fullname
stringlengths
16
82
header
stringlengths
77
703
imported_modules
stringlengths
74
502
opened_namespaces
stringlengths
1
365
formal_statement
stringlengths
49
704
formal_statement_original
stringlengths
60
704
formal_statement_references
stringlengths
0
729
formal_proof
stringclasses
7 values
formal_proof_references
stringclasses
7 values
doc_string
stringclasses
3 values
problem_id
stringclasses
1 value
problem_kind
stringclasses
2 values
informal_statement
stringclasses
1 value
informal_proof
stringclasses
1 value
ref
stringclasses
7 values
inv_references
stringclasses
1 value
passed
bool
2 classes
module_name
stringlengths
29
81
head
null
lean_toolchain
stringclasses
1 value
package_name
stringclasses
1 value
validation_detail
stringlengths
0
6.03k
CliffordAlgebraComplex.ofComplex_I_tac_5919
import Init import Mathlib.Algebra.DualNumber import Mathlib.Algebra.QuaternionBasis import Mathlib.Data.Complex.Module import Mathlib.LinearAlgebra.CliffordAlgebra.Conjugation import Mathlib.LinearAlgebra.CliffordAlgebra.Star import Mathlib.LinearAlgebra.QuadraticForm.Prod import Mathlib.LinearAlgebra.CliffordAlgebra.Equivs open CliffordAlgebra open scoped ComplexConjugate open scoped ComplexConjugate
import Init import Mathlib.Algebra.DualNumber import Mathlib.Algebra.QuaternionBasis import Mathlib.Data.Complex.Module import Mathlib.LinearAlgebra.CliffordAlgebra.Conjugation import Mathlib.LinearAlgebra.CliffordAlgebra.Star import Mathlib.LinearAlgebra.QuadraticForm.Prod import Mathlib.LinearAlgebra.CliffordAlgebra.Equivs
open CliffordAlgebra open scoped ComplexConjugate open scoped ComplexConjugate
lemma ofComplex_I_tac_5919 : ↑⟨(ι Q) 1, ofComplex.proof_1⟩ * ↑⟨(ι Q) 1, ofComplex.proof_1⟩ = -1 := sorry
lemma ofComplex_I_tac_5919 : ↑⟨(ι Q) 1, ofComplex.proof_1⟩ * ↑⟨(ι Q) 1, ofComplex.proof_1⟩ = -1 := sorry
tactic
false
['Mathlib', 'LinearAlgebra', 'CliffordAlgebra', 'Equivs']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 13, "column": 100}, "goal": "⊢ sorryAx ℤ true * sorryAx ℤ true = -1", "endPos": {"line": 13, "column": 105}}], "messages": [{"severity": "error", "pos": {"line": 13, "column": 31}, "endPos": {"line": 13, "column": 59}, "data": "invalid constructor ⟨...⟩, expected type must be an inductive type with only one constructor \n ℤ"}, {"severity": "error", "pos": {"line": 13, "column": 63}, "endPos": {"line": 13, "column": 91}, "data": "invalid constructor ⟨...⟩, expected type must be an inductive type with only one constructor \n ℤ"}], "env": 0}
MeasureTheory.addContent_union'_tac_3811
import Init import Mathlib.Data.ENNReal.Basic import Mathlib.MeasureTheory.SetSemiring import Mathlib.MeasureTheory.Measure.AddContent open Set Finset open scoped ENNReal
import Init import Mathlib.Data.ENNReal.Basic import Mathlib.MeasureTheory.SetSemiring import Mathlib.MeasureTheory.Measure.AddContent
open Set Finset open scoped ENNReal
lemma addContent_union'_tac_3811 (C : Set (Set α)) (s : Set α) (t : Set α) (m : AddContent C) (hs : s ∈ C) (ht : t ∈ C) (hst : s ∪ t ∈ C) (h_dis : Disjoint s s) (hs_empty : ¬s = ∅) (h : m (⋃₀ ↑{s, t}) = ∑ u ∈ {s, t}, m u) (hs_eq_t : s = t) : s = ∅ := sorry
lemma addContent_union'_tac_3811 {α : Type*} (C : Set (Set α)) (s : Set α) (t : Set α) (m : AddContent C) (hs : s ∈ C) (ht : t ∈ C) (hst : s ∪ t ∈ C) (h_dis : Disjoint s s) (hs_empty : ¬s = ∅) (h : m (⋃₀ ↑{s, t}) = ∑ u ∈ {s, t}, m u) (hs_eq_t : s = t) : s = ∅ := sorry
tactic
null
['Mathlib', 'MeasureTheory', 'Measure', 'AddContent']
null
leanprover/lean4:v4.11.0
Mathlib
nhdsSet_empty_tac_4941
import Init import Mathlib.Topology.Basic import Mathlib.Topology.NhdsSet open Set Filter Topology
import Init import Mathlib.Topology.Basic import Mathlib.Topology.NhdsSet
open Set Filter Topology
lemma nhdsSet_empty_tac_4941 [TopologicalSpace X] : ⊥ = ⊥ := sorry
lemma nhdsSet_empty_tac_4941 {X : Type*} [TopologicalSpace X] : ⊥ = ⊥ := sorry
tactic
false
['Mathlib', 'Topology', 'NhdsSet']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 6, "column": 56}, "endPos": {"line": 6, "column": 57}, "data": "typeclass instance problem is stuck, it is often due to metavariables\n Bot ?m.139"}], "env": 0}
CategoryTheory.Subgroupoid.map_objs_eq_tac_19472
import Init import Mathlib.Algebra.Group.Subgroup.Basic import Mathlib.CategoryTheory.Groupoid.VertexGroup import Mathlib.CategoryTheory.Groupoid.Basic import Mathlib.CategoryTheory.Groupoid import Mathlib.Data.Set.Lattice import Mathlib.Order.GaloisConnection import Mathlib.CategoryTheory.Groupoid.Subgroupoid open Set Groupoid
import Init import Mathlib.Algebra.Group.Subgroup.Basic import Mathlib.CategoryTheory.Groupoid.VertexGroup import Mathlib.CategoryTheory.Groupoid.Basic import Mathlib.CategoryTheory.Groupoid import Mathlib.Data.Set.Lattice import Mathlib.Order.GaloisConnection import Mathlib.CategoryTheory.Groupoid.Subgroupoid
open Set Groupoid
lemma map_objs_eq_tac_19472 [Groupoid C] (S : Subgroupoid C) [Groupoid D] (φ : C ⥤ D) (hφ : Function.Injective φ.obj) (x : D) : x ∈ (map φ hφ S).objs ↔ x ∈ φ.obj '' S.objs := sorry
lemma map_objs_eq_tac_19472 {C : Type*} [Groupoid C] (S : Subgroupoid C) {D : Type*} [Groupoid D] (φ : C ⥤ D) (hφ : Function.Injective φ.obj) (x : D) : x ∈ (map φ hφ S).objs ↔ x ∈ φ.obj '' S.objs := sorry
[['x'], ['mem_map_objs_iff'], ['φ'], ['hφ'], ['S']]
tactic
false
['Mathlib', 'CategoryTheory', 'Groupoid', 'Subgroupoid']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 9, "column": 9}, "endPos": {"line": 9, "column": 17}, "data": "unknown namespace 'Groupoid'"}, {"severity": "error", "pos": {"line": 11, "column": 81}, "endPos": null, "data": "expected token"}], "env": 0}
Sym2.filter_image_mk_not_isDiag_tac_23472
import Init import Mathlib.Data.Finset.Prod import Mathlib.Data.Sym.Basic import Mathlib.Data.Sym.Sym2.Init import Mathlib.Data.SetLike.Basic import Mathlib.Data.Sym.Sym2 open Mathlib (Vector) open Finset Function Sym
import Init import Mathlib.Data.Finset.Prod import Mathlib.Data.Sym.Basic import Mathlib.Data.Sym.Sym2.Init import Mathlib.Data.SetLike.Basic import Mathlib.Data.Sym.Sym2
open Mathlib (Vector) open Finset Function Sym
lemma filter_image_mk_not_isDiag_tac_23472 [DecidableEq α] (s : Finset α) (a : α) (b : α) (hab : ¬a = b) (h : s(a, b) = s(x✝, y✝)) (ha : a ∈ s) (hb : b ∈ s) : ∃ a b, (a ∈ s ∧ b ∈ s ∧ a ≠ b) ∧ s(a, b) = s(x✝, y✝) := sorry
lemma filter_image_mk_not_isDiag_tac_23472 {α : Type*} [DecidableEq α] (s : Finset α) (x✝ : α) (y✝ : α) (a : α) (b : α) (hab : ¬a = b) (h : s(a, b) = s(x✝, y✝)) (ha : a ∈ s) (hb : b ∈ s) : ∃ a b, (a ∈ s ∧ b ∈ s ∧ a ≠ b) ∧ s(a, b) = s(x✝, y✝) := sorry
tactic
false
['Mathlib', 'Data', 'Sym', 'Sym2']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 10, "column": 123}, "endPos": null, "data": "expected token"}], "env": 0}
_private.0.soln_unique_tac_19461
import Init import Mathlib.Algebra.Polynomial.Identities import Mathlib.Analysis.SpecificLimits.Basic import Mathlib.NumberTheory.Padics.PadicIntegers import Mathlib.Topology.Algebra.Polynomial import Mathlib.Topology.MetricSpace.CauSeqFilter import Mathlib.NumberTheory.Padics.Hensel open Topology open Filter Metric open Nat
import Init import Mathlib.Algebra.Polynomial.Identities import Mathlib.Analysis.SpecificLimits.Basic import Mathlib.NumberTheory.Padics.PadicIntegers import Mathlib.Topology.Algebra.Polynomial import Mathlib.Topology.MetricSpace.CauSeqFilter import Mathlib.NumberTheory.Padics.Hensel
open Topology open Filter Metric open Nat
lemma soln_unique_tac_19461 (p : ℕ) [Fact (Nat.Prime p)] (F : Polynomial ℤ_[p]) (a : ℤ_[p]) (hnorm : ‖Polynomial.eval a F‖ < ‖Polynomial.eval a (Polynomial.derivative F)‖ ^ 2) (hnsol : Polynomial.eval a F ≠ 0) (z : ℤ_[p]) (hev : Polynomial.eval z F = 0) (hnlt : ‖z - a‖ < ‖Polynomial.eval a (Polynomial.derivative F)‖) (soln_dist : ‖z - soln‖ < ‖Polynomial.eval a (Polynomial.derivative F)‖) (h : ℤ_[p]) (q : ℤ_[p]) (hq : Polynomial.eval (soln + h) F = Polynomial.eval soln F + Polynomial.eval soln (Polynomial.derivative F) * h + q * h ^ 2) : Polynomial.eval (soln + h) F = Polynomial.eval soln (Polynomial.derivative F) * h + q * h ^ 2 := sorry
lemma soln_unique_tac_19461 (p : ℕ) [Fact (Nat.Prime p)] (F : Polynomial ℤ_[p]) (a : ℤ_[p]) (hnorm : ‖Polynomial.eval a F‖ < ‖Polynomial.eval a (Polynomial.derivative F)‖ ^ 2) (hnsol : Polynomial.eval a F ≠ 0) (z : ℤ_[p]) (hev : Polynomial.eval z F = 0) (hnlt : ‖z - a‖ < ‖Polynomial.eval a (Polynomial.derivative F)‖) (soln_dist : ‖z - soln‖ < ‖Polynomial.eval a (Polynomial.derivative F)‖) (h : ℤ_[p]) (q : ℤ_[p]) (hq : Polynomial.eval (soln + h) F = Polynomial.eval soln F + Polynomial.eval soln (Polynomial.derivative F) * h + q * h ^ 2) : Polynomial.eval (soln + h) F = Polynomial.eval soln (Polynomial.derivative F) * h + q * h ^ 2 := sorry
[['zero_add'], ['eval_soln'], ['hq']]
tactic
false
['Mathlib', 'NumberTheory', 'Padics', 'Hensel']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 12, "column": 575}, "endPos": {"line": 12, "column": 621}, "data": "type mismatch\n Polynomial.eval soln (Polynomial.derivative ?m.4450)\nhas type\n ?m.4434 : Type ?u.4141\nbut is expected to have type\n ℤ_[p] : Type"}], "env": 0}
IsCompact.uniform_oscillationWithin_tac_5084
import Init import Mathlib.Topology.EMetricSpace.Diam import Mathlib.Order.WellFoundedSet import Mathlib.Analysis.Oscillation open Topology EMetric Set ENNReal
import Init import Mathlib.Topology.EMetricSpace.Diam import Mathlib.Order.WellFoundedSet import Mathlib.Analysis.Oscillation
open Topology EMetric Set ENNReal
lemma uniform_oscillationWithin_tac_5084 [PseudoEMetricSpace F] [PseudoEMetricSpace E] (K : Set E) (f : E → F) (D : Set E) (ε : ℝ≥0∞) (comp : IsCompact K) (hK : ∀ x ∈ K, oscillationWithin f D x < ε) (S : ℝ → Set E) (S_open : ∀ r > 0, IsOpen (S r)) (x : E) (hx : x ∈ K) : x ∈ ⋃ r, ⋃ (_ : r > 0), S r := sorry
lemma uniform_oscillationWithin_tac_5084 {E : Type*} {F : Type*} [PseudoEMetricSpace F] [PseudoEMetricSpace E] (K : Set E) (f : E → F) (D : Set E) (ε : ℝ≥0∞) (comp : IsCompact K) (hK : ∀ x ∈ K, oscillationWithin f D x < ε) (S : ℝ → Set E) (S_open : ∀ r > 0, IsOpen (S r)) (x : E) (hx : x ∈ K) : x ∈ ⋃ r, ⋃ (_ : r > 0), S r := sorry
[['ε'], ['x'], ['hx'], ['hK'], [], ['f'], ['D'], ['oscillationWithin']]
tactic
true
['Mathlib', 'Analysis', 'Oscillation']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 7, "column": 302}, "goal": "F : Type u_1\nE : Type u_2\ninst✝¹ : PseudoEMetricSpace F\ninst✝ : PseudoEMetricSpace E\nK : Set E\nf : E → F\nD : Set E\nε : ℝ≥0∞\ncomp : IsCompact K\nhK : ∀ x ∈ K, oscillationWithin f D x < ε\nS : ℝ → Set E\nS_open : ∀ r > 0, IsOpen (S r)\nx : E\nhx : x ∈ K\n⊢ x ∈ ⋃ r, ⋃ (_ : r > 0), S r", "endPos": {"line": 7, "column": 307}}], "messages": [{"severity": "warning", "pos": {"line": 7, "column": 6}, "endPos": {"line": 7, "column": 40}, "data": "declaration uses 'sorry'"}], "env": 0}
List.sum_map_count_dedup_filter_eq_countP_tac_23259
import Init import Mathlib.Algebra.Divisibility.Basic import Mathlib.Algebra.Group.Int import Mathlib.Algebra.Group.Nat import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.Group.Units import Mathlib.Data.List.Perm import Mathlib.Data.List.ProdSigma import Mathlib.Data.List.Range import Mathlib.Data.List.Rotate import Mathlib.Algebra.BigOperators.Group.List
import Init import Mathlib.Algebra.Divisibility.Basic import Mathlib.Algebra.Group.Int import Mathlib.Algebra.Group.Nat import Mathlib.Algebra.Group.Opposite import Mathlib.Algebra.Group.Units import Mathlib.Data.List.Perm import Mathlib.Data.List.ProdSigma import Mathlib.Data.List.Range import Mathlib.Data.List.Rotate import Mathlib.Algebra.BigOperators.Group.List
lemma sum_map_count_dedup_filter_eq_countP_tac_23259 [DecidableEq α] (p : α → Bool) (a : α) (as : List α) (h : (map (fun x => count x as) (filter p as.dedup)).sum = countP p as) (ha : a ∉ as) : (map (fun i => count i as) (match true with | true => a :: filter p as.dedup | false => filter p as.dedup)).sum = (map (fun i => count i as) (filter p as.dedup)).sum := sorry
lemma sum_map_count_dedup_filter_eq_countP_tac_23259 {α : Type*} [DecidableEq α] (p : α → Bool) (a : α) (as : List α) (h : (map (fun x => count x as) (filter p as.dedup)).sum = countP p as) (ha : a ∉ as) : (map (fun i => count i as) (match true with | true => a :: filter p as.dedup | false => filter p as.dedup)).sum = (map (fun i => count i as) (filter p as.dedup)).sum := sorry
[['zero_add'], ['List', 'map_cons'], ['List', 'sum_cons'], ['rhs', '_@', '_hyg', 7756], ['ha'], ['List', 'count_eq_zero']]
tactic
false
['Mathlib', 'Algebra', 'BigOperators', 'Group', 'List']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 18, "column": 57}, "goal": "α : Type u_1\nx✝¹ : Sort u_2\nmap : x✝¹\nx✝ : Sort u_3\ncountP : x✝\ninst✝ : DecidableEq α\np : α → Bool\na : α\nas : List α\nh : sorryAx (?m.347 p a as) true = sorryAx (?m.347 p a as) true\nha : a ∉ as\n⊢ sorryAx (?m.348 p a as h ha) true = sorryAx (?m.348 p a as h ha) true", "endPos": {"line": 18, "column": 62}}], "messages": [{"severity": "error", "pos": {"line": 14, "column": 112}, "endPos": {"line": 14, "column": 157}, "data": "function expected at\n map\nterm has type\n ?m.27"}, {"severity": "error", "pos": {"line": 14, "column": 165}, "endPos": {"line": 14, "column": 176}, "data": "function expected at\n countP\nterm has type\n ?m.59"}, {"severity": "error", "pos": {"line": 14, "column": 195}, "endPos": {"line": 17, "column": 35}, "data": "function expected at\n map\nterm has type\n ?m.27"}, {"severity": "error", "pos": {"line": 18, "column": 3}, "endPos": {"line": 18, "column": 48}, "data": "function expected at\n map\nterm has type\n ?m.27"}], "env": 0}
CategoryTheory.ShortComplex.quasiIso_iff_of_zeros_tac_31368
import Init import Mathlib.Algebra.Homology.ShortComplex.PreservesHomology import Mathlib.Algebra.Homology.ShortComplex.Abelian import Mathlib.Algebra.Homology.ShortComplex.QuasiIso import Mathlib.CategoryTheory.Abelian.Opposite import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.CategoryTheory.Preadditive.Injective import Mathlib.Algebra.Homology.ShortComplex.Exact open Category Limits ZeroObject Preadditive
import Init import Mathlib.Algebra.Homology.ShortComplex.PreservesHomology import Mathlib.Algebra.Homology.ShortComplex.Abelian import Mathlib.Algebra.Homology.ShortComplex.QuasiIso import Mathlib.CategoryTheory.Abelian.Opposite import Mathlib.CategoryTheory.Preadditive.AdditiveFunctor import Mathlib.CategoryTheory.Preadditive.Injective import Mathlib.Algebra.Homology.ShortComplex.Exact
open Category Limits ZeroObject Preadditive
lemma quasiIso_iff_of_zeros_tac_31368 [Category.{u_3, u_1} C] [Abelian C] (S₁ : ShortComplex C) (S₂ : ShortComplex C) (φ : S₁ ⟶ S₂) (hf₁ : S₁.f = 0) (hg₁ : S₁.g = 0) (hf₂ : S₂.f = 0) (w : φ.τ₂ ≫ S₂.g = 0) (h₁ : (mk φ.τ₂ S₂.g ⋯).Exact) (h₂ : Mono φ.τ₂) : S₂.iCycles = S₂.iCycles := sorry
lemma quasiIso_iff_of_zeros_tac_31368 {C : Type*} [Category.{u_3, u_1} C] [Abelian C] (S₁ : ShortComplex C) (S₂ : ShortComplex C) (φ : S₁ ⟶ S₂) (hf₁ : S₁.f = 0) (hg₁ : S₁.g = 0) (hf₂ : S₂.f = 0) (w : φ.τ₂ ≫ S₂.g = 0) (h₁ : (mk φ.τ₂ S₂.g ⋯).Exact) (h₂ : Mono φ.τ₂) : S₂.iCycles = S₂.iCycles := sorry
tactic
false
['Mathlib', 'Algebra', 'Homology', 'ShortComplex', 'Exact']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 9, "column": 5}, "endPos": {"line": 9, "column": 13}, "data": "unknown namespace 'Category'"}, {"severity": "error", "pos": {"line": 11, "column": 193}, "endPos": null, "data": "expected token"}], "env": 0}
Localization.mk_left_injective_tac_67784
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.RingTheory.OreLocalization.Basic import Mathlib.GroupTheory.MonoidLocalization.Basic open Function
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.RingTheory.OreLocalization.Basic import Mathlib.GroupTheory.MonoidLocalization.Basic
open Function
lemma mk_left_injective_tac_67784 [CancelCommMonoid α] (s : Submonoid α) (b : ↥s) (c : α) (d : α) (h : (fun a => mk a b) c = (fun a => mk a b) d) : c = d := sorry
lemma mk_left_injective_tac_67784 {α : Type*} [CancelCommMonoid α] (s : Submonoid α) (b : ↥s) (c : α) (d : α) (h : (fun a => mk a b) c = (fun a => mk a b) d) : c = d := sorry
[['h'], ['mk_eq_mk_iff'], ["mk_eq_monoidOf_mk'"], ['r_iff_exists']]
tactic
false
['Mathlib', 'GroupTheory', 'MonoidLocalization', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 8, "column": 157}, "goal": "α : Type u_1\nx✝ : Sort u_2\nmk : x✝\ninst✝ : CancelCommMonoid α\ns : Submonoid α\nb : ↥s\nc d : α\nh : (fun a => ?m.600 s b c d a) c = (fun a => ?m.601 s b c d a) d\n⊢ c = d", "endPos": {"line": 8, "column": 162}}], "messages": [{"severity": "error", "pos": {"line": 8, "column": 113}, "endPos": {"line": 8, "column": 119}, "data": "function expected at\n mk\nterm has type\n ?m.233"}, {"severity": "error", "pos": {"line": 8, "column": 135}, "endPos": {"line": 8, "column": 141}, "data": "function expected at\n mk\nterm has type\n ?m.233"}], "env": 0}
lp.norm_neg_tac_17360
import Init import Mathlib.Analysis.MeanInequalities import Mathlib.Analysis.MeanInequalitiesPow import Mathlib.Analysis.SpecialFunctions.Pow.Continuity import Mathlib.Data.Set.Image import Mathlib.Topology.Algebra.Order.LiminfLimsup import Mathlib.Analysis.Normed.Lp.lpSpace open scoped NNReal ENNReal Function
import Init import Mathlib.Analysis.MeanInequalities import Mathlib.Analysis.MeanInequalitiesPow import Mathlib.Analysis.SpecialFunctions.Pow.Continuity import Mathlib.Data.Set.Image import Mathlib.Topology.Algebra.Order.LiminfLimsup import Mathlib.Analysis.Normed.Lp.lpSpace
open scoped NNReal ENNReal Function
lemma norm_neg_tac_17360 (p : ℝ≥0∞) [(i : α) → NormedAddCommGroup (E i)] (f : ↥(lp E p)) (hp : 0 < p.toReal) : ‖-f‖ = ‖f‖ := sorry
lemma norm_neg_tac_17360 {α : Type*} {E : Type*} (p : ℝ≥0∞) [(i : α) → NormedAddCommGroup (E i)] (f : ↥(lp E p)) (hp : 0 < p.toReal) : ‖-f‖ = ‖f‖ := sorry
[['Real', 'rpow_left_injOn'], ["norm_nonneg'"], ['hp', "ne'"], ['this'], ['p', 'toReal'], [], ['f']]
tactic
true
['Mathlib', 'Analysis', 'Normed', 'Lp', 'lpSpace']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 10, "column": 125}, "goal": "α : Type u_1\nE : α → Type u_2\np : ℝ≥0∞\ninst✝ : (i : α) → NormedAddCommGroup (E i)\nf : ↥(lp E p)\nhp : 0 < p.toReal\n⊢ ‖-f‖ = ‖f‖", "endPos": {"line": 10, "column": 130}}], "messages": [{"severity": "warning", "pos": {"line": 10, "column": 6}, "endPos": {"line": 10, "column": 24}, "data": "declaration uses 'sorry'"}], "env": 0}
LinearMap.BilinForm.toLin_restrict_range_dualCoannihilator_eq_orthogonal_tac_10941
import Init import Mathlib.Algebra.GroupWithZero.NonZeroDivisors import Mathlib.LinearAlgebra.BilinearForm.Properties import Mathlib.LinearAlgebra.BilinearForm.Orthogonal open LinearMap (BilinForm)
import Init import Mathlib.Algebra.GroupWithZero.NonZeroDivisors import Mathlib.LinearAlgebra.BilinearForm.Properties import Mathlib.LinearAlgebra.BilinearForm.Orthogonal
open LinearMap (BilinForm)
lemma toLin_restrict_range_dualCoannihilator_eq_orthogonal_tac_10941 [Field K] [AddCommGroup V] [Module K V] (B : BilinForm K V) (W : Subspace K V) (x : V) : (∀ n ∈ W, B.IsOrtho n x) → x ∈ (range (domRestrict B W)).dualCoannihilator := sorry
lemma toLin_restrict_range_dualCoannihilator_eq_orthogonal_tac_10941 {V : Type*} {K : Type*} [Field K] [AddCommGroup V] [Module K V] (B : BilinForm K V) (W : Subspace K V) (x : V) : (∀ n ∈ W, B.IsOrtho n x) → x ∈ (range (domRestrict B W)).dualCoannihilator := sorry
tactic
false
['Mathlib', 'LinearAlgebra', 'BilinearForm', 'Orthogonal']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 7, "column": 236}, "goal": "K : Type u_1\nV : Type u_2\nx✝ : Sort u_3\nrange : x✝\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nB : BilinForm K V\nW : Subspace K V\nx : V\n⊢ (∀ n ∈ W, B.IsOrtho n x) → x ∈ sorryAx (?m.2742 B W x) true", "endPos": {"line": 7, "column": 241}}], "messages": [{"severity": "error", "pos": {"line": 7, "column": 190}, "endPos": {"line": 7, "column": 213}, "data": "function expected at\n range\nterm has type\n ?m.1175"}], "env": 0}
DifferentiableWithinAt.hasGradientWithinAt_tac_5286
import Init import Mathlib.Analysis.InnerProductSpace.Dual import Mathlib.Analysis.Calculus.FDeriv.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.Gradient.Basic open Topology InnerProductSpace Set open scoped Gradient
import Init import Mathlib.Analysis.InnerProductSpace.Dual import Mathlib.Analysis.Calculus.FDeriv.Basic import Mathlib.Analysis.Calculus.Deriv.Basic import Mathlib.Analysis.Calculus.Gradient.Basic
open Topology InnerProductSpace Set open scoped Gradient
lemma hasGradientWithinAt_tac_5286 [RCLike 𝕜] [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] [CompleteSpace F] (f : F → 𝕜) (x : F) (s : Set F) (h : DifferentiableWithinAt 𝕜 f s x) : HasFDerivWithinAt f (fderivWithin 𝕜 f s x) s x := sorry
lemma hasGradientWithinAt_tac_5286 {𝕜 : Type*} {F : Type*} [RCLike 𝕜] [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] [CompleteSpace F] (f : F → 𝕜) (x : F) (s : Set F) (h : DifferentiableWithinAt 𝕜 f s x) : HasFDerivWithinAt f (fderivWithin 𝕜 f s x) s x := sorry
tactic
true
['Mathlib', 'Analysis', 'Calculus', 'Gradient', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 9, "column": 232}, "goal": "𝕜 : Type u_1\nF : Type u_2\ninst✝³ : RCLike 𝕜\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 F\ninst✝ : CompleteSpace F\nf : F → 𝕜\nx : F\ns : Set F\nh : DifferentiableWithinAt 𝕜 f s x\n⊢ HasFDerivWithinAt f (fderivWithin 𝕜 f s x) s x", "endPos": {"line": 9, "column": 237}}], "messages": [{"severity": "warning", "pos": {"line": 9, "column": 6}, "endPos": {"line": 9, "column": 34}, "data": "declaration uses 'sorry'"}], "env": 0}
HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_exactAt_tac_4225
import Init import Mathlib.Algebra.Homology.HomotopyCategory.HomologicalFunctor import Mathlib.Algebra.Homology.HomotopyCategory.ShiftSequence import Mathlib.Algebra.Homology.HomotopyCategory.SingleFunctors import Mathlib.Algebra.Homology.HomotopyCategory.Triangulated import Mathlib.Algebra.Homology.Localization import Mathlib.Algebra.Homology.DerivedCategory.Basic open CategoryTheory Limits Pretriangulated
import Init import Mathlib.Algebra.Homology.HomotopyCategory.HomologicalFunctor import Mathlib.Algebra.Homology.HomotopyCategory.ShiftSequence import Mathlib.Algebra.Homology.HomotopyCategory.SingleFunctors import Mathlib.Algebra.Homology.HomotopyCategory.Triangulated import Mathlib.Algebra.Homology.Localization import Mathlib.Algebra.Homology.DerivedCategory.Basic
open CategoryTheory Limits Pretriangulated
lemma quotient_obj_mem_subcategoryAcyclic_iff_exactAt_tac_4225 [Category.{v, u} C] [Abelian C] (K : CochainComplex C ℤ) : (subcategoryAcyclic C).P ((quotient C (ComplexShape.up ℤ)).obj K) ↔ ∀ (n : ℤ), HomologicalComplex.ExactAt K n := sorry
lemma quotient_obj_mem_subcategoryAcyclic_iff_exactAt_tac_4225 {C : Type*} [Category.{v, u} C] [Abelian C] (K : CochainComplex C ℤ) : (subcategoryAcyclic C).P ((quotient C (ComplexShape.up ℤ)).obj K) ↔ ∀ (n : ℤ), HomologicalComplex.ExactAt K n := sorry
tactic
false
['Mathlib', 'Algebra', 'Homology', 'DerivedCategory', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 10, "column": 235}, "goal": "C : Type u\nx✝ : Sort u_1\nsubcategoryAcyclic : x✝\ninst✝¹ : Category.{v, u} C\ninst✝ : Abelian C\nK : CochainComplex C ℤ\n⊢ sorryAx Prop true ↔ ∀ (n : ℤ), HomologicalComplex.ExactAt K n", "endPos": {"line": 10, "column": 240}}], "messages": [{"severity": "error", "pos": {"line": 10, "column": 123}, "endPos": {"line": 10, "column": 143}, "data": "function expected at\n subcategoryAcyclic\nterm has type\n ?m.128"}], "env": 0}
MvPolynomial.totalDegree_zero_iff_isHomogeneous_tac_3920
import Init import Mathlib.Algebra.DirectSum.Internal import Mathlib.Algebra.GradedMonoid import Mathlib.Algebra.MvPolynomial.CommRing import Mathlib.Algebra.MvPolynomial.Equiv import Mathlib.Algebra.MvPolynomial.Variables import Mathlib.RingTheory.MvPolynomial.WeightedHomogeneous import Mathlib.Algebra.Polynomial.Roots import Mathlib.RingTheory.MvPolynomial.Homogeneous open Finsupp
import Init import Mathlib.Algebra.DirectSum.Internal import Mathlib.Algebra.GradedMonoid import Mathlib.Algebra.MvPolynomial.CommRing import Mathlib.Algebra.MvPolynomial.Equiv import Mathlib.Algebra.MvPolynomial.Variables import Mathlib.RingTheory.MvPolynomial.WeightedHomogeneous import Mathlib.Algebra.Polynomial.Roots import Mathlib.RingTheory.MvPolynomial.Homogeneous
open Finsupp
lemma totalDegree_zero_iff_isHomogeneous_tac_3920 [CommSemiring R] (p : MvPolynomial σ R) : IsWeightedHomogeneous 1 p 0 ↔ IsWeightedHomogeneous 1 p 0 := sorry
lemma totalDegree_zero_iff_isHomogeneous_tac_3920 {σ : Type*} {R : Type*} [CommSemiring R] (p : MvPolynomial σ R) : IsWeightedHomogeneous 1 p 0 ↔ IsWeightedHomogeneous 1 p 0 := sorry
tactic
false
['Mathlib', 'RingTheory', 'MvPolynomial', 'Homogeneous']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 12, "column": 153}, "goal": "R : Type u_1\nσ : Type u_2\nx✝ : Sort u_3\nIsWeightedHomogeneous : x✝\ninst✝ : CommSemiring R\np : MvPolynomial σ R\n⊢ sorryAx Prop true ↔ sorryAx Prop true", "endPos": {"line": 12, "column": 158}}], "messages": [{"severity": "error", "pos": {"line": 12, "column": 92}, "endPos": {"line": 12, "column": 119}, "data": "function expected at\n IsWeightedHomogeneous\nterm has type\n ?m.35"}, {"severity": "error", "pos": {"line": 12, "column": 122}, "endPos": {"line": 12, "column": 149}, "data": "function expected at\n IsWeightedHomogeneous\nterm has type\n ?m.35"}], "env": 0}
pNilradical_le_nilradical
import Init import Mathlib.FieldTheory.PurelyInseparable import Mathlib.FieldTheory.PerfectClosure import Mathlib.FieldTheory.IsPerfectClosure open FiniteDimensional Polynomial IntermediateField Field
import Init import Mathlib.FieldTheory.PurelyInseparable import Mathlib.FieldTheory.PerfectClosure import Mathlib.FieldTheory.IsPerfectClosure
open FiniteDimensional Polynomial IntermediateField Field
theorem pNilradical_le_nilradical {R : Type*} [CommSemiring R] {p : ℕ} : pNilradical R p ≤ nilradical R := sorry
theorem pNilradical_le_nilradical_extracted : ∀ {R : Type u_1} [inst : CommSemiring R] {p : ℕ}, pNilradical R p ≤ nilradical R := sorry
[['nilradical'], ['CommSemiring', 'toSemiring'], ['pNilradical'], ['Semiring', 'toNonAssocSemiring'], ['PartialOrder', 'toPreorder'], ['NonAssocSemiring', 'toNonUnitalNonAssocSemiring'], ['CompleteLattice', 'instOmegaCompletePartialOrder'], ['OmegaCompletePartialOrder', 'toPartialOrder'], ['Submodule', 'completeLattice'], ['NonUnitalNonAssocSemiring', 'toAddCommMonoid'], ['Ideal'], ['LE', 'le'], ['Semiring', 'toModule'], ['Preorder', 'toLE']]
theorem pNilradical_le_nilradical {R : Type*} [CommSemiring R] {p : ℕ} : pNilradical R p ≤ nilradical R := by by_cases hp : 1 < p · rw [pNilradical, if_pos hp] simp_rw [pNilradical, if_neg hp, bot_le]
[['CommSemiring', 'toSemiring'], ['OfNat', 'ofNat'], ['PartialOrder', 'toPreorder'], ['OmegaCompletePartialOrder', 'toPartialOrder'], ['Nat', 'decLt'], ['Submodule', 'completeLattice'], ['dite'], ['instLTNat'], ['Preorder', 'toLE'], ['ite'], ['Eq'], ['Semiring', 'toNonAssocSemiring'], ['Eq', 'mpr'], ['instOfNatNat'], ['Nat'], ['Semiring', 'toModule'], ['if_neg'], ['id'], ['nilradical'], ['Submodule', 'instBot'], ['Bot', 'bot'], ['CompleteLattice', 'instOmegaCompletePartialOrder'], ['LE', 'le'], ['pNilradical'], ['if_pos'], ['Submodule', 'instOrderBot'], ['of_eq_true'], ['NonAssocSemiring', 'toNonUnitalNonAssocSemiring'], ['LT', 'lt'], ['OrderBot', 'toBot'], ['le_refl'], ['NonUnitalNonAssocSemiring', 'toAddCommMonoid'], ['congrArg'], ['Ideal'], ['_auxLemma', 1], ['pNilradical', 'eq_1']]
theorem
Syntax(original=True, range=StringRange(start=3131, stop=3346))
false
['Mathlib', 'FieldTheory', 'IsPerfectClosure']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 7, "column": 8}, "endPos": {"line": 7, "column": 33}, "data": "'pNilradical_le_nilradical' has already been declared"}], "env": 0}
Module.comap_eval_surjective_tac_19738
import Init import Mathlib.LinearAlgebra.FiniteDimensional import Mathlib.LinearAlgebra.FreeModule.Finite.Basic import Mathlib.LinearAlgebra.FreeModule.StrongRankCondition import Mathlib.LinearAlgebra.Projection import Mathlib.LinearAlgebra.SesquilinearForm import Mathlib.RingTheory.TensorProduct.Basic import Mathlib.RingTheory.LocalRing.Basic import Mathlib.LinearAlgebra.Dual open Module open Module Module.Dual Submodule LinearMap Cardinal Function open Module Module.Dual Submodule LinearMap Cardinal Basis FiniteDimensional
import Init import Mathlib.LinearAlgebra.FiniteDimensional import Mathlib.LinearAlgebra.FreeModule.Finite.Basic import Mathlib.LinearAlgebra.FreeModule.StrongRankCondition import Mathlib.LinearAlgebra.Projection import Mathlib.LinearAlgebra.SesquilinearForm import Mathlib.RingTheory.TensorProduct.Basic import Mathlib.RingTheory.LocalRing.Basic import Mathlib.LinearAlgebra.Dual
open Module open Module Module.Dual Submodule LinearMap Cardinal Function open Module Module.Dual Submodule LinearMap Cardinal Basis FiniteDimensional
lemma comap_eval_surjective_tac_19738 [CommRing K] [AddCommGroup V] [Module K V] [Free K V] : ker (eval K V) = ⊥ := sorry
lemma comap_eval_surjective_tac_19738 {K : Type*} {V : Type*} [CommRing K] [AddCommGroup V] [Module K V] [Free K V] : ker (eval K V) = ⊥ := sorry
tactic
true
['Mathlib', 'LinearAlgebra', 'Dual']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 14, "column": 116}, "goal": "K : Type u_1\nV : Type u_2\ninst✝³ : CommRing K\ninst✝² : AddCommGroup V\ninst✝¹ : Module K V\ninst✝ : Free K V\n⊢ ker (Dual.eval K V) = ⊥", "endPos": {"line": 14, "column": 121}}], "messages": [{"severity": "warning", "pos": {"line": 14, "column": 6}, "endPos": {"line": 14, "column": 37}, "data": "declaration uses 'sorry'"}], "env": 0}
isIntegral_iff_isIntegral_closure_finite_tac_6126
import Init import Mathlib.RingTheory.IntegralClosure.IsIntegral.Defs import Mathlib.Algebra.Polynomial.Expand import Mathlib.RingTheory.Polynomial.Tower import Mathlib.RingTheory.IntegralClosure.IsIntegral.Basic open Polynomial Submodule open Classical in
import Init import Mathlib.RingTheory.IntegralClosure.IsIntegral.Defs import Mathlib.Algebra.Polynomial.Expand import Mathlib.RingTheory.Polynomial.Tower import Mathlib.RingTheory.IntegralClosure.IsIntegral.Basic
open Polynomial Submodule open Classical in
lemma isIntegral_iff_isIntegral_closure_finite_tac_6126 [CommRing R] [Ring B] [Algebra R B] (r : B) : IsIntegral R r ↔ ∃ s, s.Finite ∧ IsIntegral (↥(Subring.closure s)) r := sorry
lemma isIntegral_iff_isIntegral_closure_finite_tac_6126 {R : Type*} {B : Type*} [CommRing R] [Ring B] [Algebra R B] (r : B) : IsIntegral R r ↔ ∃ s, s.Finite ∧ IsIntegral (↥(Subring.closure s)) r := sorry
[['aeval_def'], ['hsr'], ['p'], ['hmp'], ['hpr'], ['map_restriction'], ['hr'], ['hsr', 'of_subring'], ['p', 'restriction'], ['Finset', 'finite_toSet'], ['r'], ['R'], ['s'], ['aeval_map_algebraMap'], ['monic_restriction']]
tactic
false
['Mathlib', 'RingTheory', 'IntegralClosure', 'IsIntegral', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 9, "column": 135}, "endPos": {"line": 9, "column": 170}, "data": "typeclass instance problem is stuck, it is often due to metavariables\n Algebra (↥(Subring.closure s)) B"}], "env": 0}
MeasureTheory.Lp.simpleFunc.denseEmbedding_tac_30903
import Init import Mathlib.MeasureTheory.Function.L1Space import Mathlib.MeasureTheory.Function.SimpleFuncDense import Mathlib.MeasureTheory.Function.SimpleFuncDenseLp open Set Function Filter TopologicalSpace ENNReal EMetric Finset open scoped Classical Topology ENNReal MeasureTheory open AEEqFun
import Init import Mathlib.MeasureTheory.Function.L1Space import Mathlib.MeasureTheory.Function.SimpleFuncDense import Mathlib.MeasureTheory.Function.SimpleFuncDenseLp
open Set Function Filter TopologicalSpace ENNReal EMetric Finset open scoped Classical Topology ENNReal MeasureTheory open AEEqFun
lemma denseEmbedding_tac_30903 [MeasurableSpace α] [NormedAddCommGroup E] (p : ℝ≥0∞) (μ : Measure α) [Fact (1 ≤ p)] (hp_ne_top : p ≠ ⊤) (f : ↥(Lp E p μ)) (hfi' : Memℒp (↑↑f) p μ) : ∃ x, (∀ (n : ℕ), x n ∈ Set.range Subtype.val) ∧ Tendsto x atTop (𝓝 f) := sorry
lemma denseEmbedding_tac_30903 {α : Type*} {E : Type*} [MeasurableSpace α] [NormedAddCommGroup E] (p : ℝ≥0∞) (μ : Measure α) [Fact (1 ≤ p)] (hp_ne_top : p ≠ ⊤) (this✝¹ : MeasurableSpace E) (this✝ : BorelSpace E) (f : ↥(Lp E p μ)) (hfi' : Memℒp (↑↑f) p μ) : ∃ x, (∀ (n : ℕ), x n ∈ Set.range Subtype.val) ∧ Tendsto x atTop (𝓝 f) := sorry
[['range'], ['Set'], ['SeparableSpace'], ['separableSpace_range_union_singleton'], [], ['Lp', 'stronglyMeasurable'], ['f'], ['E']]
tactic
null
['Mathlib', 'MeasureTheory', 'Function', 'SimpleFuncDenseLp']
null
leanprover/lean4:v4.11.0
Mathlib
Fintype.mem_piFinset_tac_1262
import Init import Mathlib.Data.Finset.Card import Mathlib.Data.Finset.Pi import Mathlib.Data.Fintype.Basic import Mathlib.Data.Fintype.Pi open Finset Function
import Init import Mathlib.Data.Finset.Card import Mathlib.Data.Finset.Pi import Mathlib.Data.Fintype.Basic import Mathlib.Data.Fintype.Pi
open Finset Function
lemma mem_piFinset_tac_1262 [DecidableEq α] (t : (a : α) → Finset (δ a)) (f : (a : α) → δ a) : ∀ (x : (a : α) → a ∈ univ → δ a), (∀ (a : α), x a ⋯ ∈ t a) → { toFun := fun f a => f a ⋯, inj' := ⋯ } x = f → ∀ (a : α), f a ∈ t a := sorry
lemma mem_piFinset_tac_1262 {α : Type*} [DecidableEq α] {inst✝ : Type*} {δ : Type*} (t : (a : α) → Finset (δ a)) (f : (a : α) → δ a) : ∀ (x : (a : α) → a ∈ univ → δ a), (∀ (a : α), x a ⋯ ∈ t a) → { toFun := fun f a => f a ⋯, inj' := ⋯ } x = f → ∀ (a : α), f a ∈ t a := sorry
[['a'], ['hgf'], ['hg'], ['g']]
tactic
null
['Mathlib', 'Data', 'Fintype', 'Pi']
null
leanprover/lean4:v4.11.0
Mathlib
descPochhammer_succ_right_tac_10942
import Init import Mathlib.Algebra.Polynomial.Degree.Definitions import Mathlib.Algebra.Polynomial.Eval import Mathlib.Algebra.Polynomial.Monic import Mathlib.Algebra.Polynomial.RingDivision import Mathlib.Tactic.Abel import Mathlib.RingTheory.Polynomial.Pochhammer open Polynomial open Polynomial open Nat
import Init import Mathlib.Algebra.Polynomial.Degree.Definitions import Mathlib.Algebra.Polynomial.Eval import Mathlib.Algebra.Polynomial.Monic import Mathlib.Algebra.Polynomial.RingDivision import Mathlib.Tactic.Abel import Mathlib.RingTheory.Polynomial.Pochhammer
open Polynomial open Polynomial open Nat
lemma descPochhammer_succ_right_tac_10942 [Ring R] (n : ℕ) (ih : descPochhammer ℤ (n + 1) = descPochhammer ℤ n * (X - ↑n)) : descPochhammer ℤ (n + 1) * (X - 1 - ↑n) = descPochhammer ℤ (n + 1) * (X - 1 - ↑n) := sorry
lemma descPochhammer_succ_right_tac_10942 {R : Type*} [Ring R] (n : ℕ) (ih : descPochhammer ℤ (n + 1) = descPochhammer ℤ n * (X - ↑n)) : descPochhammer ℤ (n + 1) * (X - 1 - ↑n) = descPochhammer ℤ (n + 1) * (X - 1 - ↑n) := sorry
tactic
false
['Mathlib', 'RingTheory', 'Polynomial', 'Pochhammer']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 12, "column": 210}, "goal": "R : Type u_1\ninst✝ : Ring R\nn : ℕ\nih : descPochhammer ℤ (n + 1) = descPochhammer ℤ n * (X - n)\n⊢ descPochhammer ℤ (n + 1) * (X - 1 - n) = descPochhammer ℤ (n + 1) * (X - 1 - n)", "endPos": {"line": 12, "column": 215}}], "messages": [{"severity": "error", "pos": {"line": 12, "column": 114}, "endPos": {"line": 12, "column": 120}, "data": "failed to synthesize\n HSub ?m.99[X] ℕ ?m.218\nAdditional diagnostic information may be available using the `set_option diagnostics true` command."}, {"severity": "error", "pos": {"line": 12, "column": 125}, "endPos": {"line": 12, "column": 164}, "data": "failed to synthesize\n HMul ℤ[X] ℕ ?m.881\nAdditional diagnostic information may be available using the `set_option diagnostics true` command."}, {"severity": "error", "pos": {"line": 12, "column": 167}, "endPos": {"line": 12, "column": 206}, "data": "failed to synthesize\n HMul ℤ[X] ℕ ?m.881\nAdditional diagnostic information may be available using the `set_option diagnostics true` command."}, {"severity": "error", "pos": {"line": 12, "column": 153}, "endPos": {"line": 12, "column": 158}, "data": "failed to synthesize\n HSub ?m.339[X] ℕ ℕ\nAdditional diagnostic information may be available using the `set_option diagnostics true` command."}, {"severity": "error", "pos": {"line": 12, "column": 195}, "endPos": {"line": 12, "column": 200}, "data": "failed to synthesize\n HSub ?m.570[X] ℕ ℕ\nAdditional diagnostic information may be available using the `set_option diagnostics true` command."}], "env": 0}
Metric.mem_closure_range_iff_tac_51792
import Init import Mathlib.Data.ENNReal.Real import Mathlib.Tactic.Bound.Attribute import Mathlib.Topology.EMetricSpace.Defs import Mathlib.Topology.MetricSpace.Pseudo.Defs open Set Filter TopologicalSpace Bornology open scoped ENNReal NNReal Uniformity Topology open Lean Meta Qq Function open Metric
import Init import Mathlib.Data.ENNReal.Real import Mathlib.Tactic.Bound.Attribute import Mathlib.Topology.EMetricSpace.Defs import Mathlib.Topology.MetricSpace.Pseudo.Defs
open Set Filter TopologicalSpace Bornology open scoped ENNReal NNReal Uniformity Topology open Lean Meta Qq Function open Metric
lemma mem_closure_range_iff_tac_51792 [PseudoMetricSpace α] (e : β → α) (a : α) : a ∈ closure (range e) ↔ ∀ ε > 0, ∃ k, dist a (e k) < ε := sorry
lemma mem_closure_range_iff_tac_51792 {α : Type*} {β : Type*} [PseudoMetricSpace α] (e : β → α) (a : α) : a ∈ closure (range e) ↔ ∀ ε > 0, ∃ k, dist a (e k) < ε := sorry
tactic
true
['Mathlib', 'Topology', 'MetricSpace', 'Pseudo', 'Defs']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 11, "column": 140}, "goal": "α : Type u_1\nβ : Sort u_2\ninst✝ : PseudoMetricSpace α\ne : β → α\na : α\n⊢ a ∈ closure (range e) ↔ ∀ ε > 0, ∃ k, dist a (e k) < ε", "endPos": {"line": 11, "column": 145}}], "messages": [{"severity": "warning", "pos": {"line": 11, "column": 6}, "endPos": {"line": 11, "column": 37}, "data": "declaration uses 'sorry'"}], "env": 0}
NonUnitalStarAlgebra.mem_sup_right_tac_30242
import Init import Mathlib.Algebra.Algebra.NonUnitalSubalgebra import Mathlib.Algebra.Star.StarAlgHom import Mathlib.Algebra.Star.Center import Mathlib.Algebra.Star.NonUnitalSubalgebra open scoped Pointwise open scoped Pointwise open NonUnitalStarSubalgebra
import Init import Mathlib.Algebra.Algebra.NonUnitalSubalgebra import Mathlib.Algebra.Star.StarAlgHom import Mathlib.Algebra.Star.Center import Mathlib.Algebra.Star.NonUnitalSubalgebra
open scoped Pointwise open scoped Pointwise open NonUnitalStarSubalgebra
lemma mem_sup_right_tac_30242 [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] (S : NonUnitalStarSubalgebra R A) (T : NonUnitalStarSubalgebra R A) : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := sorry
lemma mem_sup_right_tac_30242 {R : Type*} {A : Type*} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] (S : NonUnitalStarSubalgebra R A) (T : NonUnitalStarSubalgebra R A) : ∀ {x : A}, x ∈ T → x ∈ S ⊔ T := sorry
[['SetLike', 'le_def']]
tactic
true
['Mathlib', 'Algebra', 'Star', 'NonUnitalSubalgebra']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 10, "column": 271}, "goal": "R : Type u_1\nA : Type u_2\ninst✝⁷ : CommSemiring R\ninst✝⁶ : StarRing R\ninst✝⁵ : NonUnitalSemiring A\ninst✝⁴ : StarRing A\ninst✝³ : Module R A\ninst✝² : IsScalarTower R A A\ninst✝¹ : SMulCommClass R A A\ninst✝ : StarModule R A\nS T : NonUnitalStarSubalgebra R A\nx✝ : A\n⊢ x✝ ∈ T → x✝ ∈ S ⊔ T", "endPos": {"line": 10, "column": 276}}], "messages": [{"severity": "warning", "pos": {"line": 10, "column": 6}, "endPos": {"line": 10, "column": 29}, "data": "declaration uses 'sorry'"}], "env": 0}
mem_rootsOfUnity_prime_pow_mul_iff'_tac_10308
import Init import Mathlib.Algebra.CharP.Two import Mathlib.Algebra.CharP.Reduced import Mathlib.Algebra.NeZero import Mathlib.Algebra.Polynomial.RingDivision import Mathlib.GroupTheory.SpecificGroups.Cyclic import Mathlib.NumberTheory.Divisors import Mathlib.RingTheory.IntegralDomain import Mathlib.Tactic.Zify import Mathlib.RingTheory.RootsOfUnity.Basic open scoped Classical open Polynomial open Finset
import Init import Mathlib.Algebra.CharP.Two import Mathlib.Algebra.CharP.Reduced import Mathlib.Algebra.NeZero import Mathlib.Algebra.Polynomial.RingDivision import Mathlib.GroupTheory.SpecificGroups.Cyclic import Mathlib.NumberTheory.Divisors import Mathlib.RingTheory.IntegralDomain import Mathlib.Tactic.Zify import Mathlib.RingTheory.RootsOfUnity.Basic
open scoped Classical open Polynomial open Finset
lemma mem_rootsOfUnity_prime_pow_mul_iff'_tac_10308 [CommRing R] [IsReduced R] (p : ℕ) (k : ℕ) (m : ℕ+) [ExpChar R p] (ζ : Rˣ) : ζ ∈ rootsOfUnity m R ↔ ζ ∈ rootsOfUnity m R := sorry
lemma mem_rootsOfUnity_prime_pow_mul_iff'_tac_10308 {R : Type*} [CommRing R] [IsReduced R] (p : ℕ) (k : ℕ) (m : ℕ+) [ExpChar R p] (ζ : Rˣ) : ζ ∈ rootsOfUnity m R ↔ ζ ∈ rootsOfUnity m R := sorry
tactic
null
['Mathlib', 'RingTheory', 'RootsOfUnity', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
LinearEquiv.prod
import Init import Mathlib.Algebra.Algebra.Prod import Mathlib.LinearAlgebra.Span import Mathlib.Order.PartialSups import Mathlib.LinearAlgebra.Prod open Submodule open LinearMap
import Init import Mathlib.Algebra.Algebra.Prod import Mathlib.LinearAlgebra.Span import Mathlib.Order.PartialSups import Mathlib.LinearAlgebra.Prod
open Submodule open LinearMap
/-- Product of linear equivalences; the maps come from `Equiv.prodCongr`. -/ protected def prod : (M × M₃) ≃ₗ[R] M₂ × M₄ := sorry
def prod_extracted : {R : Type u} → {M : Type v} → {M₂ : Type w} → {M₃ : Type y} → {M₄ : Type z} → [inst : Semiring R] → [inst_1 : AddCommMonoid M] → [inst_2 : AddCommMonoid M₂] → [inst_3 : AddCommMonoid M₃] → [inst_4 : AddCommMonoid M₄] → {module_M : Module R M} → {module_M₂ : Module R M₂} → {module_M₃ : Module R M₃} → {module_M₄ : Module R M₄} → (M ≃ₗ[R] M₂) → (M₃ ≃ₗ[R] M₄) → (M × M₃) ≃ₗ[R] M₂ × M₄ := sorry
[['Semiring', 'toNonAssocSemiring'], ['Prod', 'instModule'], ['Prod', 'instAddCommMonoid'], ['LinearEquiv'], ['Prod'], ['RingHom', 'id'], ['RingHomInvPair', 'ids']]
/-- Product of linear equivalences; the maps come from `Equiv.prodCongr`. -/ protected def prod : (M × M₃) ≃ₗ[R] M₂ × M₄ := { e₁.toAddEquiv.prodCongr e₂.toAddEquiv with map_smul' := fun c _x => Prod.ext (e₁.map_smulₛₗ c _) (e₂.map_smulₛₗ c _) }
[['AddZeroClass', 'toAdd'], ['AddCommSemigroup', 'toAddCommMagma'], ['Equiv', 'toFun'], ['Prod', 'instModule'], ['Prod', 'instAddCommMonoid'], ['AddHom', 'mk'], ['LinearEquiv', 'prod', 'proof_4'], ['AddCommMonoid', 'toAddMonoid'], ['LinearMap', 'mk'], ['LinearEquiv', 'prod', 'proof_2'], ['AddMonoid', 'toAddZeroClass'], ['AddCommMagma', 'toAdd'], ['LinearEquiv', 'prod', 'proof_1'], ['RingHom', 'id'], ['AddEquiv', 'prodCongr'], ['LinearEquiv', 'mk'], ['Semiring', 'toNonAssocSemiring'], ['Equiv', 'invFun'], ['AddEquiv', 'toEquiv'], ['Prod'], ['Prod', 'instAdd'], ['AddCommMonoid', 'toAddCommSemigroup'], ['LinearEquiv', 'toAddEquiv'], ['LinearEquiv', 'prod', 'proof_3'], ['RingHomInvPair', 'ids']]
Product of linear equivalences; the maps come from `Equiv.prodCongr`.
theorem
Syntax(original=True, range=StringRange(start=25898, stop=26176))
false
['Mathlib', 'LinearAlgebra', 'Prod']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 10, "column": 14}, "endPos": {"line": 10, "column": 18}, "data": "protected declarations must be in a namespace"}], "env": 0}
Polynomial.isUnit_of_coeff_isUnit_isNilpotent_tac_4567
import Init import Mathlib.Algebra.Polynomial.AlgebraMap import Mathlib.Algebra.Polynomial.Div import Mathlib.Algebra.Polynomial.Identities import Mathlib.RingTheory.Ideal.QuotientOperations import Mathlib.RingTheory.Nilpotent.Lemmas import Mathlib.RingTheory.Polynomial.Tower import Mathlib.RingTheory.Nilpotent.Basic import Mathlib.RingTheory.Polynomial.Nilpotent
import Init import Mathlib.Algebra.Polynomial.AlgebraMap import Mathlib.Algebra.Polynomial.Div import Mathlib.Algebra.Polynomial.Identities import Mathlib.RingTheory.Ideal.QuotientOperations import Mathlib.RingTheory.Nilpotent.Lemmas import Mathlib.RingTheory.Polynomial.Tower import Mathlib.RingTheory.Nilpotent.Basic import Mathlib.RingTheory.Polynomial.Nilpotent
lemma isUnit_of_coeff_isUnit_isNilpotent_tac_4567 [CommRing R] (k : ℕ) (hind : ∀ m < k, ∀ {P : R[X]}, IsUnit (P.coeff 0) → (∀ (i : ℕ), i ≠ 0 → IsNilpotent (P.coeff i)) → P.natDegree = m → IsUnit P) (P : R[X]) (hunit : IsUnit (P.coeff 0)) (hnil : ∀ (i : ℕ), i ≠ 0 → IsNilpotent (P.coeff i)) (h : P.natDegree = k) (hdeg : ¬P.natDegree = 0) (P₁ : R[X]) (hP₁ : P₁ = P.eraseLead) (hdeg₂ : P.eraseLead.natDegree < P.natDegree) : IsUnit (P₁.coeff 0) := sorry
lemma isUnit_of_coeff_isUnit_isNilpotent_tac_4567 {R : Type*} [CommRing R] (k : ℕ) (hind : ∀ m < k, ∀ {P : R[X]}, IsUnit (P.coeff 0) → (∀ (i : ℕ), i ≠ 0 → IsNilpotent (P.coeff i)) → P.natDegree = m → IsUnit P) (P : R[X]) (hunit : IsUnit (P.coeff 0)) (hnil : ∀ (i : ℕ), i ≠ 0 → IsNilpotent (P.coeff i)) (h : P.natDegree = k) (hdeg : ¬P.natDegree = 0) (P₁ : R[X]) (hP₁ : P₁ = P.eraseLead) (hdeg₂ : P.eraseLead.natDegree < P.natDegree) : IsUnit (P₁.coeff 0) := sorry
tactic
false
['Mathlib', 'RingTheory', 'Polynomial', 'Nilpotent']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 12, "column": 446}, "goal": "R : Type u_1\nidx✝ : Type u_2\nX : idx✝\ninst✝ : CommRing R\nk : ℕ\nhind :\n ∀ m < k,\n ∀ {P : R[X]},\n IsUnit (sorryAx (?m.10444 k m) true) →\n (∀ (i : ℕ), i ≠ 0 → IsNilpotent (sorryAx (?m.10448 k m i) true)) → sorryAx ℕ true = m → IsUnit P\nP : R[X]\nhunit : IsUnit (sorryAx (?m.10460 k hind P) true)\nhnil : ∀ (i : ℕ), i ≠ 0 → IsNilpotent (sorryAx (?m.10466 k hind P hunit i) true)\nh : sorryAx ℕ true = k\nhdeg : ¬sorryAx ℕ true = 0\nP₁ : R[X]\nhP₁ : P₁ = sorryAx R[X] true\nhdeg₂ :\n sorryAx (?m.10478 k hind P hunit hnil h hdeg P₁ hP₁) true < sorryAx (?m.10478 k hind P hunit hnil h hdeg P₁ hP₁) true\n⊢ IsUnit (sorryAx (?m.10484 k hind P hunit hnil h hdeg P₁ hP₁ hdeg₂) true)", "endPos": {"line": 12, "column": 451}}], "messages": [{"severity": "error", "pos": {"line": 12, "column": 110}, "endPos": {"line": 12, "column": 119}, "data": "invalid field 'coeff', the environment does not contain 'GetElem.getElem.coeff'\n P\nhas type\n R[X]"}, {"severity": "error", "pos": {"line": 12, "column": 110}, "endPos": {"line": 12, "column": 119}, "data": "invalid field notation, type is not of the form (C ...) where C is a constant\n P\nhas type\n ?m.63.1 R X ?m.64"}, {"severity": "error", "pos": {"line": 12, "column": 156}, "endPos": {"line": 12, "column": 165}, "data": "invalid field 'coeff', the environment does not contain 'GetElem.getElem.coeff'\n P\nhas type\n R[X]"}, {"severity": "error", "pos": {"line": 12, "column": 156}, "endPos": {"line": 12, "column": 165}, "data": "invalid field notation, type is not of the form (C ...) where C is a constant\n P\nhas type\n ?m.63.1 R X ?m.64"}, {"severity": "error", "pos": {"line": 12, "column": 170}, "endPos": {"line": 12, "column": 181}, "data": "invalid field 'natDegree', the environment does not contain 'GetElem.getElem.natDegree'\n P\nhas type\n R[X]"}, {"severity": "error", "pos": {"line": 12, "column": 170}, "endPos": {"line": 12, "column": 181}, "data": "invalid field notation, type is not of the form (C ...) where C is a constant\n P\nhas type\n ?m.63.1 R X ?m.64"}, {"severity": "error", "pos": {"line": 12, "column": 226}, "endPos": {"line": 12, "column": 235}, "data": "invalid field 'coeff', the environment does not contain 'GetElem.getElem.coeff'\n P\nhas type\n R[X]"}, {"severity": "error", "pos": {"line": 12, "column": 226}, "endPos": {"line": 12, "column": 235}, "data": "invalid field notation, type is not of the form (C ...) where C is a constant\n P\nhas type\n ?m.1102.1 R X ?m.1103"}, {"severity": "error", "pos": {"line": 12, "column": 278}, "endPos": {"line": 12, "column": 287}, "data": "invalid field 'coeff', the environment does not contain 'GetElem.getElem.coeff'\n P\nhas type\n R[X]"}, {"severity": "error", "pos": {"line": 12, "column": 278}, "endPos": {"line": 12, "column": 287}, "data": "invalid field notation, type is not of the form (C ...) where C is a constant\n P\nhas type\n ?m.1102.1 R X ?m.1103"}, {"severity": "error", "pos": {"line": 12, "column": 295}, "endPos": {"line": 12, "column": 306}, "data": "invalid field 'natDegree', the environment does not contain 'GetElem.getElem.natDegree'\n P\nhas type\n R[X]"}, {"severity": "error", "pos": {"line": 12, "column": 295}, "endPos": {"line": 12, "column": 306}, "data": "invalid field notation, type is not of the form (C ...) where C is a constant\n P\nhas type\n ?m.1102.1 R X ?m.1103"}, {"severity": "error", "pos": {"line": 12, "column": 321}, "endPos": {"line": 12, "column": 332}, "data": "invalid field 'natDegree', the environment does not contain 'GetElem.getElem.natDegree'\n P\nhas type\n R[X]"}, {"severity": "error", "pos": {"line": 12, "column": 321}, "endPos": {"line": 12, "column": 332}, "data": "invalid field notation, type is not of the form (C ...) where C is a constant\n P\nhas type\n ?m.1102.1 R X ?m.1103"}, {"severity": "error", "pos": {"line": 12, "column": 362}, "endPos": {"line": 12, "column": 373}, "data": "invalid field 'eraseLead', the environment does not contain 'GetElem.getElem.eraseLead'\n P\nhas type\n R[X]"}, {"severity": "error", "pos": {"line": 12, "column": 362}, "endPos": {"line": 12, "column": 373}, "data": "invalid field notation, type is not of the form (C ...) where C is a constant\n P\nhas type\n ?m.1102.1 R X ?m.1103"}, {"severity": "error", "pos": {"line": 12, "column": 384}, "endPos": {"line": 12, "column": 405}, "data": "invalid field 'eraseLead', the environment does not contain 'GetElem.getElem.eraseLead'\n P\nhas type\n R[X]"}, {"severity": "error", "pos": {"line": 12, "column": 384}, "endPos": {"line": 12, "column": 405}, "data": "invalid field notation, type is not of the form (C ...) where C is a constant\n P\nhas type\n ?m.1102.1 R X ?m.1103"}, {"severity": "error", "pos": {"line": 12, "column": 408}, "endPos": {"line": 12, "column": 419}, "data": "invalid field 'natDegree', the environment does not contain 'GetElem.getElem.natDegree'\n P\nhas type\n R[X]"}, {"severity": "error", "pos": {"line": 12, "column": 408}, "endPos": {"line": 12, "column": 419}, "data": "invalid field notation, type is not of the form (C ...) where C is a constant\n P\nhas type\n ?m.1102.1 R X ?m.1103"}, {"severity": "error", "pos": {"line": 12, "column": 431}, "endPos": {"line": 12, "column": 441}, "data": "invalid field 'coeff', the environment does not contain 'GetElem.getElem.coeff'\n P₁\nhas type\n R[X]"}, {"severity": "error", "pos": {"line": 12, "column": 431}, "endPos": {"line": 12, "column": 441}, "data": "invalid field notation, type is not of the form (C ...) where C is a constant\n P₁\nhas type\n ?m.2438.1 R X ?m.2439"}], "env": 0}
CategoryTheory.Limits.splitEpiOfIdempotentOfIsColimitCofork_tac_50078
import Init import Mathlib.CategoryTheory.EpiMono import Mathlib.CategoryTheory.Limits.HasLimits import Mathlib.CategoryTheory.Limits.Shapes.Equalizers open CategoryTheory Opposite open WalkingParallelPair open WalkingParallelPairHom
import Init import Mathlib.CategoryTheory.EpiMono import Mathlib.CategoryTheory.Limits.HasLimits import Mathlib.CategoryTheory.Limits.Shapes.Equalizers
open CategoryTheory Opposite open WalkingParallelPair open WalkingParallelPairHom
lemma splitEpiOfIdempotentOfIsColimitCofork_tac_50078 [Category.{v, u} C] (Y : C) (g : X✝ ⟶ Y) (X : C) (f : X ⟶ X) (hf : f ≫ f = f) (c : Cofork (𝟙 X) f) (i : IsColimit c) (this : Epi c.π) : i.desc (Cofork.ofπ f ⋯) ≫ c.π = 𝟙 (((Functor.const WalkingParallelPair).obj c.pt).obj one) := sorry
lemma splitEpiOfIdempotentOfIsColimitCofork_tac_50078 {C : Type*} [Category.{v, u} C] (X✝ : C) (Y : C) (f✝ : X✝ ⟶ Y) (g : X✝ ⟶ Y) (X : C) (f : X ⟶ X) (hf : f ≫ f = f) (c : Cofork (𝟙 X) f) (i : IsColimit c) (this : Epi c.π) : i.desc (Cofork.ofπ f ⋯) ≫ c.π = 𝟙 (((Functor.const WalkingParallelPair).obj c.pt).obj one) := sorry
[['c', 'π'], ['cancel_epi_id']]
tactic
false
['Mathlib', 'CategoryTheory', 'Limits', 'Shapes', 'Equalizers']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 6, "column": 5}, "endPos": {"line": 6, "column": 24}, "data": "unknown namespace 'WalkingParallelPair'"}, {"severity": "error", "pos": {"line": 7, "column": 5}, "endPos": {"line": 7, "column": 27}, "data": "unknown namespace 'WalkingParallelPairHom'"}, {"severity": "error", "pos": {"line": 9, "column": 88}, "endPos": null, "data": "expected token"}], "env": 0}
Algebra.traceForm_toMatrix_tac_6552
import Init import Mathlib.LinearAlgebra.Matrix.BilinearForm import Mathlib.LinearAlgebra.FiniteDimensional import Mathlib.LinearAlgebra.Trace import Mathlib.RingTheory.Trace.Defs open FiniteDimensional open LinearMap (BilinForm) open LinearMap open Matrix open scoped Matrix
import Init import Mathlib.LinearAlgebra.Matrix.BilinearForm import Mathlib.LinearAlgebra.FiniteDimensional import Mathlib.LinearAlgebra.Trace import Mathlib.RingTheory.Trace.Defs
open FiniteDimensional open LinearMap (BilinForm) open LinearMap open Matrix open scoped Matrix
lemma traceForm_toMatrix_tac_6552 [CommRing R] [CommRing S] [Algebra R S] [DecidableEq ι] (b : Basis ι R S) (i : ι) (j : ι) : ((traceForm R S) (b i)) (b j) = (trace R S) (b i * b j) := sorry
lemma traceForm_toMatrix_tac_6552 {R : Type*} {S : Type*} [CommRing R] [CommRing S] [Algebra R S] {ι : Type*} {inst✝¹ : Type*} [DecidableEq ι] (b : Basis ι R S) (i : ι) (j : ι) : ((traceForm R S) (b i)) (b j) = (trace R S) (b i * b j) := sorry
[['traceForm_apply']]
tactic
false
['Mathlib', 'RingTheory', 'Trace', 'Defs']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 12, "column": 185}, "goal": "R : Type u_1\nS : Type u_2\nι : Type u_3\nx✝ : Sort u_4\ntraceForm : x✝\ninst✝³ : CommRing R\ninst✝² : CommRing S\ninst✝¹ : Algebra R S\ninst✝ : DecidableEq ι\nb : Basis ι R S\ni j : ι\n⊢ sorryAx R true = (LinearMap.trace R S) (sorryAx (S →ₗ[R] S) true)", "endPos": {"line": 12, "column": 190}}], "messages": [{"severity": "error", "pos": {"line": 12, "column": 171}, "endPos": {"line": 12, "column": 180}, "data": "type mismatch\n b i * b j\nhas type\n S : outParam (Type ?u.1260)\nbut is expected to have type\n S →ₗ[R] S : Type ?u.1260"}, {"severity": "error", "pos": {"line": 12, "column": 128}, "endPos": {"line": 12, "column": 141}, "data": "function expected at\n traceForm\nterm has type\n ?m.1254"}], "env": 0}
MeasureTheory.Measure.haar.index_mono_tac_9181
import Init import Mathlib.MeasureTheory.Measure.Content import Mathlib.MeasureTheory.Group.Prod import Mathlib.Topology.Algebra.Group.Compact import Mathlib.MeasureTheory.Measure.Haar.Basic open Set Inv Function TopologicalSpace MeasurableSpace open scoped NNReal ENNReal Pointwise Topology
import Init import Mathlib.MeasureTheory.Measure.Content import Mathlib.MeasureTheory.Group.Prod import Mathlib.Topology.Algebra.Group.Compact import Mathlib.MeasureTheory.Measure.Haar.Basic
open Set Inv Function TopologicalSpace MeasurableSpace open scoped NNReal ENNReal Pointwise Topology
lemma index_mono_tac_9181 [Group G] [TopologicalSpace G] [TopologicalGroup G] (K : Set G) (K' : Set G) (V : Set G) (hK' : IsCompact K') (h : K ⊆ K') (hV : (interior V).Nonempty) (s : Finset G) (h1s : K' ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V) (h2s : s.card = index K' V) : ∃ x ∈ {t | K ⊆ ⋃ g ∈ t, (fun h => g * h) ⁻¹' V}, x.card = index K' V := sorry
lemma index_mono_tac_9181 {G : Type*} [Group G] [TopologicalSpace G] [TopologicalGroup G] (K : Set G) (K' : Set G) (V : Set G) (hK' : IsCompact K') (h : K ⊆ K') (hV : (interior V).Nonempty) (s : Finset G) (h1s : K' ⊆ ⋃ g ∈ s, (fun h => g * h) ⁻¹' V) (h2s : s.card = index K' V) : ∃ x ∈ {t | K ⊆ ⋃ g ∈ t, (fun h => g * h) ⁻¹' V}, x.card = index K' V := sorry
tactic
null
['Mathlib', 'MeasureTheory', 'Measure', 'Haar', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
Isometry.diam_range_tac_7777
import Init import Mathlib.Topology.MetricSpace.Antilipschitz import Mathlib.Topology.MetricSpace.Isometry open Function Set open scoped Topology ENNReal
import Init import Mathlib.Topology.MetricSpace.Antilipschitz import Mathlib.Topology.MetricSpace.Isometry
open Function Set open scoped Topology ENNReal
lemma diam_range_tac_7777 [PseudoMetricSpace α] [PseudoMetricSpace β] (f : α → β) (hf : Isometry f) : Metric.diam (range f) = Metric.diam univ := sorry
lemma diam_range_tac_7777 {α : Type*} {β : Type*} [PseudoMetricSpace α] [PseudoMetricSpace β] (f : α → β) (hf : Isometry f) : Metric.diam (range f) = Metric.diam univ := sorry
[['hf', 'diam_image'], ['univ'], ['image_univ']]
tactic
false
['Mathlib', 'Topology', 'MetricSpace', 'Isometry']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 7, "column": 126}, "endPos": {"line": 7, "column": 142}, "data": "typeclass instance problem is stuck, it is often due to metavariables\n PseudoMetricSpace ?m.131"}], "env": 0}
ZMod.LFunction_eq_LSeries_tac_4411
import Init import Mathlib.Analysis.Fourier.ZMod import Mathlib.Analysis.NormedSpace.Connected import Mathlib.LinearAlgebra.Dimension.DivisionRing import Mathlib.NumberTheory.LSeries.RiemannZeta import Mathlib.Topology.Algebra.Module.Cardinality import Mathlib.NumberTheory.LSeries.ZMod open HurwitzZeta Complex ZMod Finset Classical Topology Filter open scoped Real
import Init import Mathlib.Analysis.Fourier.ZMod import Mathlib.Analysis.NormedSpace.Connected import Mathlib.LinearAlgebra.Dimension.DivisionRing import Mathlib.NumberTheory.LSeries.RiemannZeta import Mathlib.Topology.Algebra.Module.Cardinality import Mathlib.NumberTheory.LSeries.ZMod
open HurwitzZeta Complex ZMod Finset Classical Topology Filter open scoped Real
lemma LFunction_eq_LSeries_tac_4411 (N : ℕ) [NeZero N] (Φ : ZMod N → ℂ) (s : ℂ) (hs : 1 < s.re) (j : ZMod N) (this : ↑j.val / ↑N ∈ Set.Icc 0 1) (m : ℕ) : Φ j / (↑j.val + ↑N * ↑m) ^ s = Φ j / (↑j.val + ↑N * ↑m) ^ s := sorry
lemma LFunction_eq_LSeries_tac_4411 (N : ℕ) [NeZero N] (Φ : ZMod N → ℂ) (s : ℂ) (hs : 1 < s.re) (j : ZMod N) (this : ↑j.val / ↑N ∈ Set.Icc 0 1) (m : ℕ) : Φ j / (↑j.val + ↑N * ↑m) ^ s = Φ j / (↑j.val + ↑N * ↑m) ^ s := sorry
tactic
true
['Mathlib', 'NumberTheory', 'LSeries', 'ZMod']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 11, "column": 217}, "goal": "N : ℕ\ninst✝ : NeZero N\nΦ : ZMod N → ℂ\ns : ℂ\nhs : 1 < s.re\nj : ZMod N\nthis : j.val / N ∈ Set.Icc 0 1\nm : ℕ\n⊢ Φ j / (↑j.val + ↑N * ↑m) ^ s = Φ j / (↑j.val + ↑N * ↑m) ^ s", "endPos": {"line": 11, "column": 222}}], "messages": [{"severity": "warning", "pos": {"line": 11, "column": 6}, "endPos": {"line": 11, "column": 35}, "data": "declaration uses 'sorry'"}], "env": 0}
Pi.isPWO_tac_33380
import Init import Mathlib.Data.Prod.Lex import Mathlib.Data.Sigma.Lex import Mathlib.Order.Antichain import Mathlib.Order.OrderIsoNat import Mathlib.Order.WellFounded import Mathlib.Tactic.TFAE import Mathlib.Order.WellFoundedSet open Relation open List in open Set
import Init import Mathlib.Data.Prod.Lex import Mathlib.Data.Sigma.Lex import Mathlib.Order.Antichain import Mathlib.Order.OrderIsoNat import Mathlib.Order.WellFounded import Mathlib.Tactic.TFAE import Mathlib.Order.WellFoundedSet
open Relation open List in open Set
lemma isPWO_tac_33380 [(i : ι) → LinearOrder (α i)] [∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1] [Finite ι] (s : Set ((i : ι) → α i)) : ∀ (a : ι) (s : Finset ι) (h : a ∉ s), (∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ x ∈ s, (f ∘ ⇑g) a x ≤ (f ∘ ⇑g) b x) → ∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a_2 b : ℕ⦄, a_2 ≤ b → ∀ x ∈ Finset.cons a s h, (f ∘ ⇑g) a_2 x ≤ (f ∘ ⇑g) b x := sorry
lemma isPWO_tac_33380 {ι : Type*} {α : Type*} [(i : ι) → LinearOrder (α i)] [∀ (i : ι), IsWellOrder (α i) fun x x_1 => x < x_1] [Finite ι] (s : Set ((i : ι) → α i)) {val✝ : Type*} : ∀ (a : ι) (s : Finset ι) (h : a ∉ s), (∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a b : ℕ⦄, a ≤ b → ∀ x ∈ s, (f ∘ ⇑g) a x ≤ (f ∘ ⇑g) b x) → ∀ (f : ℕ → (s : ι) → α s), ∃ g, ∀ ⦃a_2 b : ℕ⦄, a_2 ≤ b → ∀ x ∈ Finset.cons a s h, (f ∘ ⇑g) a_2 x ≤ (f ∘ ⇑g) b x := sorry
[['OrderHomClass', 'mono'], ['Finset', 'forall_mem_cons'], ['IsWellFounded', 'wf', 'isWF'], ['mem_univ'], ["hg'"], ["g'", 'trans'], ['s'], ['hg'], ["g'"], ['b'], ['isPWO', 'exists_monotone_subseq'], ['ih'], ['x'], ['n'], ['univ'], ['hx'], ['a'], ['f'], ['g'], ['hab']]
tactic
false
['Mathlib', 'Order', 'WellFoundedSet']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 14, "column": 70}, "endPos": {"line": 14, "column": 72}, "data": "cannot coerce to function\n g"}, {"severity": "error", "pos": {"line": 14, "column": 85}, "endPos": {"line": 14, "column": 87}, "data": "cannot coerce to function\n g"}, {"severity": "error", "pos": {"line": 15, "column": 91}, "endPos": {"line": 15, "column": 93}, "data": "cannot coerce to function\n g"}, {"severity": "error", "pos": {"line": 15, "column": 108}, "endPos": {"line": 15, "column": 110}, "data": "cannot coerce to function\n g"}, {"severity": "error", "pos": {"line": 13, "column": 46}, "endPos": {"line": 13, "column": 49}, "data": "function expected at\n α\nterm has type\n ?m.12"}, {"severity": "error", "pos": {"line": 13, "column": 77}, "endPos": {"line": 13, "column": 80}, "data": "function expected at\n α\nterm has type\n ?m.12"}, {"severity": "error", "pos": {"line": 13, "column": 135}, "endPos": {"line": 13, "column": 138}, "data": "function expected at\n α\nterm has type\n ?m.12"}, {"severity": "error", "pos": {"line": 14, "column": 24}, "endPos": {"line": 14, "column": 27}, "data": "function expected at\n α\nterm has type\n ?m.12"}, {"severity": "error", "pos": {"line": 15, "column": 25}, "endPos": {"line": 15, "column": 28}, "data": "function expected at\n α\nterm has type\n ?m.12"}, {"severity": "error", "pos": {"line": 13, "column": 0}, "endPos": {"line": 15, "column": 115}, "data": "stuck at solving universe constraint\n imax (?u.108+1) ?u.99 =?= ?u.96+1\nwhile trying to unify\n Sort (imax (?u.108 + 1) ?u.99) : Type (imax (?u.108 + 1) ?u.99)\nwith\n Type ?u.96 : Type (?u.96 + 1)"}], "env": 0}
Computation.corec_eq_tac_7053
import Init import Mathlib.Data.Nat.Find import Mathlib.Data.Stream.Init import Mathlib.Tactic.Common import Mathlib.Data.Seq.Computation open Function
import Init import Mathlib.Data.Nat.Find import Mathlib.Data.Stream.Init import Mathlib.Tactic.Common import Mathlib.Data.Seq.Computation
open Function
lemma corec_eq_tac_7053 (f : β → α ⊕ β) (b : β) : (match Sum.rec some (fun x => none) (f b) with | none => Sum.inr (tail ⟨Stream'.corec' (Corec.f f) (Sum.inr b), ⋯⟩) | some a => Sum.inl a) = match f b with | Sum.inl a => Sum.inl a | Sum.inr b => Sum.inr ⟨Stream'.corec' (Corec.f f) (Sum.inr b), ⋯⟩ := sorry
lemma corec_eq_tac_7053 {α : Type*} {β : Type*} (f : β → α ⊕ β) (b : β) : (match Sum.rec some (fun x => none) (f b) with | none => Sum.inr (tail ⟨Stream'.corec' (Corec.f f) (Sum.inr b), ⋯⟩) | some a => Sum.inl a) = match f b with | Sum.inl a => Sum.inl a | Sum.inr b => Sum.inr ⟨Stream'.corec' (Corec.f f) (Sum.inr b), ⋯⟩ := sorry
tactic
false
['Mathlib', 'Data', 'Seq', 'Computation']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 13, "column": 70}, "goal": "β : Type u_1\nα : Type u_2\nx✝ : Sort u_3\ntail : x✝\nf : β → α ⊕ β\nb : β\n⊢ sorryAx (α ⊕ ?m.556 f b) true =\n match f b with\n | Sum.inl a => Sum.inl a\n | Sum.inr b_1 => Sum.inr (sorryAx (?m.556 f b) true)", "endPos": {"line": 13, "column": 75}}], "messages": [{"severity": "error", "pos": {"line": 8, "column": 57}, "endPos": {"line": 8, "column": 91}, "data": "failed to elaborate eliminator, expected type is not available"}, {"severity": "error", "pos": {"line": 9, "column": 21}, "endPos": {"line": 9, "column": 67}, "data": "function expected at\n tail\nterm has type\n ?m.166"}, {"severity": "error", "pos": {"line": 13, "column": 25}, "endPos": {"line": 13, "column": 66}, "data": "invalid constructor ⟨...⟩, expected type must be an inductive type \n ?m.488"}], "env": 0}
CategoryTheory.isCofilteredOrEmpty_of_directed_ge_tac_22424
import Init import Mathlib.CategoryTheory.FinCategory.Basic import Mathlib.CategoryTheory.Limits.Cones import Mathlib.CategoryTheory.Limits.Shapes.FiniteLimits import Mathlib.CategoryTheory.Adjunction.Basic import Mathlib.CategoryTheory.Category.Preorder import Mathlib.CategoryTheory.Category.ULift import Mathlib.CategoryTheory.PEmpty import Mathlib.CategoryTheory.Filtered.Basic open Function open IsFiltered open CategoryTheory.Limits open CategoryTheory.Limits
import Init import Mathlib.CategoryTheory.FinCategory.Basic import Mathlib.CategoryTheory.Limits.Cones import Mathlib.CategoryTheory.Limits.Shapes.FiniteLimits import Mathlib.CategoryTheory.Adjunction.Basic import Mathlib.CategoryTheory.Category.Preorder import Mathlib.CategoryTheory.Category.ULift import Mathlib.CategoryTheory.PEmpty import Mathlib.CategoryTheory.Filtered.Basic
open Function open IsFiltered open CategoryTheory.Limits open CategoryTheory.Limits
lemma isCofilteredOrEmpty_of_directed_ge_tac_22424 [Category.{v, u} C] [Preorder α] [IsDirected α fun x x_1 => x ≥ x_1] (X : α) (Y : α) (f : X ⟶ Y) (g : X ⟶ Y) : 𝟙 X ≫ f = 𝟙 X ≫ g := sorry
lemma isCofilteredOrEmpty_of_directed_ge_tac_22424 {C : Type*} [Category.{v, u} C] {α : Type*} [Preorder α] [IsDirected α fun x x_1 => x ≥ x_1] (X : α) (Y : α) (f : X ⟶ Y) (g : X ⟶ Y) : 𝟙 X ≫ f = 𝟙 X ≫ g := sorry
[['ULift', 'ext']]
tactic
false
['Mathlib', 'CategoryTheory', 'Filtered', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 11, "column": 5}, "endPos": {"line": 11, "column": 15}, "data": "unknown namespace 'IsFiltered'"}, {"severity": "error", "pos": {"line": 15, "column": 162}, "endPos": null, "data": "expected token"}], "env": 0}
Polynomial.aroots_X_pow_tac_16080
import Init import Mathlib.Algebra.Polynomial.RingDivision import Mathlib.RingTheory.Localization.FractionRing import Mathlib.SetTheory.Cardinal.Basic import Mathlib.Algebra.Polynomial.Roots open Multiset Finset
import Init import Mathlib.Algebra.Polynomial.RingDivision import Mathlib.RingTheory.Localization.FractionRing import Mathlib.SetTheory.Cardinal.Basic import Mathlib.Algebra.Polynomial.Roots
open Multiset Finset
lemma aroots_X_pow_tac_16080 [CommRing T] [CommRing S] [IsDomain S] [Algebra T S] (n : ℕ) : n • {0} = n • {0} := sorry
lemma aroots_X_pow_tac_16080 {S : Type*} {T : Type*} [CommRing T] [CommRing S] [IsDomain S] [Algebra T S] (n : ℕ) : n • {0} = n • {0} := sorry
tactic
false
['Mathlib', 'Algebra', 'Polynomial', 'Roots']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 8, "column": 102}, "endPos": {"line": 8, "column": 109}, "data": "typeclass instance problem is stuck, it is often due to metavariables\n HSMul ℕ ?m.655 ?m.752"}], "env": 0}
jacobiSym.list_prod_right_tac_11520
import Init import Mathlib.NumberTheory.LegendreSymbol.QuadraticReciprocity import Mathlib.NumberTheory.LegendreSymbol.JacobiSymbol open Nat ZMod open NumberTheorySymbols
import Init import Mathlib.NumberTheory.LegendreSymbol.QuadraticReciprocity import Mathlib.NumberTheory.LegendreSymbol.JacobiSymbol
open Nat ZMod open NumberTheorySymbols
lemma list_prod_right_tac_11520 (a : ℤ) (n : ℕ) (l' : List ℕ) (ih : (∀ n ∈ l', n ≠ 0) → J(a | l'.prod) = (List.map (fun n => J(a | n)) l').prod) (hl : ∀ n_1 ∈ n :: l', n_1 ≠ 0) (hn : n ≠ 0) (hl' : l'.prod ≠ 0) (h : ∀ m ∈ l', m ≠ 0) : J(a | n) * (List.map (fun n => J(a | n)) l').prod = J(a | n) * (List.map (fun n => J(a | n)) l').prod := sorry
lemma list_prod_right_tac_11520 (a : ℤ) (n : ℕ) (l' : List ℕ) (ih : (∀ n ∈ l', n ≠ 0) → J(a | l'.prod) = (List.map (fun n => J(a | n)) l').prod) (hl : ∀ n_1 ∈ n :: l', n_1 ≠ 0) (hn : n ≠ 0) (hl' : l'.prod ≠ 0) (h : ∀ m ∈ l', m ≠ 0) : J(a | n) * (List.map (fun n => J(a | n)) l').prod = J(a | n) * (List.map (fun n => J(a | n)) l').prod := sorry
tactic
null
['Mathlib', 'NumberTheory', 'LegendreSymbol', 'JacobiSymbol']
null
leanprover/lean4:v4.11.0
Mathlib
Equiv.equivCongr_trans_tac_14409
import Init import Mathlib.Data.FunLike.Equiv import Mathlib.Data.Quot import Mathlib.Data.Bool.Basic import Mathlib.Logic.Unique import Mathlib.Tactic.Substs import Mathlib.Tactic.Conv import Mathlib.Logic.Equiv.Defs open Function
import Init import Mathlib.Data.FunLike.Equiv import Mathlib.Data.Quot import Mathlib.Data.Bool.Basic import Mathlib.Logic.Unique import Mathlib.Tactic.Substs import Mathlib.Tactic.Conv import Mathlib.Logic.Equiv.Defs
open Function
lemma equivCongr_trans_tac_14409 (α : Sort u) (β : Sort v) (γ : Sort w) (δ : Sort u_1) (ε : Sort u_2) (ζ : Sort u_3) (ab : α ≃ β) (de : δ ≃ ε) (bc : β ≃ γ) (ef : ε ≃ ζ) : (ab.equivCongr de).trans (bc.equivCongr ef) = (ab.trans bc).equivCongr (de.trans ef) := sorry
lemma equivCongr_trans_tac_14409 (α : Sort u) (β : Sort v) (γ : Sort w) (δ : Sort u_1) (ε : Sort u_2) (ζ : Sort u_3) (ab : α ≃ β) (de : δ ≃ ε) (bc : β ≃ γ) (ef : ε ≃ ζ) : (ab.equivCongr de).trans (bc.equivCongr ef) = (ab.trans bc).equivCongr (de.trans ef) := sorry
tactic
true
['Mathlib', 'Logic', 'Equiv', 'Defs']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 11, "column": 259}, "goal": "α : Sort u\nβ : Sort v\nγ : Sort w\nδ : Sort u_1\nε : Sort u_2\nζ : Sort u_3\nab : α ≃ β\nde : δ ≃ ε\nbc : β ≃ γ\nef : ε ≃ ζ\n⊢ (ab.equivCongr de).trans (bc.equivCongr ef) = (ab.trans bc).equivCongr (de.trans ef)", "endPos": {"line": 11, "column": 264}}], "messages": [{"severity": "warning", "pos": {"line": 11, "column": 6}, "endPos": {"line": 11, "column": 32}, "data": "declaration uses 'sorry'"}], "env": 0}
Order.Ideal.instCompleteLattice_tac_13092
import Init import Mathlib.Logic.Encodable.Basic import Mathlib.Order.Atoms import Mathlib.Order.Chain import Mathlib.Order.UpperLower.Basic import Mathlib.Data.Set.Subsingleton import Mathlib.Order.Ideal open Function Set
import Init import Mathlib.Logic.Encodable.Basic import Mathlib.Order.Atoms import Mathlib.Order.Chain import Mathlib.Order.UpperLower.Basic import Mathlib.Data.Set.Subsingleton import Mathlib.Order.Ideal
open Function Set
lemma instCompleteLattice_tac_13092 [SemilatticeSup P] [OrderBot P] (x : P) (I : Ideal P) (J : Ideal P) (K : Ideal P) (S : Set (Ideal P)) (s : Ideal P) (hs : s ∈ lowerBounds S) : ↑s ⊆ ⋂ s ∈ S, ↑s := sorry
lemma instCompleteLattice_tac_13092 {P : Type*} [SemilatticeSup P] [OrderBot P] (x : P) (I : Ideal P) (J : Ideal P) (K : Ideal P) (S✝ : Set (Ideal P)) (S : Set (Ideal P)) (s : Ideal P) (hs : s ∈ lowerBounds S) : ↑s ⊆ ⋂ s ∈ S, ↑s := sorry
[['subset_iInter₂_iff']]
tactic
false
['Mathlib', 'Order', 'Ideal']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 10, "column": 81}, "endPos": {"line": 10, "column": 88}, "data": "function expected at\n Ideal\nterm has type\n ?m.248"}, {"severity": "error", "pos": {"line": 10, "column": 95}, "endPos": {"line": 10, "column": 102}, "data": "function expected at\n Ideal\nterm has type\n ?m.248"}, {"severity": "error", "pos": {"line": 10, "column": 109}, "endPos": {"line": 10, "column": 116}, "data": "function expected at\n Ideal\nterm has type\n ?m.248"}, {"severity": "error", "pos": {"line": 10, "column": 128}, "endPos": {"line": 10, "column": 135}, "data": "function expected at\n Ideal\nterm has type\n ?m.248"}, {"severity": "error", "pos": {"line": 10, "column": 143}, "endPos": {"line": 10, "column": 150}, "data": "function expected at\n Ideal\nterm has type\n ?m.248"}], "env": 0}
CategoryTheory.Limits.image.isoStrongEpiMono_hom_comp_ι_tac_34554
import Init import Mathlib.CategoryTheory.Limits.Shapes.Equalizers import Mathlib.CategoryTheory.Limits.Shapes.Pullback.Mono import Mathlib.CategoryTheory.Limits.Shapes.StrongEpi import Mathlib.CategoryTheory.MorphismProperty.Factorization import Mathlib.CategoryTheory.Limits.Shapes.Images open CategoryTheory open CategoryTheory.Limits.WalkingParallelPair
import Init import Mathlib.CategoryTheory.Limits.Shapes.Equalizers import Mathlib.CategoryTheory.Limits.Shapes.Pullback.Mono import Mathlib.CategoryTheory.Limits.Shapes.StrongEpi import Mathlib.CategoryTheory.MorphismProperty.Factorization import Mathlib.CategoryTheory.Limits.Shapes.Images
open CategoryTheory open CategoryTheory.Limits.WalkingParallelPair
lemma isoStrongEpiMono_hom_comp_ι_tac_34554 [Category.{v, u} C] [HasStrongEpiMonoFactorisations C] (X : C) (Y : C) (f : X ⟶ Y) (I' : C) (e : X ⟶ I') (m : I' ⟶ Y) (comm : e ≫ m = f) [StrongEpi e] [Mono m] : (isoStrongEpiMono e m comm).hom ≫ ι f = m := sorry
lemma isoStrongEpiMono_hom_comp_ι_tac_34554 {C : Type*} [Category.{v, u} C] [HasStrongEpiMonoFactorisations C] (X : C) (Y : C) (f : X ⟶ Y) (I' : C) (e : X ⟶ I') (m : I' ⟶ Y) (comm : e ≫ m = f) [StrongEpi e] [Mono m] : (isoStrongEpiMono e m comm).hom ≫ ι f = m := sorry
[['isoStrongEpiMono']]
tactic
null
['Mathlib', 'CategoryTheory', 'Limits', 'Shapes', 'Images']
null
leanprover/lean4:v4.11.0
Mathlib
CategoryTheory.IsFiltered.sup_exists_tac_10283
import Init import Mathlib.CategoryTheory.FinCategory.Basic import Mathlib.CategoryTheory.Limits.Cones import Mathlib.CategoryTheory.Limits.Shapes.FiniteLimits import Mathlib.CategoryTheory.Adjunction.Basic import Mathlib.CategoryTheory.Category.Preorder import Mathlib.CategoryTheory.Category.ULift import Mathlib.CategoryTheory.PEmpty import Mathlib.CategoryTheory.Filtered.Basic open Function open IsFiltered open CategoryTheory.Limits
import Init import Mathlib.CategoryTheory.FinCategory.Basic import Mathlib.CategoryTheory.Limits.Cones import Mathlib.CategoryTheory.Limits.Shapes.FiniteLimits import Mathlib.CategoryTheory.Adjunction.Basic import Mathlib.CategoryTheory.Category.Preorder import Mathlib.CategoryTheory.Category.ULift import Mathlib.CategoryTheory.PEmpty import Mathlib.CategoryTheory.Filtered.Basic
open Function open IsFiltered open CategoryTheory.Limits
lemma sup_exists_tac_10283 [Category.{v, u} C] [IsFiltered C] (O : Finset C) (H : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))) (S : C) (f : ∀ {X : C}, X ∈ O → Nonempty (X ⟶ S)) : ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f_1 : X ⟶ Y}, ⟨X, ⟨Y, ⟨mX, ⟨mY, f_1⟩⟩⟩⟩ ∈ ∅ → f_1 ≫ (fun {X} mX => ⋯.some) mY = (fun {X} mX => ⋯.some) mX := sorry
lemma sup_exists_tac_10283 {C : Type*} [Category.{v, u} C] [IsFiltered C] (O : Finset C) (H : Finset ((X : C) ×' (Y : C) ×' (_ : X ∈ O) ×' (_ : Y ∈ O) ×' (X ⟶ Y))) (S : C) (f : ∀ {X : C}, X ∈ O → Nonempty (X ⟶ S)) : ∀ {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f_1 : X ⟶ Y}, ⟨X, ⟨Y, ⟨mX, ⟨mY, f_1⟩⟩⟩⟩ ∈ ∅ → f_1 ≫ (fun {X} mX => ⋯.some) mY = (fun {X} mX => ⋯.some) mX := sorry
tactic
null
['Mathlib', 'CategoryTheory', 'Filtered', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
ONote.fundamentalSequence_has_prop_tac_41262
import Init import Mathlib.Algebra.Ring.Divisibility.Basic import Mathlib.Data.Ordering.Lemmas import Mathlib.SetTheory.Ordinal.Principal import Mathlib.Tactic.NormNum import Mathlib.Data.PNat.Basic import Mathlib.SetTheory.Ordinal.Notation open Ordinal Order open Lean in
import Init import Mathlib.Algebra.Ring.Divisibility.Basic import Mathlib.Data.Ordering.Lemmas import Mathlib.SetTheory.Ordinal.Principal import Mathlib.Tactic.NormNum import Mathlib.Data.PNat.Basic import Mathlib.SetTheory.Ordinal.Notation
open Ordinal Order open Lean in
lemma fundamentalSequence_has_prop_tac_41262 (a : ONote) (m : ℕ+) (b : ONote) (ihb : b = 0) (f : ℕ → ONote) (iha : a.repr.IsLimit ∧ (∀ (i : ℕ), f i < f (i + 1) ∧ f i < a ∧ (a.NF → (f i).NF)) ∧ ∀ a_1 < a.repr, ∃ i, a_1 < (f i).repr) (e : a.fundamentalSequence = Sum.inr f) (e' : m.natPred = 0) : (a.oadd 1 b).repr.IsLimit ∧ (∀ (i : ℕ), (f i).oadd 1 zero < (f (i + 1)).oadd 1 zero ∧ (f i).oadd 1 zero < a.oadd 1 b ∧ ((a.oadd 1 b).NF → ((f i).oadd 1 zero).NF)) ∧ ∀ a_1 < (a.oadd 1 b).repr, ∃ i, a_1 < ((f i).oadd 1 zero).repr := sorry
lemma fundamentalSequence_has_prop_tac_41262 (a : ONote) (m : ℕ+) (b : ONote) (ihb : b = 0) (e✝ : b.fundamentalSequence = Sum.inl none) (f : ℕ → ONote) (iha : a.repr.IsLimit ∧ (∀ (i : ℕ), f i < f (i + 1) ∧ f i < a ∧ (a.NF → (f i).NF)) ∧ ∀ a_1 < a.repr, ∃ i, a_1 < (f i).repr) (e : a.fundamentalSequence = Sum.inr f) (e' : m.natPred = 0) : (a.oadd 1 b).repr.IsLimit ∧ (∀ (i : ℕ), (f i).oadd 1 zero < (f (i + 1)).oadd 1 zero ∧ (f i).oadd 1 zero < a.oadd 1 b ∧ ((a.oadd 1 b).NF → ((f i).oadd 1 zero).NF)) ∧ ∀ a_1 < (a.oadd 1 b).repr, ∃ i, a_1 < ((f i).oadd 1 zero).repr := sorry
[['succPNat'], ['m'], ['PNat', 'natPred_add_one'], ['PNat', 'coe_inj'], ["m'"], ["e'"], ['Nat', 'succPNat_coe'], ['Nat', 'add_one']]
tactic
null
['Mathlib', 'SetTheory', 'Ordinal', 'Notation']
null
leanprover/lean4:v4.11.0
Mathlib
Nat.Prime.pow_dvd_factorial_iff_tac_7650
import Init import Mathlib.Algebra.BigOperators.Intervals import Mathlib.Algebra.GeomSum import Mathlib.Algebra.Order.Ring.Abs import Mathlib.Data.Nat.Bitwise import Mathlib.Data.Nat.Log import Mathlib.Data.Nat.Prime.Defs import Mathlib.Data.Nat.Digits import Mathlib.RingTheory.Multiplicity import Mathlib.Data.Nat.Multiplicity open Finset Nat multiplicity open Nat
import Init import Mathlib.Algebra.BigOperators.Intervals import Mathlib.Algebra.GeomSum import Mathlib.Algebra.Order.Ring.Abs import Mathlib.Data.Nat.Bitwise import Mathlib.Data.Nat.Log import Mathlib.Data.Nat.Prime.Defs import Mathlib.Data.Nat.Digits import Mathlib.RingTheory.Multiplicity import Mathlib.Data.Nat.Multiplicity
open Finset Nat multiplicity open Nat
lemma pow_dvd_factorial_iff_tac_7650 (p : ℕ) (n : ℕ) (r : ℕ) (b : ℕ) (hp : Prime p) (hbn : log p n < b) : p ^ r ∣ n ! ↔ r ≤ ∑ i ∈ Ico 1 b, n / p ^ i := sorry
lemma pow_dvd_factorial_iff_tac_7650 (p : ℕ) (n : ℕ) (r : ℕ) (b : ℕ) (hp : Prime p) (hbn : log p n < b) : p ^ r ∣ n ! ↔ r ≤ ∑ i ∈ Ico 1 b, n / p ^ i := sorry
[['hp', 'multiplicity_factorial'], ['hbn'], ['PartENat', 'coe_le_coe'], ['pow_dvd_iff_le_multiplicity']]
tactic
false
['Mathlib', 'Data', 'Nat', 'Multiplicity']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 14, "column": 152}, "goal": "p n r b : ℕ\nhp : sorryAx Prop true\nhbn : log p n < b\n⊢ p ^ r ∣ n ! ↔ r ≤ ∑ i ∈ Ico 1 b, n / p ^ i", "endPos": {"line": 14, "column": 157}}], "messages": [{"severity": "error", "pos": {"line": 14, "column": 75}, "endPos": {"line": 14, "column": 80}, "data": "ambiguous, possible interpretations \n _root_.Prime p : Prop\n \n Nat.Prime p : Prop"}], "env": 0}
Subgroup.sup_eq_closure_mul_tac_7967
import Init import Mathlib.Algebra.Group.Subgroup.MulOpposite import Mathlib.Algebra.Group.Submonoid.Pointwise import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.Algebra.Group.Subgroup.Pointwise open Set open Pointwise
import Init import Mathlib.Algebra.Group.Subgroup.MulOpposite import Mathlib.Algebra.Group.Submonoid.Pointwise import Mathlib.GroupTheory.GroupAction.ConjAct import Mathlib.Algebra.Group.Subgroup.Pointwise
open Set open Pointwise
lemma sup_eq_closure_mul_tac_7967 [Group G] (H : Subgroup G) (K : Subgroup G) : closure ↑H ⊔ closure ↑K ≤ H ⊔ K := sorry
lemma sup_eq_closure_mul_tac_7967 {G : Type*} [Group G] (H : Subgroup G) (K : Subgroup G) : closure ↑H ⊔ closure ↑K ≤ H ⊔ K := sorry
[['closure_eq']]
tactic
false
['Mathlib', 'Algebra', 'Group', 'Subgroup', 'Pointwise']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 9, "column": 115}, "goal": "G : Type u_1\nx✝ : Sort u_2\nclosure : x✝\ninst✝ : Group G\nH K : Subgroup G\n⊢ sorryAx (Subgroup G) true ⊔ sorryAx (Subgroup G) true ≤ H ⊔ K", "endPos": {"line": 9, "column": 120}}], "messages": [{"severity": "error", "pos": {"line": 9, "column": 80}, "endPos": {"line": 9, "column": 90}, "data": "function expected at\n closure\nterm has type\n ?m.26"}, {"severity": "error", "pos": {"line": 9, "column": 93}, "endPos": {"line": 9, "column": 103}, "data": "function expected at\n closure\nterm has type\n ?m.26"}], "env": 0}
PEquiv.toMatrix_swap_tac_4821
import Init import Mathlib.Data.Matrix.Basic import Mathlib.Data.PEquiv import Mathlib.Data.Matrix.PEquiv open Matrix open Matrix
import Init import Mathlib.Data.Matrix.Basic import Mathlib.Data.PEquiv import Mathlib.Data.Matrix.PEquiv
open Matrix open Matrix
lemma toMatrix_swap_tac_4821 [DecidableEq n] [Ring α] (i : n) (j : n) : 0 = ((1 - if j✝ ∈ some i then 1 else 0) - if j✝ ∈ if i✝ = j then some j else none then 1 else 0) + 0 + if j✝ ∈ if i✝ = j then some i else none then 1 else 0 := sorry
lemma toMatrix_swap_tac_4821 {n : Type*} {α : Type*} [DecidableEq n] [Ring α] (i : n) (j : n) (i✝ : n) (j✝ : n) (h✝² : i✝ = i) (h✝¹ : j✝ ∉ some j) (h✝ : i✝ = j✝) : 0 = ((1 - if j✝ ∈ some i then 1 else 0) - if j✝ ∈ if i✝ = j then some j else none then 1 else 0) + 0 + if j✝ ∈ if i✝ = j then some i else none then 1 else 0 := sorry
[['m', '_@', '_hyg', 1461], ['Classical', '_@', '_hyg', 1463], ['h', '_@', '_hyg', 1460], ['neg', '_@', '_hyg', 1463], ['pos', '_@', '_hyg', 1463]]
tactic
false
['Mathlib', 'Data', 'Matrix', 'PEquiv']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 9, "column": 12}, "endPos": null, "data": "expected token"}], "env": 0}
IsSubmonoid.list_prod_mem_tac_9101
import Init import Mathlib.Algebra.BigOperators.Group.Finset import Mathlib.Algebra.Group.Submonoid.Basic import Mathlib.Deprecated.Group import Mathlib.Deprecated.Submonoid
import Init import Mathlib.Algebra.BigOperators.Group.Finset import Mathlib.Algebra.Group.Submonoid.Basic import Mathlib.Deprecated.Group import Mathlib.Deprecated.Submonoid
lemma list_prod_mem_tac_9101 [Monoid M] (s : Set M) (hs : IsSubmonoid s) (a : M) (l : List M) (h : ∀ x ∈ a :: l, x ∈ s) : a ∈ s ∧ ∀ x ∈ l, x ∈ s := sorry
lemma list_prod_mem_tac_9101 {M : Type*} [Monoid M] (s : Set M) (hs : IsSubmonoid s) (a : M) (l : List M) (h : ∀ x ∈ a :: l, x ∈ s) : a ∈ s ∧ ∀ x ∈ l, x ∈ s := sorry
[['h']]
tactic
true
['Mathlib', 'Deprecated', 'Submonoid']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 8, "column": 148}, "goal": "M : Type u_1\ninst✝ : Monoid M\ns : Set M\nhs : IsSubmonoid s\na : M\nl : List M\nh : ∀ x ∈ a :: l, x ∈ s\n⊢ a ∈ s ∧ ∀ x ∈ l, x ∈ s", "endPos": {"line": 8, "column": 153}}], "messages": [{"severity": "warning", "pos": {"line": 8, "column": 6}, "endPos": {"line": 8, "column": 28}, "data": "declaration uses 'sorry'"}], "env": 0}
hasDerivAt_ofReal_cpow_tac_11485
import Init import Mathlib.Analysis.SpecialFunctions.Pow.Continuity import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv import Mathlib.Analysis.Calculus.FDeriv.Extend import Mathlib.Analysis.Calculus.Deriv.Prod import Mathlib.Analysis.SpecialFunctions.Log.Deriv import Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv import Mathlib.Analysis.SpecialFunctions.Pow.Deriv open scoped Real Topology NNReal ENNReal open Filter open Complex open Complex
import Init import Mathlib.Analysis.SpecialFunctions.Pow.Continuity import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv import Mathlib.Analysis.Calculus.FDeriv.Extend import Mathlib.Analysis.Calculus.Deriv.Prod import Mathlib.Analysis.SpecialFunctions.Log.Deriv import Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv import Mathlib.Analysis.SpecialFunctions.Pow.Deriv
open scoped Real Topology NNReal ENNReal open Filter open Complex open Complex
lemma hasDerivAt_ofReal_cpow_tac_11485 (x : ℝ) (r : ℂ) (hr : r + 1 ≠ 0) (hx : 0 > x) (this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * cexp (↑π * I * (r + 1)) / (r + 1)) : HasDerivAt (fun y => (-↑y) ^ (r + 1) * cexp (↑π * I * (r + 1))) ((r + 1) * (-↑x) ^ r * cexp (↑π * I * r)) x := sorry
lemma hasDerivAt_ofReal_cpow_tac_11485 (x : ℝ) (hx✝ : x ≠ 0) (r : ℂ) (hr : r + 1 ≠ 0) (hx : 0 > x) (this : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * cexp (↑π * I * (r + 1)) / (r + 1)) : HasDerivAt (fun y => (-↑y) ^ (r + 1) * cexp (↑π * I * (r + 1))) ((r + 1) * (-↑x) ^ r * cexp (↑π * I * r)) x := sorry
[['mul_comm'], ['mul_add'], ['exp_add'], ['neg_one_mul'], ['mul_one'], ['exp_pi_mul_I']]
tactic
true
['Mathlib', 'Analysis', 'SpecialFunctions', 'Pow', 'Deriv']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 14, "column": 303}, "goal": "x : ℝ\nr : ℂ\nhr : r + 1 ≠ 0\nhx : 0 > x\nthis : ∀ᶠ (y : ℝ) in 𝓝 x, ↑y ^ (r + 1) / (r + 1) = (-↑y) ^ (r + 1) * cexp (↑π * I * (r + 1)) / (r + 1)\n⊢ HasDerivAt (fun y => (-y) ^ (r + 1) * cexp (↑π * I * (r + 1))) ((r + 1) * (-↑x) ^ r * cexp (↑π * I * r)) ↑x", "endPos": {"line": 14, "column": 308}}], "messages": [{"severity": "warning", "pos": {"line": 14, "column": 6}, "endPos": {"line": 14, "column": 38}, "data": "declaration uses 'sorry'"}], "env": 0}
Commute.add_pow_tac_1960
import Init import Mathlib.Algebra.BigOperators.Intervals import Mathlib.Algebra.BigOperators.NatAntidiagonal import Mathlib.Algebra.BigOperators.Ring import Mathlib.Algebra.Order.BigOperators.Group.Finset import Mathlib.Data.Nat.Choose.Basic import Mathlib.Tactic.Linarith import Mathlib.Tactic.Ring import Mathlib.Data.Nat.Choose.Sum open Nat Finset
import Init import Mathlib.Algebra.BigOperators.Intervals import Mathlib.Algebra.BigOperators.NatAntidiagonal import Mathlib.Algebra.BigOperators.Ring import Mathlib.Algebra.Order.BigOperators.Group.Finset import Mathlib.Data.Nat.Choose.Basic import Mathlib.Tactic.Linarith import Mathlib.Tactic.Ring import Mathlib.Data.Nat.Choose.Sum
open Nat Finset
lemma add_pow_tac_1960 [Semiring R] (x : R) (y : R) (h : Commute x y) (t : ℕ → ℕ → R) (h_first : ∀ (n : ℕ), t n 0 = y ^ n) (h_last : ∀ (n : ℕ), t n n.succ = 0) (n : ℕ) (i : ℕ) (h_mem : i ∈ range n.succ) (h_le : i ≤ n) (h_eq : ¬i = n) : x ^ i.succ * (y * (y ^ (n - i.succ) * ↑(n.choose i.succ))) = x ^ i.succ * (y * (y ^ (n - i.succ) * ↑(n.choose i.succ))) := sorry
lemma add_pow_tac_1960 {R : Type*} [Semiring R] (x : R) (y : R) (h : Commute x y) (n✝ : ℕ) (t : ℕ → ℕ → R) (h_first : ∀ (n : ℕ), t n 0 = y ^ n) (h_last : ∀ (n : ℕ), t n n.succ = 0) (n : ℕ) (i : ℕ) (h_mem : i ∈ range n.succ) (h_le : i ≤ n) (h_eq : ¬i = n) : x ^ i.succ * (y * (y ^ (n - i.succ) * ↑(n.choose i.succ))) = x ^ i.succ * (y * (y ^ (n - i.succ) * ↑(n.choose i.succ))) := sorry
tactic
true
['Mathlib', 'Data', 'Nat', 'Choose', 'Sum']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 12, "column": 359}, "goal": "R : Type u_1\ninst✝ : Semiring R\nx y : R\nh : Commute x y\nt : ℕ → ℕ → R\nh_first : ∀ (n : ℕ), t n 0 = y ^ n\nh_last : ∀ (n : ℕ), t n n.succ = 0\nn i : ℕ\nh_mem : i ∈ range n.succ\nh_le : i ≤ n\nh_eq : ¬i = n\n⊢ x ^ i.succ * (y * (y ^ (n - i.succ) * ↑(n.choose i.succ))) =\n x ^ i.succ * (y * (y ^ (n - i.succ) * ↑(n.choose i.succ)))", "endPos": {"line": 12, "column": 364}}], "messages": [{"severity": "warning", "pos": {"line": 12, "column": 6}, "endPos": {"line": 12, "column": 22}, "data": "declaration uses 'sorry'"}], "env": 0}
_private.0.Complex.Gamma_integrand_intervalIntegrable_tac_6748
import Init import Mathlib.MeasureTheory.Integral.ExpDecay import Mathlib.Analysis.MellinTransform import Mathlib.Analysis.SpecialFunctions.Gamma.Basic open Filter intervalIntegral Set Real MeasureTheory Asymptotics open scoped Nat Topology ComplexConjugate
import Init import Mathlib.MeasureTheory.Integral.ExpDecay import Mathlib.Analysis.MellinTransform import Mathlib.Analysis.SpecialFunctions.Gamma.Basic
open Filter intervalIntegral Set Real MeasureTheory Asymptotics open scoped Nat Topology ComplexConjugate
lemma Gamma_integrand_intervalIntegrable_tac_6748 (s : ℂ) (X : ℝ) (hs : 0 < s.re) (hX : 0 ≤ X) : IntegrableOn (fun x => ↑(rexp (-x)) * ↑x ^ (s - 1)) (Ioc 0 X) volume := sorry
lemma Gamma_integrand_intervalIntegrable_tac_6748 (s : ℂ) (X : ℝ) (hs : 0 < s.re) (hX : 0 ≤ X) : IntegrableOn (fun x => ↑(rexp (-x)) * ↑x ^ (s - 1)) (Ioc 0 X) volume := sorry
tactic
false
['Mathlib', 'Analysis', 'SpecialFunctions', 'Gamma', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 8, "column": 169}, "goal": "s : ℂ\nX : ℝ\nhs : 0 < s.re\nhX : 0 ≤ X\n⊢ IntegrableOn (fun x => rexp (-x) * x ^ (s - 1)) (Ioc 0 X) volume", "endPos": {"line": 8, "column": 174}}], "messages": [{"severity": "error", "pos": {"line": 8, "column": 135}, "endPos": {"line": 8, "column": 147}, "data": "failed to synthesize\n HPow ℝ ℂ (?m.347 x)\nAdditional diagnostic information may be available using the `set_option diagnostics true` command."}], "env": 0}
CoxeterSystem.length_mul_le_tac_3760
import Init import Mathlib.Data.ZMod.Basic import Mathlib.GroupTheory.Coxeter.Basic import Mathlib.Tactic.Zify import Mathlib.GroupTheory.Coxeter.Length open List Matrix Function Classical
import Init import Mathlib.Data.ZMod.Basic import Mathlib.GroupTheory.Coxeter.Basic import Mathlib.Tactic.Zify import Mathlib.GroupTheory.Coxeter.Length
open List Matrix Function Classical
lemma length_mul_le_tac_3760 [Group W] (M : CoxeterMatrix B) (cs : CoxeterSystem M W) (w₁ : W) (w₂ : W) : cs.length (w₁ * w₂) ≤ cs.length w₁ + cs.length w₂ := sorry
lemma length_mul_le_tac_3760 {B : Type*} {W : Type*} [Group W] (M : CoxeterMatrix B) (cs : CoxeterSystem M W) (w₁ : W) (w₂ : W) : cs.length (w₁ * w₂) ≤ cs.length w₁ + cs.length w₂ := sorry
[['hω₂'], ['cs', 'length_wordProd_le'], ['w₂'], ['this'], ['wordProd_append'], ['hω₁'], [], ['ω₂'], ['w₁'], ['rfl'], ['ω₁'], ['cs', 'exists_reduced_word']]
tactic
true
['Mathlib', 'GroupTheory', 'Coxeter', 'Length']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 8, "column": 159}, "goal": "W : Type u_1\nB : Type u_2\ninst✝ : Group W\nM : CoxeterMatrix B\ncs : CoxeterSystem M W\nw₁ w₂ : W\n⊢ cs.length (w₁ * w₂) ≤ cs.length w₁ + cs.length w₂", "endPos": {"line": 8, "column": 164}}], "messages": [{"severity": "warning", "pos": {"line": 8, "column": 6}, "endPos": {"line": 8, "column": 28}, "data": "declaration uses 'sorry'"}], "env": 0}
Complex.I_mul_re_tac_6641
import Init import Mathlib.Algebra.CharZero.Lemmas import Mathlib.Algebra.GroupWithZero.Divisibility import Mathlib.Algebra.Star.Basic import Mathlib.Data.Real.Basic import Mathlib.Data.Set.Image import Mathlib.Tactic.Ring import Mathlib.Data.Complex.Basic open Set Function open ComplexConjugate
import Init import Mathlib.Algebra.CharZero.Lemmas import Mathlib.Algebra.GroupWithZero.Divisibility import Mathlib.Algebra.Star.Basic import Mathlib.Data.Real.Basic import Mathlib.Data.Set.Image import Mathlib.Tactic.Ring import Mathlib.Data.Complex.Basic
open Set Function open ComplexConjugate
lemma I_mul_re_tac_6641 (z : ℂ) : (I * z).re = -z.im := sorry
lemma I_mul_re_tac_6641 (z : ℂ) : (I * z).re = -z.im := sorry
tactic
true
['Mathlib', 'Data', 'Complex', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 12, "column": 56}, "goal": "I z : ℂ\n⊢ (I * z).re = -z.im", "endPos": {"line": 12, "column": 61}}], "messages": [{"severity": "warning", "pos": {"line": 12, "column": 6}, "endPos": {"line": 12, "column": 23}, "data": "declaration uses 'sorry'"}], "env": 0}
Nat.sqrt_eq_zero_tac_5777
import Init import Mathlib.Data.Nat.Defs import Batteries.Data.Nat.Basic import Mathlib.Data.Nat.Sqrt
import Init import Mathlib.Data.Nat.Defs import Batteries.Data.Nat.Basic import Mathlib.Data.Nat.Sqrt
lemma sqrt_eq_zero_tac_5777 (n : ℕ) (h : n.sqrt = 0) : 0 < 1 := sorry
lemma sqrt_eq_zero_tac_5777 (n : ℕ) (h : n.sqrt = 0) : 0 < 1 := sorry
tactic
true
['Mathlib', 'Data', 'Nat', 'Sqrt']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 7, "column": 64}, "goal": "n : ℕ\nh : n.sqrt = 0\n⊢ 0 < 1", "endPos": {"line": 7, "column": 69}}], "messages": [{"severity": "warning", "pos": {"line": 7, "column": 6}, "endPos": {"line": 7, "column": 27}, "data": "declaration uses 'sorry'"}], "env": 0}
not_differentiableWithinAt_of_deriv_tendsto_atTop_Ioi_tac_46199
import Init import Mathlib.Analysis.Calculus.Deriv.AffineMap import Mathlib.Analysis.Calculus.Deriv.Slope import Mathlib.Analysis.Calculus.Deriv.Mul import Mathlib.Analysis.Calculus.Deriv.Comp import Mathlib.Analysis.Calculus.LocalExtr.Rolle import Mathlib.Analysis.Convex.Normed import Mathlib.Analysis.RCLike.Basic import Mathlib.Analysis.Calculus.MeanValue open Metric Set Asymptotics ContinuousLinearMap Filter open scoped Topology NNReal
import Init import Mathlib.Analysis.Calculus.Deriv.AffineMap import Mathlib.Analysis.Calculus.Deriv.Slope import Mathlib.Analysis.Calculus.Deriv.Mul import Mathlib.Analysis.Calculus.Deriv.Comp import Mathlib.Analysis.Calculus.LocalExtr.Rolle import Mathlib.Analysis.Convex.Normed import Mathlib.Analysis.RCLike.Basic import Mathlib.Analysis.Calculus.MeanValue
open Metric Set Asymptotics ContinuousLinearMap Filter open scoped Topology NNReal
lemma not_differentiableWithinAt_of_deriv_tendsto_atTop_Ioi_tac_46199 (f : ℝ → ℝ) (a : ℝ) (hf : Tendsto (derivWithin f (Ioi a)) (𝓝[>] a) atTop) (hcont_at_a : ContinuousWithinAt f (Ici a) a) (hdiff : Tendsto (slope f a) (𝓝[>] a) (𝓝 (derivWithin f (Ioi a) a))) (h₀ : ∀ᶠ (b : ℝ) in 𝓝[>] a, ∀ x ∈ Ioc a b, max (derivWithin f (Ioi a) a + 1) 0 < derivWithin f (Ioi a) x) (h₁ : ∀ᶠ (b : ℝ) in 𝓝[>] a, slope f a b < derivWithin f (Ioi a) a + 1) (b : ℝ) (hb : ∀ x ∈ Ioc a b, max (derivWithin f (Ioi a) a + 1) 0 < derivWithin f (Ioi a) x) (hslope : slope f a b < derivWithin f (Ioi a) a + 1) (hab : a < b) (hdiff' : DifferentiableOn ℝ f (Ioc a b)) (z : ℝ) (hz'' : z ∈ Ioc a b) : 𝓝[Ioc a b] z = 𝓝[Icc a b] z := sorry
lemma not_differentiableWithinAt_of_deriv_tendsto_atTop_Ioi_tac_46199 (f : ℝ → ℝ) (a : ℝ) (hf : Tendsto (derivWithin f (Ioi a)) (𝓝[>] a) atTop) (hcont_at_a : ContinuousWithinAt f (Ici a) a) (hdiff : Tendsto (slope f a) (𝓝[>] a) (𝓝 (derivWithin f (Ioi a) a))) (h₀ : ∀ᶠ (b : ℝ) in 𝓝[>] a, ∀ x ∈ Ioc a b, max (derivWithin f (Ioi a) a + 1) 0 < derivWithin f (Ioi a) x) (h₁ : ∀ᶠ (b : ℝ) in 𝓝[>] a, slope f a b < derivWithin f (Ioi a) a + 1) (b : ℝ) (hb : ∀ x ∈ Ioc a b, max (derivWithin f (Ioi a) a + 1) 0 < derivWithin f (Ioi a) x) (hslope : slope f a b < derivWithin f (Ioi a) a + 1) (hab : a < b) (hdiff' : DifferentiableOn ℝ f (Ioc a b)) (z : ℝ) (hz'' : z ∈ Ioc a b) : 𝓝[Ioc a b] z = 𝓝[Icc a b] z := sorry
[['h'], ["hz''"], ["nhdsWithin_eq_nhdsWithin'"], ['Ioi_mem_nhds'], ['mem_Icc_of_Ioc'], ['Ioi'], ['mem_of_mem_inter_left'], ['sup_of_le_left'], ['le_refl'], ['a'], ['y'], ['s'], ['H2'], ['H1'], ['Ioc_inter_Ioi']]
tactic
null
['Mathlib', 'Analysis', 'Calculus', 'MeanValue']
null
leanprover/lean4:v4.11.0
Mathlib
MeasureTheory.integrableOn_Ioi_deriv_of_nonneg_tac_41386
import Init import Mathlib.Analysis.Calculus.Deriv.Support import Mathlib.Analysis.SpecialFunctions.Pow.Deriv import Mathlib.MeasureTheory.Integral.FundThmCalculus import Mathlib.Order.Filter.AtTopBot import Mathlib.MeasureTheory.Function.Jacobian import Mathlib.MeasureTheory.Measure.Haar.NormedSpace import Mathlib.MeasureTheory.Measure.Haar.Unique import Mathlib.MeasureTheory.Integral.IntegralEqImproper open MeasureTheory Filter Set TopologicalSpace open scoped ENNReal NNReal Topology open Real open scoped Interval open UniformSpace in
import Init import Mathlib.Analysis.Calculus.Deriv.Support import Mathlib.Analysis.SpecialFunctions.Pow.Deriv import Mathlib.MeasureTheory.Integral.FundThmCalculus import Mathlib.Order.Filter.AtTopBot import Mathlib.MeasureTheory.Function.Jacobian import Mathlib.MeasureTheory.Measure.Haar.NormedSpace import Mathlib.MeasureTheory.Measure.Haar.Unique import Mathlib.MeasureTheory.Integral.IntegralEqImproper
open MeasureTheory Filter Set TopologicalSpace open scoped ENNReal NNReal Topology open Real open scoped Interval open UniformSpace in
lemma integrableOn_Ioi_deriv_of_nonneg_tac_41386 (g : ℝ → ℝ) (g' : ℝ → ℝ) (a : ℝ) (l : ℝ) (hcont : ContinuousWithinAt g (Ici a) a) (hderiv : ∀ x ∈ Ioi a, HasDerivAt g (g' x) x) (g'pos : ∀ x ∈ Ioi a, 0 ≤ g' x) (hg : Tendsto g atTop (𝓝 l)) : ContinuousOn g (Ici a) := sorry
lemma integrableOn_Ioi_deriv_of_nonneg_tac_41386 (g : ℝ → ℝ) (g' : ℝ → ℝ) (a : ℝ) (l : ℝ) (hcont : ContinuousWithinAt g (Ici a) a) (hderiv : ∀ x ∈ Ioi a, HasDerivAt g (g' x) x) (g'pos : ∀ x ∈ Ioi a, 0 ≤ g' x) (hg : Tendsto g atTop (𝓝 l)) : ContinuousOn g (Ici a) := sorry
[['hcont'], ['x'], ['hx', 'out', 'eq_or_lt'], ['hderiv'], ['hx'], ['body', '_@', '_hyg', 11370], ['continuousAt', 'continuousWithinAt'], ['rfl']]
tactic
null
['Mathlib', 'MeasureTheory', 'Integral', 'IntegralEqImproper']
null
leanprover/lean4:v4.11.0
Mathlib
pow_dvd_pow_iff_tac_5611
import Init import Mathlib.Algebra.GroupWithZero.Units.Basic import Mathlib.Algebra.Divisibility.Units import Mathlib.Algebra.GroupWithZero.Divisibility
import Init import Mathlib.Algebra.GroupWithZero.Units.Basic import Mathlib.Algebra.Divisibility.Units import Mathlib.Algebra.GroupWithZero.Divisibility
lemma pow_dvd_pow_iff_tac_5611 [CancelCommMonoidWithZero α] (a : α) (m : ℕ) (n : ℕ) (ha₀ : a ≠ 0) (ha : ¬IsUnit a) (h : a ^ n ∣ a ^ m) : ¬m < n := sorry
lemma pow_dvd_pow_iff_tac_5611 {α : Type*} [CancelCommMonoidWithZero α] (a : α) (m : ℕ) (n : ℕ) (ha₀ : a ≠ 0) (ha : ¬IsUnit a) (h : a ^ n ∣ a ^ m) : ¬m < n := sorry
tactic
true
['Mathlib', 'Algebra', 'GroupWithZero', 'Divisibility']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 7, "column": 147}, "goal": "α : Type u_1\ninst✝ : CancelCommMonoidWithZero α\na : α\nm n : ℕ\nha₀ : a ≠ 0\nha : ¬IsUnit a\nh : a ^ n ∣ a ^ m\n⊢ ¬m < n", "endPos": {"line": 7, "column": 152}}], "messages": [{"severity": "warning", "pos": {"line": 7, "column": 6}, "endPos": {"line": 7, "column": 30}, "data": "declaration uses 'sorry'"}], "env": 0}
CategoryTheory.CosimplicialObject.δ_comp_δ_self'_tac_15091
import Init import Mathlib.AlgebraicTopology.SimplexCategory import Mathlib.CategoryTheory.Comma.Arrow import Mathlib.CategoryTheory.Limits.FunctorCategory.Basic import Mathlib.CategoryTheory.Opposites import Mathlib.AlgebraicTopology.SimplicialObject open Opposite open CategoryTheory open CategoryTheory.Limits open Simplicial open Simplicial open Simplicial
import Init import Mathlib.AlgebraicTopology.SimplexCategory import Mathlib.CategoryTheory.Comma.Arrow import Mathlib.CategoryTheory.Limits.FunctorCategory.Basic import Mathlib.CategoryTheory.Opposites import Mathlib.AlgebraicTopology.SimplicialObject
open Opposite open CategoryTheory open CategoryTheory.Limits open Simplicial open Simplicial open Simplicial
lemma δ_comp_δ_self'_tac_15091 [Category.{v, u} C] (X : CosimplicialObject C) (n : ℕ) (i : Fin (n + 2)) : X.δ i ≫ X.δ i.castSucc = X.δ i ≫ X.δ i.succ := sorry
lemma δ_comp_δ_self'_tac_15091 {C : Type*} [Category.{v, u} C] (X : CosimplicialObject C) (n : ℕ) (i : Fin (n + 2)) : X.δ i ≫ X.δ i.castSucc = X.δ i ≫ X.δ i.succ := sorry
[['δ_comp_δ_self']]
tactic
null
['Mathlib', 'AlgebraicTopology', 'SimplicialObject']
null
leanprover/lean4:v4.11.0
Mathlib
PowerSeries.trunc_derivativeFun_tac_2399
import Init import Mathlib.RingTheory.PowerSeries.Trunc import Mathlib.RingTheory.PowerSeries.Inverse import Mathlib.RingTheory.Derivation.Basic import Mathlib.RingTheory.PowerSeries.Derivative open Polynomial Derivation Nat
import Init import Mathlib.RingTheory.PowerSeries.Trunc import Mathlib.RingTheory.PowerSeries.Inverse import Mathlib.RingTheory.Derivation.Basic import Mathlib.RingTheory.PowerSeries.Derivative
open Polynomial Derivation Nat
lemma trunc_derivativeFun_tac_2399 [CommSemiring R] (f : R⟦X⟧) (n : ℕ) (d : ℕ) (h : ¬d < n) : 0 = (derivative (trunc (n + 1) f)).coeff d := sorry
lemma trunc_derivativeFun_tac_2399 {R : Type*} [CommSemiring R] (f : R⟦X⟧) (n : ℕ) (d : ℕ) (h : ¬d < n) : 0 = (derivative (trunc (n + 1) f)).coeff d := sorry
[['d'], ['n'], [], ['succ_lt_succ_iff']]
tactic
false
['Mathlib', 'RingTheory', 'PowerSeries', 'Derivative']
null
leanprover/lean4:v4.11.0
Mathlib
{"messages": [{"severity": "error", "pos": {"line": 8, "column": 58}, "endPos": {"line": 8, "column": 59}, "data": "unexpected token '⟦'; expected ')'"}], "env": 0}
FreeAbelianGroup.ring_tac_15871
import Init import Mathlib.GroupTheory.Abelianization import Mathlib.GroupTheory.FreeGroup.Basic import Mathlib.GroupTheory.FreeAbelianGroup open FreeAbelianGroup open scoped Classical
import Init import Mathlib.GroupTheory.Abelianization import Mathlib.GroupTheory.FreeGroup.Basic import Mathlib.GroupTheory.FreeAbelianGroup
open FreeAbelianGroup open scoped Classical
lemma ring_tac_15871 [Monoid α] [Ring R] (x : FreeAbelianGroup α) (L : α) : of (Mul.mul L One.one) = of L := sorry
lemma ring_tac_15871 {α : Type*} {β : Type*} {γ : Type*} {R : Type*} [Monoid α] [Ring R] (x : FreeAbelianGroup α) (L : α) : of (Mul.mul L One.one) = of L := sorry
tactic
true
['Mathlib', 'GroupTheory', 'FreeAbelianGroup']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 8, "column": 109}, "goal": "α : Type u_1\nR : Type u_2\ninst✝¹ : Monoid α\ninst✝ : Ring R\nx : FreeAbelianGroup α\nL : α\n⊢ of (Mul.mul L One.one) = of L", "endPos": {"line": 8, "column": 114}}], "messages": [{"severity": "warning", "pos": {"line": 8, "column": 6}, "endPos": {"line": 8, "column": 20}, "data": "declaration uses 'sorry'"}], "env": 0}
Turing.TM1to1.trTape'_move_left_tac_71109
import Init import Mathlib.Data.Fintype.Option import Mathlib.Data.Fintype.Prod import Mathlib.Data.Fintype.Pi import Mathlib.Data.Vector.Basic import Mathlib.Data.PFun import Mathlib.Logic.Function.Iterate import Mathlib.Order.Basic import Mathlib.Tactic.ApplyFun import Mathlib.Data.List.GetD import Mathlib.Computability.TuringMachine open Mathlib (Vector) open Relation open Nat (iterate) open Function (update iterate_succ iterate_succ_apply iterate_succ' iterate_succ_apply' open Stmt open scoped Classical open TM0.Stmt open scoped Classical open TM1
import Init import Mathlib.Data.Fintype.Option import Mathlib.Data.Fintype.Prod import Mathlib.Data.Fintype.Pi import Mathlib.Data.Vector.Basic import Mathlib.Data.PFun import Mathlib.Logic.Function.Iterate import Mathlib.Order.Basic import Mathlib.Tactic.ApplyFun import Mathlib.Data.List.GetD import Mathlib.Computability.TuringMachine
open Mathlib (Vector) open Relation open Nat (iterate) open Function (update iterate_succ iterate_succ_apply iterate_succ' iterate_succ_apply' open Stmt open scoped Classical open TM0.Stmt open scoped Classical open TM1
lemma trTape'_move_left_tac_71109 (n : ℕ) (enc : Γ → Vector Bool n) [Inhabited Γ] (enc0 : enc default = Vector.replicate n false) (R : ListBlank Γ) (a : Γ) (L : ListBlank Γ) : (Tape.move Dir.left)^[n] (Tape.mk' (ListBlank.append (enc a).toList.reverse (L.bind (fun x => (enc x).toList.reverse) ⋯)) (R.bind (fun x => (enc x).toList) ⋯)) = Tape.mk' (L.bind (fun x => (enc x).toList.reverse) ⋯) (ListBlank.append (enc a).toList (R.bind (fun x => (enc x).toList) ⋯)) := sorry
lemma trTape'_move_left_tac_71109 {Γ : Type*} (n : ℕ) (enc : Γ → Vector Bool n) [Inhabited Γ] (enc0 : enc default = Vector.replicate n false) (R : ListBlank Γ) (a : Γ) (L : ListBlank Γ) : (Tape.move Dir.left)^[n] (Tape.mk' (ListBlank.append (enc a).toList.reverse (L.bind (fun x => (enc x).toList.reverse) ⋯)) (R.bind (fun x => (enc x).toList) ⋯)) = Tape.mk' (L.bind (fun x => (enc x).toList.reverse) ⋯) (ListBlank.append (enc a).toList (R.bind (fun x => (enc x).toList) ⋯)) := sorry
tactic
null
['Mathlib', 'Computability', 'TuringMachine']
null
leanprover/lean4:v4.11.0
Mathlib
Affine.Simplex.sum_pointWeightsWithCircumcenter_tac_26667
import Init import Mathlib.Geometry.Euclidean.Sphere.Basic import Mathlib.LinearAlgebra.AffineSpace.FiniteDimensional import Mathlib.Tactic.DeriveFintype import Mathlib.Geometry.Euclidean.Circumcenter open RealInnerProductSpace open AffineSubspace open Finset AffineSubspace EuclideanGeometry open PointsWithCircumcenterIndex
import Init import Mathlib.Geometry.Euclidean.Sphere.Basic import Mathlib.LinearAlgebra.AffineSpace.FiniteDimensional import Mathlib.Tactic.DeriveFintype import Mathlib.Geometry.Euclidean.Circumcenter
open RealInnerProductSpace open AffineSubspace open Finset AffineSubspace EuclideanGeometry open PointsWithCircumcenterIndex
lemma sum_pointWeightsWithCircumcenter_tac_26667 (n : ℕ) (i : Fin (n + 1)) (j : PointsWithCircumcenterIndex n) : pointWeightsWithCircumcenter i j = if j = pointIndex i then Function.const (PointsWithCircumcenterIndex n) 1 j else 0 := sorry
lemma sum_pointWeightsWithCircumcenter_tac_26667 (n : ℕ) (i : Fin (n + 1)) (j : PointsWithCircumcenterIndex n) (a✝ : j ∈ univ) : pointWeightsWithCircumcenter i j = if j = pointIndex i then Function.const (PointsWithCircumcenterIndex n) 1 j else 0 := sorry
[['pointWeightsWithCircumcenter'], ['j']]
tactic
false
['Mathlib', 'Geometry', 'Euclidean', 'Circumcenter']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 11, "column": 234}, "goal": "x✝² : Sort u_1\nPointsWithCircumcenterIndex : x✝²\nx✝¹ : Sort u_2\npointWeightsWithCircumcenter : x✝¹\nx✝ : Sort u_3\npointIndex : x✝\nn : ℕ\ni : Fin (n + 1)\nj : sorryAx Prop true\n⊢ sorryAx ℕ true = if j = ⋯ then Function.const (sorryAx Prop true) 1 j else 0", "endPos": {"line": 11, "column": 239}}], "messages": [{"severity": "error", "pos": {"line": 9, "column": 5}, "endPos": {"line": 9, "column": 32}, "data": "unknown namespace 'PointsWithCircumcenterIndex'"}, {"severity": "error", "pos": {"line": 11, "column": 80}, "endPos": {"line": 11, "column": 109}, "data": "function expected at\n PointsWithCircumcenterIndex\nterm has type\n ?m.67"}, {"severity": "error", "pos": {"line": 11, "column": 113}, "endPos": {"line": 11, "column": 145}, "data": "function expected at\n pointWeightsWithCircumcenter\nterm has type\n ?m.122"}, {"severity": "error", "pos": {"line": 11, "column": 155}, "endPos": {"line": 11, "column": 167}, "data": "function expected at\n pointIndex\nterm has type\n ?m.181"}, {"severity": "error", "pos": {"line": 11, "column": 189}, "endPos": {"line": 11, "column": 218}, "data": "function expected at\n PointsWithCircumcenterIndex\nterm has type\n ?m.67"}], "env": 0}
Submodule.orthogonal_orthogonal_tac_36368
import Init import Mathlib.Analysis.Convex.Basic import Mathlib.Analysis.InnerProductSpace.Orthogonal import Mathlib.Analysis.InnerProductSpace.Symmetric import Mathlib.Analysis.NormedSpace.RCLike import Mathlib.Analysis.RCLike.Lemmas import Mathlib.Algebra.DirectSum.Decomposition import Mathlib.Analysis.InnerProductSpace.Projection open RCLike Real Filter open LinearMap (ker range) open Topology Finsupp
import Init import Mathlib.Analysis.Convex.Basic import Mathlib.Analysis.InnerProductSpace.Orthogonal import Mathlib.Analysis.InnerProductSpace.Symmetric import Mathlib.Analysis.NormedSpace.RCLike import Mathlib.Analysis.RCLike.Lemmas import Mathlib.Algebra.DirectSum.Decomposition import Mathlib.Analysis.InnerProductSpace.Projection
open RCLike Real Filter open LinearMap (ker range) open Topology Finsupp
lemma orthogonal_orthogonal_tac_36368 [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] (K : Submodule 𝕜 E) [HasOrthogonalProjection K] (y : E) (hy : y ∈ K) (z : E) (hz : z ∈ Kᗮ) (hv : y + z ∈ Kᗮᗮ) : z = 0 := sorry
lemma orthogonal_orthogonal_tac_36368 {𝕜 : Type*} {E : Type*} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] (K : Submodule 𝕜 E) [HasOrthogonalProjection K] (y : E) (hy : y ∈ K) (z : E) (hz : z ∈ Kᗮ) (hv : y + z ∈ Kᗮᗮ) : z = 0 := sorry
tactic
true
['Mathlib', 'Analysis', 'InnerProductSpace', 'Projection']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 13, "column": 217}, "goal": "𝕜 : Type u_1\nE : Type u_2\ninst✝³ : RCLike 𝕜\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\nK : Submodule 𝕜 E\ninst✝ : HasOrthogonalProjection K\ny : E\nhy : y ∈ K\nz : E\nhz : z ∈ Kᗮ\nhv : y + z ∈ Kᗮᗮ\n⊢ z = 0", "endPos": {"line": 13, "column": 222}}], "messages": [{"severity": "warning", "pos": {"line": 13, "column": 6}, "endPos": {"line": 13, "column": 37}, "data": "declaration uses 'sorry'"}], "env": 0}
IsGalois.card_aut_eq_finrank_tac_3708
import Init import Mathlib.FieldTheory.Fixed import Mathlib.FieldTheory.NormalClosure import Mathlib.FieldTheory.PrimitiveElement import Mathlib.GroupTheory.GroupAction.FixingSubgroup import Mathlib.FieldTheory.Galois open scoped Polynomial IntermediateField open FiniteDimensional AlgEquiv
import Init import Mathlib.FieldTheory.Fixed import Mathlib.FieldTheory.NormalClosure import Mathlib.FieldTheory.PrimitiveElement import Mathlib.GroupTheory.GroupAction.FixingSubgroup import Mathlib.FieldTheory.Galois
open scoped Polynomial IntermediateField open FiniteDimensional AlgEquiv
lemma card_aut_eq_finrank_tac_3708 [Field F] [Field E] [Algebra F E] [FiniteDimensional F E] [IsGalois F E] (α : E) (hα : F⟮α⟯ = ⊤) (iso : ↥F⟮α⟯ ≃ₐ[F] E) (H : IsIntegral F α) (h_sep : IsSeparable F α) (h_splits : Polynomial.Splits (algebraMap F E) (minpoly F α)) : Fintype.card (E ≃ₐ[F] E) = finrank F E := sorry
lemma card_aut_eq_finrank_tac_3708 {F : Type*} [Field F] {E : Type*} [Field E] [Algebra F E] [FiniteDimensional F E] [IsGalois F E] (α : E) (hα : F⟮α⟯ = ⊤) (iso : ↥F⟮α⟯ ≃ₐ[F] E) (H : IsIntegral F α) (h_sep : IsSeparable F α) (h_splits : Polynomial.Splits (algebraMap F E) (minpoly F α)) : Fintype.card (E ≃ₐ[F] E) = finrank F E := sorry
tactic
true
['Mathlib', 'FieldTheory', 'Galois']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 10, "column": 307}, "goal": "F : Type u_1\nE : Type u_2\ninst✝⁴ : Field F\ninst✝³ : Field E\ninst✝² : Algebra F E\ninst✝¹ : FiniteDimensional F E\ninst✝ : IsGalois F E\nα : E\nhα : F⟮α⟯ = ⊤\niso : ↥F⟮α⟯ ≃ₐ[F] E\nH : IsIntegral F α\nh_sep : IsSeparable F α\nh_splits : Polynomial.Splits (algebraMap F E) (minpoly F α)\n⊢ Fintype.card (E ≃ₐ[F] E) = finrank F E", "endPos": {"line": 10, "column": 312}}], "messages": [{"severity": "warning", "pos": {"line": 10, "column": 6}, "endPos": {"line": 10, "column": 34}, "data": "declaration uses 'sorry'"}], "env": 0}
pow_sub_of_lt_tac_13595
import Init import Mathlib.Algebra.Group.Units import Mathlib.Algebra.GroupWithZero.Basic import Mathlib.Logic.Equiv.Defs import Mathlib.Tactic.Contrapose import Mathlib.Tactic.Nontriviality import Mathlib.Tactic.Spread import Mathlib.Util.AssertExists import Mathlib.Data.Subtype import Mathlib.Algebra.GroupWithZero.Units.Basic open Classical in
import Init import Mathlib.Algebra.Group.Units import Mathlib.Algebra.GroupWithZero.Basic import Mathlib.Logic.Equiv.Defs import Mathlib.Tactic.Contrapose import Mathlib.Tactic.Nontriviality import Mathlib.Tactic.Spread import Mathlib.Util.AssertExists import Mathlib.Data.Subtype import Mathlib.Algebra.GroupWithZero.Units.Basic
open Classical in
lemma pow_sub_of_lt_tac_13595 [GroupWithZero G₀] (m : ℕ) (n : ℕ) (h : n < m) : m ≠ 0 := sorry
lemma pow_sub_of_lt_tac_13595 {G₀ : Type*} [GroupWithZero G₀] (m : ℕ) (n : ℕ) (h : n < m) : m ≠ 0 := sorry
tactic
true
['Mathlib', 'Algebra', 'GroupWithZero', 'Units', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 13, "column": 88}, "goal": "G₀ : Type u_1\ninst✝ : GroupWithZero G₀\nm n : ℕ\nh : n < m\n⊢ m ≠ 0", "endPos": {"line": 13, "column": 93}}], "messages": [{"severity": "warning", "pos": {"line": 13, "column": 6}, "endPos": {"line": 13, "column": 29}, "data": "declaration uses 'sorry'"}], "env": 0}
MeasureTheory.Measure.exists_measure_inter_spanningSets_pos_tac_32610
import Init import Mathlib.MeasureTheory.Measure.Restrict import Mathlib.MeasureTheory.Measure.Typeclasses open scoped ENNReal NNReal Topology open Set MeasureTheory Measure Filter Function MeasurableSpace ENNReal open scoped symmDiff open Interval open Measure open scoped Classical in open scoped Classical in open scoped Classical in
import Init import Mathlib.MeasureTheory.Measure.Restrict import Mathlib.MeasureTheory.Measure.Typeclasses
open scoped ENNReal NNReal Topology open Set MeasureTheory Measure Filter Function MeasurableSpace ENNReal open scoped symmDiff open Interval open Measure open scoped Classical in open scoped Classical in open scoped Classical in
lemma exists_measure_inter_spanningSets_pos_tac_32610 [MeasurableSpace α] (μ : Measure α) [SigmaFinite μ] (s : Set α) : (∃ n, 0 < μ (s ∩ spanningSets μ n)) ↔ 0 < μ s := sorry
lemma exists_measure_inter_spanningSets_pos_tac_32610 {α : Type*} [MeasurableSpace α] (μ : Measure α) [SigmaFinite μ] (s : Set α) : (∃ n, 0 < μ (s ∩ spanningSets μ n)) ↔ 0 < μ s := sorry
[['not_iff_not']]
tactic
true
['Mathlib', 'MeasureTheory', 'Measure', 'Typeclasses']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 13, "column": 169}, "goal": "α : Type u_1\ninst✝¹ : MeasurableSpace α\nμ : Measure α\ninst✝ : SigmaFinite μ\ns : Set α\n⊢ (∃ n, 0 < μ (s ∩ spanningSets μ n)) ↔ 0 < μ s", "endPos": {"line": 13, "column": 174}}], "messages": [{"severity": "warning", "pos": {"line": 13, "column": 6}, "endPos": {"line": 13, "column": 53}, "data": "declaration uses 'sorry'"}], "env": 0}
DyckWord.le_add_self_tac_16486
import Init import Mathlib.Combinatorics.Enumerative.Catalan import Mathlib.Data.List.Indexes import Mathlib.Combinatorics.Enumerative.DyckWord open List open DyckStep
import Init import Mathlib.Combinatorics.Enumerative.Catalan import Mathlib.Data.List.Indexes import Mathlib.Combinatorics.Enumerative.DyckWord
open List open DyckStep
lemma le_add_self_tac_16486 (p : DyckWord) (q : DyckWord) (h : ¬p = 0) (this : p.outsidePart.semilength < p.semilength) : p.outsidePart.semilength < p.semilength := sorry
lemma le_add_self_tac_16486 (p : DyckWord) (q : DyckWord) (a✝ : ∀ (y : (_ : DyckWord) ×' DyckWord), (invImage (fun x => PSigma.casesOn x fun p q => p.semilength) instWellFoundedRelationOfSizeOf).1 y ⟨p, q⟩ → y.2 ≤ y.1 + y.2) (h : ¬p = 0) (this : p.outsidePart.semilength < p.semilength) : p.outsidePart.semilength < p.semilength := sorry
[['PSigma', 'Lex', 'left', '_@', '_hyg', 5690], ['PSigma', 'Lex', 'right', '_@', '_hyg', 5690]]
tactic
true
['Mathlib', 'Combinatorics', 'Enumerative', 'DyckWord']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 8, "column": 165}, "goal": "p q : DyckWord\nh : ¬p = 0\nthis : p.outsidePart.semilength < p.semilength\n⊢ p.outsidePart.semilength < p.semilength", "endPos": {"line": 8, "column": 170}}], "messages": [{"severity": "warning", "pos": {"line": 8, "column": 6}, "endPos": {"line": 8, "column": 27}, "data": "declaration uses 'sorry'"}], "env": 0}
IsDedekindDomainInv.dimensionLEOne_tac_13312
import Init import Mathlib.Algebra.Algebra.Subalgebra.Pointwise import Mathlib.RingTheory.MaximalSpectrum import Mathlib.RingTheory.ChainOfDivisors import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.FractionalIdeal.Operations import Mathlib.RingTheory.DedekindDomain.Ideal open scoped nonZeroDivisors Polynomial open Submodule Submodule.IsPrincipal open FractionalIdeal open Ring
import Init import Mathlib.Algebra.Algebra.Subalgebra.Pointwise import Mathlib.RingTheory.MaximalSpectrum import Mathlib.RingTheory.ChainOfDivisors import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.FractionalIdeal.Operations import Mathlib.RingTheory.DedekindDomain.Ideal
open scoped nonZeroDivisors Polynomial open Submodule Submodule.IsPrincipal open FractionalIdeal open Ring
lemma dimensionLEOne_tac_13312 [CommRing A] [IsDomain A] (h : IsDedekindDomainInv A) (P : Ideal A) (P_ne : P ≠ ⊥) (hP : P.IsPrime) (M : Ideal A) (hM : P < M) (P'_ne : ↑P ≠ 0) (M'_ne : ↑M ≠ 0) (this : (↑M)⁻¹ * ↑P ≤ ↑P) : 1 ≤ ↑M := sorry
lemma dimensionLEOne_tac_13312 {A : Type*} [CommRing A] [IsDomain A] (h : IsDedekindDomainInv A) (P : Ideal A) (P_ne : P ≠ ⊥) (hP : P.IsPrime) (M : Ideal A) (hM : P < M) (P'_ne : ↑P ≠ 0) (M'_ne : ↑M ≠ 0) (this : (↑M)⁻¹ * ↑P ≤ ↑P) : 1 ≤ ↑M := sorry
tactic
null
['Mathlib', 'RingTheory', 'DedekindDomain', 'Ideal']
null
leanprover/lean4:v4.11.0
Mathlib
Localization.r'_tac_8553
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.RingTheory.OreLocalization.Basic import Mathlib.GroupTheory.MonoidLocalization.Basic open Function
import Init import Mathlib.Algebra.Group.Submonoid.Membership import Mathlib.GroupTheory.Congruence.Basic import Mathlib.RingTheory.OreLocalization.Basic import Mathlib.GroupTheory.MonoidLocalization.Basic
open Function
lemma r'_tac_8553 [CommMonoid M] (S : Submonoid M) [CommMonoid N] [CommMonoid P] (a : M × ↥S) (b : M × ↥S) (c : M × ↥S) (d : M × ↥S) (t₁ : ↥S) (ht₁ : ↑t₁ * (↑b.2 * a.1) = ↑t₁ * (↑a.2 * b.1)) (t₂ : ↥S) (ht₂ : ↑t₂ * (↑d.2 * c.1) = ↑t₂ * (↑c.2 * d.1)) : ↑t₂ * (↑c.2 * d.1) * (↑t₁ * (↑a.2 * b.1)) = ↑t₂ * ↑t₁ * (↑a.2 * ↑c.2 * (b.1 * d.1)) := sorry
lemma r'_tac_8553 {M : Type*} [CommMonoid M] (S : Submonoid M) {N : Type*} [CommMonoid N] {P : Type*} [CommMonoid P] (a : M × ↥S) (b : M × ↥S) (c : M × ↥S) (d : M × ↥S) (t₁ : ↥S) (ht₁ : ↑t₁ * (↑b.2 * a.1) = ↑t₁ * (↑a.2 * b.1)) (t₂ : ↥S) (ht₂ : ↑t₂ * (↑d.2 * c.1) = ↑t₂ * (↑c.2 * d.1)) : ↑t₂ * (↑c.2 * d.1) * (↑t₁ * (↑a.2 * b.1)) = ↑t₂ * ↑t₁ * (↑a.2 * ↑c.2 * (b.1 * d.1)) := sorry
tactic
null
['Mathlib', 'GroupTheory', 'MonoidLocalization', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
Ordinal.toPGame_nmul_tac_7452
import Init import Mathlib.SetTheory.Game.Basic import Mathlib.SetTheory.Ordinal.NaturalOps import Mathlib.SetTheory.Game.Ordinal open SetTheory PGame open scoped NaturalOps PGame
import Init import Mathlib.SetTheory.Game.Basic import Mathlib.SetTheory.Ordinal.NaturalOps import Mathlib.SetTheory.Game.Ordinal
open SetTheory PGame open scoped NaturalOps PGame
lemma toPGame_nmul_tac_7452 (a : Ordinal.{u}) (b : Ordinal.{u}) (i : a.toPGame.LeftMoves) (j : b.toPGame.LeftMoves) : ¬⟦(a ⨳ b).toPGame⟧ + ⟦(↑(toLeftMovesToPGame.symm i)).toPGame * (↑(toLeftMovesToPGame.symm j)).toPGame⟧ ≤ ⟦(↑(toLeftMovesToPGame.symm i)).toPGame * b.toPGame⟧ + ⟦a.toPGame * (↑(toLeftMovesToPGame.symm j)).toPGame⟧ := sorry
lemma toPGame_nmul_tac_7452 (a : Ordinal.{u}) (b : Ordinal.{u}) (i✝ : (a.toPGame * b.toPGame).LeftMoves) (i : a.toPGame.LeftMoves) (j : b.toPGame.LeftMoves) : ¬⟦(a ⨳ b).toPGame⟧ + ⟦(↑(toLeftMovesToPGame.symm i)).toPGame * (↑(toLeftMovesToPGame.symm j)).toPGame⟧ ≤ ⟦(↑(toLeftMovesToPGame.symm i)).toPGame * b.toPGame⟧ + ⟦a.toPGame * (↑(toLeftMovesToPGame.symm j)).toPGame⟧ := sorry
tactic
false
['Mathlib', 'SetTheory', 'Game', 'Ordinal']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 9, "column": 115}, "goal": "a b : Ordinal.{u}\ni : a.toPGame.LeftMoves\nj : b.toPGame.LeftMoves\n⊢ ¬⟦(a ⨳ b).toPGame⟧ + ⟦sorryAx (?m.882 a b i j) true * sorryAx (?m.883 a b i j) true⟧ ≤\n ⟦sorryAx PGame true * b.toPGame⟧ + ⟦a.toPGame * sorryAx PGame true⟧", "endPos": {"line": 9, "column": 120}}], "messages": [{"severity": "error", "pos": {"line": 8, "column": 143}, "endPos": {"line": 8, "column": 166}, "data": "unknown identifier 'toLeftMovesToPGame.symm'"}, {"severity": "error", "pos": {"line": 8, "column": 141}, "endPos": {"line": 8, "column": 169}, "data": "invalid coercion notation, expected type is not known"}, {"severity": "error", "pos": {"line": 8, "column": 184}, "endPos": {"line": 8, "column": 207}, "data": "unknown identifier 'toLeftMovesToPGame.symm'"}, {"severity": "error", "pos": {"line": 8, "column": 182}, "endPos": {"line": 8, "column": 210}, "data": "invalid coercion notation, expected type is not known"}, {"severity": "error", "pos": {"line": 9, "column": 8}, "endPos": {"line": 9, "column": 31}, "data": "unknown identifier 'toLeftMovesToPGame.symm'"}, {"severity": "error", "pos": {"line": 9, "column": 6}, "endPos": {"line": 9, "column": 34}, "data": "invalid coercion notation, expected type is not known"}, {"severity": "error", "pos": {"line": 9, "column": 75}, "endPos": {"line": 9, "column": 98}, "data": "unknown identifier 'toLeftMovesToPGame.symm'"}, {"severity": "error", "pos": {"line": 9, "column": 73}, "endPos": {"line": 9, "column": 101}, "data": "invalid coercion notation, expected type is not known"}], "env": 0}
sub_div_sub_smul_slope_add_sub_div_sub_smul_slope_tac_4001
import Init import Mathlib.LinearAlgebra.AffineSpace.AffineMap import Mathlib.Tactic.FieldSimp import Mathlib.LinearAlgebra.AffineSpace.Slope open AffineMap
import Init import Mathlib.LinearAlgebra.AffineSpace.AffineMap import Mathlib.Tactic.FieldSimp import Mathlib.LinearAlgebra.AffineSpace.Slope
open AffineMap
lemma sub_div_sub_smul_slope_add_sub_div_sub_smul_slope_tac_4001 [Field k] [AddCommGroup E] [Module k E] [AddTorsor E PE] (f : k → PE) (a : k) (c : k) (hac : ¬a = c) : slope f a c = slope f a c := sorry
lemma sub_div_sub_smul_slope_add_sub_div_sub_smul_slope_tac_4001 {k : Type*} {E : Type*} {PE : Type*} [Field k] [AddCommGroup E] [Module k E] [AddTorsor E PE] (f : k → PE) (a : k) (c : k) (hac : ¬a = c) : slope f a c = slope f a c := sorry
tactic
true
['Mathlib', 'LinearAlgebra', 'AffineSpace', 'Slope']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 7, "column": 197}, "goal": "k : Type u_1\nE : Type u_2\nPE : Type u_3\ninst✝³ : Field k\ninst✝² : AddCommGroup E\ninst✝¹ : Module k E\ninst✝ : AddTorsor E PE\nf : k → PE\na c : k\nhac : ¬a = c\n⊢ slope f a c = slope f a c", "endPos": {"line": 7, "column": 202}}], "messages": [{"severity": "warning", "pos": {"line": 7, "column": 6}, "endPos": {"line": 7, "column": 64}, "data": "declaration uses 'sorry'"}], "env": 0}
inv_mul_lt_iff_lt_mul_tac_3023
import Init import Mathlib.Algebra.Order.Monoid.Unbundled.Basic import Mathlib.Algebra.Order.Sub.Defs import Mathlib.Util.AssertExists import Mathlib.Algebra.Order.Group.Unbundled.Basic open Function
import Init import Mathlib.Algebra.Order.Monoid.Unbundled.Basic import Mathlib.Algebra.Order.Sub.Defs import Mathlib.Util.AssertExists import Mathlib.Algebra.Order.Group.Unbundled.Basic
open Function
lemma inv_mul_lt_iff_lt_mul_tac_3023 [Group α] [LT α] [CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1] (a : α) (b : α) (c : α) : a < b * c ↔ a < b * c := sorry
lemma inv_mul_lt_iff_lt_mul_tac_3023 {α : Type*} [Group α] [LT α] [CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1] (a : α) (b : α) (c : α) : a < b * c ↔ a < b * c := sorry
tactic
true
['Mathlib', 'Algebra', 'Order', 'Group', 'Unbundled', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 8, "column": 170}, "goal": "α : Type u_1\ninst✝² : Group α\ninst✝¹ : LT α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1\na b c : α\n⊢ a < b * c ↔ a < b * c", "endPos": {"line": 8, "column": 175}}], "messages": [{"severity": "warning", "pos": {"line": 8, "column": 6}, "endPos": {"line": 8, "column": 36}, "data": "declaration uses 'sorry'"}], "env": 0}
PowerSeries.coe_zero
import Init import Mathlib.Data.Int.Interval import Mathlib.RingTheory.Binomial import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.HahnSeries.PowerSeries import Mathlib.RingTheory.HahnSeries.Summable import Mathlib.RingTheory.PowerSeries.Inverse import Mathlib.FieldTheory.RatFunc.AsPolynomial import Mathlib.RingTheory.Localization.FractionRing import Mathlib.RingTheory.LaurentSeries open scoped Classical open HahnSeries Polynomial open LaurentSeries
import Init import Mathlib.Data.Int.Interval import Mathlib.RingTheory.Binomial import Mathlib.RingTheory.DedekindDomain.Basic import Mathlib.RingTheory.HahnSeries.PowerSeries import Mathlib.RingTheory.HahnSeries.Summable import Mathlib.RingTheory.PowerSeries.Inverse import Mathlib.FieldTheory.RatFunc.AsPolynomial import Mathlib.RingTheory.Localization.FractionRing import Mathlib.RingTheory.LaurentSeries
open scoped Classical open HahnSeries Polynomial open LaurentSeries
@[norm_cast] -- Porting note (#10618): simp can prove this theorem coe_zero : ((0 : PowerSeries R) : LaurentSeries R) = 0 := sorry
theorem coe_zero_extracted : ∀ {R : Type u_1} [inst : Semiring R], (ofPowerSeries ℤ R) 0 = 0 := sorry
[['HahnSeries', 'instZero'], ['RingHom'], ['OfNat', 'ofNat'], ['StrictOrderedSemiring', 'toOrderedCancelAddCommMonoid'], ['Semiring', 'toMonoidWithZero'], ['HahnSeries', 'ofPowerSeries'], ['PowerSeries'], ['RingHom', 'instFunLike'], ['HahnSeries', 'instNonAssocSemiring'], ['HahnSeries'], ['Eq'], ['Zero', 'toOfNat0'], ['LinearOrderedCommRing', 'toLinearOrderedCommSemiring'], ['Int', 'instLinearOrderedCommRing'], ['Semiring', 'toNonAssocSemiring'], ['PowerSeries', 'instZero'], ['StrictOrderedSemiring', 'toPartialOrder'], ['LinearOrderedSemiring', 'toStrictOrderedSemiring'], ['MonoidWithZero', 'toZero'], ['DFunLike', 'coe'], ['Int'], ['LinearOrderedCommSemiring', 'toLinearOrderedSemiring'], ['PowerSeries', 'instSemiring']]
@[norm_cast] -- Porting note (#10618): simp can prove this theorem coe_zero : ((0 : PowerSeries R) : LaurentSeries R) = 0 := (ofPowerSeries ℤ R).map_zero
[['Semiring', 'toNonAssocSemiring'], ['Int', 'instLinearOrderedCommRing'], ['LinearOrderedCommRing', 'toLinearOrderedCommSemiring'], ['StrictOrderedSemiring', 'toPartialOrder'], ['StrictOrderedSemiring', 'toOrderedCancelAddCommMonoid'], ['Semiring', 'toMonoidWithZero'], ['HahnSeries', 'ofPowerSeries'], ['LinearOrderedSemiring', 'toStrictOrderedSemiring'], ['PowerSeries'], ['RingHom', 'map_zero'], ['MonoidWithZero', 'toZero'], ['HahnSeries', 'instNonAssocSemiring'], ['LinearOrderedCommSemiring', 'toLinearOrderedSemiring'], ['Int'], ['HahnSeries'], ['PowerSeries', 'instSemiring']]
theorem
Syntax(original=True, range=StringRange(start=7697, stop=7854))
false
['Mathlib', 'RingTheory', 'LaurentSeries']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 16, "column": 66}, "goal": "R : Type u_1\n⊢ sorryAx ℕ true = 0", "endPos": {"line": 16, "column": 71}}], "messages": [{"severity": "error", "pos": {"line": 16, "column": 42}, "endPos": {"line": 16, "column": 57}, "data": "failed to synthesize\n Zero R\nAdditional diagnostic information may be available using the `set_option diagnostics true` command."}, {"severity": "error", "pos": {"line": 16, "column": 21}, "endPos": {"line": 16, "column": 22}, "data": "failed to synthesize\n OfNat (PowerSeries R) 0\nnumerals are polymorphic in Lean, but the numeral `0` cannot be used in a context where the expected type is\n PowerSeries R\ndue to the absence of the instance above\nAdditional diagnostic information may be available using the `set_option diagnostics true` command."}], "env": 0}
WittVector.init_zsmul_tac_7912
import Init import Mathlib.RingTheory.WittVector.Basic import Mathlib.RingTheory.WittVector.IsPoly import Mathlib.RingTheory.WittVector.InitTail open MvPolynomial open scoped Classical open Lean Elab Tactic in
import Init import Mathlib.RingTheory.WittVector.Basic import Mathlib.RingTheory.WittVector.IsPoly import Mathlib.RingTheory.WittVector.InitTail
open MvPolynomial open scoped Classical open Lean Elab Tactic in
lemma init_zsmul_tac_7912 (p : ℕ) [CommRing R] [Fact (Nat.Prime p)] (m : ℤ) (x : 𝕎 R) (n : ℕ) (i : ℕ) (hi : i < n) : peval (wittZSMul p m i) ![x.coeff] = peval (wittZSMul p m i) ![(mk p fun n_1 => if n_1 < n then x.coeff n_1 else 0).coeff] := sorry
lemma init_zsmul_tac_7912 (p : ℕ) {R : Type*} [CommRing R] [Fact (Nat.Prime p)] (m : ℤ) (x : 𝕎 R) (n : ℕ) (i : ℕ) (hi : i < n) : peval (wittZSMul p m i) ![x.coeff] = peval (wittZSMul p m i) ![(mk p fun n_1 => if n_1 < n then x.coeff n_1 else 0).coeff] := sorry
[['MvPolynomial', "eval₂Hom_congr'"], ['RingHom', 'ext_int'], ['rfl']]
tactic
false
['Mathlib', 'RingTheory', 'WittVector', 'InitTail']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 10, "column": 91}, "goal": "x✝¹ : Sort u_1\n𝕎 : x✝¹\nx✝ : Sort u_2\npeval : x✝\np : ℕ\ninst✝¹ : CommRing (sorryAx (Type u_3) true)\ninst✝ : Fact (Nat.Prime p)\nm : ℤ\nx : sorryAx (Sort u_4) true\nn i : ℕ\nhi : i < n\n⊢ sorryAx (?m.2448 p m x n i hi) true = sorryAx (?m.2448 p m x n i hi) true", "endPos": {"line": 10, "column": 96}}], "messages": [{"severity": "error", "pos": {"line": 9, "column": 44}, "endPos": {"line": 9, "column": 45}, "data": "application type mismatch\n CommRing R\nargument\n R\nhas type\n Type ?u.1429 → (K : Type ?u.1429) → [inst : Fintype K] → [inst : CommRing K] → Type ?u.1429 : Type (?u.1429 + 1)\nbut is expected to have type\n Type ?u.1428 : Type (?u.1428 + 1)"}, {"severity": "error", "pos": {"line": 9, "column": 81}, "endPos": {"line": 9, "column": 84}, "data": "function expected at\n 𝕎\nterm has type\n ?m.703"}, {"severity": "error", "pos": {"line": 9, "column": 117}, "endPos": {"line": 9, "column": 151}, "data": "function expected at\n peval\nterm has type\n ?m.1423"}, {"severity": "error", "pos": {"line": 10, "column": 2}, "endPos": {"line": 10, "column": 87}, "data": "function expected at\n peval\nterm has type\n ?m.1423"}], "env": 0}
RegularExpression.star_rmatch_iff_tac_9558
import Init import Mathlib.Computability.Language import Mathlib.Tactic.AdaptationNote import Mathlib.Computability.RegularExpressions open List Set open Computability
import Init import Mathlib.Computability.Language import Mathlib.Tactic.AdaptationNote import Mathlib.Computability.RegularExpressions
open List Set open Computability
lemma star_rmatch_iff_tac_9558 [DecidableEq α] (P : RegularExpression α) (a : α) (x : List α) (IH : ∀ (t : List α), t.length < (a :: x).length → (P.star.rmatch t = true ↔ ∃ S, t = S.join ∧ ∀ t ∈ S, t ≠ [] ∧ P.rmatch t = true)) (t : List α) (u : List α) (hs : x = t ++ u) (ht : (P.deriv a).rmatch t = true) (hwf : u.length < (a :: x).length) (S' : List (List α)) (hsum : u = S'.join) (helem : ∀ t ∈ S', t ≠ [] ∧ P.rmatch t = true) : (P.deriv a).rmatch t = true := sorry
lemma star_rmatch_iff_tac_9558 {α : Type*} [DecidableEq α] (P : RegularExpression α) (a : α) (x : List α) (IH : ∀ (t : List α), t.length < (a :: x).length → (P.star.rmatch t = true ↔ ∃ S, t = S.join ∧ ∀ t ∈ S, t ≠ [] ∧ P.rmatch t = true)) (t : List α) (u : List α) (hs : x = t ++ u) (ht : (P.deriv a).rmatch t = true) (hwf : u.length < (a :: x).length) (S' : List (List α)) (hsum : u = S'.join) (helem : ∀ t ∈ S', t ≠ [] ∧ P.rmatch t = true) : (P.deriv a).rmatch t = true := sorry
[['ht']]
tactic
null
['Mathlib', 'Computability', 'RegularExpressions']
null
leanprover/lean4:v4.11.0
Mathlib
iSup_ne_bot_subtype_tac_52739
import Init import Mathlib.Data.Bool.Set import Mathlib.Data.Nat.Set import Mathlib.Data.Set.Prod import Mathlib.Data.ULift import Mathlib.Order.Bounds.Basic import Mathlib.Order.Hom.Set import Mathlib.Order.SetNotation import Mathlib.Order.CompleteLattice open Function OrderDual Set open OrderDual
import Init import Mathlib.Data.Bool.Set import Mathlib.Data.Nat.Set import Mathlib.Data.Set.Prod import Mathlib.Data.ULift import Mathlib.Order.Bounds.Basic import Mathlib.Order.Hom.Set import Mathlib.Order.SetNotation import Mathlib.Order.CompleteLattice
open Function OrderDual Set open OrderDual
lemma iSup_ne_bot_subtype_tac_52739 (ι : Sort u_5) [CompleteLattice α] (f : ι → α) (htriv : ¬∀ (i : ι), f i = ⊥) (i : ι) (hi : f i = ⊥) : ∃ i', ⊥ ≤ f ↑i' := sorry
lemma iSup_ne_bot_subtype_tac_52739 {α : Type*} (ι : Sort u_5) [CompleteLattice α] (f : ι → α) (htriv : ¬∀ (i : ι), f i = ⊥) (i : ι) (hi : f i = ⊥) : ∃ i', ⊥ ≤ f ↑i' := sorry
tactic
true
['Mathlib', 'Order', 'CompleteLattice']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 13, "column": 155}, "goal": "α : Type u_1\nι : Sort u_5\ninst✝ : CompleteLattice α\nf : ι → α\nhtriv : ¬∀ (i : ι), f i = ⊥\ni : ι\nhi : f i = ⊥\n⊢ ∃ i, ⊥ ≤ f i", "endPos": {"line": 13, "column": 160}}], "messages": [{"severity": "warning", "pos": {"line": 13, "column": 6}, "endPos": {"line": 13, "column": 35}, "data": "declaration uses 'sorry'"}], "env": 0}
Set.preimage_boolIndicator_tac_1605
import Init import Mathlib.Data.Set.Basic import Mathlib.Data.Set.BoolIndicator open Bool open scoped Classical
import Init import Mathlib.Data.Set.Basic import Mathlib.Data.Set.BoolIndicator
open Bool open scoped Classical
lemma preimage_boolIndicator_tac_1605 (s : Set α) (t : Set Bool) : s ∪ sᶜ = univ ∨ s ∪ sᶜ = s ∨ s ∪ sᶜ = sᶜ ∨ s ∪ sᶜ = ∅ := sorry
lemma preimage_boolIndicator_tac_1605 {α : Type*} (s : Set α) (t : Set Bool) (h✝¹ : true ∈ t) (h✝ : false ∈ t) : s ∪ sᶜ = univ ∨ s ∪ sᶜ = s ∨ s ∪ sᶜ = sᶜ ∨ s ∪ sᶜ = ∅ := sorry
[['s', 'union_compl_self']]
tactic
true
['Mathlib', 'Data', 'Set', 'BoolIndicator']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 7, "column": 124}, "goal": "α : Type u_1\nuniv s : Set α\nt : Set Bool\n⊢ s ∪ sᶜ = univ ∨ s ∪ sᶜ = s ∨ s ∪ sᶜ = sᶜ ∨ s ∪ sᶜ = ∅", "endPos": {"line": 7, "column": 129}}], "messages": [{"severity": "warning", "pos": {"line": 7, "column": 6}, "endPos": {"line": 7, "column": 37}, "data": "declaration uses 'sorry'"}], "env": 0}
HasCompactSupport.smul_left_tac_12202
import Init import Mathlib.Algebra.GroupWithZero.Indicator import Mathlib.Algebra.Module.Basic import Mathlib.Topology.Separation import Mathlib.Topology.Support open Function Set Filter Topology
import Init import Mathlib.Algebra.GroupWithZero.Indicator import Mathlib.Algebra.Module.Basic import Mathlib.Topology.Separation import Mathlib.Topology.Support
open Function Set Filter Topology
lemma smul_left_tac_12202 [TopologicalSpace α] [Zero M] [SMulZeroClass R M] (f : α → R) (f' : α → M) (hf : f' =ᶠ[coclosedCompact α] 0) : f • f' =ᶠ[coclosedCompact α] 0 := sorry
lemma smul_left_tac_12202 {α : Type*} {M : Type*} {R : Type*} [TopologicalSpace α] [Zero M] [SMulZeroClass R M] (f : α → R) (f' : α → M) (hf : f' =ᶠ[coclosedCompact α] 0) : f • f' =ᶠ[coclosedCompact α] 0 := sorry
tactic
null
['Mathlib', 'Topology', 'Support']
null
leanprover/lean4:v4.11.0
Mathlib
MvPolynomial.IsHomogeneous.inj_right_tac_5275
import Init import Mathlib.Algebra.DirectSum.Internal import Mathlib.Algebra.GradedMonoid import Mathlib.Algebra.MvPolynomial.CommRing import Mathlib.Algebra.MvPolynomial.Equiv import Mathlib.Algebra.MvPolynomial.Variables import Mathlib.RingTheory.MvPolynomial.WeightedHomogeneous import Mathlib.Algebra.Polynomial.Roots import Mathlib.RingTheory.MvPolynomial.Homogeneous open Finsupp
import Init import Mathlib.Algebra.DirectSum.Internal import Mathlib.Algebra.GradedMonoid import Mathlib.Algebra.MvPolynomial.CommRing import Mathlib.Algebra.MvPolynomial.Equiv import Mathlib.Algebra.MvPolynomial.Variables import Mathlib.RingTheory.MvPolynomial.WeightedHomogeneous import Mathlib.Algebra.Polynomial.Roots import Mathlib.RingTheory.MvPolynomial.Homogeneous
open Finsupp
lemma inj_right_tac_5275 [CommSemiring R] (φ : MvPolynomial σ R) (m : ℕ) (n : ℕ) (hm : φ.IsHomogeneous m) (hn : φ.IsHomogeneous n) (hφ : φ ≠ 0) (d : σ →₀ ℕ) (hd : coeff d φ ≠ 0) : (weight 1) d = (weight 1) d := sorry
lemma inj_right_tac_5275 {σ : Type*} {R : Type*} [CommSemiring R] (φ : MvPolynomial σ R) (m : ℕ) (n : ℕ) (hm : φ.IsHomogeneous m) (hn : φ.IsHomogeneous n) (hφ : φ ≠ 0) (d : σ →₀ ℕ) (hd : coeff d φ ≠ 0) : (weight 1) d = (weight 1) d := sorry
tactic
false
['Mathlib', 'RingTheory', 'MvPolynomial', 'Homogeneous']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 12, "column": 211}, "goal": "R : Type u_1\nσ : Type u_2\nx✝ : Sort u_3\ncoeff : x✝\ninst✝ : CommSemiring R\nφ : MvPolynomial σ R\nm n : ℕ\nhm : φ.IsHomogeneous m\nhn : φ.IsHomogeneous n\nhφ : φ ≠ 0\nd : σ →₀ ℕ\nhd : sorryAx ℕ true ≠ 0\n⊢ (weight 1) d = (weight 1) d", "endPos": {"line": 12, "column": 216}}], "messages": [{"severity": "error", "pos": {"line": 12, "column": 163}, "endPos": {"line": 12, "column": 172}, "data": "function expected at\n coeff\nterm has type\n ?m.196"}], "env": 0}
UniformSpace.toCore_tac_15242
import Init import Mathlib.Order.Filter.SmallSets import Mathlib.Tactic.Monotonicity import Mathlib.Topology.Compactness.Compact import Mathlib.Topology.NhdsSet import Mathlib.Algebra.Group.Defs import Mathlib.Topology.UniformSpace.Basic open Set Filter Topology open Uniformity
import Init import Mathlib.Order.Filter.SmallSets import Mathlib.Tactic.Monotonicity import Mathlib.Topology.Compactness.Compact import Mathlib.Topology.NhdsSet import Mathlib.Algebra.Group.Defs import Mathlib.Topology.UniformSpace.Basic
open Set Filter Topology open Uniformity
lemma toCore_tac_15242 (ι : Sort u_1) (u : UniformSpace α) (U : Set (α × α)) (hU : U ∈ UniformSpace.uniformity) (x : α) : Prod.mk x ⁻¹' U ∈ 𝓝 x := sorry
lemma toCore_tac_15242 {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} (ι : Sort u_1) (u : UniformSpace α) (U : Set (α × α)) (hU : U ∈ UniformSpace.uniformity) (x : α) : Prod.mk x ⁻¹' U ∈ 𝓝 x := sorry
[['UniformSpace', 'nhds_eq_comap_uniformity']]
tactic
null
['Mathlib', 'Topology', 'UniformSpace', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
RelSeries.insertNth_tac_13411
import Init import Mathlib.Algebra.Order.Ring.Nat import Mathlib.Data.Fintype.Card import Mathlib.Data.Fintype.Pi import Mathlib.Data.Fintype.Sigma import Mathlib.Data.Rel import Mathlib.Order.RelSeries
import Init import Mathlib.Algebra.Order.Ring.Nat import Mathlib.Data.Fintype.Card import Mathlib.Data.Fintype.Pi import Mathlib.Data.Fintype.Sigma import Mathlib.Data.Rel import Mathlib.Order.RelSeries
lemma insertNth_tac_13411 (r : Rel α α) (s : Rel β β) (p : RelSeries r) (i : Fin p.length) (a : α) (prev_connect : r (p.toFun i.castSucc) a) (connect_next : r a (p.toFun i.succ)) (m : Fin (p.length + 1)) (x : α) (y : α) (hm : ↑i + 1 < ↑m ∨ ↑i + 1 = ↑m) : r x y := sorry
lemma insertNth_tac_13411 {α : Type*} (r : Rel α α) {β : Type*} (s : Rel β β) (p : RelSeries r) (i : Fin p.length) (a : α) (prev_connect : r (p.toFun i.castSucc) a) (connect_next : r a (p.toFun i.succ)) (m : Fin (p.length + 1)) (x : α) (y : α) (hm : ↑i + 1 < ↑m ∨ ↑i + 1 = ↑m) : r x y := sorry
tactic
false
['Mathlib', 'Order', 'RelSeries']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 10, "column": 264}, "goal": "α : Type u_1\nβ : Type u_2\nr : Rel α α\ns : Rel β β\np : RelSeries r\ni : Fin p.length\na : α\nprev_connect : r (p.toFun i.castSucc) a\nconnect_next : r a (p.toFun i.succ)\nm : Fin (p.length + 1)\nx y : α\nhm : i + 1 < m ∨ i + 1 = m\n⊢ r x y", "endPos": {"line": 10, "column": 269}}], "messages": [{"severity": "error", "pos": {"line": 10, "column": 226}, "endPos": {"line": 10, "column": 232}, "data": "failed to synthesize\n HAdd (Fin p.length) ℕ (Fin (p.length + 1))\nAdditional diagnostic information may be available using the `set_option diagnostics true` command."}, {"severity": "error", "pos": {"line": 10, "column": 240}, "endPos": {"line": 10, "column": 246}, "data": "failed to synthesize\n HAdd (Fin p.length) ℕ (Fin (p.length + 1))\nAdditional diagnostic information may be available using the `set_option diagnostics true` command."}], "env": 0}
Filter.isBoundedUnder_ge_sum_tac_16270
import Init import Mathlib.Order.Filter.Cofinite import Mathlib.Order.Hom.CompleteLattice import Mathlib.Order.LiminfLimsup open Filter Set Function open Filter BigOperators Set
import Init import Mathlib.Order.Filter.Cofinite import Mathlib.Order.Hom.CompleteLattice import Mathlib.Order.LiminfLimsup
open Filter Set Function open Filter BigOperators Set
lemma isBoundedUnder_ge_sum_tac_16270 (f : Filter α) [Preorder R] [AddCommMonoid R] [CovariantClass R R (fun a b => a + b) fun x x_1 => x ≤ x_1] [CovariantClass R R (fun a b => b + a) fun x x_1 => x ≤ x_1] (u : κ → α → R) (s : Finset κ) : (∀ k ∈ s, IsBoundedUnder (fun x x_1 => x ≥ x_1) f (u k)) → IsBoundedUnder (fun x x_1 => x ≥ x_1) f (∑ k ∈ s, u k) := sorry
lemma isBoundedUnder_ge_sum_tac_16270 {α : Type*} (f : Filter α) {R : Type*} [Preorder R] {κ : Type*} [AddCommMonoid R] [CovariantClass R R (fun a b => a + b) fun x x_1 => x ≤ x_1] [CovariantClass R R (fun a b => b + a) fun x x_1 => x ≤ x_1] (u : κ → α → R) (s : Finset κ) : (∀ k ∈ s, IsBoundedUnder (fun x x_1 => x ≥ x_1) f (u k)) → IsBoundedUnder (fun x x_1 => x ≥ x_1) f (∑ k ∈ s, u k) := sorry
[['x'], ['hy'], ['CovariantClass'], ['a'], ['aux'], ['R'], ['elim'], ['add_le_add_left'], ['b']]
tactic
true
['Mathlib', 'Order', 'LiminfLimsup']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 8, "column": 356}, "goal": "α : Type u_1\nR : Type u_2\nκ : Type u_3\nf : Filter α\ninst✝³ : Preorder R\ninst✝² : AddCommMonoid R\ninst✝¹ : CovariantClass R R (fun a b => a + b) fun x x_1 => x ≤ x_1\ninst✝ : CovariantClass R R (fun a b => b + a) fun x x_1 => x ≤ x_1\nu : κ → α → R\ns : Finset κ\n⊢ (∀ k ∈ s, IsBoundedUnder (fun x x_1 => x ≥ x_1) f (u k)) → IsBoundedUnder (fun x x_1 => x ≥ x_1) f (∑ k ∈ s, u k)", "endPos": {"line": 8, "column": 361}}], "messages": [{"severity": "warning", "pos": {"line": 8, "column": 6}, "endPos": {"line": 8, "column": 37}, "data": "declaration uses 'sorry'"}], "env": 0}
Convex.helly_theorem_compact'_tac_9592
import Init import Mathlib.Analysis.Convex.Combination import Mathlib.Data.Set.Card import Mathlib.LinearAlgebra.AffineSpace.FiniteDimensional import Mathlib.Topology.Separation import Mathlib.Analysis.Convex.Radon open Fintype Finset Set open FiniteDimensional
import Init import Mathlib.Analysis.Convex.Combination import Mathlib.Data.Set.Card import Mathlib.LinearAlgebra.AffineSpace.FiniteDimensional import Mathlib.Topology.Separation import Mathlib.Analysis.Convex.Radon
open Fintype Finset Set open FiniteDimensional
lemma helly_theorem_compact'_tac_9592 [LinearOrderedField 𝕜] [AddCommGroup E] [Module 𝕜 E] [FiniteDimensional 𝕜 E] [TopologicalSpace E] [T2Space E] (F : ι → Set E) (h_convex : ∀ (i : ι), Convex 𝕜 (F i)) (h_compact : ∀ (i : ι), IsCompact (F i)) (h_inter : ∀ (I : Finset ι), I.card ≤ finrank 𝕜 E + 1 → (⋂ i ∈ I, F i).Nonempty) (h_nonempty : Nonempty ι) : (⋂ i, F i).Nonempty := sorry
lemma helly_theorem_compact'_tac_9592 {ι : Type*} {𝕜 : Type*} {E : Type*} [LinearOrderedField 𝕜] [AddCommGroup E] [Module 𝕜 E] [FiniteDimensional 𝕜 E] [TopologicalSpace E] [T2Space E] (F : ι → Set E) (h_convex : ∀ (i : ι), Convex 𝕜 (F i)) (h_compact : ∀ (i : ι), IsCompact (F i)) (h_inter : ∀ (I : Finset ι), I.card ≤ finrank 𝕜 E + 1 → (⋂ i ∈ I, F i).Nonempty) (h_nonempty : Nonempty ι) : (⋂ i, F i).Nonempty := sorry
[['hJ_card'], ["helly_theorem'"], ['I'], ['𝕜'], ['h_convex'], ['J'], ['Finset'], ['h_inter'], ['h_fin'], ['s'], ['ι'], ['F'], ['i'], ['Nonempty']]
tactic
null
['Mathlib', 'Analysis', 'Convex', 'Radon']
null
leanprover/lean4:v4.11.0
Mathlib
antivaryOn_inv₀_tac_13151
import Init import Mathlib.Algebra.Order.Field.Basic import Mathlib.Algebra.Order.Group.Instances import Mathlib.Algebra.Order.Module.OrderedSMul import Mathlib.Algebra.Order.Module.Synonym import Mathlib.Algebra.Order.Monoid.Unbundled.MinMax import Mathlib.Order.Monotone.Monovary import Mathlib.Algebra.Order.Monovary
import Init import Mathlib.Algebra.Order.Field.Basic import Mathlib.Algebra.Order.Group.Instances import Mathlib.Algebra.Order.Module.OrderedSMul import Mathlib.Algebra.Order.Module.Synonym import Mathlib.Algebra.Order.Monoid.Unbundled.MinMax import Mathlib.Order.Monotone.Monovary import Mathlib.Algebra.Order.Monovary
lemma antivaryOn_inv₀_tac_13151 [LinearOrderedSemifield α] [LinearOrderedSemifield β] (s : Set ι) (f : ι → α) (g : ι → β) (hf : ∀ i ∈ s, 0 < f i) (hg : ∀ i ∈ s, 0 < g i) : AntivaryOn f g s ↔ AntivaryOn f g s := sorry
lemma antivaryOn_inv₀_tac_13151 {ι : Type*} {α : Type*} {β : Type*} [LinearOrderedSemifield α] [LinearOrderedSemifield β] (s : Set ι) (f : ι → α) (g : ι → β) (hf : ∀ i ∈ s, 0 < f i) (hg : ∀ i ∈ s, 0 < g i) : AntivaryOn f g s ↔ AntivaryOn f g s := sorry
tactic
true
['Mathlib', 'Algebra', 'Order', 'Monovary']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 11, "column": 211}, "goal": "α : Type u_1\nβ : Type u_2\nι : Type u_3\ninst✝¹ : LinearOrderedSemifield α\ninst✝ : LinearOrderedSemifield β\ns : Set ι\nf : ι → α\ng : ι → β\nhf : ∀ i ∈ s, 0 < f i\nhg : ∀ i ∈ s, 0 < g i\n⊢ AntivaryOn f g s ↔ AntivaryOn f g s", "endPos": {"line": 11, "column": 216}}], "messages": [{"severity": "warning", "pos": {"line": 11, "column": 6}, "endPos": {"line": 11, "column": 31}, "data": "declaration uses 'sorry'"}], "env": 0}
FirstOrder.Language.DirectLimit.relMap_quotient_mk'_sigma_mk'_tac_10978
import Init import Mathlib.Data.Fintype.Order import Mathlib.Algebra.DirectLimit import Mathlib.ModelTheory.Quotients import Mathlib.ModelTheory.FinitelyGenerated import Mathlib.ModelTheory.DirectLimit open FirstOrder open Structure Set
import Init import Mathlib.Data.Fintype.Order import Mathlib.Algebra.DirectLimit import Mathlib.ModelTheory.Quotients import Mathlib.ModelTheory.FinitelyGenerated import Mathlib.ModelTheory.DirectLimit
open FirstOrder open Structure Set
lemma relMap_quotient_mk'_sigma_mk'_tac_10978 (L : Language) [Preorder ι] [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i ≤ j → G i ↪[L] G j) [IsDirected ι fun x x_1 => x ≤ x_1] [DirectedSystem G fun i j h => ⇑(f i j h)] [Nonempty ι] (n : ℕ) (R : L.Relations n) (i : ι) (x : Fin n → G i) : (RelMap R fun a => ⟦Structure.Sigma.mk f i (x a)⟧) = RelMap R x := sorry
lemma relMap_quotient_mk'_sigma_mk'_tac_10978 (L : Language) {ι : Type*} [Preorder ι] {G : Type*} [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i ≤ j → G i ↪[L] G j) [IsDirected ι fun x x_1 => x ≤ x_1] [DirectedSystem G fun i j h => ⇑(f i j h)] [Nonempty ι] (n : ℕ) (R : L.Relations n) (i : ι) (x : Fin n → G i) : (RelMap R fun a => ⟦Structure.Sigma.mk f i (x a)⟧) = RelMap R x := sorry
[['k'], ['Classical', 'choose'], ['x'], ['n'], ['relMap_equiv_unify'], ['G'], ['directed_of'], ['Finite', 'bddAbove_range'], ['a'], ['R'], ['f'], ['Fin'], ['i'], ['unify_sigma_mk_self'], ["relMap_quotient_mk'"], ['mk']]
tactic
false
['Mathlib', 'ModelTheory', 'DirectLimit']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 10, "column": 356}, "goal": "ι : Type u_1\nG : ι → Type u_2\nx✝ : Sort u_3\nRelMap : x✝\nL : Language\ninst✝⁴ : Preorder ι\ninst✝³ : (i : ι) → L.Structure (G i)\nf : (i j : ι) → i ≤ j → G i ↪[L] G j\ninst✝² : IsDirected ι fun x x_1 => x ≤ x_1\ninst✝¹ : DirectedSystem G fun i j h => sorryAx (G i → G j) true\ninst✝ : Nonempty ι\nn : ℕ\nR : L.Relations n\ni : ι\nx : Fin n → G i\n⊢ sorryAx (?m.780 L f n R i x) true = sorryAx (?m.780 L f n R i x) true", "endPos": {"line": 10, "column": 361}}], "messages": [{"severity": "error", "pos": {"line": 8, "column": 5}, "endPos": {"line": 8, "column": 14}, "data": "unknown namespace 'Structure'"}, {"severity": "error", "pos": {"line": 10, "column": 208}, "endPos": {"line": 10, "column": 218}, "data": "cannot coerce to function\n f i j h"}, {"severity": "error", "pos": {"line": 10, "column": 290}, "endPos": {"line": 10, "column": 338}, "data": "function expected at\n RelMap\nterm has type\n ?m.287"}, {"severity": "error", "pos": {"line": 10, "column": 342}, "endPos": {"line": 10, "column": 352}, "data": "function expected at\n RelMap\nterm has type\n ?m.287"}], "env": 0}
Convex.helly_theorem'_tac_3822
import Init import Mathlib.Analysis.Convex.Combination import Mathlib.Data.Set.Card import Mathlib.LinearAlgebra.AffineSpace.FiniteDimensional import Mathlib.Topology.Separation import Mathlib.Analysis.Convex.Radon open Fintype Finset Set open FiniteDimensional
import Init import Mathlib.Analysis.Convex.Combination import Mathlib.Data.Set.Card import Mathlib.LinearAlgebra.AffineSpace.FiniteDimensional import Mathlib.Topology.Separation import Mathlib.Analysis.Convex.Radon
open Fintype Finset Set open FiniteDimensional
lemma helly_theorem'_tac_3822 [LinearOrderedField 𝕜] [AddCommGroup E] [Module 𝕜 E] [FiniteDimensional 𝕜 E] (F : ι → Set E) (s : Finset ι) (h_convex : ∀ i ∈ s, Convex 𝕜 (F i)) (h_inter : ∀ I ⊆ s, I.card ≤ finrank 𝕜 E + 1 → (⋂ i ∈ I, F i).Nonempty) (h_card : s.card < finrank 𝕜 E + 1) : (⋂ i ∈ s, F i).Nonempty := sorry
lemma helly_theorem'_tac_3822 {ι : Type*} {𝕜 : Type*} {E : Type*} [LinearOrderedField 𝕜] [AddCommGroup E] [Module 𝕜 E] [FiniteDimensional 𝕜 E] (F : ι → Set E) (s : Finset ι) (h_convex : ∀ i ∈ s, Convex 𝕜 (F i)) (h_inter : ∀ I ⊆ s, I.card ≤ finrank 𝕜 E + 1 → (⋂ i ∈ I, F i).Nonempty) (h_card : s.card < finrank 𝕜 E + 1) : (⋂ i ∈ s, F i).Nonempty := sorry
tactic
null
['Mathlib', 'Analysis', 'Convex', 'Radon']
null
leanprover/lean4:v4.11.0
Mathlib
Real.log_inv_tac_3764
import Init import Mathlib.Analysis.SpecialFunctions.Exp import Mathlib.Data.Nat.Factorization.Defs import Mathlib.Analysis.NormedSpace.Real import Mathlib.Data.Rat.Cast.CharZero import Mathlib.Analysis.SpecialFunctions.Log.Basic open Set Filter Function open Topology
import Init import Mathlib.Analysis.SpecialFunctions.Exp import Mathlib.Data.Nat.Factorization.Defs import Mathlib.Analysis.NormedSpace.Real import Mathlib.Data.Rat.Cast.CharZero import Mathlib.Analysis.SpecialFunctions.Log.Basic
open Set Filter Function open Topology
lemma log_inv_tac_3764 (x : ℝ) (hx : ¬x = 0) : log x⁻¹ = -log x := sorry
lemma log_inv_tac_3764 (x : ℝ) (hx : ¬x = 0) : log x⁻¹ = -log x := sorry
[['exp_log_eq_abs'], ['abs_inv'], ['hx'], ['exp_eq_exp'], ['exp_neg'], ['inv_ne_zero']]
tactic
false
['Mathlib', 'Analysis', 'SpecialFunctions', 'Log', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 10, "column": 67}, "goal": "x✝ : Sort u_1\nlog : x✝\nx : ℝ\nhx : ¬x = 0\n⊢ sorryAx ℤ true = -sorryAx ℤ true", "endPos": {"line": 10, "column": 72}}], "messages": [{"severity": "error", "pos": {"line": 10, "column": 47}, "endPos": {"line": 10, "column": 54}, "data": "function expected at\n log\nterm has type\n ?m.51"}, {"severity": "error", "pos": {"line": 10, "column": 58}, "endPos": {"line": 10, "column": 63}, "data": "function expected at\n log\nterm has type\n ?m.51"}], "env": 0}
Ordinal.derivBFamily_eq_enumOrd_tac_14782
import Init import Mathlib.SetTheory.Ordinal.Arithmetic import Mathlib.SetTheory.Ordinal.Exponential import Mathlib.SetTheory.Ordinal.FixedPoint open Function Order
import Init import Mathlib.SetTheory.Ordinal.Arithmetic import Mathlib.SetTheory.Ordinal.Exponential import Mathlib.SetTheory.Ordinal.FixedPoint
open Function Order
lemma derivBFamily_eq_enumOrd_tac_14782 (o : Ordinal.{u}) (f : (b : Ordinal.{u}) → b < o → Ordinal.{max u v} → Ordinal.{max u v}) (H : ∀ (i : Ordinal.{u}) (hi : i < o), IsNormal (f i hi)) (a : Ordinal.{max u v}) (ha : ∀ (i : Ordinal.{u}) (j : i < o), a ∈ fixedPoints (f i j)) : ∃ a_1, o.derivBFamily f a_1 = a := sorry
lemma derivBFamily_eq_enumOrd_tac_14782 (o : Ordinal.{u}) (f : (b : Ordinal.{u}) → b < o → Ordinal.{max u v} → Ordinal.{max u v}) (H : ∀ (i : Ordinal.{u}) (hi : i < o), IsNormal (f i hi)) (a : Ordinal.{max u v}) (ha : ∀ (i : Ordinal.{u}) (j : i < o), a ∈ fixedPoints (f i j)) : ∃ a_1, o.derivBFamily f a_1 = a := sorry
tactic
false
['Mathlib', 'SetTheory', 'Ordinal', 'FixedPoint']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 7, "column": 313}, "goal": "x✝ : Sort u_1\nIsNormal : x✝\no : Ordinal.{u}\nf : (b : Ordinal.{u}) → b < o → Ordinal.{max u v} → Ordinal.{max u v}\nH : (i : Ordinal.{u}) → i < o → sorryAx (Sort u_2) true\na : Ordinal.{max u v}\nha : ∀ (i : Ordinal.{u}) (j : i < o), a ∈ fixedPoints (f i j)\n⊢ ∃ a_1, o.derivBFamily f a_1 = a", "endPos": {"line": 7, "column": 318}}], "messages": [{"severity": "error", "pos": {"line": 7, "column": 169}, "endPos": {"line": 7, "column": 186}, "data": "function expected at\n IsNormal\nterm has type\n ?m.58"}], "env": 0}
WithOne.map_comp_tac_4195
import Init import Mathlib.Algebra.Group.Equiv.Basic import Mathlib.Algebra.Group.WithOne.Defs import Mathlib.Algebra.Group.WithOne.Basic
import Init import Mathlib.Algebra.Group.Equiv.Basic import Mathlib.Algebra.Group.WithOne.Defs import Mathlib.Algebra.Group.WithOne.Basic
lemma map_comp_tac_4195 [Mul α] [Mul β] [Mul γ] (e : α ≃* β) : (map e.toMulHom) ((map e.symm.toMulHom) 1) = 1 := sorry
lemma map_comp_tac_4195 {α : Type*} {β : Type*} {γ : Type*} [Mul α] [Mul β] [Mul γ] (e : α ≃* β) : (map e.toMulHom) ((map e.symm.toMulHom) 1) = 1 := sorry
tactic
false
['Mathlib', 'Algebra', 'Group', 'WithOne', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 7, "column": 113}, "goal": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nx✝ : Sort u_4\nmap : x✝\ninst✝² : Mul α\ninst✝¹ : Mul β\ninst✝ : Mul γ\ne : α ≃* β\n⊢ sorryAx ℕ true = 1", "endPos": {"line": 7, "column": 118}}], "messages": [{"severity": "error", "pos": {"line": 7, "column": 64}, "endPos": {"line": 7, "column": 78}, "data": "function expected at\n map\nterm has type\n ?m.55"}], "env": 0}
Real.Angle.cos_eq_iff_coe_eq_or_eq_neg_tac_8511
import Init import Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic import Mathlib.Analysis.Normed.Group.AddCircle import Mathlib.Algebra.CharZero.Quotient import Mathlib.Topology.Instances.Sign import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle open Real
import Init import Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic import Mathlib.Analysis.Normed.Group.AddCircle import Mathlib.Algebra.CharZero.Quotient import Mathlib.Topology.Instances.Sign import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
open Real
lemma cos_eq_iff_coe_eq_or_eq_neg_tac_8511 (θ : ℝ) (ψ : ℝ) (n : ℤ) (hn : ↑n * π * 2 + ψ = θ) : ↑ψ = ↑ψ := sorry
lemma cos_eq_iff_coe_eq_or_eq_neg_tac_8511 (θ : ℝ) (ψ : ℝ) (n : ℤ) (hn : ↑n * π * 2 + ψ = θ) : ↑ψ = ↑ψ := sorry
tactic
true
['Mathlib', 'Analysis', 'SpecialFunctions', 'Trigonometric', 'Angle']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 9, "column": 106}, "goal": "θ ψ : ℝ\nn : ℤ\nhn : ↑n * π * 2 + ψ = θ\n⊢ ψ = ψ", "endPos": {"line": 9, "column": 111}}], "messages": [{"severity": "warning", "pos": {"line": 9, "column": 6}, "endPos": {"line": 9, "column": 42}, "data": "declaration uses 'sorry'"}], "env": 0}
Matrix.rank_eq_finrank_span_row_tac_11315
import Init import Mathlib.LinearAlgebra.Determinant import Mathlib.LinearAlgebra.FiniteDimensional import Mathlib.LinearAlgebra.Matrix.Diagonal import Mathlib.LinearAlgebra.Matrix.DotProduct import Mathlib.LinearAlgebra.Matrix.Dual import Mathlib.Data.Matrix.Rank open Matrix open FiniteDimensional
import Init import Mathlib.LinearAlgebra.Determinant import Mathlib.LinearAlgebra.FiniteDimensional import Mathlib.LinearAlgebra.Matrix.Diagonal import Mathlib.LinearAlgebra.Matrix.DotProduct import Mathlib.LinearAlgebra.Matrix.Dual import Mathlib.Data.Matrix.Rank
open Matrix open FiniteDimensional
lemma rank_eq_finrank_span_row_tac_11315 [Field R] [Finite m] (A : Matrix m n R) : finrank R ↥(Submodule.span R (Set.range A)) = finrank R ↥(Submodule.span R (Set.range A)) := sorry
lemma rank_eq_finrank_span_row_tac_11315 {m : Type*} {n : Type*} {R : Type*} {inst✝² : Type*} [Field R] [Finite m] (A : Matrix m n R) {val✝ : Type*} : finrank R ↥(Submodule.span R (Set.range A)) = finrank R ↥(Submodule.span R (Set.range A)) := sorry
tactic
true
['Mathlib', 'Data', 'Matrix', 'Rank']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 11, "column": 176}, "goal": "R : Type u_1\nm : Type u_2\nn : Type u_3\ninst✝¹ : Field R\ninst✝ : Finite m\nA : Matrix m n R\n⊢ finrank R ↥(Submodule.span R (Set.range A)) = finrank R ↥(Submodule.span R (Set.range A))", "endPos": {"line": 11, "column": 181}}], "messages": [{"severity": "warning", "pos": {"line": 11, "column": 6}, "endPos": {"line": 11, "column": 40}, "data": "declaration uses 'sorry'"}], "env": 0}
Multiset.one_le_count_iff_mem_tac_82604
import Init import Mathlib.Algebra.Group.Nat import Mathlib.Algebra.Order.Sub.Unbundled.Basic import Mathlib.Data.List.Perm import Mathlib.Data.Set.List import Mathlib.Order.Hom.Basic import Mathlib.Data.Multiset.Basic open List Subtype Nat Function
import Init import Mathlib.Algebra.Group.Nat import Mathlib.Algebra.Order.Sub.Unbundled.Basic import Mathlib.Data.List.Perm import Mathlib.Data.Set.List import Mathlib.Order.Hom.Basic import Mathlib.Data.Multiset.Basic
open List Subtype Nat Function
lemma one_le_count_iff_mem_tac_82604 [DecidableEq α] (a : α) (s : Multiset α) : 1 ≤ count a s ↔ a ∈ s := sorry
lemma one_le_count_iff_mem_tac_82604 {α : Type*} [DecidableEq α] (a : α) (s : Multiset α) : 1 ≤ count a s ↔ a ∈ s := sorry
[['succ_le_iff'], ['count_pos']]
tactic
false
['Mathlib', 'Data', 'Multiset', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 10, "column": 105}, "goal": "α : Type u_1\ninst✝ : DecidableEq α\na : α\ns : Multiset α\n⊢ 1 ≤ count a (sorryAx (List α) true) ↔ a ∈ s", "endPos": {"line": 10, "column": 110}}], "messages": [{"severity": "error", "pos": {"line": 10, "column": 92}, "endPos": {"line": 10, "column": 93}, "data": "application type mismatch\n count a s\nargument\n s\nhas type\n Multiset α : Type ?u.18\nbut is expected to have type\n List α : Type ?u.18"}], "env": 0}
List.get_reverse_aux₁_tac_34266
import Init import Mathlib.Data.Nat.Defs import Mathlib.Data.Option.Basic import Mathlib.Data.List.Defs import Mathlib.Data.List.Monad import Mathlib.Init.Data.List.Lemmas import Mathlib.Logic.Unique import Mathlib.Order.Basic import Mathlib.Tactic.Common import Batteries.Data.List.Perm import Mathlib.Data.List.Basic open Function open Nat hiding one_pos
import Init import Mathlib.Data.Nat.Defs import Mathlib.Data.Option.Basic import Mathlib.Data.List.Defs import Mathlib.Data.List.Monad import Mathlib.Init.Data.List.Lemmas import Mathlib.Logic.Unique import Mathlib.Order.Basic import Mathlib.Tactic.Common import Batteries.Data.List.Perm import Mathlib.Data.List.Basic
open Function open Nat hiding one_pos
lemma get_reverse_aux₁_tac_34266 (a : α) (l : List α) (r : List α) (i : ℕ) : ∀ (h1 : i + (a :: l).length < ((a :: l).reverseAux r).length) (h2 : i < r.length), ((a :: l).reverseAux r).get ⟨i + (a :: l).length, h1⟩ = r.get ⟨i, h2⟩ := sorry
lemma get_reverse_aux₁_tac_34266 {α : Type*} (a : α) (l : List α) (r : List α) (i : ℕ) : ∀ (h1 : i + (a :: l).length < ((a :: l).reverseAux r).length) (h2 : i < r.length), ((a :: l).reverseAux r).get ⟨i + (a :: l).length, h1⟩ = r.get ⟨i, h2⟩ := sorry
[['get_reverse_aux₁'], ['h1'], ['succ_lt_succ'], ['Nat', 'add_right_comm'], ['length'], ['h2'], ['a'], ['r'], ['l'], ['i']]
tactic
true
['Mathlib', 'Data', 'List', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 16, "column": 75}, "goal": "α : Type u_1\na : α\nl r : List α\ni : ℕ\n⊢ ∀ (h1 : i + (a :: l).length < ((a :: l).reverseAux r).length) (h2 : i < r.length),\n ((a :: l).reverseAux r).get ⟨i + (a :: l).length, h1⟩ = r.get ⟨i, h2⟩", "endPos": {"line": 16, "column": 80}}], "messages": [{"severity": "warning", "pos": {"line": 15, "column": 6}, "endPos": {"line": 15, "column": 32}, "data": "declaration uses 'sorry'"}], "env": 0}
jacobiSym.quadratic_reciprocity'_tac_19153
import Init import Mathlib.NumberTheory.LegendreSymbol.QuadraticReciprocity import Mathlib.NumberTheory.LegendreSymbol.JacobiSymbol open Nat ZMod open NumberTheorySymbols open jacobiSym
import Init import Mathlib.NumberTheory.LegendreSymbol.QuadraticReciprocity import Mathlib.NumberTheory.LegendreSymbol.JacobiSymbol
open Nat ZMod open NumberTheorySymbols open jacobiSym
lemma quadratic_reciprocity'_tac_19153 (a : ℕ) (b : ℕ) (ha : Odd a) (hb : Odd b) (rhs : ℕ → ℕ →* ℤ) (rhs_apply : ∀ (a b : ℕ), (rhs a) b = qrSign b a * J(↑b | a)) (p : ℕ) (pp : Nat.Prime p) (hp : p ≠ 2) (hpo : Odd p) : J(↑p | a) = qrSign a p * J(↑a | p) := sorry
lemma quadratic_reciprocity'_tac_19153 (a : ℕ) (b : ℕ) (ha : Odd a) (hb : Odd b) (rhs : ℕ → ℕ →* ℤ) (rhs_apply : ∀ (a b : ℕ), (rhs a) b = qrSign b a * J(↑b | a)) (p : ℕ) (pp : Nat.Prime p) (hp : p ≠ 2) (hpo : Odd p) : J(↑p | a) = qrSign a p * J(↑a | p) := sorry
tactic
null
['Mathlib', 'NumberTheory', 'LegendreSymbol', 'JacobiSymbol']
null
leanprover/lean4:v4.11.0
Mathlib
List.prev_getLast_cons'_tac_6797
import Init import Mathlib.Data.Fintype.List import Mathlib.Data.List.Cycle
import Init import Mathlib.Data.Fintype.List import Mathlib.Data.List.Cycle
lemma prev_getLast_cons'_tac_6797 [DecidableEq α] (l : List α) (x : α) (y : α) (hxy : x ∈ y :: l) (hx : x = y) : (y :: l).prev x hxy = (y :: l).getLast ⋯ := sorry
lemma prev_getLast_cons'_tac_6797 {α : Type*} [DecidableEq α] (l : List α) (x : α) (y : α) (hxy : x ∈ y :: l) (hx : x = y) : (y :: l).prev x hxy = (y :: l).getLast ⋯ := sorry
tactic
null
['Mathlib', 'Data', 'List', 'Cycle']
null
leanprover/lean4:v4.11.0
Mathlib
Subgroup.subgroupOf_eq_top_tac_50626
import Init import Mathlib.Algebra.Group.Conj import Mathlib.Algebra.Group.Pi.Lemmas import Mathlib.Algebra.Group.Subsemigroup.Operations import Mathlib.Algebra.Group.Submonoid.Operations import Mathlib.Data.Set.Image import Mathlib.Tactic.ApplyFun import Mathlib.Algebra.Group.Subgroup.Basic open Function open scoped Int open Set
import Init import Mathlib.Algebra.Group.Conj import Mathlib.Algebra.Group.Pi.Lemmas import Mathlib.Algebra.Group.Subsemigroup.Operations import Mathlib.Algebra.Group.Submonoid.Operations import Mathlib.Data.Set.Image import Mathlib.Tactic.ApplyFun import Mathlib.Algebra.Group.Subgroup.Basic
open Function open scoped Int open Set
lemma subgroupOf_eq_top_tac_50626 [Group G] (H : Subgroup G) (K : Subgroup G) : H.subgroupOf K = ⊤ ↔ K ≤ H := sorry
lemma subgroupOf_eq_top_tac_50626 {G : Type*} [Group G] (H : Subgroup G) (K : Subgroup G) : H.subgroupOf K = ⊤ ↔ K ≤ H := sorry
[['top_inf_eq'], ['subgroupOf_inj'], ['top_subgroupOf'], ['inf_eq_right']]
tactic
true
['Mathlib', 'Algebra', 'Group', 'Subgroup', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 13, "column": 110}, "goal": "G : Type u_1\ninst✝ : Group G\nH K : Subgroup G\n⊢ H.subgroupOf K = ⊤ ↔ K ≤ H", "endPos": {"line": 13, "column": 115}}], "messages": [{"severity": "warning", "pos": {"line": 13, "column": 6}, "endPos": {"line": 13, "column": 33}, "data": "declaration uses 'sorry'"}], "env": 0}
Fin.cycleRange_zero_tac_7763
import Init import Mathlib.GroupTheory.Perm.Cycle.Type import Mathlib.GroupTheory.Perm.Option import Mathlib.Logic.Equiv.Fin import Mathlib.Logic.Equiv.Fintype import Mathlib.GroupTheory.Perm.Fin open Equiv open Equiv.Perm
import Init import Mathlib.GroupTheory.Perm.Cycle.Type import Mathlib.GroupTheory.Perm.Option import Mathlib.Logic.Equiv.Fin import Mathlib.Logic.Equiv.Fintype import Mathlib.GroupTheory.Perm.Fin
open Equiv open Equiv.Perm
lemma cycleRange_zero_tac_7763 (n : ℕ) (j : Fin n) : ↑((cycleRange 0) j.succ) = ↑(1 j.succ) := sorry
lemma cycleRange_zero_tac_7763 (n : ℕ) (j✝ : Fin n.succ) (j : Fin n) : ↑((cycleRange 0) j.succ) = ↑(1 j.succ) := sorry
[['cycleRange_of_gt'], ['j'], ['one_apply'], ['Fin', 'succ_pos']]
tactic
false
['Mathlib', 'GroupTheory', 'Perm', 'Fin']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 10, "column": 95}, "goal": "x✝ : Sort u_1\ncycleRange : x✝\nn : ℕ\nj : Fin n\n⊢ sorryAx (?m.222 n j) true = sorryAx (?m.222 n j) true", "endPos": {"line": 10, "column": 100}}], "messages": [{"severity": "error", "pos": {"line": 10, "column": 56}, "endPos": {"line": 10, "column": 68}, "data": "function expected at\n cycleRange\nterm has type\n ?m.15"}, {"severity": "error", "pos": {"line": 10, "column": 82}, "endPos": {"line": 10, "column": 90}, "data": "function expected at\n 1\nterm has type\n ?m.161"}], "env": 0}
Commute.geom_sum₂_mul_tac_6245
import Init import Mathlib.Algebra.BigOperators.Intervals import Mathlib.Algebra.BigOperators.Ring import Mathlib.Algebra.Group.NatPowAssoc import Mathlib.Algebra.Order.BigOperators.Ring.Finset import Mathlib.Algebra.Order.Field.Basic import Mathlib.Algebra.Order.Ring.Abs import Mathlib.Algebra.Ring.Opposite import Mathlib.Tactic.Abel import Mathlib.Algebra.Ring.Regular import Mathlib.Algebra.GeomSum open Finset MulOpposite
import Init import Mathlib.Algebra.BigOperators.Intervals import Mathlib.Algebra.BigOperators.Ring import Mathlib.Algebra.Group.NatPowAssoc import Mathlib.Algebra.Order.BigOperators.Ring.Finset import Mathlib.Algebra.Order.Field.Basic import Mathlib.Algebra.Order.Ring.Abs import Mathlib.Algebra.Ring.Opposite import Mathlib.Tactic.Abel import Mathlib.Algebra.Ring.Regular import Mathlib.Algebra.GeomSum
open Finset MulOpposite
lemma geom_sum₂_mul_tac_6245 [Ring α] (x : α) (y : α) (h : Commute x y) (n : ℕ) (this : (∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) * (x - y) + y ^ n = x ^ n) : (∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) * (x - y) = x ^ n - y ^ n := sorry
lemma geom_sum₂_mul_tac_6245 {α : Type*} [Ring α] (x : α) (y : α) (h : Commute x y) (n : ℕ) (this : (∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) * (x - y) + y ^ n = x ^ n) : (∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) * (x - y) = x ^ n - y ^ n := sorry
tactic
true
['Mathlib', 'Algebra', 'GeomSum']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 14, "column": 228}, "goal": "α : Type u_1\ninst✝ : Ring α\nx y : α\nh : Commute x y\nn : ℕ\nthis : (∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) * (x - y) + y ^ n = x ^ n\n⊢ (∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) * (x - y) = x ^ n - y ^ n", "endPos": {"line": 14, "column": 233}}], "messages": [{"severity": "warning", "pos": {"line": 14, "column": 6}, "endPos": {"line": 14, "column": 28}, "data": "declaration uses 'sorry'"}], "env": 0}
Function.OfArity.curryEquiv
import Init import Mathlib.Data.Fin.Tuple.Basic import Mathlib.Logic.Equiv.Fin import Mathlib.Logic.Function.OfArity import Mathlib.Data.Fin.Tuple.Curry open Matrix (vecCons vecHead vecTail vecEmpty)
import Init import Mathlib.Data.Fin.Tuple.Basic import Mathlib.Logic.Equiv.Fin import Mathlib.Logic.Function.OfArity import Mathlib.Data.Fin.Tuple.Curry
open Matrix (vecCons vecHead vecTail vecEmpty)
/-- `Equiv.curry` for n-ary functions. -/ @[simps!] def curryEquiv (n : ℕ) : ((Fin n → α) → β) ≃ OfArity α β n := sorry
def curryEquiv_extracted : {α β : Type u} → (n : ℕ) → ((Fin n → α) → β) ≃ Function.OfArity α β n := sorry
[['Equiv'], ['Function', 'OfArity']]
/-- `Equiv.curry` for n-ary functions. -/ @[simps!] def curryEquiv (n : ℕ) : ((Fin n → α) → β) ≃ OfArity α β n := FromTypes.curryEquiv _
[['Function', 'FromTypes', 'curryEquiv']]
`Equiv.curry` for n-ary functions.
theorem
Syntax(original=True, range=StringRange(start=4623, stop=4773))
false
['Mathlib', 'Data', 'Fin', 'Tuple', 'Curry']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 10, "column": 62}, "goal": "α : Sort u_1\nβ : Sort u_2\nx✝ : Sort u_3\nOfArity : x✝\nn : ℕ\n⊢ ((Fin n → α) → β) ≃ sorryAx (Sort u_4) true", "endPos": {"line": 10, "column": 67}}], "messages": [{"severity": "error", "pos": {"line": 10, "column": 45}, "endPos": {"line": 10, "column": 58}, "data": "function expected at\n OfArity\nterm has type\n ?m.36"}], "env": 0}
Filter.HasBasis.comap_tac_34344
import Init import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod import Mathlib.Order.Filter.Ker import Mathlib.Order.Filter.Bases open Set Filter
import Init import Mathlib.Data.Prod.PProd import Mathlib.Data.Set.Countable import Mathlib.Order.Filter.Prod import Mathlib.Order.Filter.Ker import Mathlib.Order.Filter.Bases
open Set Filter
lemma comap_tac_34344 (ι : Sort u_4) (l : Filter α) (p : ι → Prop) (s : ι → Set α) (f : β → α) (hl : l.HasBasis p s) (t : Set β) (i : ι) (h : f ⁻¹' s i ⊆ t) (y : α) (hy : y ∈ s i) (x : β) (hx : f x = y) : x ∈ f ⁻¹' s i := sorry
lemma comap_tac_34344 {α : Type*} {β : Type*} (ι : Sort u_4) (l : Filter α) (p : ι → Prop) (s : ι → Set α) (f : β → α) (hl : l.HasBasis p s) (t : Set β) (i : ι) (h : f ⁻¹' s i ⊆ t) (y : α) (hy : y ∈ s i) (x : β) (hx : f x = y) : x ∈ f ⁻¹' s i := sorry
[['hx'], ['mem_preimage']]
tactic
null
['Mathlib', 'Order', 'Filter', 'Bases']
null
leanprover/lean4:v4.11.0
Mathlib
NNReal.exists_lt_of_strictMono_tac_42480
import Init import Mathlib.Algebra.Algebra.Defs import Mathlib.Algebra.Order.BigOperators.Ring.Finset import Mathlib.Algebra.Order.Field.Canonical.Basic import Mathlib.Algebra.Order.Nonneg.Field import Mathlib.Algebra.Order.Nonneg.Floor import Mathlib.Data.Real.Pointwise import Mathlib.Order.ConditionallyCompleteLattice.Group import Mathlib.Tactic.Bound.Attribute import Mathlib.Tactic.GCongr.Core import Mathlib.Algebra.Ring.Regular import Mathlib.Data.NNReal.Basic open Function open NNReal open Real open Set open NNReal
import Init import Mathlib.Algebra.Algebra.Defs import Mathlib.Algebra.Order.BigOperators.Ring.Finset import Mathlib.Algebra.Order.Field.Canonical.Basic import Mathlib.Algebra.Order.Nonneg.Field import Mathlib.Algebra.Order.Nonneg.Floor import Mathlib.Data.Real.Pointwise import Mathlib.Order.ConditionallyCompleteLattice.Group import Mathlib.Tactic.Bound.Attribute import Mathlib.Tactic.GCongr.Core import Mathlib.Algebra.Ring.Regular import Mathlib.Data.NNReal.Basic
open Function open NNReal open Real open Set open NNReal
lemma exists_lt_of_strictMono_tac_42480 [LinearOrderedCommGroupWithZero Γ₀] (h : Nontrivial Γ₀ˣ) (f : Γ₀ →*₀ ℝ≥0) (hf : StrictMono ⇑f) (r : ℝ≥0) (hr : 0 < r) (g : Γ₀ˣ) (hg1 : g ≠ 1) (u : Γ₀ˣ) (hu : u = if g < 1 then g else g⁻¹) (hfu : f ↑u < 1) (n : ℕ) (hn : f ↑u ^ n < r) : f ↑u ^ n < r := sorry
lemma exists_lt_of_strictMono_tac_42480 {Γ₀ : Type*} [LinearOrderedCommGroupWithZero Γ₀] (h : Nontrivial Γ₀ˣ) (f : Γ₀ →*₀ ℝ≥0) (hf : StrictMono ⇑f) (r : ℝ≥0) (hr : 0 < r) (g : Γ₀ˣ) (hg1 : g ≠ 1) (u : Γ₀ˣ) (hu : u = if g < 1 then g else g⁻¹) (hfu : f ↑u < 1) (n : ℕ) (hn : f ↑u ^ n < r) : f ↑u ^ n < r := sorry
tactic
true
['Mathlib', 'Data', 'NNReal', 'Basic']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 19, "column": 291}, "goal": "Γ₀ : Type u_1\ninst✝ : LinearOrderedCommGroupWithZero Γ₀\nh : Nontrivial Γ₀ˣ\nf : Γ₀ →*₀ ℝ≥0\nhf : StrictMono ⇑f\nr : ℝ≥0\nhr : 0 < r\ng : Γ₀ˣ\nhg1 : g ≠ 1\nu : Γ₀ˣ\nhu : u = if g < 1 then g else g⁻¹\nhfu : f ↑u < 1\nn : ℕ\nhn : f ↑u ^ n < r\n⊢ f ↑u ^ n < r", "endPos": {"line": 19, "column": 296}}], "messages": [{"severity": "warning", "pos": {"line": 19, "column": 6}, "endPos": {"line": 19, "column": 39}, "data": "declaration uses 'sorry'"}], "env": 0}
Behrend.four_zero_nine_six_lt_exp_sixteen_tac_20938
import Init import Mathlib.Analysis.InnerProductSpace.PiL2 import Mathlib.Combinatorics.Additive.AP.Three.Defs import Mathlib.Combinatorics.Pigeonhole import Mathlib.Data.Complex.ExponentialBounds import Mathlib.Combinatorics.Additive.AP.Three.Behrend open Nat hiding log open Finset Metric Real open scoped Pointwise open scoped Filter Topology open Real
import Init import Mathlib.Analysis.InnerProductSpace.PiL2 import Mathlib.Combinatorics.Additive.AP.Three.Defs import Mathlib.Combinatorics.Pigeonhole import Mathlib.Data.Complex.ExponentialBounds import Mathlib.Combinatorics.Additive.AP.Three.Behrend
open Nat hiding log open Finset Metric Real open scoped Pointwise open scoped Filter Topology open Real
lemma four_zero_nine_six_lt_exp_sixteen_tac_20938 : 12 * log 2 < 16 := sorry
lemma four_zero_nine_six_lt_exp_sixteen_tac_20938 : 12 * log 2 < 16 := sorry
tactic
true
['Mathlib', 'Combinatorics', 'Additive', 'AP', 'Three', 'Behrend']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 13, "column": 72}, "goal": "⊢ 12 * log 2 < 16", "endPos": {"line": 13, "column": 77}}], "messages": [{"severity": "warning", "pos": {"line": 13, "column": 6}, "endPos": {"line": 13, "column": 49}, "data": "declaration uses 'sorry'"}], "env": 0}
Units.liftRight_inv_mul_tac_4798
import Init import Mathlib.Algebra.Group.Hom.Defs import Mathlib.Algebra.Group.Units import Mathlib.Algebra.Group.Units.Hom open Function
import Init import Mathlib.Algebra.Group.Hom.Defs import Mathlib.Algebra.Group.Units import Mathlib.Algebra.Group.Units.Hom
open Function
lemma liftRight_inv_mul_tac_4798 [Monoid M] [Monoid N] (f : M →* N) (g : M → Nˣ) (h : ∀ (x : M), ↑(g x) = f x) (x : M) : ↑((liftRight f g h) x)⁻¹ * f x = 1 := sorry
lemma liftRight_inv_mul_tac_4798 {M : Type*} {N : Type*} [Monoid M] [Monoid N] (f : M →* N) (g : M → Nˣ) (h : ∀ (x : M), ↑(g x) = f x) (x : M) : ↑((liftRight f g h) x)⁻¹ * f x = 1 := sorry
[['mul_one'], ['coe_liftRight'], ['Units', 'inv_mul_eq_iff_eq_mul']]
tactic
false
['Mathlib', 'Algebra', 'Group', 'Units', 'Hom']
null
leanprover/lean4:v4.11.0
Mathlib
{"sorries": [{"proofState": 0, "pos": {"line": 7, "column": 159}, "goal": "M : Type u_1\nN : Type u_2\nx✝ : Sort u_3\nliftRight : x✝\ninst✝¹ : Monoid M\ninst✝ : Monoid N\nf : M →* N\ng : M → Nˣ\nh : ∀ (x : M), ↑(g x) = f x\nx : M\n⊢ (sorryAx N true)⁻¹ * f x = 1", "endPos": {"line": 7, "column": 164}}], "messages": [{"severity": "error", "pos": {"line": 7, "column": 122}, "endPos": {"line": 7, "column": 145}, "data": "failed to synthesize\n Inv N\nAdditional diagnostic information may be available using the `set_option diagnostics true` command."}, {"severity": "error", "pos": {"line": 7, "column": 124}, "endPos": {"line": 7, "column": 139}, "data": "function expected at\n liftRight\nterm has type\n ?m.422"}], "env": 0}