Intruction
stringclasses 1
value | Context
stringlengths 16
1.29k
| response
stringlengths 129
1.02k
|
---|---|---|
This is a question asked by a user
|
The stock span problem is a financial problem where we have a series of n daily
price quotes for a stock and we need to calculate span of stock's price for all n days.
The span Si of the stock's price on a given day i is defined as the maximum
number of consecutive days just before the given day, for which the price of the stock
on the current day is less than or equal to its price on the given day.
|
def calculation_span(price, s):
n = len(price)
st = []
st.append(0)
s[0] = 1
for i in range(1, n):
while len(st) > 0 and price[st[0]] <= price[i]:
st.pop()
s[i] = i + 1 if len(st) <= 0 else i - st[0]
st.append(i)
def print_array(arr, n):
for i in range(n):
print(arr[i], end=' ')
price = [10, 4, 5, 90, 120, 80]
S = [(0) for i in range(len(price) + 1)]
calculation_span(price, S)
print_array(S, len(price))
|
This is a question asked by a user
|
Generate code for middle_element_of_linked_list
|
from __future__ import annotations
class Node:
def __init__(self, data: int) ->None:
self.data = data
self.next = None
class LinkedList:
def __init__(self):
self.head = None
def push(self, new_data: int) ->int:
new_node = Node(new_data)
new_node.next = self.head
self.head = new_node
return self.head.data
def middle_element(self) ->(int | None):
slow_pointer = self.head
fast_pointer = self.head
if self.head:
while fast_pointer and fast_pointer.next:
fast_pointer = fast_pointer.next.next
slow_pointer = slow_pointer.next
return slow_pointer.data
else:
print('No element found.')
return None
if __name__ == '__main__':
link = LinkedList()
for _ in range(int(input().strip())):
data = int(input().strip())
link.push(data)
print(link.middle_element())
|
This is a question asked by a user
|
Task:
Given a positive int number. Return True if this number is power of 4
or False otherwise.
Implementation notes: Use bit manipulation.
For example if the number is the power of 2 it's bits representation:
n = 0..100..00
n - 1 = 0..011..11
n & (n - 1) - no intersections = 0
If the number is a power of 4 then it should be a power of 2
and the set bit should be at an odd position.
|
def power_of_4(number: int) ->bool:
if not isinstance(number, int):
raise TypeError('number must be an integer')
if number <= 0:
raise ValueError('number must be positive')
if number & number - 1 == 0:
c = 0
while number:
c += 1
number >>= 1
return c % 2 == 1
else:
return False
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Author: Alexander Joslin
GitHub: github.com/echoaj
Explanation: https://medium.com/@haleesammar/implemented-in-js-dijkstras-2-stack-
algorithm-for-evaluating-mathematical-expressions-fc0837dae1ea
We can use Dijkstra's two stack algorithm to solve an equation
such as: (5 + ((4 * 2) * (2 + 3)))
THESE ARE THE ALGORITHM'S RULES:
RULE 1: Scan the expression from left to right. When an operand is encountered,
push it onto the operand stack.
RULE 2: When an operator is encountered in the expression,
push it onto the operator stack.
RULE 3: When a left parenthesis is encountered in the expression, ignore it.
RULE 4: When a right parenthesis is encountered in the expression,
pop an operator off the operator stack. The two operands it must
operate on must be the last two operands pushed onto the operand stack.
We therefore pop the operand stack twice, perform the operation,
and push the result back onto the operand stack so it will be available
for use as an operand of the next operator popped off the operator stack.
RULE 5: When the entire infix expression has been scanned, the value left on
the operand stack represents the value of the expression.
NOTE: It only works with whole numbers.
|
__author__ = 'Alexander Joslin'
import operator as op
from .stack import Stack
def dijkstras_two_stack_algorithm(equation: str) ->int:
operators = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub}
operand_stack: Stack[int] = Stack()
operator_stack: Stack[str] = Stack()
for i in equation:
if i.isdigit():
operand_stack.push(int(i))
elif i in operators:
operator_stack.push(i)
elif i == ')':
opr = operator_stack.peek()
operator_stack.pop()
num1 = operand_stack.peek()
operand_stack.pop()
num2 = operand_stack.peek()
operand_stack.pop()
total = operators[opr](num2, num1)
operand_stack.push(total)
return operand_stack.peek()
if __name__ == '__main__':
equation = '(5 + ((4 * 2) * (2 + 3)))'
print(f'{equation} = {dijkstras_two_stack_algorithm(equation)}')
|
This is a question asked by a user
|
Generate code for base16
|
def base16_encode(data: bytes) ->str:
return ''.join([hex(byte)[2:].zfill(2).upper() for byte in list(data)])
def base16_decode(data: str) ->bytes:
if len(data) % 2 != 0:
raise ValueError(
"""Base16 encoded data is invalid:
Data does not have an even number of hex digits."""
)
if not set(data) <= set('0123456789ABCDEF'):
raise ValueError(
"""Base16 encoded data is invalid:
Data is not uppercase hex or it contains invalid characters."""
)
return bytes(int(data[i] + data[i + 1], 16) for i in range(0, len(data), 2)
)
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Python3 program to evaluate a prefix expression.
|
calc = {'+': lambda x, y: x + y, '-': lambda x, y: x - y, '*': lambda x, y:
x * y, '/': lambda x, y: x / y}
def is_operand(c):
return c.isdigit()
def evaluate(expression):
stack = []
for c in expression.split()[::-1]:
if is_operand(c):
stack.append(int(c))
else:
o1 = stack.pop()
o2 = stack.pop()
stack.append(calc[c](o1, o2))
return stack.pop()
if __name__ == '__main__':
test_expression = '+ 9 * 2 6'
print(evaluate(test_expression))
test_expression = '/ * 10 2 + 4 1 '
print(evaluate(test_expression))
|
This is a question asked by a user
|
A XOR Gate is a logic gate in boolean algebra which results to 1 (True) if only one of
the two inputs is 1, and 0 (False) if an even number of inputs are 1.
Following is the truth table of a XOR Gate:
------------------------------
| Input 1 | Input 2 | Output |
------------------------------
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
------------------------------
Refer - https://www.geeksforgeeks.org/logic-gates-in-python/
|
def xor_gate(input_1: int, input_2: int) ->int:
return (input_1, input_2).count(0) % 2
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Author : Alexander Pantyukhin
Date : November 30, 2022
Task:
Given two int numbers. Return True these numbers have opposite signs
or False otherwise.
Implementation notes: Use bit manipulation.
Use XOR for two numbers.
|
def different_signs(num1: int, num2: int) ->bool:
return num1 ^ num2 < 0
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
A XNOR Gate is a logic gate in boolean algebra which results to 0 (False) if both the
inputs are different, and 1 (True), if the inputs are same.
It's similar to adding a NOT gate to an XOR gate
Following is the truth table of a XNOR Gate:
------------------------------
| Input 1 | Input 2 | Output |
------------------------------
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |
------------------------------
Refer - https://www.geeksforgeeks.org/logic-gates-in-python/
|
def xnor_gate(input_1: int, input_2: int) ->int:
return 1 if input_1 == input_2 else 0
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Generate code for find_triplets_with_0_sum
|
from itertools import combinations
def find_triplets_with_0_sum(nums: list[int]) ->list[list[int]]:
return [list(x) for x in sorted({abc for abc in combinations(sorted(
nums), 3) if not sum(abc)})]
|
This is a question asked by a user
|
Generate code for reverse_bits
|
def get_reverse_bit_string(number: int) ->str:
if not isinstance(number, int):
msg = (
f'operation can not be conducted on a object of type {type(number).__name__}'
)
raise TypeError(msg)
bit_string = ''
for _ in range(32):
bit_string += str(number % 2)
number = number >> 1
return bit_string
def reverse_bit(number: int) ->str:
if number < 0:
raise ValueError('the value of input must be positive')
elif isinstance(number, float):
raise TypeError("Input value must be a 'int' type")
elif isinstance(number, str):
raise TypeError(
"'<' not supported between instances of 'str' and 'int'")
result = 0
for _ in range(1, 33):
result = result << 1
end_bit = number % 2
number = number >> 1
result = result | end_bit
return get_reverse_bit_string(result)
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Generate code for brute_force_caesar_cipher
|
import string
def decrypt(message: str) ->None:
for key in range(len(string.ascii_uppercase)):
translated = ''
for symbol in message:
if symbol in string.ascii_uppercase:
num = string.ascii_uppercase.find(symbol)
num = num - key
if num < 0:
num = num + len(string.ascii_uppercase)
translated = translated + string.ascii_uppercase[num]
else:
translated = translated + symbol
print(f'Decryption using Key #{key}: {translated}')
def main() ->None:
message = input('Encrypted message: ')
message = message.upper()
decrypt(message)
if __name__ == '__main__':
import doctest
doctest.testmod()
main()
|
This is a question asked by a user
|
A Hamiltonian cycle (Hamiltonian circuit) is a graph cycle
through a graph that visits each node exactly once.
Determining whether such paths and cycles exist in graphs
is the 'Hamiltonian path problem', which is NP-complete.
Wikipedia: https://en.wikipedia.org/wiki/Hamiltonian_path
|
def valid_connection(graph: list[list[int]], next_ver: int, curr_ind: int,
path: list[int]) ->bool:
if graph[path[curr_ind - 1]][next_ver] == 0:
return False
return not any(vertex == next_ver for vertex in path)
def util_hamilton_cycle(graph: list[list[int]], path: list[int], curr_ind: int
) ->bool:
if curr_ind == len(graph):
return graph[path[curr_ind - 1]][path[0]] == 1
for next_ver in range(len(graph)):
if valid_connection(graph, next_ver, curr_ind, path):
path[curr_ind] = next_ver
if util_hamilton_cycle(graph, path, curr_ind + 1):
return True
path[curr_ind] = -1
return False
def hamilton_cycle(graph: list[list[int]], start_index: int=0) ->list[int]:
path = [-1] * (len(graph) + 1)
path[0] = path[-1] = start_index
return path if util_hamilton_cycle(graph, path, 1) else []
|
This is a question asked by a user
|
Generate code for binary_count_trailing_zeros
|
from math import log2
def binary_count_trailing_zeros(a: int) ->int:
if a < 0:
raise ValueError('Input value must be a positive integer')
elif isinstance(a, float):
raise TypeError("Input value must be a 'int' type")
return 0 if a == 0 else int(log2(a & -a))
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Generate code for gray_code_sequence
|
def gray_code(bit_count: int) ->list:
if bit_count < 0:
raise ValueError('The given input must be positive')
sequence = gray_code_sequence_string(bit_count)
for i in range(len(sequence)):
sequence[i] = int(sequence[i], 2)
return sequence
def gray_code_sequence_string(bit_count: int) ->list:
if bit_count == 0:
return ['0']
if bit_count == 1:
return ['0', '1']
seq_len = 1 << bit_count
smaller_sequence = gray_code_sequence_string(bit_count - 1)
sequence = []
for i in range(seq_len // 2):
generated_no = '0' + smaller_sequence[i]
sequence.append(generated_no)
for i in reversed(range(seq_len // 2)):
generated_no = '1' + smaller_sequence[i]
sequence.append(generated_no)
return sequence
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
An AND Gate is a logic gate in boolean algebra which results to 1 (True) if both the
inputs are 1, and 0 (False) otherwise.
Following is the truth table of an AND Gate:
------------------------------
| Input 1 | Input 2 | Output |
------------------------------
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |
------------------------------
Refer - https://www.geeksforgeeks.org/logic-gates-in-python/
|
def and_gate(input_1: int, input_2: int) ->int:
return int(input_1 and input_2)
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Generate code for index_of_rightmost_set_bit
|
def get_index_of_rightmost_set_bit(number: int) ->int:
if not isinstance(number, int) or number < 0:
raise ValueError('Input must be a non-negative integer')
intermediate = number & ~(number - 1)
index = 0
while intermediate:
intermediate >>= 1
index += 1
return index - 1
if __name__ == '__main__':
"""
Finding the index of rightmost set bit has some very peculiar use-cases,
especially in finding missing or/and repeating numbers in a list of
positive integers.
"""
import doctest
doctest.testmod(verbose=True)
|
This is a question asked by a user
|
Generate code for binary_count_setbits
|
def binary_count_setbits(a: int) ->int:
if a < 0:
raise ValueError('Input value must be a positive integer')
elif isinstance(a, float):
raise TypeError("Input value must be a 'int' type")
return bin(a).count('1')
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
In this problem, we want to determine all possible subsequences
of the given sequence. We use backtracking to solve this problem.
Time complexity: O(2^n),
where n denotes the length of the given sequence.
|
from __future__ import annotations
from typing import Any
def generate_all_subsequences(sequence: list[Any]) ->None:
create_state_space_tree(sequence, [], 0)
def create_state_space_tree(sequence: list[Any], current_subsequence: list[
Any], index: int) ->None:
if index == len(sequence):
print(current_subsequence)
return
create_state_space_tree(sequence, current_subsequence, index + 1)
current_subsequence.append(sequence[index])
create_state_space_tree(sequence, current_subsequence, index + 1)
current_subsequence.pop()
if __name__ == '__main__':
seq: list[Any] = [3, 1, 2, 4]
generate_all_subsequences(seq)
seq.clear()
seq.extend(['A', 'B', 'C'])
generate_all_subsequences(seq)
|
This is a question asked by a user
|
Calculates the sum of two non-negative integers using bitwise operators
Wikipedia explanation: https://en.wikipedia.org/wiki/Binary_number
|
def bitwise_addition_recursive(number: int, other_number: int) ->int:
if not isinstance(number, int) or not isinstance(other_number, int):
raise TypeError('Both arguments MUST be integers!')
if number < 0 or other_number < 0:
raise ValueError('Both arguments MUST be non-negative!')
bitwise_sum = number ^ other_number
carry = number & other_number
if carry == 0:
return bitwise_sum
return bitwise_addition_recursive(bitwise_sum, carry << 1)
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Calculate the Product Sum from a Special Array.
reference: https://dev.to/sfrasica/algorithms-product-sum-from-an-array-dc6
Python doctests can be run with the following command:
python -m doctest -v product_sum.py
Calculate the product sum of a "special" array which can contain integers or nested
arrays. The product sum is obtained by adding all elements and multiplying by their
respective depths.
For example, in the array [x, y], the product sum is (x + y). In the array [x, [y, z]],
the product sum is x + 2 * (y + z). In the array [x, [y, [z]]],
the product sum is x + 2 * (y + 3z).
Example Input:
[5, 2, [-7, 1], 3, [6, [-13, 8], 4]]
Output: 12
|
def product_sum(arr: list[int | list], depth: int) ->int:
total_sum = 0
for ele in arr:
total_sum += product_sum(ele, depth + 1) if isinstance(ele, list
) else ele
return total_sum * depth
def product_sum_array(array: list[int | list]) ->int:
return product_sum(array, 1)
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Generate code for intersection
|
import math
from collections.abc import Callable
def intersection(function: Callable[[float], float], x0: float, x1: float
) ->float:
x_n: float = x0
x_n1: float = x1
while True:
if x_n == x_n1 or function(x_n1) == function(x_n):
raise ZeroDivisionError(
'float division by zero, could not find root')
x_n2: float = x_n1 - function(x_n1) / ((function(x_n1) - function(
x_n)) / (x_n1 - x_n))
if abs(x_n2 - x_n1) < 10 ** -5:
return x_n2
x_n = x_n1
x_n1 = x_n2
def f(x: float) ->float:
return math.pow(x, 3) - 2 * x - 5
if __name__ == '__main__':
print(intersection(f, 3, 3.5))
|
This is a question asked by a user
|
Convert a Decimal Number to an Octal Number.
|
import math
def decimal_to_octal(num: int) ->str:
octal = 0
counter = 0
while num > 0:
remainder = num % 8
octal = octal + remainder * math.floor(math.pow(10, counter))
counter += 1
num = math.floor(num / 8)
return f'0o{int(octal)}'
def main() ->None:
print('\n2 in octal is:')
print(decimal_to_octal(2))
print('\n8 in octal is:')
print(decimal_to_octal(8))
print('\n65 in octal is:')
print(decimal_to_octal(65))
print('\n216 in octal is:')
print(decimal_to_octal(216))
print('\n512 in octal is:')
print(decimal_to_octal(512))
print('\n')
if __name__ == '__main__':
main()
|
This is a question asked by a user
|
Convert a string of characters to a sequence of numbers
corresponding to the character's position in the alphabet.
https://www.dcode.fr/letter-number-cipher
http://bestcodes.weebly.com/a1z26.html
|
from __future__ import annotations
def encode(plain: str) ->list[int]:
return [(ord(elem) - 96) for elem in plain]
def decode(encoded: list[int]) ->str:
return ''.join(chr(elem + 96) for elem in encoded)
def main() ->None:
encoded = encode(input('-> ').strip().lower())
print('Encoded: ', encoded)
print('Decoded:', decode(encoded))
if __name__ == '__main__':
main()
|
This is a question asked by a user
|
Generate code for onepad_cipher
|
import random
class Onepad:
@staticmethod
def encrypt(text: str) ->tuple[list[int], list[int]]:
plain = [ord(i) for i in text]
key = []
cipher = []
for i in plain:
k = random.randint(1, 300)
c = (i + k) * k
cipher.append(c)
key.append(k)
return cipher, key
@staticmethod
def decrypt(cipher: list[int], key: list[int]) ->str:
plain = []
for i in range(len(key)):
p = int((cipher[i] - key[i] ** 2) / key[i])
plain.append(chr(p))
return ''.join(plain)
if __name__ == '__main__':
c, k = Onepad().encrypt('Hello')
print(c, k)
print(Onepad().decrypt(c, k))
|
This is a question asked by a user
|
Generate code for binary_and_operator
|
def binary_and(a: int, b: int) ->str:
if a < 0 or b < 0:
raise ValueError('the value of both inputs must be positive')
a_binary = str(bin(a))[2:]
b_binary = str(bin(b))[2:]
max_len = max(len(a_binary), len(b_binary))
return '0b' + ''.join(str(int(char_a == '1' and char_b == '1')) for
char_a, char_b in zip(a_binary.zfill(max_len), b_binary.zfill(max_len))
)
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Author : Naman Sharma
Date : October 2, 2023
Task:
To Find the largest power of 2 less than or equal to a given number.
Implementation notes: Use bit manipulation.
We start from 1 & left shift the set bit to check if (res<<1)<=number.
Each left bit shift represents a pow of 2.
For example:
number: 15
res: 1 0b1
2 0b10
4 0b100
8 0b1000
16 0b10000 (Exit)
|
def largest_pow_of_two_le_num(number: int) ->int:
if isinstance(number, float):
raise TypeError("Input value must be a 'int' type")
if number <= 0:
return 0
res = 1
while res << 1 <= number:
res <<= 1
return res
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Generate code for hash_table_with_linked_list
|
from collections import deque
from .hash_table import HashTable
class HashTableWithLinkedList(HashTable):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def _set_value(self, key, data):
self.values[key] = deque([]) if self.values[key
] is None else self.values[key]
self.values[key].appendleft(data)
self._keys[key] = self.values[key]
def balanced_factor(self):
return sum(self.charge_factor - len(slot) for slot in self.values
) / self.size_table * self.charge_factor
def _collision_resolution(self, key, data=None):
if not (len(self.values[key]) == self.charge_factor and self.values
.count(None) == 0):
return key
return super()._collision_resolution(key, data)
|
This is a question asked by a user
|
A NOT Gate is a logic gate in boolean algebra which results to 0 (False) if the
input is high, and 1 (True) if the input is low.
Following is the truth table of a XOR Gate:
------------------------------
| Input | Output |
------------------------------
| 0 | 1 |
| 1 | 0 |
------------------------------
Refer - https://www.geeksforgeeks.org/logic-gates-in-python/
|
def not_gate(input_1: int) ->int:
return 1 if input_1 == 0 else 0
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Generate code for missing_number
|
def find_missing_number(nums: list[int]) ->int:
low = min(nums)
high = max(nums)
missing_number = high
for i in range(low, high):
missing_number ^= i ^ nums[i - low]
return missing_number
|
This is a question asked by a user
|
Lower–upper (LU) decomposition factors a matrix as a product of a lower
triangular matrix and an upper triangular matrix. A square matrix has an LU
decomposition under the following conditions:
- If the matrix is invertible, then it has an LU decomposition if and only
if all of its leading principal minors are non-zero (see
https://en.wikipedia.org/wiki/Minor_(linear_algebra) for an explanation of
leading principal minors of a matrix).
- If the matrix is singular (i.e., not invertible) and it has a rank of k
(i.e., it has k linearly independent columns), then it has an LU
decomposition if its first k leading principal minors are non-zero.
This algorithm will simply attempt to perform LU decomposition on any square
matrix and raise an error if no such decomposition exists.
Reference: https://en.wikipedia.org/wiki/LU_decomposition
|
from __future__ import annotations
import numpy as np
def lower_upper_decomposition(table: np.ndarray) ->tuple[np.ndarray, np.ndarray
]:
rows, columns = np.shape(table)
if rows != columns:
msg = (
f"'table' has to be of square shaped array but got a {rows}x{columns} array:\n{table}"
)
raise ValueError(msg)
lower = np.zeros((rows, columns))
upper = np.zeros((rows, columns))
for i in range(columns):
for j in range(i):
total = np.sum(lower[i, :i] * upper[:i, j])
if upper[j][j] == 0:
raise ArithmeticError('No LU decomposition exists')
lower[i][j] = (table[i][j] - total) / upper[j][j]
lower[i][i] = 1
for j in range(i, columns):
total = np.sum(lower[i, :i] * upper[:i, j])
upper[i][j] = table[i][j] - total
return lower, upper
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Provide the functionality to manipulate a single bit.
|
def set_bit(number: int, position: int) ->int:
return number | 1 << position
def clear_bit(number: int, position: int) ->int:
return number & ~(1 << position)
def flip_bit(number: int, position: int) ->int:
return number ^ 1 << position
def is_bit_set(number: int, position: int) ->bool:
return number >> position & 1 == 1
def get_bit(number: int, position: int) ->int:
return int(number & 1 << position != 0)
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Generate code for count_1s_brian_kernighan_method
|
def get_1s_count(number: int) ->int:
if not isinstance(number, int) or number < 0:
raise ValueError('Input must be a non-negative integer')
count = 0
while number:
number &= number - 1
count += 1
return count
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Generate code for is_even
|
def is_even(number: int) ->bool:
return number & 1 == 0
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Generate code for mean_threshold
|
from PIL import Image
"""
Mean thresholding algorithm for image processing
https://en.wikipedia.org/wiki/Thresholding_(image_processing)
"""
def mean_threshold(image: Image) ->Image:
height, width = image.size
mean = 0
pixels = image.load()
for i in range(width):
for j in range(height):
pixel = pixels[j, i]
mean += pixel
mean //= width * height
for j in range(width):
for i in range(height):
pixels[i, j] = 255 if pixels[i, j] > mean else 0
return image
if __name__ == '__main__':
image = mean_threshold(Image.open('path_to_image').convert('L'))
image.save('output_image_path')
|
This is a question asked by a user
|
An NIMPLY Gate is a logic gate in boolean algebra which results to 0 if
either input 1 is 0, or if input 1 is 1, then it is 0 only if input 2 is 1.
It is false if input 1 implies input 2. It is the negated form of imply
Following is the truth table of an NIMPLY Gate:
------------------------------
| Input 1 | Input 2 | Output |
------------------------------
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
------------------------------
Refer - https://en.wikipedia.org/wiki/NIMPLY_gate
|
def nimply_gate(input_1: int, input_2: int) ->int:
return int(input_1 == 1 and input_2 == 0)
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Newton's Method.
|
from collections.abc import Callable
RealFunc = Callable[[float], float]
def newton(function: RealFunc, derivative: RealFunc, starting_int: int
) ->float:
prev_guess = float(starting_int)
while True:
try:
next_guess = prev_guess - function(prev_guess) / derivative(
prev_guess)
except ZeroDivisionError:
raise ZeroDivisionError('Could not find root') from None
if abs(prev_guess - next_guess) < 10 ** -5:
return next_guess
prev_guess = next_guess
def f(x: float) ->float:
return x ** 3 - 2 * x - 5
def f1(x: float) ->float:
return 3 * x ** 2 - 2
if __name__ == '__main__':
print(newton(f, f1, 3))
|
This is a question asked by a user
|
Queue implementation using two stacks
|
from collections.abc import Iterable
from typing import Generic, TypeVar
_T = TypeVar('_T')
class QueueByTwoStacks(Generic[_T]):
def __init__(self, iterable: (Iterable[_T] | None)=None) ->None:
self._stack1: list[_T] = list(iterable or [])
self._stack2: list[_T] = []
def __len__(self) ->int:
return len(self._stack1) + len(self._stack2)
def __repr__(self) ->str:
return f'Queue({tuple(self._stack2[::-1] + self._stack1)})'
def put(self, item: _T) ->None:
self._stack1.append(item)
def get(self) ->_T:
stack1_pop = self._stack1.pop
stack2_append = self._stack2.append
if not self._stack2:
while self._stack1:
stack2_append(stack1_pop())
if not self._stack2:
raise IndexError('Queue is empty')
return self._stack2.pop()
if __name__ == '__main__':
from doctest import testmod
testmod()
|
This is a question asked by a user
|
Generate code for quadratic_probing
|
from .hash_table import HashTable
class QuadraticProbing(HashTable):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def _collision_resolution(self, key, data=None):
i = 1
new_key = self.hash_function(key + i * i)
while self.values[new_key] is not None and self.values[new_key] != key:
i += 1
new_key = self.hash_function(key + i * i
) if not self.balanced_factor() >= self.lim_charge else None
if new_key is None:
break
return new_key
|
This is a question asked by a user
|
https://www.enjoyalgorithms.com/blog/median-of-two-sorted-arrays
|
def find_median_sorted_arrays(nums1: list[int], nums2: list[int]) ->float:
if not nums1 and not nums2:
raise ValueError('Both input arrays are empty.')
merged = sorted(nums1 + nums2)
total = len(merged)
if total % 2 == 1:
return float(merged[total // 2])
middle1 = merged[total // 2 - 1]
middle2 = merged[total // 2]
return (float(middle1) + float(middle2)) / 2.0
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Given an array of integers and an integer req_sum, find the number of pairs of array
elements whose sum is equal to req_sum.
https://practice.geeksforgeeks.org/problems/count-pairs-with-given-sum5022/0
|
from itertools import combinations
def pairs_with_sum(arr: list, req_sum: int) ->int:
return len([(1) for a, b in combinations(arr, 2) if a + b == req_sum])
if __name__ == '__main__':
from doctest import testmod
testmod()
|
This is a question asked by a user
|
Minimax helps to achieve maximum score in a game by checking all possible moves
depth is current depth in game tree.
nodeIndex is index of current node in scores[].
if move is of maximizer return true else false
leaves of game tree is stored in scores[]
height is maximum height of Game tree
|
from __future__ import annotations
import math
def minimax(depth: int, node_index: int, is_max: bool, scores: list[int],
height: float) ->int:
if depth < 0:
raise ValueError('Depth cannot be less than 0')
if len(scores) == 0:
raise ValueError('Scores cannot be empty')
if depth == height:
return scores[node_index]
if is_max:
return max(minimax(depth + 1, node_index * 2, False, scores, height
), minimax(depth + 1, node_index * 2 + 1, False, scores, height))
return min(minimax(depth + 1, node_index * 2, True, scores, height),
minimax(depth + 1, node_index * 2 + 1, True, scores, height))
def main() ->None:
scores = [90, 23, 6, 33, 21, 65, 123, 34423]
height = math.log(len(scores), 2)
print('Optimal value : ', end='')
print(minimax(0, 0, True, scores, height))
if __name__ == '__main__':
import doctest
doctest.testmod()
main()
|
This is a question asked by a user
|
Author : Alexander Pantyukhin
Date : November 3, 2022
Implement the class of prefix sum with useful functions based on it.
|
class PrefixSum:
def __init__(self, array: list[int]) ->None:
len_array = len(array)
self.prefix_sum = [0] * len_array
if len_array > 0:
self.prefix_sum[0] = array[0]
for i in range(1, len_array):
self.prefix_sum[i] = self.prefix_sum[i - 1] + array[i]
def get_sum(self, start: int, end: int) ->int:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def contains_sum(self, target_sum: int) ->bool:
sums = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(sum_item)
return False
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
Generate code for highest_set_bit
|
def get_highest_set_bit_position(number: int) ->int:
if not isinstance(number, int):
raise TypeError("Input value must be an 'int' type")
position = 0
while number:
position += 1
number >>= 1
return position
if __name__ == '__main__':
import doctest
doctest.testmod()
|
This is a question asked by a user
|
A NOR Gate is a logic gate in boolean algebra which results to false(0)
if any of the input is 1, and True(1) if both the inputs are 0.
Following is the truth table of a NOR Gate:
| Input 1 | Input 2 | Output |
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |
Following is the code implementation of the NOR Gate
|
def nor_gate(input_1: int, input_2: int) ->int:
return int(input_1 == input_2 == 0)
def main() ->None:
print('Truth Table of NOR Gate:')
print('| Input 1 | Input 2 | Output |')
print(f'| 0 | 0 | {nor_gate(0, 0)} |')
print(f'| 0 | 1 | {nor_gate(0, 1)} |')
print(f'| 1 | 0 | {nor_gate(1, 0)} |')
print(f'| 1 | 1 | {nor_gate(1, 1)} |')
if __name__ == '__main__':
import doctest
doctest.testmod()
main()
"""Code provided by Akshaj Vishwanathan"""
"""Reference: https://www.geeksforgeeks.org/logic-gates-in-python/"""
|
This is a question asked by a user
|
Generate code for cryptomath_module
|
from maths.greatest_common_divisor import gcd_by_iterative
def find_mod_inverse(a: int, m: int) ->int:
if gcd_by_iterative(a, m) != 1:
msg = f'mod inverse of {a!r} and {m!r} does not exist'
raise ValueError(msg)
u1, u2, u3 = 1, 0, a
v1, v2, v3 = 0, 1, m
while v3 != 0:
q = u3 // v3
v1, v2, v3, u1, u2, u3 = (u1 - q * v1, u2 - q * v2, u3 - q * v3, v1,
v2, v3)
return u1 % m
|
This is a question asked by a user
|
Graph Coloring also called "m coloring problem"
consists of coloring a given graph with at most m colors
such that no adjacent vertices are assigned the same color
Wikipedia: https://en.wikipedia.org/wiki/Graph_coloring
|
def valid_coloring(neighbours: list[int], colored_vertices: list[int],
color: int) ->bool:
return not any(neighbour == 1 and colored_vertices[i] == color for i,
neighbour in enumerate(neighbours))
def util_color(graph: list[list[int]], max_colors: int, colored_vertices:
list[int], index: int) ->bool:
if index == len(graph):
return True
for i in range(max_colors):
if valid_coloring(graph[index], colored_vertices, i):
colored_vertices[index] = i
if util_color(graph, max_colors, colored_vertices, index + 1):
return True
colored_vertices[index] = -1
return False
def color(graph: list[list[int]], max_colors: int) ->list[int]:
colored_vertices = [-1] * len(graph)
if util_color(graph, max_colors, colored_vertices, 0):
return colored_vertices
return []
|
This is a question asked by a user
|
Generate code for circular_queue
|
class CircularQueue:
def __init__(self, n: int):
self.n = n
self.array = [None] * self.n
self.front = 0
self.rear = 0
self.size = 0
def __len__(self) ->int:
return self.size
def is_empty(self) ->bool:
return self.size == 0
def first(self):
return False if self.is_empty() else self.array[self.front]
def enqueue(self, data):
if self.size >= self.n:
raise Exception('QUEUE IS FULL')
self.array[self.rear] = data
self.rear = (self.rear + 1) % self.n
self.size += 1
return self
def dequeue(self):
if self.size == 0:
raise Exception('UNDERFLOW')
temp = self.array[self.front]
self.array[self.front] = None
self.front = (self.front + 1) % self.n
self.size -= 1
return temp
|
This is a question asked by a user
|
Generate code for permutations
|
def permute_recursive(nums: list[int]) ->list[list[int]]:
result: list[list[int]] = []
if len(nums) == 0:
return [[]]
for _ in range(len(nums)):
n = nums.pop(0)
permutations = permute_recursive(nums.copy())
for perm in permutations:
perm.append(n)
result.extend(permutations)
nums.append(n)
return result
def permute_backtrack(nums: list[int]) ->list[list[int]]:
def backtrack(start: int) ->None:
if start == len(nums) - 1:
output.append(nums[:])
else:
for i in range(start, len(nums)):
nums[start], nums[i] = nums[i], nums[start]
backtrack(start + 1)
nums[start], nums[i] = nums[i], nums[start]
output: list[list[int]] = []
backtrack(0)
return output
if __name__ == '__main__':
import doctest
result = permute_backtrack([1, 2, 3])
print(result)
doctest.testmod()
|
This is a question asked by a user
|
Generate code for newton_forward_interpolation
|
from __future__ import annotations
import math
def ucal(u: float, p: int) ->float:
temp = u
for i in range(1, p):
temp = temp * (u - i)
return temp
def main() ->None:
n = int(input('enter the numbers of values: '))
y: list[list[float]] = []
for _ in range(n):
y.append([])
for i in range(n):
for j in range(n):
y[i].append(j)
y[i][j] = 0
print('enter the values of parameters in a list: ')
x = list(map(int, input().split()))
print('enter the values of corresponding parameters: ')
for i in range(n):
y[i][0] = float(input())
value = int(input('enter the value to interpolate: '))
u = (value - x[0]) / (x[1] - x[0])
for i in range(1, n):
for j in range(n - i):
y[j][i] = y[j + 1][i - 1] - y[j][i - 1]
summ = y[0][0]
for i in range(1, n):
summ += ucal(u, i) * y[0][i] / math.factorial(i)
print(f'the value at {value} is {summ}')
if __name__ == '__main__':
main()
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.