero_optimization"] with open(os.path.join(dirpath, "ds_config.json"), "w") as out_file: json.dump(ds_config, out_file) with self.assertRaises(ValueError) as cm: deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=os.path.join(dirpath, "ds_config.json")) assert "Please specify the ZeRO optimization config in the DeepSpeed config." in str(cm.exception) deepspeed_plugin.deepspeed_config = None # Test `deepspeed_config_process` deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=self.ds_config_file[stage]) kwargs = { "fp16.enabled": True, "bf16.enabled": False, "optimizer.params.lr": 5e-5, "optimizer.params.weight_decay": 0.0, "scheduler.params.warmup_min_lr": 0.0, "scheduler.params.warmup_max_lr": 5e-5, "scheduler.params.warmup_num_steps": 0, "train_micro_batch_size_per_gpu": 16, "gradient_clipping": 1.0, "train_batch_size": 16, "zero_optimization.reduce_bucket_size": 5e5, "zero_optimization.stage3_prefetch_bucket_size": 5e5, "zero_optimization.stage3_param_persistence_threshold": 5e5, "zero_optimization.stage3_gather_16bit_weights_on_model_save": False, } deepspeed_plugin.deepspeed_config_process(**kwargs) for ds_key_long, value in kwargs.items(): config, ds_key = deepspeed_plugin.hf_ds_config.find_config_node(ds_key_long) if config.get(ds_key) is not None: assert config.get(ds_key) == value # Test mismatches mismatches = { "optimizer.params.lr": 1e-5, "optimizer.params.weight_decay": 1e-5, "gradient_accumulation_steps": 2, } with self.assertRaises(ValueError) as cm: new_kwargs = deepcopy(kwargs) new_kwargs.update(mismatches) deepspeed_plugin.deepspeed_config_process(**new_kwargs) for key in mismatches.keys(): assert key in str(cm.exception), f"{key} is not in the exception message: {cm.exception}" # Test `ValueError` is raised if some config file fields with `auto` value is missing in `kwargs` deepspeed_plugin.deepspeed_config["optimizer"]["params"]["lr"] = "auto" with self.assertRaises(ValueError) as cm: del kwargs["optimizer.params.lr"] deepspeed_plugin.deepspeed_config_process(**kwargs) assert "`optimizer.params.lr` not found in kwargs." in str(cm.exception) @parameterized.expand([FP16, BF16], name_func=parameterized_custom_name_func) def test_accelerate_state_deepspeed(self, dtype): AcceleratorState._reset_state(True) deepspeed_plugin = DeepSpeedPlugin( gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=ZERO2, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=True, zero3_init_flag=True, ) with mockenv_context(**self.dist_env): state = Accelerator(mixed_precision=dtype, deepspeed_plugin=deepspeed_plugin).state assert state.deepspeed_plugin.deepspeed_config[dtype]["enabled"] def test_init_zero3(self): deepspeed_plugin = DeepSpeedPlugin( gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=3, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=True, zero3_init_flag=True, ) with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin) # noqa: F841 from transformers.deepspeed import is_deepspeed_zero3_enabled assert is_deepspeed_zero3_enabled() @parameterized.expand(optim_scheduler_params, name_func=parameterized_custom_name_func) def test_prepare_deepspeed(self, optim_type, scheduler_type): # 1. Testing with one of the ZeRO Stages is enough to test the `_prepare_deepspeed` function. # Here we test using ZeRO Stage 2 with FP16 enabled. from deepspeed.runtime.engine import DeepSpeedEngine kwargs = { "optimizer.params.lr": 5e-5, "optimizer.params.weight_decay": 0.0, "scheduler.params.warmup_min_lr": 0.0, "scheduler.params.warmup_max_lr": 5e-5, "scheduler.params.warmup_num_steps": 0, "train_micro_batch_size_per_gpu": 16, "gradient_clipping": 1.0, "train_batch_size": 16, "zero_optimization.reduce_bucket_size": 5e5, "zero_optimization.stage3_prefetch_bucket_size": 5e5, "zero_optimization.stage3_param_persistence_threshold": 5e5, "zero_optimization.stage3_gather_16bit_weights_on_model_save": False, } if optim_type == CUSTOM_OPTIMIZER and scheduler_type == CUSTOM_SCHEDULER: # Test custom optimizer + custom scheduler deepspeed_plugin = DeepSpeedPlugin( gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=2, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=False, zero3_init_flag=False, ) with mockenv_context(**self.dist_env): accelerator = Accelerator(mixed_precision="fp16", deepspeed_plugin=deepspeed_plugin) train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader(train_set, batch_size=16, shuffle=True) eval_dataloader = DataLoader(eval_set, batch_size=32, shuffle=False) model = AutoModel.from_pretrained(GPT2_TINY) optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) lr_scheduler = get_scheduler( name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=1000, ) dummy_optimizer = DummyOptim(params=model.parameters()) dummy_lr_scheduler = DummyScheduler(dummy_optimizer) with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, lr_scheduler ) assert "You cannot create a `DummyOptim` without specifying an optimizer in the config file." in str( cm.exception ) with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) assert ( "Either specify a scheduler in the config file or " "pass in the `lr_scheduler_callable` parameter when using `accelerate.utils.DummyScheduler`." in str(cm.exception) ) with self.assertRaises(ValueError) as cm: model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler) assert ( "When using DeepSpeed, `accelerate.prepare()` requires you to pass at least one of training or evaluation dataloaders " "with `batch_size` attribute returning an integer value " "or alternatively set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file " "or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`." in str(cm.exception) ) model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) assert accelerator.deepspeed_config["zero_allow_untested_optimizer"] assert accelerator.deepspeed_config["train_batch_size"], 16 assert type(model) is DeepSpeedEngine assert type(optimizer) is DeepSpeedOptimizerWrapper assert type(lr_scheduler) is AcceleratedScheduler assert type(accelerator.deepspeed_engine_wrapped) is DeepSpeedEngineWrapper elif optim_type == DS_OPTIMIZER and scheduler_type == DS_SCHEDULER: # Test DeepSpeed optimizer + DeepSpeed scheduler deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=self.ds_config_file[ZERO2]) with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision="fp16") train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader(train_set, batch_size=10, shuffle=True) eval_dataloader = DataLoader(eval_set, batch_size=5, shuffle=False) model = AutoModel.from_pretrained(GPT2_TINY) optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) lr_scheduler = get_scheduler( name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=1000, ) dummy_optimizer = DummyOptim(params=model.parameters()) dummy_lr_scheduler = DummyScheduler(dummy_optimizer) kwargs["train_batch_size"] = ( kwargs["train_micro_batch_size_per_gpu"] * deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"] * accelerator.num_processes ) accelerator.state.deepspeed_plugin.deepspeed_config_process(**kwargs) with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) assert "You cannot specify an optimizer in the config file and in the code at the same time" in str( cm.exception ) with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, lr_scheduler ) assert "You cannot specify a scheduler in the config file and in the code at the same time" in str( cm.exception ) with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, lr_scheduler ) assert "You cannot specify a scheduler in the config file and in the code at the same time" in str( cm.exception ) model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) assert type(model) is DeepSpeedEngine assert type(optimizer) is DeepSpeedOptimizerWrapper assert type(lr_scheduler) is DeepSpeedSchedulerWrapper assert type(accelerator.deepspeed_engine_wrapped) is DeepSpeedEngineWrapper elif optim_type == CUSTOM_OPTIMIZER and scheduler_type == DS_SCHEDULER: # Test custom optimizer + DeepSpeed scheduler deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=self.ds_config_file[ZERO2]) with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision="fp16") train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader(train_set, batch_size=10, shuffle=True) eval_dataloader = DataLoader(eval_set, batch_size=5, shuffle=False) model = AutoModel.from_pretrained(GPT2_TINY) optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) lr_scheduler = get_scheduler( name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=1000, ) dummy_optimizer = DummyOptim(params=model.parameters()) dummy_lr_scheduler = DummyScheduler(dummy_optimizer) kwargs["train_batch_size"] = ( kwargs["train_micro_batch_size_per_gpu"] * deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"] * accelerator.num_processes ) accelerator.state.deepspeed_plugin.deepspeed_config_process(**kwargs) del accelerator.state.deepspeed_plugin.deepspeed_config["optimizer"] model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) assert type(model) is DeepSpeedEngine assert type(optimizer) is DeepSpeedOptimizerWrapper assert type(lr_scheduler) is DeepSpeedSchedulerWrapper assert type(accelerator.deepspeed_engine_wrapped) is DeepSpeedEngineWrapper elif optim_type == DS_OPTIMIZER and scheduler_type is CUSTOM_SCHEDULER: # Test deepspeed optimizer + custom scheduler deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=self.ds_config_file[ZERO2]) with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision="fp16") train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader(train_set, batch_size=10, shuffle=True) eval_dataloader = DataLoader(eval_set, batch_size=5, shuffle=False) model = AutoModel.from_pretrained(GPT2_TINY) optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) lr_scheduler = get_scheduler( name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=1000, ) dummy_optimizer = DummyOptim(params=model.parameters()) dummy_lr_scheduler = DummyScheduler(dummy_optimizer) kwargs["train_batch_size"] = ( kwargs["train_micro_batch_size_per_gpu"] * deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"] * accelerator.num_processes ) accelerator.state.deepspeed_plugin.deepspeed_config_process(**kwargs) del accelerator.state.deepspeed_plugin.deepspeed_config["scheduler"] with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, lr_scheduler ) assert ( "You can only specify `accelerate.utils.DummyScheduler` in the code when using `accelerate.utils.DummyOptim`." in str(cm.exception) ) # passing `DummyScheduler` without `lr_scheduler_callable` should fail with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) assert ( "Either specify a scheduler in the config file or " "pass in the `lr_scheduler_callable` parameter when using `accelerate.utils.DummyScheduler`." in str(cm.exception) ) # passing `lr_scheduler_callable` to DummyScheduler should enable DS Optim + Custom Scheduler def _lr_scheduler_callable(optimizer): return get_scheduler( name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=1000, ) dummy_lr_scheduler = DummyScheduler(dummy_optimizer, lr_scheduler_callable=_lr_scheduler_callable) model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) def test_dataloader_with_batch_sampler(self): deepspeed_plugin = DeepSpeedPlugin( gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=2, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=False, zero3_init_flag=False, ) with mockenv_context(**self.dist_env): accelerator = Accelerator(mixed_precision="fp16", deepspeed_plugin=deepspeed_plugin) train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader( train_set, batch_sampler=BatchSampler(RandomSampler(train_set), batch_size=10, drop_last=False) ) eval_dataloader = DataLoader( eval_set, batch_sampler=BatchSampler(SequentialSampler(eval_set), batch_size=10, drop_last=False) ) model = AutoModel.from_pretrained(GPT2_TINY) optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) lr_scheduler = get_scheduler( name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=1000, ) with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) assert ( "At least one of the dataloaders passed to `accelerate.prepare()` has `None` as batch size. " "Please set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file " "or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`." in str(cm.exception) ) def test_save_checkpoints(self): deepspeed_plugin = DeepSpeedPlugin( hf_ds_config=self.ds_config_file[ZERO3], zero3_init_flag=True, ) del deepspeed_plugin.deepspeed_config["bf16"] kwargs = { "optimizer.params.lr": 5e-5, "optimizer.params.weight_decay": 0.0, "scheduler.params.warmup_min_lr": 0.0, "scheduler.params.warmup_max_lr": 5e-5, "scheduler.params.warmup_num_steps": 0, "train_micro_batch_size_per_gpu": 16, "gradient_clipping": 1.0, "train_batch_size": 16, "zero_optimization.reduce_bucket_size": 5e5, "zero_optimization.stage3_prefetch_bucket_size": 5e5, "zero_optimization.stage3_param_persistence_threshold": 5e5, "zero_optimization.stage3_gather_16bit_weights_on_model_save": False, } with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision="fp16") kwargs["train_batch_size"] = ( kwargs["train_micro_batch_size_per_gpu"] * deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"] * accelerator.num_processes ) accelerator.state.deepspeed_plugin.deepspeed_config_process(**kwargs) train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader(train_set, batch_size=16, shuffle=True) eval_dataloader = DataLoader(eval_set, batch_size=32, shuffle=False) model = AutoModelForCausalLM.from_pretrained("gpt2") dummy_optimizer = DummyOptim(params=model.parameters()) dummy_lr_scheduler = DummyScheduler(dummy_optimizer) model, _, train_dataloader, eval_dataloader, _ = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) with self.assertRaises(ValueError) as cm: accelerator.get_state_dict(model) msg = ( "Cannot get 16bit model weights because `stage3_gather_16bit_weights_on_model_save` in DeepSpeed config is False. " "To save the model weights in 16bit, set `stage3_gather_16bit_weights_on_model_save` to True in DeepSpeed config file or " "set `zero3_save_16bit_model` to True when using `accelerate config`. " "To save the full checkpoint, run `model.save_checkpoint(save_dir)` and use `zero_to_fp32.py` to recover weights." ) assert msg in str(cm.exception) def test_autofill_dsconfig(self): deepspeed_plugin = DeepSpeedPlugin( hf_ds_config=self.ds_config_file[ZERO3], zero3_init_flag=True, ) del deepspeed_plugin.deepspeed_config["bf16"] del deepspeed_plugin.deepspeed_config["fp16"] with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin) train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader(train_set, batch_size=16, shuffle=True) eval_dataloader = DataLoader(eval_set, batch_size=32, shuffle=False) model = AutoModelForCausalLM.from_pretrained("gpt2") dummy_optimizer = DummyOptim(params=model.parameters(), lr=5e-5, weight_decay=1e-4) dummy_lr_scheduler = DummyScheduler(dummy_optimizer, warmup_num_steps=10, total_num_steps=1000) hidden_size = model.config.hidden_size model, _, train_dataloader, eval_dataloader, _ = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) config = accelerator.deepspeed_config assert config["train_micro_batch_size_per_gpu"] == 16 assert config["train_batch_size"] == 16 assert config["optimizer"]["params"]["lr"] == 5e-05 assert config["optimizer"]["params"]["weight_decay"] == 1e-4 assert config["scheduler"]["params"]["warmup_min_lr"] == 0.0 assert config["scheduler"]["params"]["warmup_max_lr"] == 5e-05 assert config["scheduler"]["params"]["warmup_num_steps"] == 10 assert config["gradient_clipping"] == 1.0 assert config["zero_optimization"]["reduce_bucket_size"] == (hidden_size * hidden_size) assert config["zero_optimization"]["stage3_prefetch_bucket_size"] == int((0.9 * hidden_size) * hidden_size) assert config["zero_optimization"]["stage3_param_persistence_threshold"] == (10 * hidden_size) assert not config["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] @parameterized.expand(model_types, name_func=parameterized_custom_name_func) def test_autofill_comm_buffers_dsconfig(self, model_type): deepspeed_plugin = DeepSpeedPlugin( hf_ds_config=self.ds_config_file[ZERO3], zero3_init_flag=True, ) del deepspeed_plugin.deepspeed_config["bf16"] del deepspeed_plugin.deepspeed_config["fp16"] del deepspeed_plugin.deepspeed_config["optimizer"] del deepspeed_plugin.deepspeed_config["scheduler"] with mockenv_context(**self.dist_env): accelerator = Accelerator(mixed_precision="fp16", deepspeed_plugin=deepspeed_plugin) train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader(train_set, batch_size=16, shuffle=True) eval_dataloader = DataLoader(eval_set, batch_size=32, shuffle=False) model = RegressionModel() if model_type == CONFIG_WITH_NO_HIDDEN_SIZE: model.config = DummyConfig() elif model_type == CONFIG_WITH_HIDDEN_SIZE: model.config = AutoConfig.from_pretrained(GPT2_TINY) hidden_size = model.config.hidden_size elif model_type == CONFIG_WITH_HIDDEN_SIZES: model.config = AutoConfig.from_pretrained(MOBILEVIT) hidden_size = max(model.config.hidden_sizes) optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) lr_scheduler = get_scheduler( name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=1000, ) if model_type == NO_CONFIG: with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) msg = "Can't find `model.config` entry" assert msg in str(cm.exception) elif model_type == CONFIG_WITH_NO_HIDDEN_SIZE: with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) msg = "Can find neither `model.config.hidden_size` nor `model.config.hidden_sizes`" assert msg in str(cm.exception) else: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) zero_opt = accelerator.deepspeed_config["zero_optimization"] assert zero_opt["reduce_bucket_size"] == (hidden_size * hidden_size) assert zero_opt["stage3_prefetch_bucket_size"] == int((0.9 * hidden_size) * hidden_size) assert zero_opt["stage3_param_persistence_threshold"] == (10 * hidden_size) @parameterized.expand([FP16, BF16], name_func=parameterized_custom_name_func) def test_autofill_dsconfig_from_ds_plugin(self, dtype): ds_config = self.ds_config_dict["zero3"] if dtype == BF16: del ds_config["fp16"] else: del ds_config["bf16"] ds_config[dtype]["enabled"] = "auto" ds_config["zero_optimization"]["stage"] = "auto" ds_config["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = "auto" ds_config["zero_optimization"]["offload_optimizer"]["device"] = "auto" ds_config["zero_optimization"]["offload_param"]["device"] = "auto" ds_config["gradient_accumulation_steps"] = "auto" ds_config["gradient_clipping"] = "auto" deepspeed_plugin = DeepSpeedPlugin( hf_ds_config=ds_config, zero3_init_flag=True, gradient_accumulation_steps=2, gradient_clipping=1.0, zero_stage=2, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=True, ) with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision=dtype) config = accelerator.state.deepspeed_plugin.deepspeed_config assert config["gradient_clipping"] == 1.0 assert config["gradient_accumulation_steps"] == 2 assert config["zero_optimization"]["stage"] == 2 assert config["zero_optimization"]["offload_optimizer"]["device"] == "cpu" assert config["zero_optimization"]["offload_param"]["device"] == "cpu" assert config["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] assert config[dtype]["enabled"] AcceleratorState._reset_state(True) diff_dtype = "bf16" if dtype == "fp16" else "fp16" with mockenv_context(**self.dist_env): with self.assertRaises(ValueError) as cm: accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision=diff_dtype) assert ( f"`--mixed_precision` arg cannot be set to `{diff_dtype}` when `{dtype}` is set in the DeepSpeed config file." in str(cm.exception) ) # base case of passing in `gradient_accumulation_steps` to `DeepSpeedPlugin` AcceleratorState._reset_state(True) deepspeed_plugin = DeepSpeedPlugin(zero_stage=2, gradient_accumulation_steps=4) with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision=dtype) deepspeed_plugin = accelerator.state.deepspeed_plugin assert deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"] == 4 # filling the `auto` gradient_accumulation_steps via Accelerator's value AcceleratorState._reset_state(True) deepspeed_plugin = DeepSpeedPlugin( hf_ds_config=ds_config, zero3_init_flag=True, gradient_clipping=1.0, zero_stage=2, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=True, ) with mockenv_context(**self.dist_env): accelerator = Accelerator( deepspeed_plugin=deepspeed_plugin, mixed_precision=dtype, gradient_accumulation_steps=8 ) train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader(train_set, batch_size=16, shuffle=True) eval_dataloader = DataLoader(eval_set, batch_size=32, shuffle=False) model = AutoModelForCausalLM.from_pretrained("gpt2") dummy_optimizer = DummyOptim(params=model.parameters(), lr=5e-5, weight_decay=1e-4) dummy_lr_scheduler = DummyScheduler(dummy_optimizer, warmup_num_steps=10, total_num_steps=1000) model, _, train_dataloader, eval_dataloader, _ = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) deepspeed_plugin = accelerator.state.deepspeed_plugin assert deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"] == 8 def test_ds_config_assertions(self): ambiguous_env = self.dist_env.copy() ambiguous_env[ "ACCELERATE_CONFIG_DS_FIELDS" ] = "gradient_accumulation_steps,gradient_clipping,zero_stage,offload_optimizer_device,offload_param_device,zero3_save_16bit_model,mixed_precision" with mockenv_context(**ambiguous_env): with self.assertRaises(ValueError) as cm: deepspeed_plugin = DeepSpeedPlugin( hf_ds_config=self.ds_config_file[ZERO3], zero3_init_flag=True, gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=ZERO2, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=True, ) _ = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision=FP16) assert ( "If you are using an accelerate config file, remove others config variables mentioned in the above specified list." in str(cm.exception) ) @parameterized.expand(stages, name_func=parameterized_custom_name_func) def test_ds_config(self, stage): deepspeed_plugin = DeepSpeedPlugin( hf_ds_config=self.ds_config_file[stage], zero3_init_flag=True, ) assert deepspeed_plugin.zero_stage == int(stage.replace("zero", "")) def test_prepare_deepspeed_prepare_moe(self): if compare_versions("transformers", "<", "4.40") and compare_versions("deepspeed", "<", "0.14"): return deepspeed_plugin = DeepSpeedPlugin( zero3_init_flag=True, gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=3, offload_optimizer_device="none", offload_param_device="none", zero3_save_16bit_model=True, transformer_moe_cls_names="Qwen2MoeSparseMoeBlock", ) with mockenv_context(**self.dist_env): accelerator = Accelerator(mixed_precision="fp16", deepspeed_plugin=deepspeed_plugin) accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = 1 model = AutoModelForCausalLM.from_pretrained(QWEN_MOE) model = accelerator.prepare(model) from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock for module in model.modules(): if isinstance(module, Qwen2MoeSparseMoeBlock): assert hasattr(module, "_z3_leaf") and module._z3_leaf def test_basic_run(self): test_file_path = path_in_accelerate_package("test_utils", "scripts", "external_deps", "test_performance.py") with tempfile.TemporaryDirectory() as dirpath: cmd = [ "accelerate", "launch", "--num_processes=1", "--num_machines=1", "--machine_rank=0", "--mixed_precision=fp16", "--use_deepspeed", "--gradient_accumulation_steps=1", "--zero_stage=2", "--offload_optimizer_device=none", "--offload_param_device=none", test_file_path, "--model_name_or_path=distilbert-base-uncased", "--num_epochs=1", f"--output_dir={dirpath}", ] with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd) @require_deepspeed @require_multi_device @slow class DeepSpeedIntegrationTest(TempDirTestCase): test_scripts_folder = path_in_accelerate_package("test_utils", "scripts", "external_deps") def setUp(self): super().setUp() self._test_file_path = inspect.getfile(self.__class__) path = Path(self._test_file_path).resolve() self.test_file_dir_str = str(path.parents[0]) self.ds_config_file = dict( zero2=f"{self.test_file_dir_str}/ds_config_zero2.json", zero3=f"{self.test_file_dir_str}/ds_config_zero3.json", ) self.stages = [1, 2, 3] self.zero3_offload_config = False self.performance_lower_bound = 0.82 self.peak_memory_usage_upper_bound = { "multi_gpu_fp16": 3200, "deepspeed_stage_1_fp16": 1600, "deepspeed_stage_2_fp16": 2500, "deepspeed_stage_3_zero_init_fp16": 2800, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "deepspeed_stage_3_cpu_offload_fp16": 1900, } self.n_train = 160 self.n_val = 160 def test_performance(self): self.test_file_path = self.test_scripts_folder / "test_performance.py" cmd = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--mixed_precision=fp16", "--use_deepspeed", "--gradient_accumulation_steps=1", "--gradient_clipping=1", "--zero3_init_flag=True", "--zero3_save_16bit_model=True", ] for stage in self.stages: if stage == 1: continue cmd_stage = cmd.copy() cmd_stage.extend([f"--zero_stage={stage}"]) cmd_stage.extend(["--offload_optimizer_device=none", "--offload_param_device=none"]) if self.zero3_offload_config: with open(self.ds_config_file[ZERO3], encoding="utf-8") as f: ds_config = json.load(f) del ds_config["bf16"] del ds_config["optimizer"]["params"]["torch_adam"] del ds_config["optimizer"]["params"]["adam_w_mode"] ds_config["fp16"]["enabled"] = True ds_config_path = os.path.join(self.tmpdir, "ds_config.json") with open(ds_config_path, "w") as out_file: json.dump(ds_config, out_file) cmd_stage.extend([f"--deepspeed_config_file={ds_config_path}"]) cmd_stage.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--performance_lower_bound={self.performance_lower_bound}", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_stage) def test_checkpointing(self): self.test_file_path = self.test_scripts_folder / "test_checkpointing.py" cmd = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--mixed_precision=fp16", "--use_deepspeed", "--gradient_accumulation_steps=1", "--gradient_clipping=1", "--zero3_init_flag=True", "--zero3_save_16bit_model=True", ] for stage in self.stages: if stage == 1: continue cmd_stage = cmd.copy() cmd_stage.extend([f"--zero_stage={stage}"]) cmd_stage.extend(["--offload_optimizer_device=none", "--offload_param_device=none"]) if self.zero3_offload_config: with open(self.ds_config_file[ZERO3], encoding="utf-8") as f: ds_config = json.load(f) del ds_config["bf16"] del ds_config["optimizer"]["params"]["torch_adam"] del ds_config["optimizer"]["params"]["adam_w_mode"] ds_config["fp16"]["enabled"] = True ds_config_path = os.path.join(self.tmpdir, "ds_config.json") with open(ds_config_path, "w") as out_file: json.dump(ds_config, out_file) cmd_stage.extend([f"--deepspeed_config_file={ds_config_path}"]) cmd_stage.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_stage) cmd_stage = cmd_stage[:-1] resume_from_checkpoint = os.path.join(self.tmpdir, "epoch_0") cmd_stage.extend( [ f"--resume_from_checkpoint={resume_from_checkpoint}", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_stage) def test_peak_memory_usage(self): if compare_versions("deepspeed", ">", "0.12.6"): self.skipTest( "The test fails when deepspeed>0.12.6. This is something that needs to be fixed on deepspeed library" ) self.test_file_path = self.test_scripts_folder / "test_peak_memory_usage.py" cmd = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): cmd_stage = cmd.copy() if "fp16" in spec: cmd_stage.extend(["--mixed_precision=fp16"]) if "multi_gpu" in spec: continue else: cmd_stage.extend( [ "--use_deepspeed", "--gradient_accumulation_steps=1", "--gradient_clipping=1", "--zero3_init_flag=True", "--zero3_save_16bit_model=True", ] ) for i in range(3): if f"stage_{i + 1}" in spec: cmd_stage.extend([f"--zero_stage={i + 1}"]) break cmd_stage.extend( [ "--offload_optimizer_device=none", "--offload_param_device=none", "--offload_optimizer_nvme_path=none", "--offload_param_nvme_path=none", ] ) if "cpu_offload" in spec: with open(self.ds_config_file[ZERO3], encoding="utf-8") as f: ds_config = json.load(f) del ds_config["bf16"] del ds_config["fp16"] del ds_config["optimizer"]["params"]["torch_adam"] del ds_config["optimizer"]["params"]["adam_w_mode"] ds_config_path = os.path.join(self.tmpdir, "ds_config.json") with open(ds_config_path, "w") as out_file: json.dump(ds_config, out_file) cmd_stage.extend([f"--deepspeed_config_file={ds_config_path}"]) cmd_stage.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--peak_memory_upper_bound={peak_mem_upper_bound}", f"--n_train={self.n_train}", f"--n_val={self.n_val}", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_stage) def test_lr_scheduler(self): self.test_file_path = self.test_scripts_folder / "test_performance.py" cmd = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--mixed_precision=no", "--use_deepspeed", "--gradient_accumulation_steps=1", "--gradient_clipping=1", "--zero3_init_flag=True", "--zero3_save_16bit_model=True", "--zero_stage=3", "--offload_optimizer_device=none", "--offload_param_device=none", self.test_file_path, f"--output_dir={self.tmpdir}", f"--performance_lower_bound={self.performance_lower_bound}", ] with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd) @require_huggingface_suite def test_zero3_integration(self): self.test_file_path = self.test_scripts_folder / "test_zero3_integration.py" cmd = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd)
accelerate/tests/deepspeed/test_deepspeed.py/0
{ "file_path": "accelerate/tests/deepspeed/test_deepspeed.py", "repo_id": "accelerate", "token_count": 25822 }
10
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import torch import torch.nn as nn from torch.fx import symbolic_trace from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_device, torch_device torch_device = f"{torch_device}:0" if torch_device != "cpu" else "cpu" class ModelForTest(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.batchnorm = nn.BatchNorm1d(4) self.linear2 = nn.Linear(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) class PreForwardHook(ModelHook): def pre_forward(self, module, *args, **kwargs): return (args[0] + 1,) + args[1:], kwargs class PostForwardHook(ModelHook): def post_forward(self, module, output): return output + 1 class HooksModelTester(unittest.TestCase): def test_add_and_remove_hooks(self): test_model = ModelForTest() test_hook = ModelHook() add_hook_to_module(test_model, test_hook) assert test_model._hf_hook == test_hook assert hasattr(test_model, "_old_forward") # Check adding the hook did not change the name or the signature assert test_model.forward.__name__ == "forward" assert list(inspect.signature(test_model.forward).parameters) == ["x"] remove_hook_from_module(test_model) assert not hasattr(test_model, "_hf_hook") assert not hasattr(test_model, "_old_forward") def test_append_and_remove_hooks(self): test_model = ModelForTest() test_hook = ModelHook() add_hook_to_module(test_model, test_hook) add_hook_to_module(test_model, test_hook, append=True) assert isinstance(test_model._hf_hook, SequentialHook) is True assert len(test_model._hf_hook.hooks) == 2 assert hasattr(test_model, "_old_forward") # Check adding the hook did not change the name or the signature assert test_model.forward.__name__ == "forward" assert list(inspect.signature(test_model.forward).parameters) == ["x"] remove_hook_from_module(test_model) assert not hasattr(test_model, "_hf_hook") assert not hasattr(test_model, "_old_forward") def test_pre_forward_hook_is_executed(self): test_model = ModelForTest() x = torch.randn(2, 3) expected = test_model(x + 1) expected2 = test_model(x + 2) test_hook = PreForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) assert torch.allclose(output1, expected, atol=1e-5) # Attaching a hook to a model when it already has one replaces, does not chain test_hook = PreForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) assert torch.allclose(output1, expected, atol=1e-5) # You need to use the sequential hook to chain two or more hooks test_hook = SequentialHook(PreForwardHook(), PreForwardHook()) add_hook_to_module(test_model, test_hook) output2 = test_model(x) assert torch.allclose(output2, expected2, atol=1e-5) def test_post_forward_hook_is_executed(self): test_model = ModelForTest() x = torch.randn(2, 3) output = test_model(x) test_hook = PostForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) assert torch.allclose(output1, (output + 1), atol=1e-5) # Attaching a hook to a model when it already has one replaces, does not chain test_hook = PostForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) assert torch.allclose(output1, (output + 1), atol=1e-5) # You need to use the sequential hook to chain two or more hooks test_hook = SequentialHook(PostForwardHook(), PostForwardHook()) add_hook_to_module(test_model, test_hook) output2 = test_model(x) assert torch.allclose(output2, output + 2, atol=1e-5) def test_no_grad_in_hook(self): test_model = ModelForTest() x = torch.randn(2, 3) output = test_model(x) test_hook = PostForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) assert torch.allclose(output1, (output + 1)) assert output1.requires_grad test_hook.no_grad = True output1 = test_model(x) assert not output1.requires_grad @require_multi_device def test_align_devices_as_model_parallelism(self): model = ModelForTest() # Everything is on CPU assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") # This will move each submodule on different devices add_hook_to_module(model.linear1, AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm, AlignDevicesHook(execution_device=0)) add_hook_to_module(model.linear2, AlignDevicesHook(execution_device=1)) assert model.linear1.weight.device == torch.device(0) assert model.batchnorm.weight.device == torch.device(0) assert model.batchnorm.running_mean.device == torch.device(0) assert model.linear2.weight.device == torch.device(1) # We can still make a forward pass. The input does not need to be on any particular device x = torch.randn(2, 3) output = model(x) assert output.device == torch.device(1) # We can add a general hook to put back output on same device as input. add_hook_to_module(model, AlignDevicesHook(io_same_device=True)) x = torch.randn(2, 3).to(torch_device) output = model(x) assert output.device == torch.device(0) def test_align_devices_as_cpu_offload(self): model = ModelForTest() # Everything is on CPU assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") # This will move each submodule on different devices hook_kwargs = {"execution_device": torch_device, "offload": True} add_hook_to_module(model.linear1, AlignDevicesHook(**hook_kwargs)) add_hook_to_module(model.batchnorm, AlignDevicesHook(**hook_kwargs)) add_hook_to_module(model.linear2, AlignDevicesHook(**hook_kwargs)) # Parameters have been offloaded, so on the meta device assert model.linear1.weight.device == torch.device("meta") assert model.batchnorm.weight.device == torch.device("meta") assert model.linear2.weight.device == torch.device("meta") # Buffers are not included in the offload by default, so are on the execution device device = torch.device(hook_kwargs["execution_device"]) assert model.batchnorm.running_mean.device == device x = torch.randn(2, 3) output = model(x) assert output.device == device # Removing hooks loads back the weights in the model. remove_hook_from_module(model.linear1) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.linear2) assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") # Now test with buffers included in the offload hook_kwargs = { "execution_device": torch_device, "offload": True, "offload_buffers": True, } add_hook_to_module(model.linear1, AlignDevicesHook(**hook_kwargs)) add_hook_to_module(model.batchnorm, AlignDevicesHook(**hook_kwargs)) add_hook_to_module(model.linear2, AlignDevicesHook(**hook_kwargs)) # Parameters have been offloaded, so on the meta device, buffers included assert model.linear1.weight.device == torch.device("meta") assert model.batchnorm.weight.device == torch.device("meta") assert model.linear2.weight.device == torch.device("meta") assert model.batchnorm.running_mean.device == torch.device("meta") x = torch.randn(2, 3) output = model(x) assert output.device == device # Removing hooks loads back the weights in the model. remove_hook_from_module(model.linear1) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.linear2) assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") def test_attach_align_device_hook_as_cpu_offload(self): model = ModelForTest() # Everything is on CPU assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") # This will move each submodule on different devices execution_device = torch_device attach_align_device_hook(model, execution_device=execution_device, offload=True) # Parameters have been offloaded, so on the meta device assert model.linear1.weight.device == torch.device("meta") assert model.batchnorm.weight.device == torch.device("meta") assert model.linear2.weight.device == torch.device("meta") # Buffers are not included in the offload by default, so are on the execution device device = torch.device(execution_device) assert model.batchnorm.running_mean.device == device x = torch.randn(2, 3) output = model(x) assert output.device == device # Removing hooks loads back the weights in the model. remove_hook_from_submodules(model) assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") # Now test with buffers included in the offload attach_align_device_hook(model, execution_device=execution_device, offload=True, offload_buffers=True) # Parameters have been offloaded, so on the meta device, buffers included assert model.linear1.weight.device == torch.device("meta") assert model.batchnorm.weight.device == torch.device("meta") assert model.linear2.weight.device == torch.device("meta") assert model.batchnorm.running_mean.device == torch.device("meta") x = torch.randn(2, 3) output = model(x) assert output.device == device # Removing hooks loads back the weights in the model. remove_hook_from_submodules(model) assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") def test_attach_align_device_hook_as_cpu_offload_with_weight_map(self): model = ModelForTest() # Everything is on CPU assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") # This will move each submodule on different devices execution_device = torch_device attach_align_device_hook( model, execution_device=execution_device, offload=True, weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device assert model.linear1.weight.device == torch.device("meta") assert model.batchnorm.weight.device == torch.device("meta") assert model.linear2.weight.device == torch.device("meta") # Buffers are not included in the offload by default, so are on the execution device device = torch.device(execution_device) assert model.batchnorm.running_mean.device == device x = torch.randn(2, 3) output = model(x) assert output.device == device # Removing hooks loads back the weights in the model. remove_hook_from_submodules(model) assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") # Now test with buffers included in the offload attach_align_device_hook( model, execution_device=execution_device, offload=True, weights_map=model.state_dict(), offload_buffers=True, ) # Parameters have been offloaded, so on the meta device, buffers included assert model.linear1.weight.device == torch.device("meta") assert model.batchnorm.weight.device == torch.device("meta") assert model.linear2.weight.device == torch.device("meta") assert model.batchnorm.running_mean.device == torch.device("meta") x = torch.randn(2, 3) output = model(x) assert output.device == device # Removing hooks loads back the weights in the model. remove_hook_from_submodules(model) assert model.linear1.weight.device == torch.device("cpu") assert model.batchnorm.weight.device == torch.device("cpu") assert model.linear2.weight.device == torch.device("cpu") def test_add_remove_hook_fx_graph_module(self): with torch.no_grad(): test_model = ModelForTest() test_hook = ModelHook() x = torch.randn(2, 3) output1 = test_model(x) graph_model = symbolic_trace(test_model) output2 = graph_model(x) assert torch.allclose(output1, output2) add_hook_to_module(graph_model, test_hook) remove_hook_from_module(graph_model, recurse=True) # We want to make sure that `add_hook_to_module` and `remove_hook_from_module` yields back an fx.GraphModule # that behaves correctly (for example that is not frozen, see https://github.com/huggingface/accelerate/pull/2369). # For that, we add a sigmoid node to the FX graph and make sure that the new output (output3 below) is different than # the original model's output. linear2_node = None for node in graph_model.graph.nodes: if node.name == "linear2": linear2_node = node assert linear2_node is not None graph_model.graph.inserting_after(linear2_node) new_node = graph_model.graph.create_node( op="call_function", target=torch.sigmoid, args=(linear2_node,), name="relu" ) output_node = None for node in graph_model.graph.nodes: if node.name == "output": output_node = node assert output_node is not None output_node.replace_input_with(linear2_node, new_node) graph_model.graph.lint() graph_model.recompile() output3 = graph_model(x) # Now the output is expected to be different since we modified the graph. assert not torch.allclose(output1, output3)
accelerate/tests/test_hooks.py/0
{ "file_path": "accelerate/tests/test_hooks.py", "repo_id": "accelerate", "token_count": 6541 }
11
# Constitutional AI This repo includes the recipe for training the following models: * https://huggingface.co/HuggingFaceH4/mistral-7b-anthropic * https://huggingface.co/HuggingFaceH4/mistral-7b-grok ## Full training examples You will require 8 GPUs (80GB of VRAM) to train the full model. ```shell # Step 1 - SFT ACCELERATE_LOG_LEVEL=info accelerate launch --config_file recipes/accelerate_configs/deepspeed_zero3.yaml scripts/run_sft.py recipes/constitutional-ai/sft/config_{grok,anthropic}.yaml # Step 2 - DPO ACCELERATE_LOG_LEVEL=info accelerate launch --config_file recipes/accelerate_configs/deepspeed_zero3.yaml scripts/run_dpo.py recipes/constitutional-ai/dpo/config_anthropic.yaml # Note that we did not include the DPO recipe for grok, as that model's seems overtrained and too snarky. ``` ## Advanced: generating you own dataset To generate the constitutional AI dataset, see https://github.com/huggingface/llm-swarm/tree/main/examples/constitutional-ai for detailed instructions if you want build or customize the dataset.
alignment-handbook/recipes/constitutional-ai/README.md/0
{ "file_path": "alignment-handbook/recipes/constitutional-ai/README.md", "repo_id": "alignment-handbook", "token_count": 326 }
12
# Instructions to train Zephyr-141B-A35B with ORPO This model is fine-tuned via a novel alignment algorithm called [Odds Ratio Preference Optimization (ORPO)](https://huggingface.co/papers/2403.07691). ORPO does not require an SFT step to achieve high performance and is thus much more computationally efficient than methods like DPO and PPO. To train Zephyr-141B-A35B, we used the [`argilla/distilabel-capybara-dpo-7k-binarized`](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized) preference dataset, which consists of synthetic, high-quality, multi-turn preferences that have been scored via LLMs. See below for commands to train these models using FSDP. **Note:** we found it was not possible to train this large model with DeepSpeed ZeRO-3 due to unresolved NCCL errors which cause GPUs to hang. ## Full training examples You will require 4 nodes of 8 GPUs (80GB of VRAM) to train the full model - alternatively, you may be able to train on fewer GPUs by adjusting `per_device_train_batch_size` and `gradient_accumulation_steps` and `num_train_epochs` to keep the global batch size constant. A recipe involving QLoRA will come later 🤗. To run with Slurm, use: ```shell sbatch --job-name=handbook_sft --nodes=4 recipes/launch.slurm zephyr-141b-A35b orpo full fsdp ``` Under the hood, this calls the following script which can be adapted to other models and datasets: ```shell ACCELERATE_LOG_LEVEL=info TRANSFORMERS_VERBOSITY=info accelerate launch --config_file recipes/accelerate_configs/fsdp.yaml scripts/run_orpo.py recipes/zephyr-141b-A35b/orpo/config_full.yaml ```
alignment-handbook/recipes/zephyr-141b-A35b/README.md/0
{ "file_path": "alignment-handbook/recipes/zephyr-141b-A35b/README.md", "repo_id": "alignment-handbook", "token_count": 496 }
13
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Adapted from huggingface/transformers: https://github.com/huggingface/transformers/blob/21a2d900eceeded7be9edc445b56877b95eda4ca/setup.py import re import shutil from pathlib import Path from setuptools import find_packages, setup # Remove stale alignment.egg-info directory to avoid https://github.com/pypa/pip/issues/5466 stale_egg_info = Path(__file__).parent / "alignment.egg-info" if stale_egg_info.exists(): print( ( "Warning: {} exists.\n\n" "If you recently updated alignment, this is expected,\n" "but it may prevent alignment from installing in editable mode.\n\n" "This directory is automatically generated by Python's packaging tools.\n" "I will remove it now.\n\n" "See https://github.com/pypa/pip/issues/5466 for details.\n" ).format(stale_egg_info) ) shutil.rmtree(stale_egg_info) # IMPORTANT: all dependencies should be listed here with their version requirements, if any. # * If a dependency is fast-moving (e.g. transformers), pin to the exact version _deps = [ "accelerate>=0.29.2", "bitsandbytes>=0.43.0", "black==23.1.0", "datasets>=2.18.0", "deepspeed==0.12.2", "einops>=0.6.1", "evaluate==0.4.0", "flake8>=6.0.0", "hf-doc-builder>=0.4.0", "hf_transfer>=0.1.4", "huggingface-hub>=0.19.2,<1.0", "isort>=5.12.0", "ninja>=1.11.1", "numpy>=1.24.2", "packaging>=23.0", "parameterized>=0.9.0", "peft>=0.9.0", "protobuf<=3.20.2", # Needed to avoid conflicts with `transformers` "pytest", "safetensors>=0.3.3", "sentencepiece>=0.1.99", "scipy", "tensorboard", "torch==2.1.2", "transformers>=4.39.3", "trl>=0.8.2", "jinja2>=3.0.0", "tqdm>=4.64.1", ] # this is a lookup table with items like: # # tokenizers: "tokenizers==0.9.4" # packaging: "packaging" # # some of the values are versioned whereas others aren't. deps = {b: a for a, b in (re.findall(r"^(([^!=<>~ \[\]]+)(?:\[[^\]]+\])?(?:[!=<>~ ].*)?$)", x)[0] for x in _deps)} def deps_list(*pkgs): return [deps[pkg] for pkg in pkgs] extras = {} extras["tests"] = deps_list("pytest", "parameterized") extras["torch"] = deps_list("torch") extras["quality"] = deps_list("black", "isort", "flake8") extras["docs"] = deps_list("hf-doc-builder") extras["dev"] = extras["docs"] + extras["quality"] + extras["tests"] # core dependencies shared across the whole project - keep this to a bare minimum :) install_requires = [ deps["accelerate"], deps["bitsandbytes"], deps["einops"], deps["evaluate"], deps["datasets"], deps["deepspeed"], deps["hf_transfer"], deps["huggingface-hub"], deps["jinja2"], deps["ninja"], deps["numpy"], deps["packaging"], # utilities from PyPA to e.g., compare versions deps["peft"], deps["protobuf"], deps["safetensors"], deps["sentencepiece"], deps["scipy"], deps["tensorboard"], deps["tqdm"], # progress bars in model download and training scripts deps["transformers"], deps["trl"], ] setup( name="alignment-handbook", version="0.4.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots) author="The Hugging Face team (past and future)", author_email="lewis@huggingface.co", description="The Alignment Handbook", long_description=open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", keywords="nlp deep learning rlhf llm", license="Apache", url="https://github.com/huggingface/alignment-handbook", package_dir={"": "src"}, packages=find_packages("src"), zip_safe=False, extras_require=extras, python_requires=">=3.10.9", install_requires=install_requires, classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.10", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], )
alignment-handbook/setup.py/0
{ "file_path": "alignment-handbook/setup.py", "repo_id": "alignment-handbook", "token_count": 1998 }
14
<jupyter_start><jupyter_code>#@title 🤗 AutoTrain LLM #@markdown In order to use this colab #@markdown - upload train.csv to a folder named `data/` #@markdown - train.csv must contain a `text` column #@markdown - choose a project name if you wish #@markdown - change model if you wish, you can use most of the text-generation models from Hugging Face Hub #@markdown - add huggingface information (token) if you wish to push trained model to huggingface hub #@markdown - update hyperparameters if you wish #@markdown - click `Runtime > Run all` or run each cell individually #@markdown - report issues / feature requests here: https://github.com/huggingface/autotrain-advanced/issues import os !pip install -U autotrain-advanced > install_logs.txt !autotrain setup --colab > setup_logs.txt #@markdown --- #@markdown #### Project Config #@markdown Note: if you are using a restricted/private model, you need to enter your Hugging Face token in the next step. project_name = 'my-autotrain-llm' # @param {type:"string"} model_name = 'abhishek/llama-2-7b-hf-small-shards' # @param {type:"string"} #@markdown --- #@markdown #### Push to Hub? #@markdown Use these only if you want to push your trained model to a private repo in your Hugging Face Account #@markdown If you dont use these, the model will be saved in Google Colab and you are required to download it manually. #@markdown Please enter your Hugging Face write token. The trained model will be saved to your Hugging Face account. #@markdown You can find your token here: https://huggingface.co/settings/tokens push_to_hub = False # @param ["False", "True"] {type:"raw"} hf_token = "hf_XXX" #@param {type:"string"} hf_username = "abc" #@param {type:"string"} #@markdown --- #@markdown #### Hyperparameters learning_rate = 2e-4 # @param {type:"number"} num_epochs = 1 #@param {type:"number"} batch_size = 1 # @param {type:"slider", min:1, max:32, step:1} block_size = 1024 # @param {type:"number"} trainer = "sft" # @param ["default", "sft", "orpo"] {type:"raw"} warmup_ratio = 0.1 # @param {type:"number"} weight_decay = 0.01 # @param {type:"number"} gradient_accumulation = 4 # @param {type:"number"} mixed_precision = "fp16" # @param ["fp16", "bf16", "none"] {type:"raw"} peft = True # @param ["False", "True"] {type:"raw"} quantization = "int4" # @param ["int4", "int8", "none"] {type:"raw"} lora_r = 16 #@param {type:"number"} lora_alpha = 32 #@param {type:"number"} lora_dropout = 0.05 #@param {type:"number"} os.environ["PROJECT_NAME"] = project_name os.environ["MODEL_NAME"] = model_name os.environ["PUSH_TO_HUB"] = str(push_to_hub) os.environ["HF_TOKEN"] = hf_token os.environ["LEARNING_RATE"] = str(learning_rate) os.environ["NUM_EPOCHS"] = str(num_epochs) os.environ["BATCH_SIZE"] = str(batch_size) os.environ["BLOCK_SIZE"] = str(block_size) os.environ["WARMUP_RATIO"] = str(warmup_ratio) os.environ["WEIGHT_DECAY"] = str(weight_decay) os.environ["GRADIENT_ACCUMULATION"] = str(gradient_accumulation) os.environ["MIXED_PRECISION"] = str(mixed_precision) os.environ["PEFT"] = str(peft) os.environ["QUANTIZATION"] = str(quantization) os.environ["LORA_R"] = str(lora_r) os.environ["LORA_ALPHA"] = str(lora_alpha) os.environ["LORA_DROPOUT"] = str(lora_dropout) os.environ["HF_USERNAME"] = hf_username os.environ["TRAINER"] = trainer !autotrain llm \ --train \ --model ${MODEL_NAME} \ --project-name ${PROJECT_NAME} \ --data-path data/ \ --text-column text \ --lr ${LEARNING_RATE} \ --batch-size ${BATCH_SIZE} \ --epochs ${NUM_EPOCHS} \ --block-size ${BLOCK_SIZE} \ --warmup-ratio ${WARMUP_RATIO} \ --lora-r ${LORA_R} \ --lora-alpha ${LORA_ALPHA} \ --lora-dropout ${LORA_DROPOUT} \ --weight-decay ${WEIGHT_DECAY} \ --gradient-accumulation ${GRADIENT_ACCUMULATION} \ --quantization ${QUANTIZATION} \ --mixed-precision ${MIXED_PRECISION} \ --username ${HF_USERNAME} \ --trainer ${TRAINER} \ $( [[ "$PEFT" == "True" ]] && echo "--peft" ) \ $( [[ "$PUSH_TO_HUB" == "True" ]] && echo "--push-to-hub --token ${HF_TOKEN}" )<jupyter_output><empty_output>
autotrain-advanced/colabs/AutoTrain_LLM.ipynb/0
{ "file_path": "autotrain-advanced/colabs/AutoTrain_LLM.ipynb", "repo_id": "autotrain-advanced", "token_count": 1500 }
15
task: object_detection base_model: facebook/detr-resnet-50 project_name: autotrain-obj-det-cppe5-2 log: tensorboard backend: local data: path: cppe-5 train_split: train valid_split: test column_mapping: image_column: image objects_column: objects params: image_square_size: 600 epochs: 100 batch_size: 8 lr: 5e-5 weight_decay: 1e-4 optimizer: adamw_torch scheduler: linear gradient_accumulation: 1 mixed_precision: fp16 early_stopping_patience: 50 early_stopping_threshold: 0.001 hub: username: ${HF_USERNAME} token: ${HF_TOKEN} push_to_hub: true
autotrain-advanced/configs/object_detection/hub_dataset.yml/0
{ "file_path": "autotrain-advanced/configs/object_detection/hub_dataset.yml", "repo_id": "autotrain-advanced", "token_count": 238 }
16
# Understanding Column Mapping Column mapping is a critical setup process in AutoTrain that informs the system about the roles of different columns in your dataset. Whether it's a tabular dataset, text classification data, or another type, the need for precise column mapping ensures that AutoTrain processes each dataset element correctly. ## How Column Mapping Works AutoTrain has no way of knowing what the columns in your dataset represent. AutoTrain requires a clear understanding of each column's function within your dataset to train models effectively. This is managed through a straightforward mapping system in the user interface, represented as a dictionary. Here's a typical example: ``` {"text": "text", "label": "target"} ``` In this example, the `text column in your dataset corresponds to the text data AutoTrain uses for processing, and the `target`` column is treated as the label for training. But let's not get confused! AutoTrain has a way to understand what each column in your dataset represents. If your data is already in AutoTrain format, you dont need to change column mappings. If not, you can easily map the columns in your dataset to the correct AutoTrain format. In the UI, you will see column mapping as a dictionary: ``` {"text": "text", "label": "target"} ``` Here, the column `text` in your dataset is mapped to the AutoTrain column `text`, and the column `target` in your dataset is mapped to the AutoTrain column `label`. Let's say you are training a text classification model and your dataset has the following columns: ``` full_text, target_sentiment "this movie is great", positive "this movie is bad", negative ``` You can map these columns to the AutoTrain format as follows: ``` {"text": "full_text", "label": "target_sentiment"} ``` If your dataset has the columns: `text` and `label`, you don't need to change the column mapping. Let's take a look at column mappings for each task: ## LLM Note: For all LLM tasks, if the text column(s) is not formatted i.e. if contains samples in chat format (dict or json), then you should use `chat_template` parameter. Read more about it in LLM Parameters Section. ### SFT / Generic Trainer ``` {"text": "text"} ``` `text`: The column in your dataset that contains the text data. ### Reward Trainer ``` {"text": "text", "rejected_text": "rejected_text"} ``` `text`: The column in your dataset that contains the text data. `rejected_text`: The column in your dataset that contains the rejected text data. ### DPO / ORPO Trainer ``` {"prompt": "prompt", "text": "text", "rejected_text": "rejected_text"} ``` `prompt`: The column in your dataset that contains the prompt data. `text`: The column in your dataset that contains the text data. `rejected_text`: The column in your dataset that contains the rejected text data. ## Text Classification & Regression, Seq2Seq For text classification and regression, the column mapping should be as follows: ``` {"text": "dataset_text_column", "label": "dataset_target_column"} ``` `text`: The column in your dataset that contains the text data. `label`: The column in your dataset that contains the target variable. ## Token Classification ``` {"text": "tokens", "label": "tags"} ``` `text`: The column in your dataset that contains the tokens. These tokens must be a list of strings. `label`: The column in your dataset that contains the tags. These tags must be a list of strings. For token classification, if you are using a CSV, make sure that the columns are stringified lists. ## Tabular Classification & Regression ``` {"id": "id", "label": ["target"]} ``` `id`: The column in your dataset that contains the unique identifier for each row. `label`: The column in your dataset that contains the target variable. This should be a list of strings. For a single target column, you can pass a list with a single element. For multiple target columns, e.g. a multi label classification task, you can pass a list with multiple elements. # DreamBooth LoRA Dreambooth doesn't require column mapping. # Image Classification For image classification, the column mapping should be as follows: ``` {"image": "image_column", "label": "label_column"} ``` Image classification requires column mapping only when you are using a dataset from Hugging Face Hub. For uploaded datasets, leave column mapping as it is. # Sentence Transformers For all sentence transformers tasks, one needs to map columns to `sentence1_column`, `sentence2_column`, `sentence3_column` & `target_column` column. Not all columns need to be mapped for all trainers of sentence transformers. ## `pair`: ``` {"sentence1_column": "anchor", "sentence2_column": "positive"} ``` ## `pair_class`: ``` {"sentence1_column": "premise", "sentence2_column": "hypothesis", "target_column": "label"} ``` ## `pair_score`: ``` {"sentence1_column": "sentence1", "sentence2_column": "sentence2", "target_column": "score"} ``` ## `triplet`: ``` {"sentence1_column": "anchor", "sentence2_column": "positive", "sentence3_column": "negative"} ``` ## `qa`: ``` {"sentence1_column": "query", "sentence2_column": "answer"} ``` ## Ensuring Accurate Mapping To ensure your model trains correctly: - Verify Column Names: Double-check that the names used in the mapping dictionary accurately reflect those in your dataset. - Format Appropriately: Especially in token classification, ensure your data format matches expectations (e.g., lists of strings). - Update Mappings for New Datasets: Each new dataset might require its unique mappings based on its structure and the task at hand. By following these guidelines and using the provided examples as templates, you can effectively instruct AutoTrain on how to interpret and handle your data for various machine learning tasks. This process is fundamental for achieving optimal results from your model training endeavors.
autotrain-advanced/docs/source/col_map.mdx/0
{ "file_path": "autotrain-advanced/docs/source/col_map.mdx", "repo_id": "autotrain-advanced", "token_count": 1602 }
17
# Quickstart This quickstart is for local installation and usage. If you want to use AutoTrain on Hugging Face Spaces, please refer to the *AutoTrain on Hugging Face Spaces* section. You can install AutoTrain Advanced using pip: ```bash $ pip install autotrain-advanced ``` It is advised to install autotrain-advanced in a virtual environment to avoid any conflicts with other packages. Note: AutoTrain doesn't install pytorch, torchaudio, torchvision, or any other large dependencies. You will need to install them separately. ```bash $ conda create -n autotrain python=3.10 $ conda activate autotrain $ pip install autotrain-advanced $ conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia $ conda install -c "nvidia/label/cuda-12.1.0" cuda-nvcc $ conda install xformers -c xformers $ python -m nltk.downloader punkt $ pip install flash-attn --no-build-isolation # if you want to use flash-attn $ pip install deepspeed # if you want to use deepspeed ```` # Running AutoTrain User Interface (UI) To run the autotrain app locally, you can use the following command: ```bash $ export HF_TOKEN=your_hugging_face_write_token $ autotrain app --host 127.0.0.1 --port 8000 ``` This will start the app on `http://127.0.0.1:8000`. # Using AutoTrain Command Line Interface (CLI) It is also possible to use the CLI: ```bash $ export HF_TOKEN=your_hugging_face_write_token $ autotrain --help ``` This will show the CLI commands that can be used: ```bash usage: autotrain <command> [<args>] positional arguments: { app, llm, setup, dreambooth, api, text-classification, text-regression, image-classification, tabular, spacerunner, seq2seq, token-classification } commands options: -h, --help show this help message and exit --version, -v Display AutoTrain version --config CONFIG Optional configuration file For more information about a command, run: `autotrain <command> --help` ``` It is advised to use `autotrain --config CONFIG_FILE` command when using the CLI. The autotrain commands that end users will be interested in are: - `app`: Start the AutoTrain UI - `llm`: Train a language model - `dreambooth`: Train a model using DreamBooth - `text-classification`: Train a text classification model - `text-regression`: Train a text regression model - `image-classification`: Train an image classification model - `tabular`: Train a tabular model - `spacerunner`: Train any custom model using SpaceRunner - `seq2seq`: Train a sequence-to-sequence model - `token-classification`: Train a token classification model Note: above commands are not required if you use preferred `autotrain --config CONFIG_FILE` command to train the models.
autotrain-advanced/docs/source/quickstart.mdx/0
{ "file_path": "autotrain-advanced/docs/source/quickstart.mdx", "repo_id": "autotrain-advanced", "token_count": 880 }
18
# Lint as: python3 """ HuggingFace / AutoTrain Advanced """ import os from setuptools import find_packages, setup DOCLINES = __doc__.split("\n") this_directory = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(this_directory, "README.md"), encoding="utf-8") as f: LONG_DESCRIPTION = f.read() # get INSTALL_REQUIRES from requirements.txt INSTALL_REQUIRES = [] requirements_path = os.path.join(this_directory, "requirements.txt") with open(requirements_path, encoding="utf-8") as f: for line in f: # Exclude 'bitsandbytes' if installing on macOS if "bitsandbytes" in line: line = line.strip() + " ; sys_platform == 'linux'" INSTALL_REQUIRES.append(line.strip()) else: INSTALL_REQUIRES.append(line.strip()) QUALITY_REQUIRE = [ "black", "isort", "flake8==3.7.9", ] TESTS_REQUIRE = ["pytest"] EXTRAS_REQUIRE = { "dev": INSTALL_REQUIRES + QUALITY_REQUIRE + TESTS_REQUIRE, "quality": INSTALL_REQUIRES + QUALITY_REQUIRE, "docs": INSTALL_REQUIRES + [ "recommonmark", "sphinx==3.1.2", "sphinx-markdown-tables", "sphinx-rtd-theme==0.4.3", "sphinx-copybutton", ], } setup( name="autotrain-advanced", description=DOCLINES[0], long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", author="HuggingFace Inc.", author_email="autotrain@huggingface.co", url="https://github.com/huggingface/autotrain-advanced", download_url="https://github.com/huggingface/autotrain-advanced/tags", license="Apache 2.0", package_dir={"": "src"}, packages=find_packages("src"), extras_require=EXTRAS_REQUIRE, install_requires=INSTALL_REQUIRES, entry_points={"console_scripts": ["autotrain=autotrain.cli.autotrain:main"]}, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="automl autonlp autotrain huggingface", data_files=[ ( "static", [ "src/autotrain/app/static/logo.png", "src/autotrain/app/static/scripts/fetch_data_and_update_models.js", "src/autotrain/app/static/scripts/listeners.js", "src/autotrain/app/static/scripts/utils.js", "src/autotrain/app/static/scripts/poll.js", "src/autotrain/app/static/scripts/logs.js", ], ), ( "templates", [ "src/autotrain/app/templates/index.html", "src/autotrain/app/templates/error.html", "src/autotrain/app/templates/duplicate.html", "src/autotrain/app/templates/login.html", ], ), ], include_package_data=True, )
autotrain-advanced/setup.py/0
{ "file_path": "autotrain-advanced/setup.py", "repo_id": "autotrain-advanced", "token_count": 1506 }
19
<!doctype html> <html> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <script src="https://cdn.tailwindcss.com"></script> </head> <body> <header class="bg-white-800 text-white p-4"> <div class="container mx-auto flex justify-between items-center"> <img src="/static/logo.png" alt="AutoTrain" , class="w-32"> </div> </header> <div class="form-container max-w-lg mx-auto mt-10 p-6 shadow-2xl"> <h1 class="text-2xl font-bold mb-10">Error</h1> <p class="text-red-500 text-lg mb-10">Please <a class="text-gray-500" href="https://huggingface.co/spaces/autotrain-projects/autotrain-advanced?duplicate=true" target="_blank">DUPLICATE</a> this space in order to use it</p> </div> </body> </html>
autotrain-advanced/src/autotrain/app/templates/duplicate.html/0
{ "file_path": "autotrain-advanced/src/autotrain/app/templates/duplicate.html", "repo_id": "autotrain-advanced", "token_count": 399 }
20
from argparse import ArgumentParser from . import BaseAutoTrainCommand def run_api_command_factory(args): return RunAutoTrainAPICommand( args.port, args.host, args.task, ) class RunAutoTrainAPICommand(BaseAutoTrainCommand): @staticmethod def register_subcommand(parser: ArgumentParser): run_api_parser = parser.add_parser( "api", description="✨ Run AutoTrain API", ) run_api_parser.add_argument( "--port", type=int, default=7860, help="Port to run the api on", required=False, ) run_api_parser.add_argument( "--host", type=str, default="127.0.0.1", help="Host to run the api on", required=False, ) run_api_parser.add_argument( "--task", type=str, required=False, help="Task to run", ) run_api_parser.set_defaults(func=run_api_command_factory) def __init__(self, port, host, task): self.port = port self.host = host self.task = task def run(self): import uvicorn from autotrain.app.training_api import api uvicorn.run(api, host=self.host, port=self.port)
autotrain-advanced/src/autotrain/cli/run_api.py/0
{ "file_path": "autotrain-advanced/src/autotrain/cli/run_api.py", "repo_id": "autotrain-advanced", "token_count": 666 }
21
import os from typing import Any, Type from autotrain.backends.base import AVAILABLE_HARDWARE from autotrain.dataset import ( AutoTrainDataset, AutoTrainDreamboothDataset, AutoTrainImageClassificationDataset, AutoTrainImageRegressionDataset, AutoTrainObjectDetectionDataset, ) def common_args(): args = [ { "arg": "--train", "help": "Command to train the model", "required": False, "action": "store_true", }, { "arg": "--deploy", "help": "Command to deploy the model (limited availability)", "required": False, "action": "store_true", }, { "arg": "--inference", "help": "Command to run inference (limited availability)", "required": False, "action": "store_true", }, { "arg": "--username", "help": "Hugging Face Hub Username", "required": False, "type": str, }, { "arg": "--backend", "help": "Backend to use: default or spaces. Spaces backend requires push_to_hub & username. Advanced users only.", "required": False, "type": str, "default": "local", "choices": AVAILABLE_HARDWARE.keys(), }, { "arg": "--token", "help": "Your Hugging Face API token. Token must have write access to the model hub.", "required": False, "type": str, }, { "arg": "--push-to-hub", "help": "Push to hub after training will push the trained model to the Hugging Face model hub.", "required": False, "action": "store_true", }, { "arg": "--model", "help": "Base model to use for training", "required": True, "type": str, }, { "arg": "--project-name", "help": "Output directory / repo id for trained model (must be unique on hub)", "required": True, "type": str, }, { "arg": "--data-path", "help": "Train dataset to use. When using cli, this should be a directory path containing training and validation data in appropriate formats", "required": False, "type": str, }, { "arg": "--train-split", "help": "Train dataset split to use", "required": False, "type": str, "default": "train", }, { "arg": "--valid-split", "help": "Validation dataset split to use", "required": False, "type": str, "default": None, }, { "arg": "--batch-size", "help": "Training batch size to use", "required": False, "type": int, "default": 2, "alias": ["--train-batch-size"], }, { "arg": "--seed", "help": "Random seed for reproducibility", "required": False, "default": 42, "type": int, }, { "arg": "--epochs", "help": "Number of training epochs", "required": False, "default": 1, "type": int, }, { "arg": "--gradient-accumulation", "help": "Gradient accumulation steps", "required": False, "default": 1, "type": int, "alias": ["--gradient-accumulation"], }, { "arg": "--disable-gradient-checkpointing", "help": "Disable gradient checkpointing", "required": False, "action": "store_true", "alias": ["--disable-gradient-checkpointing", "--disable-gc"], }, { "arg": "--lr", "help": "Learning rate", "required": False, "default": 5e-4, "type": float, }, { "arg": "--log", "help": "Use experiment tracking", "required": False, "type": str, "default": "none", "choices": ["none", "wandb", "tensorboard"], }, ] return args def python_type_from_schema_field(field_data: dict) -> Type: """Converts JSON schema field types to Python types.""" type_map = { "string": str, "number": float, "integer": int, "boolean": bool, } field_type = field_data.get("type") if field_type: return type_map.get(field_type, str) elif "anyOf" in field_data: for type_option in field_data["anyOf"]: if type_option["type"] != "null": return type_map.get(type_option["type"], str) return str def get_default_value(field_data: dict) -> Any: return field_data["default"] def get_field_info(params_class): schema = params_class.model_json_schema() properties = schema.get("properties", {}) # field_info = [ # { # "arg": f"--{field_name.replace('_', '-')}", # "type": python_type_from_schema_field(field_data), # "help": field_data.get("title", ""), # "default": get_default_value(field_data), # } # for field_name, field_data in properties.items() # ] field_info = [] for field_name, field_data in properties.items(): temp_info = { "arg": f"--{field_name.replace('_', '-')}", "type": python_type_from_schema_field(field_data), "help": field_data.get("title", ""), "default": get_default_value(field_data), } if temp_info["type"] == bool: temp_info["action"] = "store_true" field_info.append(temp_info) return field_info def tabular_munge_data(params, local): if isinstance(params.target_columns, str): col_map_label = [params.target_columns] else: col_map_label = params.target_columns task = params.task if task == "classification" and len(col_map_label) > 1: task = "tabular_multi_label_classification" elif task == "classification" and len(col_map_label) == 1: task = "tabular_multi_class_classification" elif task == "regression" and len(col_map_label) > 1: task = "tabular_multi_column_regression" elif task == "regression" and len(col_map_label) == 1: task = "tabular_single_column_regression" else: raise Exception("Please select a valid task.") exts = ["csv", "jsonl"] ext_to_use = None for ext in exts: path = f"{params.data_path}/{params.train_split}.{ext}" if os.path.exists(path): ext_to_use = ext break train_data_path = f"{params.data_path}/{params.train_split}.{ext_to_use}" if params.valid_split is not None: valid_data_path = f"{params.data_path}/{params.valid_split}.{ext_to_use}" else: valid_data_path = None if os.path.exists(train_data_path): dset = AutoTrainDataset( train_data=[train_data_path], task=task, token=params.token, project_name=params.project_name, username=params.username, column_mapping={"id": params.id_column, "label": col_map_label}, valid_data=[valid_data_path] if valid_data_path is not None else None, percent_valid=None, # TODO: add to UI local=local, ext=ext_to_use, ) params.data_path = dset.prepare() params.valid_split = "validation" params.id_column = "autotrain_id" if len(col_map_label) == 1: params.target_columns = ["autotrain_label"] else: params.target_columns = [f"autotrain_label_{i}" for i in range(len(col_map_label))] return params def llm_munge_data(params, local): exts = ["csv", "jsonl"] ext_to_use = None for ext in exts: path = f"{params.data_path}/{params.train_split}.{ext}" if os.path.exists(path): ext_to_use = ext break train_data_path = f"{params.data_path}/{params.train_split}.{ext_to_use}" if params.valid_split is not None: valid_data_path = f"{params.data_path}/{params.valid_split}.{ext_to_use}" else: valid_data_path = None if os.path.exists(train_data_path): col_map = {"text": params.text_column} if params.rejected_text_column is not None: col_map["rejected_text"] = params.rejected_text_column if params.prompt_text_column is not None: col_map["prompt"] = params.prompt_text_column dset = AutoTrainDataset( train_data=[train_data_path], task="lm_training", token=params.token, project_name=params.project_name, username=params.username, column_mapping=col_map, valid_data=[valid_data_path] if valid_data_path is not None else None, percent_valid=None, # TODO: add to UI local=local, ext=ext_to_use, ) params.data_path = dset.prepare() params.valid_split = None params.text_column = "autotrain_text" params.rejected_text_column = "autotrain_rejected_text" params.prompt_text_column = "autotrain_prompt" return params def seq2seq_munge_data(params, local): exts = ["csv", "jsonl"] ext_to_use = None for ext in exts: path = f"{params.data_path}/{params.train_split}.{ext}" if os.path.exists(path): ext_to_use = ext break train_data_path = f"{params.data_path}/{params.train_split}.{ext_to_use}" if params.valid_split is not None: valid_data_path = f"{params.data_path}/{params.valid_split}.{ext_to_use}" else: valid_data_path = None if os.path.exists(train_data_path): dset = AutoTrainDataset( train_data=[train_data_path], task="seq2seq", token=params.token, project_name=params.project_name, username=params.username, column_mapping={"text": params.text_column, "label": params.target_column}, valid_data=[valid_data_path] if valid_data_path is not None else None, percent_valid=None, # TODO: add to UI local=local, ext=ext_to_use, ) params.data_path = dset.prepare() params.valid_split = "validation" params.text_column = "autotrain_text" params.target_column = "autotrain_label" return params def text_clf_munge_data(params, local): exts = ["csv", "jsonl"] ext_to_use = None for ext in exts: path = f"{params.data_path}/{params.train_split}.{ext}" if os.path.exists(path): ext_to_use = ext break train_data_path = f"{params.data_path}/{params.train_split}.{ext_to_use}" if params.valid_split is not None: valid_data_path = f"{params.data_path}/{params.valid_split}.{ext_to_use}" else: valid_data_path = None if os.path.exists(train_data_path): dset = AutoTrainDataset( train_data=[train_data_path], valid_data=[valid_data_path] if valid_data_path is not None else None, task="text_multi_class_classification", token=params.token, project_name=params.project_name, username=params.username, column_mapping={"text": params.text_column, "label": params.target_column}, percent_valid=None, # TODO: add to UI local=local, convert_to_class_label=True, ext=ext_to_use, ) params.data_path = dset.prepare() params.valid_split = "validation" params.text_column = "autotrain_text" params.target_column = "autotrain_label" return params def text_reg_munge_data(params, local): exts = ["csv", "jsonl"] ext_to_use = None for ext in exts: path = f"{params.data_path}/{params.train_split}.{ext}" if os.path.exists(path): ext_to_use = ext break train_data_path = f"{params.data_path}/{params.train_split}.{ext_to_use}" if params.valid_split is not None: valid_data_path = f"{params.data_path}/{params.valid_split}.{ext_to_use}" else: valid_data_path = None if os.path.exists(train_data_path): dset = AutoTrainDataset( train_data=[train_data_path], valid_data=[valid_data_path] if valid_data_path is not None else None, task="text_single_column_regression", token=params.token, project_name=params.project_name, username=params.username, column_mapping={"text": params.text_column, "label": params.target_column}, percent_valid=None, # TODO: add to UI local=local, convert_to_class_label=False, ext=ext_to_use, ) params.data_path = dset.prepare() params.valid_split = "validation" params.text_column = "autotrain_text" params.target_column = "autotrain_label" return params def token_clf_munge_data(params, local): exts = ["csv", "jsonl"] ext_to_use = None for ext in exts: path = f"{params.data_path}/{params.train_split}.{ext}" if os.path.exists(path): ext_to_use = ext break train_data_path = f"{params.data_path}/{params.train_split}.{ext_to_use}" if params.valid_split is not None: valid_data_path = f"{params.data_path}/{params.valid_split}.{ext_to_use}" else: valid_data_path = None if os.path.exists(train_data_path): dset = AutoTrainDataset( train_data=[train_data_path], valid_data=[valid_data_path] if valid_data_path is not None else None, task="text_token_classification", token=params.token, project_name=params.project_name, username=params.username, column_mapping={"text": params.tokens_column, "label": params.tags_column}, percent_valid=None, # TODO: add to UI local=local, convert_to_class_label=True, ext=ext_to_use, ) params.data_path = dset.prepare() params.valid_split = "validation" params.text_column = "autotrain_text" params.target_column = "autotrain_label" return params def img_clf_munge_data(params, local): train_data_path = f"{params.data_path}/{params.train_split}" if params.valid_split is not None: valid_data_path = f"{params.data_path}/{params.valid_split}" else: valid_data_path = None if os.path.isdir(train_data_path): dset = AutoTrainImageClassificationDataset( train_data=train_data_path, valid_data=valid_data_path, token=params.token, project_name=params.project_name, username=params.username, local=local, ) params.data_path = dset.prepare() params.valid_split = "validation" params.image_column = "autotrain_image" params.target_column = "autotrain_label" return params def dreambooth_munge_data(params, local): # check if params.image_path is a directory if os.path.isdir(params.image_path): training_data = [os.path.join(params.image_path, f) for f in os.listdir(params.image_path)] dset = AutoTrainDreamboothDataset( concept_images=training_data, concept_name=params.prompt, token=params.token, project_name=params.project_name, username=params.username, local=local, ) params.image_path = dset.prepare() return params def img_obj_detect_munge_data(params, local): train_data_path = f"{params.data_path}/{params.train_split}" if params.valid_split is not None: valid_data_path = f"{params.data_path}/{params.valid_split}" else: valid_data_path = None if os.path.isdir(train_data_path): dset = AutoTrainObjectDetectionDataset( train_data=train_data_path, valid_data=valid_data_path, token=params.token, project_name=params.project_name, username=params.username, local=local, ) params.data_path = dset.prepare() params.valid_split = "validation" params.image_column = "autotrain_image" params.objects_column = "autotrain_objects" return params def sent_transformers_munge_data(params, local): exts = ["csv", "jsonl"] ext_to_use = None for ext in exts: path = f"{params.data_path}/{params.train_split}.{ext}" if os.path.exists(path): ext_to_use = ext break train_data_path = f"{params.data_path}/{params.train_split}.{ext_to_use}" if params.valid_split is not None: valid_data_path = f"{params.data_path}/{params.valid_split}.{ext_to_use}" else: valid_data_path = None if os.path.exists(train_data_path): dset = AutoTrainDataset( train_data=[train_data_path], valid_data=[valid_data_path] if valid_data_path is not None else None, task="sentence_transformers", token=params.token, project_name=params.project_name, username=params.username, column_mapping={ "sentence1": params.sentence1_column, "sentence2": params.sentence2_column, "sentence3": params.sentence3_column, "target": params.target_column, }, percent_valid=None, # TODO: add to UI local=local, convert_to_class_label=True if params.trainer == "pair_class" else False, ext=ext_to_use, ) params.data_path = dset.prepare() params.valid_split = "validation" params.sentence1_column = "autotrain_sentence1" params.sentence2_column = "autotrain_sentence2" params.sentence3_column = "autotrain_sentence3" params.target_column = "autotrain_target" return params def img_reg_munge_data(params, local): train_data_path = f"{params.data_path}/{params.train_split}" if params.valid_split is not None: valid_data_path = f"{params.data_path}/{params.valid_split}" else: valid_data_path = None if os.path.isdir(train_data_path): dset = AutoTrainImageRegressionDataset( train_data=train_data_path, valid_data=valid_data_path, token=params.token, project_name=params.project_name, username=params.username, local=local, ) params.data_path = dset.prepare() params.valid_split = "validation" params.image_column = "autotrain_image" params.target_column = "autotrain_label" return params
autotrain-advanced/src/autotrain/cli/utils.py/0
{ "file_path": "autotrain-advanced/src/autotrain/cli/utils.py", "repo_id": "autotrain-advanced", "token_count": 9318 }
22
import argparse import json import os from diffusers.utils import convert_all_state_dict_to_peft, convert_state_dict_to_kohya from huggingface_hub import create_repo, snapshot_download, upload_folder from safetensors.torch import load_file, save_file from autotrain import logger from autotrain.trainers.common import monitor, pause_space, remove_autotrain_data from autotrain.trainers.dreambooth import utils from autotrain.trainers.dreambooth.params import DreamBoothTrainingParams def parse_args(): # get training_config.json from the end user parser = argparse.ArgumentParser() parser.add_argument("--training_config", type=str, required=True) return parser.parse_args() @monitor def train(config): if isinstance(config, dict): config = DreamBoothTrainingParams(**config) config.prompt = str(config.prompt).strip() if config.model in utils.XL_MODELS: config.xl = True try: snapshot_download( repo_id=config.image_path, local_dir=config.project_name, token=config.token, repo_type="dataset", ) config.image_path = os.path.join(config.project_name, "concept1") except Exception as e: logger.warning(f"Failed to download dataset: {e}") pass if config.image_path == f"{config.project_name}/autotrain-data": config.image_path = os.path.join(config.image_path, "concept1") if config.vae_model is not None: if config.vae_model.strip() == "": config.vae_model = None if config.xl: from autotrain.trainers.dreambooth.train_xl import main class Args: pretrained_model_name_or_path = config.model pretrained_vae_model_name_or_path = config.vae_model revision = config.revision variant = None dataset_name = None dataset_config_name = None instance_data_dir = config.image_path cache_dir = None image_column = "image" caption_column = None repeats = 1 class_data_dir = config.class_image_path instance_prompt = config.prompt class_prompt = config.class_prompt validation_prompt = None num_validation_images = 4 validation_epochs = 50 with_prior_preservation = config.prior_preservation num_class_images = config.num_class_images output_dir = config.project_name seed = config.seed resolution = config.resolution center_crop = config.center_crop train_text_encoder = config.train_text_encoder train_batch_size = config.batch_size sample_batch_size = config.sample_batch_size num_train_epochs = config.epochs max_train_steps = config.num_steps checkpointing_steps = config.checkpointing_steps checkpoints_total_limit = None resume_from_checkpoint = config.resume_from_checkpoint gradient_accumulation_steps = config.gradient_accumulation gradient_checkpointing = not config.disable_gradient_checkpointing learning_rate = config.lr text_encoder_lr = 5e-6 scale_lr = config.scale_lr lr_scheduler = config.scheduler snr_gamma = None lr_warmup_steps = config.warmup_steps lr_num_cycles = config.num_cycles lr_power = config.lr_power dataloader_num_workers = config.dataloader_num_workers optimizer = "AdamW" use_8bit_adam = config.use_8bit_adam adam_beta1 = config.adam_beta1 adam_beta2 = config.adam_beta2 prodigy_beta3 = None prodigy_decouple = True adam_weight_decay = config.adam_weight_decay adam_weight_decay_text_encoder = 1e-3 adam_epsilon = config.adam_epsilon prodigy_use_bias_correction = True prodigy_safeguard_warmup = True max_grad_norm = config.max_grad_norm push_to_hub = config.push_to_hub hub_token = config.token hub_model_id = f"{config.username}/{config.project_name}" logging_dir = os.path.join(config.project_name, "logs") allow_tf32 = config.allow_tf32 report_to = "tensorboard" if config.logging else None mixed_precision = config.mixed_precision prior_generation_precision = config.prior_generation_precision local_rank = config.local_rank enable_xformers_memory_efficient_attention = config.xformers rank = config.rank do_edm_style_training = False random_flip = False use_dora = False _args = Args() main(_args) else: from autotrain.trainers.dreambooth.train import main class Args: pretrained_model_name_or_path = config.model pretrained_vae_model_name_or_path = config.vae_model revision = config.revision variant = None tokenizer_name = None instance_data_dir = config.image_path class_data_dir = config.class_image_path instance_prompt = config.prompt class_prompt = config.class_prompt validation_prompt = None num_validation_images = 4 validation_epochs = 50 with_prior_preservation = config.prior_preservation num_class_images = config.num_class_images output_dir = config.project_name seed = config.seed resolution = config.resolution center_crop = config.center_crop train_text_encoder = config.train_text_encoder train_batch_size = config.batch_size sample_batch_size = config.sample_batch_size max_train_steps = config.num_steps checkpointing_steps = config.checkpointing_steps checkpoints_total_limit = None resume_from_checkpoint = config.resume_from_checkpoint gradient_accumulation_steps = config.gradient_accumulation gradient_checkpointing = not config.disable_gradient_checkpointing learning_rate = config.lr scale_lr = config.scale_lr lr_scheduler = config.scheduler lr_warmup_steps = config.warmup_steps lr_num_cycles = config.num_cycles lr_power = config.lr_power dataloader_num_workers = config.dataloader_num_workers use_8bit_adam = config.use_8bit_adam adam_beta1 = config.adam_beta1 adam_beta2 = config.adam_beta2 adam_weight_decay = config.adam_weight_decay adam_epsilon = config.adam_epsilon max_grad_norm = config.max_grad_norm push_to_hub = config.push_to_hub hub_token = config.token hub_model_id = f"{config.username}/{config.project_name}" logging_dir = os.path.join(config.project_name, "logs") allow_tf32 = config.allow_tf32 report_to = "tensorboard" if config.logging else None mixed_precision = config.mixed_precision prior_generation_precision = config.prior_generation_precision local_rank = config.local_rank enable_xformers_memory_efficient_attention = config.xformers pre_compute_text_embeddings = config.pre_compute_text_embeddings tokenizer_max_length = config.tokenizer_max_length text_encoder_use_attention_mask = config.text_encoder_use_attention_mask validation_images = None class_labels_conditioning = config.class_labels_conditioning rank = config.rank _args = Args() main(_args) if os.path.exists(f"{config.project_name}/training_params.json"): training_params = json.load(open(f"{config.project_name}/training_params.json")) if "token" in training_params: training_params.pop("token") json.dump( training_params, open(f"{config.project_name}/training_params.json", "w"), ) # add config.prompt as a text file in the output directory with open(f"{config.project_name}/prompt.txt", "w") as f: f.write(config.prompt) try: logger.info("Converting model to Kohya format...") lora_state_dict = load_file(f"{config.project_name}/pytorch_lora_weights.safetensors") peft_state_dict = convert_all_state_dict_to_peft(lora_state_dict) kohya_state_dict = convert_state_dict_to_kohya(peft_state_dict) save_file(kohya_state_dict, f"{config.project_name}/pytorch_lora_weights_kohya.safetensors") except Exception as e: logger.warning(e) logger.warning("Failed to convert model to Kohya format, skipping...") if config.push_to_hub: remove_autotrain_data(config) repo_id = create_repo( repo_id=f"{config.username}/{config.project_name}", exist_ok=True, private=True, token=config.token, ).repo_id if config.xl: utils.save_model_card_xl( repo_id, base_model=config.model, train_text_encoder=config.train_text_encoder, instance_prompt=config.prompt, vae_path=config.vae_model, repo_folder=config.project_name, ) else: utils.save_model_card( repo_id, base_model=config.model, train_text_encoder=config.train_text_encoder, instance_prompt=config.prompt, repo_folder=config.project_name, ) upload_folder( repo_id=repo_id, folder_path=config.project_name, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], token=config.token, ) pause_space(config) if __name__ == "__main__": args = parse_args() training_config = json.load(open(args.training_config)) config = DreamBoothTrainingParams(**training_config) train(config)
autotrain-advanced/src/autotrain/trainers/dreambooth/__main__.py/0
{ "file_path": "autotrain-advanced/src/autotrain/trainers/dreambooth/__main__.py", "repo_id": "autotrain-advanced", "token_count": 4864 }
23
class Seq2SeqDataset: def __init__(self, data, tokenizer, config): self.data = data self.tokenizer = tokenizer self.config = config self.max_len_input = self.config.max_seq_length self.max_len_target = self.config.max_target_length def __len__(self): return len(self.data) def __getitem__(self, item): text = str(self.data[item][self.config.text_column]) target = str(self.data[item][self.config.target_column]) model_inputs = self.tokenizer(text, max_length=self.max_len_input, truncation=True) labels = self.tokenizer(text_target=target, max_length=self.max_len_target, truncation=True) model_inputs["labels"] = labels["input_ids"] return model_inputs
autotrain-advanced/src/autotrain/trainers/seq2seq/dataset.py/0
{ "file_path": "autotrain-advanced/src/autotrain/trainers/seq2seq/dataset.py", "repo_id": "autotrain-advanced", "token_count": 323 }
24
import os import numpy as np from sklearn import metrics SINGLE_COLUMN_REGRESSION_EVAL_METRICS = ( "eval_loss", "eval_mse", "eval_mae", "eval_r2", "eval_rmse", "eval_explained_variance", ) MODEL_CARD = """ --- tags: - autotrain - text-regression{base_model} widget: - text: "I love AutoTrain"{dataset_tag} --- # Model Trained Using AutoTrain - Problem type: Text Regression ## Validation Metrics {validation_metrics} """ def single_column_regression_metrics(pred): raw_predictions, labels = pred # try: # raw_predictions = [r for preds in raw_predictions for r in preds] # except TypeError as err: # if "numpy.float32" not in str(err): # raise Exception(err) def safe_compute(metric_func, default=-999): try: return metric_func(labels, raw_predictions) except Exception: return default pred_dict = { "mse": safe_compute(lambda labels, predictions: metrics.mean_squared_error(labels, predictions)), "mae": safe_compute(lambda labels, predictions: metrics.mean_absolute_error(labels, predictions)), "r2": safe_compute(lambda labels, predictions: metrics.r2_score(labels, predictions)), "rmse": safe_compute(lambda labels, predictions: np.sqrt(metrics.mean_squared_error(labels, predictions))), "explained_variance": safe_compute( lambda labels, predictions: metrics.explained_variance_score(labels, predictions) ), } for key, value in pred_dict.items(): pred_dict[key] = float(value) return pred_dict def create_model_card(config, trainer): if config.valid_split is not None: eval_scores = trainer.evaluate() eval_scores = [ f"{k[len('eval_'):]}: {v}" for k, v in eval_scores.items() if k in SINGLE_COLUMN_REGRESSION_EVAL_METRICS ] eval_scores = "\n\n".join(eval_scores) else: eval_scores = "No validation metrics available" if config.data_path == f"{config.project_name}/autotrain-data" or os.path.isdir(config.data_path): dataset_tag = "" else: dataset_tag = f"\ndatasets:\n- {config.data_path}" if os.path.isdir(config.model): base_model = "" else: base_model = f"\nbase_model: {config.model}" model_card = MODEL_CARD.format( dataset_tag=dataset_tag, validation_metrics=eval_scores, base_model=base_model, ) return model_card
autotrain-advanced/src/autotrain/trainers/text_regression/utils.py/0
{ "file_path": "autotrain-advanced/src/autotrain/trainers/text_regression/utils.py", "repo_id": "autotrain-advanced", "token_count": 1057 }
25
# Using MKL
candle/candle-book/src/advanced/mkl.md/0
{ "file_path": "candle/candle-book/src/advanced/mkl.md", "repo_id": "candle", "token_count": 5 }
26
# Using the hub Install the [`hf-hub`](https://github.com/huggingface/hf-hub) crate: ```bash cargo add hf-hub ``` Then let's start by downloading the [model file](https://huggingface.co/bert-base-uncased/tree/main). ```rust # extern crate candle_core; # extern crate hf_hub; use hf_hub::api::sync::Api; use candle_core::Device; let api = Api::new().unwrap(); let repo = api.model("bert-base-uncased".to_string()); let weights = repo.get("model.safetensors").unwrap(); let weights = candle_core::safetensors::load(weights, &Device::Cpu); ``` We now have access to all the [tensors](https://huggingface.co/bert-base-uncased?show_tensors=true) within the file. You can check all the names of the tensors [here](https://huggingface.co/bert-base-uncased?show_tensors=true) ## Using async `hf-hub` comes with an async API. ```bash cargo add hf-hub --features tokio ``` ```rust,ignore # This is tested directly in examples crate because it needs external dependencies unfortunately: # See [this](https://github.com/rust-lang/mdBook/issues/706) {{#include ../lib.rs:book_hub_1}} ``` ## Using in a real model. Now that we have our weights, we can use them in our bert architecture: ```rust # extern crate candle_core; # extern crate candle_nn; # extern crate hf_hub; # use hf_hub::api::sync::Api; # # let api = Api::new().unwrap(); # let repo = api.model("bert-base-uncased".to_string()); # # let weights = repo.get("model.safetensors").unwrap(); use candle_core::{Device, Tensor, DType}; use candle_nn::{Linear, Module}; let weights = candle_core::safetensors::load(weights, &Device::Cpu).unwrap(); let weight = weights.get("bert.encoder.layer.0.attention.self.query.weight").unwrap(); let bias = weights.get("bert.encoder.layer.0.attention.self.query.bias").unwrap(); let linear = Linear::new(weight.clone(), Some(bias.clone())); let input_ids = Tensor::zeros((3, 768), DType::F32, &Device::Cpu).unwrap(); let output = linear.forward(&input_ids).unwrap(); ``` For a full reference, you can check out the full [bert](https://github.com/LaurentMazare/candle/tree/main/candle-examples/examples/bert) example. ## Memory mapping For more efficient loading, instead of reading the file, you could use [`memmap2`](https://docs.rs/memmap2/latest/memmap2/) **Note**: Be careful about memory mapping it seems to cause issues on [Windows, WSL](https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/5893) and will definitely be slower on network mounted disk, because it will issue more read calls. ```rust,ignore {{#include ../lib.rs:book_hub_2}} ``` **Note**: This operation is **unsafe**. [See the safety notice](https://docs.rs/memmap2/latest/memmap2/struct.Mmap.html#safety). In practice model files should never be modified, and the mmaps should be mostly READONLY anyway, so the caveat most likely does not apply, but always keep it in mind. ## Tensor Parallel Sharding When using multiple GPUs to use in Tensor Parallel in order to get good latency, you can load only the part of the Tensor you need. For that you need to use [`safetensors`](https://crates.io/crates/safetensors) directly. ```bash cargo add safetensors ``` ```rust,ignore {{#include ../lib.rs:book_hub_3}} ```
candle/candle-book/src/inference/hub.md/0
{ "file_path": "candle/candle-book/src/inference/hub.md", "repo_id": "candle", "token_count": 1098 }
27
pub(crate) mod affine; pub(crate) mod conv_transpose2d; pub(crate) mod matmul; pub(crate) mod qmatmul; pub(crate) mod random; pub(crate) mod unary; pub(crate) mod where_cond; use candle_core::{Device, Result}; pub(crate) trait BenchDevice { fn sync(&self) -> Result<()>; fn bench_name<S: Into<String>>(&self, name: S) -> String; } impl BenchDevice for Device { fn sync(&self) -> Result<()> { match self { Device::Cpu => Ok(()), Device::Cuda(device) => { #[cfg(feature = "cuda")] return Ok(device.synchronize()?); #[cfg(not(feature = "cuda"))] panic!("Cuda device without cuda feature enabled: {:?}", device) } Device::Metal(device) => { #[cfg(feature = "metal")] return Ok(device.wait_until_completed()?); #[cfg(not(feature = "metal"))] panic!("Metal device without metal feature enabled: {:?}", device) } } } fn bench_name<S: Into<String>>(&self, name: S) -> String { match self { Device::Cpu => { let cpu_type = if cfg!(feature = "accelerate") { "accelerate" } else if cfg!(feature = "mkl") { "mkl" } else { "cpu" }; format!("{}_{}", cpu_type, name.into()) } Device::Cuda(_) => format!("cuda_{}", name.into()), Device::Metal(_) => format!("metal_{}", name.into()), } } } struct BenchDeviceHandler { devices: Vec<Device>, } impl BenchDeviceHandler { pub fn new() -> Result<Self> { let mut devices = Vec::new(); if cfg!(feature = "metal") { devices.push(Device::new_metal(0)?); } else if cfg!(feature = "cuda") { devices.push(Device::new_cuda(0)?); } devices.push(Device::Cpu); Ok(Self { devices }) } }
candle/candle-core/benches/benchmarks/mod.rs/0
{ "file_path": "candle/candle-core/benches/benchmarks/mod.rs", "repo_id": "candle", "token_count": 1055 }
28
pub mod erf; pub mod kernels; #[allow(unused)] trait Cpu<const ARR: usize> { type Unit; type Array; const STEP: usize; const EPR: usize; fn n() -> usize; unsafe fn zero() -> Self::Unit; unsafe fn zero_array() -> Self::Array; unsafe fn load(mem_addr: *const f32) -> Self::Unit; unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit; unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit; unsafe fn vec_reduce(x: Self::Array, y: *mut f32); unsafe fn from_f32(v: f32) -> Self::Unit; unsafe fn vec_store(mem_addr: *mut f32, a: Self::Unit); } #[allow(unused)] trait CpuF16<const ARR: usize> { type Unit; type Array; const STEP: usize; const EPR: usize; fn n() -> usize; unsafe fn zero() -> Self::Unit; unsafe fn zero_array() -> Self::Array; unsafe fn load(mem_addr: *const f16) -> Self::Unit; unsafe fn vec_add(a: Self::Unit, b: Self::Unit) -> Self::Unit; unsafe fn vec_fma(a: Self::Unit, b: Self::Unit, c: Self::Unit) -> Self::Unit; unsafe fn vec_reduce(x: Self::Array, y: *mut f32); unsafe fn from_f32(v: f32) -> Self::Unit; unsafe fn vec_store(mem_addr: *mut f16, a: Self::Unit); } use half::f16; #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] #[cfg(target_feature = "avx")] pub mod avx; #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] #[cfg(target_feature = "avx")] pub use avx::{CurrentCpu, CurrentCpuF16}; #[cfg(target_arch = "wasm32")] #[cfg(target_feature = "simd128")] pub mod simd128; #[cfg(target_arch = "wasm32")] #[cfg(target_feature = "simd128")] pub use simd128::CurrentCpu; #[cfg(any(target_arch = "arm", target_arch = "aarch64"))] #[cfg(target_feature = "neon")] pub mod neon; #[cfg(any(target_arch = "arm", target_arch = "aarch64"))] #[cfg(target_feature = "neon")] pub use neon::CurrentCpu; #[cfg(any( target_feature = "neon", target_feature = "avx", target_feature = "simd128" ))] #[inline(always)] pub(crate) unsafe fn vec_dot_f32(a_row: *const f32, b_row: *const f32, c: *mut f32, k: usize) { let np = k & !(CurrentCpu::STEP - 1); let mut sum = CurrentCpu::zero_array(); let mut ax = CurrentCpu::zero_array(); let mut ay = CurrentCpu::zero_array(); for i in (0..np).step_by(CurrentCpu::STEP) { for j in 0..CurrentCpu::n() { ax[j] = CurrentCpu::load(a_row.add(i + j * CurrentCpu::EPR)); ay[j] = CurrentCpu::load(b_row.add(i + j * CurrentCpu::EPR)); sum[j] = CurrentCpu::vec_fma(sum[j], ax[j], ay[j]); } } CurrentCpu::vec_reduce(sum, c); // leftovers for i in np..k { *c += *a_row.add(i) * (*b_row.add(i)); } } #[cfg(not(any( target_feature = "neon", target_feature = "avx", target_feature = "simd128" )))] #[inline(always)] pub(crate) unsafe fn vec_dot_f32(a_row: *const f32, b_row: *const f32, c: *mut f32, k: usize) { // leftovers for i in 0..k { *c += *a_row.add(i) * (*b_row.add(i)); } } #[cfg(any( target_feature = "neon", target_feature = "avx", target_feature = "simd128" ))] #[inline(always)] pub(crate) unsafe fn vec_sum(row: *const f32, b: *mut f32, k: usize) { let np = k & !(CurrentCpu::STEP - 1); let mut sum = CurrentCpu::zero_array(); let mut x = CurrentCpu::zero_array(); for i in (0..np).step_by(CurrentCpu::STEP) { for j in 0..CurrentCpu::n() { x[j] = CurrentCpu::load(row.add(i + j * CurrentCpu::EPR)); sum[j] = CurrentCpu::vec_add(sum[j], x[j]); } } CurrentCpu::vec_reduce(sum, b); // leftovers for i in np..k { *b += *row.add(i) } } #[cfg(not(any( target_feature = "neon", target_feature = "avx", target_feature = "simd128" )))] #[inline(always)] pub(crate) unsafe fn vec_sum(row: *const f32, b: *mut f32, k: usize) { *b = 0f32; for i in 0..k { *b += *row.add(i) } } #[cfg(target_feature = "avx")] #[inline(always)] pub(crate) unsafe fn vec_dot_f16(a_row: *const f16, b_row: *const f16, c: *mut f32, k: usize) { let mut sumf = 0.0f32; let np = k & !(CurrentCpuF16::STEP - 1); let mut sum = CurrentCpuF16::zero_array(); let mut ax = CurrentCpuF16::zero_array(); let mut ay = CurrentCpuF16::zero_array(); for i in (0..np).step_by(CurrentCpuF16::STEP) { for j in 0..CurrentCpuF16::n() { ax[j] = CurrentCpuF16::load(a_row.add(i + j * CurrentCpuF16::EPR)); ay[j] = CurrentCpuF16::load(b_row.add(i + j * CurrentCpuF16::EPR)); sum[j] = CurrentCpuF16::vec_fma(sum[j], ax[j], ay[j]); } } CurrentCpuF16::vec_reduce(sum, &mut sumf); // leftovers for i in np..k { sumf += (*a_row.add(i)).to_f32() * (*b_row.add(i)).to_f32(); } *c = sumf; } #[cfg(not(target_feature = "avx"))] #[inline(always)] pub(crate) unsafe fn vec_dot_f16(a_row: *const f16, b_row: *const f16, c: *mut f32, k: usize) { // leftovers let mut sum = 0.0; for i in 0..k { sum += (*a_row.add(i)).to_f32() * (*b_row.add(i)).to_f32(); } *c = sum; }
candle/candle-core/src/cpu/mod.rs/0
{ "file_path": "candle/candle-core/src/cpu/mod.rs", "repo_id": "candle", "token_count": 2432 }
29
use crate::{DType, DeviceLocation, Layout, MetalError, Shape}; #[derive(Debug, Clone)] pub struct MatMulUnexpectedStriding { pub lhs_l: Layout, pub rhs_l: Layout, pub bmnk: (usize, usize, usize, usize), pub msg: &'static str, } /// Main library error type. #[derive(thiserror::Error, Debug)] pub enum Error { // === DType Errors === #[error("{msg}, expected: {expected:?}, got: {got:?}")] UnexpectedDType { msg: &'static str, expected: DType, got: DType, }, #[error("dtype mismatch in {op}, lhs: {lhs:?}, rhs: {rhs:?}")] DTypeMismatchBinaryOp { lhs: DType, rhs: DType, op: &'static str, }, #[error("unsupported dtype {0:?} for op {1}")] UnsupportedDTypeForOp(DType, &'static str), // === Dimension Index Errors === #[error("{op}: dimension index {dim} out of range for shape {shape:?}")] DimOutOfRange { shape: Shape, dim: i32, op: &'static str, }, #[error("{op}: duplicate dim index {dims:?} for shape {shape:?}")] DuplicateDimIndex { shape: Shape, dims: Vec<usize>, op: &'static str, }, // === Shape Errors === #[error("unexpected rank, expected: {expected}, got: {got} ({shape:?})")] UnexpectedNumberOfDims { expected: usize, got: usize, shape: Shape, }, #[error("{msg}, expected: {expected:?}, got: {got:?}")] UnexpectedShape { msg: String, expected: Shape, got: Shape, }, #[error( "Shape mismatch, got buffer of size {buffer_size} which is compatible with shape {shape:?}" )] ShapeMismatch { buffer_size: usize, shape: Shape }, #[error("shape mismatch in {op}, lhs: {lhs:?}, rhs: {rhs:?}")] ShapeMismatchBinaryOp { lhs: Shape, rhs: Shape, op: &'static str, }, #[error("shape mismatch in cat for dim {dim}, shape for arg 1: {first_shape:?} shape for arg {n}: {nth_shape:?}")] ShapeMismatchCat { dim: usize, first_shape: Shape, n: usize, nth_shape: Shape, }, #[error("Cannot divide tensor of shape {shape:?} equally along dim {dim} into {n_parts}")] ShapeMismatchSplit { shape: Shape, dim: usize, n_parts: usize, }, #[error("{op} can only be performed on a single dimension")] OnlySingleDimension { op: &'static str, dims: Vec<usize> }, #[error("empty tensor for {op}")] EmptyTensor { op: &'static str }, // === Device Errors === #[error("device mismatch in {op}, lhs: {lhs:?}, rhs: {rhs:?}")] DeviceMismatchBinaryOp { lhs: DeviceLocation, rhs: DeviceLocation, op: &'static str, }, // === Op Specific Errors === #[error("narrow invalid args {msg}: {shape:?}, dim: {dim}, start: {start}, len:{len}")] NarrowInvalidArgs { shape: Shape, dim: usize, start: usize, len: usize, msg: &'static str, }, #[error("conv1d invalid args {msg}: inp: {inp_shape:?}, k: {k_shape:?}, pad: {padding}, stride: {stride}")] Conv1dInvalidArgs { inp_shape: Shape, k_shape: Shape, padding: usize, stride: usize, msg: &'static str, }, #[error("{op} invalid index {index} with dim size {size}")] InvalidIndex { op: &'static str, index: usize, size: usize, }, #[error("cannot broadcast {src_shape:?} to {dst_shape:?}")] BroadcastIncompatibleShapes { src_shape: Shape, dst_shape: Shape }, #[error("cannot set variable {msg}")] CannotSetVar { msg: &'static str }, // Box indirection to avoid large variant. #[error("{0:?}")] MatMulUnexpectedStriding(Box<MatMulUnexpectedStriding>), #[error("{op} only supports contiguous tensors")] RequiresContiguous { op: &'static str }, #[error("{op} expects at least one tensor")] OpRequiresAtLeastOneTensor { op: &'static str }, #[error("{op} expects at least two tensors")] OpRequiresAtLeastTwoTensors { op: &'static str }, #[error("backward is not supported for {op}")] BackwardNotSupported { op: &'static str }, // === Other Errors === #[error("the candle crate has not been built with cuda support")] NotCompiledWithCudaSupport, #[error("the candle crate has not been built with metal support")] NotCompiledWithMetalSupport, #[error("cannot find tensor {path}")] CannotFindTensor { path: String }, // === Wrapped Errors === #[error(transparent)] Cuda(Box<dyn std::error::Error + Send + Sync>), #[error("Metal error {0}")] Metal(#[from] MetalError), #[error(transparent)] TryFromIntError(#[from] core::num::TryFromIntError), #[error("npy/npz error {0}")] Npy(String), /// Zip file format error. #[error(transparent)] Zip(#[from] zip::result::ZipError), /// Integer parse error. #[error(transparent)] ParseInt(#[from] std::num::ParseIntError), /// I/O error. #[error(transparent)] Io(#[from] std::io::Error), /// SafeTensor error. #[error(transparent)] SafeTensor(#[from] safetensors::SafeTensorError), #[error("unsupported safetensor dtype {0:?}")] UnsupportedSafeTensorDtype(safetensors::Dtype), /// Arbitrary errors wrapping. #[error(transparent)] Wrapped(Box<dyn std::error::Error + Send + Sync>), /// Adding path information to an error. #[error("path: {path:?} {inner}")] WithPath { inner: Box<Self>, path: std::path::PathBuf, }, #[error("{inner}\n{backtrace}")] WithBacktrace { inner: Box<Self>, backtrace: Box<std::backtrace::Backtrace>, }, /// User generated error message, typically created via `bail!`. #[error("{0}")] Msg(String), } pub type Result<T> = std::result::Result<T, Error>; impl Error { pub fn wrap(err: impl std::error::Error + Send + Sync + 'static) -> Self { Self::Wrapped(Box::new(err)).bt() } pub fn msg(err: impl std::error::Error) -> Self { Self::Msg(err.to_string()).bt() } pub fn debug(err: impl std::fmt::Debug) -> Self { Self::Msg(format!("{err:?}")).bt() } pub fn bt(self) -> Self { let backtrace = std::backtrace::Backtrace::capture(); match backtrace.status() { std::backtrace::BacktraceStatus::Disabled | std::backtrace::BacktraceStatus::Unsupported => self, _ => Self::WithBacktrace { inner: Box::new(self), backtrace: Box::new(backtrace), }, } } pub fn with_path<P: AsRef<std::path::Path>>(self, p: P) -> Self { Self::WithPath { inner: Box::new(self), path: p.as_ref().to_path_buf(), } } } #[macro_export] macro_rules! bail { ($msg:literal $(,)?) => { return Err($crate::Error::Msg(format!($msg).into()).bt()) }; ($err:expr $(,)?) => { return Err($crate::Error::Msg(format!($err).into()).bt()) }; ($fmt:expr, $($arg:tt)*) => { return Err($crate::Error::Msg(format!($fmt, $($arg)*).into()).bt()) }; } pub fn zip<T, U>(r1: Result<T>, r2: Result<U>) -> Result<(T, U)> { match (r1, r2) { (Ok(r1), Ok(r2)) => Ok((r1, r2)), (Err(e), _) => Err(e), (_, Err(e)) => Err(e), } }
candle/candle-core/src/error.rs/0
{ "file_path": "candle/candle-core/src/error.rs", "repo_id": "candle", "token_count": 3297 }
30
use super::utils::{ get_scale_min_k4, group_for_dequantization, group_for_quantization, make_q3_quants, make_qkx1_quants, make_qx_quants, nearest_int, }; use super::GgmlDType; use crate::Result; use byteorder::{ByteOrder, LittleEndian}; use half::f16; use rayon::prelude::*; // Default to QK_K 256 rather than 64. pub const QK_K: usize = 256; pub const K_SCALE_SIZE: usize = 12; pub const QK4_0: usize = 32; pub const QK4_1: usize = 32; pub const QK5_0: usize = 32; pub const QK5_1: usize = 32; pub const QK8_0: usize = 32; pub const QK8_1: usize = 32; pub trait GgmlType: Sized + Clone + Send + Sync { const DTYPE: GgmlDType; const BLCK_SIZE: usize; type VecDotType: GgmlType; // This is only safe for types that include immediate values such as float/int/... fn zeros() -> Self { unsafe { std::mem::MaybeUninit::zeroed().assume_init() } } fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()>; fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()>; /// Dot product used as a building block for quantized mat-mul. /// n is the number of elements to be considered. fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32>; /// Generic implementation of the dot product without simd optimizations. fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32>; } #[derive(Debug, Clone, PartialEq)] #[repr(C)] pub struct BlockQ4_0 { pub(crate) d: f16, pub(crate) qs: [u8; QK4_0 / 2], } const _: () = assert!(std::mem::size_of::<BlockQ4_0>() == 18); #[derive(Debug, Clone, PartialEq)] #[repr(C)] pub struct BlockQ4_1 { pub(crate) d: f16, pub(crate) m: f16, pub(crate) qs: [u8; QK4_1 / 2], } const _: () = assert!(std::mem::size_of::<BlockQ4_1>() == 20); #[derive(Debug, Clone, PartialEq)] #[repr(C)] pub struct BlockQ5_0 { pub(crate) d: f16, pub(crate) qh: [u8; 4], pub(crate) qs: [u8; QK5_0 / 2], } const _: () = assert!(std::mem::size_of::<BlockQ5_0>() == 22); #[derive(Debug, Clone, PartialEq)] #[repr(C)] pub struct BlockQ5_1 { pub(crate) d: f16, pub(crate) m: f16, pub(crate) qh: [u8; 4], pub(crate) qs: [u8; QK5_1 / 2], } const _: () = assert!(std::mem::size_of::<BlockQ5_1>() == 24); #[derive(Debug, Clone, PartialEq)] #[repr(C)] pub struct BlockQ8_0 { pub(crate) d: f16, pub(crate) qs: [i8; QK8_0], } const _: () = assert!(std::mem::size_of::<BlockQ8_0>() == 34); #[derive(Debug, Clone, PartialEq)] #[repr(C)] pub struct BlockQ8_1 { pub(crate) d: f16, pub(crate) s: f16, pub(crate) qs: [i8; QK8_1], } const _: () = assert!(std::mem::size_of::<BlockQ8_1>() == 36); #[derive(Debug, Clone, PartialEq)] #[repr(C)] pub struct BlockQ2K { pub(crate) scales: [u8; QK_K / 16], pub(crate) qs: [u8; QK_K / 4], pub(crate) d: f16, pub(crate) dmin: f16, } const _: () = assert!(QK_K / 16 + QK_K / 4 + 2 * 2 == std::mem::size_of::<BlockQ2K>()); #[derive(Debug, Clone, PartialEq)] #[repr(C)] pub struct BlockQ3K { pub(crate) hmask: [u8; QK_K / 8], pub(crate) qs: [u8; QK_K / 4], pub(crate) scales: [u8; 12], pub(crate) d: f16, } const _: () = assert!(QK_K / 8 + QK_K / 4 + 12 + 2 == std::mem::size_of::<BlockQ3K>()); #[derive(Debug, Clone, PartialEq)] // https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/k_quants.h#L82 #[repr(C)] pub struct BlockQ4K { pub(crate) d: f16, pub(crate) dmin: f16, pub(crate) scales: [u8; K_SCALE_SIZE], pub(crate) qs: [u8; QK_K / 2], } const _: () = assert!(QK_K / 2 + K_SCALE_SIZE + 2 * 2 == std::mem::size_of::<BlockQ4K>()); #[derive(Debug, Clone, PartialEq)] #[repr(C)] pub struct BlockQ5K { pub(crate) d: f16, pub(crate) dmin: f16, pub(crate) scales: [u8; K_SCALE_SIZE], pub(crate) qh: [u8; QK_K / 8], pub(crate) qs: [u8; QK_K / 2], } const _: () = assert!(QK_K / 8 + QK_K / 2 + 2 * 2 + K_SCALE_SIZE == std::mem::size_of::<BlockQ5K>()); #[derive(Debug, Clone, PartialEq)] #[repr(C)] pub struct BlockQ6K { pub(crate) ql: [u8; QK_K / 2], pub(crate) qh: [u8; QK_K / 4], pub(crate) scales: [i8; QK_K / 16], pub(crate) d: f16, } const _: () = assert!(3 * QK_K / 4 + QK_K / 16 + 2 == std::mem::size_of::<BlockQ6K>()); #[derive(Debug, Clone, PartialEq)] #[repr(C)] pub struct BlockQ8K { pub(crate) d: f32, pub(crate) qs: [i8; QK_K], pub(crate) bsums: [i16; QK_K / 16], } const _: () = assert!(4 + QK_K + QK_K / 16 * 2 == std::mem::size_of::<BlockQ8K>()); impl GgmlType for BlockQ4_0 { const DTYPE: GgmlDType = GgmlDType::Q4_0; const BLCK_SIZE: usize = QK4_0; type VecDotType = BlockQ8_0; // https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L1525 fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> { let k = ys.len(); let qk = Self::BLCK_SIZE; if k % qk != 0 { crate::bail!("dequantize_row_q4_0: {k} is not divisible by {qk}") } let nb = k / qk; for i in 0..nb { let d = xs[i].d.to_f32(); for j in 0..(qk / 2) { let x0 = (xs[i].qs[j] & 0x0F) as i16 - 8; let x1 = (xs[i].qs[j] >> 4) as i16 - 8; ys[i * qk + j] = (x0 as f32) * d; ys[i * qk + j + qk / 2] = (x1 as f32) * d; } } Ok(()) } fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> { // quantize_row_q4_0 let qk = Self::BLCK_SIZE; let k = xs.len(); if k % qk != 0 { crate::bail!("{k} is not divisible by {}", qk); }; let nb = k / qk; if ys.len() != nb { crate::bail!("size mismatch {} {} {}", xs.len(), ys.len(), qk,) } for (i, ys) in ys.iter_mut().enumerate() { let mut amax = 0f32; let mut max = 0f32; let xs = &xs[i * qk..(i + 1) * qk]; for &x in xs.iter() { if amax < x.abs() { amax = x.abs(); max = x; } } let d = max / -8.0; let id = if d != 0f32 { 1. / d } else { 0. }; ys.d = f16::from_f32(d); for (j, q) in ys.qs.iter_mut().enumerate() { let x0 = xs[j] * id; let x1 = xs[qk / 2 + j] * id; let xi0 = u8::min(15, (x0 + 8.5) as u8); let xi1 = u8::min(15, (x1 + 8.5) as u8); *q = xi0 | (xi1 << 4) } } Ok(()) } // https://github.com/ggerganov/llama.cpp/blob/b5ffb2849d23afe73647f68eec7b68187af09be6/ggml.c#L2361C10-L2361C122 #[allow(unreachable_code)] fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { #[cfg(target_feature = "avx")] return super::avx::vec_dot_q4_0_q8_0(n, xs, ys); #[cfg(target_feature = "neon")] return super::neon::vec_dot_q4_0_q8_0(n, xs, ys); #[cfg(target_feature = "simd128")] return super::simd128::vec_dot_q4_0_q8_0(n, xs, ys); Self::vec_dot_unopt(n, xs, ys) } fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { let qk = QK8_0; if n % QK8_0 != 0 { crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}") } // Generic implementation. let mut sumf = 0f32; for (xs, ys) in xs.iter().zip(ys.iter()) { let mut sum_i = 0; for j in 0..qk / 2 { let v0 = (xs.qs[j] & 0x0F) as i32 - 8; let v1 = (xs.qs[j] >> 4) as i32 - 8; sum_i += v0 * ys.qs[j] as i32 + v1 * ys.qs[j + qk / 2] as i32 } sumf += sum_i as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d) } Ok(sumf) } } impl GgmlType for BlockQ4_1 { const DTYPE: GgmlDType = GgmlDType::Q4_1; const BLCK_SIZE: usize = QK4_1; type VecDotType = BlockQ8_1; fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { Self::vec_dot_unopt(n, xs, ys) } fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { // ggml_vec_dot_q4_1_q8_1 let qk = QK8_1; if n % qk != 0 { crate::bail!("vec_dot_q4_1_q8_1: {n} is not divisible by {qk}") } let nb = n / qk; if nb % 2 != 0 { crate::bail!("vec_dot_q4_1_q8_1: {n}, nb is not divisible by 2") } // Generic implementation. let mut sumf = 0f32; for (xs, ys) in xs.iter().zip(ys.iter()) { let mut sumi = 0i32; for j in 0..qk / 2 { let v0 = xs.qs[j] as i32 & 0x0F; let v1 = xs.qs[j] as i32 >> 4; sumi += (v0 * ys.qs[j] as i32) + (v1 * ys.qs[j + qk / 2] as i32); } sumf += sumi as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d) + f16::to_f32(xs.m) * f16::to_f32(ys.s) } Ok(sumf) } fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> { // quantize_row_q4_1 let qk = Self::BLCK_SIZE; if ys.len() * qk != xs.len() { crate::bail!("size mismatch {} {} {}", xs.len(), ys.len(), qk,) } for (i, ys) in ys.iter_mut().enumerate() { let xs = &xs[i * qk..(i + 1) * qk]; let mut min = f32::INFINITY; let mut max = f32::NEG_INFINITY; for &x in xs.iter() { min = f32::min(x, min); max = f32::max(x, max); } let d = (max - min) / ((1 << 4) - 1) as f32; let id = if d != 0f32 { 1. / d } else { 0. }; ys.d = f16::from_f32(d); ys.m = f16::from_f32(min); for (j, q) in ys.qs.iter_mut().take(qk / 2).enumerate() { let x0 = (xs[j] - min) * id; let x1 = (xs[qk / 2 + j] - min) * id; let xi0 = u8::min(15, (x0 + 0.5) as u8); let xi1 = u8::min(15, (x1 + 0.5) as u8); *q = xi0 | (xi1 << 4); } } Ok(()) } // https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L1545 fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> { let k = ys.len(); if k % QK4_1 != 0 { crate::bail!("dequantize_row_q4_1: {k} is not divisible by {QK4_1}"); } let nb = k / QK4_1; for i in 0..nb { let d = xs[i].d.to_f32(); let m = xs[i].m.to_f32(); for j in 0..(QK4_1 / 2) { let x0 = xs[i].qs[j] & 0x0F; let x1 = xs[i].qs[j] >> 4; ys[i * QK4_1 + j] = (x0 as f32) * d + m; ys[i * QK4_1 + j + QK4_1 / 2] = (x1 as f32) * d + m; } } Ok(()) } } impl GgmlType for BlockQ5_0 { const DTYPE: GgmlDType = GgmlDType::Q5_0; const BLCK_SIZE: usize = QK5_0; type VecDotType = BlockQ8_0; fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { let qk = Self::BLCK_SIZE; if n % Self::BLCK_SIZE != 0 { crate::bail!("vec_dot_q5_0_q8_0: {n} is not divisible by {qk}") } let nb = n / qk; if nb % 2 != 0 { crate::bail!("vec_dot_q5_0_q8_0: {n}, nb is not divisible by 2") } Self::vec_dot_unopt(n, xs, ys) } fn vec_dot_unopt(_n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { // Generic implementation. let mut sumf = 0f32; for (xs, ys) in xs.iter().zip(ys.iter()) { let qh = LittleEndian::read_u32(&xs.qh); let mut sumi = 0i32; for j in 0..Self::BLCK_SIZE / 2 { let xh_0 = (((qh & (1u32 << j)) >> j) << 4) as u8; let xh_1 = ((qh & (1u32 << (j + 16))) >> (j + 12)) as u8; let x0 = ((xs.qs[j] & 0x0F) as i32 | xh_0 as i32) - 16; let x1 = ((xs.qs[j] >> 4) as i32 | xh_1 as i32) - 16; sumi += (x0 * ys.qs[j] as i32) + (x1 * ys.qs[j + Self::BLCK_SIZE / 2] as i32); } sumf += sumi as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d) } Ok(sumf) } fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> { // quantize_row_q5_0 let k = xs.len(); if ys.len() * Self::BLCK_SIZE != k { crate::bail!("size mismatch {k} {} {}", ys.len(), Self::BLCK_SIZE) } for (i, ys) in ys.iter_mut().enumerate() { let xs = &xs[i * Self::BLCK_SIZE..(i + 1) * Self::BLCK_SIZE]; let mut amax = 0f32; let mut max = 0f32; for &x in xs.iter() { if amax < x.abs() { amax = x.abs(); max = x; } } let d = max / -16.; let id = if d != 0f32 { 1. / d } else { 0. }; ys.d = f16::from_f32(d); let mut qh = 0u32; for j in 0..Self::BLCK_SIZE / 2 { let x0 = xs[j] * id; let x1 = xs[j + Self::BLCK_SIZE / 2] * id; let xi0 = ((x0 + 16.5) as i8).min(31) as u8; let xi1 = ((x1 + 16.5) as i8).min(31) as u8; ys.qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4); qh |= ((xi0 as u32 & 0x10) >> 4) << j; qh |= ((xi1 as u32 & 0x10) >> 4) << (j + Self::BLCK_SIZE / 2); } LittleEndian::write_u32(&mut ys.qh, qh) } Ok(()) } // https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L1566 fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> { let k = ys.len(); if k % QK5_0 != 0 { crate::bail!("dequantize_row_q5_0: {k} is not divisible by {QK5_0}"); } let nb = k / QK5_0; for i in 0..nb { let d = xs[i].d.to_f32(); let qh: u32 = LittleEndian::read_u32(&xs[i].qh); for j in 0..(QK5_0 / 2) { let xh_0 = (((qh >> j) << 4) & 0x10) as u8; let xh_1 = ((qh >> (j + 12)) & 0x10) as u8; let x0 = ((xs[i].qs[j] & 0x0F) | xh_0) as i32 - 16; let x1 = ((xs[i].qs[j] >> 4) | xh_1) as i32 - 16; ys[i * QK5_0 + j] = (x0 as f32) * d; ys[i * QK5_0 + j + QK5_0 / 2] = (x1 as f32) * d; } } Ok(()) } } impl GgmlType for BlockQ5_1 { const DTYPE: GgmlDType = GgmlDType::Q5_1; const BLCK_SIZE: usize = QK5_1; type VecDotType = BlockQ8_1; fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { Self::vec_dot_unopt(n, xs, ys) } fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { let qk = Self::BLCK_SIZE; if n % Self::BLCK_SIZE != 0 { crate::bail!("vec_dot_q5_1_q8_1: {n} is not divisible by {qk}") } let nb = n / qk; if nb % 2 != 0 { crate::bail!("vec_dot_q5_1_q8_1: {n}, nb is not divisible by 2") } // Generic implementation. let mut sumf = 0f32; for (xs, ys) in xs.iter().zip(ys.iter()) { let qh = LittleEndian::read_u32(&xs.qh); let mut sumi = 0i32; for j in 0..Self::BLCK_SIZE / 2 { let xh_0 = ((qh >> j) << 4) & 0x10; let xh_1 = (qh >> (j + 12)) & 0x10; let x0 = (xs.qs[j] as i32 & 0xF) | xh_0 as i32; let x1 = (xs.qs[j] as i32 >> 4) | xh_1 as i32; sumi += (x0 * ys.qs[j] as i32) + (x1 * ys.qs[j + Self::BLCK_SIZE / 2] as i32); } sumf += sumi as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d) + f16::to_f32(xs.m) * f16::to_f32(ys.s) } Ok(sumf) } fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> { // quantize_row_q5_1 let qk = Self::BLCK_SIZE; if ys.len() * qk != xs.len() { crate::bail!("size mismatch {} {} {}", xs.len(), ys.len(), qk,) } for (i, ys) in ys.iter_mut().enumerate() { let xs = &xs[i * qk..(i + 1) * qk]; let mut min = f32::INFINITY; let mut max = f32::NEG_INFINITY; for &x in xs.iter() { min = f32::min(x, min); max = f32::max(x, max); } let d = (max - min) / ((1 << 5) - 1) as f32; let id = if d != 0f32 { 1. / d } else { 0. }; ys.d = f16::from_f32(d); ys.m = f16::from_f32(min); let mut qh = 0u32; for (j, q) in ys.qs.iter_mut().take(qk / 2).enumerate() { let x0 = (xs[j] - min) * id; let x1 = (xs[qk / 2 + j] - min) * id; let xi0 = (x0 + 0.5) as u8; let xi1 = (x1 + 0.5) as u8; *q = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4); // get the 5-th bit and store it in qh at the right position qh |= ((xi0 as u32 & 0x10) >> 4) << j; qh |= ((xi1 as u32 & 0x10) >> 4) << (j + qk / 2); } LittleEndian::write_u32(&mut ys.qh, qh); } Ok(()) } // https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L1592 fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> { let k = ys.len(); if k % QK5_1 != 0 { crate::bail!("dequantize_row_q5_1: {k} is not divisible by {QK5_1}"); } let nb = k / QK5_1; for i in 0..nb { let d = xs[i].d.to_f32(); let m = xs[i].m.to_f32(); let qh: u32 = LittleEndian::read_u32(&xs[i].qh); for j in 0..(QK5_1 / 2) { let xh_0 = (((qh >> j) << 4) & 0x10) as u8; let xh_1 = ((qh >> (j + 12)) & 0x10) as u8; let x0 = (xs[i].qs[j] & 0x0F) | xh_0; let x1 = (xs[i].qs[j] >> 4) | xh_1; ys[i * QK5_1 + j] = (x0 as f32) * d + m; ys[i * QK5_1 + j + QK5_1 / 2] = (x1 as f32) * d + m; } } Ok(()) } } impl GgmlType for BlockQ8_0 { const DTYPE: GgmlDType = GgmlDType::Q8_0; const BLCK_SIZE: usize = QK8_0; type VecDotType = BlockQ8_0; // https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L1619 fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> { let k = ys.len(); if k % QK8_0 != 0 { crate::bail!("dequantize_row_q8_0: {k} is not divisible by {QK8_0}"); } let nb = k / QK8_0; for i in 0..nb { let d = xs[i].d.to_f32(); for j in 0..QK8_0 { ys[i * QK8_0 + j] = xs[i].qs[j] as f32 * d; } } Ok(()) } fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> { // quantize_row_q8_0 let k = xs.len(); if k % Self::BLCK_SIZE != 0 { crate::bail!("{k} is not divisible by {}", Self::BLCK_SIZE); }; let nb = k / Self::BLCK_SIZE; if ys.len() != nb { crate::bail!( "size mismatch {} {} {}", xs.len(), ys.len(), Self::BLCK_SIZE ) } for (i, ys) in ys.iter_mut().enumerate() { let mut amax = 0f32; let xs = &xs[i * Self::BLCK_SIZE..(i + 1) * Self::BLCK_SIZE]; for &x in xs.iter() { amax = amax.max(x.abs()) } let d = amax / ((1 << 7) - 1) as f32; let id = if d != 0f32 { 1. / d } else { 0. }; ys.d = f16::from_f32(d); for (y, &x) in ys.qs.iter_mut().zip(xs.iter()) { *y = f32::round(x * id) as i8 } } Ok(()) } #[allow(unreachable_code)] fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { #[cfg(target_feature = "avx")] return super::avx::vec_dot_q8_0_q8_0(n, xs, ys); #[cfg(target_feature = "neon")] return super::neon::vec_dot_q8_0_q8_0(n, xs, ys); #[cfg(target_feature = "simd128")] return super::simd128::vec_dot_q8_0_q8_0(n, xs, ys); Self::vec_dot_unopt(n, xs, ys) } fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { let qk = QK8_0; if n % QK8_0 != 0 { crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}") } // Generic implementation. let mut sumf = 0f32; for (xs, ys) in xs.iter().zip(ys.iter()) { let sum_i = xs .qs .iter() .zip(ys.qs.iter()) .map(|(&x, &y)| x as i32 * y as i32) .sum::<i32>(); sumf += sum_i as f32 * f16::to_f32(xs.d) * f16::to_f32(ys.d) } Ok(sumf) } } impl GgmlType for BlockQ8_1 { const DTYPE: GgmlDType = GgmlDType::Q8_1; const BLCK_SIZE: usize = QK8_1; type VecDotType = BlockQ8_1; fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { Self::vec_dot_unopt(n, xs, ys) } fn vec_dot_unopt(_n: usize, _xs: &[Self], _ys: &[Self::VecDotType]) -> Result<f32> { unimplemented!("no support for vec-dot on Q8_1") } fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> { // quantize_row_q8_1 let k = xs.len(); if ys.len() * Self::BLCK_SIZE != k { crate::bail!("size mismatch {k} {} {}", ys.len(), Self::BLCK_SIZE) } for (i, ys) in ys.iter_mut().enumerate() { let mut amax = 0f32; let xs = &xs[i * Self::BLCK_SIZE..(i + 1) * Self::BLCK_SIZE]; for &x in xs.iter() { amax = amax.max(x.abs()) } let d = amax / ((1 << 7) - 1) as f32; let id = if d != 0f32 { 1. / d } else { 0. }; ys.d = f16::from_f32(d); let mut sum = 0i32; for j in 0..Self::BLCK_SIZE / 2 { let v0 = xs[j] * id; let v1 = xs[j + Self::BLCK_SIZE / 2] * id; ys.qs[j] = f32::round(v0) as i8; ys.qs[j + Self::BLCK_SIZE / 2] = f32::round(v1) as i8; sum += ys.qs[j] as i32 + ys.qs[j + Self::BLCK_SIZE / 2] as i32; } ys.s = f16::from_f32(sum as f32) * ys.d; } Ok(()) } fn to_float(_xs: &[Self], _ys: &mut [f32]) -> Result<()> { unimplemented!("no support for vec-dot on Q8_1") } } impl GgmlType for BlockQ2K { const DTYPE: GgmlDType = GgmlDType::Q2K; const BLCK_SIZE: usize = QK_K; type VecDotType = BlockQ8K; #[allow(unreachable_code)] fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { #[cfg(target_feature = "avx")] return super::avx::vec_dot_q2k_q8k(n, xs, ys); #[cfg(target_feature = "neon")] return super::neon::vec_dot_q2k_q8k(n, xs, ys); #[cfg(target_feature = "simd128")] return super::simd128::vec_dot_q2k_q8k(n, xs, ys); Self::vec_dot_unopt(n, xs, ys) } fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { if n % QK_K != 0 { crate::bail!("vec_dot_q2k_q8k: {n} is not divisible by {QK_K}") } let mut sumf = 0.0; for (x, y) in xs.iter().zip(ys.iter()) { let mut q2: &[_] = &x.qs; let mut q8: &[_] = &y.qs; let sc = &x.scales; let mut summs = 0; for (bsum, scale) in y.bsums.iter().zip(sc) { summs += *bsum as i32 * ((scale >> 4) as i32); } let dall = y.d * x.d.to_f32(); let dmin = y.d * x.dmin.to_f32(); let mut isum = 0; let mut is = 0; for _ in 0..(QK_K / 128) { let mut shift = 0; for _ in 0..4 { let d = (sc[is] & 0xF) as i32; is += 1; let mut isuml = 0; for l in 0..16 { isuml += q8[l] as i32 * (((q2[l] >> shift) & 3) as i32); } isum += d * isuml; let d = (sc[is] & 0xF) as i32; is += 1; isuml = 0; for l in 16..32 { isuml += q8[l] as i32 * (((q2[l] >> shift) & 3) as i32); } isum += d * isuml; shift += 2; // adjust the indexing q8 = &q8[32..]; } // adjust the indexing q2 = &q2[32..]; } sumf += dall * isum as f32 - dmin * summs as f32; } Ok(sumf) } // https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L279 fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> { const Q4SCALE: f32 = 15.0; for (block, x) in group_for_quantization(xs, ys)? { //calculate scales and mins let mut mins: [f32; QK_K / 16] = [0.0; QK_K / 16]; let mut scales: [f32; QK_K / 16] = [0.0; QK_K / 16]; for (j, x_scale_slice) in x.chunks(16).enumerate() { (scales[j], mins[j]) = make_qkx1_quants(3, 5, x_scale_slice); } // get max scale and max min and ensure they are >= 0.0 let max_scale = scales.iter().fold(0.0, |max, &val| val.max(max)); let max_min = mins.iter().fold(0.0, |max, &val| val.max(max)); if max_scale > 0.0 { let iscale = Q4SCALE / max_scale; for (j, scale) in scales.iter().enumerate().take(QK_K / 16) { block.scales[j] = nearest_int(iscale * scale) as u8; } block.d = f16::from_f32(max_scale / Q4SCALE); } else { for j in 0..QK_K / 16 { block.scales[j] = 0; } block.d = f16::from_f32(0.0); } if max_min > 0.0 { let iscale = Q4SCALE / max_min; for (j, scale) in block.scales.iter_mut().enumerate() { let l = nearest_int(iscale * mins[j]) as u8; *scale |= l << 4; } block.dmin = f16::from_f32(max_min / Q4SCALE); } else { block.dmin = f16::from_f32(0.0); } let mut big_l: [u8; QK_K] = [0; QK_K]; for j in 0..QK_K / 16 { let d = block.d.to_f32() * (block.scales[j] & 0xF) as f32; if d == 0.0 { continue; } let dm = block.dmin.to_f32() * (block.scales[j] >> 4) as f32; for ii in 0..16 { let ll = nearest_int((x[16 * j + ii] + dm) / d).clamp(0, 3); big_l[16 * j + ii] = ll as u8; } } for j in (0..QK_K).step_by(128) { for ll in 0..32 { block.qs[j / 4 + ll] = big_l[j + ll] | (big_l[j + ll + 32] << 2) | (big_l[j + ll + 64] << 4) | (big_l[j + ll + 96] << 6); } } } Ok(()) } // https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L354 fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> { for (block, y) in group_for_dequantization(xs, ys)? { let d = block.d.to_f32(); let min = block.dmin.to_f32(); let mut is = 0; for (y_block, qs) in y.chunks_exact_mut(128).zip(block.qs.chunks_exact(32)) { // Step by 32 over q. let mut shift = 0; let mut y_block_index = 0; for _j in 0..4 { let sc = block.scales[is]; is += 1; let dl = d * (sc & 0xF) as f32; let ml = min * (sc >> 4) as f32; for q in &qs[..16] { let y = dl * ((q >> shift) & 3) as f32 - ml; y_block[y_block_index] = y; y_block_index += 1; } let sc = block.scales[is]; is += 1; let dl = d * (sc & 0xF) as f32; let ml = min * (sc >> 4) as f32; for q in &qs[16..] { let y = dl * ((q >> shift) & 3) as f32 - ml; y_block[y_block_index] = y; y_block_index += 1; } shift += 2; } } } Ok(()) } } impl GgmlType for BlockQ3K { const DTYPE: GgmlDType = GgmlDType::Q3K; const BLCK_SIZE: usize = QK_K; type VecDotType = BlockQ8K; #[allow(unreachable_code)] fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { #[cfg(target_feature = "avx")] return super::avx::vec_dot_q3k_q8k(n, xs, ys); #[cfg(target_feature = "neon")] return super::neon::vec_dot_q3k_q8k(n, xs, ys); Self::vec_dot_unopt(n, xs, ys) } fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { if n % QK_K != 0 { crate::bail!("vec_dot_q3k_q8k: {n} is not divisible by {QK_K}") } const KMASK1: u32 = 0x03030303; const KMASK2: u32 = 0x0f0f0f0f; let mut aux8: [i8; QK_K] = [0; QK_K]; let mut aux16: [i16; 8] = [0; 8]; let mut sums: [f32; 8] = [0.0; 8]; let mut aux32: [i32; 8] = [0; 8]; let mut auxs: [u32; 4] = [0; 4]; for (x, y) in xs.iter().zip(ys.iter()) { let mut q3: &[u8] = &x.qs; let hmask: &[u8] = &x.hmask; let mut q8: &[i8] = &y.qs; aux32.fill(0); let mut a = &mut aux8[..]; let mut m = 1; //Like the GGML original this is written this way to enable the compiler to vectorize it. for _ in 0..QK_K / 128 { a.iter_mut() .take(32) .zip(q3) .for_each(|(a_val, q3_val)| *a_val = (q3_val & 3) as i8); a.iter_mut() .take(32) .zip(hmask) .for_each(|(a_val, hmask_val)| { *a_val -= if hmask_val & m != 0 { 0 } else { 4 } }); a = &mut a[32..]; m <<= 1; a.iter_mut() .take(32) .zip(q3) .for_each(|(a_val, q3_val)| *a_val = ((q3_val >> 2) & 3) as i8); a.iter_mut() .take(32) .zip(hmask) .for_each(|(a_val, hmask_val)| { *a_val -= if hmask_val & m != 0 { 0 } else { 4 } }); a = &mut a[32..]; m <<= 1; a.iter_mut() .take(32) .zip(q3) .for_each(|(a_val, q3_val)| *a_val = ((q3_val >> 4) & 3) as i8); a.iter_mut() .take(32) .zip(hmask) .for_each(|(a_val, hmask_val)| { *a_val -= if hmask_val & m != 0 { 0 } else { 4 } }); a = &mut a[32..]; m <<= 1; a.iter_mut() .take(32) .zip(q3) .for_each(|(a_val, q3_val)| *a_val = ((q3_val >> 6) & 3) as i8); a.iter_mut() .take(32) .zip(hmask) .for_each(|(a_val, hmask_val)| { *a_val -= if hmask_val & m != 0 { 0 } else { 4 } }); a = &mut a[32..]; m <<= 1; q3 = &q3[32..]; } a = &mut aux8[..]; LittleEndian::read_u32_into(&x.scales, &mut auxs[0..3]); let tmp = auxs[2]; auxs[2] = ((auxs[0] >> 4) & KMASK2) | (((tmp >> 4) & KMASK1) << 4); auxs[3] = ((auxs[1] >> 4) & KMASK2) | (((tmp >> 6) & KMASK1) << 4); auxs[0] = (auxs[0] & KMASK2) | (((tmp) & KMASK1) << 4); auxs[1] = (auxs[1] & KMASK2) | (((tmp >> 2) & KMASK1) << 4); for aux in auxs { for scale in aux.to_le_bytes() { let scale = i8::from_be_bytes([scale]); for l in 0..8 { aux16[l] = q8[l] as i16 * a[l] as i16; } for l in 0..8 { aux32[l] += (scale as i32 - 32) * aux16[l] as i32; } q8 = &q8[8..]; a = &mut a[8..]; for l in 0..8 { aux16[l] = q8[l] as i16 * a[l] as i16; } for l in 0..8 { aux32[l] += (scale as i32 - 32) * aux16[l] as i32; } q8 = &q8[8..]; a = &mut a[8..]; } } let d = x.d.to_f32() * y.d; for l in 0..8 { sums[l] += d * aux32[l] as f32; } } Ok(sums.iter().sum()) } fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> { for (block, x) in group_for_quantization(xs, ys)? { let mut scales: [f32; QK_K / 16] = [0.0; QK_K / 16]; for (j, x_scale_slice) in x.chunks_exact(16).enumerate() { scales[j] = make_q3_quants(x_scale_slice, 4, true); } // Get max scale by absolute value. let mut max_scale: f32 = 0.0; for &scale in scales.iter() { if scale.abs() > max_scale.abs() { max_scale = scale; } } block.scales.fill(0); if max_scale != 0.0 { let iscale = -32.0 / max_scale; for (j, scale) in scales.iter().enumerate() { let l_val = nearest_int(iscale * scale); let l_val = l_val.clamp(-32, 31) + 32; if j < 8 { block.scales[j] = (l_val & 0xF) as u8; } else { block.scales[j - 8] |= ((l_val & 0xF) << 4) as u8; } let l_val = l_val >> 4; block.scales[j % 4 + 8] |= (l_val << (2 * (j / 4))) as u8; } block.d = f16::from_f32(1.0 / iscale); } else { block.d = f16::from_f32(0.0); } let mut l: [i8; QK_K] = [0; QK_K]; for j in 0..QK_K / 16 { let sc = if j < 8 { block.scales[j] & 0xF } else { block.scales[j - 8] >> 4 }; let sc = (sc | (((block.scales[8 + j % 4] >> (2 * (j / 4))) & 3) << 4)) as i8 - 32; let d = block.d.to_f32() * sc as f32; if d != 0.0 { for ii in 0..16 { let l_val = nearest_int(x[16 * j + ii] / d); l[16 * j + ii] = (l_val.clamp(-4, 3) + 4) as i8; } } } block.hmask.fill(0); let mut m = 0; let mut hm = 1; for ll in l.iter_mut() { if *ll > 3 { block.hmask[m] |= hm; *ll -= 4; } m += 1; if m == QK_K / 8 { m = 0; hm <<= 1; } } for j in (0..QK_K).step_by(128) { for l_val in 0..32 { block.qs[j / 4 + l_val] = (l[j + l_val] | (l[j + l_val + 32] << 2) | (l[j + l_val + 64] << 4) | (l[j + l_val + 96] << 6)) as u8; } } } Ok(()) } // https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L533 fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> { const KMASK1: u32 = 0x03030303; const KMASK2: u32 = 0x0f0f0f0f; for (block, y) in group_for_dequantization(xs, ys)? { //Reconstruct the scales let mut aux = [0; 4]; LittleEndian::read_u32_into(&block.scales, &mut aux[0..3]); let tmp = aux[2]; aux[2] = ((aux[0] >> 4) & KMASK2) | (((tmp >> 4) & KMASK1) << 4); aux[3] = ((aux[1] >> 4) & KMASK2) | (((tmp >> 6) & KMASK1) << 4); aux[0] = (aux[0] & KMASK2) | (((tmp) & KMASK1) << 4); aux[1] = (aux[1] & KMASK2) | (((tmp >> 2) & KMASK1) << 4); //Transfer the scales into an i8 array let scales: &mut [i8] = unsafe { std::slice::from_raw_parts_mut(aux.as_mut_ptr() as *mut i8, 16) }; let d_all = block.d.to_f32(); let mut m = 1; let mut is = 0; // Dequantize both 128 long blocks // 32 qs values per 128 long block // Each 16 elements get a scale for (y, qs) in y.chunks_exact_mut(128).zip(block.qs.chunks_exact(32)) { let mut shift = 0; for shift_scoped_y in y.chunks_exact_mut(32) { for (scale_index, scale_scoped_y) in shift_scoped_y.chunks_exact_mut(16).enumerate() { let dl = d_all * (scales[is] as f32 - 32.0); for (i, inner_y) in scale_scoped_y.iter_mut().enumerate() { let new_y = dl * (((qs[i + 16 * scale_index] >> shift) & 3) as i8 - if (block.hmask[i + 16 * scale_index] & m) == 0 { 4 } else { 0 }) as f32; *inner_y = new_y; } // 16 block finished => advance scale index is += 1; } // 32 block finished => increase shift and m shift += 2; m <<= 1; } } } Ok(()) } } impl GgmlType for BlockQ4K { const DTYPE: GgmlDType = GgmlDType::Q4K; const BLCK_SIZE: usize = QK_K; type VecDotType = BlockQ8K; #[allow(unreachable_code)] fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { #[cfg(target_feature = "avx")] return super::avx::vec_dot_q4k_q8k(n, xs, ys); #[cfg(target_feature = "neon")] return super::neon::vec_dot_q4k_q8k(n, xs, ys); #[cfg(target_feature = "simd128")] return super::simd128::vec_dot_q4k_q8k(n, xs, ys); Self::vec_dot_unopt(n, xs, ys) } fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { if n % QK_K != 0 { crate::bail!("vec_dot_q4k_q8k: {n} is not divisible by {QK_K}") } const KMASK1: u32 = 0x3f3f3f3f; const KMASK2: u32 = 0x0f0f0f0f; const KMASK3: u32 = 0x03030303; let mut utmp: [u32; 4] = [0; 4]; let mut scales: [u8; 8] = [0; 8]; let mut mins: [u8; 8] = [0; 8]; let mut aux8: [i8; QK_K] = [0; QK_K]; let mut aux16: [i16; 8] = [0; 8]; let mut sums: [f32; 8] = [0.0; 8]; let mut aux32: [i32; 8] = [0; 8]; let mut sumf = 0.0; for (y, x) in ys.iter().zip(xs.iter()) { let q4 = &x.qs; let q8 = &y.qs; aux32.fill(0); let mut a = &mut aux8[..]; let mut q4 = &q4[..]; for _ in 0..QK_K / 64 { for l in 0..32 { a[l] = (q4[l] & 0xF) as i8; } a = &mut a[32..]; for l in 0..32 { a[l] = (q4[l] >> 4) as i8; } a = &mut a[32..]; q4 = &q4[32..]; } LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]); utmp[3] = ((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4); let uaux = utmp[1] & KMASK1; utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4); utmp[2] = uaux; utmp[0] &= KMASK1; //extract scales and mins LittleEndian::write_u32_into(&utmp[0..2], &mut scales); LittleEndian::write_u32_into(&utmp[2..4], &mut mins); let mut sumi = 0; for j in 0..QK_K / 16 { sumi += y.bsums[j] as i32 * mins[j / 2] as i32; } let mut a = &mut aux8[..]; let mut q8 = &q8[..]; for scale in scales { let scale = scale as i32; for _ in 0..4 { for l in 0..8 { aux16[l] = q8[l] as i16 * a[l] as i16; } for l in 0..8 { aux32[l] += scale * aux16[l] as i32; } q8 = &q8[8..]; a = &mut a[8..]; } } let d = x.d.to_f32() * y.d; for l in 0..8 { sums[l] += d * aux32[l] as f32; } let dmin = x.dmin.to_f32() * y.d; sumf -= dmin * sumi as f32; } Ok(sumf + sums.iter().sum::<f32>()) } fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> { for (block, x) in group_for_quantization(xs, ys)? { let mut mins: [f32; QK_K / 32] = [0.0; QK_K / 32]; let mut scales: [f32; QK_K / 32] = [0.0; QK_K / 32]; for (j, x_scale_slice) in x.chunks_exact(32).enumerate() { (scales[j], mins[j]) = make_qkx1_quants(15, 5, x_scale_slice); } // get max scale and max min and ensure they are >= 0.0 let max_scale = scales.iter().fold(0.0, |max, &val| val.max(max)); let max_min = mins.iter().fold(0.0, |max, &val| val.max(max)); let inv_scale = if max_scale > 0.0 { 63.0 / max_scale } else { 0.0 }; let inv_min = if max_min > 0.0 { 63.0 / max_min } else { 0.0 }; for j in 0..QK_K / 32 { let ls = nearest_int(inv_scale * scales[j]).min(63) as u8; let lm = nearest_int(inv_min * mins[j]).min(63) as u8; if j < 4 { block.scales[j] = ls; block.scales[j + 4] = lm; } else { block.scales[j + 4] = (ls & 0xF) | ((lm & 0xF) << 4); block.scales[j - 4] |= (ls >> 4) << 6; block.scales[j] |= (lm >> 4) << 6; } } block.d = f16::from_f32(max_scale / 63.0); block.dmin = f16::from_f32(max_min / 63.0); let mut l: [u8; QK_K] = [0; QK_K]; for j in 0..QK_K / 32 { let (sc, m) = get_scale_min_k4(j, &block.scales); let d = block.d.to_f32() * sc as f32; if d != 0.0 { let dm = block.dmin.to_f32() * m as f32; for ii in 0..32 { let l_val = nearest_int((x[32 * j + ii] + dm) / d); l[32 * j + ii] = l_val.clamp(0, 15) as u8; } } } let q = &mut block.qs; for j in (0..QK_K).step_by(64) { for l_val in 0..32 { let offset_index = (j / 64) * 32 + l_val; q[offset_index] = l[j + l_val] | (l[j + l_val + 32] << 4); } } } Ok(()) } // https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L735 fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> { for (block, y) in group_for_dequantization(xs, ys)? { let d = block.d.to_f32(); let min = block.dmin.to_f32(); let q = &block.qs; let mut is = 0; let mut ys_index = 0; for j in (0..QK_K).step_by(64) { let q = &q[j / 2..j / 2 + 32]; let (sc, m) = get_scale_min_k4(is, &block.scales); let d1 = d * sc as f32; let m1 = min * m as f32; let (sc, m) = get_scale_min_k4(is + 1, &block.scales); let d2 = d * sc as f32; let m2 = min * m as f32; for q in q { y[ys_index] = d1 * (q & 0xF) as f32 - m1; ys_index += 1; } for q in q { y[ys_index] = d2 * (q >> 4) as f32 - m2; ys_index += 1; } is += 2; } } Ok(()) } } // https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L928 impl GgmlType for BlockQ5K { const DTYPE: GgmlDType = GgmlDType::Q5K; const BLCK_SIZE: usize = QK_K; type VecDotType = BlockQ8K; #[allow(unreachable_code)] fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { #[cfg(target_feature = "avx")] return super::avx::vec_dot_q5k_q8k(n, xs, ys); #[cfg(target_feature = "neon")] return super::neon::vec_dot_q5k_q8k(n, xs, ys); Self::vec_dot_unopt(n, xs, ys) } fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { if n % QK_K != 0 { crate::bail!("vec_dot_q5k_q8k: {n} is not divisible by {QK_K}") } const KMASK1: u32 = 0x3f3f3f3f; const KMASK2: u32 = 0x0f0f0f0f; const KMASK3: u32 = 0x03030303; let mut utmp: [u32; 4] = [0; 4]; let mut scales: [u8; 8] = [0; 8]; let mut mins: [u8; 8] = [0; 8]; let mut aux8: [i8; QK_K] = [0; QK_K]; let mut aux16: [i16; 8] = [0; 8]; let mut sums: [f32; 8] = [0.0; 8]; let mut aux32: [i32; 8] = [0; 8]; let mut sumf = 0.0; for (y, x) in ys.iter().zip(xs.iter()) { let q5 = &x.qs; let hm = &x.qh; let q8 = &y.qs; aux32.fill(0); let mut a = &mut aux8[..]; let mut q5 = &q5[..]; let mut m = 1u8; for _ in 0..QK_K / 64 { for l in 0..32 { a[l] = (q5[l] & 0xF) as i8; a[l] += if hm[l] & m != 0 { 16 } else { 0 }; } a = &mut a[32..]; m <<= 1; for l in 0..32 { a[l] = (q5[l] >> 4) as i8; a[l] += if hm[l] & m != 0 { 16 } else { 0 }; } a = &mut a[32..]; m <<= 1; q5 = &q5[32..]; } LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]); utmp[3] = ((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4); let uaux = utmp[1] & KMASK1; utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4); utmp[2] = uaux; utmp[0] &= KMASK1; //extract scales and mins LittleEndian::write_u32_into(&utmp[0..2], &mut scales); LittleEndian::write_u32_into(&utmp[2..4], &mut mins); let mut sumi = 0; for j in 0..QK_K / 16 { sumi += y.bsums[j] as i32 * mins[j / 2] as i32; } let mut a = &mut aux8[..]; let mut q8 = &q8[..]; for scale in scales { let scale = scale as i32; for _ in 0..4 { for l in 0..8 { aux16[l] = q8[l] as i16 * a[l] as i16; } for l in 0..8 { aux32[l] += scale * aux16[l] as i32; } q8 = &q8[8..]; a = &mut a[8..]; } } let d = x.d.to_f32() * y.d; for l in 0..8 { sums[l] += d * aux32[l] as f32; } let dmin = x.dmin.to_f32() * y.d; sumf -= dmin * sumi as f32; } Ok(sumf + sums.iter().sum::<f32>()) } // https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L793 fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> { for (block, x) in group_for_quantization(xs, ys)? { let mut mins: [f32; QK_K / 32] = [0.0; QK_K / 32]; let mut scales: [f32; QK_K / 32] = [0.0; QK_K / 32]; for (j, x_scale_slice) in x.chunks_exact(32).enumerate() { (scales[j], mins[j]) = make_qkx1_quants(31, 5, x_scale_slice); } // get max scale and max min and ensure they are >= 0.0 let max_scale = scales.iter().fold(0.0, |max, &val| val.max(max)); let max_min = mins.iter().fold(0.0, |max, &val| val.max(max)); let inv_scale = if max_scale > 0.0 { 63.0 / max_scale } else { 0.0 }; let inv_min = if max_min > 0.0 { 63.0 / max_min } else { 0.0 }; for j in 0..QK_K / 32 { let ls = nearest_int(inv_scale * scales[j]).min(63) as u8; let lm = nearest_int(inv_min * mins[j]).min(63) as u8; if j < 4 { block.scales[j] = ls; block.scales[j + 4] = lm; } else { block.scales[j + 4] = (ls & 0xF) | ((lm & 0xF) << 4); block.scales[j - 4] |= (ls >> 4) << 6; block.scales[j] |= (lm >> 4) << 6; } } block.d = f16::from_f32(max_scale / 63.0); block.dmin = f16::from_f32(max_min / 63.0); let mut l: [u8; QK_K] = [0; QK_K]; for j in 0..QK_K / 32 { let (sc, m) = get_scale_min_k4(j, &block.scales); let d = block.d.to_f32() * sc as f32; if d == 0.0 { continue; } let dm = block.dmin.to_f32() * m as f32; for ii in 0..32 { let ll = nearest_int((x[32 * j + ii] + dm) / d); l[32 * j + ii] = ll.clamp(0, 31) as u8; } } let qh = &mut block.qh; let ql = &mut block.qs; qh.fill(0); let mut m1 = 1; let mut m2 = 2; for n in (0..QK_K).step_by(64) { let offset = (n / 64) * 32; for j in 0..32 { let mut l1 = l[n + j]; if l1 > 15 { l1 -= 16; qh[j] |= m1; } let mut l2 = l[n + j + 32]; if l2 > 15 { l2 -= 16; qh[j] |= m2; } ql[offset + j] = l1 | (l2 << 4); } m1 <<= 2; m2 <<= 2; } } Ok(()) } // https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L928 fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> { for (block, y) in group_for_dequantization(xs, ys)? { let d = block.d.to_f32(); let min = block.dmin.to_f32(); let ql = &block.qs; let qh = &block.qh; let mut is = 0; let mut u1 = 1; let mut u2 = 2; let mut ys_index = 0; for j in (0..QK_K).step_by(64) { let ql = &ql[j / 2..j / 2 + 32]; let (sc, m) = get_scale_min_k4(is, &block.scales); let d1 = d * sc as f32; let m1 = min * m as f32; let (sc, m) = get_scale_min_k4(is + 1, &block.scales); let d2 = d * sc as f32; let m2 = min * m as f32; for (ql, qh) in ql.iter().zip(qh) { let to_add = if qh & u1 != 0 { 16f32 } else { 0f32 }; y[ys_index] = d1 * ((ql & 0xF) as f32 + to_add) - m1; ys_index += 1; } for (ql, qh) in ql.iter().zip(qh) { let to_add = if qh & u2 != 0 { 16f32 } else { 0f32 }; y[ys_index] = d2 * ((ql >> 4) as f32 + to_add) - m2; ys_index += 1; } is += 2; u1 <<= 2; u2 <<= 2; } } Ok(()) } } impl GgmlType for BlockQ6K { const DTYPE: GgmlDType = GgmlDType::Q6K; const BLCK_SIZE: usize = QK_K; type VecDotType = BlockQ8K; #[allow(unreachable_code)] fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { #[cfg(target_feature = "avx")] return super::avx::vec_dot_q6k_q8k(n, xs, ys); #[cfg(target_feature = "neon")] return super::neon::vec_dot_q6k_q8k(n, xs, ys); #[cfg(target_feature = "simd128")] return super::simd128::vec_dot_q6k_q8k(n, xs, ys); Self::vec_dot_unopt(n, xs, ys) } fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { if n % QK_K != 0 { crate::bail!("vec_dot_q6k_q8k: {n} is not divisible by {QK_K}") } let mut aux8 = [0i8; QK_K]; let mut aux16 = [0i16; 8]; let mut sums = [0f32; 8]; let mut aux32 = [0f32; 8]; for (x, y) in xs.iter().zip(ys.iter()) { let q4 = &x.ql; let qh = &x.qh; let q8 = &y.qs; aux32.fill(0f32); for j in (0..QK_K).step_by(128) { let aux8 = &mut aux8[j..]; let q4 = &q4[j / 2..]; let qh = &qh[j / 4..]; for l in 0..32 { aux8[l] = (((q4[l] & 0xF) | ((qh[l] & 3) << 4)) as i32 - 32) as i8; aux8[l + 32] = (((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) as i32 - 32) as i8; aux8[l + 64] = (((q4[l] >> 4) | (((qh[l] >> 4) & 3) << 4)) as i32 - 32) as i8; aux8[l + 96] = (((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) as i32 - 32) as i8; } } for (j, &scale) in x.scales.iter().enumerate() { let scale = scale as f32; let q8 = &q8[16 * j..]; let aux8 = &aux8[16 * j..]; for l in 0..8 { aux16[l] = q8[l] as i16 * aux8[l] as i16; } for l in 0..8 { aux32[l] += scale * aux16[l] as f32 } let q8 = &q8[8..]; let aux8 = &aux8[8..]; for l in 0..8 { aux16[l] = q8[l] as i16 * aux8[l] as i16; } for l in 0..8 { aux32[l] += scale * aux16[l] as f32 } } let d = x.d.to_f32() * y.d; for (sum, &a) in sums.iter_mut().zip(aux32.iter()) { *sum += a * d; } } Ok(sums.iter().sum()) } fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> { if xs.len() != ys.len() * Self::BLCK_SIZE { crate::bail!( "quantize_row_q6k: size mismatch {} {} {}", xs.len(), ys.len(), Self::BLCK_SIZE ) } let mut l = [0i8; QK_K]; let mut scales = [0f32; QK_K / 16]; let mut x = xs.as_ptr(); let l = l.as_mut_ptr(); unsafe { for y in ys.iter_mut() { let mut max_scale = 0f32; let mut max_abs_scale = 0f32; for (ib, scale_) in scales.iter_mut().enumerate() { let scale = make_qx_quants(16, 32, x.add(16 * ib), l.add(16 * ib), 1); *scale_ = scale; let abs_scale = scale.abs(); if abs_scale > max_abs_scale { max_abs_scale = abs_scale; max_scale = scale } } let iscale = -128f32 / max_scale; y.d = f16::from_f32(1.0 / iscale); for (y_scale, scale) in y.scales.iter_mut().zip(scales.iter()) { *y_scale = nearest_int(iscale * scale).min(127) as i8 } for (j, &y_scale) in y.scales.iter().enumerate() { let d = y.d.to_f32() * y_scale as f32; if d == 0. { continue; } for ii in 0..16 { let ll = nearest_int(*x.add(16 * j + ii) / d).clamp(-32, 31); *l.add(16 * j + ii) = (ll + 32) as i8 } } let mut ql = y.ql.as_mut_ptr(); let mut qh = y.qh.as_mut_ptr(); for j in (0..QK_K).step_by(128) { for l_idx in 0..32 { let q1 = *l.add(j + l_idx) & 0xF; let q2 = *l.add(j + l_idx + 32) & 0xF; let q3 = *l.add(j + l_idx + 64) & 0xF; let q4 = *l.add(j + l_idx + 96) & 0xF; *ql.add(l_idx) = (q1 | (q3 << 4)) as u8; *ql.add(l_idx + 32) = (q2 | (q4 << 4)) as u8; *qh.add(l_idx) = ((*l.add(j + l_idx) >> 4) | ((*l.add(j + l_idx + 32) >> 4) << 2) | ((*l.add(j + l_idx + 64) >> 4) << 4) | ((*l.add(j + l_idx + 96) >> 4) << 6)) as u8; } ql = ql.add(64); qh = qh.add(32); } x = x.add(QK_K) } } Ok(()) } // https://github.com/ggerganov/llama.cpp/blob/8183159cf3def112f6d1fe94815fce70e1bffa12/k_quants.c#L1067 fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> { let k = ys.len(); if k % QK_K != 0 { crate::bail!("dequantize_row_q6k: {k} is not divisible by {QK_K}") } for (idx_x, x) in xs.iter().enumerate() { let d = x.d.to_f32(); let ql = &x.ql; let qh = &x.qh; let sc = &x.scales; for n in (0..QK_K).step_by(128) { let idx = n / 128; let ys = &mut ys[idx_x * QK_K + n..]; let sc = &sc[8 * idx..]; let ql = &ql[64 * idx..]; let qh = &qh[32 * idx..]; for l in 0..32 { let is = l / 16; let q1 = ((ql[l] & 0xF) | ((qh[l] & 3) << 4)) as i8 - 32; let q2 = ((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) as i8 - 32; let q3 = ((ql[l] >> 4) | (((qh[l] >> 4) & 3) << 4)) as i8 - 32; let q4 = ((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) as i8 - 32; ys[l] = d * sc[is] as f32 * q1 as f32; ys[l + 32] = d * sc[is + 2] as f32 * q2 as f32; ys[l + 64] = d * sc[is + 4] as f32 * q3 as f32; ys[l + 96] = d * sc[is + 6] as f32 * q4 as f32; } } } Ok(()) } } impl GgmlType for BlockQ8K { const DTYPE: GgmlDType = GgmlDType::Q8K; const BLCK_SIZE: usize = QK_K; type VecDotType = BlockQ8K; #[allow(unreachable_code)] fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { #[cfg(target_feature = "avx")] return super::avx::vec_dot_q8k_q8k(n, xs, ys); #[cfg(target_feature = "neon")] return super::neon::vec_dot_q8k_q8k(n, xs, ys); #[cfg(target_feature = "simd128")] return super::simd128::vec_dot_q8k_q8k(n, xs, ys); Self::vec_dot_unopt(n, xs, ys) } fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { let qk = QK_K; if n % QK_K != 0 { crate::bail!("vec_dot_q8k_q8k: {n} is not divisible by {qk}") } // Generic implementation. let mut sumf = 0f32; for (xs, ys) in xs.iter().zip(ys.iter()) { let sum_i = xs .qs .iter() .zip(ys.qs.iter()) .map(|(&x, &y)| x as i32 * y as i32) .sum::<i32>(); sumf += sum_i as f32 * xs.d * ys.d } Ok(sumf) } fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> { let k = xs.len(); if k % QK_K != 0 { crate::bail!("quantize_row_q8k: {k} is not divisible by {QK_K}") } for (i, y) in ys.iter_mut().enumerate() { let mut max = 0f32; let mut amax = 0f32; let xs = &xs[i * QK_K..(i + 1) * QK_K]; for &x in xs.iter() { if amax < x.abs() { amax = x.abs(); max = x; } } if amax == 0f32 { y.d = 0f32; y.qs.fill(0) } else { let iscale = -128f32 / max; for (j, q) in y.qs.iter_mut().enumerate() { // ggml uses nearest_int with bit magic here, maybe we want the same // but we would have to test and benchmark it. let v = (iscale * xs[j]).round(); *q = v.min(127.) as i8 } for j in 0..QK_K / 16 { let mut sum = 0i32; for ii in 0..16 { sum += y.qs[j * 16 + ii] as i32 } y.bsums[j] = sum as i16 } y.d = 1.0 / iscale } } Ok(()) } fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> { let k = ys.len(); if k % QK_K != 0 { crate::bail!("dequantize_row_q8k: {k} is not divisible by {QK_K}") } for (i, x) in xs.iter().enumerate() { for (j, &q) in x.qs.iter().enumerate() { ys[i * QK_K + j] = x.d * q as f32 } } Ok(()) } } // https://github.com/ggerganov/llama.cpp/blob/b5ffb2849d23afe73647f68eec7b68187af09be6/ggml.c#L10605 pub fn matmul<T: GgmlType>( mkn: (usize, usize, usize), lhs: &[f32], rhs_t: &[T], dst: &mut [f32], ) -> Result<()> { let (m, k, n) = mkn; if m * k != lhs.len() { crate::bail!("unexpected lhs length {} {mkn:?}", lhs.len()); } let k_in_lhs_blocks = (k + T::BLCK_SIZE - 1) / T::BLCK_SIZE; let k_in_rhs_blocks = (k + T::VecDotType::BLCK_SIZE - 1) / T::VecDotType::BLCK_SIZE; // TODO: Do not make this copy if the DotType is f32. // TODO: Pre-allocate this. let mut lhs_b = vec![T::VecDotType::zeros(); m * k_in_lhs_blocks]; for row_idx in 0..m { let lhs_b = &mut lhs_b[row_idx * k_in_lhs_blocks..(row_idx + 1) * k_in_lhs_blocks]; let lhs = &lhs[row_idx * k..(row_idx + 1) * k]; T::VecDotType::from_float(lhs, lhs_b)? } let lhs_b = lhs_b.as_slice(); for row_idx in 0..m { let lhs_row = &lhs_b[row_idx * k_in_lhs_blocks..(row_idx + 1) * k_in_lhs_blocks]; let dst_row = &mut dst[row_idx * n..(row_idx + 1) * n]; let result: Result<Vec<_>> = dst_row .into_par_iter() .enumerate() .with_min_len(128) .with_max_len(512) .map(|(col_idx, dst)| { let rhs_col = &rhs_t[col_idx * k_in_rhs_blocks..(col_idx + 1) * k_in_rhs_blocks]; T::vec_dot(k, rhs_col, lhs_row).map(|value| *dst = value) }) .collect(); result?; } Ok(()) } impl GgmlType for f32 { const DTYPE: GgmlDType = GgmlDType::F32; const BLCK_SIZE: usize = 1; type VecDotType = f32; fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { Self::vec_dot_unopt(n, xs, ys) } fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { if xs.len() < n { crate::bail!("size mismatch {} < {n}", xs.len()) } if ys.len() < n { crate::bail!("size mismatch {} < {n}", ys.len()) } let mut res = 0f32; unsafe { crate::cpu::vec_dot_f32(xs.as_ptr(), ys.as_ptr(), &mut res, n) }; Ok(res) } fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> { if xs.len() != ys.len() { crate::bail!("size mismatch {} {}", xs.len(), ys.len()); } ys.copy_from_slice(xs); Ok(()) } fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> { if xs.len() != ys.len() { crate::bail!("size mismatch {} {}", xs.len(), ys.len()); } ys.copy_from_slice(xs); Ok(()) } } impl GgmlType for f16 { const DTYPE: GgmlDType = GgmlDType::F16; const BLCK_SIZE: usize = 1; type VecDotType = f16; fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { Self::vec_dot_unopt(n, xs, ys) } fn vec_dot_unopt(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { if xs.len() < n { crate::bail!("size mismatch {} < {n}", xs.len()) } if ys.len() < n { crate::bail!("size mismatch {} < {n}", ys.len()) } let mut res = 0f32; unsafe { crate::cpu::vec_dot_f16(xs.as_ptr(), ys.as_ptr(), &mut res, n) }; Ok(res) } fn from_float(xs: &[f32], ys: &mut [Self]) -> Result<()> { if xs.len() != ys.len() { crate::bail!("size mismatch {} {}", xs.len(), ys.len()); } // TODO: vectorize for (x, y) in xs.iter().zip(ys.iter_mut()) { *y = f16::from_f32(*x) } Ok(()) } fn to_float(xs: &[Self], ys: &mut [f32]) -> Result<()> { if xs.len() != ys.len() { crate::bail!("size mismatch {} {}", xs.len(), ys.len()); } // TODO: vectorize for (x, y) in xs.iter().zip(ys.iter_mut()) { *y = x.to_f32() } Ok(()) } }
candle/candle-core/src/quantized/k_quants.rs/0
{ "file_path": "candle/candle-core/src/quantized/k_quants.rs", "repo_id": "candle", "token_count": 42652 }
31
// Variables are wrappers around tensors that can be modified, they are typically used for holding // weights and being modified by gradient descent. // We do not expose a public way to create variables as this would break the invariant that the // tensor within a variable is actually with `is_variable` set to `true`. use crate::{DType, Device, Error, Result, Shape, Tensor}; /// A variable is a wrapper around a tensor, however variables can have their content modified /// whereas tensors are immutable. #[derive(Clone, Debug)] pub struct Var(Tensor); impl std::fmt::Display for Var { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { std::fmt::Display::fmt(&self.0, f) } } impl std::ops::Deref for Var { type Target = Tensor; fn deref(&self) -> &Self::Target { self.0.as_ref() } } impl Var { pub fn zeros<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> { let inner = Tensor::zeros_impl(shape, dtype, device, true)?; Ok(Self(inner)) } pub fn ones<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> { let inner = Tensor::ones_impl(shape, dtype, device, true)?; Ok(Self(inner)) } // Convert a tensor to a variable, if the tensor is already a variable then it is returned as is. pub fn from_tensor(t: &Tensor) -> Result<Self> { if t.is_variable() { Ok(Self(t.clone())) } else { let inner = t.make_var()?; Ok(Self(inner)) } } pub fn rand_f64<S: Into<Shape>>( lo: f64, up: f64, s: S, dtype: DType, device: &Device, ) -> Result<Self> { let inner = Tensor::rand_f64_impl(lo, up, s, dtype, device, true)?; Ok(Self(inner)) } pub fn randn_f64<S: Into<Shape>>( mean: f64, std: f64, s: S, dtype: DType, device: &Device, ) -> Result<Self> { let inner = Tensor::randn_f64_impl(mean, std, s, dtype, device, true)?; Ok(Self(inner)) } pub fn rand<S: Into<Shape>, T: crate::FloatDType>( lo: T, up: T, s: S, device: &Device, ) -> Result<Self> { let inner = Tensor::rand_impl(lo, up, s, device, true)?; Ok(Self(inner)) } pub fn randn<S: Into<Shape>, T: crate::FloatDType>( mean: T, std: T, s: S, device: &Device, ) -> Result<Self> { let inner = Tensor::randn_impl(mean, std, s, device, true)?; Ok(Self(inner)) } /// Creates a new tensor on the specified device using the content and shape of the input. /// This is similar to `new` but the resulting tensor is a variable. pub fn new<A: crate::device::NdArray>(array: A, device: &Device) -> Result<Self> { let shape = array.shape()?; let inner = Tensor::new_impl(array, shape, device, true)?; Ok(Self(inner)) } pub fn from_vec<S: Into<Shape>, D: crate::WithDType>( data: Vec<D>, shape: S, device: &Device, ) -> Result<Self> { let inner = Tensor::from_vec_impl(data, shape, device, true)?; Ok(Self(inner)) } pub fn from_slice<S: Into<Shape>, D: crate::WithDType>( array: &[D], shape: S, device: &Device, ) -> Result<Self> { let inner = Tensor::new_impl(array, shape.into(), device, true)?; Ok(Self(inner)) } pub fn as_detached_tensor(&self) -> Tensor { self.0.detach() } pub fn as_tensor(&self) -> &Tensor { &self.0 } /// Consumes this `Var` and return the underlying tensor. pub fn into_inner(self) -> Tensor { self.0 } /// Sets the content of the inner tensor, this does not require a mutable reference as inner /// mutability is used. pub fn set(&self, src: &Tensor) -> Result<()> { if self.same_storage(src) { let msg = "cannot set a variable to a tensor that is derived from its value"; Err(Error::CannotSetVar { msg }.bt())? } let (mut dst, layout) = self.storage_mut_and_layout(); if !layout.is_contiguous() { let msg = "cannot set a non-contiguous variable"; Err(Error::CannotSetVar { msg }.bt())? } let (src, src_l) = src.storage_and_layout(); if layout.shape() != src_l.shape() { Err(Error::ShapeMismatchBinaryOp { lhs: layout.shape().clone(), rhs: src_l.shape().clone(), op: "set", } .bt())? } src.copy_strided_src(&mut dst, layout.start_offset(), src_l)?; Ok(()) } }
candle/candle-core/src/variable.rs/0
{ "file_path": "candle/candle-core/src/variable.rs", "repo_id": "candle", "token_count": 2150 }
32
#![allow(unused)] use anyhow::{Context, Result}; use std::io::Write; use std::path::PathBuf; struct KernelDirectories { kernel_glob: &'static str, rust_target: &'static str, include_dirs: &'static [&'static str], } const KERNEL_DIRS: [KernelDirectories; 1] = [KernelDirectories { kernel_glob: "examples/custom-ops/kernels/*.cu", rust_target: "examples/custom-ops/cuda_kernels.rs", include_dirs: &[], }]; fn main() -> Result<()> { println!("cargo:rerun-if-changed=build.rs"); #[cfg(feature = "cuda")] { for kdir in KERNEL_DIRS.iter() { let builder = bindgen_cuda::Builder::default().kernel_paths_glob(kdir.kernel_glob); println!("cargo:info={builder:?}"); let bindings = builder.build_ptx().unwrap(); bindings.write(kdir.rust_target).unwrap() } } Ok(()) }
candle/candle-examples/build.rs/0
{ "file_path": "candle/candle-examples/build.rs", "repo_id": "candle", "token_count": 391 }
33
// This example illustrates how to implement custom operations. These operations can provide their // own forward pass (CPU and GPU versions) as well as their backward pass. // // In this example we add the RMS normalization operation and implement it for f32. #[cfg(feature = "mkl")] extern crate intel_mkl_src; #[rustfmt::skip] #[cfg(feature = "cuda")] mod cuda_kernels; use clap::Parser; use candle::{CpuStorage, CustomOp1, Layout, Result, Shape, Tensor}; #[derive(Parser, Debug)] #[command(author, version, about, long_about = None)] struct Args { /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, } struct LayerNorm { eps: f32, } impl CustomOp1 for LayerNorm { fn name(&self) -> &'static str { "layer-norm" } fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)> { let (dim1, dim2) = layout.shape().dims2()?; let slice = storage.as_slice::<f32>()?; let src = match layout.contiguous_offsets() { None => candle::bail!("input has to be contiguous"), Some((o1, o2)) => &slice[o1..o2], }; let mut dst = Vec::with_capacity(dim1 * dim2); for idx1 in 0..dim1 { let src = &src[idx1 * dim2..(idx1 + 1) * dim2]; let variance = src.iter().map(|x| x * x).sum::<f32>(); let s_variance = 1f32 / (variance / dim2 as f32 + self.eps).sqrt(); dst.extend(src.iter().map(|x| x * s_variance)) } let storage = candle::WithDType::to_cpu_storage_owned(dst); Ok((storage, layout.shape().clone())) } #[cfg(feature = "cuda")] fn cuda_fwd( &self, storage: &candle::CudaStorage, layout: &Layout, ) -> Result<(candle::CudaStorage, Shape)> { use candle::backend::BackendStorage; use candle::cuda_backend::cudarc::driver::{LaunchAsync, LaunchConfig}; use candle::cuda_backend::WrapErr; let (d1, d2) = layout.shape().dims2()?; let d1 = d1 as u32; let d2 = d2 as u32; let dev = storage.device().clone(); let slice = storage.as_cuda_slice::<f32>()?; let slice = match layout.contiguous_offsets() { None => candle::bail!("input has to be contiguous"), Some((o1, o2)) => slice.slice(o1..o2), }; let elem_count = layout.shape().elem_count(); let dst = unsafe { dev.alloc::<f32>(elem_count) }.w()?; let func = dev.get_or_load_func("rms_f32", cuda_kernels::LAYERNORM_KERNELS)?; let params = (&dst, &slice, self.eps, d1, d2); let cfg = LaunchConfig { grid_dim: (d1, 1, 1), block_dim: (d2, 1, 1), shared_mem_bytes: 0, }; unsafe { func.launch(cfg, params) }.w()?; let dst = candle::CudaStorage::wrap_cuda_slice(dst, dev); Ok((dst, layout.shape().clone())) } } fn main() -> anyhow::Result<()> { let args = Args::parse(); let device = candle_examples::device(args.cpu)?; let t = Tensor::arange(0f32, 14f32, &device)?.reshape((2, 7))?; println!("{t}"); let t = t.apply_op1(LayerNorm { eps: 1e-5 })?; println!("{t}"); Ok(()) }
candle/candle-examples/examples/custom-ops/main.rs/0
{ "file_path": "candle/candle-examples/examples/custom-ops/main.rs", "repo_id": "candle", "token_count": 1475 }
34
# gte-Qwen1.5-7B-instruct gte-Qwen1.5-7B-instruct is a variant of the GTE embedding model family. - [Model card](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) on the HuggingFace Hub. - [Technical report](https://arxiv.org/abs/2308.03281) *Towards General Text Embeddings with Multi-stage Contrastive Learning* ## Running the example Automatically download the model from the HuggingFace hub: ```bash $ cargo run --example gte-qwen --release ``` or, load the model from a local directory: ```bash cargo run --example gte-qwen --release --features cuda -- --local-repo /path/to/gte_Qwen1.5-7B-instruct/ ```
candle/candle-examples/examples/gte-qwen/README.md/0
{ "file_path": "candle/candle-examples/examples/gte-qwen/README.md", "repo_id": "candle", "token_count": 229 }
35
/// This follows the lines of: /// https://github.com/johnma2006/mamba-minimal/blob/master/model.py /// Simple, minimal implementation of Mamba in one file of PyTorch. use candle::{IndexOp, Module, Result, Tensor, D}; use candle_nn::{RmsNorm, VarBuilder}; use candle_transformers::models::with_tracing::{linear, linear_no_bias, Linear}; #[derive(Debug, Clone, serde::Deserialize)] pub struct Config { d_model: usize, n_layer: usize, vocab_size: usize, pad_vocab_size_multiple: usize, } impl Config { fn vocab_size(&self) -> usize { let pad = self.pad_vocab_size_multiple; (self.vocab_size + pad - 1) / pad * pad } fn dt_rank(&self) -> usize { (self.d_model + 15) / 16 } fn d_conv(&self) -> usize { 4 } fn d_state(&self) -> usize { 16 } fn d_inner(&self) -> usize { self.d_model * 2 } } // https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L177 #[derive(Clone, Debug)] pub struct MambaBlock { in_proj: Linear, conv1d: candle_nn::Conv1d, x_proj: Linear, dt_proj: Linear, a_log: Tensor, d: Tensor, out_proj: Linear, dt_rank: usize, } impl MambaBlock { pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { let d_inner = cfg.d_inner(); let d_conv = cfg.d_conv(); let d_state = cfg.d_state(); let dt_rank = cfg.dt_rank(); let in_proj = linear_no_bias(cfg.d_model, d_inner * 2, vb.pp("in_proj"))?; let conv_cfg = candle_nn::Conv1dConfig { groups: d_inner, padding: d_conv - 1, ..Default::default() }; let conv1d = candle_nn::conv1d(d_inner, d_inner, d_conv, conv_cfg, vb.pp("conv1d"))?; let x_proj = linear_no_bias(d_inner, dt_rank + d_state * 2, vb.pp("x_proj"))?; let dt_proj = linear(dt_rank, d_inner, vb.pp("dt_proj"))?; let a_log = vb.get((d_inner, d_state), "A_log")?; let d = vb.get(d_inner, "D")?; let out_proj = linear_no_bias(d_inner, cfg.d_model, vb.pp("out_proj"))?; Ok(Self { in_proj, conv1d, x_proj, dt_proj, a_log, d, out_proj, dt_rank, }) } fn ssm(&self, xs: &Tensor) -> Result<Tensor> { let (_d_in, n) = self.a_log.dims2()?; let a = self.a_log.to_dtype(candle::DType::F32)?.exp()?.neg()?; let d = self.d.to_dtype(candle::DType::F32)?; let x_dbl = xs.apply(&self.x_proj)?; let delta = x_dbl.narrow(D::Minus1, 0, self.dt_rank)?; let b = x_dbl.narrow(D::Minus1, self.dt_rank, n)?; let c = x_dbl.narrow(D::Minus1, self.dt_rank + n, n)?; let delta = delta.contiguous()?.apply(&self.dt_proj)?; // softplus without threshold let delta = (delta.exp()? + 1.)?.log()?; let ss = selective_scan(xs, &delta, &a, &b, &c, &d)?; Ok(ss) } } // https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L275 fn selective_scan( u: &Tensor, delta: &Tensor, a: &Tensor, b: &Tensor, c: &Tensor, d: &Tensor, ) -> Result<Tensor> { let (b_sz, l, d_in) = u.dims3()?; let n = a.dim(1)?; let delta = delta.t()?.reshape((b_sz, d_in, l, 1))?; // b d_in l 1 let delta_a = delta.broadcast_mul(&a.reshape((1, d_in, 1, n))?)?.exp()?; let delta_b_u = delta .broadcast_mul(&b.reshape((b_sz, 1, l, n))?)? .broadcast_mul(&u.t()?.reshape((b_sz, d_in, l, 1))?)?; let mut xs = Tensor::zeros((b_sz, d_in, n), delta_a.dtype(), delta_a.device())?; let mut ys = Vec::with_capacity(l); for i in 0..l { xs = ((delta_a.i((.., .., i))? * xs)? + delta_b_u.i((.., .., i))?)?; let y = xs.matmul(&c.i((.., i, ..))?.unsqueeze(2)?)?.squeeze(2)?; ys.push(y) } let ys = Tensor::stack(ys.as_slice(), 1)?; ys + u.broadcast_mul(d) } impl Module for MambaBlock { // https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L206 fn forward(&self, xs: &Tensor) -> Result<Tensor> { let (_b_sz, seq_len, _dim) = xs.dims3()?; let xs_and_res = xs.apply(&self.in_proj)?.chunk(2, D::Minus1)?; let (xs, res) = (&xs_and_res[0], &xs_and_res[1]); let xs = xs .t()? .apply(&self.conv1d)? .narrow(D::Minus1, 0, seq_len)? .t()?; let xs = candle_nn::ops::silu(&xs)?; let ys = (self.ssm(&xs)? * candle_nn::ops::silu(res))?; ys.apply(&self.out_proj) } } // https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L143 #[derive(Clone, Debug)] pub struct ResidualBlock { mixer: MambaBlock, norm: RmsNorm, } impl ResidualBlock { pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { let norm = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm"))?; let mixer = MambaBlock::new(cfg, vb.pp("mixer"))?; Ok(Self { mixer, norm }) } } impl Module for ResidualBlock { fn forward(&self, xs: &Tensor) -> Result<Tensor> { xs.apply(&self.norm)?.apply(&self.mixer)? + xs } } // https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L56 #[derive(Clone, Debug)] pub struct Model { embedding: candle_nn::Embedding, layers: Vec<ResidualBlock>, norm_f: RmsNorm, lm_head: Linear, } impl Model { pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { let embedding = candle_nn::embedding(cfg.vocab_size(), cfg.d_model, vb.pp("embedding"))?; let mut layers = Vec::with_capacity(cfg.n_layer); let vb_l = vb.pp("layers"); for layer_idx in 0..cfg.n_layer { let layer = ResidualBlock::new(cfg, vb_l.pp(layer_idx))?; layers.push(layer) } let norm_f = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm_f"))?; let lm_head = Linear::from_weights(embedding.embeddings().clone(), None); Ok(Self { embedding, layers, norm_f, lm_head, }) } } impl Module for Model { fn forward(&self, input_ids: &Tensor) -> Result<Tensor> { let (_b_size, seq_len) = input_ids.dims2()?; let mut xs = self.embedding.forward(input_ids)?; for layer in self.layers.iter() { xs = layer.forward(&xs)? } xs.narrow(1, seq_len - 1, 1)? .apply(&self.norm_f)? .apply(&self.lm_head) } }
candle/candle-examples/examples/mamba-minimal/model.rs/0
{ "file_path": "candle/candle-examples/examples/mamba-minimal/model.rs", "repo_id": "candle", "token_count": 3488 }
36
#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use anyhow::{Error as E, Result}; use clap::Parser; use candle::{DType, Device, Tensor}; use candle_nn::VarBuilder; use candle_transformers::{ generation::LogitsProcessor, models::{moondream, quantized_moondream}, }; use tokenizers::Tokenizer; enum Model { Moondream(moondream::Model), Quantized(quantized_moondream::Model), } struct TextGeneration { model: Model, device: Device, tokenizer: Tokenizer, logits_processor: LogitsProcessor, repeat_penalty: f32, repeat_last_n: usize, verbose_prompt: bool, } impl TextGeneration { #[allow(clippy::too_many_arguments)] fn new( model: Model, tokenizer: Tokenizer, seed: u64, temp: Option<f64>, top_p: Option<f64>, repeat_penalty: f32, repeat_last_n: usize, verbose_prompt: bool, device: &Device, ) -> Self { let logits_processor = LogitsProcessor::new(seed, temp, top_p); Self { model, tokenizer, logits_processor, repeat_penalty, repeat_last_n, verbose_prompt, device: device.clone(), } } fn run(&mut self, prompt: &str, image_embeds: &Tensor, sample_len: usize) -> Result<()> { use std::io::Write; println!("starting the inference loop"); let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?; if tokens.is_empty() { anyhow::bail!("Empty prompts are not supported in the Moondream model.") } if self.verbose_prompt { for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) { let token = token.replace('▁', " ").replace("<0x0A>", "\n"); println!("{id:7} -> '{token}'"); } } let mut tokens = tokens.get_ids().to_vec(); let mut generated_tokens = 0usize; // Moondream tokenizer bos_token and eos_token is "<|endoftext|>" // https://huggingface.co/vikhyatk/moondream2/blob/main/special_tokens_map.json let special_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") { Some(token) => *token, None => anyhow::bail!("cannot find the special token"), }; let (bos_token, eos_token) = (special_token, special_token); let start_gen = std::time::Instant::now(); let mut load_t = std::time::Duration::from_secs_f64(0f64); for index in 0..sample_len { let context_size = if index > 0 { 1 } else { tokens.len() }; let ctxt = &tokens[tokens.len().saturating_sub(context_size)..]; let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?; let logits = if index > 0 { match self.model { Model::Moondream(ref mut model) => model.text_model.forward(&input)?, Model::Quantized(ref mut model) => model.text_model.forward(&input)?, } } else { let bos_token = Tensor::new(&[bos_token], &self.device)?.unsqueeze(0)?; let logits = match self.model { Model::Moondream(ref mut model) => { model .text_model .forward_with_img(&bos_token, &input, image_embeds)? } Model::Quantized(ref mut model) => { model .text_model .forward_with_img(&bos_token, &input, image_embeds)? } }; load_t = start_gen.elapsed(); println!("load_t: {:?}", load_t); logits }; let logits = logits.squeeze(0)?.to_dtype(DType::F32)?; let logits = if self.repeat_penalty == 1. { logits } else { let start_at = tokens.len().saturating_sub(self.repeat_last_n); candle_transformers::utils::apply_repeat_penalty( &logits, self.repeat_penalty, &tokens[start_at..], )? }; let next_token = self.logits_processor.sample(&logits)?; tokens.push(next_token); generated_tokens += 1; if next_token == eos_token || tokens.ends_with(&[27, 10619, 29] /* <END> */) { break; } let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?; print!("{token}"); std::io::stdout().flush()?; } let dt = start_gen.elapsed() - load_t; println!( "\ngenerated in {} seconds\n{generated_tokens} tokens generated ({:.2} token/s)", dt.as_secs_f64(), (generated_tokens - 1) as f64 / dt.as_secs_f64() ); Ok(()) } } #[derive(Parser)] struct Args { /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, /// Enable tracing (generates a trace-timestamp.json file). #[arg(long)] tracing: bool, /// Display the token for the specified prompt. #[arg(long)] verbose_prompt: bool, #[arg(long)] prompt: String, #[arg(long)] image: String, /// The temperature used to generate samples. #[arg(long)] temperature: Option<f64>, /// Nucleus sampling probability cutoff. #[arg(long)] top_p: Option<f64>, /// The seed to use when generating random samples. #[arg(long, default_value_t = 0)] seed: u64, #[arg(long, default_value_t = 5000)] sample_len: usize, /// Penalty to be applied for repeating tokens, 1. means no penalty. #[arg(long, default_value_t = 1.0)] repeat_penalty: f32, /// The context size to consider for the repeat penalty. #[arg(long, default_value_t = 64)] repeat_last_n: usize, #[arg(long)] model_id: Option<String>, #[arg(long, default_value = "main")] revision: String, #[arg(long)] quantized: bool, /// Use f16 precision for all the computations rather than f32. #[arg(long)] f16: bool, #[arg(long)] model_file: Option<String>, #[arg(long)] tokenizer_file: Option<String>, } /// Loads an image from disk using the image crate, this returns a tensor with shape /// (3, 378, 378). pub fn load_image<P: AsRef<std::path::Path>>(p: P) -> candle::Result<Tensor> { let img = image::io::Reader::open(p)? .decode() .map_err(candle::Error::wrap)? .resize_to_fill(378, 378, image::imageops::FilterType::Triangle); // Adjusted to 378x378 let img = img.to_rgb8(); let data = img.into_raw(); let data = Tensor::from_vec(data, (378, 378, 3), &Device::Cpu)?.permute((2, 0, 1))?; let mean = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?; let std = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?; (data.to_dtype(candle::DType::F32)? / 255.)? .broadcast_sub(&mean)? .broadcast_div(&std) } #[tokio::main] async fn main() -> anyhow::Result<()> { use tracing_chrome::ChromeLayerBuilder; use tracing_subscriber::prelude::*; let args = Args::parse(); let _guard = if args.tracing { let (chrome_layer, guard) = ChromeLayerBuilder::new().build(); tracing_subscriber::registry().with(chrome_layer).init(); Some(guard) } else { None }; println!( "avx: {}, neon: {}, simd128: {}, f16c: {}", candle::utils::with_avx(), candle::utils::with_neon(), candle::utils::with_simd128(), candle::utils::with_f16c() ); println!( "temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}", args.temperature.unwrap_or(0.), args.repeat_penalty, args.repeat_last_n ); let start = std::time::Instant::now(); let api = hf_hub::api::tokio::Api::new()?; let model_id = match args.model_id { Some(model_id) => model_id.to_string(), None => { if args.quantized { "santiagomed/candle-moondream".to_string() } else { "vikhyatk/moondream2".to_string() } } }; let repo = api.repo(hf_hub::Repo::with_revision( model_id, hf_hub::RepoType::Model, args.revision, )); let model_file = match args.model_file { Some(m) => m.into(), None => { if args.quantized { repo.get("model-q4_0.gguf").await? } else { repo.get("model.safetensors").await? } } }; let tokenizer = match args.tokenizer_file { Some(m) => m.into(), None => repo.get("tokenizer.json").await?, }; println!("retrieved the files in {:?}", start.elapsed()); let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?; let start = std::time::Instant::now(); let device = candle_examples::device(args.cpu)?; let config = moondream::Config::v2(); let dtype = if args.quantized { if args.f16 { anyhow::bail!("Quantized model does not support f16"); } DType::F32 } else if device.is_cuda() || args.f16 { DType::F16 } else { DType::F32 }; let model = if args.quantized { let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf( &model_file, &device, )?; let model = quantized_moondream::Model::new(&config, vb)?; Model::Quantized(model) } else { let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], dtype, &device)? }; let model = moondream::Model::new(&config, vb)?; Model::Moondream(model) }; println!("loaded the model in {:?}", start.elapsed()); let start = std::time::Instant::now(); let image = load_image(args.image)? .to_device(&device)? .to_dtype(dtype)?; let image_embeds = image.unsqueeze(0)?; let image_embeds = match model { Model::Moondream(ref m) => image_embeds.apply(m.vision_encoder())?, Model::Quantized(ref m) => image_embeds.apply(m.vision_encoder())?, }; println!( "loaded and encoded the image {image:?} in {:?}", start.elapsed() ); let prompt = format!("\n\nQuestion: {0}\n\nAnswer:", args.prompt); let mut pipeline = TextGeneration::new( model, tokenizer, args.seed, args.temperature, args.top_p, args.repeat_penalty, args.repeat_last_n, args.verbose_prompt, &device, ); pipeline.run(&prompt, &image_embeds, args.sample_len)?; Ok(()) }
candle/candle-examples/examples/moondream/main.rs/0
{ "file_path": "candle/candle-examples/examples/moondream/main.rs", "repo_id": "candle", "token_count": 5320 }
37
# candle-qwen: large language model series from Alibaba Cloud Qwen 1.5 is a series of large language models that provide strong performances on English and Chinese. - [Blog post](https://qwenlm.github.io/blog/qwen1.5/) introducing Qwen1.5. - [Model card](https://huggingface.co/Qwen/Qwen1.5-0.5B) on the HuggingFace Hub. - [Blog post](https://qwenlm.github.io/blog/qwen-moe/) for the mixture-of-experts (MoE) variant. ## Running the example ```bash $ cargo run --example qwen --release -- --prompt "Hello there " ``` Various model sizes are available via the `--model` argument, including the MoE variant. ```bash $ cargo run --example qwen --release -- --model moe-a2.7b --prompt 'def print_prime(n: int): ' def print_prime(n: int): # n is the number of primes to be printed for i in range(2, n + 1): if all(i % j != 0 for j in range(2, i)): print(i) ```
candle/candle-examples/examples/qwen/README.md/0
{ "file_path": "candle/candle-examples/examples/qwen/README.md", "repo_id": "candle", "token_count": 327 }
38
# candle-resnet A candle implementation of inference using a pre-trained [ResNet](https://arxiv.org/abs/1512.03385). This uses a classification head trained on the ImageNet dataset and returns the probabilities for the top-5 classes. ## Running an example ``` $ cargo run --example resnet --release -- --image tiger.jpg loaded image Tensor[dims 3, 224, 224; f32] model built tiger, Panthera tigris : 90.21% tiger cat : 8.93% lion, king of beasts, Panthera leo: 0.35% leopard, Panthera pardus: 0.16% jaguar, panther, Panthera onca, Felis onca: 0.09% ```
candle/candle-examples/examples/resnet/README.md/0
{ "file_path": "candle/candle-examples/examples/resnet/README.md", "repo_id": "candle", "token_count": 204 }
39
# candle-stable-lm StableLM-3B-4E1T is a 3 billion parameter decoder-only language model pre-trained on 1 trillion tokens of diverse English and code datasets for 4 epochs. See the [HuggingFace Hub Model Card](https://huggingface.co/stabilityai/stablelm-3b-4e1t). Note that this model is gated so you will have to request access on the Hub in order to be able to use it. Other available models are Stable-Code-3B, StableLM-2 and Zephyr variants. ## Running some example ```bash $ cargo run --example stable-lm --release --features cuda -- --prompt 'What is the most efficient programming language in use?' --sample-len 150 avx: true, neon: false, simd128: false, f16c: true temp: 0.00 repeat-penalty: 1.10 repeat-last-n: 64 retrieved the files in 126.593µs loaded the model in 3.474148965s What is the most efficient programming language in use? The answer to this question depends on what you mean by "efficient". If you're talking about speed, then C++ and Java are probably your best bets. But if you're talking about ease of development, then Python is probably the way to go. Python is a high-level, interpreted language that is easy to learn and use. It has a large community of developers who are always working on new features and improvements. C++ is a low-level, compiled language that can be used for both desktop applications and web development. It's more difficult to learn than Python but offers greater control over the code. Java is another high-level language that is popular with programmers because it runs on many different platforms (including Android phones 150 tokens generated (37.61 token/s) ```
candle/candle-examples/examples/stable-lm/README.md/0
{ "file_path": "candle/candle-examples/examples/stable-lm/README.md", "repo_id": "candle", "token_count": 432 }
40
# candle-whisper: speech recognition An implementation of [OpenAI Whisper](https://github.com/openai/whisper) using candle. Whisper is a general purpose speech recognition model, it can be used to convert audio files (in the `.wav` format) to text. Supported features include language detection as well as multilingual speech recognition. ## Running some example If no audio file is passed as input, a [sample file](https://huggingface.co/datasets/Narsil/candle-examples/resolve/main/samples_jfk.wav) is automatically downloaded from the hub. ```bash cargo run --example whisper --release > No audio file submitted: Downloading https://huggingface.co/datasets/Narsil/candle_demo/blob/main/samples_jfk.wav > loaded wav data: Header { audio_format: 1, channel_count: 1, sampling_rate: 16000, bytes_per_second: 32000, bytes_per_sample: 2, bits_per_sample: 16 } > pcm data loaded 176000 > loaded mel: [1, 80, 3000] > 0.0s -- 30.0s: And so my fellow Americans ask not what your country can do for you ask what you can do for your country ``` In order to use the multilingual mode, specify a multilingual model via the `--model` flag, see the details below. ## Command line flags - `--input`: the audio file to be converted to text, in wav format. - `--language`: force the language to some specific value rather than being detected, e.g. `en`. - `--task`: the task to be performed, can be `transcribe` (return the text data in the original language) or `translate` (translate the text to English). - `--timestamps`: enable the timestamp mode where some timestamps are reported for each recognized audio extracts. - `--model`: the model to be used. Models that do not end with `-en` are multilingual models, other ones are English only models. The supported OpenAI Whisper models are `tiny`, `tiny.en`, `base`, `base.en`, `small`, `small.en`, `medium`, `medium.en`, `large`, `large-v2` and `large-v3`. The supported Distil-Whisper models are `distil-medium.en`, `distil-large-v2` and `distil-large-v3`.
candle/candle-examples/examples/whisper/README.md/0
{ "file_path": "candle/candle-examples/examples/whisper/README.md", "repo_id": "candle", "token_count": 620 }
41
// Build script to run nvcc and generate the C glue code for launching the flash-attention kernel. // The cuda build time is very long so one can set the CANDLE_FLASH_ATTN_BUILD_DIR environment // variable in order to cache the compiled artifacts and avoid recompiling too often. use anyhow::{Context, Result}; use std::path::PathBuf; const KERNEL_FILES: [&str; 17] = [ "kernels/flash_api.cu", "kernels/flash_fwd_hdim128_fp16_sm80.cu", "kernels/flash_fwd_hdim160_fp16_sm80.cu", "kernels/flash_fwd_hdim192_fp16_sm80.cu", "kernels/flash_fwd_hdim224_fp16_sm80.cu", "kernels/flash_fwd_hdim256_fp16_sm80.cu", "kernels/flash_fwd_hdim32_fp16_sm80.cu", "kernels/flash_fwd_hdim64_fp16_sm80.cu", "kernels/flash_fwd_hdim96_fp16_sm80.cu", "kernels/flash_fwd_hdim128_bf16_sm80.cu", "kernels/flash_fwd_hdim160_bf16_sm80.cu", "kernels/flash_fwd_hdim192_bf16_sm80.cu", "kernels/flash_fwd_hdim224_bf16_sm80.cu", "kernels/flash_fwd_hdim256_bf16_sm80.cu", "kernels/flash_fwd_hdim32_bf16_sm80.cu", "kernels/flash_fwd_hdim64_bf16_sm80.cu", "kernels/flash_fwd_hdim96_bf16_sm80.cu", ]; fn main() -> Result<()> { println!("cargo:rerun-if-changed=build.rs"); for kernel_file in KERNEL_FILES.iter() { println!("cargo:rerun-if-changed={kernel_file}"); } println!("cargo:rerun-if-changed=kernels/flash_fwd_kernel.h"); println!("cargo:rerun-if-changed=kernels/flash_fwd_launch_template.h"); println!("cargo:rerun-if-changed=kernels/flash.h"); println!("cargo:rerun-if-changed=kernels/philox.cuh"); println!("cargo:rerun-if-changed=kernels/softmax.h"); println!("cargo:rerun-if-changed=kernels/utils.h"); println!("cargo:rerun-if-changed=kernels/kernel_traits.h"); println!("cargo:rerun-if-changed=kernels/block_info.h"); println!("cargo:rerun-if-changed=kernels/static_switch.h"); let out_dir = PathBuf::from(std::env::var("OUT_DIR").context("OUT_DIR not set")?); let build_dir = match std::env::var("CANDLE_FLASH_ATTN_BUILD_DIR") { Err(_) => { #[allow(clippy::redundant_clone)] out_dir.clone() } Ok(build_dir) => { let path = PathBuf::from(build_dir); path.canonicalize().expect(&format!( "Directory doesn't exists: {} (the current directory is {})", &path.display(), std::env::current_dir()?.display() )) } }; let kernels = KERNEL_FILES.iter().collect(); let builder = bindgen_cuda::Builder::default() .kernel_paths(kernels) .out_dir(build_dir.clone()) .arg("-std=c++17") .arg("-O3") .arg("-U__CUDA_NO_HALF_OPERATORS__") .arg("-U__CUDA_NO_HALF_CONVERSIONS__") .arg("-U__CUDA_NO_HALF2_OPERATORS__") .arg("-U__CUDA_NO_BFLOAT16_CONVERSIONS__") .arg("-Icutlass/include") .arg("--expt-relaxed-constexpr") .arg("--expt-extended-lambda") .arg("--use_fast_math") .arg("--verbose"); let out_file = build_dir.join("libflashattention.a"); builder.build_lib(out_file); println!("cargo:rustc-link-search={}", build_dir.display()); println!("cargo:rustc-link-lib=flashattention"); println!("cargo:rustc-link-lib=dylib=cudart"); println!("cargo:rustc-link-lib=dylib=stdc++"); Ok(()) }
candle/candle-flash-attn/build.rs/0
{ "file_path": "candle/candle-flash-attn/build.rs", "repo_id": "candle", "token_count": 1604 }
42
[package] name = "candle-kernels" version = "0.6.0" edition = "2021" description = "CUDA kernels for Candle" repository = "https://github.com/huggingface/candle" keywords = ["blas", "tensor", "machine-learning"] categories = ["science"] license = "MIT OR Apache-2.0" [dependencies] [build-dependencies] bindgen_cuda = "0.1.1"
candle/candle-kernels/Cargo.toml/0
{ "file_path": "candle/candle-kernels/Cargo.toml", "repo_id": "candle", "token_count": 126 }
43
#include "cuda_utils.cuh" #include<stdint.h> #define WHERE_OP(TYPENAME, ID_TYPENAME, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t numel, \ const size_t num_dims, \ const size_t *info, \ const ID_TYPENAME *ids, \ const TYPENAME *t, \ const TYPENAME *f, \ TYPENAME *out \ ) { \ const size_t *dims = info; \ const size_t *strides = info + num_dims; \ const size_t *strides_t = info + 2*num_dims; \ const size_t *strides_f = info + 3*num_dims; \ if (is_contiguous(num_dims, dims, strides) \ && is_contiguous(num_dims, dims, strides_f) \ && is_contiguous(num_dims, dims, strides_t)) { \ for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \ out[i] = ids[i] ? t[i] : f[i]; \ } \ } \ else { \ for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \ unsigned strided_i = get_strided_index(i, num_dims, dims, strides); \ unsigned strided_i_t = get_strided_index(i, num_dims, dims, strides_t); \ unsigned strided_i_f = get_strided_index(i, num_dims, dims, strides_f); \ out[i] = ids[strided_i] ? t[strided_i_t] : f[strided_i_f]; \ } \ } \ } \ #if __CUDA_ARCH__ >= 800 WHERE_OP(__nv_bfloat16, int64_t, where_i64_bf16) WHERE_OP(__nv_bfloat16, uint32_t, where_u32_bf16) WHERE_OP(__nv_bfloat16, uint8_t, where_u8_bf16) #endif #if __CUDA_ARCH__ >= 530 WHERE_OP(__half, int64_t, where_i64_f16) WHERE_OP(__half, uint32_t, where_u32_f16) WHERE_OP(__half, uint8_t, where_u8_f16) #endif WHERE_OP(float, int64_t, where_i64_f32) WHERE_OP(double, int64_t, where_i64_f64) WHERE_OP(uint8_t, int64_t, where_i64_u8) WHERE_OP(uint32_t, int64_t, where_i64_u32) WHERE_OP(int64_t, int64_t, where_i64_i64) WHERE_OP(float, uint32_t, where_u32_f32) WHERE_OP(double, uint32_t, where_u32_f64) WHERE_OP(uint8_t, uint32_t, where_u32_u8) WHERE_OP(uint32_t, uint32_t, where_u32_u32) WHERE_OP(int64_t, uint32_t, where_u32_i64) WHERE_OP(float, uint8_t, where_u8_f32) WHERE_OP(double, uint8_t, where_u8_f64) WHERE_OP(uint8_t, uint8_t, where_u8_u8) WHERE_OP(uint32_t, uint8_t, where_u8_u32) WHERE_OP(int64_t, uint8_t, where_u8_i64)
candle/candle-kernels/src/ternary.cu/0
{ "file_path": "candle/candle-kernels/src/ternary.cu", "repo_id": "candle", "token_count": 1159 }
44
use super::*; use half::{bf16, f16}; use metal::MTLResourceOptions; fn read_to_vec<T: Clone>(buffer: &Buffer, n: usize) -> Vec<T> { let ptr = buffer.contents() as *const T; assert!(!ptr.is_null()); let slice = unsafe { std::slice::from_raw_parts(ptr, n) }; slice.to_vec() } fn new_buffer<T>(device: &Device, data: &[T]) -> Buffer { let options = MTLResourceOptions::StorageModeManaged; let ptr = data.as_ptr() as *const c_void; let size = std::mem::size_of_val(data) as u64; device.new_buffer_with_data(ptr, size, options) } fn device() -> Device { Device::system_default().unwrap() } fn approx(v: Vec<f32>, digits: i32) -> Vec<f32> { let b = 10f32.powi(digits); v.iter().map(|t| f32::round(t * b) / b).collect() } fn approx_f16(v: Vec<f16>, digits: i32) -> Vec<f32> { let b = 10f32.powi(digits); v.iter().map(|t| f32::round(t.to_f32() * b) / b).collect() } fn approx_bf16(v: Vec<bf16>, digits: i32) -> Vec<f32> { let b = 10f32.powi(digits); v.iter().map(|t| f32::round(t.to_f32() * b) / b).collect() } fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input = new_buffer(&device, v); let input = BufferOffset { buffer: &input, offset_in_bytes: 0, }; let output = new_buffer(&device, v); call_unary_contiguous( &device, command_buffer, &kernels, name, v.len(), input, &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, v.len()) } fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let options = MTLResourceOptions::StorageModeManaged; let left = new_buffer(&device, x); let right = new_buffer(&device, y); let output = device.new_buffer(std::mem::size_of_val(x) as u64, options); call_binary_contiguous( &device, command_buffer, &kernels, name, x.len(), BufferOffset::zero_offset(&left), BufferOffset::zero_offset(&right), &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, x.len()) } fn run_strided<T: Clone>( v: &[T], kernel: unary::strided::Kernel, shape: &[usize], strides: &[usize], offset: usize, ) -> Vec<T> { let device = device(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input = new_buffer(&device, v); let input = BufferOffset { buffer: &input, offset_in_bytes: offset, }; let output_b = new_buffer(&device, v); let output = BufferOffset { buffer: &output_b, offset_in_bytes: 0, }; let kernels = Kernels::new(); call_unary_strided( &device, command_buffer, &kernels, kernel, shape, input, strides, output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output_b, v.len()) } #[test] fn cos_f32() { let v = vec![1.0f32, 2.0, 3.0]; let results = run(&v, unary::contiguous::cos::FLOAT); let expected: Vec<_> = v.iter().map(|v| v.cos()).collect(); assert_eq!(approx(results, 4), vec![0.5403, -0.4161, -0.99]); assert_eq!(approx(expected, 4), vec![0.5403, -0.4161, -0.99]); let v = vec![1.0f32; 10_000]; let results = run(&v, unary::contiguous::cos::FLOAT); let expected: Vec<_> = v.iter().map(|v| v.cos()).collect(); assert_eq!(approx(results, 4), vec![0.5403; 10_000]); assert_eq!(approx(expected, 4), vec![0.5403; 10_000]); } #[test] fn cos_f32_strided() { let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let shape = vec![6]; let strides = vec![1]; let offset = 0; let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset); let expected: Vec<_> = v.iter().map(|v| v.cos()).collect(); assert_eq!( approx(results, 4), vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602] ); assert_eq!( approx(expected, 4), vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602] ); // Contiguous let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let shape = vec![3, 2]; let strides = vec![2, 1]; let offset = 0; let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset); let expected: Vec<_> = v.iter().map(|v| v.cos()).collect(); assert_eq!( approx(results, 4), vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602] ); assert_eq!( approx(expected, 4), vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602] ); // Transposed let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let shape = vec![3, 2]; let strides = vec![1, 3]; let offset = 0; let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset); let expected: Vec<_> = v.iter().map(|v| v.cos()).collect(); assert_eq!( approx(results, 4), vec![0.5403, -0.6536, -0.4161, 0.2837, -0.99, 0.9602] ); assert_eq!( approx(expected, 4), vec![0.5403, -0.4161, -0.99, -0.6536, 0.2837, 0.9602] ); // Very large let v = vec![1.0f32; 10_000]; let shape = vec![2, 5_000]; let strides = vec![2, 1]; let offset = 0; let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset); let expected: Vec<_> = v.iter().map(|v| v.cos()).collect(); assert_eq!(approx(results, 4), vec![0.5403; 10_000]); assert_eq!(approx(expected, 4), vec![0.5403; 10_000]); } #[test] fn cos_strided_random() { let v: Vec<_> = (0..10_000).map(|_| rand::random::<f32>()).collect(); let shape = vec![5_000, 2]; let strides = vec![1, 5_000]; let offset = 0; let results = run_strided(&v, unary::strided::cos::FLOAT, &shape, &strides, offset); let expected: Vec<_> = v.iter().map(|v| v.cos()).collect(); assert_eq!(approx(vec![results[0]], 4), approx(vec![expected[0]], 4)); assert_eq!( approx(vec![results[1]], 4), approx(vec![expected[5_000]], 4) ); assert_eq!(approx(vec![results[2]], 4), approx(vec![expected[1]], 4)); assert_eq!( approx(vec![results[3]], 4), approx(vec![expected[5_001]], 4) ); assert_eq!( approx(vec![results[5_000]], 4), approx(vec![expected[2_500]], 4) ); } #[test] fn gelu_f16() { let v: Vec<f16> = [-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0] .iter() .map(|v| f16::from_f32(*v)) .collect(); let expected: Vec<f32> = vec![-0.0, -0.16, 0.0, 0.84, 1.96, 3.0, 10.0, 20.0]; let results = run(&v, unary::contiguous::gelu::HALF); assert_eq!(approx_f16(results, 2), expected); } #[test] fn gelu_f32() { let v: Vec<f32> = vec![-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0]; let expected: Vec<f32> = vec![-0.0, -0.159, 0.0, 0.841, 1.955, 2.996, 10.0, 20.0]; let results = run(&v, unary::contiguous::gelu::FLOAT); assert_eq!(approx(results, 3), expected); } #[test] fn silu_f16() { let v: Vec<f16> = [-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0] .iter() .map(|v| f16::from_f32(*v)) .collect(); let expected: Vec<f32> = vec![-0.0, -0.27, 0.0, 0.73, 1.76, 2.86, 10.0, 20.0]; let results = run(&v, unary::contiguous::silu::HALF); assert_eq!(approx_f16(results, 2), expected); } #[test] fn silu_f32() { let v: Vec<f32> = vec![-10f32, -1.0, 0., 1., 2., 3., 10.0, 20.0]; let expected: Vec<f32> = vec![-0.0, -0.269, 0.0, 0.731, 1.762, 2.858, 10.0, 20.0]; let results = run(&v, unary::contiguous::silu::FLOAT); assert_eq!(approx(results, 3), expected); } #[test] fn binary_add_f32() { let left = vec![1.0f32, 2.0, 3.0]; let right = vec![2.0f32, 3.1, 4.2]; let results = run_binary(&left, &right, binary::contiguous::add::FLOAT); let expected: Vec<_> = left .iter() .zip(right.iter()) .map(|(&x, &y)| x + y) .collect(); assert_eq!(approx(results, 4), vec![3.0f32, 5.1, 7.2]); assert_eq!(approx(expected, 4), vec![3.0f32, 5.1, 7.2]); } #[test] fn binary_ops_bf16() { let lhs: Vec<bf16> = [1.1f32, 2.2, 3.3].into_iter().map(bf16::from_f32).collect(); let rhs: Vec<bf16> = [4.2f32, 5.5f32, 6.91f32] .into_iter() .map(bf16::from_f32) .collect(); macro_rules! binary_op { ($opname:ident, $opexpr:expr) => {{ let results = run_binary(&lhs, &rhs, binary::contiguous::$opname::BFLOAT); let expected: Vec<bf16> = lhs .iter() .zip(rhs.iter()) .map(|(x, y): (&bf16, &bf16)| $opexpr(*x, *y)) .collect(); assert_eq!(results, expected); }}; } binary_op!(add, |x, y| x + y); binary_op!(sub, |x, y| x - y); binary_op!(mul, |x, y| x * y); binary_op!(div, |x, y| x / y); binary_op!(min, |x: bf16, y| x.min(y)); binary_op!(max, |x: bf16, y| x.max(y)); } fn run_cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input = new_buffer(&device, v); let options = MTLResourceOptions::StorageModeManaged; let size = (v.len() * std::mem::size_of::<U>()) as u64; let output = device.new_buffer(size, options); call_cast_contiguous( &device, command_buffer, &kernels, name, v.len(), BufferOffset::zero_offset(&input), &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, v.len()) } #[test] fn cast_f32() { let v_f64 = vec![1.0f64, 2.0, 3.0]; let v_f32: Vec<f32> = v_f64.iter().map(|&v| v as f32).collect(); let v_f16: Vec<f16> = v_f64.iter().map(|&v| f16::from_f32(v as f32)).collect(); let v_bf16: Vec<bf16> = v_f64.iter().map(|&v| bf16::from_f32(v as f32)).collect(); let v_u32: Vec<u32> = v_f64.iter().map(|&v| v as u32).collect(); let v_u8: Vec<u8> = v_f64.iter().map(|&v| v as u8).collect(); let v_i64: Vec<i64> = v_f64.iter().map(|&v| v as i64).collect(); // f32 -> f16 let results: Vec<half::f16> = run_cast(&v_f32, "cast_f32_f16"); assert_eq!(results, v_f16); // f32 -> bf16 let results: Vec<bf16> = run_cast(&v_f32, "cast_f32_bf16"); assert_eq!(results, v_bf16); // f32 -> u32 let results: Vec<u32> = run_cast(&v_f32, "cast_f32_u32"); assert_eq!(results, v_u32); // f32 -> u8 let results: Vec<u8> = run_cast(&v_f32, "cast_f32_u8"); assert_eq!(results, v_u8); // f32 -> i64 let results: Vec<i64> = run_cast(&v_f32, "cast_f32_i64"); assert_eq!(results, v_i64); } #[test] fn cast_f16() { let v_f64 = vec![1.0f64, 2.0, 3.0]; let v_f32: Vec<f32> = v_f64.iter().map(|&v| v as f32).collect(); let v_f16: Vec<f16> = v_f64.iter().map(|&v| f16::from_f32(v as f32)).collect(); let v_bf16: Vec<bf16> = v_f64.iter().map(|&v| bf16::from_f32(v as f32)).collect(); let v_u32: Vec<u32> = v_f64.iter().map(|&v| v as u32).collect(); let v_u8: Vec<u8> = v_f64.iter().map(|&v| v as u8).collect(); let v_i64: Vec<i64> = v_f64.iter().map(|&v| v as i64).collect(); // f16 -> f32 let results: Vec<f32> = run_cast(&v_f16, "cast_f16_f32"); assert_eq!(results, v_f32); // f16 -> bf16 let results: Vec<bf16> = run_cast(&v_f16, "cast_f16_bf16"); assert_eq!(results, v_bf16); // f16 -> u32 let results: Vec<u32> = run_cast(&v_f16, "cast_f16_u32"); assert_eq!(results, v_u32); // f16 -> u8 let results: Vec<u8> = run_cast(&v_f16, "cast_f16_u8"); assert_eq!(results, v_u8); // f16 -> i64 let results: Vec<i64> = run_cast(&v_f16, "cast_f16_i64"); assert_eq!(results, v_i64); } #[test] fn cast_bf16() { let v_f64 = vec![1.0f64, 2.0, 3.0]; let v_f32: Vec<f32> = v_f64.iter().map(|&v| v as f32).collect(); let v_f16: Vec<f16> = v_f64.iter().map(|&v| f16::from_f32(v as f32)).collect(); let v_bf16: Vec<bf16> = v_f64.iter().map(|&v| bf16::from_f32(v as f32)).collect(); let v_u32: Vec<u32> = v_f64.iter().map(|&v| v as u32).collect(); let v_u8: Vec<u8> = v_f64.iter().map(|&v| v as u8).collect(); let v_i64: Vec<i64> = v_f64.iter().map(|&v| v as i64).collect(); // bf16 -> f32 let results: Vec<f32> = run_cast(&v_bf16, "cast_bf16_f32"); assert_eq!(results, v_f32); // bf16 -> f16 let results: Vec<f16> = run_cast(&v_bf16, "cast_bf16_f16"); assert_eq!(results, v_f16); // bf16 -> u32 let results: Vec<u32> = run_cast(&v_bf16, "cast_bf16_u32"); assert_eq!(results, v_u32); // bf16 -> u8 let results: Vec<u8> = run_cast(&v_bf16, "cast_bf16_u8"); assert_eq!(results, v_u8); // bf16 -> i64 let results: Vec<i64> = run_cast(&v_bf16, "cast_bf16_i64"); assert_eq!(results, v_i64); } #[test] fn cast_u32() { let v_f64 = vec![1.0f64, 2.0, 3.0]; let v_f32: Vec<f32> = v_f64.iter().map(|&v| v as f32).collect(); let v_f16: Vec<f16> = v_f64.iter().map(|&v| f16::from_f32(v as f32)).collect(); let v_bf16: Vec<bf16> = v_f64.iter().map(|&v| bf16::from_f32(v as f32)).collect(); let v_u32: Vec<u32> = v_f64.iter().map(|&v| v as u32).collect(); let v_u8: Vec<u8> = v_f64.iter().map(|&v| v as u8).collect(); let v_i64: Vec<i64> = v_f64.iter().map(|&v| v as i64).collect(); // u32 -> f32 let results: Vec<f32> = run_cast(&v_u32, "cast_u32_f32"); assert_eq!(results, v_f32); // u32 -> f16 let results: Vec<f16> = run_cast(&v_u32, "cast_u32_f16"); assert_eq!(results, v_f16); // u32 -> bf16 let results: Vec<bf16> = run_cast(&v_u32, "cast_u32_bf16"); assert_eq!(results, v_bf16); // u32 -> u8 let results: Vec<u8> = run_cast(&v_u32, "cast_u32_u8"); assert_eq!(results, v_u8); // u32 -> i64 let results: Vec<i64> = run_cast(&v_u32, "cast_u32_i64"); assert_eq!(results, v_i64); } #[test] fn cast_u8() { let v_f64 = vec![1.0f64, 2.0, 3.0]; let v_f32: Vec<f32> = v_f64.iter().map(|&v| v as f32).collect(); let v_f16: Vec<f16> = v_f64.iter().map(|&v| f16::from_f32(v as f32)).collect(); let v_bf16: Vec<bf16> = v_f64.iter().map(|&v| bf16::from_f32(v as f32)).collect(); let v_u32: Vec<u32> = v_f64.iter().map(|&v| v as u32).collect(); let v_u8: Vec<u8> = v_f64.iter().map(|&v| v as u8).collect(); let v_i64: Vec<i64> = v_f64.iter().map(|&v| v as i64).collect(); // u8 -> f32 let results: Vec<f32> = run_cast(&v_u8, "cast_u8_f32"); assert_eq!(results, v_f32); // u8 -> f16 let results: Vec<f16> = run_cast(&v_u8, "cast_u8_f16"); assert_eq!(results, v_f16); // u8 -> bf16 let results: Vec<bf16> = run_cast(&v_u8, "cast_u8_bf16"); assert_eq!(results, v_bf16); // u8 -> u32 let results: Vec<u32> = run_cast(&v_u8, "cast_u8_u32"); assert_eq!(results, v_u32); // u8 -> i64 let results: Vec<i64> = run_cast(&v_u8, "cast_u8_i64"); assert_eq!(results, v_i64); } #[test] fn cast_i64() { let v_f64 = vec![1.0f64, 2.0, 3.0]; let v_f32: Vec<f32> = v_f64.iter().map(|&v| v as f32).collect(); let v_f16: Vec<f16> = v_f64.iter().map(|&v| f16::from_f32(v as f32)).collect(); let v_bf16: Vec<bf16> = v_f64.iter().map(|&v| bf16::from_f32(v as f32)).collect(); let v_u32: Vec<u32> = v_f64.iter().map(|&v| v as u32).collect(); let v_u8: Vec<u8> = v_f64.iter().map(|&v| v as u8).collect(); let v_i64: Vec<i64> = v_f64.iter().map(|&v| v as i64).collect(); // i64 -> f32 let results: Vec<f32> = run_cast(&v_i64, "cast_i64_f32"); assert_eq!(results, v_f32); // i64 -> f16 let results: Vec<f16> = run_cast(&v_i64, "cast_i64_f16"); assert_eq!(results, v_f16); // i64 -> bf16 let results: Vec<bf16> = run_cast(&v_i64, "cast_i64_bf16"); assert_eq!(results, v_bf16); // i64 -> u32 let results: Vec<u32> = run_cast(&v_i64, "cast_i64_u32"); assert_eq!(results, v_u32); // i64 -> u8 let results: Vec<u8> = run_cast(&v_i64, "cast_i64_u8"); assert_eq!(results, v_u8); } fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input = new_buffer(&device, v); let output = new_buffer(&device, v); let size = v.len(); call_affine( &device, command_buffer, &kernels, "affine_f32", size, BufferOffset::zero_offset(&input), &output, mul as f32, add as f32, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, v.len()) } fn run_affine_strided<T: Clone>( v: &[T], shape: &[usize], strides: &[usize], mul: f64, add: f64, ) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input = new_buffer(&device, v); let output = new_buffer(&device, v); call_affine_strided( &device, command_buffer, &kernels, "affine_f32_strided", shape, BufferOffset::zero_offset(&input), strides, &output, mul as f32, add as f32, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); let len: usize = shape.iter().product(); read_to_vec(&output, len) } #[test] fn affine() { let input = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; let mul = 1.5; let add = 1.1; let result = run_affine(&input, mul, add); assert_eq!(result, vec![2.6, 4.1, 5.6, 7.1, 8.6, 10.1, 11.6, 13.1]); let input = [1.0f32; 40_000]; let mul = 1.5; let add = 1.1; let result = run_affine(&input, mul, add); assert_eq!(result, vec![2.6; 40_000]); } #[test] fn affine_strided() { let input = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]; let mul = 1.5; let add = 1.1; let shape = [4]; let strides = [2]; let result = run_affine_strided(&input, &shape, &strides, mul, add); // 1 on 2 assert_eq!(result, vec![2.6, 5.6, 8.6, 11.6]); } #[test] fn index_select() { let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]; let shape = [5, 2]; let stride = [2, 1]; let ids = [0u32, 4, 2]; let dim = 0; let result = run_index_select(&embedding, &shape, &stride, &ids, dim, "is_u32_f32"); assert_eq!(result, vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0]); let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]; let shape = [2, 5]; let stride = [1, 2]; let ids = [0u32, 1, 0]; let dim = 0; let result = run_index_select(&embedding, &shape, &stride, &ids, dim, "is_u32_f32"); assert_eq!( result, vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 1.0f32, 2.0, 3.0, 4.0, 5.0] ); } #[test] fn index_select_strided() { let embedding = (0..16).map(|x| x as f32).collect::<Vec<_>>(); let shape = [2, 2]; let stride = [2, 4]; let ids = [0u32]; let dim = 0; let result = run_index_select_strided(&embedding, &shape, &stride, &ids, dim, "is_u32_f32"); assert_eq!(result, vec![0.0, 4.0]); } #[test] fn index_select_f16() { let embedding: Vec<_> = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0] .into_iter() .map(f16::from_f32) .collect(); let shape = [5, 2]; let stride = [2, 1]; let ids = [0u32, 4, 2]; let dim = 0; let result = run_index_select(&embedding, &shape, &stride, &ids, dim, "is_u32_f16"); assert_eq!( approx_f16(result, 4), vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0] ); } #[test] fn index_select_is_u32_bf16() { let embedding: Vec<bf16> = (1..=10).map(|x| bf16::from_f32(x as f32)).collect(); let shape = [5, 2]; let stride = [2, 1]; let ids = [0u32, 4, 2]; let dim = 0; let result = run_index_select(&embedding, &shape, &stride, &ids, dim, "is_u32_bf16"); assert_eq!( approx_bf16(result, 4), vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0] ); } #[test] fn index_select_is_u8_bf16() { let embedding: Vec<bf16> = (1..=10).map(|x| bf16::from_f32(x as f32)).collect(); let shape = [5, 2]; let stride = [2, 1]; let ids = [0u8, 4, 2]; let dim = 0; let result = run_index_select(&embedding, &shape, &stride, &ids, dim, "is_u8_bf16"); assert_eq!( approx_bf16(result, 4), vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0] ); } #[test] fn index_select_dim1() { let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]; let shape = [5, 2]; let stride = [2, 1]; let ids = [0u32, 1, 0]; let dim = 1; let result = run_index_select(&embedding, &shape, &stride, &ids, dim, "is_u32_f32"); assert_eq!( result, vec![1.0f32, 2.0, 1.0, 3.0, 4.0, 3.0, 5.0, 6.0, 5.0, 7.0, 8.0f32, 7.0, 9.0, 10.0, 9.0] ); } fn run_index_select<T: Clone, I: Clone + std::fmt::Debug>( embeddings: &[T], shape: &[usize], stride: &[usize], ids: &[I], dim: usize, name: &'static str, ) -> Vec<T> { let device = Device::system_default().expect("no device found"); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let embeddings_buffer = new_buffer(&device, embeddings); let ids_buffer = new_buffer(&device, ids); let left_size: usize = shape[..dim].iter().product(); let right_size: usize = shape[dim + 1..].iter().product(); let dst_el = ids.len() * left_size * right_size; let dst_buffer = new_buffer(&device, &vec![0.0f32; dst_el]); let kernels = Kernels::new(); call_index_select( &device, command_buffer, &kernels, name, shape, ids.len(), dim, true, shape, stride, BufferOffset::zero_offset(&embeddings_buffer), BufferOffset::zero_offset(&ids_buffer), &dst_buffer, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&dst_buffer, dst_el) } fn run_index_select_strided<T: Clone, I: Clone + std::fmt::Debug>( embeddings: &[T], shape: &[usize], stride: &[usize], ids: &[I], dim: usize, name: &'static str, ) -> Vec<T> { let device = Device::system_default().expect("no device found"); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let embeddings_buffer = new_buffer(&device, embeddings); let ids_buffer = new_buffer(&device, ids); let left_size: usize = shape[..dim].iter().product(); let right_size: usize = shape[dim + 1..].iter().product(); let dst_el = ids.len() * left_size * right_size; let dst_buffer = new_buffer(&device, &vec![0.0f32; dst_el]); let kernels = Kernels::new(); call_index_select( &device, command_buffer, &kernels, name, shape, ids.len(), dim, false, shape, stride, BufferOffset::zero_offset(&embeddings_buffer), BufferOffset::zero_offset(&ids_buffer), &dst_buffer, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&dst_buffer, dst_el) } #[test] fn cos_f16() { let v: Vec<f16> = [1.0f32, 2.0, 3.0] .iter() .map(|v| f16::from_f32(*v)) .collect(); let results = run(&v, unary::contiguous::cos::HALF); let expected: Vec<f16> = v.iter().map(|v| f16::from_f32(v.to_f32().cos())).collect(); assert_eq!(approx_f16(results, 2), vec![0.54, -0.42, -0.99]); assert_eq!(approx_f16(expected, 2), vec![0.54, -0.42, -0.99]); } fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input = new_buffer(&device, v); let options = MTLResourceOptions::StorageModeManaged; let output = device.new_buffer((out_length * core::mem::size_of::<T>()) as u64, options); let dims = vec![v.len()]; let strides = vec![1]; call_reduce_strided( &device, command_buffer, &kernels, name, &dims, &strides, out_length, BufferOffset::zero_offset(&input), &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, out_length) } fn run_softmax<T: Clone + std::fmt::Debug>(v: &[T], last_dim: usize, name: &'static str) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input = new_buffer(&device, v); let output = new_buffer(&device, v); call_last_softmax( &device, command_buffer, &kernels, name, v.len(), last_dim, &input, 0, &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, v.len()) } #[test] fn reduce_sum() { let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let out_length = 1; let results = run_reduce(&v, out_length, "fast_sum_f32_strided"); assert_eq!(approx(results, 4), vec![21.0]); } #[test] fn reduce_sum2() { let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let out_length = 2; let results = run_reduce(&v, out_length, "fast_sum_f32_strided"); assert_eq!(approx(results, 4), vec![6.0, 15.0]); } #[test] fn softmax() { let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let last_dim = 6; let results = run_softmax(&v, last_dim, "softmax_f32"); assert_eq!( approx(results, 4), vec![0.0043, 0.0116, 0.0315, 0.0858, 0.2331, 0.6337] ); let last_dim = 4096; let n = 200; let mut v = vec![0.0; n * last_dim]; for i in 0..n { v[i * last_dim] = 20.0; } let results = run_softmax(&v, last_dim, "softmax_f32"); let results = approx(results, 4); assert_eq!( results.iter().map(|&s| s.round() as usize).sum::<usize>(), n ); assert_eq!(results[0], 1.0); assert_eq!(results[1], 0.0); assert_eq!(results[last_dim], 1.0); assert_eq!(results[2 * last_dim], 1.0); let v = vec![0.0f32, 1.0, 2.0, 3.0, 4.0, 5.0]; let last_dim = 6; let results = run_softmax(&v, last_dim, "softmax_f32"); assert_eq!( approx(results, 4), vec![0.0043, 0.0116, 0.0315, 0.0858, 0.2331, 0.6337] ); let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let last_dim = 3; let results = run_softmax(&v, last_dim, "softmax_f32"); assert_eq!( approx(results, 4), vec![0.0900, 0.2447, 0.6652, 0.0900, 0.2447, 0.6652] ); let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0] .iter() .map(|v| f16::from_f32(*v)) .collect::<Vec<_>>(); let last_dim = 6; let results = run_softmax(&v, last_dim, "softmax_f16"); assert_eq!( approx_f16(results, 4), vec![0.0043, 0.0116, 0.0316, 0.0858, 0.2332, 0.6338] ); let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0] .iter() .map(|v| bf16::from_f32(*v)) .collect::<Vec<_>>(); let last_dim = 6; let results = run_softmax(&v, last_dim, "softmax_bf16"); assert_eq!( approx_bf16(results, 4), vec![0.0043, 0.0116, 0.0315, 0.0859, 0.2324, 0.6328] ); } #[allow(clippy::too_many_arguments)] fn run_where_cond<I: Clone, T: Clone>( shape: &[usize], cond: &[I], (cond_stride, cond_offset): (Vec<usize>, usize), left_true: &[T], (left_stride, left_offset): (Vec<usize>, usize), right_false: &[T], (_right_stride, _right_offset): (Vec<usize>, usize), name: &'static str, ) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let options = MTLResourceOptions::StorageModeManaged; let length = cond.len(); let cond = device.new_buffer_with_data( cond.as_ptr() as *const core::ffi::c_void, std::mem::size_of_val(cond) as u64, options, ); let left = device.new_buffer_with_data( left_true.as_ptr() as *const core::ffi::c_void, (length * core::mem::size_of::<T>()) as u64, options, ); let right = device.new_buffer_with_data( right_false.as_ptr() as *const core::ffi::c_void, (length * core::mem::size_of::<T>()) as u64, options, ); let output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options); let cond = BufferOffset { buffer: &cond, offset_in_bytes: cond_offset, }; let left = BufferOffset { buffer: &left, offset_in_bytes: left_offset, }; let right = BufferOffset { buffer: &right, offset_in_bytes: cond_offset, }; call_where_cond_strided( &device, command_buffer, &kernels, name, shape, cond, &cond_stride, left, &left_stride, right, &cond_stride, &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, length) } #[test] fn where_cond() { let shape = vec![6]; let cond = vec![0u8, 1, 0, 0, 1, 1]; let cond_l = (vec![1], 0); let left_true = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let left_l = (vec![1], 0); let right_false = vec![-1.0f32, -2.0, -3.0, -4.0, -5.0, -6.0]; let right_l = (vec![1], 0); let results = run_where_cond( &shape, &cond, cond_l, &left_true, left_l, &right_false, right_l, "where_u8_f32", ); assert_eq!(approx(results, 4), vec![-1.0f32, 2.0, -3.0, -4.0, 5.0, 6.0]); } #[test] fn where_cond_u32_f32() { let shape = vec![6]; let cond = vec![0u32, 1, 0, 0, 1, 1]; let cond_l = (vec![1], 0); let left_true = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let left_l = (vec![1], 0); let right_false = vec![-1.0f32, -2.0, -3.0, -4.0, -5.0, -6.0]; let right_l = (vec![1], 0); let results = run_where_cond( &shape, &cond, cond_l, &left_true, left_l, &right_false, right_l, "where_u32_f32", ); assert_eq!(approx(results, 4), vec![-1.0f32, 2.0, -3.0, -4.0, 5.0, 6.0]); } fn run_gemm<T: Clone>( (b, m, n, k): (usize, usize, usize, usize), lhs: &[T], lhs_stride: Vec<usize>, lhs_offset: usize, rhs: &[T], rhs_stride: Vec<usize>, rhs_offset: usize, ) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let options = MTLResourceOptions::StorageModeManaged; let lhs = device.new_buffer_with_data( lhs.as_ptr() as *const core::ffi::c_void, std::mem::size_of_val(lhs) as u64, options, ); let rhs = device.new_buffer_with_data( rhs.as_ptr() as *const core::ffi::c_void, std::mem::size_of_val(rhs) as u64, options, ); let length = b * m * n; let output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options); call_gemm( &device, command_buffer, &kernels, "sgemm", (b, m, n, k), &lhs_stride, lhs_offset, &lhs, &rhs_stride, rhs_offset, &rhs, &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, length) } #[test] fn gemm() { let (b, m, n, k) = (1, 2, 4, 3); let lhs_stride = vec![m * k, k, 1]; let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect(); let rhs_stride = vec![n * k, n, 1]; let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect(); let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0); assert_eq!( approx(results, 4), vec![20.0, 23.0, 26.0, 29.0, 56.0, 68.0, 80.0, 92.0] ); let (b, m, n, k) = (2, 2, 4, 3); let lhs_stride = vec![m * k, k, 1]; let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect(); let rhs_stride = vec![n * k, n, 1]; let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect(); let results = run_gemm((b, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 0); assert_eq!( approx(results, 4), vec![ 20.0, 23.0, 26.0, 29.0, 56.0, 68.0, 80.0, 92.0, 344.0, 365.0, 386.0, 407.0, 488.0, 518.0, 548.0, 578.0 ] ); // OFFSET let (b, m, n, k) = (2, 2, 4, 3); let lhs_stride = vec![m * k, k, 1]; let lhs: Vec<f32> = (0..b * m * k).map(|f| f as f32).collect(); let rhs_stride = vec![n * k, n, 1]; let rhs: Vec<f32> = (0..b * n * k).map(|f| f as f32).collect(); // Manually set batch_size=1 and offset 12 elements * 4 the number of bytes for f32 let results = run_gemm((1, m, n, k), &lhs, lhs_stride, 0, &rhs, rhs_stride, 12 * 4); assert_eq!( approx(results, 4), vec![56.0, 59.0, 62.0, 65.0, 200.0, 212.0, 224.0, 236.0] ); } fn run_random<T: Clone>(name: &'static str, seed: u32, length: usize, a: f32, b: f32) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let options = MTLResourceOptions::StorageModeManaged; let output = device.new_buffer((length * core::mem::size_of::<T>()) as NSUInteger, options); let seed = device.new_buffer_with_data( &seed as *const u32 as *const core::ffi::c_void, std::mem::size_of::<u32>() as NSUInteger, options, ); if name.starts_with("rand_uniform") { call_random_uniform( &device, command_buffer, &kernels, name, a, b, length, &seed, &output, ) .unwrap(); } else { call_random_normal( &device, command_buffer, &kernels, name, a, b, length, &seed, &output, ) .unwrap(); } command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, length) } #[test] fn random() { fn calc_mean(data: &[f32]) -> f32 { let sum = data.iter().sum::<f32>(); let count = data.len(); assert!(count > 0); sum / count as f32 } fn calc_stddev(data: &[f32]) -> f32 { let mean = calc_mean(data); let count = data.len(); assert!(count > 0); let variance = data .iter() .map(|value| { let diff = mean - *value; diff * diff }) .sum::<f32>() / count as f32; variance.sqrt() } let shape = vec![1024, 10]; let length = shape.iter().product::<usize>(); let seed = 299792458; let min = -30.0; let max = 30.0; let mean = 100.0; let stddev = 50.0; macro_rules! validate_random { ($type:ty) => { let results: Vec<f32> = run_random::<$type>( concat!("rand_uniform_", stringify!($type)), seed, length, min, max, ) .into_iter() .map(f32::from) .collect(); results.iter().for_each(|v| { assert!(*v >= min && *v <= max); }); assert!(calc_mean(&results) > -1.0 && calc_mean(&results) < 1.0); let results: Vec<f32> = run_random::<$type>( concat!("rand_normal_", stringify!($type)), seed, length, mean, stddev, ) .into_iter() .map(f32::from) .collect(); assert!((calc_mean(&results) - mean).abs() < mean / 10.0); assert!((calc_stddev(&results) - stddev).abs() < stddev / 10.0); }; } validate_random!(f32); validate_random!(f16); validate_random!(bf16); } fn run_scatter_add<T: Clone, I: Clone + std::fmt::Debug>( input: &[T], ids: &[I], shape: &[usize], dim: usize, name: &'static str, ) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let options = MTLResourceOptions::StorageModeManaged; let input_buffer = new_buffer(&device, input); let ids_buffer = new_buffer(&device, ids); let output = device.new_buffer(std::mem::size_of_val(input) as u64, options); call_scatter_add( &device, command_buffer, &kernels, name, shape, shape, dim, BufferOffset::zero_offset(&input_buffer), BufferOffset::zero_offset(&ids_buffer), &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, input.len()) } #[test] fn scatter_add() { let ids_u8 = [0u8, 0, 1, 0, 2, 2, 3, 3]; let ids_u32 = [0u32, 0, 1, 0, 2, 2, 3, 3]; let ids_i64 = [0i64, 0, 1, 0, 2, 2, 3, 3]; let input_f32 = [5.0f32, 1.0, 7.0, 2.0, 3.0, 2.0, 1.0, 3.0]; let input_f16 = input_f32 .iter() .map(|v| f16::from_f32(*v)) .collect::<Vec<_>>(); let input_bf16 = input_f32 .iter() .map(|v| bf16::from_f32(*v)) .collect::<Vec<_>>(); let output_dim1_f32 = vec![8.0, 7.0, 5.0, 4.0, 0.0, 0.0, 0.0, 0.0]; let output_dim1_f16 = output_dim1_f32 .iter() .map(|v| f16::from_f32(*v)) .collect::<Vec<_>>(); let output_dim1_bf16 = output_dim1_f32 .iter() .map(|v| bf16::from_f32(*v)) .collect::<Vec<_>>(); let output_dim2_f32 = vec![5.0, 3.0, 7.0, 0.0, 3.0, 2.0, 1.0, 3.0]; let output_dim2_f16 = output_dim2_f32 .iter() .map(|v| f16::from_f32(*v)) .collect::<Vec<_>>(); let output_dim2_bf16 = output_dim2_f32 .iter() .map(|v| bf16::from_f32(*v)) .collect::<Vec<_>>(); for (shape, output_f32, output_f16, output_bf16) in [ (vec![8], output_dim1_f32, output_dim1_f16, output_dim1_bf16), ( vec![4, 2], output_dim2_f32, output_dim2_f16, output_dim2_bf16, ), ] { for results in [ run_scatter_add(&input_f32, &ids_u8, &shape, 0, "sa_u8_f32"), run_scatter_add(&input_f32, &ids_u32, &shape, 0, "sa_u32_f32"), run_scatter_add(&input_f32, &ids_i64, &shape, 0, "sa_i64_f32"), ] { assert_eq!(results, output_f32); } for results in [ run_scatter_add(&input_f16, &ids_u8, &shape, 0, "sa_u8_f16"), run_scatter_add(&input_f16, &ids_u32, &shape, 0, "sa_u32_f16"), run_scatter_add(&input_f16, &ids_i64, &shape, 0, "sa_i64_f16"), ] { assert_eq!(results, output_f16); } for results in [ run_scatter_add(&input_bf16, &ids_u8, &shape, 0, "sa_u8_bf16"), run_scatter_add(&input_bf16, &ids_u32, &shape, 0, "sa_u32_bf16"), run_scatter_add(&input_bf16, &ids_i64, &shape, 0, "sa_i64_bf16"), ] { assert_eq!(results, output_bf16); } } } fn run_index_add<T: Clone, I: Clone + std::fmt::Debug>( left: &[T], right: &[T], indices: &[I], shape: &[usize], dim: usize, name: &'static str, ) -> Vec<T> { let device = device(); let kernels = Kernels::new(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let input_buffer = new_buffer(&device, right); let output = new_buffer(&device, left); let indices_buffer = new_buffer(&device, indices); call_index_add( &device, command_buffer, &kernels, name, shape, shape, shape, dim, BufferOffset::zero_offset(&input_buffer), BufferOffset::zero_offset(&indices_buffer), &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, left.len()) } #[test] fn index_add() { let left = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]; let right = vec![1.0f32, 1.0, 1.0, 1.0, 1.0, 1.0]; let indices = vec![0u32, 1, 0, 1, 0, 1]; let shape = vec![6]; // u32, f32 { let results = run_index_add(&left, &right, &indices, &shape, 0, "ia_u32_f32"); assert_eq!(results, vec![4.0, 5.0, 3.0, 4.0, 5.0, 6.0]); } // u32, f16 { let left = left.iter().map(|v| f16::from_f32(*v)).collect::<Vec<_>>(); let right = right.iter().map(|v| f16::from_f32(*v)).collect::<Vec<_>>(); let results = run_index_add(&left, &right, &indices, &shape, 0, "ia_u32_f16"); assert_eq!(approx_f16(results, 4), vec![4.0, 5.0, 3.0, 4.0, 5.0, 6.0]); } // u32, bf16 { let left = left.iter().map(|v| bf16::from_f32(*v)).collect::<Vec<_>>(); let right = right.iter().map(|v| bf16::from_f32(*v)).collect::<Vec<_>>(); let results = run_index_add(&left, &right, &indices, &shape, 0, "ia_u32_bf16"); assert_eq!(approx_bf16(results, 4), vec![4.0, 5.0, 3.0, 4.0, 5.0, 6.0]); } // u8, f32 { let indices = indices.iter().map(|v| *v as u8).collect::<Vec<_>>(); let results = run_index_add(&left, &right, &indices, &shape, 0, "ia_u8_f32"); assert_eq!(results, vec![4.0, 5.0, 3.0, 4.0, 5.0, 6.0]); } // u8, f16 { let indices = indices.iter().map(|v| *v as u8).collect::<Vec<_>>(); let left = left.iter().map(|v| f16::from_f32(*v)).collect::<Vec<_>>(); let right = right.iter().map(|v| f16::from_f32(*v)).collect::<Vec<_>>(); let results = run_index_add(&left, &right, &indices, &shape, 0, "ia_u8_f16"); assert_eq!(approx_f16(results, 4), vec![4.0, 5.0, 3.0, 4.0, 5.0, 6.0]); } // u8, bf16 { let indices = indices.iter().map(|v| *v as u8).collect::<Vec<_>>(); let left = left.iter().map(|v| bf16::from_f32(*v)).collect::<Vec<_>>(); let right = right.iter().map(|v| bf16::from_f32(*v)).collect::<Vec<_>>(); let results = run_index_add(&left, &right, &indices, &shape, 0, "ia_u8_bf16"); assert_eq!(approx_bf16(results, 4), vec![4.0, 5.0, 3.0, 4.0, 5.0, 6.0]); } // i64, f32 { let indices = indices.iter().map(|v| *v as i64).collect::<Vec<_>>(); let results = run_index_add(&left, &right, &indices, &shape, 0, "ia_i64_f32"); assert_eq!(results, vec![4.0, 5.0, 3.0, 4.0, 5.0, 6.0]); } // i64, f16 { let indices = indices.iter().map(|v| *v as i64).collect::<Vec<_>>(); let left = left.iter().map(|v| f16::from_f32(*v)).collect::<Vec<_>>(); let right = right.iter().map(|v| f16::from_f32(*v)).collect::<Vec<_>>(); let results = run_index_add(&left, &right, &indices, &shape, 0, "ia_i64_f16"); assert_eq!(approx_f16(results, 4), vec![4.0, 5.0, 3.0, 4.0, 5.0, 6.0]); } // i64, bf16 { let indices = indices.iter().map(|v| *v as i64).collect::<Vec<_>>(); let left = left.iter().map(|v| bf16::from_f32(*v)).collect::<Vec<_>>(); let right = right.iter().map(|v| bf16::from_f32(*v)).collect::<Vec<_>>(); let results = run_index_add(&left, &right, &indices, &shape, 0, "ia_i64_bf16"); assert_eq!(approx_bf16(results, 4), vec![4.0, 5.0, 3.0, 4.0, 5.0, 6.0]); } } fn run_pool2d<T: Clone>( v: &[T], (w_k, h_k): (usize, usize), (w_stride, h_stride): (usize, usize), shape: &[usize], strides: &[usize], name: &'static str, ) -> Vec<T> { let device = device(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let out_w = (shape[2] - w_k) / w_stride + 1; let out_h = (shape[3] - h_k) / h_stride + 1; let dst_el = out_w * out_h * shape[0] * shape[1]; let input = new_buffer(&device, v); let output = new_buffer(&device, &vec![0.0f32; dst_el]); let kernels = Kernels::new(); call_pool2d( &device, command_buffer, &kernels, name, shape, strides, out_w, out_h, w_k, h_k, w_stride, h_stride, &input, &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, dst_el) } #[test] fn max_pool2d_f32() { // kernel 2 stride 1 let v: Vec<f32> = (0..16).map(|v| v as f32).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 1; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "max_pool2d_f32", ); let expected = vec![5.0, 6.0, 7.0, 9.0, 10.0, 11.0, 13.0, 14.0, 15.0]; assert_eq!(results, expected); // kernel 2 stride 2 let v: Vec<f32> = (0..16).map(|v| v as f32).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 2; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "max_pool2d_f32", ); let expected = vec![5.0, 7.0, 13.0, 15.0]; assert_eq!(results, expected); } #[test] fn max_pool2d_f16() { // kernel 2 stride 1 let v: Vec<half::f16> = (0..16).map(|v| half::f16::from_f32(v as f32)).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 1; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "max_pool2d_f16", ); let expected = vec![5.0, 6.0, 7.0, 9.0, 10.0, 11.0, 13.0, 14.0, 15.0] .iter() .map(|v| half::f16::from_f32(*v)) .collect::<Vec<_>>(); assert_eq!(results, expected); // kernel 2 stride 2 let v: Vec<half::f16> = (0..16).map(|v| half::f16::from_f32(v as f32)).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 2; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "max_pool2d_f16", ); let expected = vec![5.0, 7.0, 13.0, 15.0] .iter() .map(|v| half::f16::from_f32(*v)) .collect::<Vec<_>>(); assert_eq!(results, expected); } #[test] fn max_pool2d_bf16() { // kernel 2 stride 1 let v: Vec<half::bf16> = (0..16).map(|v| half::bf16::from_f32(v as f32)).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 1; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "max_pool2d_bf16", ); let expected = vec![5.0, 6.0, 7.0, 9.0, 10.0, 11.0, 13.0, 14.0, 15.0] .iter() .map(|v| half::bf16::from_f32(*v)) .collect::<Vec<_>>(); assert_eq!(results, expected); // kernel 2 stride 2 let v: Vec<half::bf16> = (0..16).map(|v| half::bf16::from_f32(v as f32)).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 2; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "max_pool2d_bf16", ); let expected = vec![5.0, 7.0, 13.0, 15.0] .iter() .map(|v| half::bf16::from_f32(*v)) .collect::<Vec<_>>(); assert_eq!(results, expected); } #[test] fn max_pool2d_u8() { // kernel 2 stride 1 let v: Vec<u8> = (0..16).map(|v| v as u8).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 1; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "max_pool2d_u8", ); let expected = vec![5, 6, 7, 9, 10, 11, 13, 14, 15]; assert_eq!(results, expected); // kernel 2 stride 2 let v: Vec<u8> = (0..16).map(|v| v as u8).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 2; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "max_pool2d_u8", ); let expected = vec![5, 7, 13, 15]; assert_eq!(results, expected); } #[test] fn max_pool2d_u32() { // kernel 2 stride 1 let v: Vec<u32> = (0..16).map(|v| v as u32).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 1; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "max_pool2d_u32", ); let expected = vec![5, 6, 7, 9, 10, 11, 13, 14, 15]; assert_eq!(results, expected); // kernel 2 stride 2 let v: Vec<u32> = (0..16).map(|v| v as u32).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 2; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "max_pool2d_u32", ); let expected = vec![5, 7, 13, 15]; assert_eq!(results, expected); } #[test] fn avg_pool2d_f32() { // kernel 2 stride 1 let v: Vec<f32> = (0..16).map(|v| v as f32).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 1; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "avg_pool2d_f32", ); let expected = vec![ 2.5000, 3.5000, 4.5000, 6.5000, 7.5000, 8.5000, 10.5000, 11.5000, 12.5000, ]; assert_eq!(results, expected); } #[test] fn avg_pool2d_f16() { // kernel 2 stride 1 let v: Vec<f16> = (0..16).map(|v| f16::from_f32(v as f32)).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 1; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "avg_pool2d_f16", ); let expected = vec![ 2.5000, 3.5000, 4.5000, 6.5000, 7.5000, 8.5000, 10.5000, 11.5000, 12.5000, ] .iter() .map(|v| f16::from_f32(*v)) .collect::<Vec<_>>(); assert_eq!(results, expected); } #[test] fn avg_pool2d_bf16() { // kernel 2 stride 1 let v: Vec<bf16> = (0..16).map(|v| bf16::from_f32(v as f32)).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 1; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "avg_pool2d_bf16", ); let expected = vec![ 2.5000, 3.5000, 4.5000, 6.5000, 7.5000, 8.5000, 10.5000, 11.5000, 12.5000, ] .iter() .map(|v| bf16::from_f32(*v)) .collect::<Vec<_>>(); assert_eq!(results, expected); } #[test] fn avg_pool2d_u8() { // kernel 2 stride 1 let v: Vec<u8> = (0..16).map(|v| v as u8).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 1; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "avg_pool2d_u8", ); let expected = vec![2, 3, 4, 6, 7, 8, 10, 11, 12]; assert_eq!(results, expected); } #[test] fn avg_pool2d_u32() { // kernel 2 stride 1 let v: Vec<u32> = (0..16).map(|v| v as u32).collect(); let shape = vec![1, 1, 4, 4]; let strides = vec![16, 16, 4, 1]; let kernel = 2; let stride = 1; let results = run_pool2d( &v, (kernel, kernel), (stride, stride), &shape, &strides, "avg_pool2d_u32", ); let expected = vec![2, 3, 4, 6, 7, 8, 10, 11, 12]; assert_eq!(results, expected); } #[allow(clippy::too_many_arguments)] fn run_conv_transpose1d<T: Clone>( input: &[T], input_shape: &[usize], input_stride: &[usize], kernel: &[T], kernel_shape: &[usize], kernel_stride: &[usize], dilation: usize, stride: usize, padding: usize, out_padding: usize, name: &'static str, ) -> Vec<T> { let device = device(); let command_queue = device.new_command_queue(); let command_buffer = command_queue.new_command_buffer(); let c_out = kernel_shape[1]; let k_size = kernel_shape[2]; let b_size = input_shape[0]; let l_in = input_shape[2]; let l_out = (l_in - 1) * stride - 2 * padding + dilation * (k_size - 1) + out_padding + 1; let dst_el = c_out * l_out * b_size; let input = new_buffer(&device, input); let kernel = new_buffer(&device, kernel); let output = new_buffer(&device, &vec![0.0f32; dst_el]); let kernels = Kernels::new(); call_conv_transpose1d( &device, command_buffer, &kernels, name, dilation, stride, padding, out_padding, c_out, l_out, b_size, input_shape, input_stride, kernel_shape, kernel_stride, &input, 0, &kernel, 0, &output, ) .unwrap(); command_buffer.commit(); command_buffer.wait_until_completed(); read_to_vec(&output, dst_el) } #[test] fn conv_transpose1d_f32() { let input = vec![1.0f32, 2.0, 3.0, 4.0]; let input_shape = &[1, 1, 4]; let input_stride = &[4, 4, 1]; let kernel = vec![1.0f32, 2.0, 3.0, 4.0]; let kernel_shape = &[1, 1, 4]; let kernel_stride = &[4, 4, 1]; let results = run_conv_transpose1d( &input, input_shape, input_stride, &kernel, kernel_shape, kernel_stride, 1, 1, 0, 0, "conv_transpose1d_f32", ); let expected = vec![1., 4., 10., 20., 25., 24., 16.]; assert_eq!(results, expected); } #[test] fn conv_transpose1d_f16() { let input: Vec<f16> = vec![1.0, 2.0, 3.0, 4.0] .iter() .map(|v| f16::from_f32(*v)) .collect(); let input_shape = &[1, 1, 4]; let input_stride = &[4, 4, 1]; let kernel: Vec<f16> = vec![1.0, 2.0, 3.0, 4.0] .iter() .map(|v| f16::from_f32(*v)) .collect(); let kernel_shape = &[1, 1, 4]; let kernel_stride = &[4, 4, 1]; let results = run_conv_transpose1d( &input, input_shape, input_stride, &kernel, kernel_shape, kernel_stride, 1, 1, 0, 0, "conv_transpose1d_f16", ); let expected = vec![1., 4., 10., 20., 25., 24., 16.] .iter() .map(|v| f16::from_f32(*v)) .collect::<Vec<_>>(); assert_eq!(results, expected); } #[test] fn conv_transpose1d_bf16() { let input: Vec<bf16> = vec![1.0, 2.0, 3.0, 4.0] .iter() .map(|v| bf16::from_f32(*v)) .collect(); let input_shape = &[1, 1, 4]; let input_stride = &[4, 4, 1]; let kernel: Vec<bf16> = vec![1.0, 2.0, 3.0, 4.0] .iter() .map(|v| bf16::from_f32(*v)) .collect(); let kernel_shape = &[1, 1, 4]; let kernel_stride = &[4, 4, 1]; let results = run_conv_transpose1d( &input, input_shape, input_stride, &kernel, kernel_shape, kernel_stride, 1, 1, 0, 0, "conv_transpose1d_bf16", ); let expected = vec![1., 4., 10., 20., 25., 24., 16.] .iter() .map(|v| bf16::from_f32(*v)) .collect::<Vec<_>>(); assert_eq!(results, expected); } #[test] fn conv_transpose1d_u8() { let input: Vec<u8> = vec![1, 2, 3, 4]; let input_shape = &[1, 1, 4]; let input_stride = &[4, 4, 1]; let kernel: Vec<u8> = vec![1, 2, 3, 4]; let kernel_shape = &[1, 1, 4]; let kernel_stride = &[4, 4, 1]; let results = run_conv_transpose1d( &input, input_shape, input_stride, &kernel, kernel_shape, kernel_stride, 1, 1, 0, 0, "conv_transpose1d_u8", ); let expected = vec![1, 4, 10, 20, 25, 24, 16]; assert_eq!(results, expected); } #[test] fn conv_transpose1d_u32() { let input: Vec<u32> = vec![1, 2, 3, 4]; let input_shape = &[1, 1, 4]; let input_stride = &[4, 4, 1]; let kernel: Vec<u32> = vec![1, 2, 3, 4]; let kernel_shape = &[1, 1, 4]; let kernel_stride = &[4, 4, 1]; let results = run_conv_transpose1d( &input, input_shape, input_stride, &kernel, kernel_shape, kernel_stride, 1, 1, 0, 0, "conv_transpose1d_u32", ); let expected = vec![1, 4, 10, 20, 25, 24, 16]; assert_eq!(results, expected); }
candle/candle-metal-kernels/src/tests.rs/0
{ "file_path": "candle/candle-metal-kernels/src/tests.rs", "repo_id": "candle", "token_count": 30457 }
45
//! Batch Normalization. //! //! This layer applies Batch Normalization over a mini-batch of inputs as described in [`Batch //! Normalization`]. The input is expected to have at least three dimensions. //! //! Note that this implementation is for inference only, there is no possibility to track the //! running stats. //! //! [`Batch Normalization`]: https://arxiv.org/abs/1502.03167 use candle::{DType, Result, Tensor, Var}; #[derive(Debug, Clone, Copy, PartialEq)] pub struct BatchNormConfig { pub eps: f64, pub remove_mean: bool, /// The meaning of affine here is different from LayerNorm: when false there is no learnable /// parameter at all, 1 used for gamma and 0 for beta. pub affine: bool, /// Controls exponential moving average of running stats. Defaults to 0.1 /// /// `running_stat * (1.0 - momentum) + stat * momentum`. pub momentum: f64, } impl Default for BatchNormConfig { fn default() -> Self { Self { eps: 1e-5, remove_mean: true, affine: true, momentum: 0.1, } } } impl From<f64> for BatchNormConfig { fn from(eps: f64) -> Self { Self { eps, ..Default::default() } } } #[derive(Clone, Debug)] pub struct BatchNorm { running_mean: Var, running_var: Var, weight_and_bias: Option<(Tensor, Tensor)>, remove_mean: bool, eps: f64, momentum: f64, } impl BatchNorm { fn check_validity(&self, num_features: usize) -> Result<()> { if self.eps < 0. { candle::bail!("batch-norm eps cannot be negative {}", self.eps) } if !(0.0..=1.0).contains(&self.momentum) { candle::bail!( "batch-norm momentum must be between 0 and 1, is {}", self.momentum ) } if self.running_mean.dims() != [num_features] { candle::bail!( "batch-norm running mean has unexpected shape {:?} should have shape [{num_features}]", self.running_mean.shape(), ) } if self.running_var.dims() != [num_features] { candle::bail!( "batch-norm running variance has unexpected shape {:?} should have shape [{num_features}]", self.running_var.shape(), ) } if let Some((ref weight, ref bias)) = self.weight_and_bias.as_ref() { if weight.dims() != [num_features] { candle::bail!( "batch-norm weight has unexpected shape {:?} should have shape [{num_features}]", weight.shape(), ) } if bias.dims() != [num_features] { candle::bail!( "batch-norm weight has unexpected shape {:?} should have shape [{num_features}]", bias.shape(), ) } } Ok(()) } pub fn new( num_features: usize, running_mean: Tensor, running_var: Tensor, weight: Tensor, bias: Tensor, eps: f64, ) -> Result<Self> { let out = Self { running_mean: Var::from_tensor(&running_mean)?, running_var: Var::from_tensor(&running_var)?, weight_and_bias: Some((weight, bias)), remove_mean: true, eps, momentum: 0.1, }; out.check_validity(num_features)?; Ok(out) } pub fn new_no_bias( num_features: usize, running_mean: Tensor, running_var: Tensor, eps: f64, ) -> Result<Self> { let out = Self { running_mean: Var::from_tensor(&running_mean)?, running_var: Var::from_tensor(&running_var)?, weight_and_bias: None, remove_mean: true, eps, momentum: 0.1, }; out.check_validity(num_features)?; Ok(out) } pub fn new_with_momentum( num_features: usize, running_mean: Tensor, running_var: Tensor, weight: Tensor, bias: Tensor, eps: f64, momentum: f64, ) -> Result<Self> { let out = Self { running_mean: Var::from_tensor(&running_mean)?, running_var: Var::from_tensor(&running_var)?, weight_and_bias: Some((weight, bias)), remove_mean: true, eps, momentum, }; out.check_validity(num_features)?; Ok(out) } pub fn new_no_bias_with_momentum( num_features: usize, running_mean: Tensor, running_var: Tensor, eps: f64, momentum: f64, ) -> Result<Self> { let out = Self { running_mean: Var::from_tensor(&running_mean)?, running_var: Var::from_tensor(&running_var)?, weight_and_bias: None, remove_mean: true, eps, momentum, }; out.check_validity(num_features)?; Ok(out) } pub fn running_mean(&self) -> &Tensor { self.running_mean.as_tensor() } pub fn running_var(&self) -> &Tensor { self.running_var.as_tensor() } pub fn eps(&self) -> f64 { self.eps } pub fn weight_and_bias(&self) -> Option<(&Tensor, &Tensor)> { self.weight_and_bias.as_ref().map(|v| (&v.0, &v.1)) } pub fn momentum(&self) -> f64 { self.momentum } pub fn forward_train(&self, x: &Tensor) -> Result<Tensor> { let num_features = self.running_mean.as_tensor().dim(0)?; let x_dtype = x.dtype(); let internal_dtype = match x_dtype { DType::F16 | DType::BF16 => DType::F32, d => d, }; if x.rank() < 2 { candle::bail!( "batch-norm input tensor must have at least two dimensions ({:?})", x.shape() ) } if x.dim(1)? != num_features { candle::bail!( "batch-norm input doesn't have the expected number of features ({:?} <> {})", x.shape(), num_features ) } let x = x.to_dtype(internal_dtype)?; let x = x.transpose(0, 1)?; let x_dims_post_transpose = x.dims(); // Flatten all the dimensions exception the channel one as this performs a Spatial Batch // Normalization. let x = x.flatten_from(1)?.contiguous()?; let x = if self.remove_mean { // The mean is taken over dim 1 as this is the batch dim after the transpose(0, 1) above. let mean_x = x.mean_keepdim(1)?; let updated_running_mean = ((self.running_mean.as_tensor() * (1.0 - self.momentum))? + (mean_x.flatten_all()? * self.momentum)?)?; self.running_mean.set(&updated_running_mean)?; x.broadcast_sub(&mean_x)? } else { x }; // The mean is taken over dim 1 as this is the batch dim after the transpose(0, 1) above. let norm_x = x.sqr()?.mean_keepdim(1)?; let updated_running_var = { let batch_size = x.dim(1)? as f64; let running_var_weight = 1.0 - self.momentum; let norm_x_weight = self.momentum * batch_size / (batch_size - 1.0); ((self.running_var.as_tensor() * running_var_weight)? + (&norm_x.flatten_all()? * norm_x_weight)?)? }; self.running_var.set(&updated_running_var)?; let x = x .broadcast_div(&(norm_x + self.eps)?.sqrt()?)? .to_dtype(x_dtype)?; let x = match &self.weight_and_bias { None => x, Some((weight, bias)) => { let weight = weight.reshape(((), 1))?; let bias = bias.reshape(((), 1))?; x.broadcast_mul(&weight)?.broadcast_add(&bias)? } }; x.reshape(x_dims_post_transpose)?.transpose(0, 1) } fn forward_eval(&self, x: &Tensor) -> Result<Tensor> { let target_shape: Vec<usize> = x .dims() .iter() .enumerate() .map(|(idx, v)| if idx == 1 { *v } else { 1 }) .collect(); let target_shape = target_shape.as_slice(); let x = x .broadcast_sub( &self .running_mean .as_detached_tensor() .reshape(target_shape)?, )? .broadcast_div( &(self .running_var .as_detached_tensor() .reshape(target_shape)? + self.eps)? .sqrt()?, )?; match &self.weight_and_bias { None => Ok(x), Some((weight, bias)) => { let weight = weight.reshape(target_shape)?; let bias = bias.reshape(target_shape)?; x.broadcast_mul(&weight)?.broadcast_add(&bias) } } } } impl crate::ModuleT for BatchNorm { fn forward_t(&self, x: &Tensor, train: bool) -> Result<Tensor> { if train { self.forward_train(x) } else { self.forward_eval(x) } } } pub fn batch_norm<C: Into<BatchNormConfig>>( num_features: usize, config: C, vb: crate::VarBuilder, ) -> Result<BatchNorm> { use crate::Init; let config = config.into(); if config.eps < 0. { candle::bail!("batch-norm eps cannot be negative {}", config.eps) } let running_mean = vb.get_with_hints(num_features, "running_mean", Init::Const(0.))?; let running_var = vb.get_with_hints(num_features, "running_var", Init::Const(1.))?; let weight_and_bias = if config.affine { let weight = vb.get_with_hints(num_features, "weight", Init::Const(1.))?; let bias = vb.get_with_hints(num_features, "bias", Init::Const(0.))?; Some((weight, bias)) } else { None }; Ok(BatchNorm { running_mean: Var::from_tensor(&running_mean)?, running_var: Var::from_tensor(&running_var)?, weight_and_bias, remove_mean: config.remove_mean, eps: config.eps, momentum: config.momentum, }) }
candle/candle-nn/src/batch_norm.rs/0
{ "file_path": "candle/candle-nn/src/batch_norm.rs", "repo_id": "candle", "token_count": 5325 }
46
//! A sequential layer used to chain multiple layers and closures. use candle::{Module, Result, Tensor}; /// A sequential layer combining multiple other layers. pub struct Sequential { layers: Vec<Box<dyn Module>>, } /// Creates a new empty sequential layer. pub fn seq() -> Sequential { Sequential { layers: vec![] } } impl Sequential { /// The number of sub-layers embedded in this layer. pub fn len(&self) -> i64 { self.layers.len() as i64 } /// Returns true if this layer does not have any sub-layer. pub fn is_empty(&self) -> bool { self.layers.is_empty() } } impl Module for Sequential { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let mut xs = xs.clone(); for layer in self.layers.iter() { xs = layer.forward(&xs)? } Ok(xs) } } impl Sequential { /// Appends a layer after all the current layers. #[allow(clippy::should_implement_trait)] pub fn add<M: Module + 'static>(mut self, layer: M) -> Self { self.layers.push(Box::new(layer)); self } /// Appends a closure after all the current layers. pub fn add_fn<F>(self, f: F) -> Self where F: 'static + Fn(&Tensor) -> Result<Tensor> + Send + Sync, { self.add(super::func(f)) } /// Applies the forward pass and returns the output for each layer. pub fn forward_all(&self, xs: &Tensor) -> Result<Vec<Tensor>> { let mut vec = Vec::with_capacity(self.layers.len()); let mut xs = xs.clone(); for layer in self.layers.iter() { xs = layer.forward(&xs)?; vec.push(xs.clone()) } Ok(vec) } }
candle/candle-nn/src/sequential.rs/0
{ "file_path": "candle/candle-nn/src/sequential.rs", "repo_id": "candle", "token_count": 705 }
47
// // WARNING: This file is automatically generated! Please edit onnx.in.proto. // // SPDX-License-Identifier: Apache-2.0 syntax = "proto3"; package onnx; // Overview // // ONNX is an open specification that is comprised of the following components: // // 1) A definition of an extensible computation graph model. // 2) Definitions of standard data types. // 3) Definitions of built-in operators. // // This document describes the syntax of models and their computation graphs, // as well as the standard data types. Together, they are referred to as the ONNX // Intermediate Representation, or 'IR' for short. // // The normative semantic specification of the ONNX IR is found in docs/IR.md. // Definitions of the built-in neural network operators may be found in docs/Operators.md. // Notes // // Protobuf compatibility // // To simplify framework compatibility, ONNX is defined using the subset of protobuf // that is compatible with both protobuf v2 and v3. This means that we do not use any // protobuf features that are only available in one of the two versions. // // Here are the most notable contortions we have to carry out to work around // these limitations: // // - No 'map' (added protobuf 3.0). We instead represent mappings as lists // of key-value pairs, where order does not matter and duplicates // are not allowed. // Versioning // // ONNX versioning is specified in docs/IR.md and elaborated on in docs/Versioning.md // // To be compatible with both proto2 and proto3, we will use a version number // that is not defined by the default value but an explicit enum number. enum Version { // proto3 requires the first enum value to be zero. // We add this just to appease the compiler. _START_VERSION = 0; // The version field is always serialized and we will use it to store the // version that the graph is generated from. This helps us set up version // control. // For the IR, we are using simple numbers starting with 0x00000001, // which was the version we published on Oct 10, 2017. IR_VERSION_2017_10_10 = 0x0000000000000001; // IR_VERSION 2 published on Oct 30, 2017 // - Added type discriminator to AttributeProto to support proto3 users IR_VERSION_2017_10_30 = 0x0000000000000002; // IR VERSION 3 published on Nov 3, 2017 // - For operator versioning: // - Added new message OperatorSetIdProto // - Added opset_import in ModelProto // - For vendor extensions, added domain in NodeProto IR_VERSION_2017_11_3 = 0x0000000000000003; // IR VERSION 4 published on Jan 22, 2019 // - Relax constraint that initializers should be a subset of graph inputs // - Add type BFLOAT16 IR_VERSION_2019_1_22 = 0x0000000000000004; // IR VERSION 5 published on March 18, 2019 // - Add message TensorAnnotation. // - Add quantization annotation in GraphProto to map tensor with its scale and zero point quantization parameters. IR_VERSION_2019_3_18 = 0x0000000000000005; // IR VERSION 6 published on Sep 19, 2019 // - Add support for sparse tensor constants stored in model. // - Add message SparseTensorProto // - Add sparse initializers IR_VERSION_2019_9_19 = 0x0000000000000006; // IR VERSION 7 published on May 8, 2020 // - Add support to allow function body graph to rely on multiple external opreator sets. // - Add a list to promote inference graph's initializers to global and // mutable variables. Global variables are visible in all graphs of the // stored models. // - Add message TrainingInfoProto to store initialization // method and training algorithm. The execution of TrainingInfoProto // can modify the values of mutable variables. // - Implicitly add inference graph into each TrainingInfoProto's algorithm. IR_VERSION_2020_5_8 = 0x0000000000000007; // IR VERSION 8 published on July 30, 2021 // Introduce TypeProto.SparseTensor // Introduce TypeProto.Optional // Added a list of FunctionProtos local to the model // Deprecated since_version and operator status from FunctionProto IR_VERSION_2021_7_30 = 0x0000000000000008; // IR VERSION 9 published on May 5, 2023 // Added AttributeProto to FunctionProto so that default attribute values can be set. // Added FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ. IR_VERSION = 0x0000000000000009; } // Attributes // // A named attribute containing either singular float, integer, string, graph, // and tensor values, or repeated float, integer, string, graph, and tensor values. // An AttributeProto MUST contain the name field, and *only one* of the // following content fields, effectively enforcing a C/C++ union equivalent. message AttributeProto { reserved 12, 16 to 19; reserved "v"; // Note: this enum is structurally identical to the OpSchema::AttrType // enum defined in schema.h. If you rev one, you likely need to rev the other. enum AttributeType { UNDEFINED = 0; FLOAT = 1; INT = 2; STRING = 3; TENSOR = 4; GRAPH = 5; SPARSE_TENSOR = 11; TYPE_PROTO = 13; FLOATS = 6; INTS = 7; STRINGS = 8; TENSORS = 9; GRAPHS = 10; SPARSE_TENSORS = 12; TYPE_PROTOS = 14; } // The name field MUST be present for this version of the IR. string name = 1; // namespace Attribute // if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function. // In this case, this AttributeProto does not contain data, and it's a reference of attribute // in parent scope. // NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph. string ref_attr_name = 21; // A human-readable documentation for this attribute. Markdown is allowed. string doc_string = 13; // The type field MUST be present for this version of the IR. // For 0.0.1 versions of the IR, this field was not defined, and // implementations needed to use has_field heuristics to determine // which value field was in use. For IR_VERSION 0.0.2 or later, this // field MUST be set and match the f|i|s|t|... field in use. This // change was made to accommodate proto3 implementations. AttributeType type = 20; // discriminator that indicates which field below is in use // Exactly ONE of the following fields must be present for this version of the IR float f = 2; // float int64 i = 3; // int bytes s = 4; // UTF-8 string TensorProto t = 5; // tensor value GraphProto g = 6; // graph SparseTensorProto sparse_tensor = 22; // sparse tensor value // Do not use field below, it's deprecated. // optional ValueProto v = 12; // value - subsumes everything but graph TypeProto tp = 14; // type proto repeated float floats = 7; // list of floats repeated int64 ints = 8; // list of ints repeated bytes strings = 9; // list of UTF-8 strings repeated TensorProto tensors = 10; // list of tensors repeated GraphProto graphs = 11; // list of graph repeated SparseTensorProto sparse_tensors = 23; // list of sparse tensors repeated TypeProto type_protos = 15;// list of type protos } // Defines information on value, including the name, the type, and // the shape of the value. message ValueInfoProto { // This field MUST be present in this version of the IR. string name = 1; // namespace Value // This field MUST be present in this version of the IR for // inputs and outputs of the top-level graph. TypeProto type = 2; // A human-readable documentation for this value. Markdown is allowed. string doc_string = 3; } // Nodes // // Computation graphs are made up of a DAG of nodes, which represent what is // commonly called a "layer" or "pipeline stage" in machine learning frameworks. // // For example, it can be a node of type "Conv" that takes in an image, a filter // tensor and a bias tensor, and produces the convolved output. message NodeProto { repeated string input = 1; // namespace Value repeated string output = 2; // namespace Value // An optional identifier for this node in a graph. // This field MAY be absent in ths version of the IR. string name = 3; // namespace Node // The symbolic identifier of the Operator to execute. string op_type = 4; // namespace Operator // The domain of the OperatorSet that specifies the operator named by op_type. string domain = 7; // namespace Domain // Additional named attributes. repeated AttributeProto attribute = 5; // A human-readable documentation for this node. Markdown is allowed. string doc_string = 6; } // Training information // TrainingInfoProto stores information for training a model. // In particular, this defines two functionalities: an initialization-step // and a training-algorithm-step. Initialization resets the model // back to its original state as if no training has been performed. // Training algorithm improves the model based on input data. // // The semantics of the initialization-step is that the initializers // in ModelProto.graph and in TrainingInfoProto.algorithm are first // initialized as specified by the initializers in the graph, and then // updated by the "initialization_binding" in every instance in // ModelProto.training_info. // // The field "algorithm" defines a computation graph which represents a // training algorithm's step. After the execution of a // TrainingInfoProto.algorithm, the initializers specified by "update_binding" // may be immediately updated. If the targeted training algorithm contains // consecutive update steps (such as block coordinate descent methods), // the user needs to create a TrainingInfoProto for each step. message TrainingInfoProto { // This field describes a graph to compute the initial tensors // upon starting the training process. Initialization graph has no input // and can have multiple outputs. Usually, trainable tensors in neural // networks are randomly initialized. To achieve that, for each tensor, // the user can put a random number operator such as RandomNormal or // RandomUniform in TrainingInfoProto.initialization.node and assign its // random output to the specific tensor using "initialization_binding". // This graph can also set the initializers in "algorithm" in the same // TrainingInfoProto; a use case is resetting the number of training // iteration to zero. // // By default, this field is an empty graph and its evaluation does not // produce any output. Thus, no initializer would be changed by default. GraphProto initialization = 1; // This field represents a training algorithm step. Given required inputs, // it computes outputs to update initializers in its own or inference graph's // initializer lists. In general, this field contains loss node, gradient node, // optimizer node, increment of iteration count. // // An execution of the training algorithm step is performed by executing the // graph obtained by combining the inference graph (namely "ModelProto.graph") // and the "algorithm" graph. That is, the actual // input/initializer/output/node/value_info/sparse_initializer list of // the training graph is the concatenation of // "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer" // and "algorithm.input/initializer/output/node/value_info/sparse_initializer" // in that order. This combined graph must satisfy the normal ONNX conditions. // Now, let's provide a visualization of graph combination for clarity. // Let the inference graph (i.e., "ModelProto.graph") be // tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d // and the "algorithm" graph be // tensor_d -> Add -> tensor_e // The combination process results // tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e // // Notice that an input of a node in the "algorithm" graph may reference the // output of a node in the inference graph (but not the other way round). Also, inference // node cannot reference inputs of "algorithm". With these restrictions, inference graph // can always be run independently without training information. // // By default, this field is an empty graph and its evaluation does not // produce any output. Evaluating the default training step never // update any initializers. GraphProto algorithm = 2; // This field specifies the bindings from the outputs of "initialization" to // some initializers in "ModelProto.graph.initializer" and // the "algorithm.initializer" in the same TrainingInfoProto. // See "update_binding" below for details. // // By default, this field is empty and no initializer would be changed // by the execution of "initialization". repeated StringStringEntryProto initialization_binding = 3; // Gradient-based training is usually an iterative procedure. In one gradient // descent iteration, we apply // // x = x - r * g // // where "x" is the optimized tensor, "r" stands for learning rate, and "g" is // gradient of "x" with respect to a chosen loss. To avoid adding assignments // into the training graph, we split the update equation into // // y = x - r * g // x = y // // The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To // tell that "y" should be assigned to "x", the field "update_binding" may // contain a key-value pair of strings, "x" (key of StringStringEntryProto) // and "y" (value of StringStringEntryProto). // For a neural network with multiple trainable (mutable) tensors, there can // be multiple key-value pairs in "update_binding". // // The initializers appears as keys in "update_binding" are considered // mutable variables. This implies some behaviors // as described below. // // 1. We have only unique keys in all "update_binding"s so that two // variables may not have the same name. This ensures that one // variable is assigned up to once. // 2. The keys must appear in names of "ModelProto.graph.initializer" or // "TrainingInfoProto.algorithm.initializer". // 3. The values must be output names of "algorithm" or "ModelProto.graph.output". // 4. Mutable variables are initialized to the value specified by the // corresponding initializer, and then potentially updated by // "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. // // This field usually contains names of trainable tensors // (in ModelProto.graph), optimizer states such as momentums in advanced // stochastic gradient methods (in TrainingInfoProto.graph), // and number of training iterations (in TrainingInfoProto.graph). // // By default, this field is empty and no initializer would be changed // by the execution of "algorithm". repeated StringStringEntryProto update_binding = 4; } // Models // // ModelProto is a top-level file/container format for bundling a ML model and // associating its computation graph with metadata. // // The semantics of the model are described by the associated GraphProto's. message ModelProto { // The version of the IR this model targets. See Version enum above. // This field MUST be present. int64 ir_version = 1; // The OperatorSets this model relies on. // All ModelProtos MUST have at least one entry that // specifies which version of the ONNX OperatorSet is // being imported. // // All nodes in the ModelProto's graph will bind against the operator // with the same-domain/same-op_type operator with the HIGHEST version // in the referenced operator sets. repeated OperatorSetIdProto opset_import = 8; // The name of the framework or tool used to generate this model. // This field SHOULD be present to indicate which implementation/tool/framework // emitted the model. string producer_name = 2; // The version of the framework or tool used to generate this model. // This field SHOULD be present to indicate which implementation/tool/framework // emitted the model. string producer_version = 3; // Domain name of the model. // We use reverse domain names as name space indicators. For example: // `com.facebook.fair` or `com.microsoft.cognitiveservices` // // Together with `model_version` and GraphProto.name, this forms the unique identity of // the graph. string domain = 4; // The version of the graph encoded. See Version enum below. int64 model_version = 5; // A human-readable documentation for this model. Markdown is allowed. string doc_string = 6; // The parameterized graph that is evaluated to execute the model. GraphProto graph = 7; // Named metadata values; keys should be distinct. repeated StringStringEntryProto metadata_props = 14; // Training-specific information. Sequentially executing all stored // `TrainingInfoProto.algorithm`s and assigning their outputs following // the corresponding `TrainingInfoProto.update_binding`s is one training // iteration. Similarly, to initialize the model // (as if training hasn't happened), the user should sequentially execute // all stored `TrainingInfoProto.initialization`s and assigns their outputs // using `TrainingInfoProto.initialization_binding`s. // // If this field is empty, the training behavior of the model is undefined. repeated TrainingInfoProto training_info = 20; // A list of function protos local to the model. // // Name of the function "FunctionProto.name" should be unique within the domain "FunctionProto.domain". // In case of any conflicts the behavior (whether the model local functions are given higher priority, // or standard operator sets are given higher priotity or this is treated as error) is defined by // the runtimes. // // The operator sets imported by FunctionProto should be compatible with the ones // imported by ModelProto and other model local FunctionProtos. // Example, if same operator set say 'A' is imported by a FunctionProto and ModelProto // or by 2 FunctionProtos then versions for the operator set may be different but, // the operator schema returned for op_type, domain, version combination // for both the versions should be same for every node in the function body. // // One FunctionProto can reference other FunctionProto in the model, however, recursive reference // is not allowed. repeated FunctionProto functions = 25; }; // StringStringEntryProto follows the pattern for cross-proto-version maps. // See https://developers.google.com/protocol-buffers/docs/proto3#maps message StringStringEntryProto { string key = 1; string value = 2; }; message TensorAnnotation { string tensor_name = 1; // <key, value> pairs to annotate tensor specified by <tensor_name> above. // The keys used in the mapping below must be pre-defined in ONNX spec. // For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as // quantization parameter keys. repeated StringStringEntryProto quant_parameter_tensor_names = 2; } // Graphs // // A graph defines the computational logic of a model and is comprised of a parameterized // list of nodes that form a directed acyclic graph based on their inputs and outputs. // This is the equivalent of the "network" or "graph" in many deep learning // frameworks. message GraphProto { // The nodes in the graph, sorted topologically. repeated NodeProto node = 1; // The name of the graph. string name = 2; // namespace Graph // A list of named tensor values, used to specify constant inputs of the graph. // Each initializer (both TensorProto as well SparseTensorProto) MUST have a name. // The name MUST be unique across both initializer and sparse_initializer, // but the name MAY also appear in the input list. repeated TensorProto initializer = 5; // Initializers (see above) stored in sparse format. repeated SparseTensorProto sparse_initializer = 15; // A human-readable documentation for this graph. Markdown is allowed. string doc_string = 10; // The inputs and outputs of the graph. repeated ValueInfoProto input = 11; repeated ValueInfoProto output = 12; // Information for the values in the graph. The ValueInfoProto.name's // must be distinct. It is optional for a value to appear in value_info list. repeated ValueInfoProto value_info = 13; // This field carries information to indicate the mapping among a tensor and its // quantization parameter tensors. For example: // For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated, // which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model. repeated TensorAnnotation quantization_annotation = 14; reserved 3, 4, 6 to 9; reserved "ir_version", "producer_version", "producer_tag", "domain"; } // Tensors // // A serialized tensor value. message TensorProto { enum DataType { UNDEFINED = 0; // Basic types. FLOAT = 1; // float UINT8 = 2; // uint8_t INT8 = 3; // int8_t UINT16 = 4; // uint16_t INT16 = 5; // int16_t INT32 = 6; // int32_t INT64 = 7; // int64_t STRING = 8; // string BOOL = 9; // bool // IEEE754 half-precision floating-point format (16 bits wide). // This format has 1 sign bit, 5 exponent bits, and 10 mantissa bits. FLOAT16 = 10; DOUBLE = 11; UINT32 = 12; UINT64 = 13; COMPLEX64 = 14; // complex with float32 real and imaginary components COMPLEX128 = 15; // complex with float64 real and imaginary components // Non-IEEE floating-point format based on IEEE754 single-precision // floating-point number truncated to 16 bits. // This format has 1 sign bit, 8 exponent bits, and 7 mantissa bits. BFLOAT16 = 16; // Non-IEEE floating-point format based on papers // FP8 Formats for Deep Learning, https://arxiv.org/abs/2209.05433, // 8-bit Numerical Formats For Deep Neural Networks, https://arxiv.org/pdf/2206.02915.pdf. // Operators supported FP8 are Cast, CastLike, QuantizeLinear, DequantizeLinear. // The computation usually happens inside a block quantize / dequantize // fused by the runtime. FLOAT8E4M3FN = 17; // float 8, mostly used for coefficients, supports nan, not inf FLOAT8E4M3FNUZ = 18; // float 8, mostly used for coefficients, supports nan, not inf, no negative zero FLOAT8E5M2 = 19; // follows IEEE 754, supports nan, inf, mostly used for gradients FLOAT8E5M2FNUZ = 20; // follows IEEE 754, supports nan, inf, mostly used for gradients, no negative zero // Future extensions go here. } // The shape of the tensor. repeated int64 dims = 1; // The data type of the tensor. // This field MUST have a valid TensorProto.DataType value int32 data_type = 2; // For very large tensors, we may want to store them in chunks, in which // case the following fields will specify the segment that is stored in // the current TensorProto. message Segment { int64 begin = 1; int64 end = 2; } Segment segment = 3; // Tensor content must be organized in row-major order. // // Depending on the data_type field, exactly one of the fields below with // name ending in _data is used to store the elements of the tensor. // For float and complex64 values // Complex64 tensors are encoded as a single array of floats, // with the real components appearing in odd numbered positions, // and the corresponding imaginary component appearing in the // subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i] // is encoded as [1.0, 2.0 ,3.0 ,4.0] // When this field is present, the data_type field MUST be FLOAT or COMPLEX64. repeated float float_data = 4 [packed = true]; // For int32, uint8, int8, uint16, int16, bool, float8, and float16 values // float16 and float8 values must be bit-wise converted to an uint16_t prior // to writing to the buffer. // When this field is present, the data_type field MUST be // INT32, INT16, INT8, UINT16, UINT8, BOOL, FLOAT16, BFLOAT16, FLOAT8E4M3FN, FLOAT8E4M3FNUZ, FLOAT8E5M2, FLOAT8E5M2FNUZ repeated int32 int32_data = 5 [packed = true]; // For strings. // Each element of string_data is a UTF-8 encoded Unicode // string. No trailing null, no leading BOM. The protobuf "string" // scalar type is not used to match ML community conventions. // When this field is present, the data_type field MUST be STRING repeated bytes string_data = 6; // For int64. // When this field is present, the data_type field MUST be INT64 repeated int64 int64_data = 7 [packed = true]; // Optionally, a name for the tensor. string name = 8; // namespace Value // A human-readable documentation for this tensor. Markdown is allowed. string doc_string = 12; // Serializations can either use one of the fields above, or use this // raw bytes field. The only exception is the string case, where one is // required to store the content in the repeated bytes string_data field. // // When this raw_data field is used to store tensor value, elements MUST // be stored in as fixed-width, little-endian order. // Floating-point data types MUST be stored in IEEE 754 format. // Complex64 elements must be written as two consecutive FLOAT values, real component first. // Complex128 elements must be written as two consecutive DOUBLE values, real component first. // Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false). // // Note: the advantage of specific field rather than the raw_data field is // that in some cases (e.g. int data), protobuf does a better packing via // variable length storage, and may lead to smaller binary footprint. // When this field is present, the data_type field MUST NOT be STRING or UNDEFINED bytes raw_data = 9; // Data can be stored inside the protobuf file using type-specific fields or raw_data. // Alternatively, raw bytes data can be stored in an external file, using the external_data field. // external_data stores key-value pairs describing data location. Recognized keys are: // - "location" (required) - POSIX filesystem path relative to the directory where the ONNX // protobuf model was stored // - "offset" (optional) - position of byte at which stored data begins. Integer stored as string. // Offset values SHOULD be multiples 4096 (page size) to enable mmap support. // - "length" (optional) - number of bytes containing data. Integer stored as string. // - "checksum" (optional) - SHA1 digest of file specified in under 'location' key. repeated StringStringEntryProto external_data = 13; // Location of the data for this tensor. MUST be one of: // - DEFAULT - data stored inside the protobuf message. Data is stored in raw_data (if set) otherwise in type-specified field. // - EXTERNAL - data stored in an external location as described by external_data field. enum DataLocation { DEFAULT = 0; EXTERNAL = 1; } // If value not set, data is stored in raw_data (if set) otherwise in type-specified field. DataLocation data_location = 14; // For double // Complex128 tensors are encoded as a single array of doubles, // with the real components appearing in odd numbered positions, // and the corresponding imaginary component appearing in the // subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i] // is encoded as [1.0, 2.0 ,3.0 ,4.0] // When this field is present, the data_type field MUST be DOUBLE or COMPLEX128 repeated double double_data = 10 [packed = true]; // For uint64 and uint32 values // When this field is present, the data_type field MUST be // UINT32 or UINT64 repeated uint64 uint64_data = 11 [packed = true]; } // A serialized sparse-tensor value message SparseTensorProto { // The sequence of non-default values are encoded as a tensor of shape [NNZ]. // The default-value is zero for numeric tensors, and empty-string for string tensors. // values must have a non-empty name present which serves as a name for SparseTensorProto // when used in sparse_initializer list. TensorProto values = 1; // The indices of the non-default values, which may be stored in one of two formats. // (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value // corresponding to the j-th index of the i-th value (in the values tensor). // (b) Indices can be a tensor of shape [NNZ], in which case the i-th value // must be the linearized-index of the i-th value (in the values tensor). // The linearized-index can be converted into an index tuple (k_1,...,k_rank) // using the shape provided below. // The indices must appear in ascending order without duplication. // In the first format, the ordering is lexicographic-ordering: // e.g., index-value [1,4] must appear before [2,1] TensorProto indices = 2; // The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank] repeated int64 dims = 3; } // Defines a tensor shape. A dimension can be either an integer value // or a symbolic variable. A symbolic variable represents an unknown // dimension. message TensorShapeProto { message Dimension { oneof value { int64 dim_value = 1; string dim_param = 2; // namespace Shape }; // Standard denotation can optionally be used to denote tensor // dimensions with standard semantic descriptions to ensure // that operations are applied to the correct axis of a tensor. // Refer to https://github.com/onnx/onnx/blob/main/docs/DimensionDenotation.md#denotation-definition // for pre-defined dimension denotations. string denotation = 3; }; repeated Dimension dim = 1; } // Types // // The standard ONNX data types. message TypeProto { message Tensor { // This field MUST NOT have the value of UNDEFINED // This field MUST have a valid TensorProto.DataType value // This field MUST be present for this version of the IR. int32 elem_type = 1; TensorShapeProto shape = 2; } // repeated T message Sequence { // The type and optional shape of each element of the sequence. // This field MUST be present for this version of the IR. TypeProto elem_type = 1; }; // map<K,V> message Map { // This field MUST have a valid TensorProto.DataType value // This field MUST be present for this version of the IR. // This field MUST refer to an integral type ([U]INT{8|16|32|64}) or STRING int32 key_type = 1; // This field MUST be present for this version of the IR. TypeProto value_type = 2; }; // wrapper for Tensor, Sequence, or Map message Optional { // The type and optional shape of the element wrapped. // This field MUST be present for this version of the IR. // Possible values correspond to OptionalProto.DataType enum TypeProto elem_type = 1; }; message SparseTensor { // This field MUST NOT have the value of UNDEFINED // This field MUST have a valid TensorProto.DataType value // This field MUST be present for this version of the IR. int32 elem_type = 1; TensorShapeProto shape = 2; } oneof value { // The type of a tensor. Tensor tensor_type = 1; // NOTE: DNN-only implementations of ONNX MAY elect to not support non-tensor values // as input and output to graphs and nodes. These types are needed to naturally // support classical ML operators. DNN operators SHOULD restrict their input // and output types to tensors. // The type of a sequence. Sequence sequence_type = 4; // The type of a map. Map map_type = 5; // The type of an optional. Optional optional_type = 9; // Type of the sparse tensor SparseTensor sparse_tensor_type = 8; } // An optional denotation can be used to denote the whole // type with a standard semantic description as to what is // stored inside. Refer to https://github.com/onnx/onnx/blob/main/docs/TypeDenotation.md#type-denotation-definition // for pre-defined type denotations. string denotation = 6; } // Operator Sets // // OperatorSets are uniquely identified by a (domain, opset_version) pair. message OperatorSetIdProto { // The domain of the operator set being identified. // The empty string ("") or absence of this field implies the operator // set that is defined as part of the ONNX specification. // This field MUST be present in this version of the IR when referring to any other operator set. string domain = 1; // The version of the operator set being identified. // This field MUST be present in this version of the IR. int64 version = 2; } // Operator/function status. enum OperatorStatus { EXPERIMENTAL = 0; STABLE = 1; } message FunctionProto { // The name of the function, similar usage of op_type in OperatorProto. // Combined with FunctionProto.domain, this forms the unique identity of // the FunctionProto. string name = 1; // Deprecated since IR Version 8 // optional int64 since_version = 2; reserved 2; reserved "since_version"; // Deprecated since IR Version 8 // optional OperatorStatus status = 3; reserved 3; reserved "status"; // The inputs and outputs of the function. repeated string input = 4; repeated string output = 5; // The attribute parameters of the function. // It is for function parameters without default values. repeated string attribute = 6; // The attribute protos of the function. // It is for function attributes with default values. // A function attribute shall be represented either as // a string attribute or an AttributeProto, not both. repeated AttributeProto attribute_proto = 11; // The nodes in the function. repeated NodeProto node = 7; // A human-readable documentation for this function. Markdown is allowed. string doc_string = 8; // The OperatorSets this function body (graph) relies on. // // All nodes in the function body (graph) will bind against the operator // with the same-domain/same-op_type operator with the HIGHEST version // in the referenced operator sets. This means at most one version can be relied // for one domain. // // The operator sets imported by FunctionProto should be compatible with the ones // imported by ModelProto. Example, if same operator set say 'A' is imported by FunctionProto // and ModelProto then versions for the operator set may be different but, // the operator schema returned for op_type, domain, version combination // for both the versions should be same. repeated OperatorSetIdProto opset_import = 9; // The domain which this function belongs to. Combined with FunctionProto.name, this forms the unique identity of // the FunctionProto. string domain = 10; } // For using protobuf-lite option optimize_for = LITE_RUNTIME;
candle/candle-onnx/src/onnx.proto3/0
{ "file_path": "candle/candle-onnx/src/onnx.proto3", "repo_id": "candle", "token_count": 10183 }
48
# Generated content DO NOT EDIT from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Sequence from os import PathLike from candle.typing import _ArrayLike, Device, Scalar, Index, Shape from candle import Tensor, DType, QTensor @staticmethod def silu(tensor: Tensor) -> Tensor: """ Applies the Sigmoid Linear Unit (SiLU) function to a given tensor. """ pass @staticmethod def softmax(tensor: Tensor, dim: int) -> Tensor: """ Applies the Softmax function to a given tensor.# """ pass
candle/candle-pyo3/py_src/candle/nn/__init__.pyi/0
{ "file_path": "candle/candle-pyo3/py_src/candle/nn/__init__.pyi", "repo_id": "candle", "token_count": 181 }
49
use ::candle::Tensor; use pyo3::prelude::*; #[derive(Clone, Debug)] /// Represents an absolute shape e.g. (1, 2, 3) pub struct PyShape(Vec<usize>); impl<'source> pyo3::FromPyObject<'source> for PyShape { fn extract(ob: &'source PyAny) -> PyResult<Self> { if ob.is_none() { return Err(PyErr::new::<pyo3::exceptions::PyValueError, _>( "Shape cannot be None", )); } let tuple = ob.downcast::<pyo3::types::PyTuple>()?; if tuple.len() == 1 { let first_element = tuple.get_item(0)?; let dims: Vec<usize> = pyo3::FromPyObject::extract(first_element)?; Ok(PyShape(dims)) } else { let dims: Vec<usize> = pyo3::FromPyObject::extract(tuple)?; Ok(PyShape(dims)) } } } impl From<PyShape> for ::candle::Shape { fn from(val: PyShape) -> Self { val.0.into() } } #[derive(Clone, Debug)] /// Represents a shape with a hole in it e.g. (1, -1, 3) pub struct PyShapeWithHole(Vec<isize>); impl<'source> pyo3::FromPyObject<'source> for PyShapeWithHole { fn extract(ob: &'source PyAny) -> PyResult<Self> { if ob.is_none() { return Err(PyErr::new::<pyo3::exceptions::PyValueError, _>( "Shape cannot be None", )); } let tuple = ob.downcast::<pyo3::types::PyTuple>()?; let dims: Vec<isize> = if tuple.len() == 1 { let first_element = tuple.get_item(0)?; pyo3::FromPyObject::extract(first_element)? } else { pyo3::FromPyObject::extract(tuple)? }; // Ensure we have only positive numbers and at most one "hole" (-1) let negative_ones = dims.iter().filter(|&&x| x == -1).count(); let any_invalid_dimensions = dims.iter().any(|&x| x < -1 || x == 0); if negative_ones > 1 || any_invalid_dimensions { return Err(PyErr::new::<pyo3::exceptions::PyValueError, _>(format!( "Invalid dimension in shape: {:?}", dims ))); } Ok(PyShapeWithHole(dims)) } } impl PyShapeWithHole { /// Returns `true` if the shape is absolute e.g. (1, 2, 3) pub fn is_absolute(&self) -> bool { self.0.iter().all(|x| *x > 0) } /// Convert a relative shape to an absolute shape e.g. (1, -1) -> (1, 12) pub fn to_absolute(&self, t: &Tensor) -> PyResult<PyShape> { if self.is_absolute() { return Ok(PyShape( self.0.iter().map(|x| *x as usize).collect::<Vec<usize>>(), )); } let mut elements = t.elem_count(); let mut new_dims: Vec<usize> = vec![]; for dim in self.0.iter() { if *dim > 0 { new_dims.push(*dim as usize); elements /= *dim as usize; } else if *dim == -1 { new_dims.push(elements); } else { return Err(PyErr::new::<pyo3::exceptions::PyValueError, _>(format!( "Invalid dimension in shape: {}", dim ))); } } Ok(PyShape(new_dims)) } }
candle/candle-pyo3/src/shape.rs/0
{ "file_path": "candle/candle-pyo3/src/shape.rs", "repo_id": "candle", "token_count": 1646 }
50
use super::with_tracing::{layer_norm, linear, LayerNorm, Linear}; use candle::{DType, Device, Result, Tensor}; use candle_nn::{embedding, Embedding, Module, VarBuilder}; use serde::Deserialize; pub const DTYPE: DType = DType::F32; #[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize)] #[serde(rename_all = "lowercase")] pub enum HiddenAct { Gelu, GeluApproximate, Relu, } struct HiddenActLayer { act: HiddenAct, span: tracing::Span, } impl HiddenActLayer { fn new(act: HiddenAct) -> Self { let span = tracing::span!(tracing::Level::TRACE, "hidden-act"); Self { act, span } } fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> { let _enter = self.span.enter(); match self.act { // https://github.com/huggingface/transformers/blob/cd4584e3c809bb9e1392ccd3fe38b40daba5519a/src/transformers/activations.py#L213 HiddenAct::Gelu => xs.gelu_erf(), HiddenAct::GeluApproximate => xs.gelu(), HiddenAct::Relu => xs.relu(), } } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize, Default)] #[serde(rename_all = "lowercase")] enum PositionEmbeddingType { #[default] Absolute, } // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/configuration_bert.py#L1 #[derive(Debug, Clone, PartialEq, Deserialize)] pub struct Config { vocab_size: usize, hidden_size: usize, num_hidden_layers: usize, num_attention_heads: usize, intermediate_size: usize, pub hidden_act: HiddenAct, hidden_dropout_prob: f64, max_position_embeddings: usize, type_vocab_size: usize, initializer_range: f64, layer_norm_eps: f64, pad_token_id: usize, #[serde(default)] position_embedding_type: PositionEmbeddingType, #[serde(default)] use_cache: bool, classifier_dropout: Option<f64>, model_type: Option<String>, } impl Default for Config { fn default() -> Self { Self { vocab_size: 30522, hidden_size: 768, num_hidden_layers: 12, num_attention_heads: 12, intermediate_size: 3072, hidden_act: HiddenAct::Gelu, hidden_dropout_prob: 0.1, max_position_embeddings: 512, type_vocab_size: 2, initializer_range: 0.02, layer_norm_eps: 1e-12, pad_token_id: 0, position_embedding_type: PositionEmbeddingType::Absolute, use_cache: true, classifier_dropout: None, model_type: Some("bert".to_string()), } } } impl Config { fn _all_mini_lm_l6_v2() -> Self { // https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/blob/main/config.json Self { vocab_size: 30522, hidden_size: 384, num_hidden_layers: 6, num_attention_heads: 12, intermediate_size: 1536, hidden_act: HiddenAct::Gelu, hidden_dropout_prob: 0.1, max_position_embeddings: 512, type_vocab_size: 2, initializer_range: 0.02, layer_norm_eps: 1e-12, pad_token_id: 0, position_embedding_type: PositionEmbeddingType::Absolute, use_cache: true, classifier_dropout: None, model_type: Some("bert".to_string()), } } } struct Dropout { #[allow(dead_code)] pr: f64, } impl Dropout { fn new(pr: f64) -> Self { Self { pr } } } impl Module for Dropout { fn forward(&self, x: &Tensor) -> Result<Tensor> { // TODO Ok(x.clone()) } } // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L180 struct BertEmbeddings { word_embeddings: Embedding, position_embeddings: Option<Embedding>, token_type_embeddings: Embedding, layer_norm: LayerNorm, dropout: Dropout, span: tracing::Span, } impl BertEmbeddings { fn load(vb: VarBuilder, config: &Config) -> Result<Self> { let word_embeddings = embedding( config.vocab_size, config.hidden_size, vb.pp("word_embeddings"), )?; let position_embeddings = embedding( config.max_position_embeddings, config.hidden_size, vb.pp("position_embeddings"), )?; let token_type_embeddings = embedding( config.type_vocab_size, config.hidden_size, vb.pp("token_type_embeddings"), )?; let layer_norm = layer_norm( config.hidden_size, config.layer_norm_eps, vb.pp("LayerNorm"), )?; Ok(Self { word_embeddings, position_embeddings: Some(position_embeddings), token_type_embeddings, layer_norm, dropout: Dropout::new(config.hidden_dropout_prob), span: tracing::span!(tracing::Level::TRACE, "embeddings"), }) } fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let (_bsize, seq_len) = input_ids.dims2()?; let input_embeddings = self.word_embeddings.forward(input_ids)?; let token_type_embeddings = self.token_type_embeddings.forward(token_type_ids)?; let mut embeddings = (&input_embeddings + token_type_embeddings)?; if let Some(position_embeddings) = &self.position_embeddings { // TODO: Proper absolute positions? let position_ids = (0..seq_len as u32).collect::<Vec<_>>(); let position_ids = Tensor::new(&position_ids[..], input_ids.device())?; embeddings = embeddings.broadcast_add(&position_embeddings.forward(&position_ids)?)? } let embeddings = self.layer_norm.forward(&embeddings)?; let embeddings = self.dropout.forward(&embeddings)?; Ok(embeddings) } } struct BertSelfAttention { query: Linear, key: Linear, value: Linear, dropout: Dropout, num_attention_heads: usize, attention_head_size: usize, span: tracing::Span, span_softmax: tracing::Span, } impl BertSelfAttention { fn load(vb: VarBuilder, config: &Config) -> Result<Self> { let attention_head_size = config.hidden_size / config.num_attention_heads; let all_head_size = config.num_attention_heads * attention_head_size; let dropout = Dropout::new(config.hidden_dropout_prob); let hidden_size = config.hidden_size; let query = linear(hidden_size, all_head_size, vb.pp("query"))?; let value = linear(hidden_size, all_head_size, vb.pp("value"))?; let key = linear(hidden_size, all_head_size, vb.pp("key"))?; Ok(Self { query, key, value, dropout, num_attention_heads: config.num_attention_heads, attention_head_size, span: tracing::span!(tracing::Level::TRACE, "self-attn"), span_softmax: tracing::span!(tracing::Level::TRACE, "softmax"), }) } fn transpose_for_scores(&self, xs: &Tensor) -> Result<Tensor> { let mut new_x_shape = xs.dims().to_vec(); new_x_shape.pop(); new_x_shape.push(self.num_attention_heads); new_x_shape.push(self.attention_head_size); let xs = xs.reshape(new_x_shape.as_slice())?.transpose(1, 2)?; xs.contiguous() } } impl Module for BertSelfAttention { fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let query_layer = self.query.forward(hidden_states)?; let key_layer = self.key.forward(hidden_states)?; let value_layer = self.value.forward(hidden_states)?; let query_layer = self.transpose_for_scores(&query_layer)?; let key_layer = self.transpose_for_scores(&key_layer)?; let value_layer = self.transpose_for_scores(&value_layer)?; let attention_scores = query_layer.matmul(&key_layer.t()?)?; let attention_scores = (attention_scores / (self.attention_head_size as f64).sqrt())?; let attention_probs = { let _enter_sm = self.span_softmax.enter(); candle_nn::ops::softmax(&attention_scores, candle::D::Minus1)? }; let attention_probs = self.dropout.forward(&attention_probs)?; let context_layer = attention_probs.matmul(&value_layer)?; let context_layer = context_layer.transpose(1, 2)?.contiguous()?; let context_layer = context_layer.flatten_from(candle::D::Minus2)?; Ok(context_layer) } } struct BertSelfOutput { dense: Linear, layer_norm: LayerNorm, dropout: Dropout, span: tracing::Span, } impl BertSelfOutput { fn load(vb: VarBuilder, config: &Config) -> Result<Self> { let dense = linear(config.hidden_size, config.hidden_size, vb.pp("dense"))?; let layer_norm = layer_norm( config.hidden_size, config.layer_norm_eps, vb.pp("LayerNorm"), )?; let dropout = Dropout::new(config.hidden_dropout_prob); Ok(Self { dense, layer_norm, dropout, span: tracing::span!(tracing::Level::TRACE, "self-out"), }) } fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let hidden_states = self.dense.forward(hidden_states)?; let hidden_states = self.dropout.forward(&hidden_states)?; self.layer_norm.forward(&(hidden_states + input_tensor)?) } } // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L392 struct BertAttention { self_attention: BertSelfAttention, self_output: BertSelfOutput, span: tracing::Span, } impl BertAttention { fn load(vb: VarBuilder, config: &Config) -> Result<Self> { let self_attention = BertSelfAttention::load(vb.pp("self"), config)?; let self_output = BertSelfOutput::load(vb.pp("output"), config)?; Ok(Self { self_attention, self_output, span: tracing::span!(tracing::Level::TRACE, "attn"), }) } } impl Module for BertAttention { fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let self_outputs = self.self_attention.forward(hidden_states)?; let attention_output = self.self_output.forward(&self_outputs, hidden_states)?; Ok(attention_output) } } // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L441 struct BertIntermediate { dense: Linear, intermediate_act: HiddenActLayer, span: tracing::Span, } impl BertIntermediate { fn load(vb: VarBuilder, config: &Config) -> Result<Self> { let dense = linear(config.hidden_size, config.intermediate_size, vb.pp("dense"))?; Ok(Self { dense, intermediate_act: HiddenActLayer::new(config.hidden_act), span: tracing::span!(tracing::Level::TRACE, "inter"), }) } } impl Module for BertIntermediate { fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let hidden_states = self.dense.forward(hidden_states)?; let ys = self.intermediate_act.forward(&hidden_states)?; Ok(ys) } } // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L456 struct BertOutput { dense: Linear, layer_norm: LayerNorm, dropout: Dropout, span: tracing::Span, } impl BertOutput { fn load(vb: VarBuilder, config: &Config) -> Result<Self> { let dense = linear(config.intermediate_size, config.hidden_size, vb.pp("dense"))?; let layer_norm = layer_norm( config.hidden_size, config.layer_norm_eps, vb.pp("LayerNorm"), )?; let dropout = Dropout::new(config.hidden_dropout_prob); Ok(Self { dense, layer_norm, dropout, span: tracing::span!(tracing::Level::TRACE, "out"), }) } fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let hidden_states = self.dense.forward(hidden_states)?; let hidden_states = self.dropout.forward(&hidden_states)?; self.layer_norm.forward(&(hidden_states + input_tensor)?) } } // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L470 struct BertLayer { attention: BertAttention, intermediate: BertIntermediate, output: BertOutput, span: tracing::Span, } impl BertLayer { fn load(vb: VarBuilder, config: &Config) -> Result<Self> { let attention = BertAttention::load(vb.pp("attention"), config)?; let intermediate = BertIntermediate::load(vb.pp("intermediate"), config)?; let output = BertOutput::load(vb.pp("output"), config)?; Ok(Self { attention, intermediate, output, span: tracing::span!(tracing::Level::TRACE, "layer"), }) } } impl Module for BertLayer { fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let attention_output = self.attention.forward(hidden_states)?; // TODO: Support cross-attention? // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L523 // TODO: Support something similar to `apply_chunking_to_forward`? let intermediate_output = self.intermediate.forward(&attention_output)?; let layer_output = self .output .forward(&intermediate_output, &attention_output)?; Ok(layer_output) } } // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L556 struct BertEncoder { layers: Vec<BertLayer>, span: tracing::Span, } impl BertEncoder { fn load(vb: VarBuilder, config: &Config) -> Result<Self> { let layers = (0..config.num_hidden_layers) .map(|index| BertLayer::load(vb.pp(&format!("layer.{index}")), config)) .collect::<Result<Vec<_>>>()?; let span = tracing::span!(tracing::Level::TRACE, "encoder"); Ok(BertEncoder { layers, span }) } } impl Module for BertEncoder { fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let mut hidden_states = hidden_states.clone(); // Use a loop rather than a fold as it's easier to modify when adding debug/... for layer in self.layers.iter() { hidden_states = layer.forward(&hidden_states)? } Ok(hidden_states) } } // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L874 pub struct BertModel { embeddings: BertEmbeddings, encoder: BertEncoder, pub device: Device, span: tracing::Span, } impl BertModel { pub fn load(vb: VarBuilder, config: &Config) -> Result<Self> { let (embeddings, encoder) = match ( BertEmbeddings::load(vb.pp("embeddings"), config), BertEncoder::load(vb.pp("encoder"), config), ) { (Ok(embeddings), Ok(encoder)) => (embeddings, encoder), (Err(err), _) | (_, Err(err)) => { if let Some(model_type) = &config.model_type { if let (Ok(embeddings), Ok(encoder)) = ( BertEmbeddings::load(vb.pp(&format!("{model_type}.embeddings")), config), BertEncoder::load(vb.pp(&format!("{model_type}.encoder")), config), ) { (embeddings, encoder) } else { return Err(err); } } else { return Err(err); } } }; Ok(Self { embeddings, encoder, device: vb.device().clone(), span: tracing::span!(tracing::Level::TRACE, "model"), }) } pub fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let embedding_output = self.embeddings.forward(input_ids, token_type_ids)?; let sequence_output = self.encoder.forward(&embedding_output)?; Ok(sequence_output) } }
candle/candle-transformers/src/models/bert.rs/0
{ "file_path": "candle/candle-transformers/src/models/bert.rs", "repo_id": "candle", "token_count": 7941 }
51
use std::sync::Arc; use candle::{DType, Device, Module, Result, Tensor, D}; use candle_nn::{linear_b as linear, Activation, Linear, VarBuilder}; fn default_max_position_embeddings() -> usize { 4096 } #[derive(serde::Deserialize, Debug, Clone)] pub struct Config { pub attention_bias: bool, pub head_dim: usize, // The code gemma configs include both hidden_act and hidden_activation. pub hidden_act: Option<Activation>, pub hidden_activation: Option<Activation>, pub hidden_size: usize, pub intermediate_size: usize, pub num_attention_heads: usize, pub num_hidden_layers: usize, pub num_key_value_heads: usize, pub rms_norm_eps: f64, pub rope_theta: f64, pub vocab_size: usize, #[serde(default = "default_max_position_embeddings")] pub max_position_embeddings: usize, } impl Config { fn hidden_act(&self) -> Result<Activation> { match (self.hidden_act, self.hidden_activation) { (None, Some(act)) | (Some(act), None) => Ok(act), (Some(_), Some(_)) => candle::bail!("both hidden_act and hidden_activation are set"), (None, None) => candle::bail!("none of hidden_act and hidden_activation are set"), } } } #[derive(Debug, Clone)] struct RmsNorm { weight: Tensor, eps: f64, } impl RmsNorm { fn new(dim: usize, eps: f64, vb: VarBuilder) -> Result<Self> { let weight = vb.get(dim, "weight")?; Ok(Self { weight, eps }) } } impl Module for RmsNorm { fn forward(&self, x: &Tensor) -> Result<Tensor> { let x_dtype = x.dtype(); let internal_dtype = match x_dtype { DType::F16 | DType::BF16 => DType::F32, d => d, }; let hidden_size = x.dim(D::Minus1)?; let x = x.to_dtype(internal_dtype)?; let norm_x = (x.sqr()?.sum_keepdim(D::Minus1)? / hidden_size as f64)?; let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?; x_normed .to_dtype(x_dtype)? .broadcast_mul(&(&self.weight + 1.0)?) } } #[derive(Debug, Clone)] struct RotaryEmbedding { sin: Tensor, cos: Tensor, } impl RotaryEmbedding { fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> { let dim = cfg.head_dim; let max_seq_len = cfg.max_position_embeddings; let inv_freq: Vec<_> = (0..dim) .step_by(2) .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32) .collect(); let inv_freq_len = inv_freq.len(); let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?; let t = Tensor::arange(0u32, max_seq_len as u32, dev)? .to_dtype(dtype)? .reshape((max_seq_len, 1))?; let freqs = t.matmul(&inv_freq)?; Ok(Self { sin: freqs.sin()?, cos: freqs.cos()?, }) } fn apply_rotary_emb_qkv( &self, q: &Tensor, k: &Tensor, seqlen_offset: usize, ) -> Result<(Tensor, Tensor)> { let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?; let cos = self.cos.narrow(0, seqlen_offset, seq_len)?; let sin = self.sin.narrow(0, seqlen_offset, seq_len)?; let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?; let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?; Ok((q_embed, k_embed)) } } #[derive(Debug, Clone)] #[allow(clippy::upper_case_acronyms)] struct MLP { gate_proj: Linear, up_proj: Linear, down_proj: Linear, act_fn: candle_nn::Activation, } impl MLP { fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { let hidden_sz = cfg.hidden_size; let intermediate_sz = cfg.intermediate_size; let gate_proj = linear(hidden_sz, intermediate_sz, false, vb.pp("gate_proj"))?; let up_proj = linear(hidden_sz, intermediate_sz, false, vb.pp("up_proj"))?; let down_proj = linear(intermediate_sz, hidden_sz, false, vb.pp("down_proj"))?; Ok(Self { gate_proj, up_proj, down_proj, act_fn: cfg.hidden_act()?, }) } } impl Module for MLP { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?; let rhs = xs.apply(&self.up_proj)?; (lhs * rhs)?.apply(&self.down_proj) } } #[derive(Debug, Clone)] struct Attention { q_proj: Linear, k_proj: Linear, v_proj: Linear, o_proj: Linear, num_heads: usize, num_kv_heads: usize, num_kv_groups: usize, head_dim: usize, rotary_emb: Arc<RotaryEmbedding>, kv_cache: Option<(Tensor, Tensor)>, use_flash_attn: bool, } impl Attention { fn new( rotary_emb: Arc<RotaryEmbedding>, use_flash_attn: bool, cfg: &Config, vb: VarBuilder, ) -> Result<Self> { let hidden_sz = cfg.hidden_size; let num_heads = cfg.num_attention_heads; let num_kv_heads = cfg.num_key_value_heads; let num_kv_groups = num_heads / num_kv_heads; let head_dim = cfg.head_dim; let bias = cfg.attention_bias; let q_proj = linear(hidden_sz, num_heads * head_dim, bias, vb.pp("q_proj"))?; let k_proj = linear(hidden_sz, num_kv_heads * head_dim, bias, vb.pp("k_proj"))?; let v_proj = linear(hidden_sz, num_kv_heads * head_dim, bias, vb.pp("v_proj"))?; let o_proj = linear(num_heads * head_dim, hidden_sz, bias, vb.pp("o_proj"))?; Ok(Self { q_proj, k_proj, v_proj, o_proj, num_heads, num_kv_heads, num_kv_groups, head_dim, rotary_emb, kv_cache: None, use_flash_attn, }) } fn forward( &mut self, xs: &Tensor, attention_mask: Option<&Tensor>, seqlen_offset: usize, ) -> Result<Tensor> { let (b_sz, q_len, _) = xs.dims3()?; let query_states = self.q_proj.forward(xs)?; let key_states = self.k_proj.forward(xs)?; let value_states = self.v_proj.forward(xs)?; let query_states = query_states .reshape((b_sz, q_len, self.num_heads, self.head_dim))? .transpose(1, 2)?; let key_states = key_states .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; let value_states = value_states .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? .transpose(1, 2)?; let (query_states, key_states) = self.rotary_emb .apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?; let (key_states, value_states) = match &self.kv_cache { None => (key_states, value_states), Some((prev_k, prev_v)) => { let key_states = Tensor::cat(&[prev_k, &key_states], 2)?; let value_states = Tensor::cat(&[prev_v, &value_states], 2)?; (key_states, value_states) } }; self.kv_cache = Some((key_states.clone(), value_states.clone())); let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?; let value_states = crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?; let attn_output = if self.use_flash_attn { // flash-attn expects (b_sz, seq_len, nheads, head_dim) let q = query_states.transpose(1, 2)?; let k = key_states.transpose(1, 2)?; let v = value_states.transpose(1, 2)?; let scale = 1f32 / (self.head_dim as f32).sqrt(); flash_attn(&q, &k, &v, scale, attention_mask.is_some())?.transpose(1, 2)? } else { let scale = 1f64 / f64::sqrt(self.head_dim as f64); let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?; let attn_weights = match attention_mask { None => attn_weights, Some(mask) => attn_weights.broadcast_add(mask)?, }; let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?; attn_weights.matmul(&value_states)? }; attn_output .transpose(1, 2)? .reshape((b_sz, q_len, ()))? .apply(&self.o_proj) } fn clear_kv_cache(&mut self) { self.kv_cache = None } } #[cfg(feature = "flash-attn")] fn flash_attn( q: &Tensor, k: &Tensor, v: &Tensor, softmax_scale: f32, causal: bool, ) -> Result<Tensor> { candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal) } #[cfg(not(feature = "flash-attn"))] fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> { unimplemented!("compile with '--features flash-attn'") } #[derive(Debug, Clone)] struct DecoderLayer { self_attn: Attention, mlp: MLP, input_layernorm: RmsNorm, post_attention_layernorm: RmsNorm, } impl DecoderLayer { fn new( rotary_emb: Arc<RotaryEmbedding>, use_flash_attn: bool, cfg: &Config, vb: VarBuilder, ) -> Result<Self> { let self_attn = Attention::new(rotary_emb, use_flash_attn, cfg, vb.pp("self_attn"))?; let mlp = MLP::new(cfg, vb.pp("mlp"))?; let input_layernorm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?; let post_attention_layernorm = RmsNorm::new( cfg.hidden_size, cfg.rms_norm_eps, vb.pp("post_attention_layernorm"), )?; Ok(Self { self_attn, mlp, input_layernorm, post_attention_layernorm, }) } fn forward( &mut self, xs: &Tensor, attention_mask: Option<&Tensor>, seqlen_offset: usize, ) -> Result<Tensor> { let residual = xs; let xs = self.input_layernorm.forward(xs)?; let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?; let xs = (xs + residual)?; let residual = &xs; let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?; residual + xs } fn clear_kv_cache(&mut self) { self.self_attn.clear_kv_cache() } } #[derive(Debug, Clone)] pub struct Model { embed_tokens: candle_nn::Embedding, layers: Vec<DecoderLayer>, norm: RmsNorm, lm_head: Linear, device: Device, dtype: DType, hidden_size: usize, } impl Model { pub fn new(use_flash_attn: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> { let vb_m = vb.pp("model"); let embed_tokens = candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?; let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?); let mut layers = Vec::with_capacity(cfg.num_hidden_layers); let vb_l = vb_m.pp("layers"); for layer_idx in 0..cfg.num_hidden_layers { let layer = DecoderLayer::new(rotary_emb.clone(), use_flash_attn, cfg, vb_l.pp(layer_idx))?; layers.push(layer) } let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?; let lm_head = Linear::new(embed_tokens.embeddings().clone(), None); Ok(Self { embed_tokens, layers, norm, lm_head, device: vb.device().clone(), dtype: vb.dtype(), hidden_size: cfg.hidden_size, }) } fn prepare_decoder_attention_mask( &self, b_size: usize, tgt_len: usize, seqlen_offset: usize, ) -> Result<Tensor> { let mask: Vec<_> = (0..tgt_len) .flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. })) .collect(); let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?; let mask = if seqlen_offset > 0 { let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?; Tensor::cat(&[&mask0, &mask], D::Minus1)? } else { mask }; mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))? .to_dtype(self.dtype) } pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> { let (b_size, seq_len) = input_ids.dims2()?; let attention_mask = if seq_len <= 1 { None } else { let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?; Some(mask) }; let xs = self.embed_tokens.forward(input_ids)?; let mut xs = (xs * (self.hidden_size as f64).sqrt())?; for layer in self.layers.iter_mut() { xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)? } xs.narrow(1, seq_len - 1, 1)? .apply(&self.norm)? .apply(&self.lm_head) } pub fn clear_kv_cache(&mut self) { for layer in self.layers.iter_mut() { layer.clear_kv_cache() } } }
candle/candle-transformers/src/models/gemma.rs/0
{ "file_path": "candle/candle-transformers/src/models/gemma.rs", "repo_id": "candle", "token_count": 6869 }
52
use crate::models::mixformer::{Config as PhiConfig, MixFormerSequentialForCausalLM as PhiModel}; use crate::models::with_tracing::{layer_norm, linear_b, LayerNorm, Linear}; use candle::{IndexOp, Module, Result, Tensor, D}; use candle_nn::VarBuilder; #[derive(Debug, Clone, serde::Deserialize)] pub struct Config { pub phi_config: PhiConfig, pub vision_config: VisionConfig, } impl Config { pub fn v2() -> Self { Self { phi_config: PhiConfig::v1_5(), vision_config: VisionConfig::v2(), } } } fn scaled_dot_product_attention(q: &Tensor, k: &Tensor, v: &Tensor) -> Result<Tensor> { let dim = q.dim(D::Minus1)?; let scale_factor = 1.0 / (dim as f64).sqrt(); let attn_weights = (q.matmul(&k.t()?)? * scale_factor)?; candle_nn::ops::softmax_last_dim(&attn_weights)?.matmul(v) } #[derive(Debug, Clone, PartialEq, serde::Deserialize)] pub struct VisionConfig { pub(crate) image_embedding_dim: usize, pub(crate) model_dim: usize, pub(crate) hidden_dim: usize, pub(crate) hidden_features: usize, pub(crate) embed_len: usize, pub(crate) embed_dim: usize, pub(crate) num_blocks: usize, pub(crate) num_heads: usize, pub(crate) act: candle_nn::Activation, } impl VisionConfig { pub fn v2() -> Self { Self { image_embedding_dim: 1152, model_dim: 2048, hidden_dim: 2048 * 4, hidden_features: 4304, embed_len: 729, embed_dim: 1152, num_blocks: 27, num_heads: 16, act: candle_nn::Activation::GeluPytorchTanh, } } } #[derive(Debug, Clone)] struct LinearPatchEmbedding { linear: Linear, } impl LinearPatchEmbedding { fn new(vb: VarBuilder) -> Result<Self> { let linear = linear_b(588, 1152, true, vb.pp("linear"))?; Ok(Self { linear }) } } impl Module for LinearPatchEmbedding { fn forward(&self, xs: &Tensor) -> Result<Tensor> { xs.apply(&self.linear) } } #[derive(Debug, Clone)] struct Attention { num_heads: usize, head_dim: usize, qkv: Linear, proj: Linear, span: tracing::Span, } impl Attention { pub fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result<Self> { let qkv = linear_b(dim, dim * 3, true, vb.pp("qkv"))?; let proj = linear_b(dim, dim, true, vb.pp("proj"))?; Ok(Self { num_heads, head_dim: dim / num_heads, qkv, proj, span: tracing::span!(tracing::Level::TRACE, "vit-attn"), }) } } impl Module for Attention { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let (b, n, c) = xs.dims3()?; let qkv = xs .apply(&self.qkv)? .reshape((b, n, 3, self.num_heads, self.head_dim))? .permute((2, 0, 3, 1, 4))?; let (q, k, v) = ( qkv.i(0)?.contiguous()?, qkv.i(1)?.contiguous()?, qkv.i(2)?.contiguous()?, ); scaled_dot_product_attention(&q, &k, &v)? .transpose(1, 2)? .reshape((b, n, c))? .apply(&self.proj) } } #[derive(Debug, Clone)] struct VitBlock { attn: Attention, mlp: Mlp, norm1: LayerNorm, norm2: LayerNorm, span: tracing::Span, } impl VitBlock { fn new(vb: VarBuilder, dim: usize, num_heads: usize, cfg: &VisionConfig) -> Result<Self> { let attn = Attention::new(vb.pp("attn"), dim, num_heads)?; let mlp = Mlp::new(vb.pp("mlp"), dim, cfg.hidden_features, dim, cfg.act)?; let norm1 = layer_norm(dim, 1e-5, vb.pp("norm1"))?; let norm2 = layer_norm(dim, 1e-5, vb.pp("norm2"))?; Ok(Self { attn, mlp, norm1, norm2, span: tracing::span!(tracing::Level::TRACE, "vit-block"), }) } } impl Module for VitBlock { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let ys = xs.apply(&self.norm1)?.apply(&self.attn)?; let xs = (xs + &ys)?; let ys = xs.apply(&self.norm2)?.apply(&self.mlp)?; let xs = (&xs + &ys)?; Ok(xs) } } #[derive(Debug, Clone)] struct VisionTransformer { patch_embed: LinearPatchEmbedding, pos_embed: Tensor, blocks: Vec<VitBlock>, norm: LayerNorm, span: tracing::Span, } impl VisionTransformer { fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> { let patch_embed = LinearPatchEmbedding::new(vb.pp("patch_embed"))?; let pos_embed = vb.get((1, cfg.embed_len, cfg.embed_dim), "pos_embed")?; let blocks = (0..cfg.num_blocks) .map(|i| { VitBlock::new( vb.pp(&format!("blocks.{}", i)), cfg.embed_dim, cfg.num_heads, cfg, ) }) .collect::<Result<_>>()?; let norm = layer_norm(cfg.embed_dim, 1e-5, vb.pp("norm"))?; Ok(Self { patch_embed, pos_embed, blocks, norm, span: tracing::span!(tracing::Level::TRACE, "vit"), }) } } impl Module for VisionTransformer { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); let mut xs = (&xs.apply(&self.patch_embed)? + &self.pos_embed)?; for block in self.blocks.iter() { xs = xs.apply(block)?; } xs.apply(&self.norm) } } #[derive(Debug, Clone)] pub struct Encoder { model: VisionTransformer, } impl Encoder { fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> { let model = VisionTransformer::new(cfg, vb.pp("model.visual"))?; Ok(Self { model }) } } impl Module for Encoder { fn forward(&self, xs: &Tensor) -> Result<Tensor> { xs.apply(&self.model) } } #[derive(Debug, Clone)] struct Mlp { fc1: Linear, act: candle_nn::Activation, fc2: Linear, span: tracing::Span, } impl Mlp { fn new( vb: VarBuilder, in_features: usize, hidden_features: usize, out_features: usize, act: candle_nn::Activation, ) -> Result<Self> { let fc1 = linear_b(in_features, hidden_features, true, vb.pp("fc1"))?; let fc2 = linear_b(hidden_features, out_features, true, vb.pp("fc2"))?; Ok(Self { fc1, act, fc2, span: tracing::span!(tracing::Level::TRACE, "mlp"), }) } } impl Module for Mlp { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2) } } #[derive(Debug, Clone)] struct VisionProjection { mlp: Mlp, } impl VisionProjection { fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> { let mlp = Mlp::new( vb.pp("mlp"), cfg.image_embedding_dim, cfg.hidden_dim, cfg.model_dim, cfg.act, )?; Ok(Self { mlp }) } } impl Module for VisionProjection { fn forward(&self, xs: &Tensor) -> Result<Tensor> { xs.apply(&self.mlp) } } #[derive(Debug, Clone)] pub struct VisionEncoder { encoder: Encoder, projection: VisionProjection, } impl VisionEncoder { pub fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> { let encoder = Encoder::new(cfg, vb.pp("encoder"))?; let projection = VisionProjection::new(cfg, vb.pp("projection"))?; Ok(Self { encoder, projection, }) } } impl Module for VisionEncoder { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let (b, c, hp1, wp2) = xs.dims4()?; let (p1, p2) = (14, 14); let h = hp1 / p1; let w = wp2 / p2; xs.reshape((b, c, h, p1, h, p2))? .permute((0, 2, 4, 1, 3, 5))? .reshape((b, h * w, c * p1 * p2))? .apply(&self.encoder)? .apply(&self.projection) } } #[derive(Debug, Clone)] pub struct Model { pub text_model: PhiModel, pub vision_encoder: VisionEncoder, } impl Model { pub fn new(config: &Config, vb: VarBuilder) -> Result<Self> { let text_model = PhiModel::new_v2(&config.phi_config, vb.pp("text_model"))?; let vision_encoder = VisionEncoder::new(&config.vision_config, vb.pp("vision_encoder"))?; Ok(Self { text_model, vision_encoder, }) } pub fn vision_encoder(&self) -> &VisionEncoder { &self.vision_encoder } pub fn text_model(&mut self) -> &mut PhiModel { &mut self.text_model } }
candle/candle-transformers/src/models/moondream.rs/0
{ "file_path": "candle/candle-transformers/src/models/moondream.rs", "repo_id": "candle", "token_count": 4454 }
53
use std::collections::HashMap; use candle::quantized::gguf_file; use candle::quantized::QTensor; use candle::{DType, Device, IndexOp, Module, Result, Tensor, D}; use candle_nn::{kv_cache::KvCache, Embedding, RmsNorm}; #[derive(Debug, Clone)] struct QLinear { inner: candle::quantized::QMatMul, span: tracing::Span, } impl QLinear { fn new<R: std::io::Read + std::io::Seek>( ct: &gguf_file::Content, r: &mut R, name: &str, device: &Device, ) -> Result<Self> { let span = tracing::span!(tracing::Level::TRACE, "qmatmul"); let w = ct.tensor(r, &format!("{name}.weight"), device)?; let inner = candle::quantized::QMatMul::from_qtensor(w)?; Ok(Self { inner, span }) } } impl Module for QLinear { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); self.inner.forward(xs) } } #[derive(Debug, Clone)] struct Mlp { ffn_up: QLinear, ffn_down: QLinear, i_size: usize, } impl Module for Mlp { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let up_states = xs.apply(&self.ffn_up)?; let gate = up_states.narrow(D::Minus1, 0, self.i_size)?; let up_states = up_states.narrow(D::Minus1, self.i_size, self.i_size)?; let up_states = (up_states * gate.silu()?)?; up_states.apply(&self.ffn_down) } } fn rms_norm(w: QTensor, eps: f64) -> Result<RmsNorm> { let w = w.dequantize(&w.device())?; let rms = RmsNorm::new(w, eps); Ok(rms) } #[derive(Debug, Clone)] struct LayerWeights { attn_qkv: QLinear, attn_output: QLinear, attn_norm: RmsNorm, ffn_norm: RmsNorm, mlp: Mlp, n_head: usize, n_kv_head: usize, head_dim: usize, cos: Tensor, sin: Tensor, neg_inf: Tensor, kv_cache: KvCache, use_flash_attn: bool, span_attn: tracing::Span, span_rot: tracing::Span, } fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: &Tensor) -> Result<Tensor> { let shape = mask.shape(); let m = mask.where_cond(&on_true.broadcast_as(shape.dims())?, on_false)?; Ok(m) } impl LayerWeights { fn apply_rotary_emb(&self, xs: &Tensor, index_pos: usize) -> Result<Tensor> { let _enter = self.span_rot.enter(); let (_b_sz, _h, seq_len, _n_embd) = xs.dims4()?; let cos = self.cos.narrow(0, index_pos, seq_len)?; let sin = self.sin.narrow(0, index_pos, seq_len)?; candle_nn::rotary_emb::rope(&xs.contiguous()?, &cos, &sin) } fn forward_attn( &mut self, x: &Tensor, mask: Option<&Tensor>, index_pos: usize, ) -> Result<Tensor> { let _enter = self.span_attn.enter(); let (b_sz, seq_len, n_embd) = x.dims3()?; let qkv = self.attn_qkv.forward(x)?; let query_pos = self.n_head * self.head_dim; let q = qkv.narrow(D::Minus1, 0, query_pos)?; let k = qkv.narrow(D::Minus1, query_pos, self.n_kv_head * self.head_dim)?; let v = qkv.narrow( D::Minus1, query_pos + self.n_kv_head * self.head_dim, self.n_kv_head * self.head_dim, )?; let q = q .reshape((b_sz, seq_len, self.n_head, self.head_dim))? .transpose(1, 2)?; let k = k .reshape((b_sz, seq_len, self.n_head, self.head_dim))? .transpose(1, 2)?; let v = v .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))? .transpose(1, 2)?; let q = self.apply_rotary_emb(&q, index_pos)?.contiguous()?; let k = self.apply_rotary_emb(&k, index_pos)?; let (k, v) = self.kv_cache.append(&k.contiguous()?, &v.contiguous()?)?; let k = crate::utils::repeat_kv(k, self.n_head / self.n_kv_head)?; let v = crate::utils::repeat_kv(v, self.n_head / self.n_kv_head)?; let y = if self.use_flash_attn { // flash-attn expects (b_sz, seq_len, nheads, head_dim) let q = q.to_dtype(DType::BF16)?.transpose(1, 2)?; let k = k.to_dtype(DType::BF16)?.transpose(1, 2)?; let v = v.to_dtype(DType::BF16)?.transpose(1, 2)?; let softmax_scale = 1f32 / (self.head_dim as f32).sqrt(); flash_attn(&q, &k, &v, softmax_scale, seq_len > 1)? .to_dtype(DType::F32)? .transpose(1, 2)? } else { let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?; let att = match mask { None => att, Some(mask) => { let mask = mask.broadcast_as(att.shape())?; masked_fill(&att, &mask, &self.neg_inf)? } }; let att = candle_nn::ops::softmax_last_dim(&att)?; // Convert to contiguous as matmul doesn't support strided vs for now. att.matmul(&v)? }; let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?; let y = self.attn_output.forward(&y)?; Ok(y) } } #[cfg(feature = "flash-attn")] fn flash_attn( q: &Tensor, k: &Tensor, v: &Tensor, softmax_scale: f32, causal: bool, ) -> Result<Tensor> { candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal) } #[cfg(not(feature = "flash-attn"))] fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> { unimplemented!("compile with '--features flash-attn'") } #[derive(Debug, Clone)] pub struct ModelWeights { tok_embeddings: Embedding, layers: Vec<LayerWeights>, output_norm: RmsNorm, output: QLinear, masks: HashMap<usize, Tensor>, span: tracing::Span, span_output: tracing::Span, } fn precomput_freqs_cis( head_dim: usize, max_seq_len: usize, freq_base: f32, device: &Device, ) -> Result<(Tensor, Tensor)> { let theta: Vec<_> = (0..head_dim) .step_by(2) .map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32)) .collect(); let theta = Tensor::new(theta.as_slice(), device)?; let idx_theta = Tensor::arange(0, max_seq_len as u32, device)? .to_dtype(DType::F32)? .reshape((max_seq_len, 1))? .matmul(&theta.reshape((1, theta.elem_count()))?)?; let cos = idx_theta.cos()?; let sin = idx_theta.sin()?; Ok((cos, sin)) } impl ModelWeights { pub fn from_gguf<R: std::io::Seek + std::io::Read>( use_flash_attn: bool, ct: gguf_file::Content, reader: &mut R, device: &Device, ) -> Result<Self> { let md_get = |s: &str| match ct.metadata.get(s) { None => candle::bail!("cannot find {s} in metadata"), Some(v) => Ok(v), }; // Parameter extraction from metadata. let head_count = md_get("phi3.attention.head_count")?.to_u32()? as usize; let head_count_kv = md_get("phi3.attention.head_count_kv")?.to_u32()? as usize; let block_count = md_get("phi3.block_count")?.to_u32()? as usize; let embedding_length = md_get("phi3.embedding_length")?.to_u32()? as usize; let max_seq_len = md_get("phi3.context_length")?.to_u32()? as usize; let head_dim = embedding_length / head_count; let i_size = md_get("phi3.feed_forward_length")?.to_u32()? as usize; let rope_dim = md_get("phi3.rope.dimension_count")?.to_u32()? as usize; let rms_eps = md_get("phi3.attention.layer_norm_rms_epsilon")?.to_f32()? as f64; let (cos, sin) = precomput_freqs_cis(rope_dim, max_seq_len, 10_000., device)?; let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?; let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?; let tok_embeddings = tok_embeddings.dequantize(device)?; let output_norm = rms_norm(ct.tensor(reader, "output_norm.weight", device)?, rms_eps)?; let output = QLinear::new(&ct, reader, "output", device)?; let mut layers = Vec::with_capacity(block_count); for layer_idx in 0..block_count { let prefix = format!("blk.{layer_idx}"); let ffn_up = QLinear::new(&ct, reader, &format!("{prefix}.ffn_up"), device)?; let ffn_down = QLinear::new(&ct, reader, &format!("{prefix}.ffn_down"), device)?; let mlp = Mlp { ffn_up, ffn_down, i_size, }; let attn_norm = rms_norm( ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?, rms_eps, )?; let ffn_norm = rms_norm( ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"), device)?, rms_eps, )?; let span_attn = tracing::span!(tracing::Level::TRACE, "attn"); let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot"); let kv_cache = KvCache::new(2, max_seq_len); layers.push(LayerWeights { attn_qkv: QLinear::new(&ct, reader, &format!("{prefix}.attn_qkv"), device)?, attn_output: QLinear::new(&ct, reader, &format!("{prefix}.attn_output"), device)?, attn_norm, ffn_norm, mlp, n_head: head_count, n_kv_head: head_count_kv, head_dim, cos: cos.clone(), sin: sin.clone(), neg_inf: neg_inf.clone(), kv_cache, use_flash_attn, span_attn, span_rot, }) } let span = tracing::span!(tracing::Level::TRACE, "model"); let span_output = tracing::span!(tracing::Level::TRACE, "output"); Ok(Self { tok_embeddings: Embedding::new(tok_embeddings, embedding_length), layers, output_norm, output, masks: HashMap::new(), span, span_output, }) } fn mask(&mut self, t: usize, device: &Device) -> Result<Tensor> { if let Some(mask) = self.masks.get(&t) { Ok(mask.clone()) } else { let mask: Vec<_> = (0..t) .flat_map(|i| (0..t).map(move |j| u8::from(j > i))) .collect(); let mask = Tensor::from_slice(&mask, (t, t), device)?; self.masks.insert(t, mask.clone()); Ok(mask) } } pub fn forward(&mut self, xs: &Tensor, index_pos: usize) -> Result<Tensor> { let (_b_sz, seq_len) = xs.dims2()?; let mask = if seq_len == 1 { None } else { Some(self.mask(seq_len, xs.device())?) }; let _enter = self.span.enter(); let mut xs = self.tok_embeddings.forward(xs)?; for layer in self.layers.iter_mut() { let residual = &xs; let ys = xs.apply(&layer.attn_norm)?; let ys = layer.forward_attn(&ys, mask.as_ref(), index_pos)?; let ys = (ys + residual)?; let residual = &ys; let ys = ys.apply(&layer.ffn_norm)?; let ys = layer.mlp.forward(&ys)?; xs = (ys + residual)? } let xs = xs.apply(&self.output_norm)?.i((.., seq_len - 1, ..))?; let _enter = self.span_output.enter(); self.output.forward(&xs) } }
candle/candle-transformers/src/models/quantized_phi3.rs/0
{ "file_path": "candle/candle-transformers/src/models/quantized_phi3.rs", "repo_id": "candle", "token_count": 5978 }
54
pub use crate::models::with_tracing::Linear; use candle::{Result, Tensor}; use candle_nn::{Module, VarBuilder}; pub mod image_encoder; pub mod mask_decoder; pub mod prompt_encoder; pub mod sam; pub mod tiny_vit; pub mod transformer; pub fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> { if bias { crate::models::with_tracing::linear(in_dim, out_dim, vb) } else { crate::models::with_tracing::linear_no_bias(in_dim, out_dim, vb) } } #[derive(Debug)] pub struct LayerNorm2d { weight: Tensor, bias: Tensor, num_channels: usize, eps: f64, } impl LayerNorm2d { pub fn new(num_channels: usize, eps: f64, vb: VarBuilder) -> Result<Self> { let weight = vb.get(num_channels, "weight")?; let bias = vb.get(num_channels, "bias")?; Ok(Self { weight, bias, num_channels, eps, }) } } impl Module for LayerNorm2d { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let u = xs.mean_keepdim(1)?; let xs = xs.broadcast_sub(&u)?; let s = xs.sqr()?.mean_keepdim(1)?; let xs = xs.broadcast_div(&(s + self.eps)?.sqrt()?)?; xs.broadcast_mul(&self.weight.reshape((1, self.num_channels, 1, 1))?)? .broadcast_add(&self.bias.reshape((1, self.num_channels, 1, 1))?) } } #[derive(Debug)] pub struct MlpBlock { lin1: Linear, lin2: Linear, activation: candle_nn::Activation, span: tracing::Span, } impl MlpBlock { pub fn new( embedding_dim: usize, mlp_dim: usize, activation: candle_nn::Activation, vb: VarBuilder, ) -> Result<Self> { let lin1 = linear(vb.pp("lin1"), embedding_dim, mlp_dim, true)?; let lin2 = linear(vb.pp("lin2"), mlp_dim, embedding_dim, true)?; let span = tracing::span!(tracing::Level::TRACE, "mlp-block"); Ok(Self { lin1, lin2, activation, span, }) } } impl Module for MlpBlock { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); xs.apply(&self.lin1)? .apply(&self.activation)? .apply(&self.lin2) } }
candle/candle-transformers/src/models/segment_anything/mod.rs/0
{ "file_path": "candle/candle-transformers/src/models/segment_anything/mod.rs", "repo_id": "candle", "token_count": 1119 }
55
use candle::{Device, Result, Tensor}; pub fn linspace(start: f64, stop: f64, steps: usize) -> Result<Tensor> { if steps == 0 { Tensor::from_vec(Vec::<f64>::new(), steps, &Device::Cpu) } else if steps == 1 { Tensor::from_vec(vec![start], steps, &Device::Cpu) } else { let delta = (stop - start) / (steps - 1) as f64; let vs = (0..steps) .map(|step| start + step as f64 * delta) .collect::<Vec<_>>(); Tensor::from_vec(vs, steps, &Device::Cpu) } } /// A linear interpolator for a sorted array of x and y values. struct LinearInterpolator<'x, 'y> { xp: &'x [f64], fp: &'y [f64], cache: usize, } impl<'x, 'y> LinearInterpolator<'x, 'y> { fn accel_find(&mut self, x: f64) -> usize { let xidx = self.cache; if x < self.xp[xidx] { self.cache = self.xp[0..xidx].partition_point(|o| *o < x); self.cache = self.cache.saturating_sub(1); } else if x >= self.xp[xidx + 1] { self.cache = self.xp[xidx..self.xp.len()].partition_point(|o| *o < x) + xidx; self.cache = self.cache.saturating_sub(1); } self.cache } fn eval(&mut self, x: f64) -> f64 { if x < self.xp[0] || x > self.xp[self.xp.len() - 1] { return f64::NAN; } let idx = self.accel_find(x); let x_l = self.xp[idx]; let x_h = self.xp[idx + 1]; let y_l = self.fp[idx]; let y_h = self.fp[idx + 1]; let dx = x_h - x_l; if dx > 0.0 { y_l + (x - x_l) / dx * (y_h - y_l) } else { f64::NAN } } } pub fn interp(x: &[f64], xp: &[f64], fp: &[f64]) -> Vec<f64> { let mut interpolator = LinearInterpolator { xp, fp, cache: 0 }; x.iter().map(|&x| interpolator.eval(x)).collect() }
candle/candle-transformers/src/models/stable_diffusion/utils.rs/0
{ "file_path": "candle/candle-transformers/src/models/stable_diffusion/utils.rs", "repo_id": "candle", "token_count": 979 }
56
use super::common::{AttnBlock, GlobalResponseNorm, LayerNormNoWeights, TimestepBlock, WLayerNorm}; use candle::{DType, Module, Result, Tensor, D}; use candle_nn::VarBuilder; #[derive(Debug)] pub struct ResBlockStageB { depthwise: candle_nn::Conv2d, norm: WLayerNorm, channelwise_lin1: candle_nn::Linear, channelwise_grn: GlobalResponseNorm, channelwise_lin2: candle_nn::Linear, } impl ResBlockStageB { pub fn new(c: usize, c_skip: usize, ksize: usize, vb: VarBuilder) -> Result<Self> { let cfg = candle_nn::Conv2dConfig { groups: c, padding: ksize / 2, ..Default::default() }; let depthwise = candle_nn::conv2d(c, c, ksize, cfg, vb.pp("depthwise"))?; let norm = WLayerNorm::new(c)?; let channelwise_lin1 = candle_nn::linear(c + c_skip, c * 4, vb.pp("channelwise.0"))?; let channelwise_grn = GlobalResponseNorm::new(4 * c, vb.pp("channelwise.2"))?; let channelwise_lin2 = candle_nn::linear(c * 4, c, vb.pp("channelwise.4"))?; Ok(Self { depthwise, norm, channelwise_lin1, channelwise_grn, channelwise_lin2, }) } pub fn forward(&self, xs: &Tensor, x_skip: Option<&Tensor>) -> Result<Tensor> { let x_res = xs; let xs = xs.apply(&self.depthwise)?.apply(&self.norm)?; let xs = match x_skip { None => xs.clone(), Some(x_skip) => Tensor::cat(&[&xs, x_skip], 1)?, }; let xs = xs .permute((0, 2, 3, 1))? .contiguous()? .apply(&self.channelwise_lin1)? .gelu()? .apply(&self.channelwise_grn)? .apply(&self.channelwise_lin2)? .permute((0, 3, 1, 2))?; xs + x_res } } #[derive(Debug)] struct SubBlock { res_block: ResBlockStageB, ts_block: TimestepBlock, attn_block: Option<AttnBlock>, } #[derive(Debug)] struct DownBlock { layer_norm: Option<WLayerNorm>, conv: Option<candle_nn::Conv2d>, sub_blocks: Vec<SubBlock>, } #[derive(Debug)] struct UpBlock { sub_blocks: Vec<SubBlock>, layer_norm: Option<WLayerNorm>, conv: Option<candle_nn::ConvTranspose2d>, } #[derive(Debug)] pub struct WDiffNeXt { clip_mapper: candle_nn::Linear, effnet_mappers: Vec<Option<candle_nn::Conv2d>>, seq_norm: LayerNormNoWeights, embedding_conv: candle_nn::Conv2d, embedding_ln: WLayerNorm, down_blocks: Vec<DownBlock>, up_blocks: Vec<UpBlock>, clf_ln: WLayerNorm, clf_conv: candle_nn::Conv2d, c_r: usize, patch_size: usize, } impl WDiffNeXt { #[allow(clippy::too_many_arguments)] pub fn new( c_in: usize, c_out: usize, c_r: usize, c_cond: usize, clip_embd: usize, patch_size: usize, use_flash_attn: bool, vb: VarBuilder, ) -> Result<Self> { const C_HIDDEN: [usize; 4] = [320, 640, 1280, 1280]; const BLOCKS: [usize; 4] = [4, 4, 14, 4]; const NHEAD: [usize; 4] = [1, 10, 20, 20]; const INJECT_EFFNET: [bool; 4] = [false, true, true, true]; const EFFNET_EMBD: usize = 16; let clip_mapper = candle_nn::linear(clip_embd, c_cond, vb.pp("clip_mapper"))?; let mut effnet_mappers = Vec::with_capacity(2 * INJECT_EFFNET.len()); let vb_e = vb.pp("effnet_mappers"); for (i, &inject) in INJECT_EFFNET.iter().enumerate() { let c = if inject { Some(candle_nn::conv2d( EFFNET_EMBD, c_cond, 1, Default::default(), vb_e.pp(i), )?) } else { None }; effnet_mappers.push(c) } for (i, &inject) in INJECT_EFFNET.iter().rev().enumerate() { let c = if inject { Some(candle_nn::conv2d( EFFNET_EMBD, c_cond, 1, Default::default(), vb_e.pp(i + INJECT_EFFNET.len()), )?) } else { None }; effnet_mappers.push(c) } let seq_norm = LayerNormNoWeights::new(c_cond)?; let embedding_ln = WLayerNorm::new(C_HIDDEN[0])?; let embedding_conv = candle_nn::conv2d( c_in * patch_size * patch_size, C_HIDDEN[0], 1, Default::default(), vb.pp("embedding.1"), )?; let mut down_blocks = Vec::with_capacity(C_HIDDEN.len()); for (i, &c_hidden) in C_HIDDEN.iter().enumerate() { let vb = vb.pp("down_blocks").pp(i); let (layer_norm, conv, start_layer_i) = if i > 0 { let layer_norm = WLayerNorm::new(C_HIDDEN[i - 1])?; let cfg = candle_nn::Conv2dConfig { stride: 2, ..Default::default() }; let conv = candle_nn::conv2d(C_HIDDEN[i - 1], c_hidden, 2, cfg, vb.pp("0.1"))?; (Some(layer_norm), Some(conv), 1) } else { (None, None, 0) }; let mut sub_blocks = Vec::with_capacity(BLOCKS[i]); let mut layer_i = start_layer_i; for _j in 0..BLOCKS[i] { let c_skip = if INJECT_EFFNET[i] { c_cond } else { 0 }; let res_block = ResBlockStageB::new(c_hidden, c_skip, 3, vb.pp(layer_i))?; layer_i += 1; let ts_block = TimestepBlock::new(c_hidden, c_r, vb.pp(layer_i))?; layer_i += 1; let attn_block = if i == 0 { None } else { let attn_block = AttnBlock::new( c_hidden, c_cond, NHEAD[i], true, use_flash_attn, vb.pp(layer_i), )?; layer_i += 1; Some(attn_block) }; let sub_block = SubBlock { res_block, ts_block, attn_block, }; sub_blocks.push(sub_block) } let down_block = DownBlock { layer_norm, conv, sub_blocks, }; down_blocks.push(down_block) } let mut up_blocks = Vec::with_capacity(C_HIDDEN.len()); for (i, &c_hidden) in C_HIDDEN.iter().enumerate().rev() { let vb = vb.pp("up_blocks").pp(C_HIDDEN.len() - 1 - i); let mut sub_blocks = Vec::with_capacity(BLOCKS[i]); let mut layer_i = 0; for j in 0..BLOCKS[i] { let c_skip = if INJECT_EFFNET[i] { c_cond } else { 0 }; let c_skip_res = if i < BLOCKS.len() - 1 && j == 0 { c_hidden + c_skip } else { c_skip }; let res_block = ResBlockStageB::new(c_hidden, c_skip_res, 3, vb.pp(layer_i))?; layer_i += 1; let ts_block = TimestepBlock::new(c_hidden, c_r, vb.pp(layer_i))?; layer_i += 1; let attn_block = if i == 0 { None } else { let attn_block = AttnBlock::new( c_hidden, c_cond, NHEAD[i], true, use_flash_attn, vb.pp(layer_i), )?; layer_i += 1; Some(attn_block) }; let sub_block = SubBlock { res_block, ts_block, attn_block, }; sub_blocks.push(sub_block) } let (layer_norm, conv) = if i > 0 { let layer_norm = WLayerNorm::new(C_HIDDEN[i - 1])?; let cfg = candle_nn::ConvTranspose2dConfig { stride: 2, ..Default::default() }; let conv = candle_nn::conv_transpose2d( c_hidden, C_HIDDEN[i - 1], 2, cfg, vb.pp(layer_i).pp(1), )?; (Some(layer_norm), Some(conv)) } else { (None, None) }; let up_block = UpBlock { layer_norm, conv, sub_blocks, }; up_blocks.push(up_block) } let clf_ln = WLayerNorm::new(C_HIDDEN[0])?; let clf_conv = candle_nn::conv2d( C_HIDDEN[0], 2 * c_out * patch_size * patch_size, 1, Default::default(), vb.pp("clf.1"), )?; Ok(Self { clip_mapper, effnet_mappers, seq_norm, embedding_conv, embedding_ln, down_blocks, up_blocks, clf_ln, clf_conv, c_r, patch_size, }) } fn gen_r_embedding(&self, r: &Tensor) -> Result<Tensor> { const MAX_POSITIONS: usize = 10000; let r = (r * MAX_POSITIONS as f64)?; let half_dim = self.c_r / 2; let emb = (MAX_POSITIONS as f64).ln() / (half_dim - 1) as f64; let emb = (Tensor::arange(0u32, half_dim as u32, r.device())?.to_dtype(DType::F32)? * -emb)? .exp()?; let emb = r.unsqueeze(1)?.broadcast_mul(&emb.unsqueeze(0)?)?; let emb = Tensor::cat(&[emb.sin()?, emb.cos()?], 1)?; let emb = if self.c_r % 2 == 1 { emb.pad_with_zeros(D::Minus1, 0, 1)? } else { emb }; emb.to_dtype(r.dtype()) } fn gen_c_embeddings(&self, clip: &Tensor) -> Result<Tensor> { clip.apply(&self.clip_mapper)?.apply(&self.seq_norm) } pub fn forward( &self, xs: &Tensor, r: &Tensor, effnet: &Tensor, clip: Option<&Tensor>, ) -> Result<Tensor> { const EPS: f64 = 1e-3; let r_embed = self.gen_r_embedding(r)?; let clip = match clip { None => None, Some(clip) => Some(self.gen_c_embeddings(clip)?), }; let x_in = xs; let mut xs = xs .apply(&|xs: &_| candle_nn::ops::pixel_unshuffle(xs, self.patch_size))? .apply(&self.embedding_conv)? .apply(&self.embedding_ln)?; let mut level_outputs = Vec::new(); for (i, down_block) in self.down_blocks.iter().enumerate() { if let Some(ln) = &down_block.layer_norm { xs = xs.apply(ln)? } if let Some(conv) = &down_block.conv { xs = xs.apply(conv)? } let skip = match &self.effnet_mappers[i] { None => None, Some(m) => { let effnet = effnet.interpolate2d(xs.dim(D::Minus2)?, xs.dim(D::Minus1)?)?; Some(m.forward(&effnet)?) } }; for block in down_block.sub_blocks.iter() { xs = block.res_block.forward(&xs, skip.as_ref())?; xs = block.ts_block.forward(&xs, &r_embed)?; if let Some(attn_block) = &block.attn_block { xs = attn_block.forward(&xs, clip.as_ref().unwrap())?; } } level_outputs.push(xs.clone()) } level_outputs.reverse(); let mut xs = level_outputs[0].clone(); for (i, up_block) in self.up_blocks.iter().enumerate() { let effnet_c = match &self.effnet_mappers[self.down_blocks.len() + i] { None => None, Some(m) => { let effnet = effnet.interpolate2d(xs.dim(D::Minus2)?, xs.dim(D::Minus1)?)?; Some(m.forward(&effnet)?) } }; for (j, block) in up_block.sub_blocks.iter().enumerate() { let skip = if j == 0 && i > 0 { Some(&level_outputs[i]) } else { None }; let skip = match (skip, effnet_c.as_ref()) { (Some(skip), Some(effnet_c)) => Some(Tensor::cat(&[skip, effnet_c], 1)?), (None, Some(skip)) | (Some(skip), None) => Some(skip.clone()), (None, None) => None, }; xs = block.res_block.forward(&xs, skip.as_ref())?; xs = block.ts_block.forward(&xs, &r_embed)?; if let Some(attn_block) = &block.attn_block { xs = attn_block.forward(&xs, clip.as_ref().unwrap())?; } } if let Some(ln) = &up_block.layer_norm { xs = xs.apply(ln)? } if let Some(conv) = &up_block.conv { xs = xs.apply(conv)? } } let ab = xs .apply(&self.clf_ln)? .apply(&self.clf_conv)? .apply(&|xs: &_| candle_nn::ops::pixel_shuffle(xs, self.patch_size))? .chunk(2, 1)?; let b = ((candle_nn::ops::sigmoid(&ab[1])? * (1. - EPS * 2.))? + EPS)?; (x_in - &ab[0])? / b } }
candle/candle-transformers/src/models/wuerstchen/diffnext.rs/0
{ "file_path": "candle/candle-transformers/src/models/wuerstchen/diffnext.rs", "repo_id": "candle", "token_count": 8148 }
57
<html> <head> <meta content="text/html;charset=utf-8" http-equiv="Content-Type" /> <title>Candle Bert</title> </head> <body></body> </html> <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <style> @import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap"); html, body { font-family: "Source Sans 3", sans-serif; } </style> <script src="https://cdn.tailwindcss.com"></script> <script type="module" src="./code.js"></script> <script type="module"> import { hcl } from "https://cdn.skypack.dev/d3-color@3"; import { interpolateReds } from "https://cdn.skypack.dev/d3-scale-chromatic@3"; import { scaleLinear } from "https://cdn.skypack.dev/d3-scale@4"; import { getModelInfo, getEmbeddings, getWikiText, cosineSimilarity, } from "./utils.js"; const bertWorker = new Worker("./bertWorker.js", { type: "module", }); const inputContainerEL = document.querySelector("#input-container"); const textAreaEl = document.querySelector("#input-area"); const outputAreaEl = document.querySelector("#output-area"); const formEl = document.querySelector("#form"); const searchInputEl = document.querySelector("#search-input"); const formWikiEl = document.querySelector("#form-wiki"); const searchWikiEl = document.querySelector("#search-wiki"); const outputStatusEl = document.querySelector("#output-status"); const modelSelectEl = document.querySelector("#model"); const sentencesRegex = /(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<![A-Z]\.)(?<=\.|\?)\s/gm; let sentenceEmbeddings = []; let currInputText = ""; let isCalculating = false; function toggleTextArea(state) { if (state) { textAreaEl.hidden = false; textAreaEl.focus(); } else { textAreaEl.hidden = true; } } inputContainerEL.addEventListener("focus", (e) => { toggleTextArea(true); }); textAreaEl.addEventListener("blur", (e) => { toggleTextArea(false); }); textAreaEl.addEventListener("focusout", (e) => { toggleTextArea(false); if (currInputText === textAreaEl.value || isCalculating) return; populateOutputArea(textAreaEl.value); calculateEmbeddings(textAreaEl.value); }); modelSelectEl.addEventListener("change", (e) => { if (currInputText === "" || isCalculating) return; populateOutputArea(textAreaEl.value); calculateEmbeddings(textAreaEl.value); }); function populateOutputArea(text) { currInputText = text; const sentences = text.split(sentencesRegex); outputAreaEl.innerHTML = ""; for (const [id, sentence] of sentences.entries()) { const sentenceEl = document.createElement("span"); sentenceEl.id = `sentence-${id}`; sentenceEl.innerText = sentence + " "; outputAreaEl.appendChild(sentenceEl); } } formEl.addEventListener("submit", async (e) => { e.preventDefault(); if (isCalculating || currInputText === "") return; toggleInputs(true); const modelID = modelSelectEl.value; const { modelURL, tokenizerURL, configURL, search_prefix } = getModelInfo(modelID); const text = searchInputEl.value; const query = search_prefix + searchInputEl.value; outputStatusEl.classList.remove("invisible"); outputStatusEl.innerText = "Calculating embeddings for query..."; isCalculating = true; const out = await getEmbeddings( bertWorker, modelURL, tokenizerURL, configURL, modelID, [query] ); outputStatusEl.classList.add("invisible"); const queryEmbeddings = out.output[0]; // calculate cosine similarity with all sentences given the query const distances = sentenceEmbeddings .map((embedding, id) => ({ id, similarity: cosineSimilarity(queryEmbeddings, embedding), })) .sort((a, b) => b.similarity - a.similarity) // getting top 10 most similar sentences .slice(0, 10); const colorScale = scaleLinear() .domain([ distances[distances.length - 1].similarity, distances[0].similarity, ]) .range([0, 1]) .interpolate(() => interpolateReds); outputAreaEl.querySelectorAll("span").forEach((el) => { el.style.color = "unset"; el.style.backgroundColor = "unset"; }); distances.forEach((d) => { const el = outputAreaEl.querySelector(`#sentence-${d.id}`); const color = colorScale(d.similarity); const fontColor = hcl(color).l < 70 ? "white" : "black"; el.style.color = fontColor; el.style.backgroundColor = color; }); outputAreaEl .querySelector(`#sentence-${distances[0].id}`) .scrollIntoView({ behavior: "smooth", block: "center", inline: "nearest", }); isCalculating = false; toggleInputs(false); }); async function calculateEmbeddings(text) { isCalculating = true; toggleInputs(true); const modelID = modelSelectEl.value; const { modelURL, tokenizerURL, configURL, document_prefix } = getModelInfo(modelID); const sentences = text.split(sentencesRegex); const allEmbeddings = []; outputStatusEl.classList.remove("invisible"); for (const [id, sentence] of sentences.entries()) { const query = document_prefix + sentence; outputStatusEl.innerText = `Calculating embeddings: sentence ${ id + 1 } of ${sentences.length}`; const embeddings = await getEmbeddings( bertWorker, modelURL, tokenizerURL, configURL, modelID, [query], updateStatus ); allEmbeddings.push(embeddings); } outputStatusEl.classList.add("invisible"); sentenceEmbeddings = allEmbeddings.map((e) => e.output[0]); isCalculating = false; toggleInputs(false); } function updateStatus(data) { if ("status" in data) { if (data.status === "loading") { outputStatusEl.innerText = data.message; outputStatusEl.classList.remove("invisible"); } } } function toggleInputs(state) { const interactive = document.querySelectorAll(".interactive"); interactive.forEach((el) => { if (state) { el.disabled = true; } else { el.disabled = false; } }); } searchWikiEl.addEventListener("input", () => { searchWikiEl.setCustomValidity(""); }); formWikiEl.addEventListener("submit", async (e) => { e.preventDefault(); if ("example" in e.submitter.dataset) { searchWikiEl.value = e.submitter.innerText; } const text = searchWikiEl.value; if (isCalculating || text === "") return; try { const wikiText = await getWikiText(text); searchWikiEl.setCustomValidity(""); textAreaEl.innerHTML = wikiText; populateOutputArea(wikiText); calculateEmbeddings(wikiText); searchWikiEl.value = ""; } catch { searchWikiEl.setCustomValidity("Invalid Wikipedia article name"); searchWikiEl.reportValidity(); } }); </script> </head> <body class="container max-w-4xl mx-auto p-4"> <main class="grid grid-cols-1 gap-5 relative"> <span class="absolute text-5xl -ml-[1em]"> 🕯️ </span> <div> <h1 class="text-5xl font-bold">Candle BERT</h1> <h2 class="text-2xl font-bold">Rust/WASM Demo</h2> <p class="max-w-lg"> Running sentence embeddings and similarity search in the browser using the Bert Model written with <a href="https://github.com/huggingface/candle/" target="_blank" class="underline hover:text-blue-500 hover:no-underline" >Candle </a> and compiled to Wasm. Embeddings models from are from <a href="https://huggingface.co/sentence-transformers/" target="_blank" class="underline hover:text-blue-500 hover:no-underline" > Sentence Transformers </a> and <a href="https://huggingface.co/intfloat/" target="_blank" class="underline hover:text-blue-500 hover:no-underline" > Liang Wang - e5 Models </a> </p> </div> <div> <label for="model" class="font-medium block">Models Options: </label> <select id="model" class="border-2 border-gray-500 rounded-md font-light interactive disabled:cursor-not-allowed w-full max-w-max" > <option value="intfloat_e5_small_v2" selected> intfloat/e5-small-v2 (133 MB) </option> <option value="intfloat_e5_base_v2"> intfloat/e5-base-v2 (438 MB) </option> <option value="intfloat_multilingual_e5_small"> intfloat/multilingual-e5-small (471 MB) </option> <option value="sentence_transformers_all_MiniLM_L6_v2"> sentence-transformers/all-MiniLM-L6-v2 (90.9 MB) </option> <option value="sentence_transformers_all_MiniLM_L12_v2"> sentence-transformers/all-MiniLM-L12-v2 (133 MB) </option> </select> </div> <div> <h3 class="font-medium">Examples:</h3> <form id="form-wiki" class="flex text-xs rounded-md justify-between w-min gap-3" > <input type="submit" hidden /> <button data-example class="disabled:cursor-not-allowed interactive"> Pizza </button> <button data-example class="disabled:cursor-not-allowed interactive"> Paris </button> <button data-example class="disabled:cursor-not-allowed interactive"> Physics </button> <input type="text" id="search-wiki" title="Search Wikipedia article by title" class="font-light py-0 mx-1 resize-none outline-none w-32 disabled:cursor-not-allowed interactive" placeholder="Load Wikipedia article..." /> <button title="Search Wikipedia article and load into input" class="bg-gray-700 hover:bg-gray-800 text-white font-normal px-2 py-1 rounded disabled:bg-gray-300 disabled:cursor-not-allowed interactive" > Load </button> </form> </div> <form id="form" class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center" > <input type="submit" hidden /> <input type="text" id="search-input" class="font-light w-full px-3 py-2 mx-1 resize-none outline-none interactive disabled:cursor-not-allowed" placeholder="Search query here..." /> <button class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-2 w-16 rounded disabled:bg-gray-300 disabled:cursor-not-allowed interactive" > Search </button> </form> <div> <h3 class="font-medium">Input text:</h3> <div class="flex justify-between items-center"> <div class="rounded-md inline text-xs"> <span id="output-status" class="m-auto font-light invisible" >C</span > </div> </div> <div id="input-container" tabindex="0" class="min-h-[250px] bg-slate-100 text-gray-500 rounded-md p-4 flex flex-col gap-2 relative" > <textarea id="input-area" hidden value="" placeholder="Input text to perform semantic similarity search..." class="flex-1 resize-none outline-none left-0 right-0 top-0 bottom-0 m-4 absolute interactive disabled:invisible" ></textarea> <p id="output-area" class="grid-rows-2"> Input text to perform semantic similarity search... </p> </div> </div> </main> </body> </html>
candle/candle-wasm-examples/bert/lib-example.html/0
{ "file_path": "candle/candle-wasm-examples/bert/lib-example.html", "repo_id": "candle", "token_count": 6066 }
58
<html> <head> <meta content="text/html;charset=utf-8" http-equiv="Content-Type" /> <title>Candle Llama.c Rust/WASM</title> </head> <body></body> </html> <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <style> @import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap"); html, body { font-family: "Source Sans 3", sans-serif; } code, output, select, pre { font-family: "Source Code Pro", monospace; } </style> <script src="https://cdn.tailwindcss.com"></script> <script type="module"> // base url for audio examples const MODELS_BASE_URL = "https://huggingface.co/karpathy/tinyllamas/resolve/main"; // models base url const MODELS = { stories15M: { url: "stories15M.bin", seq_len: 256, }, stories42M: { url: "stories42M.bin", seq_len: 1024, }, stories110M: { url: "stories110M.bin", seq_len: 1024, }, }; const llamaWorker = new Worker("./llama2cWorker.js", { type: "module", }); async function generateSequence(controller) { const getValue = (id) => document.querySelector(`#${id}`).value; const modelID = getValue("model"); const model = MODELS[modelID]; const weightsURL = `${MODELS_BASE_URL}/${model.url}`; const prompt = getValue("prompt"); const temperature = getValue("temperature"); const topP = getValue("top-p"); const repeatPenalty = getValue("repeat_penalty"); const seed = getValue("seed"); const maxSeqLen = getValue("max-seq"); function updateStatus(data) { const outStatus = document.querySelector("#output-status"); const outGen = document.querySelector("#output-generation"); const outCounter = document.querySelector("#output-counter"); switch (data.status) { case "loading": outStatus.hidden = false; outStatus.textContent = data.message; outGen.hidden = true; outCounter.hidden = true; break; case "generating": const { message, prompt, sentence, tokensSec, totalTime } = data; outStatus.hidden = true; outCounter.hidden = false; outGen.hidden = false; outGen.innerHTML = `<span class="font-semibold">${prompt}</span>${sentence.replace( /\<s\>|\<\/s\>/g, "" )}`; outCounter.innerHTML = `${(totalTime / 1000).toFixed( 2 )}s (${tokensSec.toFixed(2)} tok/s)`; break; case "complete": outStatus.hidden = true; outGen.hidden = false; break; } } return new Promise((resolve, reject) => { llamaWorker.postMessage({ weightsURL, modelID, tokenizerURL: "tokenizer.json", prompt, temp: temperature, top_p: topP, repeatPenalty, seed: BigInt(seed), maxSeqLen, command: "start", }); const handleAbort = () => { llamaWorker.postMessage({ command: "abort" }); }; const handleMessage = (event) => { const { status, error, message, prompt, sentence } = event.data; if (status) updateStatus(event.data); if (error) { llamaWorker.removeEventListener("message", handleMessage); reject(new Error(error)); } if (status === "aborted") { llamaWorker.removeEventListener("message", handleMessage); resolve(event.data); } if (status === "complete") { llamaWorker.removeEventListener("message", handleMessage); resolve(event.data); } }; controller.signal.addEventListener("abort", handleAbort); llamaWorker.addEventListener("message", handleMessage); }); } const form = document.querySelector("#form"); const prompt = document.querySelector("#prompt"); const clearBtn = document.querySelector("#clear-btn"); const runBtn = document.querySelector("#run"); const modelSelect = document.querySelector("#model"); let runController = new AbortController(); let isRunning = false; modelSelect.addEventListener("change", (e) => { const model = MODELS[e.target.value]; document.querySelector("#max-seq").max = model.seq_len; document.querySelector("#max-seq").nextElementSibling.value = model.seq_len; }); form.addEventListener("submit", async (e) => { e.preventDefault(); if (isRunning) { stopRunning(); } else { startRunning(); await generateSequence(runController); stopRunning(); } }); function startRunning() { isRunning = true; runBtn.textContent = "Stop"; } function stopRunning() { runController.abort(); runController = new AbortController(); runBtn.textContent = "Run"; isRunning = false; } clearBtn.addEventListener("click", (e) => { e.preventDefault(); prompt.value = ""; clearBtn.classList.add("invisible"); runBtn.disabled = true; stopRunning(); }); prompt.addEventListener("input", (e) => { runBtn.disabled = false; if (e.target.value.length > 0) { clearBtn.classList.remove("invisible"); } else { clearBtn.classList.add("invisible"); } }); </script> </head> <body class="container max-w-4xl mx-auto p-4 text-gray-800"> <main class="grid grid-cols-1 gap-8 relative"> <span class="absolute text-5xl -ml-[1em]"> 🕯️ </span> <div> <h1 class="text-5xl font-bold">Candle Llama2.c</h1> <h2 class="text-2xl font-bold">Rust/WASM Demo</h2> <p class="max-w-lg"> <a href="https://github.com/karpathy/llama2.c" target="_blank" class="underline hover:text-blue-500 hover:no-underline" target="_blank" >Llama2.c</a > is Andrey Karpathy's C implementation of the Llama 2 LLM model in C. This demo uses <a href="https://github.com/huggingface/candle/" target="_blank" class="underline hover:text-blue-500 hover:no-underline" >Candle </a> to run Llama2.c in the browser using rust/wasm. </p> </div> <div> <label for="model" class="font-medium">Models Options: </label> <select id="model" class="border-2 border-gray-500 rounded-md font-light"> <option value="stories15M" selected>stories 15M (60.8 MB)</option> <option value="stories42M">stories 42M (167 MB)</option> <option value="stories110M">stories 110M (438 MB)</option> </select> </div> <form id="form" class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center"> <input type="submit" hidden /> <input type="text" id="prompt" class="font-light w-full px-3 py-2 mx-1 resize-none outline-none" placeholder="Add your prompt here..." value="Once upon a time" /> <button id="clear-btn"> <svg fill="none" xmlns="http://www.w3.org/2000/svg" width="40" viewBox="0 0 70 40"> <path opacity=".5" d="M39 .2v40.2" stroke="#1F2937" /> <path d="M1.5 11.5 19 29.1m0-17.6L1.5 29.1" opacity=".5" stroke="#1F2937" stroke-width="2" /> </svg> </button> <button id="run" class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-2 w-16 rounded disabled:bg-gray-300 disabled:cursor-not-allowed"> Run </button> </form> <details> <summary class="font-medium cursor-pointer">Advanced Options</summary> <div class="grid grid-cols-3 max-w-md items-center gap-3 py-3"> <label class="text-sm font-medium" for="max-seq" >Maximum length </label> <input type="range" id="max-seq" name="max-seq" min="1" max="256" step="1" value="200" oninput="this.nextElementSibling.value = Number(this.value)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md"> 200</output > <label class="text-sm font-medium" for="temperature" >Temperature</label > <input type="range" id="temperature" name="temperature" min="0" max="2" step="0.01" value="0.40" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md"> 0.40</output > <label class="text-sm font-medium" for="top-p">Top-p</label> <input type="range" id="top-p" name="top-p" min="0" max="1" step="0.01" value="1.00" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md"> 1.00</output > <label class="text-sm font-medium" for="repeat_penalty" >Repeat Penalty</label > <input type="range" id="repeat_penalty" name="repeat_penalty" min="1" max="2" step="0.01" value="1.10" oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" /> <output class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md" >1.10</output > <label class="text-sm font-medium" for="seed">Seed</label> <input type="number" id="seed" name="seed" value="299792458" class="font-light border border-gray-700 text-right rounded-md p-2" /> <button id="run" onclick="document.querySelector('#seed').value = BigInt(Math.floor(Math.random() * 2**64-1))" class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-1 w-[50px] rounded disabled:bg-gray-300 disabled:cursor-not-allowed text-sm"> Rand </button> </div> </details> <div> <h3 class="font-medium">Generation:</h3> <div class="min-h-[250px] bg-slate-100 text-gray-500 p-4 rounded-md flex flex-col gap-2"> <div id="output-counter" hidden class="ml-auto font-semibold grid-rows-1 text-sm"></div> <p hidden id="output-generation" class="grid-rows-2"></p> <span id="output-status" class="m-auto font-light" >No output yet</span > </div> </div> </main> </body> </html>
candle/candle-wasm-examples/llama2-c/lib-example.html/0
{ "file_path": "candle/candle-wasm-examples/llama2-c/lib-example.html", "repo_id": "candle", "token_count": 6089 }
59
// Audio processing code, adapted from whisper.cpp // https://github.com/ggerganov/whisper.cpp use super::worker; pub trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {} impl Float for f32 {} impl Float for f64 {} // https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2357 fn fft<T: Float>(inp: &[T]) -> Vec<T> { let n = inp.len(); let zero = T::zero(); if n == 1 { return vec![inp[0], zero]; } if n % 2 == 1 { return dft(inp); } let mut out = vec![zero; n * 2]; let mut even = Vec::with_capacity(n / 2); let mut odd = Vec::with_capacity(n / 2); for (i, &inp) in inp.iter().enumerate() { if i % 2 == 0 { even.push(inp) } else { odd.push(inp); } } let even_fft = fft(&even); let odd_fft = fft(&odd); let two_pi = T::PI() + T::PI(); let n_t = T::from(n).unwrap(); for k in 0..n / 2 { let k_t = T::from(k).unwrap(); let theta = two_pi * k_t / n_t; let re = theta.cos(); let im = -theta.sin(); let re_odd = odd_fft[2 * k]; let im_odd = odd_fft[2 * k + 1]; out[2 * k] = even_fft[2 * k] + re * re_odd - im * im_odd; out[2 * k + 1] = even_fft[2 * k + 1] + re * im_odd + im * re_odd; out[2 * (k + n / 2)] = even_fft[2 * k] - re * re_odd + im * im_odd; out[2 * (k + n / 2) + 1] = even_fft[2 * k + 1] - re * im_odd - im * re_odd; } out } // https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2337 fn dft<T: Float>(inp: &[T]) -> Vec<T> { let zero = T::zero(); let n = inp.len(); let two_pi = T::PI() + T::PI(); let mut out = Vec::with_capacity(2 * n); let n_t = T::from(n).unwrap(); for k in 0..n { let k_t = T::from(k).unwrap(); let mut re = zero; let mut im = zero; for (j, &inp) in inp.iter().enumerate() { let j_t = T::from(j).unwrap(); let angle = two_pi * k_t * j_t / n_t; re += inp * angle.cos(); im -= inp * angle.sin(); } out.push(re); out.push(im); } out } #[allow(clippy::too_many_arguments)] // https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2414 fn log_mel_spectrogram_w<T: Float>( ith: usize, hann: &[T], samples: &[T], filters: &[T], fft_size: usize, fft_step: usize, speed_up: bool, n_len: usize, n_mel: usize, n_threads: usize, ) -> Vec<T> { let n_fft = if speed_up { 1 + fft_size / 4 } else { 1 + fft_size / 2 }; let zero = T::zero(); let half = T::from(0.5).unwrap(); let mut fft_in = vec![zero; fft_size]; let mut mel = vec![zero; n_len * n_mel]; for i in (ith..n_len).step_by(n_threads) { let offset = i * fft_step; // apply Hanning window for j in 0..fft_size { fft_in[j] = if offset + j < samples.len() { hann[j] * samples[offset + j] } else { zero } } // FFT -> mag^2 let mut fft_out: Vec<T> = fft(&fft_in); for j in 0..fft_size { fft_out[j] = fft_out[2 * j] * fft_out[2 * j] + fft_out[2 * j + 1] * fft_out[2 * j + 1]; } for j in 1..fft_size / 2 { let v = fft_out[fft_size - j]; fft_out[j] += v; } if speed_up { // scale down in the frequency domain results in a speed up in the time domain for j in 0..n_fft { fft_out[j] = half * (fft_out[2 * j] + fft_out[2 * j + 1]); } } // mel spectrogram for j in 0..n_mel { let mut sum = zero; for k in 0..n_fft { sum += fft_out[k] * filters[j * n_fft + k]; } mel[j * n_len + i] = T::max(sum, T::from(1e-10).unwrap()).log10(); } } mel } fn log_mel_spectrogram_<T: Float + std::fmt::Display>( samples: &[T], filters: &[T], fft_size: usize, fft_step: usize, n_mel: usize, speed_up: bool, ) -> Vec<T> { let zero = T::zero(); let two_pi = T::PI() + T::PI(); let half = T::from(0.5).unwrap(); let one = T::from(1.0).unwrap(); let four = T::from(4.0).unwrap(); let fft_size_t = T::from(fft_size).unwrap(); let hann: Vec<T> = (0..fft_size) .map(|i| half * (one - ((two_pi * T::from(i).unwrap()) / fft_size_t).cos())) .collect(); let n_len = samples.len() / fft_step; // pad audio with at least one extra chunk of zeros let pad = 100 * worker::m::CHUNK_LENGTH / 2; let n_len = if n_len % pad != 0 { (n_len / pad + 1) * pad } else { n_len }; let n_len = n_len + pad; let samples = { let mut samples_padded = samples.to_vec(); let to_add = n_len * fft_step - samples.len(); samples_padded.extend(std::iter::repeat(zero).take(to_add)); samples_padded }; // Use a single thread for now. let mut mel = log_mel_spectrogram_w( 0, &hann, &samples, filters, fft_size, fft_step, speed_up, n_len, n_mel, 1, ); let mmax = mel .iter() .max_by(|&u, &v| u.partial_cmp(v).unwrap_or(std::cmp::Ordering::Greater)) .copied() .unwrap_or(zero) - T::from(8).unwrap(); for m in mel.iter_mut() { let v = T::max(*m, mmax); *m = v / four + one } mel } pub fn pcm_to_mel<T: Float + std::fmt::Display>( cfg: &worker::m::Config, samples: &[T], filters: &[T], ) -> anyhow::Result<Vec<T>> { let mel = log_mel_spectrogram_( samples, filters, worker::m::N_FFT, worker::m::HOP_LENGTH, cfg.num_mel_bins, false, ); Ok(mel) }
candle/candle-wasm-examples/whisper/src/audio.rs/0
{ "file_path": "candle/candle-wasm-examples/whisper/src/audio.rs", "repo_id": "candle", "token_count": 3162 }
60
use yew_agent::PublicWorker; fn main() { console_error_panic_hook::set_once(); candle_wasm_example_yolo::Worker::register(); }
candle/candle-wasm-examples/yolo/src/bin/worker.rs/0
{ "file_path": "candle/candle-wasm-examples/yolo/src/bin/worker.rs", "repo_id": "candle", "token_count": 53 }
61
MONGODB_URL=mongodb://localhost:27017/
chat-ui/.env.ci/0
{ "file_path": "chat-ui/.env.ci", "repo_id": "chat-ui", "token_count": 16 }
62
image: repository: registry.internal.huggingface.tech/chat-ui name: chat-ui nodeSelector: role-hub-utils: "true" tolerations: - key: CriticalAddonsOnly operator: Equal serviceAccount: enabled: true create: true name: huggingchat-prod ingress: path: "/chat" annotations: alb.ingress.kubernetes.io/healthcheck-path: "/healthcheck" alb.ingress.kubernetes.io/listen-ports: "[{\"HTTP\": 80}, {\"HTTPS\": 443}]" alb.ingress.kubernetes.io/group.name: "hub-prod" alb.ingress.kubernetes.io/scheme: "internet-facing" alb.ingress.kubernetes.io/ssl-redirect: "443" alb.ingress.kubernetes.io/tags: "Env=prod,Project=hub,Terraform=true" alb.ingress.kubernetes.io/target-node-labels: "role-hub-utils=true" kubernetes.io/ingress.class: "alb" envVars: ADDRESS_HEADER: 'X-Forwarded-For' ALTERNATIVE_REDIRECT_URLS: '["huggingchat://login/callback"]' APP_BASE: "/chat" ENABLE_ASSISTANTS: "true" ENABLE_ASSISTANTS_RAG: "true" EXPOSE_API: "true" METRICS_PORT: 5565 LOG_LEVEL: "debug" MODELS: > [ { "name" : "CohereForAI/c4ai-command-r-plus", "tokenizer": "nsarrazin/c4ai-command-r-v01-tokenizer", "description": "Command R+ is Cohere's latest LLM and is the first open weight model to beat GPT4 in the Chatbot Arena!", "modelUrl": "https://huggingface.co/CohereForAI/c4ai-command-r-plus", "websiteUrl": "https://docs.cohere.com/docs/command-r-plus", "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/cohere-logo.png", "tools": true, "parameters": { "stop": ["<|END_OF_TURN_TOKEN|>"], "truncate" : 28672, "max_new_tokens" : 2048, "temperature" : 0.3 }, "promptExamples" : [ { "title": "Generate a mouse portrait", "prompt": "Generate the portrait of a scientific mouse in its laboratory." }, { "title": "Review a pull request", "prompt": "Review this pull request: https://github.com/huggingface/chat-ui/pull/1131/files" }, { "title": "Code a snake game", "prompt": "Code a basic snake game in python, give explanations for each step." } ] }, { "name" : "meta-llama/Meta-Llama-3-70B-Instruct", "description": "Meta Llama 3 delivers top performance on various benchmarks and introduces new features like better reasoning.", "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/meta-logo.png", "modelUrl": "https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct", "websiteUrl": "https://llama.meta.com/llama3/", "tokenizer" : "philschmid/meta-llama-3-tokenizer", "promptExamples" : [ { "title": "Write an email from bullet list", "prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)" }, { "title": "Code a snake game", "prompt": "Code a basic snake game in python, give explanations for each step." }, { "title": "Assist in a task", "prompt": "How do I make a delicious lemon cheesecake?" } ], "parameters": { "stop": ["<|eot_id|>"], "truncate": 6144, "max_new_tokens": 2047, "temperature": 0.6, "top_p" : 0.9 } }, { "name" : "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1", "tokenizer": "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1", "description": "Zephyr 141B-A35B is a fine-tuned version of Mistral 8x22B, trained using ORPO, a novel alignment algorithm.", "modelUrl": "https://huggingface.co/HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1", "websiteUrl": "https://huggingface.co/HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1", "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/zephyr-logo.png", "parameters": { "truncate" : 6146, "max_new_tokens" : 2044, "temperature": 0.6 }, "preprompt" : "You are Zephyr, an assistant developed by KAIST AI, Argilla, and Hugging Face. You should give concise responses to very simple questions, but provide thorough responses to more complex and open-ended questions. You are happy to help with writing, analysis, question answering, math, coding, and all sorts of other tasks.", "promptExamples" : [ { "title": "Write a poem", "prompt": "Write a poem to help me remember the first 10 elements on the periodic table, giving each element its own line." }, { "title": "Code a snake game", "prompt": "Code a basic snake game in python, give explanations for each step." }, { "title": "Assist in a task", "prompt": "How do I make a delicious lemon cheesecake?" } ] }, { "name" : "mistralai/Mixtral-8x7B-Instruct-v0.1", "description" : "The latest MoE model from Mistral AI! 8x7B and outperforms Llama 2 70B in most benchmarks.", "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/mistral-logo.png", "websiteUrl" : "https://mistral.ai/news/mixtral-of-experts/", "modelUrl": "https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1", "tokenizer": "mistralai/Mixtral-8x7B-Instruct-v0.1", "preprompt" : "", "chatPromptTemplate": "<s> {{#each messages}}{{#ifUser}}[INST]{{#if @first}}{{#if @root.preprompt}}{{@root.preprompt}}\n{{/if}}{{/if}} {{content}} [/INST]{{/ifUser}}{{#ifAssistant}} {{content}}</s> {{/ifAssistant}}{{/each}}", "parameters" : { "temperature" : 0.6, "top_p" : 0.95, "repetition_penalty" : 1.2, "top_k" : 50, "truncate" : 24576, "max_new_tokens" : 8192, "stop" : ["</s>"] }, "promptExamples" : [ { "title": "Write an email from bullet list", "prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)" }, { "title": "Code a snake game", "prompt": "Code a basic snake game in python, give explanations for each step." }, { "title": "Assist in a task", "prompt": "How do I make a delicious lemon cheesecake?" } ] }, { "name" : "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "description" : "Nous Hermes 2 Mixtral 8x7B DPO is the new flagship Nous Research model trained over the Mixtral 8x7B MoE LLM.", "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/nous-logo.png", "websiteUrl" : "https://nousresearch.com/", "modelUrl": "https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "tokenizer": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "chatPromptTemplate" : "{{#if @root.preprompt}}<|im_start|>system\n{{@root.preprompt}}<|im_end|>\n{{/if}}{{#each messages}}{{#ifUser}}<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n{{/ifUser}}{{#ifAssistant}}{{content}}<|im_end|>\n{{/ifAssistant}}{{/each}}", "promptExamples": [ { "title": "Write an email from bullet list", "prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)" }, { "title": "Code a snake game", "prompt": "Code a basic snake game in python, give explanations for each step." }, { "title": "Assist in a task", "prompt": "How do I make a delicious lemon cheesecake?" } ], "parameters": { "temperature": 0.7, "top_p": 0.95, "repetition_penalty": 1, "top_k": 50, "truncate": 24576, "max_new_tokens": 2048, "stop": ["<|im_end|>"] } }, { "name": "01-ai/Yi-1.5-34B-Chat", "tokenizer": "01-ai/Yi-1.5-34B-Chat", "description" : "Yi-1.5 is an upgraded version of Yi. It is continuously pre-trained on Yi with a high-quality corpus of 500B tokens and fine-tuned on 3M diverse fine-tuning samples.", "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/01-ai-logo.png", "modelUrl": "https://huggingface.co/01-ai/Yi-1.5-34B-Chat", "websiteUrl": "https://www.01.ai", "preprompt": "", "parameters": { "stop": ["<|im_end|>"], "temperature": 0.3, "max_new_tokens": 1024, "truncate": 1000, "top_p": 0.8, }, "promptExamples": [ { "title": "我的名字用中文怎么写?", "prompt": "请扮演一个起名大师,我将会给你一个我的英文名字,教我如何用中文写我的名字。" }, { "title": "写一首诗", "prompt": "请写一首讲 AI 的诗" }, { "title": "工作汇报", "prompt": "写一份工作汇报" } ] }, { "name" : "google/gemma-1.1-7b-it", "description": "Gemma 7B 1.1 is the latest release in the Gemma family of lightweight models built by Google, trained using a novel RLHF method.", "websiteUrl" : "https://blog.google/technology/developers/gemma-open-models/", "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/google-logo.png", "modelUrl": "https://huggingface.co/google/gemma-1.1-7b-it", "preprompt": "", "chatPromptTemplate" : "{{#each messages}}{{#ifUser}}<start_of_turn>user\n{{#if @first}}{{#if @root.preprompt}}{{@root.preprompt}}\n{{/if}}{{/if}}{{content}}<end_of_turn>\n<start_of_turn>model\n{{/ifUser}}{{#ifAssistant}}{{content}}<end_of_turn>\n{{/ifAssistant}}{{/each}}", "promptExamples": [ { "title": "Write an email from bullet list", "prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)" }, { "title": "Code a snake game", "prompt": "Code a basic snake game in python, give explanations for each step." }, { "title": "Assist in a task", "prompt": "How do I make a delicious lemon cheesecake?" } ], "parameters": { "do_sample": true, "truncate": 7168, "max_new_tokens": 1024, "stop" : ["<end_of_turn>"] } }, { "name": "mistralai/Mistral-7B-Instruct-v0.2", "displayName": "mistralai/Mistral-7B-Instruct-v0.2", "description": "Mistral 7B is a new Apache 2.0 model, released by Mistral AI that outperforms Llama2 13B in benchmarks.", "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/mistral-logo.png", "websiteUrl": "https://mistral.ai/news/announcing-mistral-7b/", "modelUrl": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2", "tokenizer": "mistralai/Mistral-7B-Instruct-v0.2", "preprompt": "", "chatPromptTemplate" : "<s>{{#each messages}}{{#ifUser}}[INST] {{#if @first}}{{#if @root.preprompt}}{{@root.preprompt}}\n{{/if}}{{/if}}{{content}} [/INST]{{/ifUser}}{{#ifAssistant}}{{content}}</s>{{/ifAssistant}}{{/each}}", "parameters": { "temperature": 0.3, "top_p": 0.95, "repetition_penalty": 1.2, "top_k": 50, "truncate": 3072, "max_new_tokens": 1024, "stop": ["</s>"] }, "promptExamples": [ { "title": "Write an email from bullet list", "prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)" }, { "title": "Code a snake game", "prompt": "Code a basic snake game in python, give explanations for each step." }, { "title": "Assist in a task", "prompt": "How do I make a delicious lemon cheesecake?" } ] }, { "name": "microsoft/Phi-3-mini-4k-instruct", "tokenizer": "microsoft/Phi-3-mini-4k-instruct", "description" : "Phi-3 Mini-4K-Instruct is a 3.8B parameters, lightweight, state-of-the-art open model built upon datasets used for Phi-2.", "logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/microsoft-logo.png", "modelUrl": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", "websiteUrl": "https://azure.microsoft.com/en-us/blog/introducing-phi-3-redefining-whats-possible-with-slms/", "preprompt": "", "chatPromptTemplate": "<s>{{preprompt}}{{#each messages}}{{#ifUser}}<|user|>\n{{content}}<|end|>\n<|assistant|>\n{{/ifUser}}{{#ifAssistant}}{{content}}<|end|>\n{{/ifAssistant}}{{/each}}", "parameters": { "stop": ["<|end|>", "<|endoftext|>", "<|assistant|>"], "temperature": 0.7, "max_new_tokens": 1024, "truncate": 3071 }, "promptExamples": [ { "title": "Write an email from bullet list", "prompt": "As a restaurant owner, write a professional email to the supplier to get these products every week: \n\n- Wine (x10)\n- Eggs (x24)\n- Bread (x12)" }, { "title": "Code a snake game", "prompt": "Code a basic snake game in python, give explanations for each step." }, { "title": "Assist in a task", "prompt": "How do I make a delicious lemon cheesecake?" } ] }, { "name": "meta-llama/Meta-Llama-3-8B-Instruct", "tokenizer" : "philschmid/meta-llama-3-tokenizer", "parameters": { "temperature": 0.1, "stop": ["<|eot_id|>"], }, "unlisted": true } ] NODE_ENV: "prod" NODE_LOG_STRUCTURED_DATA: true OLD_MODELS: > [ { "name": "bigcode/starcoder" }, { "name": "OpenAssistant/oasst-sft-6-llama-30b-xor" }, { "name": "HuggingFaceH4/zephyr-7b-alpha" }, { "name": "openchat/openchat_3.5" }, { "name": "openchat/openchat-3.5-1210" }, { "name": "tiiuae/falcon-180B-chat" }, { "name": "codellama/CodeLlama-34b-Instruct-hf" }, { "name": "google/gemma-7b-it" }, { "name": "meta-llama/Llama-2-70b-chat-hf" }, { "name": "codellama/CodeLlama-70b-Instruct-hf" }, { "name": "openchat/openchat-3.5-0106" } ] PUBLIC_ORIGIN: "https://huggingface.co" PUBLIC_SHARE_PREFIX: "https://hf.co/chat" PUBLIC_ANNOUNCEMENT_BANNERS: "[]" PUBLIC_APP_NAME: "HuggingChat" PUBLIC_APP_ASSETS: "huggingchat" PUBLIC_APP_COLOR: "yellow" PUBLIC_APP_DESCRIPTION: "Making the community's best AI chat models available to everyone." PUBLIC_APP_DISCLAIMER_MESSAGE: "Disclaimer: AI is an area of active research with known problems such as biased generation and misinformation. Do not use this application for high-stakes decisions or advice." PUBLIC_APP_DATA_SHARING: 0 PUBLIC_APP_DISCLAIMER: 1 PUBLIC_PLAUSIBLE_SCRIPT_URL: "/js/script.js" PUBLIC_APPLE_APP_ID: "6476778843" REQUIRE_FEATURED_ASSISTANTS: "true" TASK_MODEL: "meta-llama/Meta-Llama-3-8B-Instruct" TEXT_EMBEDDING_MODELS: > [{ "name": "bge-base-en-v1-5-sxa", "displayName": "bge-base-en-v1-5-sxa", "chunkCharLength": 512, "endpoints": [{ "type": "tei", "url": "https://huggingchat-tei.hf.space/" }] }] WEBSEARCH_BLOCKLIST: '["youtube.com", "twitter.com"]' XFF_DEPTH: '2' infisical: enabled: true env: "prod-us-east-1" autoscaling: enabled: true minReplicas: 6 maxReplicas: 30 targetMemoryUtilizationPercentage: "50" targetCPUUtilizationPercentage: "50" resources: requests: cpu: 4 memory: 8Gi limits: cpu: 4 memory: 8Gi monitoring: enabled: true
chat-ui/chart/env/prod.yaml/0
{ "file_path": "chat-ui/chart/env/prod.yaml", "repo_id": "chat-ui", "token_count": 8141 }
63
# Anthropic | Feature | Available | | --------------------------- | --------- | | [Tools](../tools) | No | | [Multimodal](../multimodal) | Yes | We also support Anthropic models (including multimodal ones via `multmodal: true`) through the official SDK. You may provide your API key via the `ANTHROPIC_API_KEY` env variable, or alternatively, through the `endpoints.apiKey` as per the following example. ```ini MODELS=`[ { "name": "claude-3-haiku-20240307", "displayName": "Claude 3 Haiku", "description": "Fastest and most compact model for near-instant responsiveness", "multimodal": true, "parameters": { "max_new_tokens": 4096, }, "endpoints": [ { "type": "anthropic", // optionals "apiKey": "sk-ant-...", "baseURL": "https://api.anthropic.com", "defaultHeaders": {}, "defaultQuery": {} } ] }, { "name": "claude-3-sonnet-20240229", "displayName": "Claude 3 Sonnet", "description": "Ideal balance of intelligence and speed", "multimodal": true, "parameters": { "max_new_tokens": 4096, }, "endpoints": [ { "type": "anthropic", // optionals "apiKey": "sk-ant-...", "baseURL": "https://api.anthropic.com", "defaultHeaders": {}, "defaultQuery": {} } ] }, { "name": "claude-3-opus-20240229", "displayName": "Claude 3 Opus", "description": "Most powerful model for highly complex tasks", "multimodal": true, "parameters": { "max_new_tokens": 4096 }, "endpoints": [ { "type": "anthropic", // optionals "apiKey": "sk-ant-...", "baseURL": "https://api.anthropic.com", "defaultHeaders": {}, "defaultQuery": {} } ] } ]` ``` ## VertexAI We also support using Anthropic models running on Vertex AI. Authentication is done using Google Application Default Credentials. Project ID can be provided through the `endpoints.projectId` as per the following example: ```ini MODELS=`[ { "name": "claude-3-haiku@20240307", "displayName": "Claude 3 Haiku", "description": "Fastest, most compact model for near-instant responsiveness", "multimodal": true, "parameters": { "max_new_tokens": 4096 }, "endpoints": [ { "type": "anthropic-vertex", "region": "us-central1", "projectId": "gcp-project-id", // optionals "defaultHeaders": {}, "defaultQuery": {} } ] }, { "name": "claude-3-sonnet@20240229", "displayName": "Claude 3 Sonnet", "description": "Ideal balance of intelligence and speed", "multimodal": true, "parameters": { "max_new_tokens": 4096, }, "endpoints": [ { "type": "anthropic-vertex", "region": "us-central1", "projectId": "gcp-project-id", // optionals "defaultHeaders": {}, "defaultQuery": {} } ] }, ]` ```
chat-ui/docs/source/configuration/models/providers/anthropic.md/0
{ "file_path": "chat-ui/docs/source/configuration/models/providers/anthropic.md", "repo_id": "chat-ui", "token_count": 1541 }
64
# Copy HuggingChat The config file for HuggingChat is stored in the `chart/env/prod.yaml` file. It is the source of truth for the environment variables used for our CI/CD pipeline. For HuggingChat, as we need to customize the app color, as well as the base path, we build a custom docker image. You can find the workflow here. <Tip> If you want to make changes to the model config used in production for HuggingChat, you should do so against `chart/env/prod.yaml`. </Tip> ### Running a copy of HuggingChat locally If you want to run an exact copy of HuggingChat locally, you will need to do the following first: 1. Create an [OAuth App on the hub](https://huggingface.co/settings/applications/new) with `openid profile email` permissions. Make sure to set the callback URL to something like `http://localhost:5173/chat/login/callback` which matches the right path for your local instance. 2. Create a [HF Token](https://huggingface.co/settings/tokens) with your Hugging Face account. You will need a Pro account to be able to access some of the larger models available through HuggingChat. 3. Create a free account with [serper.dev](https://serper.dev/) (you will get 2500 free search queries) 4. Run an instance of MongoDB, however you want. (Local or remote) You can then create a new `.env.SECRET_CONFIG` file with the following content ```ini MONGODB_URL=<link to your mongo DB from step 4> HF_TOKEN=<your HF token from step 2> OPENID_CONFIG=`{ PROVIDER_URL: "https://huggingface.co", CLIENT_ID: "<your client ID from step 1>", CLIENT_SECRET: "<your client secret from step 1>", }` SERPER_API_KEY=<your serper API key from step 3> MESSAGES_BEFORE_LOGIN=<can be any numerical value, or set to 0 to require login> ``` You can then run `npm run updateLocalEnv` in the root of chat-ui. This will create a `.env.local` file which combines the `chart/env/prod.yaml` and the `.env.SECRET_CONFIG` file. You can then run `npm run dev` to start your local instance of HuggingChat. ### Populate database <Tip warning={true}> The `MONGODB_URL` used for this script will be fetched from `.env.local`. Make sure it's correct! The command runs directly on the database. </Tip> You can populate the database using faker data using the `populate` script: ```bash npm run populate <flags here> ``` At least one flag must be specified, the following flags are available: - `reset` - resets the database - `all` - populates all tables - `users` - populates the users table - `settings` - populates the settings table for existing users - `assistants` - populates the assistants table for existing users - `conversations` - populates the conversations table for existing users For example, you could use it like so: ```bash npm run populate reset ``` to clear out the database. Then login in the app to create your user and run the following command: ```bash npm run populate users settings assistants conversations ``` to populate the database with fake data, including fake conversations and assistants for your user.
chat-ui/docs/source/developing/copy-huggingchat.md/0
{ "file_path": "chat-ui/docs/source/developing/copy-huggingchat.md", "repo_id": "chat-ui", "token_count": 870 }
65
export function clickOutside(element: HTMLElement, callbackFunction: () => void) { function onClick(event: MouseEvent) { if (!element.contains(event.target as Node)) { callbackFunction(); } } document.body.addEventListener("click", onClick); return { update(newCallbackFunction: () => void) { callbackFunction = newCallbackFunction; }, destroy() { document.body.removeEventListener("click", onClick); }, }; }
chat-ui/src/lib/actions/clickOutside.ts/0
{ "file_path": "chat-ui/src/lib/actions/clickOutside.ts", "repo_id": "chat-ui", "token_count": 144 }
66
<script lang="ts"> import { base } from "$app/paths"; import { page } from "$app/stores"; import { createEventDispatcher } from "svelte"; import CarbonCheckmark from "~icons/carbon/checkmark"; import CarbonTrashCan from "~icons/carbon/trash-can"; import CarbonClose from "~icons/carbon/close"; import CarbonEdit from "~icons/carbon/edit"; import type { ConvSidebar } from "$lib/types/ConvSidebar"; export let conv: ConvSidebar; let confirmDelete = false; const dispatch = createEventDispatcher<{ deleteConversation: string; editConversationTitle: { id: string; title: string }; }>(); </script> <a data-sveltekit-noscroll on:mouseleave={() => { confirmDelete = false; }} href="{base}/conversation/{conv.id}" class="group flex h-10 flex-none items-center gap-1.5 rounded-lg pl-2.5 pr-2 text-gray-600 hover:bg-gray-100 dark:text-gray-300 dark:hover:bg-gray-700 {conv.id === $page.params.id ? 'bg-gray-100 dark:bg-gray-700' : ''}" > <div class="flex flex-1 items-center truncate"> {#if confirmDelete} <span class="mr-1 font-semibold"> Delete </span> {/if} {#if conv.avatarHash} <img src="{base}/settings/assistants/{conv.assistantId}/avatar.jpg?hash={conv.avatarHash}" alt="Assistant avatar" class="mr-1.5 inline size-4 flex-none rounded-full object-cover" /> {conv.title.replace(/\p{Emoji}/gu, "")} {:else if conv.assistantId} <div class="mr-1.5 flex size-4 flex-none items-center justify-center rounded-full bg-gray-300 text-xs font-bold uppercase text-gray-500" /> {conv.title.replace(/\p{Emoji}/gu, "")} {:else} {conv.title} {/if} </div> {#if confirmDelete} <button type="button" class="flex h-5 w-5 items-center justify-center rounded md:hidden md:group-hover:flex" title="Confirm delete action" on:click|preventDefault={() => { confirmDelete = false; dispatch("deleteConversation", conv.id); }} > <CarbonCheckmark class="text-xs text-gray-400 hover:text-gray-500 dark:hover:text-gray-300" /> </button> <button type="button" class="flex h-5 w-5 items-center justify-center rounded md:hidden md:group-hover:flex" title="Cancel delete action" on:click|preventDefault={() => (confirmDelete = false)} > <CarbonClose class="text-xs text-gray-400 hover:text-gray-500 dark:hover:text-gray-300" /> </button> {:else} <button type="button" class="flex h-5 w-5 items-center justify-center rounded md:hidden md:group-hover:flex" title="Edit conversation title" on:click|preventDefault={() => { const newTitle = prompt("Edit this conversation title:", conv.title); if (!newTitle) return; dispatch("editConversationTitle", { id: conv.id, title: newTitle }); }} > <CarbonEdit class="text-xs text-gray-400 hover:text-gray-500 dark:hover:text-gray-300" /> </button> <button type="button" class="flex h-5 w-5 items-center justify-center rounded md:hidden md:group-hover:flex" title="Delete conversation" on:click|preventDefault={(event) => { if (event.shiftKey) { dispatch("deleteConversation", conv.id); } else { confirmDelete = true; } }} > <CarbonTrashCan class="text-xs text-gray-400 hover:text-gray-500 dark:hover:text-gray-300" /> </button> {/if} </a>
chat-ui/src/lib/components/NavConversationItem.svelte/0
{ "file_path": "chat-ui/src/lib/components/NavConversationItem.svelte", "repo_id": "chat-ui", "token_count": 1309 }
67
<script lang="ts"> import { webSearchParameters } from "$lib/stores/webSearchParameters"; import CarbonInformation from "~icons/carbon/information"; import Switch from "./Switch.svelte"; const toggle = () => ($webSearchParameters.useSearch = !$webSearchParameters.useSearch); </script> <div class="flex h-8 cursor-pointer select-none items-center gap-2 rounded-lg border bg-white p-1.5 shadow-sm hover:shadow-none dark:border-gray-800 dark:bg-gray-900" on:click={toggle} on:keydown={toggle} aria-checked={$webSearchParameters.useSearch} aria-label="web search toggle" role="switch" tabindex="0" > <Switch name="useSearch" bind:checked={$webSearchParameters.useSearch} on:click on:keydown /> <div class="whitespace-nowrap text-sm text-gray-800 dark:text-gray-200">Search web</div> <div class="group relative w-max"> <CarbonInformation class="text-xs text-gray-500" /> <div class="pointer-events-none absolute -top-20 left-1/2 w-max -translate-x-1/2 rounded-md bg-gray-100 p-2 opacity-0 transition-opacity group-hover:opacity-100 dark:bg-gray-800" > <p class="max-w-sm text-sm text-gray-800 dark:text-gray-200"> When enabled, the model will try to complement its answer with information queried from the web. </p> </div> </div> </div>
chat-ui/src/lib/components/WebSearchToggle.svelte/0
{ "file_path": "chat-ui/src/lib/components/WebSearchToggle.svelte", "repo_id": "chat-ui", "token_count": 447 }
68
<script lang="ts"> import { page } from "$app/stores"; import { env as envPublic } from "$env/dynamic/public"; import { base } from "$app/paths"; export let classNames = ""; </script> {#if envPublic.PUBLIC_APP_ASSETS === "chatui"} <svg height="30" width="30" viewBox="0 0 30 30" xmlns="http://www.w3.org/2000/svg" class={classNames} > <path d="M4.06151 14.1464C4.06151 11.8818 4.9611 9.71004 6.56237 8.10877C8.16364 6.5075 10.3354 5.60791 12.6 5.60791H16.5231C18.6254 5.60791 20.6416 6.44307 22.1282 7.92965C23.6148 9.41624 24.45 11.4325 24.45 13.5348C24.45 15.6372 23.6148 17.6534 22.1282 19.14C20.6416 20.6266 18.6254 21.4618 16.5231 21.4618H7.08459L4.63844 23.8387C4.59547 23.8942 4.53557 23.9343 4.4678 23.9527C4.40004 23.9712 4.32811 23.9671 4.2629 23.941C4.1977 23.9149 4.14276 23.8683 4.10643 23.8082C4.07009 23.7481 4.05432 23.6778 4.06151 23.6079V14.1464Z" class="fill-primary-500" /> </svg> {:else} <img class={classNames} alt="{envPublic.PUBLIC_APP_NAME} logo" src="{envPublic.PUBLIC_ORIGIN || $page.url.origin}{base}/{envPublic.PUBLIC_APP_ASSETS}/logo.svg" /> {/if}
chat-ui/src/lib/components/icons/Logo.svelte/0
{ "file_path": "chat-ui/src/lib/components/icons/Logo.svelte", "repo_id": "chat-ui", "token_count": 550 }
69
import { z } from "zod"; import { embeddingEndpointTei, embeddingEndpointTeiParametersSchema, } from "./tei/embeddingEndpoints"; import { embeddingEndpointTransformersJS, embeddingEndpointTransformersJSParametersSchema, } from "./transformersjs/embeddingEndpoints"; import { embeddingEndpointOpenAI, embeddingEndpointOpenAIParametersSchema, } from "./openai/embeddingEndpoints"; import { embeddingEndpointHfApi, embeddingEndpointHfApiSchema } from "./hfApi/embeddingHfApi"; // parameters passed when generating text interface EmbeddingEndpointParameters { inputs: string[]; } export type Embedding = number[]; // type signature for the endpoint export type EmbeddingEndpoint = (params: EmbeddingEndpointParameters) => Promise<Embedding[]>; export const embeddingEndpointSchema = z.discriminatedUnion("type", [ embeddingEndpointTeiParametersSchema, embeddingEndpointTransformersJSParametersSchema, embeddingEndpointOpenAIParametersSchema, embeddingEndpointHfApiSchema, ]); type EmbeddingEndpointTypeOptions = z.infer<typeof embeddingEndpointSchema>["type"]; // generator function that takes in type discrimantor value for defining the endpoint and return the endpoint export type EmbeddingEndpointGenerator<T extends EmbeddingEndpointTypeOptions> = ( inputs: Extract<z.infer<typeof embeddingEndpointSchema>, { type: T }> ) => EmbeddingEndpoint | Promise<EmbeddingEndpoint>; // list of all endpoint generators export const embeddingEndpoints: { [Key in EmbeddingEndpointTypeOptions]: EmbeddingEndpointGenerator<Key>; } = { tei: embeddingEndpointTei, transformersjs: embeddingEndpointTransformersJS, openai: embeddingEndpointOpenAI, hfapi: embeddingEndpointHfApi, }; export default embeddingEndpoints;
chat-ui/src/lib/server/embeddingEndpoints/embeddingEndpoints.ts/0
{ "file_path": "chat-ui/src/lib/server/embeddingEndpoints/embeddingEndpoints.ts", "repo_id": "chat-ui", "token_count": 544 }
70
import { env } from "$env/dynamic/private"; import { buildPrompt } from "$lib/buildPrompt"; import type { TextGenerationStreamOutput } from "@huggingface/inference"; import type { Endpoint } from "../endpoints"; import { z } from "zod"; import { logger } from "$lib/server/logger"; export const endpointLlamacppParametersSchema = z.object({ weight: z.number().int().positive().default(1), model: z.any(), type: z.literal("llamacpp"), url: z.string().url().default("http://127.0.0.1:8080"), accessToken: z .string() .min(1) .default(env.HF_TOKEN ?? env.HF_ACCESS_TOKEN), }); export function endpointLlamacpp( input: z.input<typeof endpointLlamacppParametersSchema> ): Endpoint { const { url, model } = endpointLlamacppParametersSchema.parse(input); return async ({ messages, preprompt, continueMessage, generateSettings }) => { const prompt = await buildPrompt({ messages, continueMessage, preprompt, model, }); const parameters = { ...model.parameters, ...generateSettings }; const r = await fetch(`${url}/completion`, { method: "POST", headers: { "Content-Type": "application/json", }, body: JSON.stringify({ prompt, stream: true, temperature: parameters.temperature, top_p: parameters.top_p, top_k: parameters.top_k, stop: parameters.stop, repeat_penalty: parameters.repetition_penalty, n_predict: parameters.max_new_tokens, cache_prompt: true, }), }); if (!r.ok) { throw new Error(`Failed to generate text: ${await r.text()}`); } const encoder = new TextDecoderStream(); const reader = r.body?.pipeThrough(encoder).getReader(); return (async function* () { let stop = false; let generatedText = ""; let tokenId = 0; let accumulatedData = ""; // Buffer to accumulate data chunks while (!stop) { // Read the stream and log the outputs to console const out = (await reader?.read()) ?? { done: false, value: undefined }; // If it's done, we cancel if (out.done) { reader?.cancel(); return; } if (!out.value) { return; } // Accumulate the data chunk accumulatedData += out.value; // Process each complete JSON object in the accumulated data while (accumulatedData.includes("\n")) { // Assuming each JSON object ends with a newline const endIndex = accumulatedData.indexOf("\n"); let jsonString = accumulatedData.substring(0, endIndex).trim(); // Remove the processed part from the buffer accumulatedData = accumulatedData.substring(endIndex + 1); if (jsonString.startsWith("data: ")) { jsonString = jsonString.slice(6); let data = null; try { data = JSON.parse(jsonString); } catch (e) { logger.error(e, "Failed to parse JSON"); logger.error(jsonString, "Problematic JSON string:"); continue; // Skip this iteration and try the next chunk } // Handle the parsed data if (data.content || data.stop) { generatedText += data.content; const output: TextGenerationStreamOutput = { token: { id: tokenId++, text: data.content ?? "", logprob: 0, special: false, }, generated_text: data.stop ? generatedText : null, details: null, }; if (data.stop) { stop = true; output.token.special = true; reader?.cancel(); } yield output; } } } } })(); }; } export default endpointLlamacpp;
chat-ui/src/lib/server/endpoints/llamacpp/endpointLlamacpp.ts/0
{ "file_path": "chat-ui/src/lib/server/endpoints/llamacpp/endpointLlamacpp.ts", "repo_id": "chat-ui", "token_count": 1432 }
71
import { isURLLocal } from "../isURLLocal"; import { env } from "$env/dynamic/private"; import { collections } from "$lib/server/database"; import type { Assistant } from "$lib/types/Assistant"; import type { ObjectId } from "mongodb"; export async function processPreprompt(preprompt: string) { const urlRegex = /{{\s?url=(.*?)\s?}}/g; for (const match of preprompt.matchAll(urlRegex)) { try { const url = new URL(match[1]); if ((await isURLLocal(url)) && env.ENABLE_LOCAL_FETCH !== "true") { throw new Error("URL couldn't be fetched, it resolved to a local address."); } const res = await fetch(url.href); if (!res.ok) { throw new Error("URL couldn't be fetched, error " + res.status); } const text = await res.text(); preprompt = preprompt.replaceAll(match[0], text); } catch (e) { preprompt = preprompt.replaceAll(match[0], (e as Error).message); } } return preprompt; } export async function getAssistantById(id?: ObjectId) { return collections.assistants .findOne<Pick<Assistant, "rag" | "dynamicPrompt" | "generateSettings">>( { _id: id }, { projection: { rag: 1, dynamicPrompt: 1, generateSettings: 1 } } ) .then((a) => a ?? undefined); } export function assistantHasWebSearch(assistant?: Pick<Assistant, "rag"> | null) { return ( env.ENABLE_ASSISTANTS_RAG === "true" && !!assistant?.rag && (assistant.rag.allowedLinks.length > 0 || assistant.rag.allowedDomains.length > 0 || assistant.rag.allowAllDomains) ); } export function assistantHasDynamicPrompt(assistant?: Pick<Assistant, "dynamicPrompt">) { return env.ENABLE_ASSISTANTS_RAG === "true" && Boolean(assistant?.dynamicPrompt); }
chat-ui/src/lib/server/textGeneration/assistant.ts/0
{ "file_path": "chat-ui/src/lib/server/textGeneration/assistant.ts", "repo_id": "chat-ui", "token_count": 613 }
72
import type { EmbeddingBackendModel } from "$lib/server/embeddingModels"; import { getSentenceSimilarity } from "$lib/server/sentenceSimilarity"; /** * Combines sentences together to reach the maximum character limit of the embedding model * Improves performance considerably when using CPU embedding */ export async function getCombinedSentenceSimilarity( embeddingModel: EmbeddingBackendModel, query: string, sentences: string[] ): ReturnType<typeof getSentenceSimilarity> { const combinedSentences = sentences.reduce<{ text: string; indices: number[] }[]>( (acc, sentence, idx) => { const lastSentence = acc[acc.length - 1]; if (!lastSentence) return [{ text: sentence, indices: [idx] }]; if (lastSentence.text.length + sentence.length < embeddingModel.chunkCharLength) { lastSentence.text += ` ${sentence}`; lastSentence.indices.push(idx); return acc; } return [...acc, { text: sentence, indices: [idx] }]; }, [] ); const embeddings = await getSentenceSimilarity( embeddingModel, query, combinedSentences.map(({ text }) => text) ); return embeddings.flatMap((embedding, idx) => { const { indices } = combinedSentences[idx]; return indices.map((i) => ({ ...embedding, idx: i })); }); }
chat-ui/src/lib/server/websearch/embed/combine.ts/0
{ "file_path": "chat-ui/src/lib/server/websearch/embed/combine.ts", "repo_id": "chat-ui", "token_count": 420 }
73
import { env } from "$env/dynamic/private"; import { logger } from "$lib/server/logger"; import type { WebSearchSource } from "$lib/types/WebSearch"; import { isURL } from "$lib/utils/isUrl"; export default async function searchSearxng(query: string): Promise<WebSearchSource[]> { const abortController = new AbortController(); setTimeout(() => abortController.abort(), 10000); // Insert the query into the URL template let url = env.SEARXNG_QUERY_URL.replace("<query>", query); // Check if "&format=json" already exists in the URL if (!url.includes("&format=json")) { url += "&format=json"; } // Call the URL to return JSON data const jsonResponse = await fetch(url, { signal: abortController.signal, }) .then((response) => response.json() as Promise<{ results: { url: string }[] }>) .catch((error) => { logger.error(error, "Failed to fetch or parse JSON"); throw new Error("Failed to fetch or parse JSON", { cause: error }); }); // Extract 'url' elements from the JSON response and trim to the top 5 URLs const urls = jsonResponse.results.slice(0, 5).map((item) => item.url); if (!urls.length) { throw new Error(`Response doesn't contain any "url" elements`); } // Map URLs to the correct object shape return urls.filter(isURL).map((link) => ({ link })); }
chat-ui/src/lib/server/websearch/search/endpoints/searxng.ts/0
{ "file_path": "chat-ui/src/lib/server/websearch/search/endpoints/searxng.ts", "repo_id": "chat-ui", "token_count": 417 }
74
import { writable } from "svelte/store"; export interface WebSearchParameters { useSearch: boolean; nItems: number; } export const webSearchParameters = writable<WebSearchParameters>({ useSearch: false, nItems: 5, });
chat-ui/src/lib/stores/webSearchParameters.ts/0
{ "file_path": "chat-ui/src/lib/stores/webSearchParameters.ts", "repo_id": "chat-ui", "token_count": 68 }
75
import { defaultModel } from "$lib/server/models"; import type { Assistant } from "./Assistant"; import type { Timestamps } from "./Timestamps"; import type { User } from "./User"; export interface Settings extends Timestamps { userId?: User["_id"]; sessionId?: string; /** * Note: Only conversations with this settings explicitly set to true should be shared. * * This setting is explicitly set to true when users accept the ethics modal. * */ shareConversationsWithModelAuthors: boolean; ethicsModalAcceptedAt: Date | null; activeModel: string; hideEmojiOnSidebar?: boolean; // model name and system prompts customPrompts?: Record<string, string>; assistants?: Assistant["_id"][]; tools?: Record<string, boolean>; } // TODO: move this to a constant file along with other constants export const DEFAULT_SETTINGS = { shareConversationsWithModelAuthors: true, activeModel: defaultModel.id, hideEmojiOnSidebar: false, customPrompts: {}, assistants: [], tools: {}, };
chat-ui/src/lib/types/Settings.ts/0
{ "file_path": "chat-ui/src/lib/types/Settings.ts", "repo_id": "chat-ui", "token_count": 306 }
76
export function getHref( url: URL | string, modifications: { newKeys?: Record<string, string | undefined | null>; existingKeys?: { behaviour: "delete_except" | "delete"; keys: string[] }; } ) { const newUrl = new URL(url); const { newKeys, existingKeys } = modifications; // exsiting keys logic if (existingKeys) { const { behaviour, keys } = existingKeys; if (behaviour === "delete") { for (const key of keys) { newUrl.searchParams.delete(key); } } else { // delete_except const keysToPreserve = keys; for (const key of [...newUrl.searchParams.keys()]) { if (!keysToPreserve.includes(key)) { newUrl.searchParams.delete(key); } } } } // new keys logic if (newKeys) { for (const [key, val] of Object.entries(newKeys)) { if (val) { newUrl.searchParams.set(key, val); } else { newUrl.searchParams.delete(key); } } } return newUrl.toString(); }
chat-ui/src/lib/utils/getHref.ts/0
{ "file_path": "chat-ui/src/lib/utils/getHref.ts", "repo_id": "chat-ui", "token_count": 373 }
77
export async function share(url: string, title: string) { if (navigator.share) { navigator.share({ url, title }); } else { await navigator.clipboard.writeText(url); } }
chat-ui/src/lib/utils/share.ts/0
{ "file_path": "chat-ui/src/lib/utils/share.ts", "repo_id": "chat-ui", "token_count": 63 }
78
import type { Message } from "$lib/types/Message"; export function isMessageId(id: string): id is Message["id"] { return id.split("-").length === 5; }
chat-ui/src/lib/utils/tree/isMessageId.ts/0
{ "file_path": "chat-ui/src/lib/utils/tree/isMessageId.ts", "repo_id": "chat-ui", "token_count": 48 }
79
<script lang="ts"> import { base } from "$app/paths"; import { clickOutside } from "$lib/actions/clickOutside"; import { afterNavigate, goto } from "$app/navigation"; import { useSettingsStore } from "$lib/stores/settings"; import type { PageData } from "./$types"; import { applyAction, enhance } from "$app/forms"; import { env as envPublic } from "$env/dynamic/public"; import { page } from "$app/stores"; import IconGear from "~icons/bi/gear-fill"; export let data: PageData; let previousPage: string = base; afterNavigate(({ from }) => { if (!from?.url.pathname.includes("settings")) { previousPage = from?.url.toString() || previousPage; } }); const settings = useSettingsStore(); </script> <svelte:head> <meta property="og:title" content={data.assistant.name + " - " + envPublic.PUBLIC_APP_NAME} /> <meta property="og:type" content="link" /> <meta property="og:description" content={`Use the ${data.assistant.name} assistant inside of ${envPublic.PUBLIC_APP_NAME}`} /> <meta property="og:image" content="{envPublic.PUBLIC_ORIGIN || $page.url.origin}{base}/assistant/{data.assistant ._id}/thumbnail.png" /> <meta property="og:url" content={$page.url.href} /> <meta name="twitter:card" content="summary_large_image" /> </svelte:head> <div class="fixed inset-0 flex items-center justify-center bg-black/80 backdrop-blur-sm dark:bg-black/50" > <dialog open use:clickOutside={() => { goto(previousPage); }} class="z-10 flex flex-col content-center items-center gap-x-10 gap-y-3 overflow-hidden rounded-2xl bg-white p-4 pt-6 text-center shadow-2xl outline-none max-sm:w-[85dvw] max-sm:px-6 md:w-96 md:grid-cols-3 md:grid-rows-[auto,1fr] md:p-8" > <div class="absolute right-0 top-0 m-6"> <form method="POST" action="{base}/settings/assistants/{data.assistant._id}?/subscribe" class="w-full" use:enhance={() => { return async ({ result }) => { // `result` is an `ActionResult` object if (result.type === "success") { $settings.activeModel = data.assistant._id; await goto(`${base}/settings/assistants/${data.assistant._id}`, { invalidateAll: true, }); } else { await applyAction(result); } }; }} > <button class="flex items-center rounded-full border border-gray-200 px-2.5 py-1 text-sm text-gray-900 hover:bg-gray-100" name="Settings" type="submit" > <IconGear class="mr-1.5 text-xxs" /> Settings </button> </form> </div> {#if data.assistant.avatar} <img class="size-16 flex-none rounded-full object-cover sm:size-24" src="{base}/settings/assistants/{data.assistant._id}/avatar.jpg?hash={data.assistant .avatar}" alt="avatar" /> {:else} <div class="flex size-16 flex-none items-center justify-center rounded-full bg-gray-300 text-2xl font-bold uppercase text-gray-500 sm:size-24" > {data.assistant.name[0]} </div> {/if} <h1 class="text-balance text-xl font-bold"> {data.assistant.name} </h1> {#if data.assistant.description} <h3 class="line-clamp-6 text-balance text-sm text-gray-500"> {data.assistant.description} </h3> {/if} {#if data.assistant.createdByName} <p class="mt-2 text-sm text-gray-500"> Created by <a class="hover:underline" href="{base}/assistants?user={data.assistant.createdByName}" > {data.assistant.createdByName} </a> </p> {/if} <button class="mt-4 w-full rounded-full bg-gray-200 px-4 py-2 font-semibold text-gray-700" on:click={() => { goto(previousPage); }} > Cancel </button> <form method="POST" action="{base}/settings/assistants/{data.assistant._id}?/subscribe" class="w-full" use:enhance={() => { return async ({ result }) => { // `result` is an `ActionResult` object if (result.type === "success") { $settings.activeModel = data.assistant._id; goto(`${base}` || "/"); } else { await applyAction(result); } }; }} > <button type="submit" class=" w-full rounded-full bg-black px-4 py-3 font-semibold text-white" > Start chatting </button> </form> </dialog> </div>
chat-ui/src/routes/assistant/[assistantId]/+page.svelte/0
{ "file_path": "chat-ui/src/routes/assistant/[assistantId]/+page.svelte", "repo_id": "chat-ui", "token_count": 1829 }
80
import { redirect } from "@sveltejs/kit"; import { getOIDCAuthorizationUrl } from "$lib/server/auth"; import { base } from "$app/paths"; import { env } from "$env/dynamic/private"; export const actions = { async default({ url, locals, request }) { const referer = request.headers.get("referer"); let redirectURI = `${(referer ? new URL(referer) : url).origin}${base}/login/callback`; // TODO: Handle errors if provider is not responding if (url.searchParams.has("callback")) { const callback = url.searchParams.get("callback") || redirectURI; if (env.ALTERNATIVE_REDIRECT_URLS.includes(callback)) { redirectURI = callback; } } const authorizationUrl = await getOIDCAuthorizationUrl( { redirectURI }, { sessionId: locals.sessionId } ); throw redirect(303, authorizationUrl); }, };
chat-ui/src/routes/login/+page.server.ts/0
{ "file_path": "chat-ui/src/routes/login/+page.server.ts", "repo_id": "chat-ui", "token_count": 280 }
81
import { base } from "$app/paths"; import { redirect } from "@sveltejs/kit"; export async function load({ parent, params }) { const data = await parent(); const model = data.models.find((m: { id: string }) => m.id === params.model); if (!model || model.unlisted) { throw redirect(302, `${base}/settings`); } return data; }
chat-ui/src/routes/settings/(nav)/[...model]/+page.ts/0
{ "file_path": "chat-ui/src/routes/settings/(nav)/[...model]/+page.ts", "repo_id": "chat-ui", "token_count": 111 }
82
# How to add one new datasets Add datasets directly to the 🤗 Hugging Face Hub! You can share your dataset on https://huggingface.co/datasets directly using your account, see the documentation: * [Create a dataset and upload files on the website](https://huggingface.co/docs/datasets/upload_dataset) * [Advanced guide using the CLI](https://huggingface.co/docs/datasets/share)
datasets/ADD_NEW_DATASET.md/0
{ "file_path": "datasets/ADD_NEW_DATASET.md", "repo_id": "datasets", "token_count": 113 }
83
# Differences between Dataset and IterableDataset There are two types of dataset objects, a [`Dataset`] and an [`IterableDataset`]. Whichever type of dataset you choose to use or create depends on the size of the dataset. In general, an [`IterableDataset`] is ideal for big datasets (think hundreds of GBs!) due to its lazy behavior and speed advantages, while a [`Dataset`] is great for everything else. This page will compare the differences between a [`Dataset`] and an [`IterableDataset`] to help you pick the right dataset object for you. ## Downloading and streaming When you have a regular [`Dataset`], you can access it using `my_dataset[0]`. This provides random access to the rows. Such datasets are also called "map-style" datasets. For example you can download ImageNet-1k like this and access any row: ```python from datasets import load_dataset imagenet = load_dataset("imagenet-1k", split="train") # downloads the full dataset print(imagenet[0]) ``` But one caveat is that you must have the entire dataset stored on your disk or in memory, which blocks you from accessing datasets bigger than the disk. Because it can become inconvenient for big datasets, there exists another type of dataset, the [`IterableDataset`]. When you have an `IterableDataset`, you can access it using a `for` loop to load the data progressively as you iterate over the dataset. This way, only a small fraction of examples is loaded in memory, and you don't write anything on disk. For example, you can stream the ImageNet-1k dataset without downloading it on disk: ```python from datasets import load_dataset imagenet = load_dataset("imagenet-1k", split="train", streaming=True) # will start loading the data when iterated over for example in imagenet: print(example) break ``` Streaming can read online data without writing any file to disk. For example, you can stream datasets made out of multiple shards, each of which is hundreds of gigabytes like [C4](https://huggingface.co/datasets/c4), [OSCAR](https://huggingface.co/datasets/oscar) or [LAION-2B](https://huggingface.co/datasets/laion/laion2B-en). Learn more about how to stream a dataset in the [Dataset Streaming Guide](./stream). This is not the only difference though, because the "lazy" behavior of an `IterableDataset` is also present when it comes to dataset creation and processing. ## Creating map-style datasets and iterable datasets You can create a [`Dataset`] using lists or dictionaries, and the data is entirely converted to Arrow so you can easily access any row: ```python my_dataset = Dataset.from_dict({"col_1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}) print(my_dataset[0]) ``` To create an `IterableDataset` on the other hand, you must provide a "lazy" way to load the data. In Python, we generally use generator functions. These functions `yield` one example at a time, which means you can't access a row by slicing it like a regular `Dataset`: ```python def my_generator(n): for i in range(n): yield {"col_1": i} my_iterable_dataset = IterableDataset.from_generator(my_generator, gen_kwargs={"n": 10}) for example in my_iterable_dataset: print(example) break ``` ## Loading local files entirely and progressively It is possible to convert local or remote data files to an Arrow [`Dataset`] using [`load_dataset`]: ```python data_files = {"train": ["path/to/data.csv"]} my_dataset = load_dataset("csv", data_files=data_files, split="train") print(my_dataset[0]) ``` However, this requires a conversion step from CSV to Arrow format, which takes time and disk space if your dataset is big. To save disk space and skip the conversion step, you can define an `IterableDataset` by streaming from the local files directly. This way, the data is read progressively from the local files as you iterate over the dataset: ```python data_files = {"train": ["path/to/data.csv"]} my_iterable_dataset = load_dataset("csv", data_files=data_files, split="train", streaming=True) for example in my_iterable_dataset: # this reads the CSV file progressively as you iterate over the dataset print(example) break ``` Many file formats are supported, like CSV, JSONL, and Parquet, as well as image and audio files. You can find more information in the corresponding guides for loading [tabular](./tabular_load), [text](./nlp_load), [vision](./image_load), and [audio](./audio_load]) datasets. ## Eager data processing and lazy data processing When you process a [`Dataset`] object using [`Dataset.map`], the entire dataset is processed immediately and returned. This is similar to how `pandas` works for example. ```python my_dataset = my_dataset.map(process_fn) # process_fn is applied on all the examples of the dataset print(my_dataset[0]) ``` On the other hand, due to the "lazy" nature of an `IterableDataset`, calling [`IterableDataset.map`] does not apply your `map` function over the full dataset. Instead, your `map` function is applied on-the-fly. Because of that, you can chain multiple processing steps and they will all run at once when you start iterating over the dataset: ```python my_iterable_dataset = my_iterable_dataset.map(process_fn_1) my_iterable_dataset = my_iterable_dataset.filter(filter_fn) my_iterable_dataset = my_iterable_dataset.map(process_fn_2) # process_fn_1, filter_fn and process_fn_2 are applied on-the-fly when iterating over the dataset for example in my_iterable_dataset: print(example) break ``` ## Exact and fast approximate shuffling When you shuffle a [`Dataset`] using [`Dataset.shuffle`], you apply an exact shuffling of the dataset. It works by taking a list of indices `[0, 1, 2, ... len(my_dataset) - 1]` and shuffling this list. Then, accessing `my_dataset[0]` returns the row and index defined by the first element of the indices mapping that has been shuffled: ```python my_dataset = my_dataset.shuffle(seed=42) print(my_dataset[0]) ``` Since we don't have random access to the rows in the case of an `IterableDataset`, we can't use a shuffled list of indices and access a row at an arbitrary position. This prevents the use of exact shuffling. Instead, a fast approximate shuffling is used in [`IterableDataset.shuffle`]. It uses a shuffle buffer to sample random examples iteratively from the dataset. Since the dataset is still read iteratively, it provides excellent speed performance: ```python my_iterable_dataset = my_iterable_dataset.shuffle(seed=42, buffer_size=100) for example in my_iterable_dataset: print(example) break ``` But using a shuffle buffer is not enough to provide a satisfactory shuffling for machine learning model training. So [`IterableDataset.shuffle`] also shuffles the dataset shards if your dataset is made of multiple files or sources: ```python # Stream from the internet my_iterable_dataset = load_dataset("deepmind/code_contests", split="train", streaming=True) my_iterable_dataset.n_shards # 39 # Stream from local files data_files = {"train": [f"path/to/data_{i}.csv" for i in range(1024)]} my_iterable_dataset = load_dataset("csv", data_files=data_files, split="train", streaming=True) my_iterable_dataset.n_shards # 1024 # From a generator function def my_generator(n, sources): for source in sources: for example_id_for_current_source in range(n): yield {"example_id": f"{source}_{example_id_for_current_source}"} gen_kwargs = {"n": 10, "sources": [f"path/to/data_{i}" for i in range(1024)]} my_iterable_dataset = IterableDataset.from_generator(my_generator, gen_kwargs=gen_kwargs) my_iterable_dataset.n_shards # 1024 ``` ## Speed differences Regular [`Dataset`] objects are based on Arrow which provides fast random access to the rows. Thanks to memory mapping and the fact that Arrow is an in-memory format, reading data from disk doesn't do expensive system calls and deserialization. It provides even faster data loading when iterating using a `for` loop by iterating on contiguous Arrow record batches. However as soon as your [`Dataset`] has an indices mapping (via [`Dataset.shuffle`] for example), the speed can become 10x slower. This is because there is an extra step to get the row index to read using the indices mapping, and most importantly, you aren't reading contiguous chunks of data anymore. To restore the speed, you'd need to rewrite the entire dataset on your disk again using [`Dataset.flatten_indices`], which removes the indices mapping. This may take a lot of time depending of the size of your dataset though: ```python my_dataset[0] # fast my_dataset = my_dataset.shuffle(seed=42) my_dataset[0] # up to 10x slower my_dataset = my_dataset.flatten_indices() # rewrite the shuffled dataset on disk as contiguous chunks of data my_dataset[0] # fast again ``` In this case, we recommend switching to an [`IterableDataset`] and leveraging its fast approximate shuffling method [`IterableDataset.shuffle`]. It only shuffles the shards order and adds a shuffle buffer to your dataset, which keeps the speed of your dataset optimal. You can also reshuffle the dataset easily: ```python for example in enumerate(my_iterable_dataset): # fast pass shuffled_iterable_dataset = my_iterable_dataset.shuffle(seed=42, buffer_size=100) for example in enumerate(shuffled_iterable_dataset): # as fast as before pass shuffled_iterable_dataset = my_iterable_dataset.shuffle(seed=1337, buffer_size=100) # reshuffling using another seed is instantaneous for example in enumerate(shuffled_iterable_dataset): # still as fast as before pass ``` If you're using your dataset on multiple epochs, the effective seed to shuffle the shards order in the shuffle buffer is `seed + epoch`. It makes it easy to reshuffle a dataset between epochs: ```python for epoch in range(n_epochs): my_iterable_dataset.set_epoch(epoch) for example in my_iterable_dataset: # fast + reshuffled at each epoch using `effective_seed = seed + epoch` pass ``` ## Checkpoint and resuming differences If you training loop stops, you may want to restart the training from where it was. To do so you can save a checkpoint of your model and optimizers, as well as your data loader. To restart the iteration of a map-style dataset, you can simply skip the first examples: ```python my_dataset = my_dataset.select(range(start_index, len(dataset))) ``` But if you use a `DataLoader` with a `Sampler`, you should instead save the state of your sampler (you might have write a custom sampler that allows resuming). On the other hand, iterable datasets don't provide random access to a specific example inde to resume from. But you can use [`IterableDataset.state_dict`] and [`IterableDataset.load_state_dict`] to resume from a checkpoint instead, similarly to what you can do for models and optimizers: ```python >>> iterable_dataset = Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3) >>> # save in the middle of training >>> state_dict = iterable_dataset.state_dict() >>> # and resume later >>> iterable_dataset.load_state_dict(state_dict) ``` Under the hood, the iterable dataset keeps track of the current shard being read and the example index in the current shard and it stores this info in the `state_dict`. To resume from a checkpoint, the dataset skips all the shards that were previously read to restart from the current shard. Then it reads the shard and skips examples until it reaches the exact example from the checkpoint. Therefore restarting a dataset is quite fast, since it will not re-read the shards that have already been iterated on. Still, resuming a dataset is generally not instantaneous since it has to restart reading from the beginning of the current shard and skip examples until it reaches the checkpoint location. This can be used with the `StatefulDataLoader` from `torchdata`, see [streaming with a PyTorch DataLoader](./use_with_pytorch#stream-data). ## Switch from map-style to iterable If you want to benefit from the "lazy" behavior of an [`IterableDataset`] or their speed advantages, you can switch your map-style [`Dataset`] to an [`IterableDataset`]: ```python my_iterable_dataset = my_dataset.to_iterable_dataset() ``` If you want to shuffle your dataset or [use it with a PyTorch DataLoader](./use_with_pytorch#stream-data), we recommend generating a sharded [`IterableDataset`]: ```python my_iterable_dataset = my_dataset.to_iterable_dataset(num_shards=1024) my_iterable_dataset.n_shards # 1024 ```
datasets/docs/source/about_mapstyle_vs_iterable.mdx/0
{ "file_path": "datasets/docs/source/about_mapstyle_vs_iterable.mdx", "repo_id": "datasets", "token_count": 3782 }
84
# Metrics <Tip warning={true}> Metrics is deprecated in 🤗 Datasets. To learn more about how to use metrics, take a look at the library 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index)! In addition to metrics, you can find more tools for evaluating models and datasets. </Tip> Metrics are important for evaluating a model's predictions. In the tutorial, you learned how to compute a metric over an entire evaluation set. You have also seen how to load a metric. This guide will show you how to: - Add predictions and references. - Compute metrics using different methods. - Write your own metric loading script. ## Add predictions and references When you want to add model predictions and references to a [`Metric`] instance, you have two options: - [`Metric.add`] adds a single `prediction` and `reference`. - [`Metric.add_batch`] adds a batch of `predictions` and `references`. Use [`Metric.add_batch`] by passing it your model predictions, and the references the model predictions should be evaluated against: ```py >>> import datasets >>> metric = datasets.load_metric('my_metric') >>> for model_input, gold_references in evaluation_dataset: ... model_predictions = model(model_inputs) ... metric.add_batch(predictions=model_predictions, references=gold_references) >>> final_score = metric.compute() ``` <Tip> Metrics accepts various input formats (Python lists, NumPy arrays, PyTorch tensors, etc.) and converts them to an appropriate format for storage and computation. </Tip> ## Compute scores The most straightforward way to calculate a metric is to call [`Metric.compute`]. But some metrics have additional arguments that allow you to modify the metrics behavior. Let's load the [SacreBLEU](https://huggingface.co/metrics/sacrebleu) metric, and compute it with a different smoothing method. 1. Load the SacreBLEU metric: ```py >>> import datasets >>> metric = datasets.load_metric('sacrebleu') ``` 2. Inspect the different argument methods for computing the metric: ```py >>> print(metric.inputs_description) Produces BLEU scores along with its sufficient statistics from a source against one or more references. Args: predictions: The system stream (a sequence of segments). references: A list of one or more reference streams (each a sequence of segments). smooth_method: The smoothing method to use. (Default: 'exp'). smooth_value: The smoothing value. Only valid for 'floor' and 'add-k'. (Defaults: floor: 0.1, add-k: 1). tokenize: Tokenization method to use for BLEU. If not provided, defaults to 'zh' for Chinese, 'ja-mecab' for Japanese and '13a' (mteval) otherwise. lowercase: Lowercase the data. If True, enables case-insensitivity. (Default: False). force: Insist that your tokenized input is actually detokenized. ... ``` 3. Compute the metric with the `floor` method, and a different `smooth_value`: ```py >>> score = metric.compute(smooth_method="floor", smooth_value=0.2) ``` <a id='metric_script'></a> ## Custom metric loading script Write a metric loading script to use your own custom metric (or one that is not on the Hub). Then you can load it as usual with [`load_metric`]. To help you get started, open the [SQuAD metric loading script](https://github.com/huggingface/datasets/blob/main/metrics/squad/squad.py) and follow along. <Tip> Get jump started with our metric loading script [template](https://github.com/huggingface/datasets/blob/f9713d2e23813142a02f1b0e965095f528785cff/templates/new_metric_script.py)! </Tip> ### Add metric attributes Start by adding some information about your metric in [`Metric._info`]. The most important attributes you should specify are: 1. [`MetricInfo.description`] provides a brief description about your metric. 2. [`MetricInfo.citation`] contains a BibTex citation for the metric. 3. [`MetricInfo.inputs_description`] describes the expected inputs and outputs. It may also provide an example usage of the metric. 4. [`MetricInfo.features`] defines the name and type of the predictions and references. After you've filled out all these fields in the template, it should look like the following example from the SQuAD metric script: ```py class Squad(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": {"id": datasets.Value("string"), "prediction_text": datasets.Value("string")}, "references": { "id": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), }, } ), codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], ) ``` ### Download metric files If your metric needs to download, or retrieve local files, you will need to use the [`Metric._download_and_prepare`] method. For this example, let's examine the [BLEURT metric loading script](https://github.com/huggingface/datasets/blob/main/metrics/bleurt/bleurt.py). 1. Provide a dictionary of URLs that point to the metric files: ```py CHECKPOINT_URLS = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", } ``` <Tip> If the files are stored locally, provide a dictionary of path(s) instead of URLs. </Tip> 2. [`Metric._download_and_prepare`] will take the URLs and download the metric files specified: ```py def _download_and_prepare(self, dl_manager): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512')." ) self.config_name = "bleurt-base-128" if self.config_name not in CHECKPOINT_URLS.keys(): raise KeyError( f"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" ) # download the model checkpoint specified by self.config_name and set up the scorer model_path = dl_manager.download_and_extract(CHECKPOINT_URLS[self.config_name]) self.scorer = score.BleurtScorer(os.path.join(model_path, self.config_name)) ``` ### Compute score [`DatasetBuilder._compute`] provides the actual instructions for how to compute a metric given the predictions and references. Now let's take a look at the [GLUE metric loading script](https://github.com/huggingface/datasets/blob/main/metrics/glue/glue.py). 1. Provide the functions for [`DatasetBuilder._compute`] to calculate your metric: ```py def simple_accuracy(preds, labels): return (preds == labels).mean().item() def acc_and_f1(preds, labels): acc = simple_accuracy(preds, labels) f1 = f1_score(y_true=labels, y_pred=preds).item() return { "accuracy": acc, "f1": f1, } def pearson_and_spearman(preds, labels): pearson_corr = pearsonr(preds, labels)[0].item() spearman_corr = spearmanr(preds, labels)[0].item() return { "pearson": pearson_corr, "spearmanr": spearman_corr, } ``` 2. Create [`DatasetBuilder._compute`] with instructions for what metric to calculate for each configuration: ```py def _compute(self, predictions, references): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(references, predictions)} elif self.config_name == "stsb": return pearson_and_spearman(predictions, references) elif self.config_name in ["mrpc", "qqp"]: return acc_and_f1(predictions, references) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(predictions, references)} else: raise KeyError( "You should supply a configuration name selected in " '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) ``` ### Test Once you're finished writing your metric loading script, try to load it locally: ```py >>> from datasets import load_metric >>> metric = load_metric('PATH/TO/MY/SCRIPT.py') ```
datasets/docs/source/how_to_metrics.mdx/0
{ "file_path": "datasets/docs/source/how_to_metrics.mdx", "repo_id": "datasets", "token_count": 3350 }
85
# Loading methods Methods for listing and loading datasets and metrics: ## Datasets [[autodoc]] datasets.list_datasets [[autodoc]] datasets.load_dataset [[autodoc]] datasets.load_from_disk [[autodoc]] datasets.load_dataset_builder [[autodoc]] datasets.get_dataset_config_names [[autodoc]] datasets.get_dataset_infos [[autodoc]] datasets.get_dataset_split_names [[autodoc]] datasets.inspect_dataset ## Metrics <Tip warning={true}> Metrics is deprecated in 🤗 Datasets. To learn more about how to use metrics, take a look at the library 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index)! In addition to metrics, you can find more tools for evaluating models and datasets. </Tip> [[autodoc]] datasets.list_metrics [[autodoc]] datasets.load_metric [[autodoc]] datasets.inspect_metric ## From files Configurations used to load data files. They are used when loading local files or a dataset repository: - local files: `load_dataset("parquet", data_dir="path/to/data/dir")` - dataset repository: `load_dataset("allenai/c4")` You can pass arguments to `load_dataset` to configure data loading. For example you can specify the `sep` parameter to define the [`~datasets.packaged_modules.csv.CsvConfig`] that is used to load the data: ```python load_dataset("csv", data_dir="path/to/data/dir", sep="\t") ``` ### Text [[autodoc]] datasets.packaged_modules.text.TextConfig [[autodoc]] datasets.packaged_modules.text.Text ### CSV [[autodoc]] datasets.packaged_modules.csv.CsvConfig [[autodoc]] datasets.packaged_modules.csv.Csv ### JSON [[autodoc]] datasets.packaged_modules.json.JsonConfig [[autodoc]] datasets.packaged_modules.json.Json ### Parquet [[autodoc]] datasets.packaged_modules.parquet.ParquetConfig [[autodoc]] datasets.packaged_modules.parquet.Parquet ### Arrow [[autodoc]] datasets.packaged_modules.arrow.ArrowConfig [[autodoc]] datasets.packaged_modules.arrow.Arrow ### SQL [[autodoc]] datasets.packaged_modules.sql.SqlConfig [[autodoc]] datasets.packaged_modules.sql.Sql ### Images [[autodoc]] datasets.packaged_modules.imagefolder.ImageFolderConfig [[autodoc]] datasets.packaged_modules.imagefolder.ImageFolder ### Audio [[autodoc]] datasets.packaged_modules.audiofolder.AudioFolderConfig [[autodoc]] datasets.packaged_modules.audiofolder.AudioFolder ### WebDataset [[autodoc]] datasets.packaged_modules.webdataset.WebDataset
datasets/docs/source/package_reference/loading_methods.mdx/0
{ "file_path": "datasets/docs/source/package_reference/loading_methods.mdx", "repo_id": "datasets", "token_count": 809 }
86
# Use with JAX This document is a quick introduction to using `datasets` with JAX, with a particular focus on how to get `jax.Array` objects out of our datasets, and how to use them to train JAX models. <Tip> `jax` and `jaxlib` are required to reproduce to code above, so please make sure you install them as `pip install datasets[jax]`. </Tip> ## Dataset format By default, datasets return regular Python objects: integers, floats, strings, lists, etc., and string and binary objects are unchanged, since JAX only supports numbers. To get JAX arrays (numpy-like) instead, you can set the format of the dataset to `jax`: ```py >>> from datasets import Dataset >>> data = [[1, 2], [3, 4]] >>> ds = Dataset.from_dict({"data": data}) >>> ds = ds.with_format("jax") >>> ds[0] {'data': DeviceArray([1, 2], dtype=int32)} >>> ds[:2] {'data': DeviceArray([ [1, 2], [3, 4]], dtype=int32)} ``` <Tip> A [`Dataset`] object is a wrapper of an Arrow table, which allows fast reads from arrays in the dataset to JAX arrays. </Tip> Note that the exact same procedure applies to `DatasetDict` objects, so that when setting the format of a `DatasetDict` to `jax`, all the `Dataset`s there will be formatted as `jax`: ```py >>> from datasets import DatasetDict >>> data = {"train": {"data": [[1, 2], [3, 4]]}, "test": {"data": [[5, 6], [7, 8]]}} >>> dds = DatasetDict.from_dict(data) >>> dds = dds.with_format("jax") >>> dds["train"][:2] {'data': DeviceArray([ [1, 2], [3, 4]], dtype=int32)} ``` Another thing you'll need to take into consideration is that the formatting is not applied until you actually access the data. So if you want to get a JAX array out of a dataset, you'll need to access the data first, otherwise the format will remain the same. Finally, to load the data in the device of your choice, you can specify the `device` argument, but note that `jaxlib.xla_extension.Device` is not supported as it's not serializable with neither `pickle` not `dill`, so you'll need to use its string identifier instead: ```py >>> import jax >>> from datasets import Dataset >>> data = [[1, 2], [3, 4]] >>> ds = Dataset.from_dict({"data": data}) >>> device = str(jax.devices()[0]) # Not casting to `str` before passing it to `with_format` will raise a `ValueError` >>> ds = ds.with_format("jax", device=device) >>> ds[0] {'data': DeviceArray([1, 2], dtype=int32)} >>> ds[0]["data"].device() TFRT_CPU_0 >>> assert ds[0]["data"].device() == jax.devices()[0] True ``` Note that if the `device` argument is not provided to `with_format` then it will use the default device which is `jax.devices()[0]`. ## N-dimensional arrays If your dataset consists of N-dimensional arrays, you will see that by default they are considered as the same tensor if the shape is fixed: ```py >>> from datasets import Dataset >>> data = [[[1, 2],[3, 4]], [[5, 6],[7, 8]]] # fixed shape >>> ds = Dataset.from_dict({"data": data}) >>> ds = ds.with_format("jax") >>> ds[0] {'data': Array([[1, 2], [3, 4]], dtype=int32)} ``` ```py >>> from datasets import Dataset >>> data = [[[1, 2],[3]], [[4, 5, 6],[7, 8]]] # varying shape >>> ds = Dataset.from_dict({"data": data}) >>> ds = ds.with_format("jax") >>> ds[0] {'data': [Array([1, 2], dtype=int32), Array([3], dtype=int32)]} ``` However this logic often requires slow shape comparisons and data copies. To avoid this, you must explicitly use the [`Array`] feature type and specify the shape of your tensors: ```py >>> from datasets import Dataset, Features, Array2D >>> data = [[[1, 2],[3, 4]],[[5, 6],[7, 8]]] >>> features = Features({"data": Array2D(shape=(2, 2), dtype='int32')}) >>> ds = Dataset.from_dict({"data": data}, features=features) >>> ds = ds.with_format("torch") >>> ds[0] {'data': Array([[1, 2], [3, 4]], dtype=int32)} >>> ds[:2] {'data': Array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=int32)} ``` ## Other feature types [`ClassLabel`] data is properly converted to arrays: ```py >>> from datasets import Dataset, Features, ClassLabel >>> labels = [0, 0, 1] >>> features = Features({"label": ClassLabel(names=["negative", "positive"])}) >>> ds = Dataset.from_dict({"label": labels}, features=features) >>> ds = ds.with_format("jax") >>> ds[:3] {'label': DeviceArray([0, 0, 1], dtype=int32)} ``` String and binary objects are unchanged, since JAX only supports numbers. The [`Image`] and [`Audio`] feature types are also supported. <Tip> To use the [`Image`] feature type, you'll need to install the `vision` extra as `pip install datasets[vision]`. </Tip> ```py >>> from datasets import Dataset, Features, Image >>> images = ["path/to/image.png"] * 10 >>> features = Features({"image": Image()}) >>> ds = Dataset.from_dict({"image": images}, features=features) >>> ds = ds.with_format("jax") >>> ds[0]["image"].shape (512, 512, 3) >>> ds[0] {'image': DeviceArray([[[ 255, 255, 255], [ 255, 255, 255], ..., [ 255, 255, 255], [ 255, 255, 255]]], dtype=uint8)} >>> ds[:2]["image"].shape (2, 512, 512, 3) >>> ds[:2] {'image': DeviceArray([[[[ 255, 255, 255], [ 255, 255, 255], ..., [ 255, 255, 255], [ 255, 255, 255]]]], dtype=uint8)} ``` <Tip> To use the [`Audio`] feature type, you'll need to install the `audio` extra as `pip install datasets[audio]`. </Tip> ```py >>> from datasets import Dataset, Features, Audio >>> audio = ["path/to/audio.wav"] * 10 >>> features = Features({"audio": Audio()}) >>> ds = Dataset.from_dict({"audio": audio}, features=features) >>> ds = ds.with_format("jax") >>> ds[0]["audio"]["array"] DeviceArray([-0.059021 , -0.03894043, -0.00735474, ..., 0.0133667 , 0.01809692, 0.00268555], dtype=float32) >>> ds[0]["audio"]["sampling_rate"] DeviceArray(44100, dtype=int32, weak_type=True) ``` ## Data loading JAX doesn't have any built-in data loading capabilities, so you'll need to use a library such as [PyTorch](https://pytorch.org/) to load your data using a `DataLoader` or [TensorFlow](https://www.tensorflow.org/) using a `tf.data.Dataset`. Citing the [JAX documentation](https://jax.readthedocs.io/en/latest/notebooks/Neural_Network_and_Data_Loading.html#data-loading-with-pytorch) on this topic: "JAX is laser-focused on program transformations and accelerator-backed NumPy, so we don’t include data loading or munging in the JAX library. There are already a lot of great data loaders out there, so let’s just use them instead of reinventing anything. We’ll grab PyTorch’s data loader, and make a tiny shim to make it work with NumPy arrays.". So that's the reason why JAX-formatting in `datasets` is so useful, because it lets you use any model from the HuggingFace Hub with JAX, without having to worry about the data loading part. ### Using `with_format('jax')` The easiest way to get JAX arrays out of a dataset is to use the `with_format('jax')` method. Lets assume that we want to train a neural network on the [MNIST dataset](http://yann.lecun.com/exdb/mnist/) available at the HuggingFace Hub at https://huggingface.co/datasets/mnist. ```py >>> from datasets import load_dataset >>> ds = load_dataset("mnist") >>> ds = ds.with_format("jax") >>> ds["train"][0] {'image': DeviceArray([[ 0, 0, 0, ...], [ 0, 0, 0, ...], ..., [ 0, 0, 0, ...], [ 0, 0, 0, ...]], dtype=uint8), 'label': DeviceArray(5, dtype=int32)} ``` Once the format is set we can feed the dataset to the JAX model in batches using the `Dataset.iter()` method: ```py >>> for epoch in range(epochs): ... for batch in ds["train"].iter(batch_size=32): ... x, y = batch["image"], batch["label"] ... ... ```
datasets/docs/source/use_with_jax.mdx/0
{ "file_path": "datasets/docs/source/use_with_jax.mdx", "repo_id": "datasets", "token_count": 2969 }
87
# Copyright 2021 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Chrf(++) metric as available in sacrebleu.""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _CITATION = """\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } """ _DESCRIPTION = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ _KWARGS_DESCRIPTION = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class ChrF(datasets.Metric): def _info(self): if version.parse(scb.__version__) < version.parse("1.4.12"): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), } ), codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"], reference_urls=[ "https://github.com/m-popovic/chrF", ], ) def _compute( self, predictions, references, char_order: int = CHRF.CHAR_ORDER, word_order: int = CHRF.WORD_ORDER, beta: int = CHRF.BETA, lowercase: bool = False, whitespace: bool = False, eps_smoothing: bool = False, ): references_per_prediction = len(references[0]) if any(len(refs) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] sb_chrf = CHRF(char_order, word_order, beta, lowercase, whitespace, eps_smoothing) output = sb_chrf.corpus_score(predictions, transformed_references) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
datasets/metrics/chrf/chrf.py/0
{ "file_path": "datasets/metrics/chrf/chrf.py", "repo_id": "datasets", "token_count": 3170 }
88
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """F1 metric.""" from sklearn.metrics import f1_score import datasets _DESCRIPTION = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ _KWARGS_DESCRIPTION = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ _CITATION = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class F1(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32")), "references": datasets.Sequence(datasets.Value("int32")), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), } ), reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"], ) def _compute(self, predictions, references, labels=None, pos_label=1, average="binary", sample_weight=None): score = f1_score( references, predictions, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight ) return {"f1": float(score) if score.size == 1 else score}
datasets/metrics/f1/f1.py/0
{ "file_path": "datasets/metrics/f1/f1.py", "repo_id": "datasets", "token_count": 2364 }
89
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MAUVE metric from https://github.com/krishnap25/mauve.""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _CITATION = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ _DESCRIPTION = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ _KWARGS_DESCRIPTION = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Mauve(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="https://github.com/krishnap25/mauve", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), codebase_urls=["https://github.com/krishnap25/mauve"], reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ], ) def _compute( self, predictions, references, p_features=None, q_features=None, p_tokens=None, q_tokens=None, num_buckets="auto", pca_max_data=-1, kmeans_explained_var=0.9, kmeans_num_redo=5, kmeans_max_iter=500, featurize_model_name="gpt2-large", device_id=-1, max_text_length=1024, divergence_curve_discretization_size=25, mauve_scaling_factor=5, verbose=True, seed=25, ): out = compute_mauve( p_text=predictions, q_text=references, p_features=p_features, q_features=q_features, p_tokens=p_tokens, q_tokens=q_tokens, num_buckets=num_buckets, pca_max_data=pca_max_data, kmeans_explained_var=kmeans_explained_var, kmeans_num_redo=kmeans_num_redo, kmeans_max_iter=kmeans_max_iter, featurize_model_name=featurize_model_name, device_id=device_id, max_text_length=max_text_length, divergence_curve_discretization_size=divergence_curve_discretization_size, mauve_scaling_factor=mauve_scaling_factor, verbose=verbose, seed=seed, ) return out
datasets/metrics/mauve/mauve.py/0
{ "file_path": "datasets/metrics/mauve/mauve.py", "repo_id": "datasets", "token_count": 2588 }
90
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SQuAD v2 metric.""" import datasets from .evaluate import ( apply_no_ans_threshold, find_all_best_thresh, get_raw_scores, make_eval_dict, make_qid_to_has_ans, merge_eval, ) _CITATION = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ _DESCRIPTION = """ This metric wrap the official scoring script for version 2 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. """ _KWARGS_DESCRIPTION = """ Computes SQuAD v2 scores (F1 and EM). Args: predictions: List of triple for question-answers to score with the following elements: - the question-answer 'id' field as given in the references (see below) - the text of the answer - the probability that the question has no answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a list of Dict {'text': text of the answer as a string} no_answer_threshold: float Probability threshold to decide that a question has no answer. Returns: 'exact': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'total': Number of score considered 'HasAns_exact': Exact match (the normalized answer exactly match the gold answer) 'HasAns_f1': The F-score of predicted tokens versus the gold answer 'HasAns_total': Number of score considered 'NoAns_exact': Exact match (the normalized answer exactly match the gold answer) 'NoAns_f1': The F-score of predicted tokens versus the gold answer 'NoAns_total': Number of score considered 'best_exact': Best exact match (with varying threshold) 'best_exact_thresh': No-answer probability threshold associated to the best exact match 'best_f1': Best F1 (with varying threshold) 'best_f1_thresh': No-answer probability threshold associated to the best F1 Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22', 'no_answer_probability': 0.}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_v2_metric = datasets.load_metric("squad_v2") >>> results = squad_v2_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact': 100.0, 'f1': 100.0, 'total': 1, 'HasAns_exact': 100.0, 'HasAns_f1': 100.0, 'HasAns_total': 1, 'best_exact': 100.0, 'best_exact_thresh': 0.0, 'best_f1': 100.0, 'best_f1_thresh': 0.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class SquadV2(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": { "id": datasets.Value("string"), "prediction_text": datasets.Value("string"), "no_answer_probability": datasets.Value("float32"), }, "references": { "id": datasets.Value("string"), "answers": datasets.features.Sequence( {"text": datasets.Value("string"), "answer_start": datasets.Value("int32")} ), }, } ), codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], ) def _compute(self, predictions, references, no_answer_threshold=1.0): no_answer_probabilities = {p["id"]: p["no_answer_probability"] for p in predictions} dataset = [{"paragraphs": [{"qas": references}]}] predictions = {p["id"]: p["prediction_text"] for p in predictions} qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False has_ans_qids = [k for k, v in qid_to_has_ans.items() if v] no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v] exact_raw, f1_raw = get_raw_scores(dataset, predictions) exact_thresh = apply_no_ans_threshold(exact_raw, no_answer_probabilities, qid_to_has_ans, no_answer_threshold) f1_thresh = apply_no_ans_threshold(f1_raw, no_answer_probabilities, qid_to_has_ans, no_answer_threshold) out_eval = make_eval_dict(exact_thresh, f1_thresh) if has_ans_qids: has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids) merge_eval(out_eval, has_ans_eval, "HasAns") if no_ans_qids: no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids) merge_eval(out_eval, no_ans_eval, "NoAns") find_all_best_thresh(out_eval, predictions, exact_raw, f1_raw, no_answer_probabilities, qid_to_has_ans) return dict(out_eval)
datasets/metrics/squad_v2/squad_v2.py/0
{ "file_path": "datasets/metrics/squad_v2/squad_v2.py", "repo_id": "datasets", "token_count": 2564 }
91
[tool.ruff] line-length = 119 [tool.ruff.lint] # Ignored rules: # "E501" -> line length violation # "F821" -> undefined named in type annotation (e.g. Literal["something"]) # "C901" -> `function_name` is too complex ignore = ["E501", "F821", "C901"] select = ["C", "E", "F", "I", "W"] [tool.ruff.lint.isort] lines-after-imports = 2 known-first-party = ["datasets"] [tool.ruff.lint.per-file-ignores] "__init__.py" = ["F401", "F403", "F405"] [tool.pytest.ini_options] # Test fails if a FutureWarning is thrown by `huggingface_hub` # Temporarily disabled because transformers 4.41.1 calls deprecated code from `huggingface_hub` that causes FutureWarning # filterwarnings = [ # "error::FutureWarning:huggingface_hub*", # ] markers = [ "unit: unit test", "integration: integration test", ]
datasets/pyproject.toml/0
{ "file_path": "datasets/pyproject.toml", "repo_id": "datasets", "token_count": 308 }
92
import logging import os from argparse import ArgumentParser from pathlib import Path from shutil import copyfile, rmtree from typing import Generator, Optional import datasets.config from datasets.builder import DatasetBuilder from datasets.commands import BaseDatasetsCLICommand from datasets.download.download_manager import DownloadMode from datasets.load import dataset_module_factory, import_main_class from datasets.utils.info_utils import VerificationMode from datasets.utils.logging import ERROR, get_logger logger = get_logger(__name__) def _test_command_factory(args): return TestCommand( args.dataset, args.name, args.cache_dir, args.data_dir, args.all_configs, args.save_info or args.save_infos, args.ignore_verifications, args.force_redownload, args.clear_cache, args.num_proc, args.trust_remote_code, ) class TestCommand(BaseDatasetsCLICommand): __test__ = False # to tell pytest it's not a test class @staticmethod def register_subcommand(parser: ArgumentParser): test_parser = parser.add_parser("test", help="Test dataset implementation.") test_parser.add_argument("--name", type=str, default=None, help="Dataset processing name") test_parser.add_argument( "--cache_dir", type=str, default=None, help="Cache directory where the datasets are stored.", ) test_parser.add_argument( "--data_dir", type=str, default=None, help="Can be used to specify a manual directory to get the files from.", ) test_parser.add_argument("--all_configs", action="store_true", help="Test all dataset configurations") test_parser.add_argument( "--save_info", action="store_true", help="Save the dataset infos in the dataset card (README.md)" ) test_parser.add_argument( "--ignore_verifications", action="store_true", help="Run the test without checksums and splits checks.", ) test_parser.add_argument("--force_redownload", action="store_true", help="Force dataset redownload") test_parser.add_argument( "--clear_cache", action="store_true", help="Remove downloaded files and cached datasets after each config test", ) test_parser.add_argument("--num_proc", type=int, default=None, help="Number of processes") test_parser.add_argument( "--trust_remote_code", action="store_true", help="whether to trust the code execution of the load script" ) # aliases test_parser.add_argument("--save_infos", action="store_true", help="alias to save_info") test_parser.add_argument("dataset", type=str, help="Name of the dataset to download") test_parser.set_defaults(func=_test_command_factory) def __init__( self, dataset: str, name: str, cache_dir: str, data_dir: str, all_configs: bool, save_infos: bool, ignore_verifications: bool, force_redownload: bool, clear_cache: bool, num_proc: int, trust_remote_code: Optional[bool], ): self._dataset = dataset self._name = name self._cache_dir = cache_dir self._data_dir = data_dir self._all_configs = all_configs self._save_infos = save_infos self._ignore_verifications = ignore_verifications self._force_redownload = force_redownload self._clear_cache = clear_cache self._num_proc = num_proc self._trust_remote_code = trust_remote_code if clear_cache and not cache_dir: print( "When --clear_cache is used, specifying a cache directory is mandatory.\n" "The 'download' folder of the cache directory and the dataset builder cache will be deleted after each configuration test.\n" "Please provide a --cache_dir that will be used to test the dataset script." ) exit(1) if save_infos: self._ignore_verifications = True def run(self): logging.getLogger("filelock").setLevel(ERROR) if self._name is not None and self._all_configs: print("Both parameters `config` and `all_configs` can't be used at once.") exit(1) path, config_name = self._dataset, self._name module = dataset_module_factory(path, trust_remote_code=self._trust_remote_code) builder_cls = import_main_class(module.module_path) n_builders = len(builder_cls.BUILDER_CONFIGS) if self._all_configs and builder_cls.BUILDER_CONFIGS else 1 def get_builders() -> Generator[DatasetBuilder, None, None]: if self._all_configs and builder_cls.BUILDER_CONFIGS: for i, config in enumerate(builder_cls.BUILDER_CONFIGS): if "config_name" in module.builder_kwargs: yield builder_cls( cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs, ) else: yield builder_cls( config_name=config.name, cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs, ) else: if "config_name" in module.builder_kwargs: yield builder_cls(cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs) else: yield builder_cls( config_name=config_name, cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs, ) for j, builder in enumerate(get_builders()): print(f"Testing builder '{builder.config.name}' ({j + 1}/{n_builders})") builder._record_infos = os.path.exists( os.path.join(builder.get_imported_module_dir(), datasets.config.DATASETDICT_INFOS_FILENAME) ) # record checksums only if we need to update a (deprecated) dataset_infos.json builder.download_and_prepare( download_mode=DownloadMode.REUSE_CACHE_IF_EXISTS if not self._force_redownload else DownloadMode.FORCE_REDOWNLOAD, verification_mode=VerificationMode.NO_CHECKS if self._ignore_verifications else VerificationMode.ALL_CHECKS, try_from_hf_gcs=False, num_proc=self._num_proc, ) builder.as_dataset() if self._save_infos: builder._save_infos() # If save_infos=True, the dataset card (README.md) is created next to the loaded module file. # The dataset_infos are saved in the YAML part of the README.md # Let's move it to the original directory of the dataset script, to allow the user to # upload them on S3 at the same time afterwards. if self._save_infos: dataset_readme_path = os.path.join( builder_cls.get_imported_module_dir(), datasets.config.REPOCARD_FILENAME ) name = Path(path).name + ".py" combined_path = os.path.join(path, name) if os.path.isfile(path): dataset_dir = os.path.dirname(path) elif os.path.isfile(combined_path): dataset_dir = path elif os.path.isdir(path): # for local directories containing only data files dataset_dir = path else: # in case of a remote dataset dataset_dir = None print(f"Dataset card saved at {dataset_readme_path}") # Move dataset_info back to the user if dataset_dir is not None: user_dataset_readme_path = os.path.join(dataset_dir, datasets.config.REPOCARD_FILENAME) copyfile(dataset_readme_path, user_dataset_readme_path) print(f"Dataset card saved at {user_dataset_readme_path}") # If clear_cache=True, the download folder and the dataset builder cache directory are deleted if self._clear_cache: if os.path.isdir(builder._cache_dir): logger.warning(f"Clearing cache at {builder._cache_dir}") rmtree(builder._cache_dir) download_dir = os.path.join(self._cache_dir, datasets.config.DOWNLOADED_DATASETS_DIR) if os.path.isdir(download_dir): logger.warning(f"Clearing cache at {download_dir}") rmtree(download_dir) print("Test successful.")
datasets/src/datasets/commands/test.py/0
{ "file_path": "datasets/src/datasets/commands/test.py", "repo_id": "datasets", "token_count": 4337 }
93
import importlib import shutil import warnings from typing import List import fsspec import fsspec.asyn from fsspec.implementations.local import LocalFileSystem from ..utils.deprecation_utils import deprecated from . import compression _has_s3fs = importlib.util.find_spec("s3fs") is not None if _has_s3fs: from .s3filesystem import S3FileSystem COMPRESSION_FILESYSTEMS: List[compression.BaseCompressedFileFileSystem] = [ compression.Bz2FileSystem, compression.GzipFileSystem, compression.Lz4FileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) @deprecated( "This function is deprecated and will be removed in a future version. Please use `fsspec.core.strip_protocol` instead." ) def extract_path_from_uri(dataset_path: str) -> str: """ Preprocesses `dataset_path` and removes remote filesystem (e.g. removing `s3://`). Args: dataset_path (`str`): Path (e.g. `dataset/train`) or remote uri (e.g. `s3://my-bucket/dataset/train`) of the dataset directory. """ if "://" in dataset_path: dataset_path = dataset_path.split("://")[1] return dataset_path def is_remote_filesystem(fs: fsspec.AbstractFileSystem) -> bool: """ Checks if `fs` is a remote filesystem. Args: fs (`fsspec.spec.AbstractFileSystem`): An abstract super-class for pythonic file-systems, e.g. `fsspec.filesystem(\'file\')` or [`datasets.filesystems.S3FileSystem`]. """ return not isinstance(fs, LocalFileSystem) def rename(fs: fsspec.AbstractFileSystem, src: str, dst: str): """ Renames the file `src` in `fs` to `dst`. """ if not is_remote_filesystem(fs): # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(src), fs._strip_protocol(dst)) else: fs.mv(src, dst, recursive=True)
datasets/src/datasets/filesystems/__init__.py/0
{ "file_path": "datasets/src/datasets/filesystems/__init__.py", "repo_id": "datasets", "token_count": 859 }
94
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.csv.csv import Csv from ..utils import tqdm as hf_tqdm from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class CsvDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} self.builder = Csv( cache_dir=cache_dir, data_files=path_or_paths, features=features, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, base_path=base_path, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset class CsvDatasetWriter: def __init__( self, dataset: Dataset, path_or_buf: Union[PathLike, BinaryIO], batch_size: Optional[int] = None, num_proc: Optional[int] = None, storage_options: Optional[dict] = None, **to_csv_kwargs, ): if num_proc is not None and num_proc <= 0: raise ValueError(f"num_proc {num_proc} must be an integer > 0.") self.dataset = dataset self.path_or_buf = path_or_buf self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE self.num_proc = num_proc self.encoding = "utf-8" self.storage_options = storage_options or {} self.to_csv_kwargs = to_csv_kwargs def write(self) -> int: _ = self.to_csv_kwargs.pop("path_or_buf", None) header = self.to_csv_kwargs.pop("header", True) index = self.to_csv_kwargs.pop("index", False) if isinstance(self.path_or_buf, (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf, "wb", **(self.storage_options or {})) as buffer: written = self._write(file_obj=buffer, header=header, index=index, **self.to_csv_kwargs) else: written = self._write(file_obj=self.path_or_buf, header=header, index=index, **self.to_csv_kwargs) return written def _batch_csv(self, args): offset, header, index, to_csv_kwargs = args batch = query_table( table=self.dataset.data, key=slice(offset, offset + self.batch_size), indices=self.dataset._indices, ) csv_str = batch.to_pandas().to_csv( path_or_buf=None, header=header if (offset == 0) else False, index=index, **to_csv_kwargs ) return csv_str.encode(self.encoding) def _write(self, file_obj: BinaryIO, header, index, **to_csv_kwargs) -> int: """Writes the pyarrow table as CSV to a binary file handle. Caller is responsible for opening and closing the handle. """ written = 0 if self.num_proc is None or self.num_proc == 1: for offset in hf_tqdm( range(0, len(self.dataset), self.batch_size), unit="ba", desc="Creating CSV from Arrow format", ): csv_str = self._batch_csv((offset, header, index, to_csv_kwargs)) written += file_obj.write(csv_str) else: num_rows, batch_size = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for csv_str in hf_tqdm( pool.imap( self._batch_csv, [(offset, header, index, to_csv_kwargs) for offset in range(0, num_rows, batch_size)], ), total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size, unit="ba", desc="Creating CSV from Arrow format", ): written += file_obj.write(csv_str) return written
datasets/src/datasets/io/csv.py/0
{ "file_path": "datasets/src/datasets/io/csv.py", "repo_id": "datasets", "token_count": 2556 }
95
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder logger = datasets.utils.logging.get_logger(__name__) class AudioFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """Builder Config for AudioFolder.""" drop_labels: bool = None drop_metadata: bool = None def __post_init__(self): super().__post_init__() class AudioFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Audio BASE_COLUMN_NAME = "audio" BUILDER_CONFIG_CLASS = AudioFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script CLASSIFICATION_TASK = AudioClassification(audio_column="audio", label_column="label") # Obtained with: # ``` # import soundfile as sf # # AUDIO_EXTENSIONS = [f".{format.lower()}" for format in sf.available_formats().keys()] # # # .opus decoding is supported if libsndfile >= 1.0.31: # AUDIO_EXTENSIONS.extend([".opus"]) # ``` # We intentionally do not run this code on launch because: # (1) Soundfile is an optional dependency, so importing it in global namespace is not allowed # (2) To ensure the list of supported extensions is deterministic AUDIO_EXTENSIONS = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] AudioFolder.EXTENSIONS = AUDIO_EXTENSIONS
datasets/src/datasets/packaged_modules/audiofolder/audiofolder.py/0
{ "file_path": "datasets/src/datasets/packaged_modules/audiofolder/audiofolder.py", "repo_id": "datasets", "token_count": 626 }
96
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast logger = datasets.utils.logging.get_logger(__name__) @dataclass class ParquetConfig(datasets.BuilderConfig): """BuilderConfig for Parquet.""" batch_size: Optional[int] = None columns: Optional[List[str]] = None features: Optional[datasets.Features] = None def __post_init__(self): super().__post_init__() class Parquet(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = ParquetConfig def _info(self): if ( self.config.columns is not None and self.config.features is not None and set(self.config.columns) != set(self.config.features) ): raise ValueError( "The columns and features argument must contain the same columns, but got ", f"{self.config.columns} and {self.config.features}", ) return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") dl_manager.download_config.extract_on_the_fly = True data_files = dl_manager.download_and_extract(self.config.data_files) splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive files = [dl_manager.iter_files(file) for file in files] # Infer features if they are stored in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(files): with open(file, "rb") as f: self.info.features = datasets.Features.from_arrow_schema(pq.read_schema(f)) break splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) if self.config.columns is not None and set(self.config.columns) != set(self.info.features): self.info.features = datasets.Features( {col: feat for col, feat in self.info.features.items() if col in self.config.columns} ) return splits def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, self.info.features.arrow_schema) return pa_table def _generate_tables(self, files): if self.config.features is not None and self.config.columns is not None: if sorted(field.name for field in self.info.features.arrow_schema) != sorted(self.config.columns): raise ValueError( f"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(files)): with open(file, "rb") as f: parquet_file = pq.ParquetFile(f) if parquet_file.metadata.num_row_groups > 0: batch_size = self.config.batch_size or parquet_file.metadata.row_group(0).num_rows try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=batch_size, columns=self.config.columns) ): pa_table = pa.Table.from_batches([record_batch]) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}") raise
datasets/src/datasets/packaged_modules/parquet/parquet.py/0
{ "file_path": "datasets/src/datasets/packaged_modules/parquet/parquet.py", "repo_id": "datasets", "token_count": 2061 }
97
from typing import Optional from ..utils.logging import get_logger from .audio_classification import AudioClassification from .automatic_speech_recognition import AutomaticSpeechRecognition from .base import TaskTemplate from .image_classification import ImageClassification from .language_modeling import LanguageModeling from .question_answering import QuestionAnsweringExtractive from .summarization import Summarization from .text_classification import TextClassification __all__ = [ "AutomaticSpeechRecognition", "AudioClassification", "ImageClassification", "LanguageModeling", "QuestionAnsweringExtractive", "Summarization", "TaskTemplate", "TextClassification", ] logger = get_logger(__name__) NAME2TEMPLATE = { AutomaticSpeechRecognition.task: AutomaticSpeechRecognition, AudioClassification.task: AudioClassification, ImageClassification.task: ImageClassification, LanguageModeling.task: LanguageModeling, QuestionAnsweringExtractive.task: QuestionAnsweringExtractive, Summarization.task: Summarization, TextClassification.task: TextClassification, } def task_template_from_dict(task_template_dict: dict) -> Optional[TaskTemplate]: """Create one of the supported task templates in :py:mod:`datasets.tasks` from a dictionary.""" task_name = task_template_dict.get("task") if task_name is None: logger.warning(f"Couldn't find template for task '{task_name}'. Available templates: {list(NAME2TEMPLATE)}") return None template = NAME2TEMPLATE.get(task_name) return template.from_dict(task_template_dict)
datasets/src/datasets/tasks/__init__.py/0
{ "file_path": "datasets/src/datasets/tasks/__init__.py", "repo_id": "datasets", "token_count": 506 }
98
# deprecated, please use datasets.download.download_manager
datasets/src/datasets/utils/download_manager.py/0
{ "file_path": "datasets/src/datasets/utils/download_manager.py", "repo_id": "datasets", "token_count": 13 }
99