repo_id
stringclasses
55 values
file_path
stringlengths
42
186
content
stringlengths
1
333k
__index_level_0__
int64
0
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/gpt2/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_keras_nlp_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config", "GPT2OnnxConfig"], "tokenization_gpt2": ["GPT2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_gpt2_fast"] = ["GPT2TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_gpt2"] = [ "GPT2_PRETRAINED_MODEL_ARCHIVE_LIST", "GPT2DoubleHeadsModel", "GPT2ForQuestionAnswering", "GPT2ForSequenceClassification", "GPT2ForTokenClassification", "GPT2LMHeadModel", "GPT2Model", "GPT2PreTrainedModel", "load_tf_weights_in_gpt2", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_gpt2"] = [ "TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGPT2DoubleHeadsModel", "TFGPT2ForSequenceClassification", "TFGPT2LMHeadModel", "TFGPT2MainLayer", "TFGPT2Model", "TFGPT2PreTrainedModel", ] try: if not is_keras_nlp_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_gpt2_tf"] = ["TFGPT2Tokenizer"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_gpt2"] = ["FlaxGPT2LMHeadModel", "FlaxGPT2Model", "FlaxGPT2PreTrainedModel"] if TYPE_CHECKING: from .configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2OnnxConfig from .tokenization_gpt2 import GPT2Tokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt2_fast import GPT2TokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt2 import ( GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, GPT2DoubleHeadsModel, GPT2ForQuestionAnswering, GPT2ForSequenceClassification, GPT2ForTokenClassification, GPT2LMHeadModel, GPT2Model, GPT2PreTrainedModel, load_tf_weights_in_gpt2, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_gpt2 import ( TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST, TFGPT2DoubleHeadsModel, TFGPT2ForSequenceClassification, TFGPT2LMHeadModel, TFGPT2MainLayer, TFGPT2Model, TFGPT2PreTrainedModel, ) try: if not is_keras_nlp_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt2_tf import TFGPT2Tokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt2 import FlaxGPT2LMHeadModel, FlaxGPT2Model, FlaxGPT2PreTrainedModel else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/gpt2/tokenization_gpt2_fast.py
# coding=utf-8 # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for OpenAI GPT.""" import json from typing import Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpt2 import GPT2Tokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} class GPT2TokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" GPT-2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import GPT2TokenizerFast >>> tokenizer = GPT2TokenizerFast.from_pretrained("openai-community/gpt2") >>> tokenizer("Hello world")["input_ids"] [15496, 995] >>> tokenizer(" Hello world")["input_ids"] [18435, 995] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. </Tip> This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`, *optional*): Path to the vocabulary file. merges_file (`str`, *optional*): Path to the merges file. tokenizer_file (`str`, *optional*): Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that contains everything needed to load the tokenizer. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (GPT2 tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = GPT2Tokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", add_prefix_space=False, **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, add_prefix_space=add_prefix_space, **kwargs, ) self.add_bos_token = kwargs.pop("add_bos_token", False) pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) pre_tok_state["add_prefix_space"] = add_prefix_space self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) self.add_prefix_space = add_prefix_space def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) @property # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template def default_chat_template(self): """ A simple chat template that ignores role information and just concatenates messages with EOS tokens. """ return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/gpt2/modeling_flax_gpt2.py
# coding=utf-8 # Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import ( FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, ) from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_gpt2 import GPT2Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "openai-community/gpt2" _CONFIG_FOR_DOC = "GPT2Config" GPT2_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`GPT2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ GPT2_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxConv1D(nn.Module): features: int use_bias: bool = True dtype: Any = jnp.float32 precision: Any = None @nn.compact def __call__(self, inputs): inputs = jnp.asarray(inputs, self.dtype) kernel = self.param("kernel", jax.nn.initializers.normal(stddev=0.02), (self.features, inputs.shape[-1])) kernel = jnp.asarray(kernel.transpose(), self.dtype) y = lax.dot_general(inputs, kernel, (((inputs.ndim - 1,), (0,)), ((), ())), precision=self.precision) if self.use_bias: bias = self.param("bias", jax.nn.initializers.zeros, (self.features,)) bias = jnp.asarray(bias, self.dtype) y = y + bias return y class FlaxGPT2Attention(nn.Module): config: GPT2Config dtype: jnp.dtype = jnp.float32 causal: bool = True is_cross_attention: bool = False def setup(self): config = self.config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.is_cross_attention: self.c_attn = FlaxConv1D(2 * self.embed_dim, dtype=self.dtype) self.q_attn = FlaxConv1D(self.embed_dim, dtype=self.dtype) else: self.c_attn = FlaxConv1D(3 * self.embed_dim, dtype=self.dtype) self.c_proj = FlaxConv1D(self.embed_dim, dtype=self.dtype) self.resid_dropout = nn.Dropout(rate=config.resid_pdrop) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, key_value_states: Optional[jnp.ndarray] = None, attention_mask=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, ): # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] if not is_cross_attention: qkv_out = self.c_attn(hidden_states) query, key, value = jnp.split(qkv_out, 3, axis=2) else: q_out = self.q_attn(hidden_states) (query,) = jnp.split(q_out, 1, axis=2) kv_out = self.c_attn(key_value_states) key, value = jnp.split(kv_out, 2, axis=2) query = self._split_heads(query) key = self._split_heads(key) value = self._split_heads(value) query_length, key_length = query.shape[1], key.shape[1] if self.causal: if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) dropout_rng = None if not deterministic and self.config.attn_pdrop > 0.0: dropout_rng = self.make_rng("dropout") # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask) # transform boolean mask into float mask if attention_mask is not None: attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None # usual dot product attention attn_weights = dot_product_attention_weights( query, key, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attn_pdrop, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value) attn_output = self._merge_heads(attn_output) attn_output = self.c_proj(attn_output) attn_output = self.resid_dropout(attn_output, deterministic=deterministic) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs class FlaxGPT2MLP(nn.Module): config: GPT2Config intermediate_size: int dtype: jnp.dtype = jnp.float32 def setup(self): embed_dim = self.config.hidden_size self.c_fc = FlaxConv1D(self.intermediate_size, dtype=self.dtype) self.c_proj = FlaxConv1D(embed_dim, dtype=self.dtype) self.act = ACT2FN[self.config.activation_function] self.dropout = nn.Dropout(rate=self.config.resid_pdrop) def __call__(self, hidden_states, deterministic: bool = True): hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxGPT2Block(nn.Module): config: GPT2Config dtype: jnp.dtype = jnp.float32 def setup(self): hidden_size = self.config.hidden_size inner_dim = self.config.n_inner if self.config.n_inner is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) self.attn = FlaxGPT2Attention(self.config, dtype=self.dtype) self.ln_2 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) if self.config.add_cross_attention: self.crossattention = FlaxGPT2Attention( config=self.config, dtype=self.dtype, causal=False, is_cross_attention=True ) self.ln_cross_attn = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) self.mlp = FlaxGPT2MLP(self.config, inner_dim, dtype=self.dtype) def __call__( self, hidden_states, attention_mask=None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, ): residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states, attention_mask=attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, ) # residual connection attn_output = attn_outputs[0] # output_attn: a, (attentions) outputs = attn_outputs[1:] # residual connection hidden_states = attn_output + residual # Cross-Attention Block if encoder_hidden_states is not None: # add one self-attention block for cross-attention if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " "cross-attention layers by setting `config.add_cross_attention=True`" ) residual = hidden_states hidden_states = self.ln_cross_attn(hidden_states) cross_attn_outputs = self.crossattention( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, deterministic=deterministic, output_attentions=output_attentions, ) attn_output = cross_attn_outputs[0] # residual connection hidden_states = residual + attn_output outputs = outputs + cross_attn_outputs[1:] # add cross attentions if we output attention weights residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic) # residual connection hidden_states = residual + feed_forward_hidden_states outputs = (hidden_states,) + outputs return outputs class FlaxGPT2PreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPT2Config base_model_prefix = "transformer" module_class: nn.Module = None def __init__( self, config: GPT2Config, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} if self.config.add_cross_attention: encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,)) encoder_attention_mask = attention_mask module_init_outputs = self.module.init( rngs, input_ids, attention_mask, position_ids, encoder_hidden_states, encoder_attention_mask, return_dict=False, ) else: module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False) random_params = module_init_outputs["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length)) attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) def __call__( self, input_ids, attention_mask=None, position_ids=None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, params: dict = None, past_key_values: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if encoder_hidden_states is not None and encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = input_ids.shape if position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.") position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) if attention_mask is None: attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPT2Attention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), encoder_hidden_states, encoder_attention_mask, not train, False, output_attentions, output_hidden_states, return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] return outputs class FlaxGPT2BlockCollection(nn.Module): config: GPT2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.blocks = [ FlaxGPT2Block(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask=None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for block in self.blocks: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = block( hidden_states, attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # this contains possible `None` values - `FlaxGPT2Module` will filter them out outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions) return outputs class FlaxGPT2Module(nn.Module): config: GPT2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.embed_dim = self.config.hidden_size self.wte = nn.Embed( self.config.vocab_size, self.embed_dim, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.wpe = nn.Embed( self.config.max_position_embeddings, self.embed_dim, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.embd_pdrop) self.h = FlaxGPT2BlockCollection(self.config, dtype=self.dtype) self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic=True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): input_embeds = self.wte(input_ids.astype("i4")) position_embeds = self.wpe(position_ids.astype("i4")) hidden_states = input_embeds + position_embeds hidden_states = self.dropout(hidden_states, deterministic=deterministic) outputs = self.h( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = outputs[1] + (hidden_states,) outputs = (hidden_states, all_hidden_states) + outputs[2:] else: outputs = (hidden_states,) + outputs[1:] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=outputs[1], attentions=outputs[2], cross_attentions=outputs[3], ) @add_start_docstrings( "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.", GPT2_START_DOCSTRING, ) class FlaxGPT2Model(FlaxGPT2PreTrainedModel): module_class = FlaxGPT2Module append_call_sample_docstring( FlaxGPT2Model, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPastAndCrossAttentions, _CONFIG_FOR_DOC, ) class FlaxGPT2LMHeadModule(nn.Module): config: GPT2Config dtype: jnp.dtype = jnp.float32 def setup(self): self.transformer = FlaxGPT2Module(self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): outputs = self.transformer( input_ids, attention_mask, position_ids, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + outputs[1:] return FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( """ The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, ) class FlaxGPT2LMHeadModel(FlaxGPT2PreTrainedModel): module_class = FlaxGPT2LMHeadModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since GPT2 uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice( extended_attention_mask, attention_mask.astype("i4"), (0, 0) ) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxGPT2LMHeadModel, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutputWithCrossAttentions, _CONFIG_FOR_DOC, )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/mega/configuration_mega.py
# coding=utf-8 # Copyright 2023 The Mega Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MEGA configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class MegaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MegaModel`]. It is used to instantiate a Mega model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mega [mnaylor/mega-base-wikitext](https://huggingface.co/mnaylor/mega-base-wikitext) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Mega model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MegaModel`]. hidden_size (`int`, *optional*, defaults to 128): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 4): Number of hidden layers in the Mega encoder. intermediate_size (`int`, *optional*, defaults to 256): Dimensionality of the hidden size (self-attention value projection) within the Mega encoder ema_projection_size (`int`, *optional*, defaults to 16): Dimensionality of the MegaMultiDimensionDampedEma bidirectional (`bool`, *optional*, defaults to `True`): Whether the MegaMultiDimensionDampedEma used in Mega's self-attention should work bidirectionally (`True`) or unidirectionally (`False`). Bidirectional EMA is incompatible with causal decoding, so this should be False if you intend to use the model as a decoder. shared_representation_size (`int`, *optional*, defaults to 64): Dimensionality of the linear projection for shared representation of self-attention queries and keys use_chunking (`bool`, *optional*, defaults to `False`): Whether to chunk inputs for linear self-attention complexity (described as Mega-chunk in the paper) chunk_size (`int`, *optional*, defaults to -1): If `use_chunking` is set to `True`, determines the size of the chunks to apply to the input sequence. If chunking is used, input sequences must be padded to a multiple of `chunk_size` truncation (`int`, *optional*): If specified, the sequence length for which to truncate MegaMultiDimensionDampedEma normalize_before_mega (`bool`, *optional*, defaults to `True`): Whether to normalize before (`True`) or after (`False`) passing through Mega encoder blocks normalization_type (`str`, *optional*, defaults to `"scalenorm"`): Type of normalization to use in Mega encoder blocks. Choose one of `"scalenorm"`, `"layernorm"`, `"rmsnorm"`, `"batchnorm"`, or `"syncbatchnorm"` (GPU required for syncbatchnorm) norm_affine (`bool`, *optional*, defaults to `True`): If `True`, applies a parameterized affine transformation to inputs during normalization activation (`str`, *optional*, defaults to `"silu"`): Activation function to apply within Mega encoder blocks. Choose one of `"silu"`, `"relu"`, `"linear"`, `"gelu"`, or `"gelu_accurate"` attention_activation (`str`, *optional*, defaults to `"softmax"`): Activation function to apply for single-headed self-attention (a la Transformer). Choose one of `"softmax"`, `"laplace"`, or `"relu2"` dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for EMA self-attention hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. use_feature_dropout (`bool`, *optional*, defaults to `False`): Whether to use feature-based (`True`) or standard dropout (`False`) use_normalized_ffn (`bool`, *optional*, defaults to `True`): Whether to use the normalized feed-forward sub-layer in Mega blocks (`True`) or pass Mega encoder output as-is (`False`) nffn_hidden_size (`int`, *optional*, defaults to 256): If using the normalized feed-forward network (NFFN) layer within Mega (`use_normalized_ffn = True`), this is the hidden size of the NFFN normalize_before_ffn (`bool`, *optional*, defaults to `True`): Whether to normalize before (`True`) or after (`False`) the feed-forward portion of NFFN nffn_activation_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the NFFN component. max_positions (`int`, *optional*, defaults to 2048): The maximum sequence length to use for positional representations. For `"simple"` relative positional bias, this is a hard limit on input length; `"rotary"` relative positional bias will extrapolate to longer sequences add_token_type_embeddings (`bool`, *optional*, defaults to `True`): Whether to account for token types in embeddings. Left as optional to maintain compatibility with original implementation while adding support for token types. type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`MegaModel`]. Only used if `add_token_type_embeddings = True` initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. ema_delta_alpha_range (`float`, *optional*, defaults to 0.2): The standard deviation for initializing the delta (damping factor) and alpha (decay factor) parameters in MegaMultiDimensionDampedEma. ema_beta_range (`float`, *optional*, defaults to 0.02): The standard deviation for initializing the beta parameter (expansion matrix) in MegaMultiDimensionDampedEma. ema_gamma_omega_range (`float`, *optional*, defaults to 1.0): The standard deviation for initializing the gamma (projection matrix) and omega (residual weight) parameters in MultiDimensionEMA. relative_positional_bias (`str`, *optional*, defaults to `"rotary"`): Type of relative positional encoding. Choose one of `"rotary"` or `"simple"`. If `"simple"` is selected, `max_positions` is used as a limit on input size, while `"rotary"` extrapolates beyond `max_positions`. is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. add_lm_hidden_dense_layer (`bool`, *optional*, defaults to `True`): Whether to include a hidden layer for projection between encoder outputs and LM heads (`True`) or pass hidden states directly to LM head (`False`). Remains optional for compatibility with original implementation Examples: ```python >>> from transformers import MegaConfig, MegaModel >>> # Initializing a Mega configuration >>> configuration = MegaConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = MegaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mega" def __init__( self, vocab_size=30522, hidden_size=128, num_hidden_layers=4, intermediate_size=256, ema_projection_size=16, bidirectional=True, shared_representation_size=64, use_chunking=False, chunk_size=-1, truncation=None, normalize_before_mega=True, normalization_type="scalenorm", norm_affine=True, activation="silu", attention_activation="softmax", dropout_prob=0.1, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, use_feature_dropout=False, use_normalized_ffn=True, nffn_hidden_size=256, normalize_before_ffn=True, nffn_activation_dropout_prob=0.1, max_positions=2048, add_token_type_embeddings=False, type_vocab_size=2, initializer_range=0.02, ema_delta_alpha_range=0.2, ema_beta_range=0.02, ema_gamma_omega_range=1.0, pad_token_id=1, bos_token_id=0, eos_token_id=2, relative_positional_bias="rotary", classifier_dropout=None, use_cache=True, add_lm_hidden_dense_layer=True, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.activation = activation self.attention_activation = attention_activation self.intermediate_size = intermediate_size self.ema_projection_size = ema_projection_size self.bidirectional = bidirectional self.shared_representation_size = shared_representation_size self.use_chunking = use_chunking self.chunk_size = chunk_size self.truncation = truncation self.normalize_before_mega = normalize_before_mega self.normalization_type = normalization_type self.norm_affine = norm_affine self.dropout_prob = dropout_prob self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.use_feature_dropout = use_feature_dropout self.use_normalized_ffn = use_normalized_ffn self.nffn_hidden_size = nffn_hidden_size self.normalize_before_ffn = normalize_before_ffn self.nffn_activation_dropout_prob = nffn_activation_dropout_prob self.max_positions = max_positions self.add_token_type_embeddings = add_token_type_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.ema_delta_alpha_range = ema_delta_alpha_range self.ema_beta_range = ema_beta_range self.ema_gamma_omega_range = ema_gamma_omega_range self.relative_positional_bias = relative_positional_bias self.use_cache = use_cache self.classifier_dropout = classifier_dropout self.add_lm_hidden_dense_layer = add_lm_hidden_dense_layer self.num_attention_heads = 1 # not used but required by Hugging Face class MegaOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/mega/convert_mega_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Convert Mega pretrained checkpoint. Built to convert the Masked LM checkpoint located at https://huggingface.co/mnaylor/mega-wikitext-103 Requirements: - clone the Mega repo and install fairseq from there 1. git clone https://github.com/facebookresearch/mega.git 2. cd mega && pip install -e - clone the pretrained weights for the original implementation from the hugging face repo * use this location as the path for pretrained weights """ import argparse # utilities to import the model weights and config file import os import pickle as pkl # PyTorch + new model classes import torch from torch import nn from transformers import AutoTokenizer, MegaConfig, MegaForMaskedLM # import the EncoderLayer class used to pretrain # !! NOTE !! this requires the version of fairseq that is built when you install the Mega source try: from fairseq.modules.mega_layer import MegaEncoderLayer except ImportError: raise ImportError("You need to install the version of fairseq from the Mega repo!") # define the wrapper classes used to train the MLM (see colab notebook below) # https://colab.research.google.com/drive/1qfUO6o5HRdxBblWlw058HVyvaEPhPpH8?usp=sharing # MegaLM outputs hidden states class MegaLM(nn.Module): "The base class for our Mega encoder - given input IDs, embed text and return encoder output" def __init__(self, mega_args, depth, vocab_size): super().__init__() self.mega_args = mega_args self.embedding_layer = nn.Embedding(vocab_size, self.mega_args.encoder_embed_dim) self.encoders = nn.ModuleList([MegaEncoderLayer(self.mega_args) for _ in range(depth)]) self.depth = depth def forward(self, input_ids, attention_mask, batch_first=True, ignore_mask_value=0): """ Code for a forward pass - expects input_ids and attention_mask to come from a Hugging Face tokenizer as PyTorch tensors, and returns a tensor of size (batch, n_classes) containing classification logits Other options: - batch_first: boolean indicating whether the batch dimension is first in input_ids (default: True, which aligns with the HF tokenizer behavior) - ignore_mask_value: the value in attention_mask that identifies tokens that should be ignored (default: 0, which aligns with HF tokenizer) """ # Mega expects embeddings to be (time, batch, embedding size), but # Hugging Face returns tokens as (batch, time) if batch_first: input_ids = input_ids.T # to make things more confusing, Mega expects the attention mask to # be (batch, time), but with values of 0 (normal token) and 1 (ignore token) # which is the opposite of what HF returns if ignore_mask_value == 0: attention_mask = 1 - attention_mask # get token embeddings from IDs embeds = self.embedding_layer(input_ids) # pass through the Mega layers # input is (time, batch, encoder dim) and output is the same for encoder in self.encoders: embeds = encoder(embeds, attention_mask) # return according to the shape specified if batch_first: # (T, B, H) --> (B, T, H) return torch.transpose(embeds, 0, 1) else: return embeds # renamed from MegaForMaskedLM to avoid confusion with new module class OriginalMegaForMaskedLM(nn.Module): "A wrapper class for doing masked language modeling with Mega" def __init__(self, mega_args, depth, vocab_size): super().__init__() self.mega = MegaLM(mega_args, depth, vocab_size) self.mlm_head = nn.Linear(mega_args.encoder_embed_dim, vocab_size) self.dropout = nn.Dropout(p=0.1) def forward(self, input_ids, attention_mask, batch_first=True, ignore_mask_value=0): """ Perform a forward pass through the Mega encoder and the masked LM head. Returns logits for each vocabulary entry. If `batch_first` (default to align with Hugging Face tokenizer behavior), output will have the shape (Batch size, Sequence length, Vocab size); otherwise (S, B, V) """ encoder_output = self.mega(input_ids, attention_mask, batch_first, ignore_mask_value) return self.mlm_head(self.dropout(encoder_output)) # code to convert the checkpoint located in the user-specified location def convert_checkpoint_to_huggingface(pretrained_checkpoint_path, output_path, includes_tokenizer): with open(os.path.join(pretrained_checkpoint_path, "model_args.pkl"), "rb") as f: mega_original_args = pkl.load(f) # load the original encoder original_mlm = OriginalMegaForMaskedLM(**mega_original_args).eval() # load its weights print( "Original Mega encoder:", original_mlm.mega.load_state_dict( torch.load(os.path.join(pretrained_checkpoint_path, "encoder_weights.pt"), map_location="cpu") ), ) print( "Original Mega MLM layer:", original_mlm.mlm_head.load_state_dict( torch.load(os.path.join(pretrained_checkpoint_path, "mlm_head_weights.pt"), map_location="cpu") ), ) # create a new config from the old one hf_config = MegaConfig( num_hidden_layers=mega_original_args["depth"], vocab_size=mega_original_args["vocab_size"], hidden_size=mega_original_args["mega_args"].encoder_embed_dim, shared_representation_size=mega_original_args["mega_args"].encoder_z_dim, intermediate_size=mega_original_args["mega_args"].encoder_hidden_dim, ema_projection_size=mega_original_args["mega_args"].encoder_n_dim, dropout_prob=mega_original_args["mega_args"].dropout, attention_probs_dropout_prob=mega_original_args["mega_args"].attention_dropout, hidden_dropout_prob=mega_original_args["mega_args"].hidden_dropout, activation=mega_original_args["mega_args"].activation_fn, attention_activation=mega_original_args["mega_args"].attention_activation_fn, bidirectional=mega_original_args["mega_args"].bidirectional, use_chunking=mega_original_args["mega_args"].encoder_chunk_size > 0, chunk_size=mega_original_args["mega_args"].encoder_chunk_size, truncation=mega_original_args["mega_args"].truncation_length, normalization_type=mega_original_args["mega_args"].normalization_type, normalize_before_mega=True, norm_affine=True, use_feature_dropout=mega_original_args["mega_args"].feature_dropout, relative_positional_bias=mega_original_args["mega_args"].rel_pos_bias, max_positions=mega_original_args["mega_args"].max_source_positions, nffn_hidden_size=mega_original_args["mega_args"].encoder_ffn_embed_dim, normalize_before_ffn=mega_original_args["mega_args"].normalize_before, # new arguments added for HF implementation nffn_activation_dropout_prob=0.0, add_token_type_embeddings=False, add_lm_hidden_dense_layer=False, ) hf_mlm = MegaForMaskedLM(hf_config).eval() # the originl checkpoint just uses nn.Embedding for the word embeddings # we use a wrapper module for embeddings to add support for positional embeddings hf_mlm.mega.embedding_layer.word_embeddings.weight = original_mlm.mega.embedding_layer.weight # modify the state dictionary of the original checkpoint to account for naming issues in the Hugging Face # ecosystem -- any names containing "beta" or "gamma" aren't safe to use and are renamed upon _load_pretrained, # also renaming previously confusing parameter names original_state_dict = original_mlm.mega.encoders.state_dict() updated_keys = {} for module_name in original_state_dict.keys(): new_module_name = None # have to handle gamma, beta, and alpha differently due to their use # in multiple modules within the original repository; # beta is used in EMA, MovingAverageGatedAttention, and RotaryRelativePositionalBias, and must be renamed due to flax/tf weights # the EMA sublayer was renamed from "move" to "ema_gate" for readability, so that is also done here if "beta" in module_name: # EMA sub-layers were always called "move" in the original repo if "move.beta" in module_name: new_module_name = module_name.replace("move.beta", "ema_gate.ema_expansion_matrix") elif "mega_layer.beta" in module_name: new_module_name = module_name.replace("beta", "qk_bias") else: new_module_name = module_name.replace("beta", "b_param") # beta is used in EMA and MovingAverageGatedAttention, and must be renamed due to flax/tf weights elif "gamma" in module_name: if "move.gamma" in module_name: new_module_name = module_name.replace("move.gamma", "ema_gate.kernel_projection_matrix") elif "mega_layer.gamma" in module_name: new_module_name = module_name.replace("gamma", "qk_weight") else: new_module_name = module_name.replace("gamma", "g_param") # alpha is used in EMA and positional bias; renaming to improve readability elif "move.alpha" in module_name: new_module_name = module_name.replace("move.alpha", "ema_gate.decay_factor") # delta is only used in EMA; renaming to improve readability elif "move.delta" in module_name: new_module_name = module_name.replace("move.delta", "ema_gate.damping_factor") # omega is only used in EMA; renaming to improve readability elif "omega" in module_name: new_module_name = module_name.replace("move.omega", "ema_gate.residual_weight") if new_module_name: updated_keys[module_name] = new_module_name if len(updated_keys) != 0: print(f"Renaming these keys: {updated_keys.keys()}") else: print("No need to rename state dict entries") for old, new in updated_keys.items(): original_state_dict[new] = original_state_dict.pop(old) # now attempt to load the state dictionary with updated names # note that we now call it `mega.layers` instead of `mega.encoders` due to hugging face style print("HF Mega encoder:", hf_mlm.mega.layers.load_state_dict(original_state_dict)) # load the MLM head weights directly print( "HF Mega MLM layer:", hf_mlm.mlm_head.load_state_dict( torch.load(os.path.join(pretrained_checkpoint_path, "mlm_head_weights.pt"), map_location="cpu") ), ) # test on a randomly generated input sequence input_ids = torch.randint(0, hf_config.vocab_size, size=(4, 256)) input_mask = torch.ones_like(input_ids) # mask a few tokens to make sure masking is applied appropriately :) input_mask[:, -10:] = 0 # run forward passes original_output = original_mlm(input_ids, input_mask, batch_first=True, ignore_mask_value=0) hf_output = hf_mlm(input_ids, input_mask)[0] # print shapes and diff print(f"original output {original_output.shape}") print(f"hf output {hf_output.shape}") print(f"max diff: {(original_output - hf_output).max()}") # 0.0 success = torch.allclose(original_output, hf_output, atol=1e-3) if success: print("Yay!") hf_mlm.save_pretrained(output_path) else: raise RuntimeError(f"Something's broken :(\nOriginal:\n{original_output}\n\nHF\n{hf_output}\n{hf_mlm}") if includes_tokenizer: print("Transferring tokenizer") tokenizer = AutoTokenizer.from_pretrained(pretrained_checkpoint_path) tokenizer.save_pretrained(output_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--pretrained_checkpoint_path", default=None, type=str, required=True, help="Point to the directory containing your model weights using the official Mega repo", ) parser.add_argument( "--output_path", default=None, type=str, required=True, help="Location to save the Hugging Face version" ) parser.add_argument( "--includes_tokenizer", action="store_true", help="Use this flag if there is a Hugging Face tokenizer in the original checkpoint repo", ) args = parser.parse_args() convert_checkpoint_to_huggingface(args.pretrained_checkpoint_path, args.output_path, args.includes_tokenizer)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/mega/__init__.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _import_structure = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mega"] = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/mega/modeling_mega.py
# coding=utf-8 # Copyright 2023 The Mega Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MEGA model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ALL_LAYERNORM_LAYERS from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mega import MegaConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "mnaylor/mega-base-wikitext" _CONFIG_FOR_DOC = "MegaConfig" from ..deprecated._archive_maps import MEGA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 class MegaEmbeddings(nn.Module): """ Mega's basic implementation does not incorporate token type embeddings, so this is a stripped-down version of RoBERTa's embeddings which optionally includes token types """ def __init__(self, config: MegaConfig): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.use_token_types = config.add_token_type_embeddings if self.use_token_types: self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # registering a buffer here allows model tracing when not passing optional token type IDs # more info at transformers issue #5664 self.register_buffer( "token_type_ids", torch.zeros(config.max_positions, dtype=torch.long).expand((1, -1)), persistent=False ) self.padding_idx = config.pad_token_id def forward(self, input_ids=None, token_type_ids=None, inputs_embeds=None): if (input_ids is None) and (inputs_embeds is None): raise ValueError("Must provide one of input_ids or inputs_embeds") elif input_ids is not None: input_shape = input_ids.size() device = input_ids.device # get the word embeddings if only IDs are provided inputs_embeds = self.word_embeddings(input_ids) else: input_shape = inputs_embeds.size()[:-1] device = inputs_embeds.device # the original Mega implementation did not include token type embeddings, so we add # an option to use them if desired; if embeddings are present and token type IDs are # not provided, we will use a registered buffer (which helps with tracing) if self.use_token_types: if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, : input_shape[1]] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], input_shape[1]) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # access token type embeddings token_type_embeddings = self.token_type_embeddings(token_type_ids) # add the token type embeddings to the word embeddings embeddings = inputs_embeds + token_type_embeddings else: embeddings = inputs_embeds return embeddings class MegaSimpleRelativePositionalBias(nn.Module): """ Simple relative positional embeddings copied from the Mega repo; renamed variables for better readability """ def __init__(self, config: MegaConfig): super().__init__() self.config = config self.max_positions = self.config.max_positions if self.config.chunk_size < 0 else self.config.chunk_size self.rel_pos_bias = nn.Parameter(torch.Tensor(2 * config.max_positions - 1)) def forward(self, seq_len): if seq_len > self.max_positions: raise ValueError("Sequence length {} going beyond max length {}".format(seq_len, self.max_positions)) # seq_len * 2 - 1 bias = self.rel_pos_bias[(self.max_positions - seq_len) : (self.max_positions + seq_len - 1)] # seq_len * 3 - 1 tile = F.pad(bias, (0, seq_len)) # (seq_len * 3 - 1) * seq_len tile = torch.tile(tile, (seq_len,)) tile = tile[:-seq_len] # seq_len x (3 * seq_len - 2) tile = tile.view(seq_len, 3 * seq_len - 2) start = (2 * seq_len - 1) // 2 end = tile.size(1) - start tile = tile[:, start:end] return tile class MegaRotaryRelativePositionalBias(nn.Module): """ Rotary relative bias for positional information; similar in concept to RoPE (i.e. RoFormer) but taken from the Mega repo due to differences in implementation. When initialized, produces a positional bias which ranges from position 0 to config.max_positions, but can extrapolate to longer sequences. Can be indexed according to input position IDs """ def __init__(self, config: MegaConfig): super().__init__() if config.hidden_size % 2 != 0: raise RuntimeError("Rotary positional bias requires `hidden_size` to be a multiple of 2") self.config = config self.embed_dim = config.shared_representation_size self.max_positions = self.config.max_positions if self.config.chunk_size < 0 else self.config.chunk_size self.sine, self.cosine = MegaRotaryRelativePositionalBias.get_sinusoid_embeddings( config.max_positions, self.embed_dim ) # alpha and beta parameters for the rotary bias; beta renamed to b_param to avoid clashes with tf/flax weight handling # in loading pretrained weights self.alpha = nn.Parameter(torch.Tensor(1, self.embed_dim)) self.b_param = nn.Parameter(torch.Tensor(1, self.embed_dim)) self.register_buffer("_float_tensor", torch.FloatTensor([0.0])) @staticmethod def get_sinusoid_embeddings(max_positions: int, embedding_dim: int): half_dim = embedding_dim // 2 emb = math.log(10000) / half_dim emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(max_positions, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) return torch.sin(emb), torch.cos(emb) def rotary(self, input): seq_len, embed_dim = input.size() chunk_1, chunk_2 = torch.chunk(input, 2, dim=-1) if self.sine is None or seq_len > self.sine.size(0): self.sine, self.cosine = MegaRotaryRelativePositionalBias.get_sinusoid_embeddings(seq_len, embed_dim) self.max_positions = seq_len self.sine = self.sine.to(self._float_tensor) self.cosine = self.cosine.to(self._float_tensor) sin = self.sine[:seq_len] cos = self.cosine[:seq_len] return torch.cat([chunk_1 * cos - chunk_2 * sin, chunk_2 * cos + chunk_1 * sin], dim=1) def forward(self, seq_len): rotary_alpha = self.rotary(self.alpha.expand(seq_len, self.embed_dim)) rotary_beta = self.rotary(self.b_param.expand(seq_len, self.embed_dim)) bias = torch.einsum("mk,nk->mn", rotary_alpha, rotary_beta) return bias class MegaDropout(nn.Module): """ A unified class for standard dropout functionality and featurewise dropout. The original fairseq Mega repo used 2 classes for these, which included some unnecessary handling of training logic and an unused `inplace` option. The original implementation used torch.nn.functional instead of submodules, which is retained here as well. """ def __init__(self, dropout_probability, is_featurewise=False): super().__init__() self.dropout_probability = dropout_probability self.is_featurewise = is_featurewise def forward(self, input, batch_first: bool = False): if self.is_featurewise: if batch_first: # (batch_size X sequence_length X feature_dimension) # -> (batch_size X feature_dimension X sequence_length) # -> (batch_size X sequence_length X feature_dimension) return F.dropout2d( input.transpose(-1, -2), p=self.dropout_probability, training=self.training ).transpose(-1, -2) else: if input.dim() != 3: raise ValueError( "Feature dropout inputs must be exactly 3-dimensional if inputs are ordered [sequence length, batch size, hidden dimension]" ) # (sequence_length X batch_size X feature_dimension) # -> (batch_size X feature_dimension X sequence_length) # -> (sequence_length X batch_size X feature_dimension) return F.dropout2d(input.permute(1, 2, 0), p=self.dropout_probability, training=self.training).permute( 2, 0, 1 ) else: return F.dropout(input, p=self.dropout_probability, training=self.training) class MegaRMSNorm(nn.Module): """ RMSNorm used in Mega implementation. Differs from T5's RMSNorm by applying the weight prior to taking the square root (as opposed to after in T5) """ def __init__(self, number_features, eps=1e-6, affine=True): super().__init__() self.num_features = number_features self.eps = eps self.affine = affine if affine: self.weight = nn.Parameter(torch.Tensor(self.num_features)) else: self.register_parameter("weight", None) def forward(self, input): mean_square = torch.mean(torch.square(input), dim=-1, keepdim=True) if self.weight is not None: input = input * self.weight input * torch.rsqrt(mean_square + self.eps) return input class MegaScaleNorm(nn.Module): """ Scale normalization introduced in MEGA which is similar to RMSNorm, but uses a single parameter for scalar multiplication instead of a vector, and applies over a specified dimension """ def __init__(self, dim, eps=1e-6, affine=True): super().__init__() self.dim = dim self.eps = eps self.affine = affine if affine: self.scalar = nn.Parameter(torch.Tensor(1)) else: self.register_parameter("scalar", None) def forward(self, input): mean_square = torch.mean(torch.square(input), dim=self.dim, keepdim=True) if self.scalar is not None: input = self.scalar * input output = input * torch.rsqrt(mean_square + self.eps) return output class MegaSequenceNorm(nn.Module): """ A wrapper class for various layer normalization options used in Mega. Used to handle differences in expectations on input axis locations for different normalization methods. """ def __init__(self, norm_type, embedding_dim, eps=1e-5, affine=True, export=False): super().__init__() if norm_type == "layernorm": self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine=affine) elif norm_type == "scalenorm": self.norm = MegaScaleNorm(dim=-1, eps=eps, affine=affine) elif norm_type == "rmsnorm": self.norm = MegaRMSNorm(embedding_dim, eps=eps, affine=affine) elif norm_type == "batchnorm": self.norm = nn.BatchNorm1d(embedding_dim, eps=eps, affine=affine) elif norm_type == "syncbatchnorm": self.norm = nn.SyncBatchNorm(embedding_dim, eps=eps, affine=affine) else: raise ValueError("Unknown norm type: {}".format(norm_type)) def forward(self, input): if isinstance(self.norm, nn.modules.batchnorm._BatchNorm): if input.dim() != 3: raise ValueError("BatchNorm inputs must be exactly 3-dimensional") input = input.permute(1, 2, 0) input = self.norm(input) return input.permute(2, 0, 1) else: return self.norm(input) # add this layernorm class to ALL_LAYERNORM_LAYERS ALL_LAYERNORM_LAYERS.append(MegaSequenceNorm) class MegaMultiDimensionDampedEma(nn.Module): """ Mega's Exponential Moving Average layer, largely left unmodified from the original repo with the exception of variable names and moving away from the stateful representation of incremental decoding state. See "https://arxiv.org/abs/2209.10655" for more details. """ def __init__(self, config: MegaConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.ndim = config.ema_projection_size self.bidirectional = config.bidirectional self.truncation = config.truncation self.scale = math.sqrt(1.0 / self.ndim) kernel_dim = 2 * config.hidden_size if self.bidirectional else config.hidden_size # renamed delta (damping_factor) and alpha (decay_factor) to be more descriptive of what the parameters are doing self.damping_factor = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1)) self.decay_factor = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1)) # renamed gamma (kernel_projection_matrix) and beta (ema_expansion_matrix) respectively to avoid HF renaming # things and align with the paper's description of these params' behavior self.ema_expansion_matrix = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1)) self.kernel_projection_matrix = nn.Parameter(torch.Tensor(kernel_dim, self.ndim)) # renamed omega to residual_weight to describe what it's doing self.residual_weight = nn.Parameter(torch.Tensor(config.hidden_size)) self._kernel = None self._coeffs = None def _compute_ema_coefficients(self): self._coeffs = None # convert the alpha and delta parameters (kernel_dim x EMA projection size x 1) to [0, 1] with sigmoid damping_factor = torch.sigmoid(self.damping_factor) decay_factor = torch.sigmoid(self.decay_factor) previous_timestep_weight = 1.0 - damping_factor * decay_factor return damping_factor, previous_timestep_weight def _compute_efficient_ema_kernel(self, length: int): # computes the kernel used for efficient damped EMA applied via FFT convolution self._kernel = None # p and q have shape (kernel_dim x ema_projection_size x 1) damping_factor, previous_timestep_weight = self._compute_ema_coefficients() # extend the kernel to (kernel_dim X ema_projection_size X sequence_length) and # multiply q by sequential ints up to the sequence length vander = torch.arange(length).to(damping_factor).view(1, 1, length) * torch.log(previous_timestep_weight) kernel = (damping_factor * self.ema_expansion_matrix) * torch.exp(vander) # (kernel_dim X ema_projection_size X sequence_length) -> (kernel_dim, sequence_length) return torch.einsum("dnl,dn->dl", kernel, self.kernel_projection_matrix * self.scale) def get_ema_coefficients(self): if self.training: return self._compute_ema_coefficients() else: if self._coeffs is None: self._coeffs = self._compute_ema_coefficients() return self._coeffs def get_ema_kernel(self, length: int): kernel_size = length if self.truncation is None else min(self.truncation, length) if self.training: return self._compute_efficient_ema_kernel(kernel_size) else: if self._kernel is None or self._kernel.size(-1) < kernel_size: self._kernel = self._compute_efficient_ema_kernel(kernel_size) return self._kernel[..., :kernel_size] def fft_convolution(self, inputs, kernel, length): # this is a wrapper for repeated use of EMA calculation via FFT (fast Fourier transform) convolution inputs_fft = torch.fft.rfft(inputs.float(), n=2 * length) kernel_fft = torch.fft.rfft(kernel.float(), n=2 * length) convolved_sequence = torch.fft.irfft(inputs_fft * kernel_fft, n=2 * length) return convolved_sequence def ema_step(self, inputs, length, past_state=None): if length == 1: return self.one_ema_step(inputs, past_state=past_state) # (kernel_dim X ema_projection_size X 1) damping_factor, previous_timestep_weight = self.get_ema_coefficients() # (kernel_dim X ema_projection_size X 1+sequence_length) vander = torch.arange(length + 1).to(damping_factor).view(1, 1, length + 1) * torch.log( previous_timestep_weight ) vander = torch.exp(vander) if past_state is not None: # (kernel_dim X ema_projection_size X sequence_length) * (kernel_dim X ema_projection_size X 1) # -> (kernel_dim X ema_projection_size X sequence_length) past_ema_proj = vander[:, :, 1:] * (self.kernel_projection_matrix * self.scale).unsqueeze(-1) # past_state will be (batch_size, kernel_dim, ema_projection_size) past_ema_state = torch.einsum("bdn,dnl->bdl", past_state, past_ema_proj) # (kernel_dim X ema_projection_size) * (batch_size X kernel_dim X ema_projection_size) # -> (batch_size X kernel_dim X ema_projection_size) past_vandermonde = vander[:, :, -1] * past_state else: past_ema_state = None past_vandermonde = None # (kernel_dim X ema_projection_size X sequence_length) vander = vander[:, :, :-1] kernel = (damping_factor * self.ema_expansion_matrix) * vander kernel_proj = torch.einsum("dnl,dn->dl", kernel, self.kernel_projection_matrix * self.scale) ema_output = self.fft_convolution(inputs, kernel_proj, length=length)[..., 0:length] ema_output = ema_output.type_as(inputs) if past_ema_state is not None: ema_output = ema_output + past_ema_state updated_hidden_state = torch.einsum("bdl,dnl->bdn", inputs, torch.flip(kernel, dims=[2])) if past_vandermonde is not None: updated_hidden_state = updated_hidden_state + past_vandermonde # return a tuple: # (sequence_length, batch_size, kernel_dim) # (batch_size, kernel_dim, ema_projection_size) return ema_output.permute(2, 0, 1), updated_hidden_state def one_ema_step(self, inputs, past_state=None): damping_factor, previous_timestep_weight = self.get_ema_coefficients() # (kernel_dim X ema_projection_size) x (batch_size X kernel_dim X 1) # -> (batch_size X kernel_dim X ema_projection_size) updated_state = (damping_factor * self.ema_expansion_matrix).squeeze(-1) * inputs if past_state is not None: updated_state = updated_state + previous_timestep_weight.squeeze(-1) * past_state # (batch_size X kernel_dim) out = torch.einsum("bdn,dn->bd", updated_state, self.kernel_projection_matrix * self.scale) # (1 X batch_size X kernel_dim), (batch_size X kernel_dim X ema_projection_size) return out.unsqueeze(0), updated_state def forward( self, inputs, attention_mask: Optional[torch.Tensor] = None, prev_state: Optional[torch.Tensor] = None, use_cache: bool = False, ) -> torch.Tensor: """ Mega's exponential moving average (EMA) sub-layer applied prior to single-headed (traditional) self-attention Args: inputs (`torch.Tensor` of shape `(sequence_length, batch_size, hidden_size)`): Hidden state / embedding input to update via EMA based on FFT convolution attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indicates which inputs are to be ignored (mostly due to padding), where elements are either 1 for *not masked* or 0 for *masked* prev_state (`torch.Tensor` of shape `(batch_size, config.ndim)`, *optional*): The hidden state returned from the previous timestep during incremental decoding. use_cache (`bool`, default `False`): Whether to perfom incremental decoding; uses `prev_state` as the prior timestep, and returns the updated EMA hidden state for use in the next step Returns: `tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and inputs: - **hidden_states** (`torch.FloatTensor` of shape `(sequence_length, batch_size, hidden_size)`) -- Hidden states updated by EMA, with same shapes as inputs - **updated_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor of shape `(batch_size, config.ndim)` -- The incremental EMA state for use in the next step of incremental decoding """ seq_len, bsz, embed_dim = inputs.size() if embed_dim != self.embed_dim: raise ValueError( f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}" ) # sequence_length X batch_size X hidden_size residual = inputs * self.residual_weight # (sequence_length x batch_size x hidden_size) -> (batch_size x hidden_size x sequence_length) inputs = inputs.permute(1, 2, 0) # mask the input: output is a tensor with 0 in the masked positions if attention_mask is not None: inputs = inputs * (attention_mask.unsqueeze(1).type_as(inputs)) if self.bidirectional and use_cache: raise RuntimeError("Bidirectional EMA does not support incremental state") if use_cache: out, updated_state = self.ema_step(inputs, seq_len, past_state=prev_state) # (batch_size X hidden_size) -> (1 x batch_size x hidden_size) out = F.silu(out + residual) # if incremental decoding, return the new state along with the output return out, updated_state else: # (hidden_size x sequence_length) kernel = self.get_ema_kernel(seq_len) fft_len = seq_len s_index = 0 kernel_size = kernel.size(1) if self.bidirectional: # split the kernel for each direction of EMA k1, k2 = torch.split(kernel, [self.embed_dim, self.embed_dim], dim=0) # (hidden_size X 2*sequence_length - 1) kernel = F.pad(k1, (kernel_size - 1, 0)) + F.pad(k2.flip(-1), (0, kernel_size - 1)) inputs = F.pad(inputs, (kernel_size - 1, 0)) fft_len = fft_len + kernel_size - 1 s_index = 2 * kernel_size - 2 ema_output = self.fft_convolution(inputs, kernel, length=fft_len)[..., s_index : s_index + seq_len] ema_output = ema_output.type_as(inputs) # (batch_size X hidden_size X sequence_length) -> (sequence_length X batch_size X hidden_size) gated_ema_output = F.silu(ema_output.permute(2, 0, 1) + residual) return gated_ema_output, None class MegaGatedCrossAttention(nn.Module): """ Gated Structured State Attention for use in encoder-decoder model. See Mega paper for more details. Only modifications from original implementation are variable names, removing the unnecessary `before_attn_fn` and `static_kv` arguments, and the stateful representation of incremental decoder state. """ def __init__(self, config: MegaConfig): super().__init__() self.config = config self.activation = ACT2FN[self.config.activation] self.attention_activation = self.config.attention_activation self.scaling = self.config.shared_representation_size**-0.5 if self.attention_activation == "softmax" else None self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout) self.hidden_dropout = MegaDropout( self.config.hidden_dropout_prob, is_featurewise=self.config.use_feature_dropout ) # Attention dropout is standard dropout self.attention_dropout = MegaDropout(self.config.attention_probs_dropout_prob, is_featurewise=False) self.prenorm = self.config.normalize_before_mega self.norm = MegaSequenceNorm( self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine ) self.k_proj = nn.Linear(self.config.hidden_size, self.config.shared_representation_size) self.v_proj = nn.Linear(self.config.hidden_size, self.config.hidden_size) self.q_proj = nn.Linear( self.config.hidden_size, 2 * self.config.hidden_size + self.config.shared_representation_size ) self.h_proj = nn.Linear(self.config.hidden_size, self.config.hidden_size) if self.config.relative_positional_bias == "simple": self.rel_pos_bias = MegaSimpleRelativePositionalBias(config) elif self.config.relative_positional_bias == "rotary": self.rel_pos_bias = MegaRotaryRelativePositionalBias(config) else: raise ValueError("unknown relative position bias: {}".format(self.config.relative_positional_bias)) self.softmax = nn.Softmax(dim=-1) def element_attention(self, query, key, key_padding_mask, pidx): bsz, src_len, _ = key.size() tgt_len = query.size(1) if pidx is None else pidx + 1 if key_padding_mask is not None: # (batch_size X source_sequence_length) --> (batch_size X 1 X 1) lengths = key_padding_mask.sum(dim=-1).view(bsz, 1, 1) else: lengths = src_len # (target_sequence_length X source_sequence_length) bias = self.rel_pos_bias(max(tgt_len, src_len))[:, :src_len] if pidx is not None: if query.size(1) != 1: raise ValueError("Position offset provided with queries longer than 1 token") # source_sequence_length bias = bias[pidx] else: # (target_sequence_length X source_sequence_length) bias = bias[:tgt_len] # (batch_size X target_sequence_length X source_sequence_length) qk = torch.bmm(query, key.transpose(1, 2)) / lengths + bias attn_weights = ACT2FN[self.attention_activation](qk).type_as(qk) if key_padding_mask is not None: attn_weights = attn_weights * key_padding_mask.unsqueeze(1) return attn_weights def softmax_attention(self, query, key, key_padding_mask, pidx): bsz, src_len, _ = key.size() tgt_len = query.size(1) if pidx is None else pidx + 1 # (target_sequence_length X source_sequence_length) bias = self.rel_pos_bias(max(tgt_len, src_len))[:, :src_len] if pidx is not None: if query.size(1) != 1: raise ValueError("Position offset provided with queries longer than 1 token") # source_sequence_length bias = bias[pidx] else: # (target_sequence_length X source_sequence_length) bias = bias[:tgt_len] # scaled attention query = query * self.scaling # (batch_size X target_sequence_length X source_sequence_length) qk = torch.bmm(query, key.transpose(1, 2)) + bias if key_padding_mask is not None: qk = qk.masked_fill((1 - key_padding_mask).unsqueeze(1).to(torch.bool), float("-inf")) attn_weights = self.softmax(qk).type_as(qk) return attn_weights def forward( self, query, key: Optional[torch.Tensor], value: Optional[torch.Tensor], key_padding_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """ Gated cross-attention used in Mega Args: query (`torch.Tensor` of shape `(target_sequence_length, batch_size, hidden_size)`): The self (or target) sequence input used as query inputs for cross-attention key (`torch.Tensor` of shape `(source_sequence_length, batch_size, hidden_size)`): The cross (or source) sequence input with shape used as keys in cross-attention value (`torch.Tensor` of shape `(source_sequence_length, batch_size, hidden_size)`): The cross (or source) sequence input with shape used as values in cross-attention key_padding_mask (`torch.LongTensor` of shape `(batch_size, source_sequence_length)`, *optional*): Padding mask corresponding to the source sequence, where entries are 1 for *not masked* and 0 for *masked* tokens past_key_values (`tuple(torch.FloatTensor)`, *optional*): If provided, the hidden state returned from the previous timestep during incremental decoding; expects that prior cross-attention keys and values will be the last two items in the tuple output_attentions (`bool`, defaults to `False`): Whether or not to return the cross-attention weights. use_cache (`bool`, defaults to `False`): Whether to perfom incremental decoding; uses `prev_state` as the prior timestep, and returns the updated EMA hidden state for use in the next step Returns: `tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and inputs: - **hidden_states** (`torch.FloatTensor` of shape `(target_sequence_length, batch_size, hidden_size)`) -- Hidden states from target sequence updated by gated cross-attention - **attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length, target_sequence_length)` -- The pairwise cross-attention weights corresponding to each token in the source and target sequences - **cross_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length, config.shared_representation_size)` -- The cross-attention key state for use in the next step of incremental decoding - **cross_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length, config.hidden_size)` -- The cross-attention value state for use in the next step of incremental decoding """ seq_len, bsz, embed_dim = query.size() if embed_dim != self.config.hidden_size: raise ValueError( f"Unexpected embedding dimension received: input is {embed_dim} but expected {self.config.hidden_size}" ) if past_key_values is not None: # make sure the inputs only have a sequence length of 1 if we're doing incremental decoding if seq_len != 1: raise ValueError(f"Incremental decoding requested with self-sequence length > 1: {seq_len}") # expect past_key_values to have (self_key, self_value, self_ema, cross_key, cross_value) prev_cross_key, prev_cross_value = past_key_values[-2:] key = value = None # use the self-attention cache to get the position id of the current step prev_self_key = past_key_values[0] num_incremental_steps = prev_self_key.size(1) + 1 else: prev_cross_key = prev_cross_value = None # we still need the position id if we're doing incremental decoding (past_key_values will be None for the first step) num_incremental_steps = 0 if use_cache and (seq_len == 1) else None full_query = query if self.prenorm: full_query = self.norm(full_query) # (target_sequence_length X batch_size X 2*hidden_size + shared_representation_size) query_projected = self.q_proj(full_query) # split the query projections into separate components # - residual_weight is passed through sigmoid and sent through elementwise multiplication to the gated/weighted targets prior to being added to the query directly # - target_gate is a silu-gated tensor that is multiplied by the attention-weighted target below prior to residual connection # - attention_query is the part that is passed to the attention function residual_weight, target_gate, attention_query = torch.split( query_projected, [self.config.hidden_size, self.config.hidden_size, self.config.shared_representation_size], dim=-1, ) # (target_sequence_length X batch_size X hidden_size) residual_weight = torch.sigmoid(residual_weight) target_gate = F.silu(target_gate) if key is None: if value is not None: raise ValueError("Key and value must be `None` simultaneously") projected_key = projected_value = None else: # (source_sequence_length X batch_size X shared_representation_size) projected_key = self.k_proj(key) # (source_sequence_length X batch_size X hidden_size) projected_value = self.activation(self.v_proj(key)) # (target_sequence_length X batch_size X shared_representation_size) # -> (batch_size X target_sequence_length X shared_representation_size) attention_query = attention_query.transpose(0, 1) if projected_key is not None: projected_key = projected_key.transpose(0, 1) if projected_value is not None: projected_value = projected_value.transpose(0, 1) # if we're doing incremental decoding, k and v are None and need to be overwritten with past values if past_key_values is not None: projected_key = prev_cross_key projected_value = prev_cross_value # if we're returning the cache for later use, store these now for later return (can be done without having past_key_values provided) if use_cache: updated_cross_key = projected_key updated_cross_value = projected_value ctx_len = projected_key.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: if key_padding_mask.size(0) != bsz: raise ValueError("Key padding mask does not align on the batch dimension") if key_padding_mask.size(1) != ctx_len: raise ValueError("Key padding mask does not align on the sequence length dimension") if self.attention_activation == "softmax": attn_weights = self.softmax_attention( attention_query, projected_key, key_padding_mask, num_incremental_steps ) else: attn_weights = self.element_attention( attention_query, projected_key, key_padding_mask, num_incremental_steps ) projected_value = self.hidden_dropout(projected_value, batch_first=True) kernel = self.attention_dropout(attn_weights) # (batch_size X target_sequence_length X hidden_size) # -> (target_sequence_length X batch_size X hidden_size) weighted_targets = torch.bmm(kernel, projected_value).transpose(0, 1) # (target_sequence_length X batch_size X hidden_size) weighted_targets = self.activation(self.h_proj(weighted_targets * target_gate)) weighted_targets = self.dropout(weighted_targets) out = torch.addcmul(query, residual_weight, weighted_targets - query) if not self.prenorm: out = self.norm(out) outputs = (out, attn_weights) if output_attentions else (out,) if use_cache: outputs = outputs + (updated_cross_key, updated_cross_value) return outputs class MegaMovingAverageGatedAttention(nn.Module): """ Pure PyTorch implementation of Mega block; see https://arxiv.org/abs/2209.10655 and original fairseq implementation at https://github.com/facebookresearch/mega (copyright Meta Research, licensed under MIT License) Differences from original implementation include hidden state refactor and fixed inconsistency with additive / multiplicative attention masks """ def __init__(self, config: MegaConfig): super().__init__() self.config = config self.activation = ACT2FN[self.config.activation] self.scaling = ( self.config.shared_representation_size**-0.5 if self.config.attention_activation == "softmax" else None ) self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout) self.hidden_dropout = MegaDropout( self.config.hidden_dropout_prob, is_featurewise=self.config.use_feature_dropout ) # attention dropout is standard dropout self.attention_dropout = MegaDropout(self.config.attention_probs_dropout_prob, is_featurewise=False) self.norm = MegaSequenceNorm( self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine ) self.ema_gate = MegaMultiDimensionDampedEma(config) self.v_proj = nn.Linear(self.config.hidden_size, self.config.intermediate_size) self.mx_proj = nn.Linear( self.config.hidden_size, self.config.shared_representation_size + self.config.intermediate_size + 2 * self.config.hidden_size, ) self.h_proj = nn.Linear(self.config.intermediate_size, self.config.hidden_size) self.qk_weight = nn.Parameter(torch.Tensor(2, self.config.shared_representation_size)) self.qk_bias = nn.Parameter(torch.Tensor(2, self.config.shared_representation_size)) if self.config.relative_positional_bias == "simple": self.rel_pos_bias = MegaSimpleRelativePositionalBias(config) elif self.config.relative_positional_bias == "rotary": self.rel_pos_bias = MegaRotaryRelativePositionalBias(config) else: raise ValueError(f"Unknown relative positional bias: {self.config.relative_positional_bias}") self.softmax = nn.Softmax(dim=-1) self.attention_function = ( self.softmax_attention if self.config.attention_activation == "softmax" else self.element_attention ) def element_attention(self, query, key, padding_mask, causal_mask): """ Apply element-wise attention via relu^2 or laplace. Same as original implementation but with standardized causal attention mask. Expects the Hugging Face standard attention mask paradigm: 1 for not masked, and 0 for masked. """ seq_len = key.size(2) if padding_mask is not None: # (batch_size X number of chunks X 1) lengths = padding_mask.sum(-1, keepdim=True) # (batch_size X number of chunks X 1 X 1) lengths = lengths.clamp(min=1.0).unsqueeze(-1) else: lengths = seq_len if causal_mask is not None: lengths = causal_mask.sum(dim=-1, keepdim=True) # (sequence_length X sequence_length) bias = self.rel_pos_bias(seq_len) if seq_len != query.size(2): if query.size(2) != 1: raise ValueError("Size mismatch between Q and K in element attention") # (1 X sequence_length) bias = bias[-1:] # (batch_size X number of chunks X sequence_length X sequence_length) qk = torch.matmul(query, key.transpose(2, 3)) / lengths + bias attn_weights = ACT2FN[self.config.attention_activation](qk).type_as(qk) if padding_mask is not None: attn_weights = attn_weights * padding_mask.unsqueeze(2) if causal_mask is not None: attn_weights = attn_weights * causal_mask return attn_weights def softmax_attention(self, query, key, padding_mask, causal_mask): "Standard softmax self-attention, as in the original Transformer paper" seq_len = key.size(2) # (sequence_length X sequence_length) bias = self.rel_pos_bias(seq_len) if seq_len != query.size(2): if query.size(2) != 1: raise ValueError("Size mismatch between Q and K in softmax attention") # (1 X sequence_length) bias = bias[-1:] # scaled attention query = query * self.scaling # (batch_size x number of chunks x chunk_size x chunk_size) if chunking # (batch_size x 1 x sequence_length x sequence_length) otherwise qk = torch.matmul(query, key.transpose(2, 3)) + bias # apply causal mask (presumed to be 1/0 for not masked / masked) # additive, but convert to 0/-inf (which is not explicitly in the Mega source code) if causal_mask is not None: additive_causal_mask = torch.zeros_like(causal_mask, dtype=qk.dtype) additive_causal_mask = additive_causal_mask.masked_fill((1 - causal_mask).bool(), float("-inf")) qk = qk + additive_causal_mask if padding_mask is not None: # 1 for tokens which are *not masked* # 0 for tokens which are *masked* # replace masked tokens with -inf to make softmax ignore them # need to invert the padding mask to match what mega original did padding_mask = 1 - padding_mask padding_mask_all = padding_mask.all(dim=-1, keepdim=True) padding_mask = torch.logical_and(padding_mask, ~padding_mask_all) qk = qk.masked_fill(padding_mask.unsqueeze(2).to(torch.bool), float("-inf")) attn_weights = self.softmax(qk).type_as(qk) return attn_weights def forward( self, input, padding_mask: Optional[torch.Tensor] = None, causal_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[torch.Tensor]] = None, output_attentions=False, use_cache=False, ): """ Mega's self-attention block, which combines multi-headed EMA with traditional self-attention Args: input (`torch.Tensor` of shape `(sequence_length, batch_size, hidden_size)`): Hidden states to be updated by Mega's self-attention padding_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* or 0 for *masked* causal_mask (`torch.LongTensor` of shape `(sequence_length, sequence_length)`, *optional*): Indicates which inputs are to be ignored due to causal attention, where elements are either 1 for *not masked* or 0 for *masked* past_key_values (`tuple(torch.Tensor)`, *optional*): The hidden states returned from the previous timestep during incremental decoding; expects that self-attention key, value, and EMA states are the first 3 entries in the tuple output_attentions (`bool`, default `False`): Whether to return self-attention weights use_cache (`bool`, default `False`): Whether to perfom incremental decoding; uses `past_key_values` as prior state, and returns the updated states for use in the next step Returns: `tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and inputs: - **hidden_states** (`torch.FloatTensor` of shape `(sequence_length, batch_size, hidden_size)`) -- Hidden states from target sequence updated by Mega's self-attention - **attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape `(batch_size, 1, sequence_length, sequence_length)` -- The self-attention weights corresponding to how each token in the input sequence attends to every other token - **self_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, sequence_length, config.shared_representation_size)` -- The self-attention key state for use in the next step of incremental decoding - **self_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, sequence_length, config.hidden_size)` -- The self-attention value state for use in the next step of incremental decoding - **self_ema_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, config.ndim)` The incremental EMA state for use in the next step of incremental decoding. """ seq_len, bsz, embed_dim = input.size() if embed_dim != self.config.hidden_size: raise ValueError(f"Input embedding dimension should be {self.config.hidden_size}; received {embed_dim}") # store inputs for residual connection and handle pre-norm if requested residual = input if self.config.normalize_before_mega: input = self.norm(input) # (sequence_length X batch_size X hidden_size) -> (sequence_length X batch_size X intermediate_size) value = self.activation(self.v_proj(input)) # unpack the incremental state if provided # assumed to be (self K, self V, self EMA state, cross K, cross V) # also assumes that incremental decoding is working one token at a time, so input sequence length must be 1 if self.config.is_decoder and (past_key_values is not None): if seq_len > 1: raise ValueError(f"Incremental decoding only supports self sequence length of 1; received {seq_len}") # the first 3 items in the saved states will be these regardless of whether cross-attention is present prev_self_key, prev_self_value, prev_ema_state = past_key_values[0:3] else: prev_self_key = prev_self_value = prev_ema_state = None # ema output is (sequence_length x batch_size x hidden_size) # updated_ema_state will be None if use_cache=False; otherwise (batch_size, config.ndim) ema_out, updated_ema_state = self.ema_gate( input, attention_mask=padding_mask, prev_state=prev_ema_state, use_cache=use_cache ) ema_out = self.dropout(ema_out) # (sequence_length X batch_size X hidden_size) # -> (sequence_length X batch_size X 2*hidden_size + config.shared_representation_size + config.intermediate_size) # - residual_weight -> sigmoid -> applied to residual connection in torch.addcmul # - query_key_gates -> split into two components: query_key becomes query and key for attention input, gates becomes gating for self-attention output # - intermediate_state -> added to weighted attention output, sent through activation, and has inputs subtracted during # torch.addcmul to create the final layer output base = self.mx_proj(ema_out) residual_weight, query_key_gates, intermediate_state = torch.split( base, [ self.config.hidden_size, self.config.shared_representation_size + self.config.intermediate_size, self.config.hidden_size, ], dim=-1, ) # (sequence_length X batch_size X hidden_size) residual_weight = torch.sigmoid(residual_weight) # (sequence_length X batch_size X shared_representation_size + intermediate_size) query_key_gates = F.silu(query_key_gates) # split into two different tensors: one for Q/K usage and the other for gating self-attention query_key, attention_gate = torch.split( query_key_gates, [self.config.shared_representation_size, self.config.intermediate_size], dim=-1 ) # (sequence_length X batch_size X shared_representation_size) # -> (sequence_length X batch_size X 1 X shared_representation_size) # -> (sequence_length X batch_size X 2 X shared_representation_size) query_key = query_key.unsqueeze(2) * self.qk_weight + self.qk_bias # (sequence_length X batch_size X 2 X shared_representation_size) # -> 2 tensors of (sequence_length X batch_size X shared_representation_size) query, key = torch.unbind(query_key, dim=2) # (sequence_length X batch_size X dimension) # -> (batch_size X sequence_length X dimension) # where `dimension` is either shared_representation_size (queries and keys) or intermediate_size (values) query = query.transpose(0, 1) key = key.transpose(0, 1) value = value.transpose(0, 1) if self.config.is_decoder: # combine history and current to save updated state (if history is provided) # when chunking is applied, the past states will be None at the end of the chunk, in # which case, proceed as if no K/V history had been provided # saved states are stored with shape (batch_size X sequence_length X dimension) if prev_self_key is not None: key = torch.cat([prev_self_key, key], dim=1) if prev_self_value is not None: value = torch.cat([prev_self_value, value], dim=1) # if not chunking, store as-is if not self.config.use_chunking: updated_self_key = key updated_self_value = value else: curr_len = key.size(1) % self.config.chunk_size if curr_len == 0: # if we're chunking and have reached the end of a chunk, wipe out the saved state updated_self_key = None updated_self_value = None else: updated_self_key = key updated_self_value = value ctx_len = key.size(1) # potentially differs from seq_len because of incremental decoding if not self.config.use_chunking: # if we're not chunking, treat the entire sequence as one long chunk # (batch_size X sequence_length X dimension) -> (batch_size X 1 X sequence_length X dimension) query = query.unsqueeze(1) key = key.unsqueeze(1) value = value.unsqueeze(1) if padding_mask is not None: # (batch_size X sequence_length) -> (batch_size X 1 X sequence_length) padding_mask = padding_mask.unsqueeze(1) else: # otherwise, split the sequences in the batch into `n_chunks` chunks of size `chunk_size` if seq_len < self.config.chunk_size: query = query.unsqueeze(1) else: # (batch_size X sequence_length X dimension) -> (batch_size X n_chunks X chunk_size X dimension) n_chunks = seq_len // self.config.chunk_size query = query.reshape(bsz, n_chunks, self.config.chunk_size, self.config.shared_representation_size) if ctx_len < self.config.chunk_size: key = key.unsqueeze(1) value = value.unsqueeze(1) if padding_mask is not None: padding_mask = padding_mask.unsqueeze(1) else: # (batch_size X sequence_length X dimension) -> (batch_size X n_chunks X chunk_size X dimension) n_chunks = ctx_len // self.config.chunk_size key = key.reshape(bsz, n_chunks, self.config.chunk_size, self.config.shared_representation_size) value = value.reshape(bsz, n_chunks, self.config.chunk_size, self.config.intermediate_size) if padding_mask is not None: padding_mask = padding_mask.view(bsz, n_chunks, self.config.chunk_size) # this is in the original Mega implementation to work around fork/join parallelism not supporting optional types if padding_mask is not None and padding_mask.dim() == 0: padding_mask = None attn_weights = self.attention_function(query, key, padding_mask=padding_mask, causal_mask=causal_mask) value = self.hidden_dropout(value, batch_first=True) kernel = self.attention_dropout(attn_weights) # (batch_size x n_chunks x chunk_size x intermediate_size) -> (sequence_length X batch_size X intermediate_size) weighted_self_output = ( torch.matmul(kernel, value).view(bsz, seq_len, self.config.intermediate_size).transpose(0, 1) ) # (sequence_length X batch_size X intermediate_size) -> (sequence_length X batch_size X hidden_size) weighted_self_output = self.activation(intermediate_state + self.h_proj(weighted_self_output * attention_gate)) weighted_self_output = self.dropout(weighted_self_output) # (sequence_length X batch_size X hidden_size) out = torch.addcmul(residual, residual_weight, weighted_self_output - residual) if not self.config.normalize_before_mega: out = self.norm(out) return_values = (out, attn_weights) if output_attentions else (out,) if self.config.is_decoder: return_values = return_values + (updated_self_key, updated_self_value, updated_ema_state) return return_values class MegaNormalizedFeedForwardNetwork(nn.Module): """ Normalized feed-forward network used in Mega blocks. Left as-is from original Mega repo aside from retrieving args from Hugging Face config """ def __init__(self, config: MegaConfig): super().__init__() self.config = config self.hidden_dim = config.nffn_hidden_size self.act_fn = config.activation self.activation = ACT2FN[config.activation] self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout) self.hidden_dropout = MegaDropout( self.config.nffn_activation_dropout_prob, is_featurewise=self.config.use_feature_dropout ) self.prenorm = self.config.normalize_before_ffn self.norm = MegaSequenceNorm( self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine ) self.fc1 = nn.Linear(self.config.hidden_size, self.config.nffn_hidden_size) self.fc2 = nn.Linear(self.config.nffn_hidden_size, self.config.hidden_size) def forward(self, inputs): residual = inputs if self.prenorm: inputs = self.norm(inputs) hidden = self.activation(self.fc1(inputs)) hidden = self.hidden_dropout(hidden) output = self.fc2(hidden) output = self.dropout(output) output = output + residual if not self.prenorm: output = self.norm(output) return output class MegaBlock(nn.Module): def __init__(self, config: MegaConfig): super().__init__() self.seq_len_dim = 1 self.mega_layer = MegaMovingAverageGatedAttention(config) self.nffn = MegaNormalizedFeedForwardNetwork(config) if config.use_normalized_ffn else None self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.cross_attn = MegaGatedCrossAttention(config) else: self.cross_attn = None def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, causal_mask: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[torch.FloatTensor]] = None, output_attentions: Optional[bool] = False, use_cache: bool = False, ) -> Tuple[torch.Tensor]: """ A single Mega layer: either encoder or decoder, with optional cross-attention and optional normalized feed-forward layer Args: hidden_states (`torch.Tensor` of shape `(target_sequence_length, batch_size, hidden_size)`): Hidden states to be updated by the Mega block attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indicates which entries in the self/target sequence are to be ignored (mostly due to padding), where elements are either 1 for *not masked* or 0 for *masked*. Causal attention is enforced internally. causal_mask (`torch.LongTensor` of shape `(sequence_length, sequence_length)`, *optional*): Indicates which inputs are to be ignored due to causal attention, where elements are either 1 for *not masked* or 0 for *masked* encoder_hidden_states (`torch.Tensor`, of shape `(source_sequence_length, batch_size, hidden_size)`, *optional*): Encoder hidden states to be used for cross-attention (and required for encoder-decoder model setup) encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, source_sequence_length)`, *optional*): Indicates which entries in the cross/source sequence are to be ignored (mostly due to padding), where elements are either 1 for *not masked* or 0 for *masked*. past_key_value (`tuple(torch.Tensor)`, *optional*): The hidden states returned from the previous timestep during incremental decoding; expects that self-attention key, value, and EMA states are the first 3 entries in the tuple, and (if doing cross-attention) cross-attention key and value are the last 2 entries in the tuple output_attentions (`bool`, default `False`): Whether to return self-attention weights use_cache (`bool`, default `False`): Whether to perfom incremental decoding; uses `past_key_value` as prior state, and returns the updated states for use in the next step Returns: `tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and inputs: - **hidden_states** (`torch.FloatTensor` of shape `(target_sequence_length, batch_size, hidden_size)`) -- Hidden states from target sequence updated by Mega - **self_attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape `(batch_size, 1, target_sequence_length, target_sequence_length)` -- The self-attention weights corresponding to how each token in the input sequence attends to every other token - **cross_attn_weights** (*optional*, returned when `output_attentions=True` and `config.add_cross_attention=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length, target_sequence_length)` -- Pairwise cross-attention weights between every entry in the source sequence and target sequence - **self_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, sequence_length, config.shared_representation_size)` -- The self-attention key state for use in the next step of incremental decoding - **self_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, sequence_length, config.hidden_size)` -- The self-attention value state for use in the next step of incremental decoding - **self_ema_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, config.ndim)` The incremental EMA state for use in the next step of incremental decoding. - **cross_key** (*optional*, returned when `use_cache=True` and `config.is_decoder=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length, config.shared_representation_size)` -- The cross-attention key state for use in the next step of incremental decoding - **cross_value** (*optional*, returned when `use_cache=True` and `config.is_decoder=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length, config.hidden_size)` -- The cross-attention value state for use in the next step of incremental decoding """ # incremental decoding in the MegaMultiDimensionDampedEma module requires that the attention mask has the same # sequence length as the input tensor; if we're caching incremental states, we assume the input # sequence length is 1 (Mega will break otherwise), so we take the padding mask for the final # token in the input (mask is received as [batch X sequence length]) if use_cache and (past_key_value is not None) and (attention_mask is not None): mega_padding_mask = attention_mask[:, -1].unsqueeze(-1) else: mega_padding_mask = attention_mask mega_outputs = self.mega_layer( input=hidden_states, padding_mask=mega_padding_mask, causal_mask=causal_mask, past_key_values=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) new_hidden_states = mega_outputs[0] self_key, self_value, self_ema_state = mega_outputs[-3:] if use_cache else (None, None, None) self_attention_weights = mega_outputs[1] if output_attentions else None # optional cross attention if self.cross_attn is not None: if encoder_hidden_states is None: raise ValueError("Requested cross-attention without providing encoder hidden states") cross_attn_outputs = self.cross_attn( query=new_hidden_states, key=encoder_hidden_states, value=encoder_hidden_states, key_padding_mask=encoder_attention_mask, past_key_values=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) # update the hidden state from cross attention new_hidden_states = cross_attn_outputs[0] # store cross-attention k/v if caching cross_key, cross_value = cross_attn_outputs[-2:] if use_cache else (None, None) cross_attention_weights = cross_attn_outputs[1] if output_attentions else None # optional NFFN follows cross attention if self.nffn is not None: new_hidden_states = self.nffn(new_hidden_states) outs = (new_hidden_states,) if output_attentions: outs = outs + (self_attention_weights,) if self.cross_attn is not None: outs = outs + (cross_attention_weights,) if use_cache: new_key_values = ( self_key, self_value, self_ema_state, ) if self.cross_attn is not None: new_key_values = new_key_values + (cross_key, cross_value) outs = outs + (new_key_values,) return outs # copied from transformers.models.roberta.modeling_roberta.RobertaPooler with Roberta->Mega class MegaPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class MegaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MegaConfig base_model_prefix = "mega" supports_gradient_checkpointing = False _no_split_modules = ["MegaMovingAverageGatedAttention"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, MegaMultiDimensionDampedEma): with torch.no_grad(): # delta & alpha nn.init.normal_(module.damping_factor, mean=0.0, std=self.config.ema_delta_alpha_range) nn.init.normal_(module.decay_factor, mean=0.0, std=self.config.ema_delta_alpha_range) # beta [1, -1, 1, -1, ...] seems more stable. val = torch.ones(self.config.ema_projection_size, 1) if self.config.ema_projection_size > 1: idx = torch.tensor(list(range(1, self.config.ema_projection_size, 2))) val.index_fill_(0, idx, -1.0) module.ema_expansion_matrix.normal_(mean=0.0, std=self.config.ema_beta_range).add_(val) # gamma & omega nn.init.normal_(module.kernel_projection_matrix, mean=0.0, std=self.config.ema_gamma_omega_range) nn.init.normal_(module.residual_weight, mean=0.0, std=self.config.ema_gamma_omega_range) elif isinstance(module, MegaSimpleRelativePositionalBias): nn.init.normal_(module.rel_pos_bias, mean=0.0, std=self.config.initializer_range) elif isinstance(module, MegaRotaryRelativePositionalBias): nn.init.normal_(module.alpha, mean=0.0, std=self.config.initializer_range) nn.init.normal_(module.b_param, mean=0.0, std=self.config.initializer_range) elif isinstance(module, MegaScaleNorm): if self.config.norm_affine: nn.init.constant_(module.scalar, 1.0) elif isinstance(module, MegaRMSNorm): if self.config.norm_affine: nn.init.constant_(module.weight, 1.0) elif isinstance(module, MegaMovingAverageGatedAttention): # linear layers covered separately by the generic nn.Linear init below nn.init.normal_(module.qk_weight, mean=0.0, std=self.config.initializer_range) nn.init.constant_(module.qk_bias, 0.0) elif isinstance(module, nn.Linear): # initializes all linear layers in the entire network module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) MEGA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MegaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MEGA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. This parameter can only be used when the model is initialized with `add_token_type_embeddings` parameter set to `True`. All the value in this tensor should be always < config.type_vocab_size. [What are token type IDs?](../glossary#token-type-ids) inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MEGA Model transformer outputting raw hidden-states without any specific head on top.", MEGA_START_DOCSTRING, ) class MegaModel(MegaPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added after self-attention, following the architecture described in *Mega: Moving Average Equipped Gated Attention*_ by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer To behave as a decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True` and `bidirectional` set to `False`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder=True` and `bidirectional=False` argument as well as `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Mega: Moving Average Equipped Gated Attention*: https://arxiv.org/abs/2209.10655 """ def __init__(self, config: MegaConfig, add_pooling_layer=True): super().__init__(config) self.config = config self.embedding_layer = MegaEmbeddings(config) self.layers = nn.ModuleList([MegaBlock(config) for _ in range(config.num_hidden_layers)]) self.pooler = MegaPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing (retained from RoBERTa code) self.post_init() def get_input_embeddings(self): return self.embedding_layer.word_embeddings def set_input_embeddings(self, value): self.embedding_layer.word_embeddings = value @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() device = input_ids.device elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] device = inputs_embeds.device else: raise ValueError("You have to specify either input_ids or inputs_embeds") if self.config.use_chunking: input_shape = torch.tensor([input_shape[0], self.config.chunk_size]) batch_size, sequence_length = input_shape if self.config.use_chunking and (sequence_length > self.config.chunk_size): if sequence_length % self.config.chunk_size != 0: raise ValueError( f"config.use_chunking is activated; input sequence length must be shorter than or a multiple of config.chunk_size\nreceived sequence length of {sequence_length} with chunk size {self.config.chunk_size}" ) if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache # Mega expects the causal mask to be a 2D square matrix of (from) x (to) over the input sequence length # the HF utility function generates a 3D causal mask which includes batch size, so we'll create a dummy # mask with the correct device and all ones temp_mask_for_extension = torch.ones((1, sequence_length), dtype=torch.long, device=device) causal_mask = self.create_extended_attention_mask_for_decoder(input_shape, temp_mask_for_extension) # get rid of batch dimension in the generated mask; result is (sequence_length X sequence_length) causal_mask = causal_mask.squeeze(0) else: use_cache = False causal_mask = None # if using cache, make sure we have a tuple of tuples which matches the length of our hidden layers if (past_key_values is not None) and (len(past_key_values) != self.config.num_hidden_layers): raise ValueError( f"Received past key/value cache with size mismatch; expected {self.config.num_hidden_layers}, received {len(past_key_values)}" ) # get embeddings (batch X sequence length X embed dim) embedding_output = self.embedding_layer( input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) # transpose for Mega --> (seq len X batch X embed dim) hidden_states = embedding_output.transpose(0, 1) # we expect encoder hidden states to also have batch first in line # with typical Hugging Face behavior (which is also how we return them) # Mega expects sequence length first, so do the same transpose here if encoder_hidden_states is not None: encoder_hidden_states = encoder_hidden_states.transpose(0, 1) # pass through mega layers all_hidden_states = (embedding_output,) if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, mega_layer in enumerate(self.layers): current_decoder_cache = past_key_values[i] if past_key_values is not None else None mega_outputs = mega_layer( hidden_states=hidden_states, attention_mask=attention_mask, causal_mask=causal_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=current_decoder_cache, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = mega_outputs[0] if output_hidden_states: # store layer-wise hidden states in the way that the user expects # (seq len X batch X embed dim) --> (batch X seq len X embed dim) all_hidden_states += (hidden_states.transpose(0, 1),) if output_attentions: self_attn_weights = mega_outputs[1] all_self_attentions += (self_attn_weights,) if self.config.add_cross_attention: cross_attn_weights = mega_outputs[2] all_cross_attentions += (cross_attn_weights,) if use_cache: updated_cache = mega_outputs[-1] next_decoder_cache += (updated_cache,) # transpose final hidden states hidden_states = hidden_states.transpose(0, 1) # optional pooling layer pooled_output = self.pooler(hidden_states) if self.pooler is not None else None if not return_dict: return (hidden_states, pooled_output) + ( all_hidden_states, next_decoder_cache, all_self_attentions, all_cross_attentions, ) return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=hidden_states, pooler_output=pooled_output, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) @add_start_docstrings( """MEGA Model with a `language modeling` head on top for CLM fine-tuning.""", MEGA_START_DOCSTRING ) class MegaForCausalLM(MegaPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: MegaConfig): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `MegaForCausalLM` as a standalone, add `is_decoder=True.`") self.mega = MegaModel(config, add_pooling_layer=False) if config.add_lm_hidden_dense_layer: self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.hidden_activation = nn.Tanh() else: self.dense = None self.hidden_activation = None self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, MegaForCausalLM, AutoConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("mnaylor/mega-base-wikitext") >>> config = AutoConfig.from_pretrained("mnaylor/mega-base-wikitext") >>> config.is_decoder = True >>> config.bidirectional = False >>> model = MegaForCausalLM.from_pretrained( ... "mnaylor/mega-base-wikitext", config=config, ignore_mismatched_sizes=True ... ) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.mega( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] if self.dense is not None: sequence_output = self.dense(sequence_output) sequence_output = self.hidden_activation(sequence_output) prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings("""MEGA Model with a `language modeling` head on top.""", MEGA_START_DOCSTRING) class MegaForMaskedLM(MegaPreTrainedModel): _tied_weights_keys = ["mlm_head.weight"] def __init__(self, config: MegaConfig): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `MegaForMaskedLM`, set `config.is_decoder=False` for " "bi-directional self-attention." ) self.mega = MegaModel(config, add_pooling_layer=False) if config.add_lm_hidden_dense_layer: self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.hidden_activation = nn.Tanh() else: self.dense = None self.hidden_activation = None self.mlm_head = nn.Linear(config.hidden_size, config.vocab_size) self.dropout = nn.Dropout(config.dropout_prob) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.mlm_head def set_output_embeddings(self, new_embeddings): self.mlm_head = new_embeddings @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", expected_output="' Paris'", expected_loss=0.1, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mega( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] if self.dense is not None: sequence_output = self.dense(sequence_output) sequence_output = self.hidden_activation(sequence_output) prediction_scores = self.mlm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MEGA Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MEGA_START_DOCSTRING, ) class MegaForSequenceClassification(MegaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.mega = MegaModel(config, add_pooling_layer=False) self.classifier = MegaClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mega( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MEGA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MEGA_START_DOCSTRING, ) class MegaForMultipleChoice(MegaPreTrainedModel): def __init__(self, config): super().__init__(config) self.mega = MegaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.mega( flat_input_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MEGA Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MEGA_START_DOCSTRING, ) class MegaForTokenClassification(MegaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mega = MegaModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mega( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Mega class MegaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ MEGA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MEGA_START_DOCSTRING, ) class MegaForQuestionAnswering(MegaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mega = MegaModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mega( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/qwen2/configuration_qwen2.py
# coding=utf-8 # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Qwen2 model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class Qwen2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 151936): Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Qwen2Model`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 22016): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 32): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 32768): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. use_sliding_window (`bool`, *optional*, defaults to `False`): Whether to use sliding window attention. sliding_window (`int`, *optional*, defaults to 4096): Sliding window attention (SWA) window size. If not specified, will default to `4096`. max_window_layers (`int`, *optional*, defaults to 28): The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. ```python >>> from transformers import Qwen2Model, Qwen2Config >>> # Initializing a Qwen2 style configuration >>> configuration = Qwen2Config() >>> # Initializing a model from the Qwen2-7B style configuration >>> model = Qwen2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "qwen2" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=151936, hidden_size=4096, intermediate_size=22016, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_act="silu", max_position_embeddings=32768, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, use_sliding_window=False, sliding_window=4096, max_window_layers=28, attention_dropout=0.0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.use_sliding_window = use_sliding_window self.sliding_window = sliding_window self.max_window_layers = max_window_layers # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_dropout = attention_dropout super().__init__( tie_word_embeddings=tie_word_embeddings, **kwargs, )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/qwen2/modeling_qwen2.py
# coding=utf-8 # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Qwen2 model.""" import inspect import math import warnings from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from .configuration_qwen2 import Qwen2Config if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta" _CONFIG_FOR_DOC = "Qwen2Config" # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2 class Qwen2RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Qwen2RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Qwen2 class Qwen2RotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2 class Qwen2MLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class Qwen2Attention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". """ def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True self.attention_dropout = config.attention_dropout if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.rotary_emb = Qwen2RotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class Qwen2FlashAttention2(Qwen2Attention): """ Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom config.max_window_layers layers. """ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ): if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) # overwrite attention_mask with padding_mask attention_mask = kwargs.pop("padding_mask") bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) # Because the input can be padded, the absolute sequence length depends on the max position id. rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) use_sliding_windows = ( _flash_supports_window_size and getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window and self.config.use_sliding_window ) if not _flash_supports_window_size: logger.warning_once( "The current flash attention version does not support sliding window attention, for a more memory efficient implementation" " make sure to upgrade flash-attn library." ) if past_key_value is not None: # Activate slicing cache only if the config has a value `sliding_windows` attribute cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 if ( getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window and cache_has_contents ): slicing_tokens = 1 - self.config.sliding_window past_key = past_key_value[self.layer_idx][0] past_value = past_key_value[self.layer_idx][1] past_key = past_key[:, :, slicing_tokens:, :].contiguous() past_value = past_value[:, :, slicing_tokens:, :].contiguous() if past_key.shape[-2] != self.config.sliding_window - 1: raise ValueError( f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" f" {past_key.shape}" ) if attention_mask is not None: attention_mask = attention_mask[:, slicing_tokens:] attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) dropout_rate = 0.0 if not self.training else self.attention_dropout # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in float16 just to be sure everything works as expected. input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) # Reashape to the expected shape for Flash Attention query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, use_sliding_windows=use_sliding_windows, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None, use_sliding_windows=False, ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`float`): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) use_sliding_windows (`bool`, *optional*): Whether to activate sliding window attention. """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Decide whether to use SWA or not by layer index. if use_sliding_windows and self.layer_idx >= self.config.max_window_layers: use_sliding_windows = False # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens if not use_sliding_windows: attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) else: attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, window_size=(self.config.sliding_window, self.config.sliding_window), ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: if not use_sliding_windows: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, ) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, window_size=(self.config.sliding_window, self.config.sliding_window), ) return attn_output # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape # On the first iteration we need to properly re-create the padding mask # by slicing it on the proper place if kv_seq_len != attention_mask.shape[-1]: attention_mask_num_tokens = attention_mask.shape[-1] attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) # Copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Qwen2 class Qwen2SdpaAttention(Qwen2Attention): """ Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from Qwen2Attention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.attention_dropout if self.training else 0.0, # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal=self.is_causal and attention_mask is None and q_len > 1, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value QWEN2_ATTENTION_CLASSES = { "eager": Qwen2Attention, "flash_attention_2": Qwen2FlashAttention2, "sdpa": Qwen2SdpaAttention, } class Qwen2DecoderLayer(nn.Module): def __init__(self, config: Qwen2Config, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size if config.use_sliding_window and config._attn_implementation != "flash_attention_2": logger.warning_once( f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; " "unexpected results may be encountered." ) self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) self.mlp = Qwen2MLP(config) self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. " "Please make sure use `attention_mask` instead.`" ) """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs QWEN2_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Qwen2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", QWEN2_START_DOCSTRING, ) class Qwen2PreTrainedModel(PreTrainedModel): config_class = Qwen2Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Qwen2DecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() QWEN2_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.", QWEN2_START_DOCSTRING, ) class Qwen2Model(Qwen2PreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`] Args: config: Qwen2Config """ def __init__(self, config: Qwen2Config): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._attn_implementation = config._attn_implementation self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False past_key_values_length = 0 if use_cache: use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values_length = past_key_values.get_usable_length(seq_length) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: is_padding_right = attention_mask[:, -1].sum().item() != batch_size if is_padding_right: raise ValueError( "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to " " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if self._attn_implementation == "flash_attention_2": # 2d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None elif self._attn_implementation == "sdpa" and not output_attentions: # output_attentions=True can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, sliding_window=self.config.sliding_window, ) else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, sliding_window=self.config.sliding_window, ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_values, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class Qwen2ForCausalLM(Qwen2PreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = Qwen2Model(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, Qwen2ForCausalLM >>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): # Omit tokens covered by past_key_values if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens max_cache_length = past_key_values.get_max_length() else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """ The Qwen2 Model transformer with a sequence classification head on top (linear layer). [`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, QWEN2_START_DOCSTRING, ) class Qwen2ForSequenceClassification(Qwen2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Qwen2Model(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/qwen2/tokenization_qwen2.py
# coding=utf-8 # Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Qwen2.""" import json import os import unicodedata from functools import lru_cache from typing import Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768} PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""" @lru_cache() # Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) # Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class Qwen2Tokenizer(PreTrainedTokenizer): """ Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding. Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import Qwen2Tokenizer >>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer") >>> tokenizer("Hello world")["input_ids"] [9707, 1879] >>> tokenizer(" Hello world")["input_ids"] [21927, 1879] ``` This is expected. You should not use GPT2Tokenizer instead, because of the different pretokenization rules. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*): The beginning of sequence token. Not applicable for this tokenizer. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The token used for padding, for example when batching sequences of different lengths. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not the model should cleanup the spaces that were added when splitting the input text during the tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces. split_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the special tokens should be split during the tokenization process. The default behavior is to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") = ['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<', '|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", unk_token="<|endoftext|>", bos_token=None, eos_token="<|endoftext|>", pad_token="<|endoftext|>", clean_up_tokenization_spaces=False, split_special_tokens=False, **kwargs, ): # Qwen vocab does not contain control tokens; added tokens need to be special bos_token = ( AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(bos_token, str) else bos_token ) eos_token = ( AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(eos_token, str) else eos_token ) unk_token = ( AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(unk_token, str) else unk_token ) pad_token = ( AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(pad_token, str) else pad_token ) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} bpe_merges = [] with open(merges_file, encoding="utf-8") as merges_handle: for i, line in enumerate(merges_handle): line = line.strip() if (i == 0 and line.startswith("#version:")) or not line: continue bpe_merges.append(tuple(line.split())) self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) # NOTE: the cache can grow without bound and will get really large for long running processes # (esp. for texts of language that do not use space between word, e.g. Chinese); technically # not a memory leak but appears as one. # GPT2Tokenizer has the same problem, so let's be consistent. self.cache = {} self.pat = re.compile(PRETOKENIZE_REGEX) if kwargs.get("add_prefix_space", False): logger.warning_once( f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect." ) super().__init__( errors=errors, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, unk_token=unk_token, clean_up_tokenization_spaces=clean_up_tokenization_spaces, split_special_tokens=split_special_tokens, **kwargs, ) @property def vocab_size(self) -> int: return len(self.encoder) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def decode( self, token_ids, skip_special_tokens: bool = False, clean_up_tokenization_spaces: Optional[bool] = False, spaces_between_special_tokens: bool = False, **kwargs, ) -> str: # `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers # and cannot be configured elsewhere, but it should default to False for Qwen2Tokenizer return super().decode( token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, spaces_between_special_tokens=spaces_between_special_tokens, **kwargs, ) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def prepare_for_tokenization(self, text, **kwargs): text = unicodedata.normalize("NFC", text) return (text, kwargs)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/qwen2/__init__.py
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_qwen2": ["QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Qwen2Config"], "tokenization_qwen2": ["Qwen2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_qwen2_fast"] = ["Qwen2TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_qwen2"] = [ "Qwen2ForCausalLM", "Qwen2Model", "Qwen2PreTrainedModel", "Qwen2ForSequenceClassification", ] if TYPE_CHECKING: from .configuration_qwen2 import QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP, Qwen2Config from .tokenization_qwen2 import Qwen2Tokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_qwen2_fast import Qwen2TokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_qwen2 import ( Qwen2ForCausalLM, Qwen2ForSequenceClassification, Qwen2Model, Qwen2PreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/qwen2/tokenization_qwen2_fast.py
# coding=utf-8 # Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Qwen2.""" from typing import Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_qwen2 import Qwen2Tokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json", } MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768} class Qwen2TokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level Byte-Pair-Encoding. Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import Qwen2TokenizerFast >>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer") >>> tokenizer("Hello world")["input_ids"] [9707, 1879] >>> tokenizer(" Hello world")["input_ids"] [21927, 1879] ``` This is expected. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`, *optional*): Path to the vocabulary file. merges_file (`str`, *optional*): Path to the merges file. tokenizer_file (`str`, *optional*): Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that contains everything needed to load the tokenizer. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. Not applicable to this tokenizer. bos_token (`str`, *optional*): The beginning of sequence token. Not applicable for this tokenizer. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The token used for padding, for example when batching sequences of different lengths. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = Qwen2Tokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<|endoftext|>", bos_token=None, eos_token="<|endoftext|>", pad_token="<|endoftext|>", **kwargs, ): # We need to at least pass vocab_file and merges_file to base class # in case a slow tokenizer needs to be initialized; other can be # configured through files. # following GPT2TokenizerFast, also adding unk_token, bos_token, and eos_token bos_token = ( AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(bos_token, str) else bos_token ) eos_token = ( AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(eos_token, str) else eos_token ) unk_token = ( AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(unk_token, str) else unk_token ) pad_token = ( AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(pad_token, str) else pad_token ) super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs, ) # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/falcon/configuration_falcon.py
# coding=utf-8 # Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Falcon configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class FalconConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 65024): Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FalconModel`] hidden_size (`int`, *optional*, defaults to 4544): Dimension of the hidden representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 71): Number of attention heads for each attention layer in the Transformer encoder. layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. hidden_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for MLP layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for attention layers. num_kv_heads (`int`, *optional*): Number of key-value heads to use per attention layer. If unset, defaults to the same value as `num_attention_heads`. alibi (`bool`, *optional*, defaults to `False`): Whether to use ALiBi positional biases during self-attention. new_decoder_architecture (`bool`, *optional*, defaults to `False`): Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn` arguments are ignored, as the new decoder always uses parallel attention. multi_query (`bool`, *optional*, defaults to `True`): Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`. parallel_attn (`bool`, *optional*, defaults to `True`): Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`. bias (`bool`, *optional*, defaults to `False`): Whether to use bias on Linear layers. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with, when `alibi` is `False`. Pretrained Falcon models with RoPE support up to 2048 tokens. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. bos_token_id (`int`, *optional*, defaults to 11): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 11): The id of the "end-of-sequence" token. ffn_hidden_size (`int`, *optional*): The hidden size of the feedforward layer in the Transformer decoder. defaults to 4x hidden dim activation (`str`, *optional*, defaults to `"gelu"`): The activation function used in the feedforward layer. Example: ```python >>> from transformers import FalconModel, FalconConfig >>> # Initializing a small (2-layer) Falcon configuration >>> configuration = FalconConfig(num_hidden_layers=2) >>> # Initializing a model from the small configuration >>> model = FalconModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "falcon" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=65024, hidden_size=4544, num_hidden_layers=32, num_attention_heads=71, layer_norm_epsilon=1e-5, initializer_range=0.02, use_cache=True, hidden_dropout=0.0, attention_dropout=0.0, num_kv_heads=None, alibi=False, new_decoder_architecture=False, multi_query=True, parallel_attn=True, bias=False, max_position_embeddings=2048, rope_theta=10000.0, rope_scaling=None, bos_token_id=11, eos_token_id=11, ffn_hidden_size=None, activation="gelu", **kwargs, ): self.vocab_size = vocab_size # Backward compatibility with n_embed kwarg n_embed = kwargs.pop("n_embed", None) self.hidden_size = hidden_size if n_embed is None else n_embed self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.use_cache = use_cache self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads self.alibi = alibi self.new_decoder_architecture = new_decoder_architecture self.multi_query = multi_query # Ignored when new_decoder_architecture is True self.parallel_attn = parallel_attn self.bias = bias self.max_position_embeddings = max_position_embeddings self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.activation = activation if ffn_hidden_size is None: self.ffn_hidden_size = hidden_size * 4 else: self.ffn_hidden_size = ffn_hidden_size self._rope_scaling_validation() super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) @property def head_dim(self): return self.hidden_size // self.num_attention_heads @property def rotary(self): return not self.alibi def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if self.alibi: raise ValueError("`rope_scaling` is not supported when `alibi` is `True`.") if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_factor = self.rope_scaling.get("factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/falcon/modeling_falcon.py
# coding=utf-8 # Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Falcon model.""" import math import warnings from typing import TYPE_CHECKING, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss from torch.nn import functional as F from ...activations import get_activation from ...modeling_attn_mask_utils import ( AttentionMaskConverter, _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, ) from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import is_torch_greater_or_equal_than_2_0 from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, ) from .configuration_falcon import FalconConfig if TYPE_CHECKING: from ...configuration_utils import PretrainedConfig if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa logger = logging.get_logger(__name__) from ..deprecated._archive_maps import FALCON_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 _CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b" _CONFIG_FOR_DOC = "FalconConfig" # NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations. # In order not to degrade the quality of our HF-port, we keep these characteristics in the final model. class FalconLinear(nn.Linear): def forward(self, input: torch.Tensor) -> torch.Tensor: hidden_states = input @ self.weight.T if self.bias is None: return hidden_states return hidden_states + self.bias # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Falcon class FalconRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) # copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Falcon # TODO @joao no longer copied from LLama after static cache, fix me (copied -> Copied) class FalconLinearScalingRotaryEmbedding(FalconRotaryEmbedding): """FalconRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) t = t / self.scaling_factor freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) # copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Falcon # TODO @joao no longer copied from LLama after static cache, fix me (copied -> Copied) class FalconDynamicNTKScalingRotaryEmbedding(FalconRotaryEmbedding): """FalconRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len if seq_len > self.max_position_embeddings: base = self.base * ( (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) ) ** (self.dim / (self.dim - 2)) inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: batch_size, seq_length = attention_mask.shape closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) base = torch.tensor( 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) slopes = torch.pow(base, powers) if closest_power_of_2 != num_heads: extra_base = torch.tensor( 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) # Note: alibi will added to the attention bias that will be applied to the query, key product of attention # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) # => the query_length dimension will then be broadcasted correctly # This is more or less identical to T5's relative position bias: # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] alibi = slopes[..., None].bfloat16() * arange_tensor return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) # Copied from transformers.models.bloom.modeling_bloom.dropout_add def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: """ Dropout add function Args: x (`torch.tensor`, *required*): input tensor residual (`torch.tensor`, *required*): residual tensor prob (`float`, *required*): dropout probability training (`bool`, *required*): training mode """ out = F.dropout(x, p=prob, training=training) out = residual + out return out class FalconAttention(nn.Module): def __init__(self, config: FalconConfig): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.split_size = self.hidden_size self.hidden_dropout = config.hidden_dropout self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True self._use_sdpa = config._attn_implementation == "sdpa" if self.head_dim * self.num_heads != self.hidden_size: raise ValueError( f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" f" {self.num_heads})." ) if config.rotary: self._init_rope() # Layer-wise attention scaling self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) self.beta = self.inv_norm_factor if config.new_decoder_architecture: qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim elif config.multi_query: qkv_out_dim = self.hidden_size + 2 * self.head_dim else: qkv_out_dim = 3 * self.hidden_size self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias) self.new_decoder_architecture = config.new_decoder_architecture self.multi_query = config.multi_query self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias) self.attention_dropout = nn.Dropout(config.attention_dropout) self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1 # Copied from transformers.models.llama.modeling_llama.LlamaAttention._init_rope with Llama->Falcon def _init_rope(self): if self.config.rope_scaling is None: self.rotary_emb = FalconRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) else: scaling_type = self.config.rope_scaling["type"] scaling_factor = self.config.rope_scaling["factor"] if scaling_type == "linear": self.rotary_emb = FalconLinearScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "dynamic": self.rotary_emb = FalconDynamicNTKScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv` Args: fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim] Returns: query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim] value: [batch_size, seq_length, num_heads, head_dim] """ if self.new_decoder_architecture: batch, seq_len, _ = fused_qkv.shape qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim) query = qkv[:, :, :, :-2] key = qkv[:, :, :, [-2]] value = qkv[:, :, :, [-1]] key = torch.broadcast_to(key, query.shape) value = torch.broadcast_to(value, query.shape) query, key, value = [x.flatten(2, 3) for x in (query, key, value)] return query, key, value elif not self.multi_query: batch_size, seq_length, three_times_hidden_size = fused_qkv.shape fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim) return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :] else: batch_size, seq_length, three_times_hidden_size = fused_qkv.shape fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim) return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :] # Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: """ Merge heads together over the last dimension Args: x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] Returns: torch.tensor: [batch_size, seq_length, num_heads * head_dim] """ # What we want to achieve is: # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim batch_size_and_num_heads, seq_length, _ = x.shape batch_size = batch_size_and_num_heads // self.num_heads # First view to decompose the batch size # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim x = x.permute(0, 2, 1, 3) # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) def forward( self, hidden_states: torch.Tensor, alibi: Optional[torch.Tensor], attention_mask: torch.Tensor, position_ids: Optional[torch.LongTensor] = None, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, **kwargs, ): if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) batch_size, query_length, _, _ = query_layer.shape query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim) key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim) value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim) kv_seq_len = key_layer.shape[-2] if layer_past is not None: kv_seq_len += layer_past[0].shape[-2] if alibi is None: cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len) query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids) if layer_past is not None: past_key, past_value = layer_past # concatenate along seq_length dimension: # - key: [batch_size, self.num_heads, kv_length, head_dim] # - value: [batch_size, self.num_heads, kv_length, head_dim] key_layer = torch.cat((past_key, key_layer), dim=-2) value_layer = torch.cat((past_value, value_layer), dim=-2) kv_length = key_layer.shape[-2] if use_cache: present = (key_layer, value_layer) else: present = None if self._use_sdpa and query_layer.device.type == "cuda" and attention_mask is not None: # For torch<=2.1.2, SDPA with memory-efficient backend is bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. query_layer = query_layer.contiguous() key_layer = key_layer.contiguous() value_layer = value_layer.contiguous() if alibi is None: if self._use_sdpa and not output_attentions: attn_output = F.scaled_dot_product_attention( query_layer, key_layer, value_layer, attention_mask, 0.0, # The query_length > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case query_length == 1. is_causal=self.is_causal and attention_mask is None and query_length > 1, ) attention_scores = None else: attention_scores = query_layer @ key_layer.transpose(-1, -2) attention_scores /= math.sqrt(self.head_dim) attention_scores = F.softmax(attention_scores + attention_mask, dim=-1, dtype=hidden_states.dtype) # It is unclear why neither dropout nor head_mask is applied here (while it is with alibi). attn_output = attention_scores @ value_layer attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim) attn_output = attn_output.permute(0, 2, 1, 3) attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim) attn_output = self.dense(attn_output) if output_attentions: return attn_output, present, attention_scores else: return attn_output, present else: if self._use_sdpa and not output_attentions and head_mask is None: attn_output = F.scaled_dot_product_attention( query_layer, key_layer, value_layer, attn_mask=attention_mask, dropout_p=self.attention_dropout.p if self.training else 0.0, is_causal=self.is_causal and attention_mask is None and query_length > 1, ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim) attn_output = self.dense(attn_output) else: matmul_result = query_layer @ key_layer.transpose(-1, -2) # change view to [batch_size, num_heads, q_length, kv_length] attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length) # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] input_dtype = attention_scores.dtype # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` if input_dtype == torch.float16 or input_dtype == torch.bfloat16: attention_scores = attention_scores.to(torch.float32) attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1) attention_logits *= self.inv_norm_factor attention_probs = F.softmax(attention_logits + attention_mask, dim=-1, dtype=hidden_states.dtype) # [batch_size, num_heads, q_length, kv_length] attention_probs = self.attention_dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask # change view [batch_size, num_heads, q_length, kv_length] attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length) # matmul: [batch_size * num_heads, q_length, head_dim] attn_output = (attention_probs_reshaped @ value_layer).flatten(0, 1) # change view [batch_size, q_length, num_heads * head_dim] attn_output = self._merge_heads(attn_output) attn_output = self.dense(attn_output) if output_attentions: return attn_output, present, attention_probs else: return attn_output, present class FalconFlashAttention2(FalconAttention): """ Falcon flash attention module. This module inherits from `FalconAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, alibi: Optional[torch.Tensor], attention_mask: torch.Tensor, position_ids: Optional[torch.LongTensor] = None, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, **kwargs, ): if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) # overwrite attention_mask with padding_mask attention_mask = kwargs.pop("padding_mask") fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) batch_size, query_length, _, _ = query_layer.shape query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim) key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim) value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim) kv_seq_len = key_layer.shape[-2] if layer_past is not None: kv_seq_len += layer_past[0].shape[-2] if alibi is None: cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len) query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids) if layer_past is not None and use_cache: past_key, past_value = layer_past # concatenate along seq_length dimension: # - key: [batch_size, self.num_heads, kv_length, head_dim] # - value: [batch_size, self.num_heads, kv_length, head_dim] key_layer = torch.cat((past_key, key_layer), dim=-2) value_layer = torch.cat((past_value, value_layer), dim=-2) past_key_value = (key_layer, value_layer) if use_cache else None # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_layer = query_layer.transpose(1, 2) key_layer = key_layer.transpose(1, 2) value_layer = value_layer.transpose(1, 2) if alibi is not None: raise ValueError("`alibi` is not supported when `use_flash_attn` is True") attn_dropout = self.config.attention_dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in float16 just to be sure everything works as expected. input_dtype = query_layer.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.query_key_value.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_layer = query_layer.to(target_dtype) key_layer = key_layer.to(target_dtype) value_layer = value_layer.to(target_dtype) attn_output = self._flash_attention_forward( query_layer, key_layer, value_layer, attention_mask, query_length, dropout=attn_dropout ) attn_weights = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim) attn_output = self.dense(attn_weights) if not output_attentions: attn_weights = None return attn_output, past_key_value, attn_weights # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`float`): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal ) return attn_output # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) class FalconMLP(nn.Module): def __init__(self, config: FalconConfig): super().__init__() hidden_size = config.hidden_size self.dense_h_to_4h = FalconLinear(hidden_size, config.ffn_hidden_size, bias=config.bias) self.act = get_activation(config.activation) self.dense_4h_to_h = FalconLinear(config.ffn_hidden_size, hidden_size, bias=config.bias) self.hidden_dropout = config.hidden_dropout def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.act(self.dense_h_to_4h(x)) x = self.dense_4h_to_h(x) return x FALCON_ATTENTION_CLASSES = { "eager": FalconAttention, "sdpa": FalconAttention, # FalconAttention originally implemented both a forward with & without SDPA "flash_attention_2": FalconFlashAttention2, } class FalconDecoderLayer(nn.Module): def __init__(self, config: FalconConfig): super().__init__() hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.self_attention = FALCON_ATTENTION_CLASSES[config._attn_implementation](config) self.mlp = FalconMLP(config) self.hidden_dropout = config.hidden_dropout self.config = config if config.new_decoder_architecture: # The layer norm before self-attention self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) # The layer norm before the MLP self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) else: self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) if not config.parallel_attn: self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) def forward( self, hidden_states: torch.Tensor, alibi: Optional[torch.Tensor], attention_mask: torch.Tensor, position_ids: Optional[torch.LongTensor] = None, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, **kwargs, ): if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) residual = hidden_states if self.config.new_decoder_architecture: attention_layernorm_out = self.ln_attn(hidden_states) mlp_layernorm_out = self.ln_mlp(hidden_states) else: attention_layernorm_out = self.input_layernorm(hidden_states) # Self attention. attn_outputs = self.self_attention( attention_layernorm_out, layer_past=layer_past, attention_mask=attention_mask, position_ids=position_ids, alibi=alibi, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, **kwargs, ) attention_output = attn_outputs[0] if not self.config.new_decoder_architecture: if self.config.parallel_attn: mlp_layernorm_out = attention_layernorm_out else: residual = dropout_add( attention_output, residual, self.config.attention_dropout, training=self.training ) mlp_layernorm_out = self.post_attention_layernorm(residual) outputs = attn_outputs[1:] # MLP. mlp_output = self.mlp(mlp_layernorm_out) if self.config.new_decoder_architecture or self.config.parallel_attn: mlp_output += attention_output output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training) if use_cache: outputs = (output,) + outputs else: outputs = (output,) + outputs[1:] return outputs # hidden_states, present, attentions FALCON_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FalconConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FALCON_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_hidden_layers`): Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have their past given to this model should not be passed as `input_ids` as they have already been computed. Each element of `past_key_values` is a tuple (past_key, past_value): - past_key: [batch_size * num_heads, head_dim, kv_length] - past_value: [batch_size * num_heads, kv_length, head_dim] attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see `past_key_values`). use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ class FalconPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FalconConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["FalconDecoderLayer"] _supports_flash_attn_2 = True _supports_sdpa = True def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module: nn.Module): """Initialize the weights.""" if isinstance(module, nn.Linear) or isinstance(module, FalconLinear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) # Adapted from transformers.modeling_utils.PreTrainedModel._check_and_enable_sdpa @classmethod def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> "PretrainedConfig": # NOTE: Falcon supported SDPA from PyTorch 2.0. We keep it like that for backward compatibility (automatically use SDPA for torch>=2.0). if hard_check_only: if not is_torch_greater_or_equal_than_2_0: raise ImportError("PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.0.") if not is_torch_greater_or_equal_than_2_0: return config _is_bettertransformer = getattr(cls, "use_bettertransformer", False) if _is_bettertransformer: return config if not hard_check_only: config._attn_implementation = "sdpa" return config @add_start_docstrings( "The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.", FALCON_START_DOCSTRING, ) class FalconModel(FalconPreTrainedModel): def __init__(self, config: FalconConfig): super().__init__(config) self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.use_alibi = config.alibi # Embedding + LN Embedding self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) # Transformer blocks self.h = nn.ModuleList([FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" self._use_sdpa = config._attn_implementation == "sdpa" # Final Layer Norm self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, new_embeddings: torch.Tensor): self.word_embeddings = new_embeddings @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") if past_key_values is None: past_key_values = tuple([None] * len(self.h)) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None # Compute alibi tensor: check build_alibi_tensor documentation past_key_values_length = 0 if past_key_values[0] is not None: past_key_values_length = past_key_values[0][0].shape[-2] if self.use_alibi: mask = ( torch.ones( (batch_size, seq_length + past_key_values_length), device=inputs_embeds.device, dtype=torch.long ) if attention_mask is None else attention_mask ) alibi = build_alibi_tensor(mask, self.num_heads, dtype=hidden_states.dtype) else: alibi = None if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0) if self._use_flash_attention_2: # 2d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None elif self._use_sdpa and not output_attentions: # output_attentions=True can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. if alibi is None: attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) elif head_mask is None: alibi = alibi.reshape(batch_size, -1, *alibi.shape[1:]) # We don't call _prepare_4d_causal_attention_mask_for_sdpa as we need to mask alibi using the 4D attention_mask untouched. attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) # We take care to integrate alibi bias in the attention_mask here. min_dtype = torch.finfo(alibi.dtype).min attention_mask = torch.masked_fill( alibi / math.sqrt(self.config.hidden_size // self.num_heads), attention_mask < -1, min_dtype, ) # From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend # produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213 if seq_length > 1 and attention_mask.device.type == "cuda": attention_mask = AttentionMaskConverter._unmask_unattended(attention_mask, min_dtype=min_dtype) else: # PyTorch SDPA does not support head_mask, we fall back on the eager implementation in this case. attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape batch_size x num_heads x N x N # head_mask has shape n_layer x batch x num_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: outputs = self._gradient_checkpointing_func( block.__call__, hidden_states, alibi, attention_mask, position_ids, head_mask[i], layer_past, use_cache, output_attentions, ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) # Add last hidden state hidden_states = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @add_start_docstrings( "The Falcon Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).", FALCON_START_DOCSTRING, ) class FalconForCausalLM(FalconPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: FalconConfig): super().__init__(config) self.transformer = FalconModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings: torch.Tensor): self.lm_head = new_embeddings def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, **kwargs, ) -> dict: if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] # Note: versions of Falcon with alibi do not use position_ids. It is used with RoPE. if not self.transformer.use_alibi and attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() batch_size, seq_length, vocab_size = shift_logits.shape # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct( shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) ) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def _reorder_cache( self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. Output shares the same memory storage as `past`. """ # Get a copy of `beam_idx` on all the devices where we need those indices. device_to_beam_idx = { past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past } reordered_past = tuple( ( layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), ) for layer_past in past ) return reordered_past @add_start_docstrings( """ The Falcon Model transformer with a sequence classification head on top (linear layer). [`FalconForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, FALCON_START_DOCSTRING, ) class FalconForSequenceClassification(FalconPreTrainedModel): def __init__(self, config: FalconConfig): super().__init__(config) self.num_labels = config.num_labels self.transformer = FalconModel(config) self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ Falcon Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, FALCON_START_DOCSTRING, ) class FalconForTokenClassification(FalconPreTrainedModel): def __init__(self, config: FalconConfig): super().__init__(config) self.num_labels = config.num_labels self.transformer = FalconModel(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: batch_size, seq_length = labels.shape loss_fct = CrossEntropyLoss() loss = loss_fct( logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) ) if not return_dict: output = (logits,) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The Falcon Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FALCON_START_DOCSTRING, ) class FalconForQuestionAnswering(FalconPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = FalconModel(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/falcon/__init__.py
# coding=utf-8 # Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _import_structure = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_falcon"] = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/falcon/convert_custom_code_checkpoint.py
import json from argparse import ArgumentParser from pathlib import Path """ This script converts Falcon custom code checkpoints to modern Falcon checkpoints that use code in the Transformers library. After conversion, performance (especially for generation) should improve and the checkpoint can be loaded without needing trust_remote_code=True. """ if __name__ == "__main__": parser = ArgumentParser() parser.add_argument( "--checkpoint_dir", type=Path, required=True, help="Directory containing a custom code checkpoint to convert to a modern Falcon checkpoint.", ) args = parser.parse_args() if not args.checkpoint_dir.is_dir(): raise ValueError("--checkpoint_dir argument should be a directory!") if ( not (args.checkpoint_dir / "configuration_RW.py").is_file() or not (args.checkpoint_dir / "modelling_RW.py").is_file() ): raise ValueError( "The model directory should contain configuration_RW.py and modelling_RW.py files! Are you sure this is a custom code checkpoint?" ) (args.checkpoint_dir / "configuration_RW.py").unlink() (args.checkpoint_dir / "modelling_RW.py").unlink() config = args.checkpoint_dir / "config.json" text = config.read_text() text = text.replace("RWForCausalLM", "FalconForCausalLM") text = text.replace("RefinedWebModel", "falcon") text = text.replace("RefinedWeb", "falcon") json_config = json.loads(text) del json_config["auto_map"] if "n_head" in json_config: json_config["num_attention_heads"] = json_config.pop("n_head") if "n_layer" in json_config: json_config["num_hidden_layers"] = json_config.pop("n_layer") if "n_head_kv" in json_config: json_config["num_kv_heads"] = json_config.pop("n_head_kv") json_config["new_decoder_architecture"] = True else: json_config["new_decoder_architecture"] = False bos_token_id = json_config.get("bos_token_id", 1) eos_token_id = json_config.get("eos_token_id", 2) config.unlink() config.write_text(json.dumps(json_config, indent=2, sort_keys=True)) tokenizer_config = args.checkpoint_dir / "tokenizer_config.json" if tokenizer_config.is_file(): text = tokenizer_config.read_text() json_config = json.loads(text) if json_config["tokenizer_class"] == "PreTrainedTokenizerFast": json_config["model_input_names"] = ["input_ids", "attention_mask"] tokenizer_config.unlink() tokenizer_config.write_text(json.dumps(json_config, indent=2, sort_keys=True)) generation_config_path = args.checkpoint_dir / "generation_config.json" generation_dict = { "_from_model_config": True, "bos_token_id": bos_token_id, "eos_token_id": eos_token_id, "transformers_version": "4.33.0.dev0", } generation_config_path.write_text(json.dumps(generation_dict, indent=2, sort_keys=True)) print("Done! Please double-check that the new checkpoint works as expected.")
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/deprecated/_archive_maps.py
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from ...utils import logging logger = logging.get_logger(__name__) class DeprecatedDict(dict): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __getitem__(self, item): logger.warning( "Archive maps are deprecated and will be removed in version v4.40.0 as they are no longer relevant. " "If looking to get all checkpoints for a given architecture, we recommend using `huggingface_hub` " "with the list_models method." ) return self[item] class DeprecatedList(list): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __getitem__(self, item): logger.warning_once( "Archive maps are deprecated and will be removed in version v4.40.0 as they are no longer relevant. " "If looking to get all checkpoints for a given architecture, we recommend using `huggingface_hub` " "with the `list_models` method." ) return super().__getitem__(item) ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "albert/albert-base-v1": "https://huggingface.co/albert/albert-base-v1/resolve/main/config.json", "albert/albert-large-v1": "https://huggingface.co/albert/albert-large-v1/resolve/main/config.json", "albert/albert-xlarge-v1": "https://huggingface.co/albert/albert-xlarge-v1/resolve/main/config.json", "albert/albert-xxlarge-v1": "https://huggingface.co/albert/albert-xxlarge-v1/resolve/main/config.json", "albert/albert-base-v2": "https://huggingface.co/albert/albert-base-v2/resolve/main/config.json", "albert/albert-large-v2": "https://huggingface.co/albert/albert-large-v2/resolve/main/config.json", "albert/albert-xlarge-v2": "https://huggingface.co/albert/albert-xlarge-v2/resolve/main/config.json", "albert/albert-xxlarge-v2": "https://huggingface.co/albert/albert-xxlarge-v2/resolve/main/config.json", } ) ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "albert/albert-base-v1", "albert/albert-large-v1", "albert/albert-xlarge-v1", "albert/albert-xxlarge-v1", "albert/albert-base-v2", "albert/albert-large-v2", "albert/albert-xlarge-v2", "albert/albert-xxlarge-v2", ] ) TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "albert/albert-base-v1", "albert/albert-large-v1", "albert/albert-xlarge-v1", "albert/albert-xxlarge-v1", "albert/albert-base-v2", "albert/albert-large-v2", "albert/albert-xlarge-v2", "albert/albert-xxlarge-v2", ] ) ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json"} ) ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["kakaobrain/align-base"]) ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json"} ) ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["BAAI/AltCLIP"]) AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "MIT/ast-finetuned-audioset-10-10-0.4593": "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" } ) AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["MIT/ast-finetuned-audioset-10-10-0.4593"] ) AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json" } ) AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["huggingface/autoformer-tourism-monthly"]) BARK_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["suno/bark-small", "suno/bark"]) BART_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/bart-large"]) BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/beit-base-patch16-224-pt22k": "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" } ) BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/beit-base-patch16-224"]) BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google-bert/bert-base-uncased": "https://huggingface.co/google-bert/bert-base-uncased/resolve/main/config.json", "google-bert/bert-large-uncased": "https://huggingface.co/google-bert/bert-large-uncased/resolve/main/config.json", "google-bert/bert-base-cased": "https://huggingface.co/google-bert/bert-base-cased/resolve/main/config.json", "google-bert/bert-large-cased": "https://huggingface.co/google-bert/bert-large-cased/resolve/main/config.json", "google-bert/bert-base-multilingual-uncased": "https://huggingface.co/google-bert/bert-base-multilingual-uncased/resolve/main/config.json", "google-bert/bert-base-multilingual-cased": "https://huggingface.co/google-bert/bert-base-multilingual-cased/resolve/main/config.json", "google-bert/bert-base-chinese": "https://huggingface.co/google-bert/bert-base-chinese/resolve/main/config.json", "google-bert/bert-base-german-cased": "https://huggingface.co/google-bert/bert-base-german-cased/resolve/main/config.json", "google-bert/bert-large-uncased-whole-word-masking": "https://huggingface.co/google-bert/bert-large-uncased-whole-word-masking/resolve/main/config.json", "google-bert/bert-large-cased-whole-word-masking": "https://huggingface.co/google-bert/bert-large-cased-whole-word-masking/resolve/main/config.json", "google-bert/bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/google-bert/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json", "google-bert/bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/google-bert/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json", "google-bert/bert-base-cased-finetuned-mrpc": "https://huggingface.co/google-bert/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "google-bert/bert-base-german-dbmdz-cased": "https://huggingface.co/google-bert/bert-base-german-dbmdz-cased/resolve/main/config.json", "google-bert/bert-base-german-dbmdz-uncased": "https://huggingface.co/google-bert/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json", "cl-tohoku/bert-base-japanese-char": "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json", "cl-tohoku/bert-base-japanese-char-whole-word-masking": "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json", "TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json", "TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json", "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", } ) BERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "google-bert/bert-base-uncased", "google-bert/bert-large-uncased", "google-bert/bert-base-cased", "google-bert/bert-large-cased", "google-bert/bert-base-multilingual-uncased", "google-bert/bert-base-multilingual-cased", "google-bert/bert-base-chinese", "google-bert/bert-base-german-cased", "google-bert/bert-large-uncased-whole-word-masking", "google-bert/bert-large-cased-whole-word-masking", "google-bert/bert-large-uncased-whole-word-masking-finetuned-squad", "google-bert/bert-large-cased-whole-word-masking-finetuned-squad", "google-bert/bert-base-cased-finetuned-mrpc", "google-bert/bert-base-german-dbmdz-cased", "google-bert/bert-base-german-dbmdz-uncased", "cl-tohoku/bert-base-japanese", "cl-tohoku/bert-base-japanese-whole-word-masking", "cl-tohoku/bert-base-japanese-char", "cl-tohoku/bert-base-japanese-char-whole-word-masking", "TurkuNLP/bert-base-finnish-cased-v1", "TurkuNLP/bert-base-finnish-uncased-v1", "wietsedv/bert-base-dutch-cased", ] ) TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "google-bert/bert-base-uncased", "google-bert/bert-large-uncased", "google-bert/bert-base-cased", "google-bert/bert-large-cased", "google-bert/bert-base-multilingual-uncased", "google-bert/bert-base-multilingual-cased", "google-bert/bert-base-chinese", "google-bert/bert-base-german-cased", "google-bert/bert-large-uncased-whole-word-masking", "google-bert/bert-large-cased-whole-word-masking", "google-bert/bert-large-uncased-whole-word-masking-finetuned-squad", "google-bert/bert-large-cased-whole-word-masking-finetuned-squad", "google-bert/bert-base-cased-finetuned-mrpc", "cl-tohoku/bert-base-japanese", "cl-tohoku/bert-base-japanese-whole-word-masking", "cl-tohoku/bert-base-japanese-char", "cl-tohoku/bert-base-japanese-char-whole-word-masking", "TurkuNLP/bert-base-finnish-cased-v1", "TurkuNLP/bert-base-finnish-uncased-v1", "wietsedv/bert-base-dutch-cased", ] ) BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", } ) BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["google/bigbird-roberta-base", "google/bigbird-roberta-large", "google/bigbird-base-trivia-itc"] ) BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/bigbird-pegasus-large-arxiv": "https://huggingface.co/google/bigbird-pegasus-large-arxiv/resolve/main/config.json", "google/bigbird-pegasus-large-pubmed": "https://huggingface.co/google/bigbird-pegasus-large-pubmed/resolve/main/config.json", "google/bigbird-pegasus-large-bigpatent": "https://huggingface.co/google/bigbird-pegasus-large-bigpatent/resolve/main/config.json", } ) BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "google/bigbird-pegasus-large-arxiv", "google/bigbird-pegasus-large-pubmed", "google/bigbird-pegasus-large-bigpatent", ] ) BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json"} ) BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/biogpt", "microsoft/BioGPT-Large"]) BIT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json"} ) BIT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google/bit-50"]) BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/config.json"} ) BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/blenderbot-3B"]) BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/blenderbot_small-90M"]) BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json", "Salesforce/blip-vqa-capfit-large": "https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json", "Salesforce/blip-image-captioning-base": "https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json", "Salesforce/blip-image-captioning-large": "https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json", "Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json", "Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json", "Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json", "Salesforce/blip-itm-large-flikr": "https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json", } ) BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "Salesforce/blip-vqa-base", "Salesforce/blip-vqa-capfilt-large", "Salesforce/blip-image-captioning-base", "Salesforce/blip-image-captioning-large", "Salesforce/blip-itm-base-coco", "Salesforce/blip-itm-large-coco", "Salesforce/blip-itm-base-flickr", "Salesforce/blip-itm-large-flickr", ] ) TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "Salesforce/blip-vqa-base", "Salesforce/blip-vqa-capfilt-large", "Salesforce/blip-image-captioning-base", "Salesforce/blip-image-captioning-large", "Salesforce/blip-itm-base-coco", "Salesforce/blip-itm-large-coco", "Salesforce/blip-itm-base-flickr", "Salesforce/blip-itm-large-flickr", ] ) BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json"} ) BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["Salesforce/blip2-opt-2.7b"]) BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } ) BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "bigscience/bigscience-small-testing", "bigscience/bloom-560m", "bigscience/bloom-1b1", "bigscience/bloom-1b7", "bigscience/bloom-3b", "bigscience/bloom-7b1", "bigscience/bloom", ] ) BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json", } ) BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["BridgeTower/bridgetower-base", "BridgeTower/bridgetower-base-itm-mlm"] ) BROS_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "jinho8345/bros-base-uncased": "https://huggingface.co/jinho8345/bros-base-uncased/blob/main/config.json", "jinho8345/bros-large-uncased": "https://huggingface.co/jinho8345/bros-large-uncased/blob/main/config.json", } ) BROS_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["jinho8345/bros-base-uncased", "jinho8345/bros-large-uncased"]) CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "almanach/camembert-base": "https://huggingface.co/almanach/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json", "umberto-wikipedia-uncased-v1": "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json", } ) CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["almanach/camembert-base", "Musixmatch/umberto-commoncrawl-cased-v1", "Musixmatch/umberto-wikipedia-uncased-v1"] ) TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList([]) CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json"} ) CANINE_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google/canine-s", "google/canine-r"]) CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "OFA-Sys/chinese-clip-vit-base-patch16": "https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/resolve/main/config.json" } ) CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["OFA-Sys/chinese-clip-vit-base-patch16"]) CLAP_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["laion/clap-htsat-fused", "laion/clap-htsat-unfused"]) CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/config.json"} ) CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["openai/clip-vit-base-patch32"]) TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["openai/clip-vit-base-patch32"]) CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"CIDAS/clipseg-rd64": "https://huggingface.co/CIDAS/clipseg-rd64/resolve/main/config.json"} ) CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["CIDAS/clipseg-rd64-refined"]) CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"susnato/clvp_dev": "https://huggingface.co/susnato/clvp_dev/resolve/main/config.json"} ) CLVP_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["susnato/clvp_dev"]) CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } ) CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "Salesforce/codegen-350M-nl", "Salesforce/codegen-350M-multi", "Salesforce/codegen-350M-mono", "Salesforce/codegen-2B-nl", "Salesforce/codegen-2B-multi", "Salesforce/codegen-2B-mono", "Salesforce/codegen-6B-nl", "Salesforce/codegen-6B-multi", "Salesforce/codegen-6B-mono", "Salesforce/codegen-16B-nl", "Salesforce/codegen-16B-multi", "Salesforce/codegen-16B-mono", ] ) CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/conditional-detr-resnet-50": "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" } ) CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/conditional-detr-resnet-50"]) CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json", "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", } ) CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["YituTech/conv-bert-base", "YituTech/conv-bert-medium-small", "YituTech/conv-bert-small"] ) TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["YituTech/conv-bert-base", "YituTech/conv-bert-medium-small", "YituTech/conv-bert-small"] ) CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/convnext-tiny-224": "https://huggingface.co/facebook/convnext-tiny-224/resolve/main/config.json"} ) CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/convnext-tiny-224"]) CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json" } ) CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/convnextv2-tiny-1k-224"]) CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/config.json"} ) CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["openbmb/cpm-ant-10b"]) CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"Salesforce/ctrl": "https://huggingface.co/Salesforce/ctrl/resolve/main/config.json"} ) CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["Salesforce/ctrl"]) TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["Salesforce/ctrl"]) CVT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json"} ) CVT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "microsoft/cvt-13", "microsoft/cvt-13-384", "microsoft/cvt-13-384-22k", "microsoft/cvt-21", "microsoft/cvt-21-384", "microsoft/cvt-21-384-22k", ] ) TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "microsoft/cvt-13", "microsoft/cvt-13-384", "microsoft/cvt-13-384-22k", "microsoft/cvt-21", "microsoft/cvt-21-384", "microsoft/cvt-21-384-22k", ] ) DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json"} ) DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "facebook/data2vec-vision-base-ft": "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" } ) DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "facebook/data2vec-audio-base", "facebook/data2vec-audio-base-10m", "facebook/data2vec-audio-base-100h", "facebook/data2vec-audio-base-960h", ] ) DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/data2vec-text-base"]) DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/data2vec-vision-base-ft1k"]) DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/deberta-base": "https://huggingface.co/microsoft/deberta-base/resolve/main/config.json", "microsoft/deberta-large": "https://huggingface.co/microsoft/deberta-large/resolve/main/config.json", "microsoft/deberta-xlarge": "https://huggingface.co/microsoft/deberta-xlarge/resolve/main/config.json", "microsoft/deberta-base-mnli": "https://huggingface.co/microsoft/deberta-base-mnli/resolve/main/config.json", "microsoft/deberta-large-mnli": "https://huggingface.co/microsoft/deberta-large-mnli/resolve/main/config.json", "microsoft/deberta-xlarge-mnli": "https://huggingface.co/microsoft/deberta-xlarge-mnli/resolve/main/config.json", } ) DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "microsoft/deberta-base", "microsoft/deberta-large", "microsoft/deberta-xlarge", "microsoft/deberta-base-mnli", "microsoft/deberta-large-mnli", "microsoft/deberta-xlarge-mnli", ] ) TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["kamalkraj/deberta-base"]) DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json", "microsoft/deberta-v2-xxlarge-mnli": "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json", } ) DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "microsoft/deberta-v2-xlarge", "microsoft/deberta-v2-xxlarge", "microsoft/deberta-v2-xlarge-mnli", "microsoft/deberta-v2-xxlarge-mnli", ] ) TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["kamalkraj/deberta-v2-xlarge"]) DECISION_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "edbeeching/decision-transformer-gym-hopper-medium": "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" } ) DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["edbeeching/decision-transformer-gym-hopper-medium"] ) DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json"} ) DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["sensetime/deformable-detr"]) DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "facebook/deit-base-distilled-patch16-224": "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" } ) DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/deit-base-distilled-patch16-224"]) TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/deit-base-distilled-patch16-224"]) MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json"} ) MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["speechbrain/m-ctc-t-large"]) OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json"} ) RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "yjernite/retribert-base-uncased": "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" } ) RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["yjernite/retribert-base-uncased"]) TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" } ) TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["CarlCochet/trajectory-transformer-halfcheetah-medium-v2"] ) TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"transfo-xl/transfo-xl-wt103": "https://huggingface.co/transfo-xl/transfo-xl-wt103/resolve/main/config.json"} ) TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["transfo-xl/transfo-xl-wt103"]) TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["transfo-xl/transfo-xl-wt103"]) VAN_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "Visual-Attention-Network/van-base": "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" } ) VAN_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["Visual-Attention-Network/van-base"]) DEPTH_ANYTHING_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "LiheYoung/depth-anything-small-hf": "https://huggingface.co/LiheYoung/depth-anything-small-hf/resolve/main/config.json" } ) DEPTH_ANYTHING_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["LiheYoung/depth-anything-small-hf"]) DETA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json"} ) DETA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["jozhang97/deta-swin-large-o365"]) DETR_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json"} ) DETR_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/detr-resnet-50"]) DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json"} ) DINAT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["shi-labs/dinat-mini-in1k-224"]) DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/dinov2-base": "https://huggingface.co/facebook/dinov2-base/resolve/main/config.json"} ) DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/dinov2-base"]) DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json", "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json", "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json", "distilbert-base-uncased-finetuned-sst-2-english": "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json", } ) DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "distilbert-base-uncased", "distilbert-base-uncased-distilled-squad", "distilbert-base-cased", "distilbert-base-cased-distilled-squad", "distilbert-base-german-cased", "distilbert-base-multilingual-cased", "distilbert-base-uncased-finetuned-sst-2-english", ] ) TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "distilbert-base-uncased", "distilbert-base-uncased-distilled-squad", "distilbert-base-cased", "distilbert-base-cased-distilled-squad", "distilbert-base-multilingual-cased", "distilbert-base-uncased-finetuned-sst-2-english", ] ) DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json"} ) DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["naver-clova-ix/donut-base"]) DPR_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "facebook/dpr-ctx_encoder-single-nq-base": "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json", "facebook/dpr-question_encoder-single-nq-base": "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json", "facebook/dpr-reader-single-nq-base": "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json", "facebook/dpr-ctx_encoder-multiset-base": "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json", "facebook/dpr-question_encoder-multiset-base": "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json", "facebook/dpr-reader-multiset-base": "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json", } ) DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["facebook/dpr-ctx_encoder-single-nq-base", "facebook/dpr-ctx_encoder-multiset-base"] ) DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["facebook/dpr-question_encoder-single-nq-base", "facebook/dpr-question_encoder-multiset-base"] ) DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["facebook/dpr-reader-single-nq-base", "facebook/dpr-reader-multiset-base"] ) TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["facebook/dpr-ctx_encoder-single-nq-base", "facebook/dpr-ctx_encoder-multiset-base"] ) TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["facebook/dpr-question_encoder-single-nq-base", "facebook/dpr-question_encoder-multiset-base"] ) TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["facebook/dpr-reader-single-nq-base", "facebook/dpr-reader-multiset-base"] ) DPT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json"} ) DPT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["Intel/dpt-large", "Intel/dpt-hybrid-midas"]) EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "snap-research/efficientformer-l1-300": "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" } ) EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["snap-research/efficientformer-l1-300"]) TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["snap-research/efficientformer-l1-300"]) EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json"} ) EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google/efficientnet-b7"]) ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/electra-small-generator": "https://huggingface.co/google/electra-small-generator/resolve/main/config.json", "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/config.json", "google/electra-large-generator": "https://huggingface.co/google/electra-large-generator/resolve/main/config.json", "google/electra-small-discriminator": "https://huggingface.co/google/electra-small-discriminator/resolve/main/config.json", "google/electra-base-discriminator": "https://huggingface.co/google/electra-base-discriminator/resolve/main/config.json", "google/electra-large-discriminator": "https://huggingface.co/google/electra-large-discriminator/resolve/main/config.json", } ) ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "google/electra-small-generator", "google/electra-base-generator", "google/electra-large-generator", "google/electra-small-discriminator", "google/electra-base-discriminator", "google/electra-large-discriminator", ] ) TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "google/electra-small-generator", "google/electra-base-generator", "google/electra-large-generator", "google/electra-small-discriminator", "google/electra-base-discriminator", "google/electra-large-discriminator", ] ) ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } ) ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/encodec_24khz", "facebook/encodec_48khz"]) ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "nghuyong/ernie-1.0-base-zh": "https://huggingface.co/nghuyong/ernie-1.0-base-zh/resolve/main/config.json", "nghuyong/ernie-2.0-base-en": "https://huggingface.co/nghuyong/ernie-2.0-base-en/resolve/main/config.json", "nghuyong/ernie-2.0-large-en": "https://huggingface.co/nghuyong/ernie-2.0-large-en/resolve/main/config.json", "nghuyong/ernie-3.0-base-zh": "https://huggingface.co/nghuyong/ernie-3.0-base-zh/resolve/main/config.json", "nghuyong/ernie-3.0-medium-zh": "https://huggingface.co/nghuyong/ernie-3.0-medium-zh/resolve/main/config.json", "nghuyong/ernie-3.0-mini-zh": "https://huggingface.co/nghuyong/ernie-3.0-mini-zh/resolve/main/config.json", "nghuyong/ernie-3.0-micro-zh": "https://huggingface.co/nghuyong/ernie-3.0-micro-zh/resolve/main/config.json", "nghuyong/ernie-3.0-nano-zh": "https://huggingface.co/nghuyong/ernie-3.0-nano-zh/resolve/main/config.json", "nghuyong/ernie-gram-zh": "https://huggingface.co/nghuyong/ernie-gram-zh/resolve/main/config.json", "nghuyong/ernie-health-zh": "https://huggingface.co/nghuyong/ernie-health-zh/resolve/main/config.json", } ) ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "nghuyong/ernie-1.0-base-zh", "nghuyong/ernie-2.0-base-en", "nghuyong/ernie-2.0-large-en", "nghuyong/ernie-3.0-base-zh", "nghuyong/ernie-3.0-medium-zh", "nghuyong/ernie-3.0-mini-zh", "nghuyong/ernie-3.0-micro-zh", "nghuyong/ernie-3.0-nano-zh", "nghuyong/ernie-gram-zh", "nghuyong/ernie-health-zh", ] ) ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } ) ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["susnato/ernie-m-base_pytorch", "susnato/ernie-m-large_pytorch"] ) ESM_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json"} ) ESM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/esm2_t6_8M_UR50D", "facebook/esm2_t12_35M_UR50D"]) FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } ) FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "tiiuae/falcon-40b", "tiiuae/falcon-40b-instruct", "tiiuae/falcon-7b", "tiiuae/falcon-7b-instruct", "tiiuae/falcon-rw-7b", "tiiuae/falcon-rw-1b", ] ) FASTSPEECH2_CONFORMER_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "espnet/fastspeech2_conformer_hifigan": "https://huggingface.co/espnet/fastspeech2_conformer_hifigan/raw/main/config.json" } ) FASTSPEECH2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"espnet/fastspeech2_conformer": "https://huggingface.co/espnet/fastspeech2_conformer/raw/main/config.json"} ) FASTSPEECH2_CONFORMER_WITH_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "espnet/fastspeech2_conformer_with_hifigan": "https://huggingface.co/espnet/fastspeech2_conformer_with_hifigan/raw/main/config.json" } ) FASTSPEECH2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["espnet/fastspeech2_conformer"]) FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "flaubert/flaubert_small_cased": "https://huggingface.co/flaubert/flaubert_small_cased/resolve/main/config.json", "flaubert/flaubert_base_uncased": "https://huggingface.co/flaubert/flaubert_base_uncased/resolve/main/config.json", "flaubert/flaubert_base_cased": "https://huggingface.co/flaubert/flaubert_base_cased/resolve/main/config.json", "flaubert/flaubert_large_cased": "https://huggingface.co/flaubert/flaubert_large_cased/resolve/main/config.json", } ) FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "flaubert/flaubert_small_cased", "flaubert/flaubert_base_uncased", "flaubert/flaubert_base_cased", "flaubert/flaubert_large_cased", ] ) TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList([]) FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/flava-full": "https://huggingface.co/facebook/flava-full/resolve/main/config.json"} ) FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/flava-full"]) FNET_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json", } ) FNET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google/fnet-base", "google/fnet-large"]) FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json"} ) FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/focalnet-tiny"]) FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict({}) FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json", "funnel-transformer/intermediate-base": "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json", "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } ) FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "funnel-transformer/small", "funnel-transformer/small-base", "funnel-transformer/medium", "funnel-transformer/medium-base", "funnel-transformer/intermediate", "funnel-transformer/intermediate-base", "funnel-transformer/large", "funnel-transformer/large-base", "funnel-transformer/xlarge-base", "funnel-transformer/xlarge", ] ) TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "funnel-transformer/small", "funnel-transformer/small-base", "funnel-transformer/medium", "funnel-transformer/medium-base", "funnel-transformer/intermediate", "funnel-transformer/intermediate-base", "funnel-transformer/large", "funnel-transformer/large-base", "funnel-transformer/xlarge-base", "funnel-transformer/xlarge", ] ) FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"adept/fuyu-8b": "https://huggingface.co/adept/fuyu-8b/resolve/main/config.json"} ) GEMMA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict({}) GIT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json"} ) GIT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/git-base"]) GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json"} ) GLPN_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["vinvino02/glpn-kitti"]) GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "openai-community/gpt2": "https://huggingface.co/openai-community/gpt2/resolve/main/config.json", "openai-community/gpt2-medium": "https://huggingface.co/openai-community/gpt2-medium/resolve/main/config.json", "openai-community/gpt2-large": "https://huggingface.co/openai-community/gpt2-large/resolve/main/config.json", "openai-community/gpt2-xl": "https://huggingface.co/openai-community/gpt2-xl/resolve/main/config.json", "distilbert/distilgpt2": "https://huggingface.co/distilbert/distilgpt2/resolve/main/config.json", } ) GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "openai-community/gpt2", "openai-community/gpt2-medium", "openai-community/gpt2-large", "openai-community/gpt2-xl", "distilbert/distilgpt2", ] ) TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "openai-community/gpt2", "openai-community/gpt2-medium", "openai-community/gpt2-large", "openai-community/gpt2-xl", "distilbert/distilgpt2", ] ) GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json" } ) GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["bigcode/gpt_bigcode-santacoder"]) GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json"} ) GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["EleutherAI/gpt-neo-1.3B"]) GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json"} ) GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["EleutherAI/gpt-neox-20b"]) GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json"} ) GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json"] ) GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json"} ) GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["EleutherAI/gpt-j-6B"]) GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "tanreinama/GPTSAN-2.8B-spout_is_uniform": "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" } ) GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["Tanrei/GPTSAN-japanese"]) GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"graphormer-base": "https://huggingface.co/clefourrier/graphormer-base-pcqm4mv2/resolve/main/config.json"} ) GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["clefourrier/graphormer-base-pcqm4mv1", "clefourrier/graphormer-base-pcqm4mv2"] ) GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"nvidia/groupvit-gcc-yfcc": "https://huggingface.co/nvidia/groupvit-gcc-yfcc/resolve/main/config.json"} ) GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["nvidia/groupvit-gcc-yfcc"]) TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["nvidia/groupvit-gcc-yfcc"]) HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/hubert-base-ls960": "https://huggingface.co/facebook/hubert-base-ls960/resolve/main/config.json"} ) HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/hubert-base-ls960"]) TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/hubert-base-ls960"]) IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json", } ) IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["kssteven/ibert-roberta-base", "kssteven/ibert-roberta-large", "kssteven/ibert-roberta-large-mnli"] ) IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "HuggingFaceM4/idefics-9b": "https://huggingface.co/HuggingFaceM4/idefics-9b/blob/main/config.json", "HuggingFaceM4/idefics-80b": "https://huggingface.co/HuggingFaceM4/idefics-80b/blob/main/config.json", } ) IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["HuggingFaceM4/idefics-9b", "HuggingFaceM4/idefics-80b"]) IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": ""} ) IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["openai/imagegpt-small", "openai/imagegpt-medium", "openai/imagegpt-large"] ) INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "huggingface/informer-tourism-monthly": "https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json" } ) INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["huggingface/informer-tourism-monthly"]) INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json" } ) INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["Salesforce/instructblip-flan-t5-xl"]) JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "openai/jukebox-5b-lyrics": "https://huggingface.co/openai/jukebox-5b-lyrics/blob/main/config.json", "openai/jukebox-1b-lyrics": "https://huggingface.co/openai/jukebox-1b-lyrics/blob/main/config.json", } ) JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["openai/jukebox-1b-lyrics", "openai/jukebox-5b-lyrics"]) KOSMOS2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/kosmos-2-patch14-224": "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/config.json" } ) KOSMOS2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/kosmos-2-patch14-224"]) LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/layoutlm-base-uncased": "https://huggingface.co/microsoft/layoutlm-base-uncased/resolve/main/config.json", "microsoft/layoutlm-large-uncased": "https://huggingface.co/microsoft/layoutlm-large-uncased/resolve/main/config.json", } ) LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["layoutlm-base-uncased", "layoutlm-large-uncased"]) TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["microsoft/layoutlm-base-uncased", "microsoft/layoutlm-large-uncased"] ) LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "layoutlmv2-base-uncased": "https://huggingface.co/microsoft/layoutlmv2-base-uncased/resolve/main/config.json", "layoutlmv2-large-uncased": "https://huggingface.co/microsoft/layoutlmv2-large-uncased/resolve/main/config.json", } ) LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["microsoft/layoutlmv2-base-uncased", "microsoft/layoutlmv2-large-uncased"] ) LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json"} ) LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/layoutlmv3-base", "microsoft/layoutlmv3-large"]) TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["microsoft/layoutlmv3-base", "microsoft/layoutlmv3-large"] ) LED_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/config.json"} ) LED_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["allenai/led-base-16384"]) LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json"} ) LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/levit-128S"]) LILT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "SCUT-DLVCLab/lilt-roberta-en-base": "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" } ) LILT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["SCUT-DLVCLab/lilt-roberta-en-base"]) LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict({}) LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"llava-hf/llava-v1.5-7b": "https://huggingface.co/llava-hf/llava-v1.5-7b/resolve/main/config.json"} ) LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["llava-hf/llava-1.5-7b-hf", "llava-hf/llava-1.5-13b-hf", "llava-hf/bakLlava-v1-hf"] ) LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json", "allenai/longformer-base-4096-extra.pos.embd.only": "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json", "allenai/longformer-large-4096-extra.pos.embd.only": "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json", } ) LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "allenai/longformer-base-4096", "allenai/longformer-large-4096", "allenai/longformer-large-4096-finetuned-triviaqa", "allenai/longformer-base-4096-extra.pos.embd.only", "allenai/longformer-large-4096-extra.pos.embd.only", ] ) TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "allenai/longformer-base-4096", "allenai/longformer-large-4096", "allenai/longformer-large-4096-finetuned-triviaqa", "allenai/longformer-base-4096-extra.pos.embd.only", "allenai/longformer-large-4096-extra.pos.embd.only", ] ) LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/long-t5-local-base": "https://huggingface.co/google/long-t5-local-base/blob/main/config.json", "google/long-t5-local-large": "https://huggingface.co/google/long-t5-local-large/blob/main/config.json", "google/long-t5-tglobal-base": "https://huggingface.co/google/long-t5-tglobal-base/blob/main/config.json", "google/long-t5-tglobal-large": "https://huggingface.co/google/long-t5-tglobal-large/blob/main/config.json", } ) LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "google/long-t5-local-base", "google/long-t5-local-large", "google/long-t5-tglobal-base", "google/long-t5-tglobal-large", ] ) LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } ) LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["studio-ousia/luke-base", "studio-ousia/luke-large"]) LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json"} ) TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["unc-nlp/lxmert-base-uncased"]) M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/config.json"} ) M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/m2m100_418M"]) MAMBA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"state-spaces/mamba-2.8b": "https://huggingface.co/state-spaces/mamba-2.8b/resolve/main/config.json"} ) MAMBA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList([]) MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } ) MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/markuplm-base", "microsoft/markuplm-large"]) MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "facebook/mask2former-swin-small-coco-instance": "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" } ) MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/mask2former-swin-small-coco-instance"]) MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "facebook/maskformer-swin-base-ade": "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" } ) MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/maskformer-swin-base-ade"]) MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"mnaylor/mega-base-wikitext": "https://huggingface.co/mnaylor/mega-base-wikitext/resolve/main/config.json"} ) MEGA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["mnaylor/mega-base-wikitext"]) MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict({}) MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["nvidia/megatron-bert-cased-345m"]) MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json"} ) MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["alibaba-damo/mgp-str-base"]) MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json", "mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json", } ) MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"mistral-ai/Mixtral-8x7B": "https://huggingface.co/mistral-ai/Mixtral-8x7B/resolve/main/config.json"} ) MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"google/mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/config.json"} ) MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google/mobilebert-uncased"]) TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google/mobilebert-uncased"]) MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", } ) MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192"] ) MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json", "google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json", "google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json", "google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json", } ) MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "google/mobilenet_v2_1.4_224", "google/mobilenet_v2_1.0_224", "google/mobilenet_v2_0.37_160", "google/mobilenet_v2_0.35_96", ] ) MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "apple/mobilevit-small": "https://huggingface.co/apple/mobilevit-small/resolve/main/config.json", "apple/mobilevit-x-small": "https://huggingface.co/apple/mobilevit-x-small/resolve/main/config.json", "apple/mobilevit-xx-small": "https://huggingface.co/apple/mobilevit-xx-small/resolve/main/config.json", "apple/deeplabv3-mobilevit-small": "https://huggingface.co/apple/deeplabv3-mobilevit-small/resolve/main/config.json", "apple/deeplabv3-mobilevit-x-small": "https://huggingface.co/apple/deeplabv3-mobilevit-x-small/resolve/main/config.json", "apple/deeplabv3-mobilevit-xx-small": "https://huggingface.co/apple/deeplabv3-mobilevit-xx-small/resolve/main/config.json", } ) MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "apple/mobilevit-small", "apple/mobilevit-x-small", "apple/mobilevit-xx-small", "apple/deeplabv3-mobilevit-small", "apple/deeplabv3-mobilevit-x-small", "apple/deeplabv3-mobilevit-xx-small", ] ) TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "apple/mobilevit-small", "apple/mobilevit-x-small", "apple/mobilevit-xx-small", "apple/deeplabv3-mobilevit-small", "apple/deeplabv3-mobilevit-x-small", "apple/deeplabv3-mobilevit-xx-small", ] ) MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"apple/mobilevitv2-1.0": "https://huggingface.co/apple/mobilevitv2-1.0/resolve/main/config.json"} ) MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["apple/mobilevitv2-1.0-imagenet1k-256"]) MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/config.json"} ) MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/mpnet-base"]) TF_MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/mpnet-base"]) MPT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"mosaicml/mpt-7b": "https://huggingface.co/mosaicml/mpt-7b/resolve/main/config.json"} ) MPT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "mosaicml/mpt-7b", "mosaicml/mpt-7b-storywriter", "mosaicml/mpt-7b-instruct", "mosaicml/mpt-7b-8k", "mosaicml/mpt-7b-8k-instruct", "mosaicml/mpt-7b-8k-chat", "mosaicml/mpt-30b", "mosaicml/mpt-30b-instruct", "mosaicml/mpt-30b-chat", ] ) MRA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json"} ) MRA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["uw-madison/mra-base-512-4"]) MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/musicgen-small": "https://huggingface.co/facebook/musicgen-small/resolve/main/config.json"} ) MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/musicgen-small"]) MUSICGEN_MELODY_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/musicgen-melody": "https://huggingface.co/facebook/musicgen-melody/resolve/main/config.json"} ) MUSICGEN_MELODY_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/musicgen-melody"]) MVP_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "RUCAIBox/mvp", "RUCAIBox/mvp-data-to-text", "RUCAIBox/mvp-open-dialog", "RUCAIBox/mvp-question-answering", "RUCAIBox/mvp-question-generation", "RUCAIBox/mvp-story", "RUCAIBox/mvp-summarization", "RUCAIBox/mvp-task-dialog", "RUCAIBox/mtl-data-to-text", "RUCAIBox/mtl-multi-task", "RUCAIBox/mtl-open-dialog", "RUCAIBox/mtl-question-answering", "RUCAIBox/mtl-question-generation", "RUCAIBox/mtl-story", "RUCAIBox/mtl-summarization", ] ) NAT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json"} ) NAT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["shi-labs/nat-mini-in1k-224"]) NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json"} ) NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["sijunhe/nezha-cn-base", "sijunhe/nezha-cn-large", "sijunhe/nezha-base-wwm", "sijunhe/nezha-large-wwm"] ) NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json"} ) NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/nllb-moe-54b"]) NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"uw-madison/nystromformer-512": "https://huggingface.co/uw-madison/nystromformer-512/resolve/main/config.json"} ) NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["uw-madison/nystromformer-512"]) OLMO_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "allenai/OLMo-1B-hf": "https://huggingface.co/allenai/OLMo-1B-hf/resolve/main/config.json", "allenai/OLMo-7B-hf": "https://huggingface.co/allenai/OLMo-7B-hf/resolve/main/config.json", "allenai/OLMo-7B-Twin-2T-hf": "https://huggingface.co/allenai/OLMo-7B-Twin-2T-hf/resolve/main/config.json", } ) ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "shi-labs/oneformer_ade20k_swin_tiny": "https://huggingface.co/shi-labs/oneformer_ade20k_swin_tiny/blob/main/config.json" } ) ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["shi-labs/oneformer_ade20k_swin_tiny"]) OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"openai-community/openai-gpt": "https://huggingface.co/openai-community/openai-gpt/resolve/main/config.json"} ) OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["openai-community/openai-gpt"]) TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["openai-community/openai-gpt"]) OPT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "facebook/opt-125m", "facebook/opt-350m", "facebook/opt-1.3b", "facebook/opt-2.7b", "facebook/opt-6.7b", "facebook/opt-13b", "facebook/opt-30b", ] ) OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"google/owlv2-base-patch16": "https://huggingface.co/google/owlv2-base-patch16/resolve/main/config.json"} ) OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google/owlv2-base-patch16-ensemble"]) OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } ) OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["google/owlvit-base-patch32", "google/owlvit-base-patch16", "google/owlvit-large-patch14"] ) PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "ibm/patchtsmixer-etth1-pretrain": "https://huggingface.co/ibm/patchtsmixer-etth1-pretrain/resolve/main/config.json" } ) PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["ibm/patchtsmixer-etth1-pretrain"]) PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"ibm/patchtst-base": "https://huggingface.co/ibm/patchtst-base/resolve/main/config.json"} ) PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["ibm/patchtst-etth1-pretrain"]) PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json"} ) PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/pegasus-x-base": "https://huggingface.co/google/pegasus-x-base/resolve/main/config.json", "google/pegasus-x-large": "https://huggingface.co/google/pegasus-x-large/resolve/main/config.json", } ) PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google/pegasus-x-base", "google/pegasus-x-large"]) PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json"} ) PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["deepmind/language-perceiver"]) PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"adept/persimmon-8b-base": "https://huggingface.co/adept/persimmon-8b-base/resolve/main/config.json"} ) PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/phi-1": "https://huggingface.co/microsoft/phi-1/resolve/main/config.json", "microsoft/phi-1_5": "https://huggingface.co/microsoft/phi-1_5/resolve/main/config.json", "microsoft/phi-2": "https://huggingface.co/microsoft/phi-2/resolve/main/config.json", } ) PHI_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/phi-1", "microsoft/phi-1_5", "microsoft/phi-2"]) PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/pix2struct-textcaps-base": "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" } ) PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "google/pix2struct-textcaps-base", "google/pix2struct-textcaps-large", "google/pix2struct-base", "google/pix2struct-large", "google/pix2struct-ai2d-base", "google/pix2struct-ai2d-large", "google/pix2struct-widget-captioning-base", "google/pix2struct-widget-captioning-large", "google/pix2struct-screen2words-base", "google/pix2struct-screen2words-large", "google/pix2struct-docvqa-base", "google/pix2struct-docvqa-large", "google/pix2struct-ocrvqa-base", "google/pix2struct-ocrvqa-large", "google/pix2struct-chartqa-base", "google/pix2struct-inforgraphics-vqa-base", "google/pix2struct-inforgraphics-vqa-large", ] ) PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"uclanlp/plbart-base": "https://huggingface.co/uclanlp/plbart-base/resolve/main/config.json"} ) PLBART_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["uclanlp/plbart-base", "uclanlp/plbart-cs-java", "uclanlp/plbart-multi_task-all"] ) POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json"} ) POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["sail/poolformer_s12"]) POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"sweetcocoa/pop2piano": "https://huggingface.co/sweetcocoa/pop2piano/blob/main/config.json"} ) POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["sweetcocoa/pop2piano"]) PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/prophetnet-large-uncased": "https://huggingface.co/microsoft/prophetnet-large-uncased/resolve/main/config.json" } ) PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/prophetnet-large-uncased"]) PVT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict({"pvt-tiny-224": "https://huggingface.co/Zetatech/pvt-tiny-224"}) PVT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["Zetatech/pvt-tiny-224"]) QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"google-bert/bert-base-uncased": "https://huggingface.co/google-bert/bert-base-uncased/resolve/main/config.json"} ) QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google-bert/bert-base-uncased"]) QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"Qwen/Qwen2-7B-beta": "https://huggingface.co/Qwen/Qwen2-7B-beta/resolve/main/config.json"} ) REALM_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/realm-cc-news-pretrained-embedder": "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json", "google/realm-cc-news-pretrained-encoder": "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json", "google/realm-cc-news-pretrained-scorer": "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json", "google/realm-cc-news-pretrained-openqa": "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json", "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", } ) REALM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "google/realm-cc-news-pretrained-embedder", "google/realm-cc-news-pretrained-encoder", "google/realm-cc-news-pretrained-scorer", "google/realm-cc-news-pretrained-openqa", "google/realm-orqa-nq-openqa", "google/realm-orqa-nq-reader", "google/realm-orqa-wq-openqa", "google/realm-orqa-wq-reader", ] ) REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/reformer-crime-and-punishment": "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/config.json", "google/reformer-enwik8": "https://huggingface.co/google/reformer-enwik8/resolve/main/config.json", } ) REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["google/reformer-crime-and-punishment", "google/reformer-enwik8"] ) REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/regnet-y-040": "https://huggingface.co/facebook/regnet-y-040/blob/main/config.json"} ) REGNET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/regnet-y-040"]) TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/regnet-y-040"]) REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"google/rembert": "https://huggingface.co/google/rembert/resolve/main/config.json"} ) REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google/rembert"]) TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google/rembert"]) RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json"} ) RESNET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/resnet-50"]) TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/resnet-50"]) ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "FacebookAI/roberta-base": "https://huggingface.co/FacebookAI/roberta-base/resolve/main/config.json", "FacebookAI/roberta-large": "https://huggingface.co/FacebookAI/roberta-large/resolve/main/config.json", "FacebookAI/roberta-large-mnli": "https://huggingface.co/FacebookAI/roberta-large-mnli/resolve/main/config.json", "distilbert/distilroberta-base": "https://huggingface.co/distilbert/distilroberta-base/resolve/main/config.json", "openai-community/roberta-base-openai-detector": "https://huggingface.co/openai-community/roberta-base-openai-detector/resolve/main/config.json", "openai-community/roberta-large-openai-detector": "https://huggingface.co/openai-community/roberta-large-openai-detector/resolve/main/config.json", } ) ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "FacebookAI/roberta-base", "FacebookAI/roberta-large", "FacebookAI/roberta-large-mnli", "distilbert/distilroberta-base", "openai-community/roberta-base-openai-detector", "openai-community/roberta-large-openai-detector", ] ) TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "FacebookAI/roberta-base", "FacebookAI/roberta-large", "FacebookAI/roberta-large-mnli", "distilbert/distilroberta-base", ] ) ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "andreasmadsen/efficient_mlm_m0.40": "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" } ) ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "andreasmadsen/efficient_mlm_m0.15", "andreasmadsen/efficient_mlm_m0.20", "andreasmadsen/efficient_mlm_m0.30", "andreasmadsen/efficient_mlm_m0.40", "andreasmadsen/efficient_mlm_m0.50", "andreasmadsen/efficient_mlm_m0.60", "andreasmadsen/efficient_mlm_m0.70", "andreasmadsen/efficient_mlm_m0.80", ] ) TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "andreasmadsen/efficient_mlm_m0.15", "andreasmadsen/efficient_mlm_m0.20", "andreasmadsen/efficient_mlm_m0.30", "andreasmadsen/efficient_mlm_m0.40", "andreasmadsen/efficient_mlm_m0.50", "andreasmadsen/efficient_mlm_m0.60", "andreasmadsen/efficient_mlm_m0.70", "andreasmadsen/efficient_mlm_m0.80", ] ) ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json"} ) ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["weiweishi/roc-bert-base-zh"]) ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json", "junnyu/roformer_chinese_char_base": "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json", "junnyu/roformer_small_discriminator": "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json", "junnyu/roformer_small_generator": "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json", } ) ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "junnyu/roformer_chinese_small", "junnyu/roformer_chinese_base", "junnyu/roformer_chinese_char_small", "junnyu/roformer_chinese_char_base", "junnyu/roformer_small_discriminator", "junnyu/roformer_small_generator", ] ) TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "junnyu/roformer_chinese_small", "junnyu/roformer_chinese_base", "junnyu/roformer_chinese_char_small", "junnyu/roformer_chinese_char_base", "junnyu/roformer_small_discriminator", "junnyu/roformer_small_generator", ] ) RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } ) RWKV_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "RWKV/rwkv-4-169m-pile", "RWKV/rwkv-4-430m-pile", "RWKV/rwkv-4-1b5-pile", "RWKV/rwkv-4-3b-pile", "RWKV/rwkv-4-7b-pile", "RWKV/rwkv-4-14b-pile", "RWKV/rwkv-raven-1b5", "RWKV/rwkv-raven-3b", "RWKV/rwkv-raven-7b", "RWKV/rwkv-raven-14b", ] ) SAM_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "facebook/sam-vit-huge": "https://huggingface.co/facebook/sam-vit-huge/resolve/main/config.json", "facebook/sam-vit-large": "https://huggingface.co/facebook/sam-vit-large/resolve/main/config.json", "facebook/sam-vit-base": "https://huggingface.co/facebook/sam-vit-base/resolve/main/config.json", } ) SAM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["facebook/sam-vit-huge", "facebook/sam-vit-large", "facebook/sam-vit-base"] ) TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["facebook/sam-vit-huge", "facebook/sam-vit-large", "facebook/sam-vit-base"] ) SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "facebook/hf-seamless-m4t-medium": "https://huggingface.co/facebook/hf-seamless-m4t-medium/resolve/main/config.json" } ) SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/hf-seamless-m4t-medium"]) SEAMLESS_M4T_V2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"": "https://huggingface.co//resolve/main/config.json"} ) SEAMLESS_M4T_V2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/seamless-m4t-v2-large"]) SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "nvidia/segformer-b0-finetuned-ade-512-512": "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" } ) SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["nvidia/segformer-b0-finetuned-ade-512-512"]) TF_SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["nvidia/segformer-b0-finetuned-ade-512-512"]) SEGGPT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"BAAI/seggpt-vit-large": "https://huggingface.co/BAAI/seggpt-vit-large/resolve/main/config.json"} ) SEGGPT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["BAAI/seggpt-vit-large"]) SEW_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json"} ) SEW_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["asapp/sew-tiny-100k", "asapp/sew-small-100k", "asapp/sew-mid-100k"] ) SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json"} ) SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "asapp/sew-d-tiny-100k", "asapp/sew-d-small-100k", "asapp/sew-d-mid-100k", "asapp/sew-d-mid-k127-100k", "asapp/sew-d-base-100k", "asapp/sew-d-base-plus-100k", "asapp/sew-d-mid-400k", "asapp/sew-d-mid-k127-400k", "asapp/sew-d-base-plus-400k", ] ) SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/config.json" } ) SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google/siglip-base-patch16-224"]) SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "facebook/s2t-small-librispeech-asr": "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" } ) SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/s2t-small-librispeech-asr"]) TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/s2t-small-librispeech-asr"]) SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "facebook/s2t-wav2vec2-large-en-de": "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" } ) SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/speecht5_asr": "https://huggingface.co/microsoft/speecht5_asr/resolve/main/config.json", "microsoft/speecht5_tts": "https://huggingface.co/microsoft/speecht5_tts/resolve/main/config.json", "microsoft/speecht5_vc": "https://huggingface.co/microsoft/speecht5_vc/resolve/main/config.json", } ) SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"microsoft/speecht5_hifigan": "https://huggingface.co/microsoft/speecht5_hifigan/resolve/main/config.json"} ) SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["microsoft/speecht5_asr", "microsoft/speecht5_tts", "microsoft/speecht5_vc"] ) SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "tau/splinter-base": "https://huggingface.co/tau/splinter-base/resolve/main/config.json", "tau/splinter-base-qass": "https://huggingface.co/tau/splinter-base-qass/resolve/main/config.json", "tau/splinter-large": "https://huggingface.co/tau/splinter-large/resolve/main/config.json", "tau/splinter-large-qass": "https://huggingface.co/tau/splinter-large-qass/resolve/main/config.json", } ) SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["tau/splinter-base", "tau/splinter-base-qass", "tau/splinter-large", "tau/splinter-large-qass"] ) SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "squeezebert/squeezebert-uncased": "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/config.json", "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/config.json", "squeezebert/squeezebert-mnli-headless": "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/config.json", } ) SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["squeezebert/squeezebert-uncased", "squeezebert/squeezebert-mnli", "squeezebert/squeezebert-mnli-headless"] ) STABLELM_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"stabilityai/stablelm-3b-4e1t": "https://huggingface.co/stabilityai/stablelm-3b-4e1t/resolve/main/config.json"} ) STARCODER2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict({}) SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"MBZUAI/swiftformer-xs": "https://huggingface.co/MBZUAI/swiftformer-xs/resolve/main/config.json"} ) SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["MBZUAI/swiftformer-xs"]) SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/swin-tiny-patch4-window7-224": "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" } ) SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/swin-tiny-patch4-window7-224"]) TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/swin-tiny-patch4-window7-224"]) SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "caidas/swin2sr-classicalsr-x2-64": "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" } ) SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["caidas/swin2SR-classical-sr-x2-64"]) SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/swinv2-tiny-patch4-window8-256": "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" } ) SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/swinv2-tiny-patch4-window8-256"]) SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"google/switch-base-8": "https://huggingface.co/google/switch-base-8/blob/main/config.json"} ) SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "google/switch-base-8", "google/switch-base-16", "google/switch-base-32", "google/switch-base-64", "google/switch-base-128", "google/switch-base-256", "google/switch-large-128", "google/switch-xxl-128", "google/switch-c-2048", ] ) T5_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google-t5/t5-small": "https://huggingface.co/google-t5/t5-small/resolve/main/config.json", "google-t5/t5-base": "https://huggingface.co/google-t5/t5-base/resolve/main/config.json", "google-t5/t5-large": "https://huggingface.co/google-t5/t5-large/resolve/main/config.json", "google-t5/t5-3b": "https://huggingface.co/google-t5/t5-3b/resolve/main/config.json", "google-t5/t5-11b": "https://huggingface.co/google-t5/t5-11b/resolve/main/config.json", } ) T5_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["google-t5/t5-small", "google-t5/t5-base", "google-t5/t5-large", "google-t5/t5-3b", "google-t5/t5-11b"] ) TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["google-t5/t5-small", "google-t5/t5-base", "google-t5/t5-large", "google-t5/t5-3b", "google-t5/t5-11b"] ) TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/table-transformer-detection": "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" } ) TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/table-transformer-detection"]) TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/tapas-base-finetuned-sqa": "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json", "google/tapas-base-finetuned-wtq": "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json", "google/tapas-base-finetuned-wikisql-supervised": "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json", "google/tapas-base-finetuned-tabfact": "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json", } ) TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "google/tapas-large", "google/tapas-large-finetuned-sqa", "google/tapas-large-finetuned-wtq", "google/tapas-large-finetuned-wikisql-supervised", "google/tapas-large-finetuned-tabfact", "google/tapas-base", "google/tapas-base-finetuned-sqa", "google/tapas-base-finetuned-wtq", "google/tapas-base-finetuned-wikisql-supervised", "google/tapas-base-finetuned-tabfact", "google/tapas-small", "google/tapas-small-finetuned-sqa", "google/tapas-small-finetuned-wtq", "google/tapas-small-finetuned-wikisql-supervised", "google/tapas-small-finetuned-tabfact", "google/tapas-mini", "google/tapas-mini-finetuned-sqa", "google/tapas-mini-finetuned-wtq", "google/tapas-mini-finetuned-wikisql-supervised", "google/tapas-mini-finetuned-tabfact", "google/tapas-tiny", "google/tapas-tiny-finetuned-sqa", "google/tapas-tiny-finetuned-wtq", "google/tapas-tiny-finetuned-wikisql-supervised", "google/tapas-tiny-finetuned-tabfact", ] ) TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "google/tapas-large", "google/tapas-large-finetuned-sqa", "google/tapas-large-finetuned-wtq", "google/tapas-large-finetuned-wikisql-supervised", "google/tapas-large-finetuned-tabfact", "google/tapas-base", "google/tapas-base-finetuned-sqa", "google/tapas-base-finetuned-wtq", "google/tapas-base-finetuned-wikisql-supervised", "google/tapas-base-finetuned-tabfact", "google/tapas-small", "google/tapas-small-finetuned-sqa", "google/tapas-small-finetuned-wtq", "google/tapas-small-finetuned-wikisql-supervised", "google/tapas-small-finetuned-tabfact", "google/tapas-mini", "google/tapas-mini-finetuned-sqa", "google/tapas-mini-finetuned-wtq", "google/tapas-mini-finetuned-wikisql-supervised", "google/tapas-mini-finetuned-tabfact", "google/tapas-tiny", "google/tapas-tiny-finetuned-sqa", "google/tapas-tiny-finetuned-wtq", "google/tapas-tiny-finetuned-wikisql-supervised", "google/tapas-tiny-finetuned-tabfact", ] ) TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "huggingface/time-series-transformer-tourism-monthly": "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" } ) TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["huggingface/time-series-transformer-tourism-monthly"] ) TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json"} ) TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/timesformer-base-finetuned-k400"]) TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/trocr-base-handwritten": "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" } ) TROCR_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/trocr-base-handwritten"]) TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"ZinengTang/tvlt-base": "https://huggingface.co/ZinengTang/tvlt-base/blob/main/config.json"} ) TVLT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["ZinengTang/tvlt-base"]) TVP_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"Intel/tvp-base": "https://huggingface.co/Intel/tvp-base/resolve/main/config.json"} ) TVP_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["Intel/tvp-base", "Intel/tvp-base-ANet"]) UDOP_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"microsoft/udop-large": "https://huggingface.co/microsoft/udop-large/resolve/main/config.json"} ) UDOP_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/udop-large"]) UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/unispeech-large-1500h-cv": "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" } ) UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["microsoft/unispeech-large-1500h-cv", "microsoft/unispeech-large-multi-lingual-1500h-cv"] ) UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/unispeech-sat-base-100h-libri-ft": "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" } ) UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList([]) UNIVNET_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"dg845/univnet-dev": "https://huggingface.co/dg845/univnet-dev/resolve/main/config.json"} ) UNIVNET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["dg845/univnet-dev"]) VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"MCG-NJU/videomae-base": "https://huggingface.co/MCG-NJU/videomae-base/resolve/main/config.json"} ) VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["MCG-NJU/videomae-base"]) VILT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"dandelin/vilt-b32-mlm": "https://huggingface.co/dandelin/vilt-b32-mlm/blob/main/config.json"} ) VILT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["dandelin/vilt-b32-mlm"]) VIPLLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"ybelkada/vip-llava-7b-hf": "https://huggingface.co/llava-hf/vip-llava-7b-hf/resolve/main/config.json"} ) VIPLLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["llava-hf/vip-llava-7b-hf"]) VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json", "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json", } ) VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "uclanlp/visualbert-vqa", "uclanlp/visualbert-vqa-pre", "uclanlp/visualbert-vqa-coco-pre", "uclanlp/visualbert-vcr", "uclanlp/visualbert-vcr-pre", "uclanlp/visualbert-vcr-coco-pre", "uclanlp/visualbert-nlvr2", "uclanlp/visualbert-nlvr2-pre", "uclanlp/visualbert-nlvr2-coco-pre", ] ) VIT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json"} ) VIT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google/vit-base-patch16-224"]) VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"google/vit-hybrid-base-bit-384": "https://huggingface.co/vit-hybrid-base-bit-384/resolve/main/config.json"} ) VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google/vit-hybrid-base-bit-384"]) VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json"} ) VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/vit-mae-base"]) VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json"} ) VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/vit-msn-small"]) VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/vit-det-base": "https://huggingface.co/facebook/vit-det-base/resolve/main/config.json"} ) VITDET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/vit-det-base"]) VITMATTE_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "hustvl/vitmatte-small-composition-1k": "https://huggingface.co/hustvl/vitmatte-small-composition-1k/resolve/main/config.json" } ) VITMATTE_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["hustvl/vitmatte-small-composition-1k"]) VITS_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/mms-tts-eng": "https://huggingface.co/facebook/mms-tts-eng/resolve/main/config.json"} ) VITS_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/mms-tts-eng"]) VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "google/vivit-b-16x2-kinetics400": "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" } ) VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["google/vivit-b-16x2-kinetics400"]) WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json"} ) WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "facebook/wav2vec2-base-960h", "facebook/wav2vec2-large-960h", "facebook/wav2vec2-large-960h-lv60", "facebook/wav2vec2-large-960h-lv60-self", ] ) TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "facebook/wav2vec2-base-960h", "facebook/wav2vec2-large-960h", "facebook/wav2vec2-large-960h-lv60", "facebook/wav2vec2-large-960h-lv60-self", ] ) WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/w2v-bert-2.0": "https://huggingface.co/facebook/w2v-bert-2.0/resolve/main/config.json"} ) WAV2VEC2_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/w2v-bert-2.0"]) WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "facebook/wav2vec2-conformer-rel-pos-large": "https://huggingface.co/facebook/wav2vec2-conformer-rel-pos-large/resolve/main/config.json" } ) WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/wav2vec2-conformer-rel-pos-large"]) WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json"} ) WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["microsoft/wavlm-base", "microsoft/wavlm-base-plus", "microsoft/wavlm-large"] ) WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json"} ) WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["openai/whisper-base"]) TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["openai/whisper-base"]) XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"microsoft/xclip-base-patch32": "https://huggingface.co/microsoft/xclip-base-patch32/resolve/main/config.json"} ) XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/xclip-base-patch32"]) XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json"} ) XGLM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/xglm-564M"]) TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/xglm-564M"]) XLM_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "FacebookAI/xlm-mlm-en-2048": "https://huggingface.co/FacebookAI/xlm-mlm-en-2048/resolve/main/config.json", "FacebookAI/xlm-mlm-ende-1024": "https://huggingface.co/FacebookAI/xlm-mlm-ende-1024/resolve/main/config.json", "FacebookAI/xlm-mlm-enfr-1024": "https://huggingface.co/FacebookAI/xlm-mlm-enfr-1024/resolve/main/config.json", "FacebookAI/xlm-mlm-enro-1024": "https://huggingface.co/FacebookAI/xlm-mlm-enro-1024/resolve/main/config.json", "FacebookAI/xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/FacebookAI/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "FacebookAI/xlm-mlm-xnli15-1024": "https://huggingface.co/FacebookAI/xlm-mlm-xnli15-1024/resolve/main/config.json", "FacebookAI/xlm-clm-enfr-1024": "https://huggingface.co/FacebookAI/xlm-clm-enfr-1024/resolve/main/config.json", "FacebookAI/xlm-clm-ende-1024": "https://huggingface.co/FacebookAI/xlm-clm-ende-1024/resolve/main/config.json", "FacebookAI/xlm-mlm-17-1280": "https://huggingface.co/FacebookAI/xlm-mlm-17-1280/resolve/main/config.json", "FacebookAI/xlm-mlm-100-1280": "https://huggingface.co/FacebookAI/xlm-mlm-100-1280/resolve/main/config.json", } ) XLM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "FacebookAI/xlm-mlm-en-2048", "FacebookAI/xlm-mlm-ende-1024", "FacebookAI/xlm-mlm-enfr-1024", "FacebookAI/xlm-mlm-enro-1024", "FacebookAI/xlm-mlm-tlm-xnli15-1024", "FacebookAI/xlm-mlm-xnli15-1024", "FacebookAI/xlm-clm-enfr-1024", "FacebookAI/xlm-clm-ende-1024", "FacebookAI/xlm-mlm-17-1280", "FacebookAI/xlm-mlm-100-1280", ] ) TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "FacebookAI/xlm-mlm-en-2048", "FacebookAI/xlm-mlm-ende-1024", "FacebookAI/xlm-mlm-enfr-1024", "FacebookAI/xlm-mlm-enro-1024", "FacebookAI/xlm-mlm-tlm-xnli15-1024", "FacebookAI/xlm-mlm-xnli15-1024", "FacebookAI/xlm-clm-enfr-1024", "FacebookAI/xlm-clm-ende-1024", "FacebookAI/xlm-mlm-17-1280", "FacebookAI/xlm-mlm-100-1280", ] ) XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "microsoft/xprophetnet-large-wiki100-cased": "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" } ) XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["microsoft/xprophetnet-large-wiki100-cased"]) XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "FacebookAI/xlm-roberta-base": "https://huggingface.co/FacebookAI/xlm-roberta-base/resolve/main/config.json", "FacebookAI/xlm-roberta-large": "https://huggingface.co/FacebookAI/xlm-roberta-large/resolve/main/config.json", "FacebookAI/xlm-roberta-large-finetuned-conll02-dutch": "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json", "FacebookAI/xlm-roberta-large-finetuned-conll02-spanish": "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json", "FacebookAI/xlm-roberta-large-finetuned-conll03-english": "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json", "FacebookAI/xlm-roberta-large-finetuned-conll03-german": "https://huggingface.co/FacebookAI/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json", } ) XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "FacebookAI/xlm-roberta-base", "FacebookAI/xlm-roberta-large", "FacebookAI/xlm-roberta-large-finetuned-conll02-dutch", "FacebookAI/xlm-roberta-large-finetuned-conll02-spanish", "FacebookAI/xlm-roberta-large-finetuned-conll03-english", "FacebookAI/xlm-roberta-large-finetuned-conll03-german", ] ) TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "FacebookAI/xlm-roberta-base", "FacebookAI/xlm-roberta-large", "joeddav/xlm-roberta-large-xnli", "cardiffnlp/twitter-xlm-roberta-base-sentiment", ] ) FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( ["FacebookAI/xlm-roberta-base", "FacebookAI/xlm-roberta-large"] ) XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", } ) XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["facebook/xlm-roberta-xl", "facebook/xlm-roberta-xxl"]) XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "xlnet/xlnet-base-cased": "https://huggingface.co/xlnet/xlnet-base-cased/resolve/main/config.json", "xlnet/xlnet-large-cased": "https://huggingface.co/xlnet/xlnet-large-cased/resolve/main/config.json", } ) XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["xlnet/xlnet-base-cased", "xlnet/xlnet-large-cased"]) TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["xlnet/xlnet-base-cased", "xlnet/xlnet-large-cased"]) XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } ) XMOD_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList( [ "facebook/xmod-base", "facebook/xmod-large-prenorm", "facebook/xmod-base-13-125k", "facebook/xmod-base-30-125k", "facebook/xmod-base-30-195k", "facebook/xmod-base-60-125k", "facebook/xmod-base-60-265k", "facebook/xmod-base-75-125k", "facebook/xmod-base-75-269k", ] ) YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json"} ) YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["hustvl/yolos-small"]) YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP = DeprecatedDict( {"uw-madison/yoso-4096": "https://huggingface.co/uw-madison/yoso-4096/resolve/main/config.json"} ) YOSO_PRETRAINED_MODEL_ARCHIVE_LIST = DeprecatedList(["uw-madison/yoso-4096"]) CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict( [ # Add archive maps here) ("albert", "ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("align", "ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("altclip", "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("audio-spectrogram-transformer", "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("autoformer", "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bark", "BARK_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bart", "BART_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("beit", "BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bert", "BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("big_bird", "BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bigbird_pegasus", "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("biogpt", "BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bit", "BIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("blenderbot", "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("blenderbot-small", "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("blip", "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("blip-2", "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bloom", "BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bridgetower", "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bros", "BROS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("camembert", "CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("canine", "CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("chinese_clip", "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("clap", "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST"), ("clip", "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("clipseg", "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("clvp", "CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("codegen", "CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("conditional_detr", "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("convbert", "CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("convnext", "CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("convnextv2", "CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("cpmant", "CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("ctrl", "CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("cvt", "CVT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("data2vec-audio", "DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("data2vec-text", "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("data2vec-vision", "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("deberta", "DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("deberta-v2", "DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("deformable_detr", "DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("deit", "DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("depth_anything", "DEPTH_ANYTHING_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("deta", "DETA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("detr", "DETR_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("dinat", "DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("dinov2", "DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("distilbert", "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("donut-swin", "DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("dpr", "DPR_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("dpt", "DPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("efficientformer", "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("efficientnet", "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("electra", "ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("encodec", "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("ernie", "ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("ernie_m", "ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("esm", "ESM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("falcon", "FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("fastspeech2_conformer", "FASTSPEECH2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("flaubert", "FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("flava", "FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("fnet", "FNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("focalnet", "FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("fsmt", "FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("funnel", "FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("fuyu", "FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gemma", "GEMMA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("git", "GIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("glpn", "GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gpt2", "GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gpt_bigcode", "GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gpt_neo", "GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gpt_neox", "GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gpt_neox_japanese", "GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gptj", "GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gptsan-japanese", "GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("graphormer", "GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("groupvit", "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("hubert", "HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("ibert", "IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("idefics", "IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("imagegpt", "IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("informer", "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("instructblip", "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("jukebox", "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("kosmos-2", "KOSMOS2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("layoutlm", "LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("layoutlmv2", "LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("layoutlmv3", "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("led", "LED_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("levit", "LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("lilt", "LILT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("llama", "LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("llava", "LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("longformer", "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("longt5", "LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("luke", "LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("lxmert", "LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("m2m_100", "M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mamba", "MAMBA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("markuplm", "MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mask2former", "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("maskformer", "MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mbart", "MBART_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mctct", "MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mega", "MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("megatron-bert", "MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mgp-str", "MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mistral", "MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mixtral", "MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mobilenet_v1", "MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mobilenet_v2", "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mobilevit", "MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mobilevitv2", "MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mpnet", "MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mpt", "MPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mra", "MRA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("musicgen", "MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mvp", "MVP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("nat", "NAT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("nezha", "NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("nllb-moe", "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("nystromformer", "NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("oneformer", "ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("olmo", "OLMO_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("open-llama", "OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("openai-gpt", "OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("opt", "OPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("owlv2", "OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("owlvit", "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("patchtsmixer", "PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("patchtst", "PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("pegasus", "PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("pegasus_x", "PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("perceiver", "PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("persimmon", "PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("phi", "PHI_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("pix2struct", "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("plbart", "PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("poolformer", "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("pop2piano", "POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("prophetnet", "PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("pvt", "PVT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("qdqbert", "QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("qwen2", "QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("realm", "REALM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("regnet", "REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("rembert", "REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("resnet", "RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("retribert", "RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("roberta", "ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("roberta-prelayernorm", "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("roc_bert", "ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("roformer", "ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("rwkv", "RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("sam", "SAM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("seamless_m4t", "SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("seamless_m4t_v2", "SEAMLESS_M4T_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("segformer", "SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("seggpt", "SEGGPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("sew", "SEW_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("sew-d", "SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("siglip", "SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("speech_to_text", "SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("speech_to_text_2", "SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("speecht5", "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("splinter", "SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("squeezebert", "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("stablelm", "STABLELM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("starcoder2", "STARCODER2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("swiftformer", "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("swin", "SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("swin2sr", "SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("swinv2", "SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("switch_transformers", "SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("t5", "T5_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("table-transformer", "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("tapas", "TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("time_series_transformer", "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("timesformer", "TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("transfo-xl", "TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("tvlt", "TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("tvp", "TVP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("udop", "UDOP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("unispeech", "UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("unispeech-sat", "UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("univnet", "UNIVNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("van", "VAN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("videomae", "VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vilt", "VILT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vipllava", "VIPLLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("visual_bert", "VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vit", "VIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vit_hybrid", "VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vit_mae", "VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vit_msn", "VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vitdet", "VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vitmatte", "VITMATTE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vits", "VITS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vivit", "VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("wav2vec2", "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("wav2vec2-bert", "WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("wav2vec2-conformer", "WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("whisper", "WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xclip", "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xglm", "XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xlm", "XLM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xlm-prophetnet", "XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xlm-roberta", "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xlnet", "XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xmod", "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("yolos", "YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("yoso", "YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP"), ] )
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/mctct/feature_extraction_mctct.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for M-CTC-T """ from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging logger = logging.get_logger(__name__) class MCTCTFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a M-CTC-T feature extractor. This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. This code has been adapted from Flashlight's C++ code. For more information about the implementation, one can refer to this [notebook](https://colab.research.google.com/drive/1GLtINkkhzms-IsdcGy_-tVCkv0qNF-Gt#scrollTo=pMCRGMmUC_an) that takes the user step-by-step in the implementation. Args: feature_size (`int`, defaults to 80): The feature dimension of the extracted features. This is the number of mel_frequency sampling_rate (`int`, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). padding_value (`float`, defaults to 0.0): The value that is used to fill the padding values. hop_length (`int`, defaults to 10): Number of audio samples between windows. Otherwise referred to as "shift" in many papers. win_length (`int`, defaults to 25): Number of ms per window win_function (`str`, defaults to `"hamming_window"`): Name for the window function used for windowing, must be accessible via `torch.{win_function}` frame_signal_scale (`float`, defaults to 32768.0): Constant multiplied in creating the frames before applying DFT. preemphasis_coeff (`float`, defaults to 0.97): Constant multiplied in applying Pre-emphasis before DFT. mel_floor (`float` defaults to 1.0): Minimum value of mel frequency banks. normalize_means (`bool`, *optional*, defaults to `True`): Whether or not to zero-mean normalize the extracted features. normalize_vars (`bool`, *optional*, defaults to `True`): Whether or not to unit-variance normalize the extracted features. """ model_input_names = ["input_features", "attention_mask"] def __init__( self, feature_size=80, sampling_rate=16000, padding_value=0.0, hop_length=10, win_length=25, win_function="hamming_window", frame_signal_scale=32768.0, preemphasis_coeff=0.97, mel_floor=1.0, normalize_means=True, normalize_vars=True, return_attention_mask=False, **kwargs, ): super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) self.feature_size = feature_size self.sampling_rate = sampling_rate self.padding_value = padding_value self.hop_length = hop_length self.win_length = win_length self.frame_signal_scale = frame_signal_scale self.preemphasis_coeff = preemphasis_coeff self.mel_floor = mel_floor self.normalize_means = normalize_means self.normalize_vars = normalize_vars self.win_function = win_function self.return_attention_mask = return_attention_mask self.sample_size = win_length * sampling_rate // 1000 self.sample_stride = hop_length * sampling_rate // 1000 self.n_fft = optimal_fft_length(self.sample_size) self.n_freqs = (self.n_fft // 2) + 1 def _extract_mfsc_features(self, one_waveform: np.array) -> np.ndarray: """ Extracts MFSC Features for one waveform vector (unbatched). Adapted from Flashlight's C++ MFSC code. """ if self.win_function == "hamming_window": window = window_function(window_length=self.sample_size, name=self.win_function, periodic=False) else: window = window_function(window_length=self.sample_size, name=self.win_function) fbanks = mel_filter_bank( num_frequency_bins=self.n_freqs, num_mel_filters=self.feature_size, min_frequency=0.0, max_frequency=self.sampling_rate / 2.0, sampling_rate=self.sampling_rate, ) msfc_features = spectrogram( one_waveform * self.frame_signal_scale, window=window, frame_length=self.sample_size, hop_length=self.sample_stride, fft_length=self.n_fft, center=False, preemphasis=self.preemphasis_coeff, mel_filters=fbanks, mel_floor=self.mel_floor, log_mel="log", ) return msfc_features.T def _normalize_one(self, x, input_length, padding_value): # make sure we normalize float32 arrays if self.normalize_means: mean = x[:input_length].mean(axis=0) x = np.subtract(x, mean) if self.normalize_vars: std = x[:input_length].std(axis=0) x = np.divide(x, std) if input_length < x.shape[0]: x[input_length:] = padding_value # make sure array is in float32 x = x.astype(np.float32) return x def normalize( self, input_features: List[np.ndarray], attention_mask: Optional[np.ndarray] = None ) -> List[np.ndarray]: lengths = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(x, n, self.padding_value) for x, n in zip(input_features, lengths)] def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], padding: Union[bool, str, PaddingStrategy] = False, max_length: Optional[int] = None, truncation: bool = False, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, sampling_rate: Optional[int] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). sequences. It returns the log-mel spectrogram of the input audio, as implemented in the original Flashlight MFSC feature extraction code. Args: raw_speech (`torch.Tensor`, `np.ndarray`, `List[float]`, `List[torch.Tensor]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a tensor, a numpy array, a list of float values, a list of tensors, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors. padding_value (`float`, defaults to 0.0): """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech, dtype=np.float32) elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): raw_speech = raw_speech.astype(np.float32) # always return batch if not is_batched: raw_speech = [raw_speech] # extract fbank features features = [self._extract_mfsc_features(one_waveform) for one_waveform in raw_speech] # convert into correct format for padding encoded_inputs = BatchFeature({"input_features": features}) padded_inputs = self.pad( encoded_inputs, padding=padding, max_length=max_length, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=True, **kwargs, ) # make sure list is in array format input_features = padded_inputs.get("input_features") if isinstance(input_features[0], list): padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features] attention_mask = padded_inputs.get("attention_mask") if attention_mask is not None: padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask] if self.normalize_means or self.normalize_vars: attention_mask = ( np.array(attention_mask, dtype=np.int32) if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD and padding else None ) padded_inputs["input_features"] = self.normalize( padded_inputs["input_features"], attention_mask=attention_mask ) if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/mctct/configuration_mctct.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """M-CTC-T model configuration""" from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) from .._archive_maps import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class MCTCTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MCTCTModel`]. It is used to instantiate an M-CTC-T model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the M-CTC-T [speechbrain/m-ctc-t-large](https://huggingface.co/speechbrain/m-ctc-t-large) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 8065): Vocabulary size of the M-CTC-T model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MCTCTModel`]. hidden_size (`int`, *optional*, defaults to 1536): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 36): Number of hidden layers in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 6144): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. attention_head_dim (`int`, *optional*, defaults to 384): Dimensions of each attention head for each attention layer in the Transformer encoder. max_position_embeddings (`int`, *optional*, defaults to 920): The maximum sequence length that this model might ever be used with (after log-mel spectrogram extraction). layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. layerdrop (`float`, *optional*, defaults to 0.3): The probability of dropping an encoder layer during training. The default 0.3 value is used in the original implementation. hidden_act (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. hidden_dropout_prob (`float`, *optional*, defaults to 0.3): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.3): The dropout ratio for the attention probabilities. pad_token_id (`int`, *optional*, defaults to 1): The tokenizer index of the pad token. bos_token_id (`int`, *optional*, defaults to 0): The tokenizer index of the bos token. eos_token_id (`int`, *optional*, defaults to 2): The tokenizer index of the eos token. conv_glu_dim (`int`, *optional*, defaults to 1): The dimension of the output of the `Conv1dSubsampler` layer in which GLU is applied on. Though the original Flashlight code uses the value of 2, here it's adapted to 1 due to transposition differences. conv_dropout (`int`, *optional*, defaults to 0.3): The probability of randomly dropping the `Conv1dSubsampler` layer during training. num_conv_layers (`int`, *optional*, defaults to 1): Number of convolution layers before applying transformer encoder layers. conv_kernel (`Sequence[int]`, *optional*, defaults to `(7,)`): The kernel size of the 1D convolution applied before transformer layers. `len(conv_kernel)` must be equal to `num_conv_layers`. conv_stride (`Sequence[int]`, *optional*, defaults to `(3,)`): The stride length of the 1D convolution applied before transformer layers. `len(conv_stride)` must be equal to `num_conv_layers`. input_feat_per_channel (`int`, *optional*, defaults to 80): Feature dimensions of the channels of the input to the Conv1D layer. input_channels (`int`, *optional*, defaults to 1): Number of input channels of the input to the Conv1D layer. conv_channels (`List[int]`, *optional*): Channel sizes of intermediate Conv1D layers. ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`MCTCTForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`MCTCTForCTC`]. Example: ```python >>> from transformers import MCTCTConfig, MCTCTModel >>> # Initializing a M-CTC-T mctct-large style configuration >>> configuration = MCTCTConfig() >>> # Initializing a model (with random weights) from the mctct-large style configuration >>> model = MCTCTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mctct" def __init__( self, vocab_size=8065, hidden_size=1536, num_hidden_layers=36, intermediate_size=6144, num_attention_heads=4, attention_head_dim=384, max_position_embeddings=920, layer_norm_eps=1e-5, layerdrop=0.3, hidden_act="relu", initializer_range=0.02, hidden_dropout_prob=0.3, attention_probs_dropout_prob=0.3, pad_token_id=1, bos_token_id=0, eos_token_id=2, conv_glu_dim=1, conv_dropout=0.3, num_conv_layers=1, conv_kernel=(7,), conv_stride=(3,), input_feat_per_channel=80, input_channels=1, conv_channels=None, ctc_loss_reduction="sum", ctc_zero_infinity=False, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim self.max_position_embeddings = max_position_embeddings self.layer_norm_eps = layer_norm_eps self.layerdrop = layerdrop self.hidden_act = hidden_act self.initializer_range = initializer_range self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.conv_glu_dim = conv_glu_dim self.conv_dropout = conv_dropout self.num_conv_layers = num_conv_layers self.input_feat_per_channel = input_feat_per_channel self.input_channels = input_channels self.conv_channels = conv_channels self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # prevents config testing fail with exporting to json self.conv_kernel = list(conv_kernel) self.conv_stride = list(conv_stride) if len(self.conv_kernel) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " f"but is `len(config.conv_kernel) = {len(self.conv_kernel)}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." )
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/mctct/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mctct"] = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/mctct/processing_mctct.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Speech processor class for M-CTC-T """ import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class MCTCTProcessor(ProcessorMixin): r""" Constructs a MCTCT processor which wraps a MCTCT feature extractor and a MCTCT tokenizer into a single processor. [`MCTCTProcessor`] offers all the functionalities of [`MCTCTFeatureExtractor`] and [`AutoTokenizer`]. See the [`~MCTCTProcessor.__call__`] and [`~MCTCTProcessor.decode`] for more information. Args: feature_extractor (`MCTCTFeatureExtractor`): An instance of [`MCTCTFeatureExtractor`]. The feature extractor is a required input. tokenizer (`AutoTokenizer`): An instance of [`AutoTokenizer`]. The tokenizer is a required input. """ feature_extractor_class = "MCTCTFeatureExtractor" tokenizer_class = "AutoTokenizer" def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) self.current_processor = self.feature_extractor self._in_target_context_manager = False def __call__(self, *args, **kwargs): """ When used in normal mode, this method forwards all its arguments to MCTCTFeatureExtractor's [`~MCTCTFeatureExtractor.__call__`] and returns its output. If used in the context [`~MCTCTProcessor.as_target_processor`] this method forwards all its arguments to AutoTokenizer's [`~AutoTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information. """ # For backward compatibility if self._in_target_context_manager: return self.current_processor(*args, **kwargs) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") audio = kwargs.pop("raw_speech") else: audio = kwargs.pop("audio", None) sampling_rate = kwargs.pop("sampling_rate", None) text = kwargs.pop("text", None) if len(args) > 0: audio = args[0] args = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) if text is not None: encodings = self.tokenizer(text, **kwargs) if text is None: return inputs elif audio is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to AutoTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def pad(self, *args, **kwargs): """ When used in normal mode, this method forwards all its arguments to MCTCTFeatureExtractor's [`~MCTCTFeatureExtractor.pad`] and returns its output. If used in the context [`~MCTCTProcessor.as_target_processor`] this method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.pad`]. Please refer to the docstring of the above two methods for more information. """ # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*args, **kwargs) input_features = kwargs.pop("input_features", None) labels = kwargs.pop("labels", None) if len(args) > 0: input_features = args[0] args = args[1:] if input_features is not None: input_features = self.feature_extractor.pad(input_features, *args, **kwargs) if labels is not None: labels = self.tokenizer.pad(labels, **kwargs) if labels is None: return input_features elif input_features is None: return labels else: input_features["labels"] = labels["input_ids"] return input_features def decode(self, *args, **kwargs): """ This method forwards all its arguments to AutoTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @contextmanager def as_target_processor(self): """ Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning MCTCT. """ warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) self._in_target_context_manager = True self.current_processor = self.tokenizer yield self.current_processor = self.feature_extractor self._in_target_context_manager = False
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch M-CTC-T model.""" import math from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ....activations import ACT2FN from ....file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ....integrations.deepspeed import is_deepspeed_zero3_enabled from ....modeling_attn_mask_utils import _prepare_4d_attention_mask from ....modeling_outputs import BaseModelOutput, CausalLMOutput from ....modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from ....utils import logging from .configuration_mctct import MCTCTConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 1 _CONFIG_FOR_DOC = "MCTCTConfig" # Base docstring _CHECKPOINT_FOR_DOC = "speechbrain/m-ctc-t-large" _EXPECTED_OUTPUT_SHAPE = [1, 195, 1536] # CTC docstring _CTC_EXPECTED_OUTPUT = '"Mr. Quilter is the apostle of the middle classes, and we\'re glad to welcome his gospel."' _CTC_EXPECTED_LOSS = 1885.65 from .._archive_maps import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 class MCTCTConv1dSubsampler(nn.Module): """ Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation via gated linear units (https://arxiv.org/abs/1911.08460) """ def __init__(self, config): super().__init__() self.config = config self.glu_dim = config.conv_glu_dim self.dropout = nn.Dropout(config.conv_dropout) self.num_layers = config.num_conv_layers self.in_channels = config.input_feat_per_channel * config.input_channels if self.num_layers > 1: if config.conv_channels is None: raise ValueError( "Need to specify `conv_channels` configuration in `MCTCTConfig` to use multiple convolution" " layers." ) self.mid_channels = config.conv_channels else: self.mid_channels = None self.out_channels = config.hidden_size * 2 # considering GLU halving self.kernel_size = config.conv_kernel self.stride = config.conv_stride # NOTE: MCTCT by construction only uses one convolution kernel. I've made this flexible to allow for # multiple layers of convolutions, but not sure if this model definition should just restrict it # to one layer. This becomes especially relevant when considering the padding like line 1 of forward(). self.conv_layers = nn.ModuleList( nn.Conv1d( self.in_channels if i == 0 else self.mid_channels[i], self.mid_channels[i] if i < self.num_layers - 1 else self.out_channels, kernel_size=k, stride=self.stride[i], padding="valid", ) for i, k in enumerate(self.kernel_size) ) def forward(self, input_features): # NOTE: in reference to the NOTE in __init__, right now it just calculates padding as if # there will be just one conv layer. padding = sum([size // 2 for size in self.kernel_size]) # (7, 7) -> (3, 3) input_features = torch.nn.functional.pad(input_features, (0, 0, padding, padding), "constant", 0) hidden_states = input_features.transpose(1, 2).contiguous() # -> Batch x Frame x Time for conv in self.conv_layers: hidden_states = conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=self.glu_dim) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2).contiguous() # -> Batch x Time x Frame return hidden_states class MCTCTEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file # self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.LayerNorm = MCTCTLayerNorm() self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), persistent=False, ) def forward( self, input_features=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): input_shape = input_features.size() if input_features is not None else inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_features) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MCTCTSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = config.attention_head_dim self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def reshape_fortran(self, x, shape): if len(x.shape) > 0: x = x.permute(*reversed(range(len(x.shape)))) return x.reshape(*reversed(shape)).permute(*reversed(range(len(shape)))) def relative_position_embedding_rotate(self, scores): # NOTE: should re-evaluate whether this re-implementation was truly necessary # or the reason why my complete re-haul worked was due to some other part # of the code. Adding this and the reshape fortrain code seems very undesirable. scores = scores.permute(0, 2, 3, 1) # e.g. [10, 1839, 14, 4] batch, hidden_state, seq_len, heads = scores.shape # e.g. [10, 1853, 14, 4] scores = torch.cat((scores, torch.zeros((batch, seq_len, seq_len, heads), device=scores.device)), dim=1) # e.g. [10, 25942, 1, 4] scores = self.reshape_fortran(scores, [batch, (hidden_state + seq_len) * seq_len, 1, heads]) # e.g. [10, 25928, 1, 4] scores = scores[:, : (seq_len + hidden_state - 1) * seq_len] # e.g. [10, 1852, 14, 4] scores = self.reshape_fortran(scores, [batch, hidden_state + seq_len - 1, seq_len, heads]) halfpoint = hidden_state // 2 scores = scores[:, halfpoint : halfpoint + seq_len].transpose(1, 2) # e.g. [10, 14, 14, 4] return scores.permute(0, 3, 1, 2) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) mixed_query_layer = mixed_query_layer / math.sqrt(self.attention_head_size) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) # relative key position embeddings positional_embedding = self.distance_embedding.weight relative_position_scores = torch.einsum("lh, bche -> bcle", positional_embedding, query_layer.transpose(2, 3)) relative_position_scores = self.relative_position_embedding_rotate(relative_position_scores) attention_scores = attention_scores + relative_position_scores if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in MCTCTModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).flatten(start_dim=-2) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class MCTCTLayerNorm(nn.Module): def __init__(self): super().__init__() self.singleton_weight = nn.Parameter(torch.ones(1)) self.singleton_bias = nn.Parameter(torch.zeros(1)) def forward(self, hidden_states): return (hidden_states * self.singleton_weight) + self.singleton_bias class MCTCTSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.config = config self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class MCTCTAttention(nn.Module): def __init__(self, config): super().__init__() self.self = MCTCTSelfAttention(config) self.output = MCTCTSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class MCTCTIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class MCTCTOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class MCTCTLayer(nn.Module): def __init__(self, config: MCTCTConfig): super().__init__() self.seq_len_dim = 1 self.chunk_size_feed_forward = config.chunk_size_feed_forward self.intermediate = MCTCTIntermediate(config) self.attention = MCTCTAttention(config) self.is_decoder = config.is_decoder self.output = MCTCTOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class MCTCTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MCTCTConfig base_model_prefix = "mctct" main_input_name = "input_features" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" std = self.config.initializer_range if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, MCTCTLayerNorm): module.singleton_weight.data.fill_(1.0) module.singleton_bias.data.zero_() if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers """ dilation = 1 for _, kernel_sz, stride in zip( range(self.config.num_conv_layers), self.config.conv_kernel, self.config.conv_stride ): padding = kernel_sz // 2 input_lengths = input_lengths + 2 * padding - dilation * (kernel_sz - 1) - 1 input_lengths = torch.div(input_lengths, stride, rounding_mode="trunc") + 1 return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask): # generate creates 3D attention mask, because of the shape of input_features # convert it to 2D if thats the case if len(attention_mask.shape) > 2: attention_mask = attention_mask[:, :, -1] # subsampled_lengths = attention_mask.sum(-1) subsampled_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)) bsz = attention_mask.size()[0] attention_mask = torch.zeros( (bsz, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values # before the output lengths indices are attended to attention_mask[(torch.arange(bsz, device=attention_mask.device), subsampled_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).long() return attention_mask MCTCT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MCTCTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MCTCT_INPUTS_DOCSTRING = r""" Args: input_features (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`Wav2Vec2CTCTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ class MCTCTEncoder(MCTCTPreTrainedModel): def __init__(self, config: MCTCTConfig): super().__init__(config) self.hidden_dropout_prob = config.hidden_dropout_prob self.layer_norm = MCTCTLayerNorm() self.conv = MCTCTConv1dSubsampler(config) self.layers = nn.ModuleList([MCTCTLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, input_features: torch.Tensor, attention_mask: torch.Tensor, head_mask: torch.Tensor, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_features = self.layer_norm(input_features) inputs_embeds = self.conv(input_features) # subsample attention mask if necessary if attention_mask is not None: attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[1], attention_mask) hidden_states = nn.functional.dropout(inputs_embeds, p=self.hidden_dropout_prob, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != len(self.layers): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, " f"but it is for {head_mask.size()[0]}." ) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @add_start_docstrings( "The bare M-CTC-T Model transformer outputting raw hidden-states without any specific head on top.", MCTCT_START_DOCSTRING, ) class MCTCTModel(MCTCTPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.encoder = MCTCTEncoder(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_features: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_features is None: raise ValueError("You have to specify input_features.") encoder_outputs = self.encoder( input_features, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """MCTCT Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", MCTCT_START_DOCSTRING, ) class MCTCTForCTC(MCTCTPreTrainedModel): def __init__(self, config): super().__init__(config) self.mctct = MCTCTModel(config) if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `MCTCTForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = config.hidden_size self.ctc_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_features: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mctct( input_features, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.ctc_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones(input_features.shape[:-1], dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions )
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/tapex/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ....utils import _LazyModule _import_structure = {"tokenization_tapex": ["TapexTokenizer"]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/tapex/tokenization_tapex.py
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for TAPEX.""" import json import os import random from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ....file_utils import ExplicitEnum, PaddingStrategy, TensorType, add_end_docstrings, is_pandas_available from ....tokenization_utils import AddedToken, PreTrainedTokenizer from ....tokenization_utils_base import ENCODE_KWARGS_DOCSTRING, BatchEncoding, TextInput, TruncationStrategy from ....utils import logging if is_pandas_available(): import pandas as pd logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} class TapexTruncationStrategy(ExplicitEnum): """ Possible values for the `truncation` argument in [`~TapasTokenizer.__call__`]. Useful for tab-completion in an IDE. """ DROP_ROWS_TO_FIT = "drop_rows_to_fit" TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str`, [`TapexTruncationStrategy`] or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate row by row, removing rows from the table. - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class IndexedRowTableLinearize: """ FORMAT: col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ... """ def process_table(self, table_content: Dict): """ Given a table, TableLinearize aims at converting it into a flatten sequence with special symbols. """ assert "header" in table_content and "rows" in table_content, self.PROMPT_MESSAGE # process header table_str = self.process_header(table_content["header"]) + " " # process rows for i, row_example in enumerate(table_content["rows"]): # NOTE: the row should start from row 1 instead of 0 table_str += self.process_row(row_example, row_index=i + 1) + " " return table_str.strip() def process_header(self, headers: List): """ Given a list of headers, TableLinearize aims at converting it into a flatten sequence with special symbols. """ return "col : " + " | ".join(headers) def process_row(self, row: List, row_index: int): """ Given a row, TableLinearize aims at converting it into a flatten sequence with special symbols. """ row_str = "" row_cell_values = [] for cell_value in row: if isinstance(cell_value, int): row_cell_values.append(str(cell_value)) else: row_cell_values.append(cell_value) row_str += " | ".join(row_cell_values) return "row " + str(row_index) + " : " + row_str class TapexTokenizer(PreTrainedTokenizer): r""" Construct a TAPEX tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). This tokenizer can be used to flatten one or more table(s) and concatenate them with one or more related sentences to be used by TAPEX models. The format that the TAPEX tokenizer creates is the following: sentence col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ... The tokenizer supports a single table + single query, a single table and multiple queries (in which case the table will be duplicated for every query), a single query and multiple tables (in which case the query will be duplicated for every table), and multiple tables and queries. In other words, you can provide a batch of tables + questions to the tokenizer for instance to prepare them for the model. Tokenization itself is based on the BPE algorithm. It is identical to the one used by BART, RoBERTa and GPT-2. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (BART tokenizer detect beginning of words by the preceding space). max_cell_length (`int`, *optional*, defaults to 15): Maximum number of characters per cell when linearizing a table. If this number is exceeded, truncation takes place. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, do_lower_case=True, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, max_cell_length=15, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space self.do_lower_case = do_lower_case # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") # additional properties super().__init__( vocab_file=vocab_file, merges_file=merges_file, do_lower_case=do_lower_case, errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, max_cell_length=max_cell_length, **kwargs, ) self.max_cell_length = max_cell_length self.table_linearize = IndexedRowTableLinearize() def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A TAPEX sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Args: Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Args: Create a mask from the two sequences passed to be used in a sequence-pair classification task. TAPEX does not: make use of token type ids, therefore a list of zeros is returned. token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, table: Union["pd.DataFrame", List["pd.DataFrame"]] = None, query: Optional[Union[TextInput, List[TextInput]]] = None, answer: Union[str, List[str]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several table-sequence pair(s). Args: table (`pd.DataFrame`, `List[pd.DataFrame]`): Table(s) containing tabular data. query (`str` or `List[str]`, *optional*): Sentence or batch of sentences related to one or more table(s) to be encoded. Note that the number of sentences must match the number of tables. answer (`str` or `List[str]`, *optional*): Optionally, the corresponding answer to the questions as supervision. """ if table is not None: return self.source_call_func( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) elif answer is not None: return self.target_call_func( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: raise ValueError("You need to provide either a `table` or an `answer`.") def source_call_func( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[Union[TextInput, List[TextInput]]] = None, answer: Union[str, List[str]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Input type checking for clearer error valid_table = False valid_query = False # Check that table have a valid type if isinstance(table, pd.DataFrame): valid_table = True elif isinstance(table, (list, tuple)) and isinstance(table[0], pd.DataFrame): valid_table = True # Check that query have a valid type if query is None or isinstance(query, str): valid_query = True elif isinstance(query, (list, tuple)): if len(query) == 0 or isinstance(query[0], str): valid_query = True if not valid_table: raise ValueError( "table input must of type `pd.DataFrame` (single example), `List[pd.DataFrame]` (batch of examples). " ) if not valid_query: raise ValueError("query input must of type `str` (single example), `List[str]` (batch of examples). ") is_batched = isinstance(table, (list, tuple)) or isinstance(query, (list, tuple)) if is_batched: return self.batch_encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[List[TextInput]] = None, answer: List[str] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = None, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ <Tip warning={true}> This method is deprecated, `__call__` should be used instead. </Tip> """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[List[TextInput]] = None, answer: Optional[List[str]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) if isinstance(table, pd.DataFrame) and isinstance(query, (list, tuple)): # single table, many queries case # duplicate table for every query table = [table] * len(query) if isinstance(table, (list, tuple)) and isinstance(query, str): # many tables, single query case # duplicate query for every table query = [query] * len(table) batch_outputs = self._batch_prepare_for_model( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def _batch_prepare_for_model( self, table: Union["pd.DataFrame", List["pd.DataFrame"]], query: Optional[Union[TextInput, List[TextInput]]] = None, answer: Optional[Union[str, List[str]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ This method adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. """ batch_outputs = {} if answer is None: answer = [None] * len(table) for _table, _query, _answer in zip(table, query, answer): text = self.prepare_table_query( _table, _query, _answer, truncation_strategy=truncation_strategy, max_length=max_length ) if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) outputs = self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterwards return_attention_mask=False, # we pad in batch afterwards return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING) def encode( self, table: "pd.DataFrame", query: Optional[TextInput] = None, answer: Optional[str] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = None, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> List[int]: """ Prepare a table, a string and possible answer for the model. This method does not return token type IDs, attention masks, etc. which are necessary for the model to work correctly. Use this method if you want to build your processing on your own, otherwise refer to `__call__`. """ encoded_inputs = self.encode_plus( table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, **kwargs, ) return encoded_inputs["input_ids"] @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, table: "pd.DataFrame", query: Optional[TextInput] = None, answer: Optional[str] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = None, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( table=table, query=query, answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, table: "pd.DataFrame", query: Optional[TextInput] = None, answer: Optional[str] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) text = self.prepare_table_query( table, query, answer, truncation_strategy=truncation_strategy, max_length=max_length ) # if necessary, perform lower case if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) return self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) def target_call_func( self, answer: Union[str, List[str]], add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ The method tokenizes and prepares the answer label for the model. Args: answer (`str` or `List[str]`): Corresponding answer supervision to the queries for training the model. """ is_batched = isinstance(answer, (list, tuple)) if is_batched: return self.target_batch_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.target_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def target_batch_encode_plus( self, answer: List[str], add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = None, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Prepare answer strings for the model. Args: answer `List[str]`: Corresponding answer supervision to the queries for training the model. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._target_batch_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _target_batch_encode_plus( self, answer: List[str], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: batch_outputs = {} for text in answer: if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) outputs = self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterwards return_attention_mask=False, # we pad in batch afterwards return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return BatchEncoding(batch_outputs) def target_encode( self, answer: str, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = None, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> List[int]: """ Prepare the answer string for the model. This method does not return token type IDs, attention masks, etc. which are necessary for the model to work correctly. Use this method if you want to build your processing on your own, otherwise refer to `__call__`. Args: answer `str`: Corresponding answer supervision to the queries for training the model """ encoded_outputs = self.target_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, **kwargs, ) return encoded_outputs["input_ids"] def target_encode_plus( self, answer: str, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str] = None, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Prepare a answer string for the model. Args: answer `str`: Corresponding answer supervision to the queries for training the model. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._target_encode_plus( answer=answer, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _target_encode_plus( self, answer: str, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) text = answer # if necessary, perform lower case if self.do_lower_case: text = text.lower() tokens = self.tokenize(text) return self.prepare_for_model( ids=self.convert_tokens_to_ids(tokens), add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) def prepare_table_query( self, table, query, answer=None, truncation_strategy=Union[str, TruncationStrategy, TapexTruncationStrategy], max_length=None, ): """ This method can be used to linearize a table and add a corresponding query. Optionally, it also handles truncation of the table (cells). An answer can be provided for more precise truncation. """ if not table.empty: # step 1: create table dictionary table_content = {"header": list(table.columns), "rows": [list(row.values) for i, row in table.iterrows()]} # step 2: modify table internally # always truncate table cells based on self.max_cell_length # optionally truncate rows if truncation_strategy is set to it self.truncate_table_cells(table_content, query, answer) if truncation_strategy == TapexTruncationStrategy.DROP_ROWS_TO_FIT: self.truncate_table_rows(table_content, query, answer, max_length=max_length) # step 3: linearize table linear_table = self.table_linearize.process_table(table_content) else: linear_table = "" if linear_table == "": logger.warning( "You provide an empty table, or all cells contain much tokens (e.g., >= 1024 tokens). " + f"Please carefully check the corresponding table with the query : {query}." ) if query == "": logger.warning("You provide nothing to query with respect to the table.") # step 4: concatenate query with linear_table separator = " " if query and linear_table else "" joint_input = (query + separator + linear_table) if query else linear_table return joint_input def truncate_table_cells(self, table_content: Dict, question: str, answer: List): # TODO (Qian): is it possible to revert the original cell if it is in the final answer? cell_mapping = {} for row in table_content["rows"]: for i, cell in enumerate(row): truncate_cell = self.truncate_cell(cell) if truncate_cell is not None: cell_mapping[cell] = truncate_cell row[i] = truncate_cell # modify the answer list if answer is not None: for i, case in enumerate(answer): if case in cell_mapping.keys(): answer[i] = cell_mapping[case] def truncate_cell(self, cell_value): # do not process on these cases if isinstance(cell_value, int) or isinstance(cell_value, float): return cell_value if cell_value.strip() != "": try_tokens = self.tokenize(cell_value) if len(try_tokens) >= self.max_cell_length: retain_tokens = try_tokens[: self.max_cell_length] retain_cell_value = self.convert_tokens_to_string(retain_tokens) return retain_cell_value else: return None else: return cell_value def truncate_table_rows( self, table_content: Dict, question: str, answer: Optional[Union[str, List[str]]] = None, max_length=None ): """ Args: table_content: {"header": xxx, "rows": xxx, "id" (Optionally): xxx} question: natural language sentence answer: if for training, is the supervision; otherwise will be empty """ delete_ratio, remain_token_len = self.estimate_delete_ratio(table_content, question, max_length) # randomly delete unrelated rows self.delete_unrelated_rows(table_content, question, answer, delete_ratio) # guarantee the result < max_length maximum_keep_rows = 0 for ind, row_example in enumerate(table_content["rows"]): value_string = self.table_linearize.process_row(row_example, ind + 1) value_token_len = len(self.tokenize(value_string)) # over the size limit, and take action if value_token_len > remain_token_len: break remain_token_len -= value_token_len maximum_keep_rows += 1 del table_content["rows"][maximum_keep_rows:] def estimate_delete_ratio(self, table_content: Dict, question: str, max_length=None): if "header" not in table_content or "rows" not in table_content: raise ValueError("The table content should contain both 'header' and 'rows' keys.") # calculate the tokens of header, special tokens will only be pre-prepended into question question_tokens = self.tokenize(question, add_special_tokens=True) # calculate the tokens of header header_string = self.table_linearize.process_header(table_content["header"]) header_tokens = self.tokenize(header_string, add_special_tokens=False) # split all cell values into tokens and see how many can be accommodated used_token_len = len(question_tokens) + len(header_tokens) # remaining token space for rows remain_token_len = max_length - used_token_len value_string = "" for _, row_example in enumerate(table_content["rows"]): # use a general index to roughly estimate the overall token len value_string += self.table_linearize.process_row(row_example, 100) + " " value_token_len = len(self.tokenize(value_string)) if value_token_len < remain_token_len: # no row will be deleted return 0.0, remain_token_len else: # calc a roughly delete rate return 1.0 - remain_token_len / value_token_len, remain_token_len def delete_unrelated_rows(self, table_content: Dict, question: str, answer: List, delete_ratio: float): """ The argument answer is used only during training. """ truncated_unrelated_indices = [] related_indices = [] if answer is None or len(answer) == 0: answer_set = set() else: answer_set = {ans_ex.lower() for ans_ex in answer} # add question key words into answer set if question is not None: answer_set.update(question.split()) question_set = set(question.strip("?!.,").split(" ")) row_max_len = len(table_content["rows"]) for _row_idx, row in enumerate(table_content["rows"]): lower_row = {str(cell).lower() for cell in row} if len(lower_row & answer_set) == 0 and len(lower_row & question_set) == 0: truncated_unrelated_indices.append(_row_idx) else: # add neighbours to preserve information aggressively related_indices.extend([_row_idx - 2, _row_idx - 1, _row_idx, _row_idx + 1, _row_idx + 2]) # remove the neighbours truncated_unrelated_indices = [ _row_idx for _row_idx in truncated_unrelated_indices if _row_idx not in related_indices ] # select some cases to drop drop_items = min(len(truncated_unrelated_indices), int(len(table_content["rows"]) * delete_ratio)) drop_row_indices = random.choices(truncated_unrelated_indices, k=drop_items) for _row_idx in reversed(range(row_max_len)): if _row_idx in drop_row_indices: del table_content["rows"][_row_idx] # only when the drop ratio is too large, logging for warning. if "id" in table_content and len(drop_row_indices) > 0: logger.warning("Delete {:.2f} rows in table {}".format(len(drop_row_indices), table_content["id"]))
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/open_llama/configuration_open_llama.py
# coding=utf-8 # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Open-Llama model configuration""" from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) from .._archive_maps import OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class OpenLlamaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`OpenLlamaModel`]. It is used to instantiate an Open-Llama model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Open-Llama model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`OpenLlamaModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings(`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. Example: ```python >>> from transformers import OpenLlamaModel, OpenLlamaConfig >>> # Initializing a Open-Llama open_llama-7b style configuration >>> configuration = OpenLlamaConfig() >>> # Initializing a model from the open_llama-7b style configuration >>> model = OpenLlamaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "open-llama" def __init__( self, vocab_size=100000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, use_memory_efficient_attention=True, hidden_dropout_prob=0.1, attention_dropout_prob=0.1, use_stable_embedding=True, shared_input_output_embedding=True, rope_theta=10000.0, rope_scaling=None, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.use_memory_efficient_attention = kwargs.pop( "use_memorry_efficient_attention", use_memory_efficient_attention ) self.hidden_dropout_prob = hidden_dropout_prob self.attention_dropout_prob = attention_dropout_prob self.use_stable_embedding = use_stable_embedding self.shared_input_output_embedding = shared_input_output_embedding self.rope_theta = rope_theta self.rope_scaling = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_factor = self.rope_scaling.get("factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/open_llama/__init__.py
# Copyright 2023 EleutherAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ....utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_open_llama": ["OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "OpenLlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_open_llama"] = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_open_llama_fast"] = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_open_llama"] = [ "OpenLlamaForCausalLM", "OpenLlamaModel", "OpenLlamaPreTrainedModel", "OpenLlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_open_llama import OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenLlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from transformers import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from transformers import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_open_llama import ( OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel, OpenLlamaPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/open_llama/modeling_open_llama.py
# coding=utf-8 # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Open-Llama model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ....activations import ACT2FN from ....modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from ....modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from ....modeling_utils import PreTrainedModel from ....utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_open_llama import OpenLlamaConfig logger = logging.get_logger(__name__) try: from xformers import ops as xops except ImportError: xops = None _CONFIG_FOR_DOC = "OpenLlamaConfig" # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->OpenLlama class OpenLlamaRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ OpenLlamaRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->OpenLlama class OpenLlamaRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) # Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->OpenLlama class OpenLlamaLinearScalingRotaryEmbedding(OpenLlamaRotaryEmbedding): """OpenLlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) t = t / self.scaling_factor freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) # Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->OpenLlama class OpenLlamaDynamicNTKScalingRotaryEmbedding(OpenLlamaRotaryEmbedding): """OpenLlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len if seq_len > self.max_position_embeddings: base = self.base * ( (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) ) ** (self.dim / (self.dim - 2)) inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class OpenLlamaMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, dropout_prob: float, ): super().__init__() self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) self.act_fn = ACT2FN[hidden_act] self.dropout = nn.Dropout(dropout_prob) def forward(self, x): out = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return self.dropout(out) class OpenLlamaAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: OpenLlamaConfig): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.max_position_embeddings = config.max_position_embeddings self.dropout_prob = config.attention_dropout_prob self.rope_theta = config.rope_theta if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self._init_rope() # Copied from transformers.models.llama.modeling_llama.LlamaAttention._init_rope with Llama->OpenLlama def _init_rope(self): if self.config.rope_scaling is None: self.rotary_emb = OpenLlamaRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) else: scaling_type = self.config.rope_scaling["type"] scaling_factor = self.config.rope_scaling["factor"] if scaling_type == "linear": self.rotary_emb = OpenLlamaLinearScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "dynamic": self.rotary_emb = OpenLlamaDynamicNTKScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) # [bsz, nh, t, hd] if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None if self.config.use_memory_efficient_attention and xops is not None and self.training: attn_weights = None query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) attn_output = xops.memory_efficient_attention( query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask(), p=self.dropout_prob ) else: attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask attn_weights = torch.max( attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device) ) # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class OpenLlamaDecoderLayer(nn.Module): def __init__(self, config: OpenLlamaConfig): super().__init__() self.hidden_size = config.hidden_size self.self_attn = OpenLlamaAttention(config=config) self.mlp = OpenLlamaMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, dropout_prob=config.hidden_dropout_prob, ) self.input_layernorm = OpenLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = OpenLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs OPEN_LLAMA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`OpenLlamaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Open-Llama Model outputting raw hidden-states without any specific head on top.", OPEN_LLAMA_START_DOCSTRING, ) class OpenLlamaPreTrainedModel(PreTrainedModel): config_class = OpenLlamaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["OpenLlamaDecoderLayer"] def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): if self.config.use_stable_embedding: torch.nn.init.xavier_normal_(module.weight.data) else: module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() OPEN_LLAMA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Open-Llama Model outputting raw hidden-states without any specific head on top.", OPEN_LLAMA_START_DOCSTRING, ) class OpenLlamaModel(OpenLlamaPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OpenLlamaDecoderLayer`] Args: config: OpenLlamaConfig """ def __init__(self, config: OpenLlamaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) if config.use_stable_embedding: self.embed_layer_norm = nn.LayerNorm(config.hidden_size) else: self.embed_layer_norm = None self.layers = nn.ModuleList([OpenLlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.norm = OpenLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(OPEN_LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") seq_length_with_past = seq_length past_key_values_length = 0 if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if self.embed_layer_norm: inputs_embeds = self.embed_layer_norm(inputs_embeds) # embed positions if self.config.use_memory_efficient_attention and self.training: attention_mask = None elif attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device ) input_shape = (batch_size, seq_length) attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, None, output_attentions, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class OpenLlamaForCausalLM(OpenLlamaPreTrainedModel): def __init__(self, config): super().__init__(config) self.model = OpenLlamaModel(config) if config.shared_input_output_embedding: self.lm_head = None else: self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(OPEN_LLAMA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, OpenLlamaForCausalLM >>> model = OpenLlamaForCausalLM.from_pretrained("openlm-research/open_llama_7b") >>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.shared_input_output_embedding: logits = torch.einsum( "blh,vh->blv", hidden_states.to(self.model.embed_tokens.weight.device), self.model.embed_tokens.weight ) else: logits = self.lm_head(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """ The LLaMa Model transformer with a sequence classification head on top (linear layer). [`OpenLlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, OPEN_LLAMA_START_DOCSTRING, ) class OpenLlamaForSequenceClassification(OpenLlamaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = OpenLlamaModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(OPEN_LLAMA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/mmbt/configuration_mmbt.py
# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. # Copyright (c) HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MMBT configuration""" from ....utils import logging logger = logging.get_logger(__name__) class MMBTConfig(object): """ This is the configuration class to store the configuration of a [`MMBTModel`]. It is used to instantiate a MMBT model according to the specified arguments, defining the model architecture. Args: config ([`PreTrainedConfig`]): Config of the underlying Transformer models. Its values are copied over to use a single config. num_labels (`int`, *optional*): Size of final Linear layer for classification. modal_hidden_size (`int`, *optional*, defaults to 2048): Embedding dimension of the non-text modality encoder. """ def __init__(self, config, num_labels=None, modal_hidden_size=2048): self.__dict__ = config.__dict__ self.modal_hidden_size = modal_hidden_size if num_labels: self.num_labels = num_labels
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/mmbt/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mmbt"] = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/mmbt/modeling_mmbt.py
# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. # Copyright (c) HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch MMBT model.""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from ....modeling_outputs import BaseModelOutputWithPooling, SequenceClassifierOutput from ....modeling_utils import ModuleUtilsMixin from ....utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MMBTConfig" class ModalEmbeddings(nn.Module): """Generic Modal Embeddings which takes in an encoder, and a transformer embedding.""" def __init__(self, config, encoder, embeddings): super().__init__() self.config = config self.encoder = encoder self.proj_embeddings = nn.Linear(config.modal_hidden_size, config.hidden_size) self.position_embeddings = embeddings.position_embeddings self.token_type_embeddings = embeddings.token_type_embeddings self.word_embeddings = embeddings.word_embeddings self.LayerNorm = embeddings.LayerNorm self.dropout = nn.Dropout(p=config.hidden_dropout_prob) def forward(self, input_modal, start_token=None, end_token=None, position_ids=None, token_type_ids=None): token_embeddings = self.proj_embeddings(self.encoder(input_modal)) seq_length = token_embeddings.size(1) if start_token is not None: start_token_embeds = self.word_embeddings(start_token) seq_length += 1 token_embeddings = torch.cat([start_token_embeds.unsqueeze(1), token_embeddings], dim=1) if end_token is not None: end_token_embeds = self.word_embeddings(end_token) seq_length += 1 token_embeddings = torch.cat([token_embeddings, end_token_embeds.unsqueeze(1)], dim=1) if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=input_modal.device) position_ids = position_ids.unsqueeze(0).expand(input_modal.size(0), seq_length) if token_type_ids is None: token_type_ids = torch.zeros( (input_modal.size(0), seq_length), dtype=torch.long, device=input_modal.device ) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = token_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings MMBT_START_DOCSTRING = r""" MMBT model was proposed in [Supervised Multimodal Bitransformers for Classifying Images and Text](https://github.com/facebookresearch/mmbt) by Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, Davide Testuggine. It's a supervised multimodal bitransformer model that fuses information from text and other image encoders, and obtain state-of-the-art performance on various multimodal classification benchmark tasks. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MMBTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. transformer (`nn.Module`): A text transformer that is used by MMBT. It should have embeddings, encoder, and pooler attributes. encoder (`nn.Module`): Encoder for the second modality. It should take in a batch of modal inputs and return k, n dimension embeddings. """ MMBT_INPUTS_DOCSTRING = r""" Args: input_modal (`torch.FloatTensor` of shape `(batch_size, ***)`): The other modality data. It will be the shape that the encoder for that type expects. e.g. With an Image Encoder, the shape would be (batch_size, channels, height, width) input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. It does not expect [CLS] token to be added as it's appended to the end of other modality embeddings. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) modal_start_tokens (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Optional start token to be added to Other Modality Embedding. [CLS] Most commonly used for classification tasks. modal_end_tokens (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Optional end token to be added to Other Modality Embedding. [SEP] Most commonly used. attention_mask (*optional*) `torch.FloatTensor` of shape `(batch_size, sequence_length)`: Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (*optional*) `torch.LongTensor` of shape `(batch_size, sequence_length)`: Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) modal_token_type_ids (*optional*) `torch.LongTensor` of shape `(batch_size, modal_sequence_length)`: Segment token indices to indicate different portions of the non-text modality. The embeddings from these tokens will be summed with the respective token embeddings for the non-text modality. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) modal_position_ids (`torch.LongTensor` of shape `(batch_size, modal_sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings for the non-text modality. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, embedding_dim)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MMBT Model outputting raw hidden-states without any specific head on top.", MMBT_START_DOCSTRING, ) class MMBTModel(nn.Module, ModuleUtilsMixin): def __init__(self, config, transformer, encoder): super().__init__() self.config = config self.transformer = transformer self.modal_encoder = ModalEmbeddings(config, encoder, transformer.embeddings) @add_start_docstrings_to_model_forward(MMBT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_modal, input_ids=None, modal_start_tokens=None, modal_end_tokens=None, attention_mask=None, token_type_ids=None, modal_token_type_ids=None, position_ids=None, modal_position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Examples: ```python # For example purposes. Not runnable. transformer = BertModel.from_pretrained("google-bert/bert-base-uncased") encoder = ImageEncoder(args) mmbt = MMBTModel(config, transformer, encoder) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_txt_shape = input_ids.size() elif inputs_embeds is not None: input_txt_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device modal_embeddings = self.modal_encoder( input_modal, start_token=modal_start_tokens, end_token=modal_end_tokens, position_ids=modal_position_ids, token_type_ids=modal_token_type_ids, ) input_modal_shape = modal_embeddings.size()[:-1] if token_type_ids is None: token_type_ids = torch.ones(input_txt_shape, dtype=torch.long, device=device) txt_embeddings = self.transformer.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) embedding_output = torch.cat([modal_embeddings, txt_embeddings], 1) input_shape = embedding_output.size()[:-1] if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) else: attention_mask = torch.cat( [torch.ones(input_modal_shape, device=device, dtype=torch.long), attention_mask], dim=1 ) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(input_shape, device=device) else: encoder_attention_mask = torch.cat( [torch.ones(input_modal_shape, device=device), encoder_attention_mask], dim=1 ) extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) encoder_outputs = self.transformer.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.transformer.pooler(sequence_output) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value @add_start_docstrings( """ MMBT Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) """, MMBT_START_DOCSTRING, MMBT_INPUTS_DOCSTRING, ) class MMBTForClassification(nn.Module): r""" **labels**: (*optional*) `torch.LongTensor` of shape `(batch_size,)`: Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: *Tuple* comprising various elements depending on the configuration (config) and inputs: **loss**: (*optional*, returned when `labels` is provided) `torch.FloatTensor` of shape `(1,)`: Classification (or regression if config.num_labels==1) loss. **logits**: `torch.FloatTensor` of shape `(batch_size, config.num_labels)` Classification (or regression if config.num_labels==1) scores (before SoftMax). **hidden_states**: (*optional*, returned when `output_hidden_states=True`) list of `torch.FloatTensor` (one for the output of each layer + the output of the embeddings) of shape `(batch_size, sequence_length, hidden_size)`: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (*optional*, returned when `output_attentions=True`) list of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples: ```python # For example purposes. Not runnable. transformer = BertModel.from_pretrained("google-bert/bert-base-uncased") encoder = ImageEncoder(args) model = MMBTForClassification(config, transformer, encoder) outputs = model(input_modal, input_ids, labels=labels) loss, logits = outputs[:2] ```""" def __init__(self, config, transformer, encoder): super().__init__() self.num_labels = config.num_labels self.mmbt = MMBTModel(config, transformer, encoder) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) def forward( self, input_modal, input_ids=None, modal_start_tokens=None, modal_end_tokens=None, attention_mask=None, token_type_ids=None, modal_token_type_ids=None, position_ids=None, modal_position_ids=None, head_mask=None, inputs_embeds=None, labels=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mmbt( input_modal=input_modal, input_ids=input_ids, modal_start_tokens=modal_start_tokens, modal_end_tokens=modal_end_tokens, attention_mask=attention_mask, token_type_ids=token_type_ids, modal_token_type_ids=modal_token_type_ids, position_ids=position_ids, modal_position_ids=modal_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/trajectory_transformer/configuration_trajectory_transformer.py
# coding=utf-8 # Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TrajectoryTransformer model configuration""" from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) from .._archive_maps import TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class TrajectoryTransformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`TrajectoryTransformerModel`]. It is used to instantiate an TrajectoryTransformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the TrajectoryTransformer [CarlCochet/trajectory-transformer-halfcheetah-medium-v2](https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 100): Vocabulary size of the TrajectoryTransformer model. Defines the number of different tokens that can be represented by the `trajectories` passed when calling [`TrajectoryTransformerModel`] action_weight (`int`, *optional*, defaults to 5): Weight of the action in the loss function reward_weight (`int`, *optional*, defaults to 1): Weight of the reward in the loss function value_weight (`int`, *optional*, defaults to 1): Weight of the value in the loss function block_size (`int`, *optional*, defaults to 249): Size of the blocks in the trajectory transformer. action_dim (`int`, *optional*, defaults to 6): Dimension of the action space. observation_dim (`int`, *optional*, defaults to 17): Dimension of the observation space. transition_dim (`int`, *optional*, defaults to 25): Dimension of the transition space. n_layer (`int`, *optional*, defaults to 4): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. n_embd (`int`, *optional*, defaults to 128): Dimensionality of the embeddings and hidden states. resid_pdrop (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (`int`, *optional*, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. kaiming_initializer_range (`float, *optional*, defaults to 1): A coefficient scaling the negative slope of the kaiming initializer rectifier for EinLinear layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Example: ```python >>> from transformers import TrajectoryTransformerConfig, TrajectoryTransformerModel >>> # Initializing a TrajectoryTransformer CarlCochet/trajectory-transformer-halfcheetah-medium-v2 style configuration >>> configuration = TrajectoryTransformerConfig() >>> # Initializing a model (with random weights) from the CarlCochet/trajectory-transformer-halfcheetah-medium-v2 style configuration >>> model = TrajectoryTransformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "trajectory_transformer" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=100, action_weight=5, reward_weight=1, value_weight=1, block_size=249, action_dim=6, observation_dim=17, transition_dim=25, n_layer=4, n_head=4, n_embd=128, embd_pdrop=0.1, attn_pdrop=0.1, resid_pdrop=0.1, learning_rate=0.0006, max_position_embeddings=512, initializer_range=0.02, layer_norm_eps=1e-12, kaiming_initializer_range=1, use_cache=True, pad_token_id=1, bos_token_id=50256, eos_token_id=50256, **kwargs, ): self.vocab_size = vocab_size self.action_weight = action_weight self.reward_weight = reward_weight self.value_weight = value_weight self.max_position_embeddings = max_position_embeddings self.block_size = block_size self.action_dim = action_dim self.observation_dim = observation_dim self.transition_dim = transition_dim self.learning_rate = learning_rate self.n_layer = n_layer self.n_head = n_head self.n_embd = n_embd self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.resid_pdrop = resid_pdrop self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.kaiming_initializer_range = kaiming_initializer_range self.use_cache = use_cache super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/trajectory_transformer/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_trajectory_transformer"] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/trajectory_transformer/modeling_trajectory_transformer.py
# coding=utf-8 # Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch TrajectoryTransformer model.""" import math import os from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import functional as F from ....modeling_utils import PreTrainedModel from ....utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_trajectory_transformer import TrajectoryTransformerConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "CarlCochet/trajectory-transformer-halfcheetah-medium-v2" _CONFIG_FOR_DOC = "TrajectoryTransformerConfig" from .._archive_maps import TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 def load_tf_weights_in_trajectory_transformer(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model @dataclass class TrajectoryTransformerOutput(ModelOutput): """ Base class for model's outputs that also contains a pooling of the last hidden states. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. GPT2Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None class TrajectoryTransformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TrajectoryTransformerConfig load_tf_weights = load_tf_weights_in_trajectory_transformer base_model_prefix = "trajectory_transformer" main_input_name = "trajectories" supports_gradient_checkpointing = True def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, EinLinear): for i in range(module.n_models): nn.init.kaiming_uniform_(module.weight[i], a=math.sqrt(5) / self.config.kaiming_initializer_range) if module.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight[i]) bound = (1 / math.sqrt(fan_in)) * self.config.initializer_range nn.init.uniform_(module.bias[i], -bound, bound) TRAJECTORY_TRANSFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`TrajectoryTransformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ TRAJECTORY_TRANSFORMER_INPUTS_DOCSTRING = r""" Args: trajectories (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Batch of trajectories, where a trajectory is a sequence of states, actions and rewards. past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`, *optional*): Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have their past given to this model should not be passed as `input_ids` as they have already been computed. targets (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Desired targets used to compute the loss. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class EinLinear(nn.Module): def __init__(self, n_models, in_features, out_features, bias): super().__init__() self.n_models = n_models self.out_features = out_features self.in_features = in_features self.weight = nn.Parameter(torch.Tensor(n_models, out_features, in_features)) if bias: self.bias = nn.Parameter(torch.Tensor(n_models, out_features)) else: self.register_parameter("bias", None) def reset_parameters(self): for i in range(self.n_models): nn.init.kaiming_uniform_(self.weight[i], a=math.sqrt(5)) if self.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[i]) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(self.bias[i], -bound, bound) def forward(self, input): """ Args: input (`torch.FloatTensor` of shape `(B, n_models, input_dim)`): The input to the layer. """ # [ batch_size x n_models x output_dim ] output = torch.einsum("eoi,bei->beo", self.weight, input) if self.bias is not None: raise RuntimeError() return output class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.n_embd % config.n_head != 0: raise ValueError(f"n_head ({config.n_head}) should be a divisor of n_embd ({config.n_embd})") # key, query, value projections for all heads self.key = nn.Linear(config.n_embd, config.n_embd) self.query = nn.Linear(config.n_embd, config.n_embd) self.value = nn.Linear(config.n_embd, config.n_embd) # regularization self.attn_drop = nn.Dropout(config.attn_pdrop) self.resid_drop = nn.Dropout(config.resid_pdrop) # output projection self.proj = nn.Linear(config.n_embd, config.n_embd) # causal mask to ensure that attention is only applied to the left in the input sequence self.register_buffer( "mask", torch.tril(torch.ones(config.block_size, config.block_size)).view( 1, 1, config.block_size, config.block_size ), persistent=False, ) # mask previous value estimates joined_dim = config.observation_dim + config.action_dim + 2 self.mask.squeeze()[:, joined_dim - 1 :: joined_dim] = 0 self.n_head = config.n_head def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], layer_past: Optional[Tuple[torch.Tensor]] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ): batch_size, sequence_length, embedding_dim = hidden_states.size() # calculate query, key, values for all heads in batch and move head forward to be the batch dim # [ batch_size x n_heads x sequence_length x head_dim ] key = ( self.key(hidden_states) .view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head) .transpose(1, 2) ) query = ( self.query(hidden_states) .view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head) .transpose(1, 2) ) value = ( self.value(hidden_states) .view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head) .transpose(1, 2) ) if layer_past is not None: past_key, past_value = layer_past key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) if use_cache is True: present = (key, value) else: present = None # causal self-attention # [ batch_size x n_heads x sequence_length x sequence_length ] attn_weights = (torch.matmul(query, key.transpose(-2, -1))) * (1.0 / math.sqrt(key.size(-1))) attn_weights = attn_weights.masked_fill( self.mask[:, :, :sequence_length, :sequence_length] == 0, torch.finfo(attn_weights.dtype).min ) attn_weights = F.softmax(attn_weights, dim=-1) self._attn_map = attn_weights.clone() attn_weights = self.attn_drop(attn_weights) output = torch.matmul(attn_weights, value) # [ batch_size x sequence_length x embedding_dim ] # re-assemble all head outputs side by side output = output.transpose(1, 2).contiguous().view(batch_size, sequence_length, embedding_dim) # output projection output = self.resid_drop(self.proj(output)) outputs = (output, present) if output_attentions: outputs += (attn_weights,) return outputs class Block(nn.Module): def __init__(self, config): super().__init__() self.ln1 = nn.LayerNorm(config.n_embd) self.ln2 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) # MLP self.l1 = nn.Linear(config.n_embd, 4 * config.n_embd) self.act = nn.GELU() self.l2 = nn.Linear(4 * config.n_embd, config.n_embd) self.drop = nn.Dropout(config.resid_pdrop) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], layer_past: Optional[Tuple[torch.Tensor]] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ): residual = hidden_states hidden_states = self.ln1(hidden_states) attn_outputs = self.attn( hidden_states, layer_past=layer_past, use_cache=use_cache, output_attentions=output_attentions ) attn_output = attn_outputs[0] outputs = attn_outputs[1:] hidden_states = attn_output + residual residual = hidden_states hidden_states = self.ln2(hidden_states) hidden_states = self.l1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.l2(hidden_states) hidden_states = residual + self.drop(hidden_states) if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs @add_start_docstrings( "The bare TrajectoryTransformer Model transformer outputting raw hidden-states without any specific head on top.", TRAJECTORY_TRANSFORMER_START_DOCSTRING, ) class TrajectoryTransformerModel(TrajectoryTransformerPreTrainedModel): """the full GPT language model, with a context size of block_size""" def __init__(self, config): super().__init__(config) # input embedding stem (+1 for stop token) self.tok_emb = nn.Embedding(config.vocab_size * config.transition_dim + 1, config.n_embd) self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) self.drop = nn.Dropout(config.embd_pdrop) # transformer self.blocks = nn.ModuleList([Block(config) for _ in range(config.n_layer)]) # decoder head self.ln_f = nn.LayerNorm(config.n_embd) self.head = EinLinear(config.transition_dim, config.n_embd, config.vocab_size + 1, bias=False) self.vocab_size = config.vocab_size self.stop_token = config.vocab_size * config.transition_dim self.block_size = config.block_size self.observation_dim = config.observation_dim self.action_dim = config.action_dim self.transition_dim = config.transition_dim self.embedding_dim = config.n_embd self.action_weight = config.action_weight self.reward_weight = config.reward_weight self.value_weight = config.value_weight self.gradient_checkpointing = False self.post_init() def get_block_size(self): return self.block_size def offset_tokens(self, trajectories): _, sequence_length = trajectories.shape n_states = int(np.ceil(sequence_length / self.transition_dim)) offsets = torch.arange(self.transition_dim) * self.vocab_size offsets = offsets.repeat(n_states).to(trajectories.device) offset_trajectories = trajectories + offsets[:sequence_length] offset_trajectories[trajectories == self.vocab_size] = self.stop_token return offset_trajectories def pad_to_full_observation(self, hidden_states): batch_size, sequence_length, _ = hidden_states.shape n_pad = (self.transition_dim - sequence_length % self.transition_dim) % self.transition_dim padding = torch.zeros(batch_size, n_pad, self.embedding_dim, device=hidden_states.device) # [ batch_size x padded_sequence_length' x embedding_dim ] hidden_states_pad = torch.cat([hidden_states, padding], dim=1) hidden_states_pad = hidden_states_pad.view(-1, self.transition_dim, self.embedding_dim) return hidden_states_pad, n_pad @add_start_docstrings_to_model_forward( TRAJECTORY_TRANSFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=TrajectoryTransformerOutput, config_class=_CONFIG_FOR_DOC) def forward( self, trajectories: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, targets: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TrajectoryTransformerOutput]: r""" Returns: Examples: ```python >>> from transformers import TrajectoryTransformerModel >>> import torch >>> model = TrajectoryTransformerModel.from_pretrained( ... "CarlCochet/trajectory-transformer-halfcheetah-medium-v2" ... ) >>> model.to(device) >>> model.eval() >>> observations_dim, action_dim, batch_size = 17, 6, 256 >>> seq_length = observations_dim + action_dim + 1 >>> trajectories = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(batch_size)]).to( ... device ... ) >>> targets = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(batch_size)]).to(device) >>> outputs = model( ... trajectories, ... targets=targets, ... use_cache=True, ... output_attentions=True, ... output_hidden_states=True, ... return_dict=True, ... ) ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if past_key_values is None: past_key_values = tuple([None] * len(self.blocks)) batch_size, sequence_length = trajectories.size() if sequence_length > self.block_size: raise ValueError("Cannot forward, model block size is exhausted.") offset_trajectories = self.offset_tokens(trajectories) # [ batch_size x sequence_length x embedding_dim ] # forward the GPT model token_embeddings = self.tok_emb(offset_trajectories) # each index maps to a (learnable) vector position_embeddings = self.pos_emb[:, :sequence_length, :] # each position maps to a (learnable) vector hidden_states = self.drop(token_embeddings + position_embeddings) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.blocks, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: outputs = self._gradient_checkpointing_func( block.__call__, hidden_states, layer_past, use_cache, output_attentions, ) else: outputs = block(hidden_states, layer_past, use_cache, output_attentions) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) # [ batch_size x sequence_length x embedding_dim ] hidden_state = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states_pad, n_pad = self.pad_to_full_observation(hidden_state) logits = self.head(hidden_states_pad) logits = logits.reshape(batch_size, sequence_length + n_pad, self.vocab_size + 1) logits = logits[:, :sequence_length] # if we are given some desired targets also calculate the loss if targets is not None: loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), targets.view(-1), reduction="none") if self.action_weight != 1 or self.reward_weight != 1 or self.value_weight != 1: # make weights n_states = int(np.ceil(sequence_length / self.transition_dim)) weights = torch.cat( [ torch.ones(self.observation_dim, device=trajectories.device), torch.ones(self.action_dim, device=trajectories.device) * self.action_weight, torch.ones(1, device=trajectories.device) * self.reward_weight, torch.ones(1, device=trajectories.device) * self.value_weight, ] ) weights = weights.repeat(n_states) weights = weights[1:].repeat(batch_size, 1) loss = loss * weights.view(-1) loss = (loss * attention_mask.view(-1)).mean() else: loss = None if not return_dict: return tuple(v for v in [loss, logits, presents, all_hidden_states, all_self_attentions] if v is not None) return TrajectoryTransformerOutput( loss=loss, logits=logits, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, )
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/trajectory_transformer/convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TrajectoryTransformer pytorch checkpoint conversion""" import torch import trajectory.utils as utils from transformers import TrajectoryTransformerModel class Parser(utils.Parser): dataset: str = "halfcheetah-medium-expert-v2" config: str = "config.offline" def convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch(logbase, dataset, loadpath, epoch, device): """Converting Sequential blocks to ModuleList""" gpt, gpt_epoch = utils.load_model(logbase, dataset, loadpath, epoch=epoch, device=device) trajectory_transformer = TrajectoryTransformerModel(gpt.config) trajectory_transformer.tok_emb.load_state_dict(gpt.tok_emb.state_dict()) trajectory_transformer.pos_emb = gpt.pos_emb trajectory_transformer.drop.load_state_dict(gpt.drop.state_dict()) trajectory_transformer.ln_f.load_state_dict(gpt.ln_f.state_dict()) trajectory_transformer.head.load_state_dict(gpt.head.state_dict()) for i, block in enumerate(gpt.blocks): trajectory_transformer.blocks[i].ln1.load_state_dict(gpt.blocks[i].ln1.state_dict()) trajectory_transformer.blocks[i].ln2.load_state_dict(gpt.blocks[i].ln2.state_dict()) trajectory_transformer.blocks[i].attn.load_state_dict(gpt.blocks[i].attn.state_dict()) trajectory_transformer.blocks[i].l1.load_state_dict(gpt.blocks[i].mlp[0].state_dict()) trajectory_transformer.blocks[i].act.load_state_dict(gpt.blocks[i].mlp[1].state_dict()) trajectory_transformer.blocks[i].l2.load_state_dict(gpt.blocks[i].mlp[2].state_dict()) trajectory_transformer.blocks[i].drop.load_state_dict(gpt.blocks[i].mlp[3].state_dict()) torch.save(trajectory_transformer.state_dict(), "pytorch_model.bin") if __name__ == "__main__": """ To run this script you will need to install the original repository to run the original model. You can find it here: https://github.com/jannerm/trajectory-transformer From this repository code you can also download the original pytorch checkpoints. Run with the command: ```sh >>> python convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.py --dataset <dataset_name> ... --gpt_loadpath <path_to_original_pytorch_checkpoint> ``` """ args = Parser().parse_args("plan") convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch( args.logbase, args.dataset, args.gpt_loadpath, args.gpt_epoch, args.device )
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/van/convert_van_to_pytorch.py
# coding=utf-8 # Copyright 2022 BNRist (Tsinghua University), TKLNDST (Nankai University) and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert VAN checkpoints from the original repository. URL: https://github.com/Visual-Attention-Network/VAN-Classification""" import argparse import json import sys from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import torch import torch.nn as nn from huggingface_hub import cached_download, hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, VanConfig, VanForImageClassification from transformers.models.deprecated.van.modeling_van import VanLayerScaling from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) @dataclass class Tracker: module: nn.Module traced: List[nn.Module] = field(default_factory=list) handles: list = field(default_factory=list) def _forward_hook(self, m, inputs: Tensor, outputs: Tensor): has_not_submodules = len(list(m.modules())) == 1 or isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d) if has_not_submodules: if not isinstance(m, VanLayerScaling): self.traced.append(m) def __call__(self, x: Tensor): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(x) [x.remove() for x in self.handles] return self @property def parametrized(self): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda x: len(list(x.state_dict().keys())) > 0, self.traced)) @dataclass class ModuleTransfer: src: nn.Module dest: nn.Module verbose: int = 0 src_skip: List = field(default_factory=list) dest_skip: List = field(default_factory=list) def __call__(self, x: Tensor): """ Transfer the weights of `self.src` to `self.dest` by performing a forward pass using `x` as input. Under the hood we tracked all the operations in both modules. """ dest_traced = Tracker(self.dest)(x).parametrized src_traced = Tracker(self.src)(x).parametrized src_traced = list(filter(lambda x: type(x) not in self.src_skip, src_traced)) dest_traced = list(filter(lambda x: type(x) not in self.dest_skip, dest_traced)) if len(dest_traced) != len(src_traced): raise Exception( f"Numbers of operations are different. Source module has {len(src_traced)} operations while" f" destination module has {len(dest_traced)}." ) for dest_m, src_m in zip(dest_traced, src_traced): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}") def copy_parameters(from_model: nn.Module, our_model: nn.Module) -> nn.Module: # nn.Parameter cannot be tracked by the Tracker, thus we need to manually convert them from_state_dict = from_model.state_dict() our_state_dict = our_model.state_dict() config = our_model.config all_keys = [] for stage_idx in range(len(config.hidden_sizes)): for block_id in range(config.depths[stage_idx]): from_key = f"block{stage_idx + 1}.{block_id}.layer_scale_1" to_key = f"van.encoder.stages.{stage_idx}.layers.{block_id}.attention_scaling.weight" all_keys.append((from_key, to_key)) from_key = f"block{stage_idx + 1}.{block_id}.layer_scale_2" to_key = f"van.encoder.stages.{stage_idx}.layers.{block_id}.mlp_scaling.weight" all_keys.append((from_key, to_key)) for from_key, to_key in all_keys: our_state_dict[to_key] = from_state_dict.pop(from_key) our_model.load_state_dict(our_state_dict) return our_model def convert_weight_and_push( name: str, config: VanConfig, checkpoint: str, from_model: nn.Module, save_directory: Path, push_to_hub: bool = True, ): print(f"Downloading weights for {name}...") checkpoint_path = cached_download(checkpoint) print(f"Converting {name}...") from_state_dict = torch.load(checkpoint_path)["state_dict"] from_model.load_state_dict(from_state_dict) from_model.eval() with torch.no_grad(): our_model = VanForImageClassification(config).eval() module_transfer = ModuleTransfer(src=from_model, dest=our_model) x = torch.randn((1, 3, 224, 224)) module_transfer(x) our_model = copy_parameters(from_model, our_model) if not torch.allclose(from_model(x), our_model(x).logits): raise ValueError("The model logits don't match the original one.") checkpoint_name = name print(checkpoint_name) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message="Add model", use_temp_dir=True, ) # we can use the convnext one image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k") image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name, commit_message="Add image processor", use_temp_dir=True, ) print(f"Pushed {checkpoint_name}") def convert_weights_and_push(save_directory: Path, model_name: str = None, push_to_hub: bool = True): filename = "imagenet-1k-id2label.json" num_labels = 1000 repo_id = "huggingface/label-files" num_labels = num_labels id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} id2label = id2label label2id = {v: k for k, v in id2label.items()} ImageNetPreTrainedConfig = partial(VanConfig, num_labels=num_labels, id2label=id2label, label2id=label2id) names_to_config = { "van-tiny": ImageNetPreTrainedConfig( hidden_sizes=[32, 64, 160, 256], depths=[3, 3, 5, 2], mlp_ratios=[8, 8, 4, 4], ), "van-small": ImageNetPreTrainedConfig( hidden_sizes=[64, 128, 320, 512], depths=[2, 2, 4, 2], mlp_ratios=[8, 8, 4, 4], ), "van-base": ImageNetPreTrainedConfig( hidden_sizes=[64, 128, 320, 512], depths=[3, 3, 12, 3], mlp_ratios=[8, 8, 4, 4], ), "van-large": ImageNetPreTrainedConfig( hidden_sizes=[64, 128, 320, 512], depths=[3, 5, 27, 3], mlp_ratios=[8, 8, 4, 4], ), } names_to_original_models = { "van-tiny": van_tiny, "van-small": van_small, "van-base": van_base, "van-large": van_large, } names_to_original_checkpoints = { "van-tiny": ( "https://huggingface.co/Visual-Attention-Network/VAN-Tiny-original/resolve/main/van_tiny_754.pth.tar" ), "van-small": ( "https://huggingface.co/Visual-Attention-Network/VAN-Small-original/resolve/main/van_small_811.pth.tar" ), "van-base": ( "https://huggingface.co/Visual-Attention-Network/VAN-Base-original/resolve/main/van_base_828.pth.tar" ), "van-large": ( "https://huggingface.co/Visual-Attention-Network/VAN-Large-original/resolve/main/van_large_839.pth.tar" ), } if model_name: convert_weight_and_push( model_name, names_to_config[model_name], checkpoint=names_to_original_checkpoints[model_name], from_model=names_to_original_models[model_name](), save_directory=save_directory, push_to_hub=push_to_hub, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( model_name, config, checkpoint=names_to_original_checkpoints[model_name], from_model=names_to_original_models[model_name](), save_directory=save_directory, push_to_hub=push_to_hub, ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model-name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: van-tiny/small/base/large. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--van_dir", required=True, type=Path, help=( "A path to VAN's original implementation directory. You can download from here:" " https://github.com/Visual-Attention-Network/VAN-Classification" ), ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) args = parser.parse_args() pytorch_dump_folder_path: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) van_dir = args.van_dir # append the path to the parents to maskformer dir sys.path.append(str(van_dir.parent)) from van.models.van import van_base, van_large, van_small, van_tiny convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/van/modeling_van.py
# coding=utf-8 # Copyright 2022 BNRist (Tsinghua University), TKLNDST (Nankai University) and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Visual Attention Network (VAN) model.""" import math from collections import OrderedDict from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ....activations import ACT2FN from ....modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ....modeling_utils import PreTrainedModel from ....utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_van import VanConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "VanConfig" # Base docstring _CHECKPOINT_FOR_DOC = "Visual-Attention-Network/van-base" _EXPECTED_OUTPUT_SHAPE = [1, 512, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "Visual-Attention-Network/van-base" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" from .._archive_maps import VAN_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 # Copied from transformers.models.convnext.modeling_convnext.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Van class VanDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class VanOverlappingPatchEmbedder(nn.Module): """ Downsamples the input using a patchify operation with a `stride` of 4 by default making adjacent windows overlap by half of the area. From [PVTv2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797). """ def __init__(self, in_channels: int, hidden_size: int, patch_size: int = 7, stride: int = 4): super().__init__() self.convolution = nn.Conv2d( in_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=patch_size // 2 ) self.normalization = nn.BatchNorm2d(hidden_size) def forward(self, input: torch.Tensor) -> torch.Tensor: hidden_state = self.convolution(input) hidden_state = self.normalization(hidden_state) return hidden_state class VanMlpLayer(nn.Module): """ MLP with depth-wise convolution, from [PVTv2: Improved Baselines with Pyramid Vision Transformer](https://arxiv.org/abs/2106.13797). """ def __init__( self, in_channels: int, hidden_size: int, out_channels: int, hidden_act: str = "gelu", dropout_rate: float = 0.5, ): super().__init__() self.in_dense = nn.Conv2d(in_channels, hidden_size, kernel_size=1) self.depth_wise = nn.Conv2d(hidden_size, hidden_size, kernel_size=3, padding=1, groups=hidden_size) self.activation = ACT2FN[hidden_act] self.dropout1 = nn.Dropout(dropout_rate) self.out_dense = nn.Conv2d(hidden_size, out_channels, kernel_size=1) self.dropout2 = nn.Dropout(dropout_rate) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: hidden_state = self.in_dense(hidden_state) hidden_state = self.depth_wise(hidden_state) hidden_state = self.activation(hidden_state) hidden_state = self.dropout1(hidden_state) hidden_state = self.out_dense(hidden_state) hidden_state = self.dropout2(hidden_state) return hidden_state class VanLargeKernelAttention(nn.Module): """ Basic Large Kernel Attention (LKA). """ def __init__(self, hidden_size: int): super().__init__() self.depth_wise = nn.Conv2d(hidden_size, hidden_size, kernel_size=5, padding=2, groups=hidden_size) self.depth_wise_dilated = nn.Conv2d( hidden_size, hidden_size, kernel_size=7, dilation=3, padding=9, groups=hidden_size ) self.point_wise = nn.Conv2d(hidden_size, hidden_size, kernel_size=1) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: hidden_state = self.depth_wise(hidden_state) hidden_state = self.depth_wise_dilated(hidden_state) hidden_state = self.point_wise(hidden_state) return hidden_state class VanLargeKernelAttentionLayer(nn.Module): """ Computes attention using Large Kernel Attention (LKA) and attends the input. """ def __init__(self, hidden_size: int): super().__init__() self.attention = VanLargeKernelAttention(hidden_size) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: attention = self.attention(hidden_state) attended = hidden_state * attention return attended class VanSpatialAttentionLayer(nn.Module): """ Van spatial attention layer composed by projection (via conv) -> act -> Large Kernel Attention (LKA) attention -> projection (via conv) + residual connection. """ def __init__(self, hidden_size: int, hidden_act: str = "gelu"): super().__init__() self.pre_projection = nn.Sequential( OrderedDict( [ ("conv", nn.Conv2d(hidden_size, hidden_size, kernel_size=1)), ("act", ACT2FN[hidden_act]), ] ) ) self.attention_layer = VanLargeKernelAttentionLayer(hidden_size) self.post_projection = nn.Conv2d(hidden_size, hidden_size, kernel_size=1) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: residual = hidden_state hidden_state = self.pre_projection(hidden_state) hidden_state = self.attention_layer(hidden_state) hidden_state = self.post_projection(hidden_state) hidden_state = hidden_state + residual return hidden_state class VanLayerScaling(nn.Module): """ Scales the inputs by a learnable parameter initialized by `initial_value`. """ def __init__(self, hidden_size: int, initial_value: float = 1e-2): super().__init__() self.weight = nn.Parameter(initial_value * torch.ones((hidden_size)), requires_grad=True) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: # unsqueezing for broadcasting hidden_state = self.weight.unsqueeze(-1).unsqueeze(-1) * hidden_state return hidden_state class VanLayer(nn.Module): """ Van layer composed by normalization layers, large kernel attention (LKA) and a multi layer perceptron (MLP). """ def __init__( self, config: VanConfig, hidden_size: int, mlp_ratio: int = 4, drop_path_rate: float = 0.5, ): super().__init__() self.drop_path = VanDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.pre_normomalization = nn.BatchNorm2d(hidden_size) self.attention = VanSpatialAttentionLayer(hidden_size, config.hidden_act) self.attention_scaling = VanLayerScaling(hidden_size, config.layer_scale_init_value) self.post_normalization = nn.BatchNorm2d(hidden_size) self.mlp = VanMlpLayer( hidden_size, hidden_size * mlp_ratio, hidden_size, config.hidden_act, config.dropout_rate ) self.mlp_scaling = VanLayerScaling(hidden_size, config.layer_scale_init_value) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: residual = hidden_state # attention hidden_state = self.pre_normomalization(hidden_state) hidden_state = self.attention(hidden_state) hidden_state = self.attention_scaling(hidden_state) hidden_state = self.drop_path(hidden_state) # residual connection hidden_state = residual + hidden_state residual = hidden_state # mlp hidden_state = self.post_normalization(hidden_state) hidden_state = self.mlp(hidden_state) hidden_state = self.mlp_scaling(hidden_state) hidden_state = self.drop_path(hidden_state) # residual connection hidden_state = residual + hidden_state return hidden_state class VanStage(nn.Module): """ VanStage, consisting of multiple layers. """ def __init__( self, config: VanConfig, in_channels: int, hidden_size: int, patch_size: int, stride: int, depth: int, mlp_ratio: int = 4, drop_path_rate: float = 0.0, ): super().__init__() self.embeddings = VanOverlappingPatchEmbedder(in_channels, hidden_size, patch_size, stride) self.layers = nn.Sequential( *[ VanLayer( config, hidden_size, mlp_ratio=mlp_ratio, drop_path_rate=drop_path_rate, ) for _ in range(depth) ] ) self.normalization = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: hidden_state = self.embeddings(hidden_state) hidden_state = self.layers(hidden_state) # rearrange b c h w -> b (h w) c batch_size, hidden_size, height, width = hidden_state.shape hidden_state = hidden_state.flatten(2).transpose(1, 2) hidden_state = self.normalization(hidden_state) # rearrange b (h w) c- > b c h w hidden_state = hidden_state.view(batch_size, height, width, hidden_size).permute(0, 3, 1, 2) return hidden_state class VanEncoder(nn.Module): """ VanEncoder, consisting of multiple stages. """ def __init__(self, config: VanConfig): super().__init__() self.stages = nn.ModuleList([]) patch_sizes = config.patch_sizes strides = config.strides hidden_sizes = config.hidden_sizes depths = config.depths mlp_ratios = config.mlp_ratios drop_path_rates = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] for num_stage, (patch_size, stride, hidden_size, depth, mlp_expantion, drop_path_rate) in enumerate( zip(patch_sizes, strides, hidden_sizes, depths, mlp_ratios, drop_path_rates) ): is_first_stage = num_stage == 0 in_channels = hidden_sizes[num_stage - 1] if is_first_stage: in_channels = config.num_channels self.stages.append( VanStage( config, in_channels, hidden_size, patch_size=patch_size, stride=stride, depth=depth, mlp_ratio=mlp_expantion, drop_path_rate=drop_path_rate, ) ) def forward( self, hidden_state: torch.Tensor, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for _, stage_module in enumerate(self.stages): hidden_state = stage_module(hidden_state) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=all_hidden_states) class VanPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = VanConfig base_model_prefix = "van" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): nn.init.trunc_normal_(module.weight, std=self.config.initializer_range) if isinstance(module, nn.Linear) and module.bias is not None: nn.init.constant_(module.bias, 0) elif isinstance(module, nn.LayerNorm): nn.init.constant_(module.bias, 0) nn.init.constant_(module.weight, 1.0) elif isinstance(module, nn.Conv2d): fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels fan_out //= module.groups module.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if module.bias is not None: module.bias.data.zero_() VAN_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`VanConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VAN_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all stages. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare VAN model outputting raw features without any specific head on top. Note, VAN does not have an embedding" " layer.", VAN_START_DOCSTRING, ) class VanModel(VanPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.encoder = VanEncoder(config) # final layernorm layer self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VAN_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.FloatTensor], output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] # global average pooling, n c w h -> n c pooled_output = last_hidden_state.mean(dim=[-2, -1]) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ VAN Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, VAN_START_DOCSTRING, ) class VanForImageClassification(VanPreTrainedModel): def __init__(self, config): super().__init__(config) self.van = VanModel(config) # Classifier head self.classifier = ( nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VAN_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.van(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.config.num_labels == 1: self.config.problem_type = "regression" elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.config.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/van/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_van"] = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/van/configuration_van.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ VAN model configuration""" from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) from .._archive_maps import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class VanConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`VanModel`]. It is used to instantiate a VAN model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VAN [Visual-Attention-Network/van-base](https://huggingface.co/Visual-Attention-Network/van-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. num_channels (`int`, *optional*, defaults to 3): The number of input channels. patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`): Patch size to use in each stage's embedding layer. strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`): Stride size to use in each stage's embedding layer to downsample the input. hidden_sizes (`List[int]`, *optional*, defaults to `[64, 128, 320, 512]`): Dimensionality (hidden size) at each stage. depths (`List[int]`, *optional*, defaults to `[3, 3, 12, 3]`): Depth (number of layers) for each stage. mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`): The expansion ratio for mlp layer at each stage. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in each layer. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. layer_scale_init_value (`float`, *optional*, defaults to 0.01): The initial value for layer scaling. drop_path_rate (`float`, *optional*, defaults to 0.0): The dropout probability for stochastic depth. dropout_rate (`float`, *optional*, defaults to 0.0): The dropout probability for dropout. Example: ```python >>> from transformers import VanModel, VanConfig >>> # Initializing a VAN van-base style configuration >>> configuration = VanConfig() >>> # Initializing a model from the van-base style configuration >>> model = VanModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "van" def __init__( self, image_size=224, num_channels=3, patch_sizes=[7, 3, 3, 3], strides=[4, 2, 2, 2], hidden_sizes=[64, 128, 320, 512], depths=[3, 3, 12, 3], mlp_ratios=[8, 8, 4, 4], hidden_act="gelu", initializer_range=0.02, layer_norm_eps=1e-6, layer_scale_init_value=1e-2, drop_path_rate=0.0, dropout_rate=0.0, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.num_channels = num_channels self.patch_sizes = patch_sizes self.strides = strides self.hidden_sizes = hidden_sizes self.depths = depths self.mlp_ratios = mlp_ratios self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.layer_scale_init_value = layer_scale_init_value self.drop_path_rate = drop_path_rate self.dropout_rate = dropout_rate
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/transfo_xl/modeling_transfo_xl_utilities.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utilities for PyTorch Transformer XL model. Directly adapted from https://github.com/kimiyoung/transformer-xl. """ import torch from torch import nn # CUDA_MAJOR = int(torch.version.cuda.split('.')[0]) # CUDA_MINOR = int(torch.version.cuda.split('.')[1]) class ProjectedAdaptiveLogSoftmax(nn.Module): def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, keep_order=False): super().__init__() self.n_token = n_token self.d_embed = d_embed self.d_proj = d_proj self.cutoffs = cutoffs + [n_token] self.cutoff_ends = [0] + self.cutoffs self.div_val = div_val self.shortlist_size = self.cutoffs[0] self.n_clusters = len(self.cutoffs) - 1 self.head_size = self.shortlist_size + self.n_clusters if self.n_clusters > 0: self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed)) self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters)) self.out_layers = nn.ModuleList() self.out_projs = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) else: self.out_projs.append(None) self.out_layers.append(nn.Linear(d_embed, n_token)) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i))) self.out_layers.append(nn.Linear(d_emb_i, r_idx - l_idx)) self.keep_order = keep_order def _compute_logit(self, hidden, weight, bias, proj): if proj is None: logit = nn.functional.linear(hidden, weight, bias=bias) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: proj_hid = nn.functional.linear(hidden, proj.t().contiguous()) logit = nn.functional.linear(proj_hid, weight, bias=bias) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def forward(self, hidden, labels=None, keep_order=False): """ Params: hidden :: [len*bsz x d_proj] labels :: [len*bsz] Return: if labels is None: out :: [len*bsz x n_tokens] log probabilities of tokens over the vocabulary else: out :: [(len-1)*bsz] Negative log likelihood. We could replace this implementation by the native PyTorch one if theirs had an option to set bias on all clusters in the native one. here: https://github.com/pytorch/pytorch/blob/dbe6a7a9ff1a364a8706bf5df58a1ca96d2fd9da/torch/nn/modules/adaptive.py#L138 """ if labels is not None: # Shift so that tokens < n predict n hidden = hidden[..., :-1, :].contiguous() labels = labels[..., 1:].contiguous() hidden = hidden.view(-1, hidden.size(-1)) labels = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("Input and labels should have the same size in the batch dimension.") else: hidden = hidden.view(-1, hidden.size(-1)) if self.n_clusters == 0: logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0]) if labels is not None: mask = labels != -100 out = torch.zeros_like(labels, dtype=hidden.dtype, device=hidden.device) out[mask] = ( -nn.functional.log_softmax(logit, dim=-1)[mask].gather(1, labels[mask].unsqueeze(1)).squeeze(1) ) else: out = nn.functional.log_softmax(logit, dim=-1) else: # construct weights and biases weights, biases = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] weight_i = self.out_layers[0].weight[l_idx:r_idx] bias_i = self.out_layers[0].bias[l_idx:r_idx] else: weight_i = self.out_layers[i].weight bias_i = self.out_layers[i].bias if i == 0: weight_i = torch.cat([weight_i, self.cluster_weight], dim=0) bias_i = torch.cat([bias_i, self.cluster_bias], dim=0) weights.append(weight_i) biases.append(bias_i) head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0] head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) head_logprob = nn.functional.log_softmax(head_logit, dim=1) if labels is None: out = hidden.new_empty((head_logit.size(0), self.n_token)) else: out = torch.zeros_like(labels, dtype=hidden.dtype, device=hidden.device) offset = 0 cutoff_values = [0] + self.cutoffs for i in range(len(cutoff_values) - 1): l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1] if labels is not None: mask_i = (labels >= l_idx) & (labels < r_idx) indices_i = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue target_i = labels.index_select(0, indices_i) - l_idx head_logprob_i = head_logprob.index_select(0, indices_i) hidden_i = hidden.index_select(0, indices_i) else: hidden_i = hidden if i == 0: if labels is not None: logprob_i = head_logprob_i.gather(1, target_i[:, None]).squeeze(1) else: out[:, : self.cutoffs[0]] = head_logprob[:, : self.cutoffs[0]] else: weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i] tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i) tail_logprob_i = nn.functional.log_softmax(tail_logit_i, dim=1) cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: logprob_i = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1, target_i[:, None] ).squeeze(1) else: logprob_i = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i out[:, l_idx:r_idx] = logprob_i if labels is not None: if (hasattr(self, "keep_order") and self.keep_order) or keep_order: out.index_copy_(0, indices_i, -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def log_prob(self, hidden): r""" Computes log probabilities for all \\(n\_classes\\) From: https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/adaptive.p Args: hidden (Tensor): a minibatch of example Returns: log-probabilities of for each class \\(c\\) in range \\(0 <= c <= n\_classes\\), where \\(n\_classes\\) is a parameter passed to `AdaptiveLogSoftmaxWithLoss` constructor. Shape: - Input: \\((N, in\_features)\\) - Output: \\((N, n\_classes)\\) """ if self.n_clusters == 0: logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0]) return nn.functional.log_softmax(logit, dim=-1) else: # construct weights and biases weights, biases = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] weight_i = self.out_layers[0].weight[l_idx:r_idx] bias_i = self.out_layers[0].bias[l_idx:r_idx] else: weight_i = self.out_layers[i].weight bias_i = self.out_layers[i].bias if i == 0: weight_i = torch.cat([weight_i, self.cluster_weight], dim=0) bias_i = torch.cat([bias_i, self.cluster_bias], dim=0) weights.append(weight_i) biases.append(bias_i) head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0] head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) out = hidden.new_empty((head_logit.size(0), self.n_token)) head_logprob = nn.functional.log_softmax(head_logit, dim=1) cutoff_values = [0] + self.cutoffs for i in range(len(cutoff_values) - 1): start_idx, stop_idx = cutoff_values[i], cutoff_values[i + 1] if i == 0: out[:, : self.cutoffs[0]] = head_logprob[:, : self.cutoffs[0]] else: weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i] tail_logit_i = self._compute_logit(hidden, weight_i, bias_i, proj_i) tail_logprob_i = nn.functional.log_softmax(tail_logit_i, dim=1) logprob_i = head_logprob[:, -i] + tail_logprob_i out[:, start_idx, stop_idx] = logprob_i return out
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/transfo_xl/convert_transfo_xl_original_tf_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Transformer XL checkpoint and datasets.""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.deprecated.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.deprecated.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 data_utils.Vocab = data_utils.TransfoXLTokenizer data_utils.Corpus = data_utils.TransfoXLCorpus sys.modules["data_utils"] = data_utils sys.modules["vocabulary"] = data_utils def convert_transfo_xl_checkpoint_to_pytorch( tf_checkpoint_path, transfo_xl_config_file, pytorch_dump_folder_path, transfo_xl_dataset_file ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(transfo_xl_dataset_file, "rb") as fp: corpus = pickle.load(fp, encoding="latin1") # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) pytorch_vocab_dump_path = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(f"Save vocabulary to {pytorch_vocab_dump_path}") corpus_vocab_dict = corpus.vocab.__dict__ torch.save(corpus_vocab_dict, pytorch_vocab_dump_path) corpus_dict_no_vocab = corpus.__dict__ corpus_dict_no_vocab.pop("vocab", None) pytorch_dataset_dump_path = pytorch_dump_folder_path + "/" + CORPUS_NAME print(f"Save dataset to {pytorch_dataset_dump_path}") torch.save(corpus_dict_no_vocab, pytorch_dataset_dump_path) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model config_path = os.path.abspath(transfo_xl_config_file) tf_path = os.path.abspath(tf_checkpoint_path) print(f"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.") # Initialise PyTorch model if transfo_xl_config_file == "": config = TransfoXLConfig() else: config = TransfoXLConfig.from_json_file(transfo_xl_config_file) print(f"Building PyTorch model from configuration: {config}") model = TransfoXLLMHeadModel(config) model = load_tf_weights_in_transfo_xl(model, config, tf_path) # Save pytorch-model pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME) pytorch_config_dump_path = os.path.join(pytorch_dump_folder_path, CONFIG_NAME) print(f"Save PyTorch model to {os.path.abspath(pytorch_weights_dump_path)}") torch.save(model.state_dict(), pytorch_weights_dump_path) print(f"Save configuration file to {os.path.abspath(pytorch_config_dump_path)}") with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: f.write(config.to_json_string()) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) args = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/transfo_xl/tokenization_transfo_xl.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for Transformer XL model. Adapted from https://github.com/kimiyoung/transformer-xl. """ import glob import os import pickle import re from collections import Counter, OrderedDict from typing import List, Optional, Tuple import numpy as np from ....tokenization_utils import PreTrainedTokenizer from ....utils import ( cached_file, is_sacremoses_available, is_torch_available, logging, requires_backends, strtobool, torch_only_method, ) if is_sacremoses_available(): import sacremoses as sm if is_torch_available(): import torch logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "pretrained_vocab_file": "vocab.pkl", "pretrained_vocab_file_torch": "vocab.bin", "vocab_file": "vocab.txt", } PRETRAINED_CORPUS_ARCHIVE_MAP = { "transfo-xl/transfo-xl-wt103": "https://huggingface.co/transfo-xl/transfo-xl-wt103/resolve/main/corpus.bin", } CORPUS_NAME = "corpus.bin" MATCH_NUMBERS = r"(?<=\d)[,.](?=\d)", r" @\g<0>@ " DETOKENIZE_NUMBERS = [(r" @\,@ ", r","), (r" @\.@ ", r".")] def tokenize_numbers(text_array: List[str]) -> List[str]: """ Splits large comma-separated numbers and floating point values. This is done by replacing commas with ' @,@ ' and dots with ' @.@ '. Args: text_array: An already tokenized text as list. Returns: A list of strings with tokenized numbers. Example: ```python >>> tokenize_numbers(["$", "5,000", "1.73", "m"]) ['$', '5', '@,@', '000', '1', '@.@', '73', 'm'] ```""" tokenized = [] for i in range(len(text_array)): reg, sub = MATCH_NUMBERS replaced = re.sub(reg, sub, text_array[i]).split() tokenized.extend(replaced) return tokenized def detokenize_numbers(text: str) -> str: """ Inverts the operation of *tokenize_numbers*. This is replacing ' @,@ ' and ' @.@' by ',' and '.'. Args: text: A string where the number should be detokenized. Returns: A detokenized string. Example: ```python >>> detokenize_numbers("$ 5 @,@ 000 1 @.@ 73 m") '$ 5,000 1.73 m' ```""" for reg, sub in DETOKENIZE_NUMBERS: text = re.sub(reg, sub, text) return text class TransfoXLTokenizer(PreTrainedTokenizer): """ Construct a Transformer-XL tokenizer adapted from Vocab class in [the original code](https://github.com/kimiyoung/transformer-xl). The Transformer-XL tokenizer is a word-level tokenizer (no sub-word tokenization). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: special (`List[str]`, *optional*): A list of special tokens (to be treated by the original implementation of this tokenizer). min_freq (`int`, *optional*, defaults to 0): The minimum number of times a token has to be present in order to be kept in the vocabulary (otherwise it will be mapped to `unk_token`). max_size (`int`, *optional*): The maximum size of the vocabulary. If left unset, it will default to the size of the vocabulary found after excluding the tokens according to the `min_freq` rule. lower_case (`bool`, *optional*, defaults to `False`): Whether or not to lowercase the input when tokenizing. delimiter (`str`, *optional*): The delimiter used between tokens. vocab_file (`str`, *optional*): File containing the vocabulary (from the original implementation). pretrained_vocab_file (`str`, *optional*): File containing the vocabulary as saved with the `save_pretrained()` method. never_split (`List[str]`, *optional*): List of tokens that should never be split. If no list is specified, will simply use the existing special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. eos_token (`str`, *optional*, defaults to `"<eos>"`): The end of sequence token. additional_special_tokens (`List[str]`, *optional*, defaults to `['<formula>']`): A list of additional special tokens (for the HuggingFace functionality). language (`str`, *optional*, defaults to `"en"`): The language of this tokenizer (used for mose preprocessing). """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids"] def __init__( self, special=None, min_freq=0, max_size=None, lower_case=False, delimiter=None, vocab_file=None, pretrained_vocab_file: str = None, never_split=None, unk_token="<unk>", eos_token="<eos>", additional_special_tokens=["<formula>"], language="en", **kwargs, ): logger.error( "`TransfoXL` was deprecated due to security issues linked to `pickle.load` in `TransfoXLTokenizer`. " "See more details on this model's documentation page: " "`https://github.com/huggingface/transformers/blob/main/docs/source/en/model_doc/transfo-xl.md`." ) requires_backends(self, "sacremoses") if special is None: special = [] self.counter = Counter() self.special = special self.min_freq = min_freq self.max_size = max_size self.lower_case = lower_case self.delimiter = delimiter self.vocab_file = vocab_file self.punctuation_symbols = '!"#$%&()*+,-./\\:;<=>?@[\\]^_`{|}~' self.punction_without_space_before_pattern = re.compile(rf"[^\s][{self.punctuation_symbols}]") self.punctuation_with_space_around_pattern = self._compile_space_around_punctuation_pattern() self.language = language self.moses_punct_normalizer = sm.MosesPunctNormalizer(language) self.moses_tokenizer = sm.MosesTokenizer(language) self.moses_detokenizer = sm.MosesDetokenizer(language) self.idx2sym = [] self.sym2idx = OrderedDict() # This try... catch... is not beautiful but honestly this tokenizer was not made to be used # in a library like ours, at all. try: vocab_dict = None if pretrained_vocab_file is not None: # Priority on pickle files (support PyTorch and TF) if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")): raise ValueError( "This part uses `pickle.load` which is insecure and will execute arbitrary code that is " "potentially malicious. It's recommended to never unpickle data that could have come from an " "untrusted source, or that could have been tampered with. If you already verified the pickle " "data and decided to use it, you can set the environment variable " "`TRUST_REMOTE_CODE` to `True` to allow it." ) with open(pretrained_vocab_file, "rb") as f: vocab_dict = pickle.load(f) # Loading a torch-saved transfo-xl vocab dict with pickle results in an integer # Entering this if statement means that we tried to load a torch-saved file with pickle, and we failed. # We therefore load it with torch, if it's available. if isinstance(vocab_dict, int): if not is_torch_available(): raise ImportError( "Not trying to load dict with PyTorch as you need to install pytorch to load " "from a PyTorch pretrained vocabulary, " "or activate it with environment variables USE_TORCH=1 and USE_TF=0." ) vocab_dict = torch.load(pretrained_vocab_file) if vocab_dict is not None: for key, value in vocab_dict.items(): if key not in self.__dict__ or key in ["sym2idx", "idx2sym"]: self.__dict__[key] = value elif vocab_file is not None: self.build_vocab() except Exception as e: raise ValueError( f"Unable to parse file {pretrained_vocab_file}. Unknown format. " "If you tried to load a model saved through TransfoXLTokenizerFast, " "please note they are not compatible." ) from e if vocab_file is not None: self.build_vocab() super().__init__( special=special, min_freq=min_freq, max_size=max_size, lower_case=lower_case, delimiter=delimiter, vocab_file=vocab_file, pretrained_vocab_file=pretrained_vocab_file, never_split=never_split, unk_token=unk_token, eos_token=eos_token, additional_special_tokens=additional_special_tokens, language=language, **kwargs, ) # these are not required to initialize the parent class as only used when tokenizing. if never_split is None: never_split = self.all_special_tokens self.never_split = never_split @property def do_lower_case(self): return self.lower_case def _compile_space_around_punctuation_pattern(self): look_ahead_for_special_token = f"(?=[{self.punctuation_symbols}])" look_ahead_to_match_all_except_space = r"(?=[^\s])" return re.compile(r"" + look_ahead_for_special_token + look_ahead_to_match_all_except_space) def count_file(self, path, verbose=False, add_eos=False): if verbose: logger.info(f"counting file {path} ...") assert os.path.exists(path), f"Input file {path} not found" sents = [] with open(path, "r", encoding="utf-8") as f: for idx, line in enumerate(f): if verbose and idx > 0 and idx % 500000 == 0: logger.info(f" line {idx}") symbols = self.tokenize(line, add_eos=add_eos) self.counter.update(symbols) sents.append(symbols) return sents def count_sents(self, sents, verbose=False): """ sents : a list of sentences, each a list of tokenized symbols """ if verbose: logger.info(f"counting {len(sents)} sents ...") for idx, symbols in enumerate(sents): if verbose and idx > 0 and idx % 500000 == 0: logger.info(f" line {idx}") self.counter.update(symbols) def _build_from_file(self, vocab_file): self.idx2sym = [] self.sym2idx = OrderedDict() with open(vocab_file, "r", encoding="utf-8") as f: for line in f: symb = line.strip().split()[0] self.add_symbol(symb) if "<UNK>" in self.sym2idx: self.unk_idx = self.sym2idx["<UNK>"] elif "<unk>" in self.sym2idx: self.unk_idx = self.sym2idx["<unk>"] else: raise ValueError("Token not in vocabulary and no <unk> token in vocabulary for replacement.") def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["pretrained_vocab_file"], ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "wb") as f: pickle.dump(self.__dict__, f) return (vocab_file,) def build_vocab(self): if self.vocab_file: logger.info(f"building vocab from {self.vocab_file}") self._build_from_file(self.vocab_file) logger.info(f"Final vocab size {len(self.sym2idx)}") else: logger.info(f"building vocab with min_freq={self.min_freq}, max_size={self.max_size}") self.idx2sym = [] self.sym2idx = OrderedDict() for sym in self.special: self.add_special(sym) for sym, cnt in self.counter.most_common(self.max_size): if cnt < self.min_freq: break self.add_symbol(sym) logger.info(f"Final vocab size {len(self.sym2idx)} from {len(self.counter)} unique tokens") @torch_only_method def encode_file(self, path, ordered=False, verbose=False, add_eos=True, add_double_eos=False): if verbose: logger.info(f"encoding file {path} ...") assert os.path.exists(path), f"Output file {path} not found" encoded = [] with open(path, "r", encoding="utf-8") as f: for idx, line in enumerate(f): if verbose and idx > 0 and idx % 500000 == 0: logger.info(f" line {idx}") symbols = self.tokenize(line, add_eos=add_eos, add_double_eos=add_double_eos) encoded.append(self.convert_to_tensor(symbols)) if ordered: encoded = torch.cat(encoded) return encoded @torch_only_method def encode_sents(self, sents, ordered=False, verbose=False): if verbose: logger.info(f"encoding {len(sents)} sents ...") encoded = [] for idx, symbols in enumerate(sents): if verbose and idx > 0 and idx % 500000 == 0: logger.info(f" line {idx}") encoded.append(self.convert_to_tensor(symbols)) if ordered: encoded = torch.cat(encoded) return encoded def add_special(self, sym): if sym not in self.sym2idx: self.idx2sym.append(sym) self.sym2idx[sym] = len(self.idx2sym) - 1 setattr(self, f"{sym.strip('<>')}_idx", self.sym2idx[sym]) def add_symbol(self, sym): if sym not in self.sym2idx: self.idx2sym.append(sym) self.sym2idx[sym] = len(self.idx2sym) - 1 def move_added_token(self, token: str, target_idx: int): """ Moves an added token to a specific position in the vocab. This method should be used when resizing an embedding layer other than the last one in the `AdaptiveEmbedding` in order to move the token in the tokenizer from the default position (at the very end) to the desired one. Args: token: The token to move to a specific position in the vocab. target_idx: The position where the token should be moved to. """ assert token in self.added_tokens_encoder, "Token which should be moved has to be an added token" assert token not in self.idx2sym, "Token which should be moved is already in vocab" # Insert sym into vocab self.idx2sym.insert(target_idx, token) self.sym2idx[token] = target_idx # Shift following indices in sym2idx for idx in range(target_idx + 1, len(self.idx2sym)): current_sym = self.idx2sym[idx] self.sym2idx[current_sym] = idx # Delete token from added_tokens old_index = self._added_tokens_encoder.pop(token) self._added_tokens_decoder.pop(old_index) def moses_punct_norm(self, text): return self.moses_punct_normalizer.normalize(text) def moses_tokenize(self, text): return self.moses_tokenizer.tokenize( text, aggressive_dash_splits=True, return_str=False, escape=False, protected_patterns=self.never_split ) def moses_pipeline(self, text: str) -> List[str]: """ Does basic tokenization using [`sacremoses.MosesPunctNormalizer`] and [`sacremoses.MosesTokenizer`] with *aggressive_dash_splits=True* (see [`sacremoses.tokenize.MosesTokenizer.tokenize`]). Additionally, large comma-separated numbers and floating point values are split. E.g. "23,000 people are 1.80m tall" -> "23 @,@ 000 people are 1 @.@ 80m tall" Args: text: Text to be tokenize Returns: A list of tokenized string Example: ```python >>> tokenizer = TransfoXLTokenizer.from_pretrained("transfo-xl/transfo-xl-wt103") >>> tokenizer.moses_pipeline("23,000 people are 1.80 m tall") ['23', '@,@', '000', 'people', 'are', '1', '@.@', '80', 'm', 'tall'] ```""" text = self.moses_punct_norm(text) text = self.moses_tokenize(text) text = tokenize_numbers(text) return text def _convert_id_to_token(self, idx): """Converts an id in a token (BPE) using the vocab.""" assert 0 <= idx < len(self), f"Index {idx} out of vocabulary range" return self.idx2sym[idx] def _convert_token_to_id(self, sym): """Converts a token (str) in an id using the vocab.""" if sym in self.sym2idx: return self.sym2idx[sym] else: # logger.info(f'encounter unk {sym}') # assert '<eos>' not in sym if hasattr(self, "unk_idx"): return self.sym2idx.get(sym, self.unk_idx) # Backward compatibility with pre-trained models elif "<unk>" in self.sym2idx: return self.sym2idx["<unk>"] elif "<UNK>" in self.sym2idx: return self.sym2idx["<UNK>"] else: raise ValueError("Token not in vocabulary and no <unk> token in vocabulary for replacement.") def convert_tokens_to_string(self, tokens): """ Converts a sequence of tokens (string) in a single string. Additionally, the split numbers are converted back into it's original form. """ out_string = self.moses_detokenizer.detokenize(tokens) return detokenize_numbers(out_string).strip() @torch_only_method def convert_to_tensor(self, symbols): return torch.LongTensor(self.convert_tokens_to_ids(symbols)) @property def vocab_size(self): return len(self.idx2sym) def get_vocab(self): vocab = self.sym2idx.copy() vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, line, add_eos=False, add_double_eos=False): line = line.strip() # convert to lower case if self.lower_case: line = line.lower() # empty delimiter '' will evaluate False if self.delimiter == "": symbols = line else: symbols = self.moses_pipeline(line) if add_double_eos: # lm1b return ["<S>"] + symbols + ["<S>"] elif add_eos: return symbols + ["<eos>"] else: return symbols class LMOrderedIterator(object): def __init__(self, data, bsz, bptt, device="cpu", ext_len=None): """ data -- LongTensor -- the LongTensor is strictly ordered """ self.bsz = bsz self.bptt = bptt self.ext_len = ext_len if ext_len is not None else 0 self.device = device # Work out how cleanly we can divide the dataset into bsz parts. self.n_step = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, self.n_step * bsz) # Evenly divide the data across the bsz batches. self.data = data.view(bsz, -1).t().contiguous().to(device) # Number of mini-batches self.n_batch = (self.n_step + self.bptt - 1) // self.bptt def get_batch(self, i, bptt=None): if bptt is None: bptt = self.bptt seq_len = min(bptt, self.data.size(0) - 1 - i) end_idx = i + seq_len beg_idx = max(0, i - self.ext_len) data = self.data[beg_idx:end_idx] target = self.data[i + 1 : i + 1 + seq_len] data_out = data.transpose(0, 1).contiguous().to(self.device) target_out = target.transpose(0, 1).contiguous().to(self.device) return data_out, target_out, seq_len def get_fixlen_iter(self, start=0): for i in range(start, self.data.size(0) - 1, self.bptt): yield self.get_batch(i) def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3): max_len = self.bptt + max_deviation * std i = start while True: bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2.0 bptt = min(max_len, max(min_len, int(np.random.normal(bptt, std)))) data, target, seq_len = self.get_batch(i, bptt) i += seq_len yield data, target, seq_len if i >= self.data.size(0) - 2: break def __iter__(self): return self.get_fixlen_iter() class LMShuffledIterator(object): def __init__(self, data, bsz, bptt, device="cpu", ext_len=None, shuffle=False): """ data -- list[LongTensor] -- there is no order among the LongTensors """ self.data = data self.bsz = bsz self.bptt = bptt self.ext_len = ext_len if ext_len is not None else 0 self.device = device self.shuffle = shuffle def get_sent_stream(self): # index iterator epoch_indices = np.random.permutation(len(self.data)) if self.shuffle else np.array(range(len(self.data))) # sentence iterator for idx in epoch_indices: yield self.data[idx] @torch_only_method def stream_iterator(self, sent_stream): # streams for each data in the batch streams = [None] * self.bsz data = torch.LongTensor(self.bptt, self.bsz) target = torch.LongTensor(self.bptt, self.bsz) n_retain = 0 while True: # data : [n_retain+bptt x bsz] # target : [bptt x bsz] data[n_retain:].fill_(-1) target.fill_(-1) valid_batch = True for i in range(self.bsz): n_filled = 0 try: while n_filled < self.bptt: if streams[i] is None or len(streams[i]) <= 1: streams[i] = next(sent_stream) # number of new tokens to fill in n_new = min(len(streams[i]) - 1, self.bptt - n_filled) # first n_retain tokens are retained from last batch data[n_retain + n_filled : n_retain + n_filled + n_new, i] = streams[i][:n_new] target[n_filled : n_filled + n_new, i] = streams[i][1 : n_new + 1] streams[i] = streams[i][n_new:] n_filled += n_new except StopIteration: valid_batch = False break if not valid_batch: return data_out = data.transpose(0, 1).contiguous().to(self.device) target_out = target.transpose(0, 1).contiguous().to(self.device) yield data_out, target_out, self.bptt n_retain = min(data.size(0), self.ext_len) if n_retain > 0: data[:n_retain] = data[-n_retain:] data.resize_(n_retain + self.bptt, data.size(1)) def __iter__(self): # sent_stream is an iterator sent_stream = self.get_sent_stream() for batch in self.stream_iterator(sent_stream): yield batch class LMMultiFileIterator(LMShuffledIterator): def __init__(self, paths, vocab, bsz, bptt, device="cpu", ext_len=None, shuffle=False): self.paths = paths self.vocab = vocab self.bsz = bsz self.bptt = bptt self.ext_len = ext_len if ext_len is not None else 0 self.device = device self.shuffle = shuffle def get_sent_stream(self, path): sents = self.vocab.encode_file(path, add_double_eos=True) if self.shuffle: np.random.shuffle(sents) sent_stream = iter(sents) return sent_stream def __iter__(self): if self.shuffle: np.random.shuffle(self.paths) for path in self.paths: # sent_stream is an iterator sent_stream = self.get_sent_stream(path) for batch in self.stream_iterator(sent_stream): yield batch class TransfoXLCorpus(object): @classmethod @torch_only_method def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs): """ Instantiate a pre-processed corpus. """ vocab = TransfoXLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) is_local = os.path.isdir(pretrained_model_name_or_path) # redirect to the cache, if necessary try: resolved_corpus_file = cached_file(pretrained_model_name_or_path, CORPUS_NAME, cache_dir=cache_dir) except EnvironmentError: logger.error( f"Corpus '{pretrained_model_name_or_path}' was not found in corpus list" f" ({', '.join(PRETRAINED_CORPUS_ARCHIVE_MAP.keys())}. We assumed '{pretrained_model_name_or_path}'" f" was a path or url but couldn't find files {CORPUS_NAME} at this path or url." ) return None if is_local: logger.info(f"loading corpus file {resolved_corpus_file}") else: logger.info(f"loading corpus file {CORPUS_NAME} from cache at {resolved_corpus_file}") # Instantiate tokenizer. corpus = cls(*inputs, **kwargs) corpus_dict = torch.load(resolved_corpus_file) for key, value in corpus_dict.items(): corpus.__dict__[key] = value corpus.vocab = vocab if corpus.train is not None: corpus.train = torch.tensor(corpus.train, dtype=torch.long) if corpus.valid is not None: corpus.valid = torch.tensor(corpus.valid, dtype=torch.long) if corpus.test is not None: corpus.test = torch.tensor(corpus.test, dtype=torch.long) return corpus def __init__(self, *args, **kwargs): self.vocab = TransfoXLTokenizer(*args, **kwargs) self.dataset = None self.train = None self.valid = None self.test = None def build_corpus(self, path, dataset): self.dataset = dataset if self.dataset in ["ptb", "wt2", "enwik8", "text8"]: self.vocab.count_file(os.path.join(path, "train.txt")) self.vocab.count_file(os.path.join(path, "valid.txt")) self.vocab.count_file(os.path.join(path, "test.txt")) elif self.dataset == "wt103": self.vocab.count_file(os.path.join(path, "train.txt")) elif self.dataset == "lm1b": train_path_pattern = os.path.join( path, "1-billion-word-language-modeling-benchmark-r13output", "training-monolingual.tokenized.shuffled", "news.en-*", ) train_paths = glob.glob(train_path_pattern) # the vocab will load from file when build_vocab() is called self.vocab.build_vocab() if self.dataset in ["ptb", "wt2", "wt103"]: self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True) self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True) self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True) elif self.dataset in ["enwik8", "text8"]: self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True, add_eos=False) self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True, add_eos=False) self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True, add_eos=False) elif self.dataset == "lm1b": self.train = train_paths self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=False, add_double_eos=True) self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=False, add_double_eos=True) def get_iterator(self, split, *args, **kwargs): if split == "train": if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]: data_iter = LMOrderedIterator(self.train, *args, **kwargs) elif self.dataset == "lm1b": kwargs["shuffle"] = True data_iter = LMMultiFileIterator(self.train, self.vocab, *args, **kwargs) elif split in ["valid", "test"]: data = self.valid if split == "valid" else self.test if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]: data_iter = LMOrderedIterator(data, *args, **kwargs) elif self.dataset == "lm1b": data_iter = LMShuffledIterator(data, *args, **kwargs) else: data_iter = None raise ValueError(f"Split not recognized: {split}") return data_iter @torch_only_method def get_lm_corpus(datadir, dataset): fn = os.path.join(datadir, "cache.pt") fn_pickle = os.path.join(datadir, "cache.pkl") if os.path.exists(fn): logger.info("Loading cached dataset...") corpus = torch.load(fn_pickle) elif os.path.exists(fn): logger.info("Loading cached dataset from pickle...") if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")): raise ValueError( "This part uses `pickle.load` which is insecure and will execute arbitrary code that is potentially " "malicious. It's recommended to never unpickle data that could have come from an untrusted source, or " "that could have been tampered with. If you already verified the pickle data and decided to use it, " "you can set the environment variable `TRUST_REMOTE_CODE` to `True` to allow it." ) with open(fn, "rb") as fp: corpus = pickle.load(fp) else: logger.info(f"Producing dataset {dataset}...") kwargs = {} if dataset in ["wt103", "wt2"]: kwargs["special"] = ["<eos>"] kwargs["lower_case"] = False elif dataset == "ptb": kwargs["special"] = ["<eos>"] kwargs["lower_case"] = True elif dataset == "lm1b": kwargs["special"] = [] kwargs["lower_case"] = False kwargs["vocab_file"] = os.path.join(datadir, "1b_word_vocab.txt") elif dataset in ["enwik8", "text8"]: pass corpus = TransfoXLCorpus(datadir, dataset, **kwargs) torch.save(corpus, fn) return corpus
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/transfo_xl/configuration_transfo_xl.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Transformer XL configuration""" from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) from .._archive_maps import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class TransfoXLConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`TransfoXLModel`] or a [`TFTransfoXLModel`]. It is used to instantiate a Transformer-XL model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the TransfoXL [transfo-xl/transfo-xl-wt103](https://huggingface.co/transfo-xl/transfo-xl-wt103) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 267735): Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`TransfoXLModel`] or [`TFTransfoXLModel`]. cutoffs (`List[int]`, *optional*, defaults to `[20000, 40000, 200000]`): Cutoffs for the adaptive softmax. d_model (`int`, *optional*, defaults to 1024): Dimensionality of the model's hidden states. d_embed (`int`, *optional*, defaults to 1024): Dimensionality of the embeddings n_head (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. d_head (`int`, *optional*, defaults to 64): Dimensionality of the model's heads. d_inner (`int`, *optional*, defaults to 4096): Inner dimension in FF div_val (`int`, *optional*, defaults to 4): Divident value for adapative input and softmax pre_lnorm (`boolean`, *optional*, defaults to `False`): Whether or not to apply LayerNorm to the input instead of the output in the blocks. n_layer (`int`, *optional*, defaults to 18): Number of hidden layers in the Transformer encoder. mem_len (`int`, *optional*, defaults to 1600): Length of the retained previous heads. clamp_len (`int`, *optional*, defaults to 1000): Use the same pos embeddings after clamp_len. same_length (`boolean`, *optional*, defaults to `True`): Whether or not to use the same attn length for all tokens proj_share_all_but_first (`boolean`, *optional*, defaults to `True`): True to share all but first projs, False not to share. attn_type (`int`, *optional*, defaults to 0): Attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al. sample_softmax (`int`, *optional*, defaults to -1): Number of samples in the sampled softmax. adaptive (`boolean`, *optional*, defaults to `True`): Whether or not to use adaptive softmax. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. dropatt (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. untie_r (`boolean`, *optional*, defaults to `True`): Whether ot not to untie relative position biases. init (`str`, *optional*, defaults to `"normal"`): Parameter initializer to use. init_range (`float`, *optional*, defaults to 0.01): Parameters initialized by U(-init_range, init_range). proj_init_std (`float`, *optional*, defaults to 0.01): Parameters initialized by N(0, init_std) init_std (`float`, *optional*, defaults to 0.02): Parameters initialized by N(0, init_std) layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): The epsilon to use in the layer normalization layers eos_token_id (`int`, *optional*, defaults to 0): End of stream token id. Examples: ```python >>> from transformers import TransfoXLConfig, TransfoXLModel >>> # Initializing a Transformer XL configuration >>> configuration = TransfoXLConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = TransfoXLModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "transfo-xl" keys_to_ignore_at_inference = ["mems"] attribute_map = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=267735, cutoffs=[20000, 40000, 200000], d_model=1024, d_embed=1024, n_head=16, d_head=64, d_inner=4096, div_val=4, pre_lnorm=False, n_layer=18, mem_len=1600, clamp_len=1000, same_length=True, proj_share_all_but_first=True, attn_type=0, sample_softmax=-1, adaptive=True, dropout=0.1, dropatt=0.0, untie_r=True, init="normal", init_range=0.01, proj_init_std=0.01, init_std=0.02, layer_norm_epsilon=1e-5, eos_token_id=0, **kwargs, ): self.vocab_size = vocab_size self.cutoffs = [] self.cutoffs.extend(cutoffs) if proj_share_all_but_first: self.tie_projs = [False] + [True] * len(self.cutoffs) else: self.tie_projs = [False] + [False] * len(self.cutoffs) self.d_model = d_model self.d_embed = d_embed self.d_head = d_head self.d_inner = d_inner self.div_val = div_val self.pre_lnorm = pre_lnorm self.n_layer = n_layer self.n_head = n_head self.mem_len = mem_len self.same_length = same_length self.attn_type = attn_type self.clamp_len = clamp_len self.sample_softmax = sample_softmax self.adaptive = adaptive self.dropout = dropout self.dropatt = dropatt self.untie_r = untie_r self.init = init self.init_range = init_range self.proj_init_std = proj_init_std self.init_std = init_std self.layer_norm_epsilon = layer_norm_epsilon super().__init__(eos_token_id=eos_token_id, **kwargs) @property def max_position_embeddings(self): # Message copied from Transformer-XL documentation logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def max_position_embeddings(self, value): # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/transfo_xl/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _import_structure = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_transfo_xl"] = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_transfo_xl"] = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Transformer XL model. """ from __future__ import annotations from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ....modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ....tf_utils import shape_list, stable_softmax from ....utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_transfo_xl import TransfoXLConfig from .modeling_tf_transfo_xl_utilities import TFAdaptiveSoftmaxMask logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "transfo-xl/transfo-xl-wt103" _CONFIG_FOR_DOC = "TransfoXLConfig" from .._archive_maps import TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 class TFPositionalEmbedding(keras.layers.Layer): def __init__(self, demb, **kwargs): super().__init__(**kwargs) self.inv_freq = 1 / (10000 ** (tf.range(0, demb, 2.0) / demb)) def call(self, pos_seq, bsz=None): self.inv_freq = tf.cast(self.inv_freq, dtype=pos_seq.dtype) sinusoid_inp = tf.einsum("i,j->ij", pos_seq, self.inv_freq) pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1) if bsz is not None: return tf.tile(pos_emb[:, None, :], [1, bsz, 1]) else: return pos_emb[:, None, :] class TFPositionwiseFF(keras.layers.Layer): def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5, init_std=0.02, **kwargs): super().__init__(**kwargs) self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.layer_1 = keras.layers.Dense( d_inner, kernel_initializer=get_initializer(init_std), activation=tf.nn.relu, name="CoreNet_._0" ) self.drop_1 = keras.layers.Dropout(dropout) self.layer_2 = keras.layers.Dense(d_model, kernel_initializer=get_initializer(init_std), name="CoreNet_._3") self.drop_2 = keras.layers.Dropout(dropout) self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm") self.pre_lnorm = pre_lnorm def call(self, inp, training=False): if self.pre_lnorm: # layer normalization + positionwise feed-forward core_out = self.layer_norm(inp) core_out = self.layer_1(core_out) core_out = self.drop_1(core_out, training=training) core_out = self.layer_2(core_out) core_out = self.drop_2(core_out, training=training) # residual connection output = core_out + inp else: # positionwise feed-forward core_out = self.layer_1(inp) core_out = self.drop_1(core_out, training=training) core_out = self.layer_2(core_out) core_out = self.drop_2(core_out, training=training) # residual connection + layer normalization output = self.layer_norm(inp + core_out) return output class TFRelPartialLearnableMultiHeadAttn(keras.layers.Layer): def __init__( self, n_head, d_model, d_head, dropout, dropatt=0.0, pre_lnorm=False, r_r_bias=None, r_w_bias=None, layer_norm_epsilon=1e-5, init_std=0.02, output_attentions=False, **kwargs, ): super().__init__(**kwargs) self.n_head = n_head self.d_model = d_model self.d_head = d_head self.dropout = dropout self.output_attentions = output_attentions self.qkv_net = keras.layers.Dense( 3 * n_head * d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="qkv_net" ) self.drop = keras.layers.Dropout(dropout) self.dropatt = keras.layers.Dropout(dropatt) self.o_net = keras.layers.Dense( d_model, kernel_initializer=get_initializer(init_std), use_bias=False, name="o_net" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm") self.scale = 1 / (d_head**0.5) self.pre_lnorm = pre_lnorm if r_r_bias is not None and r_w_bias is not None: # Biases are shared self.r_r_bias = r_r_bias self.r_w_bias = r_w_bias else: self.r_r_bias = None self.r_w_bias = None self.r_net = keras.layers.Dense( self.n_head * self.d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="r_net" ) def build(self, input_shape): if self.r_r_bias is None or self.r_w_bias is None: # Biases are not shared self.r_r_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" ) self.r_w_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" ) super().build(input_shape) def _rel_shift(self, x): x_size = shape_list(x) x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]]) x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]]) x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1]) x = tf.reshape(x, x_size) return x def call(self, w, r, attn_mask, mems, head_mask, output_attentions, training=False): qlen, rlen, bsz = shape_list(w)[0], shape_list(r)[0], shape_list(w)[1] if mems is not None: mems = tf.cast(mems, dtype=w.dtype) cat = tf.concat([mems, w], 0) if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(cat)) else: w_heads = self.qkv_net(cat) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1) w_head_q = w_head_q[-qlen:] else: if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(w)) else: w_heads = self.qkv_net(w) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1) klen = shape_list(w_head_k)[0] w_head_q = tf.reshape(w_head_q, (qlen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head w_head_k = tf.reshape(w_head_k, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head w_head_v = tf.reshape(w_head_v, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head r_head_k = tf.reshape(r_head_k, (rlen, self.n_head, self.d_head)) # qlen x n_head x d_head # compute attention score rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head AC = tf.einsum("ibnd,jbnd->ijbn", rw_head_q, w_head_k) # qlen x klen x bsz x n_head rr_head_q = w_head_q + self.r_r_bias BD = tf.einsum("ibnd,jnd->ijbn", rr_head_q, r_head_k) # qlen x klen x bsz x n_head BD = self._rel_shift(BD) # [qlen x klen x bsz x n_head] attn_score = AC + BD attn_score = attn_score * self.scale # compute attention probability if attn_mask is not None: attn_mask_t = attn_mask[:, :, None, None] attn_mask_t = tf.cast(attn_mask_t, dtype=attn_score.dtype) attn_score = attn_score * (1.0 - attn_mask_t) - 1e30 * attn_mask_t # [qlen x klen x bsz x n_head] attn_prob = stable_softmax(attn_score, axis=1) attn_prob = self.dropatt(attn_prob, training=training) # Mask heads if we want to if head_mask is not None: attn_prob = attn_prob * head_mask # compute attention vector attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, w_head_v) # [qlen x bsz x n_head x d_head] attn_vec_sizes = shape_list(attn_vec) attn_vec = tf.reshape(attn_vec, (attn_vec_sizes[0], attn_vec_sizes[1], self.n_head * self.d_head)) # linear projection attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out, training=training) if self.pre_lnorm: # residual connection outputs = [w + attn_out] else: # residual connection + layer normalization outputs = [self.layer_norm(w + attn_out)] if output_attentions: outputs.append(attn_prob) return outputs class TFRelPartialLearnableDecoderLayer(keras.layers.Layer): def __init__( self, n_head, d_model, d_head, d_inner, dropout, dropatt=0.0, pre_lnorm=False, r_w_bias=None, r_r_bias=None, layer_norm_epsilon=1e-5, init_std=0.02, output_attentions=False, **kwargs, ): super().__init__(**kwargs) self.dec_attn = TFRelPartialLearnableMultiHeadAttn( n_head, d_model, d_head, dropout, dropatt=dropatt, pre_lnorm=pre_lnorm, r_w_bias=r_w_bias, r_r_bias=r_r_bias, init_std=init_std, layer_norm_epsilon=layer_norm_epsilon, output_attentions=output_attentions, name="dec_attn", ) self.pos_ff = TFPositionwiseFF( d_model, d_inner, dropout, pre_lnorm=pre_lnorm, init_std=init_std, layer_norm_epsilon=layer_norm_epsilon, name="pos_ff", ) def call(self, dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=False): attn_outputs = self.dec_attn(dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=training) ff_output = self.pos_ff(attn_outputs[0], training=training) outputs = [ff_output] + attn_outputs[1:] return outputs class TFTransfoEmbeddings(keras.layers.Layer): def __init__(self, vocab_size, emb_size, init_std, **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.emb_size = emb_size self.init_std = init_std def build(self, input_shape): self.weight = self.add_weight( shape=(self.vocab_size, self.emb_size), initializer=get_initializer(self.init_std), name="embeddings", ) super().build(input_shape) def call(self, inputs): return tf.gather(self.weight, inputs) class TFAdaptiveEmbedding(keras.layers.Layer): def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, init_std=0.02, sample_softmax=False, **kwargs): super().__init__(**kwargs) self.n_token = n_token self.d_embed = d_embed self.init_std = init_std self.cutoffs = cutoffs + [n_token] self.div_val = div_val self.d_proj = d_proj self.emb_scale = d_proj**0.5 self.cutoff_ends = [0] + self.cutoffs self.emb_layers = [] self.emb_projs = [] if div_val == 1: raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val**i) self.emb_layers.append( TFTransfoEmbeddings( r_idx - l_idx, d_emb_i, init_std, name=f"emb_layers_._{i}", ) ) def build(self, input_shape): for i in range(len(self.cutoffs)): d_emb_i = self.d_embed // (self.div_val**i) self.emb_projs.append( self.add_weight( shape=(d_emb_i, self.d_proj), initializer=get_initializer(self.init_std), trainable=True, name=f"emb_projs_._{i}", ) ) super().build(input_shape) def call(self, inp): if self.div_val == 1: raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint else: inp_flat = tf.reshape(inp, (-1,)) emb_flat = tf.zeros([shape_list(inp_flat)[0], self.d_proj]) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) inp_i = tf.boolean_mask(inp_flat, mask_i) - l_idx emb_i = self.emb_layers[i](inp_i) emb_i = tf.einsum("id,de->ie", emb_i, self.emb_projs[i]) mask_idx = tf.where(mask_i) scatter = tf.scatter_nd(mask_idx, emb_i, shape_list(emb_flat)) emb_flat = tf.cast(emb_flat, dtype=scatter.dtype) emb_flat += scatter embed_shape = shape_list(inp) + [self.d_proj] embed = tf.reshape(emb_flat, embed_shape) embed *= self.emb_scale return embed @keras_serializable class TFTransfoXLMainLayer(keras.layers.Layer): config_class = TransfoXLConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.return_dict = config.use_return_dict self.n_token = config.vocab_size self.d_embed = config.d_embed self.d_model = config.d_model self.n_head = config.n_head self.d_head = config.d_head self.untie_r = config.untie_r self.word_emb = TFAdaptiveEmbedding( config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val, init_std=config.init_std, name="word_emb", ) self.drop = keras.layers.Dropout(config.dropout) self.n_layer = config.n_layer self.mem_len = config.mem_len self.attn_type = config.attn_type self.layers = [] if config.attn_type == 0: # the default attention for i in range(config.n_layer): self.layers.append( TFRelPartialLearnableDecoderLayer( config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout, dropatt=config.dropatt, pre_lnorm=config.pre_lnorm, r_w_bias=None if self.untie_r else self.r_w_bias, r_r_bias=None if self.untie_r else self.r_r_bias, layer_norm_epsilon=config.layer_norm_epsilon, init_std=config.init_std, output_attentions=self.output_attentions, name=f"layers_._{i}", ) ) else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint self.same_length = config.same_length self.clamp_len = config.clamp_len if self.attn_type == 0: # default attention self.pos_emb = TFPositionalEmbedding(self.d_model, name="pos_emb") else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint def build(self, input_shape): if not self.untie_r: self.r_w_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" ) self.r_r_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" ) super().build(input_shape) def get_input_embeddings(self): return self.word_emb def set_input_embeddings(self, value): raise NotImplementedError def backward_compatible(self): self.sample_softmax = -1 def reset_memory_length(self, mem_len): self.mem_len = mem_len def _prune_heads(self, heads): raise NotImplementedError def init_mems(self, bsz): if self.mem_len > 0: mems = [] for i in range(self.n_layer): empty = tf.zeros([self.mem_len, bsz, self.d_model]) mems.append(empty) return mems else: return None def _update_mems(self, hids, mems, mlen, qlen): # does not deal with None if mems is None: return None # mems is not None assert len(hids) == len(mems), "len(hids) != len(mems)" # There are `mlen + qlen` steps that can be cached into mems new_mems = [] end_idx = mlen + tf.math.maximum(0, qlen) beg_idx = tf.math.maximum(0, end_idx - tf.convert_to_tensor(self.mem_len)) for i in range(len(hids)): mems[i] = tf.cast(mems[i], dtype=hids[i].dtype) cat = tf.concat([mems[i], hids[i]], axis=0) tf.stop_gradient(cat) new_mems.append(cat[beg_idx:end_idx]) return new_mems @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ): # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library # so we transpose here from shape [bsz, len] to shape [len, bsz] if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_ids = tf.transpose(input_ids, perm=(1, 0)) qlen, bsz = shape_list(input_ids) elif inputs_embeds is not None: inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2)) qlen, bsz = shape_list(inputs_embeds)[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if mems is None: mems = self.init_mems(bsz) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.n_layer if inputs_embeds is not None: word_emb = inputs_embeds else: word_emb = self.word_emb(input_ids) mlen = shape_list(mems[0])[0] if mems is not None else 0 klen = mlen + qlen # Compute decoder attention mask all_ones = tf.ones([qlen, klen], dtype=tf.int32) upper_mask = 1 - tf.linalg.band_part(tf.ones([qlen, klen], dtype=tf.int32), -1, mlen) if self.same_length: mask_len = klen - self.mem_len mask_shift_len = qlen - tf.nn.relu(mask_len) # Lazy clamping of negatives to zero # Use an indicator variable instead of a conditional to keep the compiler happy lower_mask = tf.linalg.band_part(all_ones, -1, 0) - ( tf.linalg.band_part(all_ones, mask_shift_len - 1, 0) * tf.cast(mask_shift_len != 0, tf.int32) ) dec_attn_mask = upper_mask + lower_mask else: dec_attn_mask = upper_mask hids = [] attentions = [] if output_attentions else None if self.attn_type == 0: # default pos_seq = tf.range(klen - 1, -1, -1.0) if self.clamp_len > 0: pos_seq = tf.minimum(pos_seq, self.clamp_len) pos_emb = self.pos_emb(pos_seq) core_out = self.drop(word_emb, training=training) pos_emb = self.drop(pos_emb, training=training) for i, layer in enumerate(self.layers): hids.append(core_out) mems_i = None if mems is None else mems[i] layer_outputs = layer( core_out, pos_emb, dec_attn_mask, mems_i, head_mask[i], output_attentions, training=training, ) core_out = layer_outputs[0] if output_attentions: attentions.append(layer_outputs[1]) else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint core_out = self.drop(core_out, training=training) new_mems = self._update_mems(hids, mems, mlen, qlen) # We transpose back here to shape [bsz, len, hidden_dim] core_out = tf.transpose(core_out, perm=(1, 0, 2)) if output_hidden_states: # Transpose to library standard shape [bsz, len, hidden_dim] and add last layer hids = tuple(tf.transpose(t, perm=(1, 0, 2)) for t in hids) hids = hids + (core_out,) else: hids = None if output_attentions: # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len] attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions) if not return_dict: return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None) return TFTransfoXLModelOutput( last_hidden_state=core_out, mems=new_mems, hidden_states=hids, attentions=attentions, ) class TFTransfoXLPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TransfoXLConfig base_model_prefix = "transformer" @dataclass class TFTransfoXLModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None mems: List[tf.Tensor] = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFTransfoXLLMHeadModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: losses (`tf.Tensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided): Language modeling losses (not reduced). prediction_scores (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ prediction_scores: tf.Tensor = None mems: List[tf.Tensor] = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFTransfoXLSequenceClassifierOutputWithPast(ModelOutput): """ Base class for outputs of sentence classification models. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None TRANSFO_XL_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`TransfoXLConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ TRANSFO_XL_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems given to this model should not be passed as `input_ids` as they have already been computed. head_mask (`tf.Tensor` or `Numpy array` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", TRANSFO_XL_START_DOCSTRING, ) class TFTransfoXLModel(TFTransfoXLPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFTransfoXLMainLayer(config, name="transformer") @unpack_inputs @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTransfoXLModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool = False, ) -> TFTransfoXLModelOutput | Tuple[tf.Tensor]: outputs = self.transformer( input_ids=input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings( """ The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive input embeddings) """, TRANSFO_XL_START_DOCSTRING, ) class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = TFTransfoXLMainLayer(config, name="transformer") self.sample_softmax = config.sample_softmax assert self.sample_softmax <= 0, ( "Sampling from the softmax is not implemented yet. Please look at issue: #3310:" " https://github.com/huggingface/transformers/issues/3310" ) self.crit = TFAdaptiveSoftmaxMask( config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val, name="crit" ) def _resize_token_embeddings(self, new_num_tokens): raise NotImplementedError() def get_output_embeddings(self): """Double-check if you are using adaptive softmax.""" if len(self.crit.out_layers) > 0: return self.crit.out_layers[-1] return None def reset_memory_length(self, mem_len): self.transformer.reset_memory_length(mem_len) def init_mems(self, bsz): return self.transformer.init_mems(bsz) @unpack_inputs @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTransfoXLLMHeadModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> TFTransfoXLLMHeadModelOutput | Tuple[tf.Tensor]: if input_ids is not None: bsz, tgt_len = shape_list(input_ids)[:2] else: bsz, tgt_len = shape_list(inputs_embeds)[:2] transformer_outputs = self.transformer( input_ids, mems, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict, training=training, ) last_hidden = transformer_outputs[0] pred_hid = last_hidden[:, -tgt_len:] softmax_output = self.crit(pred_hid, labels, training=training) prediction_scores = softmax_output if labels is None else () if not return_dict: return (prediction_scores,) + transformer_outputs[1:] return TFTransfoXLLMHeadModelOutput( prediction_scores=prediction_scores, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs): inputs = {} # if past is defined in model kwargs then use it for faster decoding if past_key_values: input_ids = tf.expand_dims(input_ids[:, -1], axis=-1) else: input_ids = input_ids return inputs # Adapted from the torch tie_weights function def tf_to_pt_weight_rename(self, tf_weight): if self.config.tie_word_embeddings and "crit.out_layers" in tf_weight: return tf_weight, tf_weight.replace("crit.out_layers", "transformer.word_emb.emb_layers") elif self.config.tie_projs and "crit.out_projs" in tf_weight: for i, tie_proj in enumerate(self.config.tie_projs): if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed: # self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0] return tf_weight, tf_weight.replace(f"crit.out_projs.{i}", "transformer.word_emb.emb_projs.0") elif tie_proj and self.config.div_val != 1: # self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i] return tf_weight, tf_weight.replace("crit.out_projs", "transformer.word_emb.emb_projs") else: return (tf_weight,) @add_start_docstrings( """ The Transfo XL Model transformer with a sequence classification head on top (linear layer). [`TFTransfoXLForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1,GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, TRANSFO_XL_START_DOCSTRING, ) class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.score = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.init_range), name="score", use_bias=False, ) self.transformer = TFTransfoXLMainLayer(config, name="transformer") def get_output_embeddings(self): # Remove after transformers v4.32. Fix this model's `test_model_common_attributes` test too. logger.warning( "Sequence classification models do not have output embeddings. `.get_output_embeddings` will be removed " "in transformers v4.32." ) return self.transformer.word_emb @unpack_inputs @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTransfoXLSequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) in_logits = None if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = ( tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1) - 1 ) sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1) in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) loss = None if labels is not None: if input_ids is not None: batch_size, sequence_length = shape_list(input_ids)[:2] else: batch_size, sequence_length = shape_list(inputs_embeds)[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if not tf.is_tensor(sequence_lengths): in_logits = logits[0:batch_size, sequence_lengths] loss = self.hf_compute_loss(tf.reshape(labels, [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels])) pooled_logits = in_logits if in_logits is not None else logits if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFTransfoXLSequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A TF 2.0 Adaptive Softmax for Transformer XL model. """ import tensorflow as tf from ....modeling_tf_utils import keras from ....tf_utils import shape_list class TFAdaptiveSoftmaxMask(keras.layers.Layer): def __init__(self, vocab_size, d_embed, d_proj, cutoffs, div_val=1, keep_order=False, **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.d_embed = d_embed self.d_proj = d_proj self.cutoffs = cutoffs + [vocab_size] self.cutoff_ends = [0] + self.cutoffs self.div_val = div_val self.shortlist_size = self.cutoffs[0] self.n_clusters = len(self.cutoffs) - 1 self.head_size = self.shortlist_size + self.n_clusters self.keep_order = keep_order self.out_layers = [] self.out_projs = [] def build(self, input_shape): if self.n_clusters > 0: self.cluster_weight = self.add_weight( shape=(self.n_clusters, self.d_embed), initializer="zeros", trainable=True, name="cluster_weight" ) self.cluster_bias = self.add_weight( shape=(self.n_clusters,), initializer="zeros", trainable=True, name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs)): if self.d_proj != self.d_embed: weight = self.add_weight( shape=(self.d_embed, self.d_proj), initializer="zeros", trainable=True, name=f"out_projs_._{i}", ) self.out_projs.append(weight) else: self.out_projs.append(None) weight = self.add_weight( shape=(self.vocab_size, self.d_embed), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._weight", ) bias = self.add_weight( shape=(self.vocab_size,), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._bias", ) self.out_layers.append((weight, bias)) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = self.d_embed // (self.div_val**i) weight = self.add_weight( shape=(d_emb_i, self.d_proj), initializer="zeros", trainable=True, name=f"out_projs_._{i}" ) self.out_projs.append(weight) weight = self.add_weight( shape=(r_idx - l_idx, d_emb_i), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._weight", ) bias = self.add_weight( shape=(r_idx - l_idx,), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._bias", ) self.out_layers.append((weight, bias)) super().build(input_shape) @staticmethod def _logit(x, W, b, proj=None): y = x if proj is not None: y = tf.einsum("ibd,ed->ibe", y, proj) return tf.einsum("ibd,nd->ibn", y, W) + b @staticmethod def _gather_logprob(logprob, target): lp_size = shape_list(logprob) r = tf.range(lp_size[0], dtype=target.dtype) idx = tf.stack([r, target], 1) return tf.gather_nd(logprob, idx) def call(self, hidden, target, return_mean=True, training=False): head_logprob = 0 if self.n_clusters == 0: output = self._logit(hidden, self.out_layers[0][0], self.out_layers[0][1], self.out_projs[0]) if target is not None: loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output) out = tf.nn.log_softmax(output, axis=-1) else: hidden_sizes = shape_list(hidden) out = [] loss = tf.zeros(hidden_sizes[:2]) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: mask = (target >= l_idx) & (target < r_idx) mask_idx = tf.where(mask) cur_target = tf.boolean_mask(target, mask) - l_idx if self.div_val == 1: cur_W = self.out_layers[0][0][l_idx:r_idx] cur_b = self.out_layers[0][1][l_idx:r_idx] else: cur_W = self.out_layers[i][0] cur_b = self.out_layers[i][1] if i == 0: cur_W = tf.concat([cur_W, self.cluster_weight], 0) cur_b = tf.concat([cur_b, self.cluster_bias], 0) head_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[0]) head_logprob = tf.nn.log_softmax(head_logit) out.append(head_logprob[..., : self.cutoffs[0]]) if target is not None: cur_head_logprob = tf.boolean_mask(head_logprob, mask) cur_logprob = self._gather_logprob(cur_head_logprob, cur_target) else: tail_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[i]) tail_logprob = tf.nn.log_softmax(tail_logit) cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster logprob_i = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(logprob_i) if target is not None: cur_head_logprob = tf.boolean_mask(head_logprob, mask) cur_tail_logprob = tf.boolean_mask(tail_logprob, mask) cur_logprob = self._gather_logprob(cur_tail_logprob, cur_target) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(mask_idx, -cur_logprob, shape_list(loss)) out = tf.concat(out, axis=-1) if target is not None: if return_mean: loss = tf.reduce_mean(loss) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(loss) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(loss, name=self.name, aggregation="mean" if return_mean else "") return out
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Transformer XL model. Adapted from https://github.com/kimiyoung/transformer-xl. In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py """ import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ....modeling_utils import PreTrainedModel from ....utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_transfo_xl import TransfoXLConfig from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "transfo-xl/transfo-xl-wt103" _CONFIG_FOR_DOC = "TransfoXLConfig" from .._archive_maps import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 def build_tf_to_pytorch_map(model, config): """ A map of modules from TF to PyTorch. This time I use a map to keep the PyTorch model as identical to the original PyTorch model as possible. """ tf_to_pt_map = {} if hasattr(model, "transformer"): # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax tf_to_pt_map.update( { "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight, "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias, } ) for i, (out_l, proj_l, tie_proj) in enumerate( zip(model.crit.out_layers, model.crit.out_projs, config.tie_projs) ): layer_str = f"transformer/adaptive_softmax/cutoff_{i}/" if config.tie_word_embeddings: tf_to_pt_map.update({layer_str + "b": out_l.bias}) else: raise NotImplementedError # I don't think this is implemented in the TF code tf_to_pt_map.update({layer_str + "lookup_table": out_l.weight, layer_str + "b": out_l.bias}) if not tie_proj: tf_to_pt_map.update({layer_str + "proj": proj_l}) # Now load the rest of the transformer model = model.transformer # Embeddings for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)): layer_str = f"transformer/adaptive_embed/cutoff_{i}/" tf_to_pt_map.update({layer_str + "lookup_table": embed_l.weight, layer_str + "proj_W": proj_l}) # Transformer blocks for i, b in enumerate(model.layers): layer_str = f"transformer/layer_{i}/" tf_to_pt_map.update( { layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight, layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias, layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight, layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight, layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight, layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight, layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias, layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight, layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias, layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight, layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias, } ) # Relative positioning biases if config.untie_r: r_r_list = [] r_w_list = [] for b in model.layers: r_r_list.append(b.dec_attn.r_r_bias) r_w_list.append(b.dec_attn.r_w_bias) else: r_r_list = [model.r_r_bias] r_w_list = [model.r_w_bias] tf_to_pt_map.update({"transformer/r_r_bias": r_r_list, "transformer/r_w_bias": r_w_list}) return tf_to_pt_map def load_tf_weights_in_transfo_xl(model, config, tf_path): """Load tf checkpoints in a pytorch model""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Build TF to PyTorch weights loading map tf_to_pt_map = build_tf_to_pytorch_map(model, config) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) tf_weights = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) tf_weights[name] = array for name, pointer in tf_to_pt_map.items(): assert name in tf_weights array = tf_weights[name] # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if "kernel" in name or "proj" in name: array = np.transpose(array) if ("r_r_bias" in name or "r_w_bias" in name) and len(pointer) > 1: # Here we will split the TF weights assert len(pointer) == array.shape[0] for i, p_i in enumerate(pointer): arr_i = array[i, ...] try: assert p_i.shape == arr_i.shape except AssertionError as e: e.args += (p_i.shape, arr_i.shape) raise logger.info(f"Initialize PyTorch weight {name} for layer {i}") p_i.data = torch.from_numpy(arr_i) else: try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) tf_weights.pop(name, None) tf_weights.pop(name + "/Adam", None) tf_weights.pop(name + "/Adam_1", None) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}") return model class PositionalEmbedding(nn.Module): def __init__(self, demb): super().__init__() self.demb = demb inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb)) self.register_buffer("inv_freq", inv_freq) def forward(self, pos_seq, bsz=None): sinusoid_inp = torch.outer(pos_seq, self.inv_freq) pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1) if bsz is not None: return pos_emb[:, None, :].expand(-1, bsz, -1) else: return pos_emb[:, None, :] class PositionwiseFF(nn.Module): def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5): super().__init__() self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.CoreNet = nn.Sequential( nn.Linear(d_model, d_inner), nn.ReLU(inplace=True), nn.Dropout(dropout), nn.Linear(d_inner, d_model), nn.Dropout(dropout), ) self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon) self.pre_lnorm = pre_lnorm def forward(self, inp): if self.pre_lnorm: # layer normalization + positionwise feed-forward core_out = self.CoreNet(self.layer_norm(inp)) # residual connection output = core_out + inp else: # positionwise feed-forward core_out = self.CoreNet(inp) # residual connection + layer normalization output = self.layer_norm(inp + core_out) return output class RelPartialLearnableMultiHeadAttn(nn.Module): def __init__( self, n_head, d_model, d_head, dropout, dropatt=0, pre_lnorm=False, r_r_bias=None, r_w_bias=None, layer_norm_epsilon=1e-5, ): super().__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.dropout = dropout self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon) self.scale = 1 / (d_head**0.5) self.pre_lnorm = pre_lnorm if r_r_bias is None or r_w_bias is None: # Biases are not shared self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) else: self.r_r_bias = r_r_bias self.r_w_bias = r_w_bias self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False) def _rel_shift(self, x): zero_pad_shape = (x.size(0), 1) + x.size()[2:] zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype) x_padded = torch.cat([zero_pad, x], dim=1) x_padded_shape = (x.size(1) + 1, x.size(0)) + x.size()[2:] x_padded = x_padded.view(*x_padded_shape) x = x_padded[1:].view_as(x) return x def forward(self, w, r, attn_mask=None, mems=None, head_mask=None, output_attentions=False): qlen, rlen, bsz = w.size(0), r.size(0), w.size(1) if mems is not None: cat = torch.cat([mems, w], 0) if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(cat)) else: w_heads = self.qkv_net(cat) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1) w_head_q = w_head_q[-qlen:] else: if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(w)) else: w_heads = self.qkv_net(w) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1) klen = w_head_k.size(0) w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head r_head_k = r_head_k.view(rlen, self.n_head, self.d_head) # qlen x n_head x d_head # compute attention score rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head AC = torch.einsum("ibnd,jbnd->ijbn", (rw_head_q, w_head_k)) # qlen x klen x bsz x n_head rr_head_q = w_head_q + self.r_r_bias BD = torch.einsum("ibnd,jnd->ijbn", (rr_head_q, r_head_k)) # qlen x klen x bsz x n_head BD = self._rel_shift(BD) # [qlen x klen x bsz x n_head] attn_score = AC + BD attn_score.mul_(self.scale) mask_value = torch.finfo(attn_score.dtype).min # compute attention probability if attn_mask is not None and torch.sum(attn_mask).item(): attn_mask = attn_mask == 1 # Switch to bool if attn_mask.dim() == 2: attn_score = ( attn_score.float().masked_fill(attn_mask[None, :, :, None], mask_value).type_as(attn_score) ) elif attn_mask.dim() == 3: attn_score = attn_score.float().masked_fill(attn_mask[:, :, :, None], mask_value).type_as(attn_score) # [qlen x klen x bsz x n_head] attn_prob = nn.functional.softmax(attn_score, dim=1) attn_prob = self.dropatt(attn_prob) # Mask heads if we want to if head_mask is not None: attn_prob = attn_prob * head_mask # compute attention vector attn_vec = torch.einsum("ijbn,jbnd->ibnd", (attn_prob, w_head_v)) # [qlen x bsz x n_head x d_head] attn_vec = attn_vec.contiguous().view(attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head) # linear projection attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: # residual connection outputs = [w + attn_out] else: # residual connection + layer normalization outputs = [self.layer_norm(w + attn_out)] if output_attentions: outputs.append(attn_prob) return outputs class RelPartialLearnableDecoderLayer(nn.Module): def __init__(self, n_head, d_model, d_head, d_inner, dropout, layer_norm_epsilon=1e-5, **kwargs): super().__init__() self.dec_attn = RelPartialLearnableMultiHeadAttn( n_head, d_model, d_head, dropout, layer_norm_epsilon=layer_norm_epsilon, **kwargs ) self.pos_ff = PositionwiseFF( d_model, d_inner, dropout, pre_lnorm=kwargs.get("pre_lnorm"), layer_norm_epsilon=layer_norm_epsilon ) def forward(self, dec_inp, r, dec_attn_mask=None, mems=None, head_mask=None, output_attentions=False): attn_outputs = self.dec_attn( dec_inp, r, attn_mask=dec_attn_mask, mems=mems, head_mask=head_mask, output_attentions=output_attentions, ) ff_output = self.pos_ff(attn_outputs[0]) outputs = [ff_output] + attn_outputs[1:] return outputs class AdaptiveEmbedding(nn.Module): def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, sample_softmax=False): super().__init__() self.n_token = n_token self.d_embed = d_embed self.cutoffs = cutoffs + [n_token] self.div_val = div_val self.d_proj = d_proj self.emb_scale = d_proj**0.5 self.cutoff_ends = [0] + self.cutoffs self.emb_layers = nn.ModuleList() self.emb_projs = nn.ParameterList() if div_val == 1: self.emb_layers.append(nn.Embedding(n_token, d_embed, sparse=sample_softmax > 0)) if d_proj != d_embed: self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val**i) self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i)) self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i))) def forward(self, inp): if self.div_val == 1: embed = self.emb_layers[0](inp) if self.d_proj != self.d_embed: embed = nn.functional.linear(embed, self.emb_projs[0]) else: param = next(self.parameters()) inp_flat = inp.view(-1) emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], dtype=param.dtype, device=param.device) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) indices_i = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue inp_i = inp_flat.index_select(0, indices_i) - l_idx emb_i = self.emb_layers[i](inp_i) emb_i = nn.functional.linear(emb_i, self.emb_projs[i]) emb_flat.index_copy_(0, indices_i, emb_i) embed_shape = inp.size() + (self.d_proj,) embed = emb_flat.view(embed_shape) embed.mul_(self.emb_scale) return embed class TransfoXLPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TransfoXLConfig load_tf_weights = load_tf_weights_in_transfo_xl base_model_prefix = "transformer" def _init_weight(self, weight): if self.config.init == "uniform": nn.init.uniform_(weight, -self.config.init_range, self.config.init_range) elif self.config.init == "normal": nn.init.normal_(weight, 0.0, self.config.init_std) def _init_bias(self, bias): nn.init.constant_(bias, 0.0) def _init_weights(self, m): """Initialize the weights.""" classname = m.__class__.__name__ if classname.find("Linear") != -1: if hasattr(m, "weight") and m.weight is not None: self._init_weight(m.weight) if hasattr(m, "bias") and m.bias is not None: self._init_bias(m.bias) elif classname.find("AdaptiveEmbedding") != -1: if hasattr(m, "emb_projs"): for i in range(len(m.emb_projs)): if m.emb_projs[i] is not None: nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std) elif classname.find("Embedding") != -1: if hasattr(m, "weight"): self._init_weight(m.weight) elif classname.find("ProjectedAdaptiveLogSoftmax") != -1: if hasattr(m, "cluster_weight") and m.cluster_weight is not None: self._init_weight(m.cluster_weight) if hasattr(m, "cluster_bias") and m.cluster_bias is not None: self._init_bias(m.cluster_bias) if hasattr(m, "out_projs"): for i in range(len(m.out_projs)): if m.out_projs[i] is not None: nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std) elif classname.find("LayerNorm") != -1: if hasattr(m, "weight"): nn.init.normal_(m.weight, 1.0, self.config.init_std) if hasattr(m, "bias") and m.bias is not None: self._init_bias(m.bias) else: if hasattr(m, "r_emb"): self._init_weight(m.r_emb) if hasattr(m, "r_w_bias"): self._init_weight(m.r_w_bias) if hasattr(m, "r_r_bias"): self._init_weight(m.r_r_bias) if hasattr(m, "r_bias"): self._init_bias(m.r_bias) def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, layer: Optional[int] = -1): """ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size. Take care of tying weights embeddings afterwards if the model class has a *tie_weights()* method. Arguments: new_num_tokens: (*optional*) int: New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or None: does nothing and just returns a pointer to the input tokens `torch.nn.Embeddings` Module of the model. layer: (*optional*) int: Layer of the *AdaptiveEmbedding* where the resizing should be done. Per default the last layer will be resized. Be aware that when resizing other than the last layer, you have to ensure that the new token(s) in the tokenizer are at the corresponding position. Return: `torch.nn.Embeddings` Pointer to the input tokens Embeddings Module of the model """ base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed if new_num_tokens is None: return self.get_input_embeddings() new_num_tokens_layer, layer = self._get_new_num_tokens_layer(new_num_tokens, layer) assert new_num_tokens_layer > 0, "The size of the new embedding layer cannot be 0 or less" model_embeds = base_model._resize_token_embeddings(new_num_tokens_layer, layer) # Update base model and current model config self.config.vocab_size = new_num_tokens base_model.vocab_size = new_num_tokens base_model.n_token = new_num_tokens new_embedding_shapes = self._get_embedding_shapes() self._resize_cutoffs(new_num_tokens, new_num_tokens_layer, new_embedding_shapes, layer) # Tie weights again if needed self.tie_weights() return model_embeds def _get_new_num_tokens_layer(self, new_num_tokens, layer): embeddings = self.get_input_embeddings() if layer == -1: layer = len(embeddings.emb_layers) - 1 assert 0 <= layer <= len(embeddings.emb_layers) - 1 new_num_tokens_layer = ( new_num_tokens - sum([emb.weight.shape[0] for emb in embeddings.emb_layers[:layer]]) - sum([emb.weight.shape[0] for emb in embeddings.emb_layers[layer + 1 :]]) ) return new_num_tokens_layer, layer def _get_embedding_shapes(self): embeddings = self.get_input_embeddings() return [emb.weight.shape[0] for emb in embeddings.emb_layers] def _resize_token_embeddings(self, new_num_tokens, layer=-1): embeddings = self.get_input_embeddings() if new_num_tokens is None: return embeddings new_embeddings_layer = self._get_resized_embeddings(embeddings.emb_layers[layer], new_num_tokens) embeddings.emb_layers[layer] = new_embeddings_layer self.set_input_embeddings(embeddings) return self.get_input_embeddings() def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer): embeddings = self.get_input_embeddings() for i in range(layer, len(embeddings.cutoffs)): embeddings.cutoffs[i] = sum(new_embedding_shapes[: i + 1]) embeddings.cutoff_ends = [0] + embeddings.cutoffs embeddings.n_token = new_num_tokens self.config.cutoffs = embeddings.cutoffs[:-1] return embeddings.cutoffs @dataclass class TransfoXLModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor mems: List[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class TransfoXLSequenceClassifierOutputWithPast(ModelOutput): """ Base class for outputs of sentence classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mems: List[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class TransfoXLLMHeadModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: losses (`torch.FloatTensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided): Language modeling losses (not reduced). prediction_scores (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax). mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. loss (`torch.FloatTensor` of shape `()`, *optional*, returned when `labels` is provided) Reduced language modeling loss. """ losses: Optional[torch.FloatTensor] = None prediction_scores: torch.FloatTensor = None mems: List[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None loss: Optional[torch.FloatTensor] = None @property def logits(self): # prediction scores are the output of the adaptive softmax, see # the file `modeling_transfo_xl_utilities`. Since the adaptive # softmax returns the log softmax value, `self.prediction_scores` # are strictly speaking not exactly `logits`, but behave the same # way logits do. return self.prediction_scores TRANSFO_XL_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`TransfoXLConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ TRANSFO_XL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems given to this model should not be passed as `input_ids` as they have already been computed. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", TRANSFO_XL_START_DOCSTRING, ) class TransfoXLModel(TransfoXLPreTrainedModel): def __init__(self, config): super().__init__(config) self.n_token = config.vocab_size self.d_embed = config.d_embed self.d_model = config.d_model self.n_head = config.n_head self.d_head = config.d_head self.word_emb = AdaptiveEmbedding( config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val ) self.drop = nn.Dropout(config.dropout) self.n_layer = config.n_layer self.mem_len = config.mem_len self.attn_type = config.attn_type if not config.untie_r: self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.layers = nn.ModuleList() if config.attn_type == 0: # the default attention for i in range(config.n_layer): self.layers.append( RelPartialLearnableDecoderLayer( config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout, dropatt=config.dropatt, pre_lnorm=config.pre_lnorm, r_w_bias=None if config.untie_r else self.r_w_bias, r_r_bias=None if config.untie_r else self.r_r_bias, layer_norm_epsilon=config.layer_norm_epsilon, ) ) else: # learnable embeddings and absolute embeddings are not used in our pretrained checkpoints raise NotImplementedError # Removed them to avoid maintaining dead code self.same_length = config.same_length self.clamp_len = config.clamp_len if self.attn_type == 0: # default attention self.pos_emb = PositionalEmbedding(self.d_model) else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_emb def set_input_embeddings(self, new_embeddings): self.word_emb = new_embeddings def backward_compatible(self): self.sample_softmax = -1 def reset_memory_length(self, mem_len): self.mem_len = mem_len def _prune_heads(self, heads): logger.info("Head pruning is not implemented for Transformer-XL model") pass def init_mems(self, bsz): if self.mem_len > 0: mems = [] param = next(self.parameters()) for i in range(self.n_layer): empty = torch.zeros(self.mem_len, bsz, self.config.d_model, dtype=param.dtype, device=param.device) mems.append(empty) return mems else: return None def _update_mems(self, hids, mems, mlen, qlen): # does not deal with None if mems is None: return None # mems is not None assert len(hids) == len(mems), "len(hids) != len(mems)" # There are `mlen + qlen` steps that can be cached into mems with torch.no_grad(): new_mems = [] end_idx = mlen + max(0, qlen) beg_idx = max(0, end_idx - self.mem_len) for i in range(len(hids)): cat = torch.cat([mems[i], hids[i]], dim=0) new_mems.append(cat[beg_idx:end_idx].detach()) return new_mems @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TransfoXLModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, mems: Optional[List[torch.FloatTensor]] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TransfoXLModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library # so we transpose here from shape [bsz, len] to shape [len, bsz] if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_ids = input_ids.transpose(0, 1).contiguous() qlen, bsz = input_ids.size() elif inputs_embeds is not None: inputs_embeds = inputs_embeds.transpose(0, 1).contiguous() qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if mems is None: mems = self.init_mems(bsz) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0) head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1) head_mask = head_mask.to( dtype=next(self.parameters()).dtype ) # switch to float if need + fp16 compatibility else: head_mask = [None] * self.n_layer if inputs_embeds is not None: word_emb = inputs_embeds else: word_emb = self.word_emb(input_ids) mlen = mems[0].size(0) if mems is not None else 0 klen = mlen + qlen if self.same_length: all_ones = word_emb.new_ones((qlen, klen), dtype=torch.bool) mask_len = klen - self.mem_len if mask_len > 0: mask_shift_len = qlen - mask_len else: mask_shift_len = qlen dec_attn_mask = (torch.triu(all_ones, 1 + mlen) + torch.tril(all_ones, -mask_shift_len))[:, :, None] # -1 else: dec_attn_mask = torch.triu(word_emb.new_ones((qlen, klen), dtype=torch.bool), diagonal=1 + mlen)[ :, :, None ] hids = [] attentions = [] if output_attentions else None if self.attn_type == 0: # default pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device, dtype=torch.int64).type_as( dtype=word_emb.dtype ) if self.clamp_len > 0: pos_seq.clamp_(max=self.clamp_len) pos_emb = self.pos_emb(pos_seq) core_out = self.drop(word_emb) pos_emb = self.drop(pos_emb) for i, layer in enumerate(self.layers): hids.append(core_out) mems_i = None if mems is None else mems[i] layer_outputs = layer( core_out, pos_emb, dec_attn_mask=dec_attn_mask, mems=mems_i, head_mask=head_mask[i], output_attentions=output_attentions, ) core_out = layer_outputs[0] if output_attentions: attentions.append(layer_outputs[1]) else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint core_out = self.drop(core_out) new_mems = self._update_mems(hids, mems, mlen, qlen) if output_hidden_states: # Add last layer and transpose to library standard shape [bsz, len, hidden_dim] hids.append(core_out) hids = tuple(t.transpose(0, 1).contiguous() for t in hids) else: hids = None if output_attentions: # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len] attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions) # We transpose back here to shape [bsz, len, hidden_dim] core_out = core_out.transpose(0, 1).contiguous() if not return_dict: return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None) return TransfoXLModelOutput( last_hidden_state=core_out, mems=new_mems, hidden_states=hids, attentions=attentions, ) @add_start_docstrings( """ The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive input embeddings) """, TRANSFO_XL_START_DOCSTRING, ) class TransfoXLLMHeadModel(TransfoXLPreTrainedModel): _tied_weights_keys = [r"crit\.out_projs\.\d+", r"crit\.out_layers\.\d+\.weight"] def __init__(self, config): super().__init__(config) self.transformer = TransfoXLModel(config) self.sample_softmax = config.sample_softmax self.trainer_compatible = getattr(config, "trainer_compatible", False) if not self.trainer_compatible: warnings.warn( "The output of TransfoXL will be updated in v5 to support a single loss as first argument. In order " "to use that updated output, please specify `trainer_compatible=True` as your configuration" " attribute.", DeprecationWarning, ) assert self.sample_softmax <= 0, ( "Sampling from the softmax is not implemented yet. Please look at issue: #3310:" " https://github.com/huggingface/transformers/issues/3310" ) self.crit = ProjectedAdaptiveLogSoftmax( config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val ) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ Run this to be sure output and input (adaptive) softmax weights are tied """ if self.config.tie_word_embeddings: for i in range(len(self.crit.out_layers)): self._tie_or_clone_weights(self.crit.out_layers[i], self.transformer.word_emb.emb_layers[i]) if self.config.tie_projs: for i, tie_proj in enumerate(self.config.tie_projs): if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed: if self.config.torchscript: self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[0].clone()) else: self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0] elif tie_proj and self.config.div_val != 1: if self.config.torchscript: self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[i].clone()) else: self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i] def reset_memory_length(self, mem_len): self.transformer.reset_memory_length(mem_len) def init_mems(self, bsz): return self.transformer.init_mems(bsz) @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TransfoXLLMHeadModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, mems: Optional[List[torch.FloatTensor]] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TransfoXLLMHeadModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None: bsz, tgt_len = input_ids.size(0), input_ids.size(1) elif inputs_embeds is not None: bsz, tgt_len = inputs_embeds.size(0), inputs_embeds.size(1) else: raise ValueError("You have to specify either input_ids or inputs_embeds") transformer_outputs = self.transformer( input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden = transformer_outputs[0] pred_hid = last_hidden[:, -tgt_len:] if labels is not None: # Prevents all labels being -100 and throwing an error # when backwarding the loss miss_valid_label = labels[0, 1:].sum() == (labels.size(1) - 1) * -100 if miss_valid_label: # Sets an <EOS> token, just to prevent loss from being NaN labels[0, 1] = self.config.eos_token_id softmax_output = self.crit(pred_hid, labels) prediction_scores = softmax_output.view(bsz, tgt_len, -1) if labels is None else () if labels is not None: losses = softmax_output.view(bsz, tgt_len - 1) # Avoids from incorporating padding (-100) tokens into loss value loss = losses[losses != 0].mean() else: losses, loss = None, None if not return_dict: if self.trainer_compatible: output = (prediction_scores, losses) if losses is not None else (prediction_scores,) output += transformer_outputs[1:] return ((loss,) + output) if loss is not None else output else: output = (prediction_scores, *transformer_outputs[1:]) output = ((losses,) + output) if losses is not None else output return (output + (loss,)) if loss is not None else output return TransfoXLLMHeadModelOutput( loss=loss, prediction_scores=prediction_scores, losses=losses, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def get_output_embeddings(self): """Double-check if you are using adaptive softmax.""" if self.sample_softmax > 0: return self.out_layer else: return self.crit.out_layers[-1] def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs): inputs = {} # if past is defined in model kwargs then use it for faster decoding if past_key_values: inputs["mems"] = past_key_values inputs["input_ids"] = input_ids[:, -1].unsqueeze(-1) else: inputs["input_ids"] = input_ids return inputs def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer): new_cutoffs = super()._resize_cutoffs(new_num_tokens, new_emb_size, new_embedding_shapes, layer) self.crit.cutoffs = new_cutoffs self.crit.cutoff_ends = [0] + new_cutoffs self.crit.n_token = new_num_tokens @staticmethod def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]: """ This function is used to re-order the `mems` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `mems` with the correct beam_idx at every generation step. """ return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems] @add_start_docstrings( """ The Transformer-XL Model transformer with a sequence classification head on top (linear layer). [`TransfoXLForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, TRANSFO_XL_START_DOCSTRING, ) class TransfoXLForSequenceClassification(TransfoXLPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = TransfoXLModel(config) self.score = nn.Linear(config.d_embed, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TransfoXLSequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, mems: Optional[List[torch.FloatTensor]] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TransfoXLSequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[range(batch_size), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TransfoXLSequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/bort/convert_bort_original_gluonnlp_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2020, The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Bort checkpoint.""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() logger = logging.get_logger(__name__) SAMPLE_TEXT = "The Nymphenburg Palace is a beautiful palace in Munich!" def convert_bort_checkpoint_to_pytorch(bort_checkpoint_path: str, pytorch_dump_folder_path: str): """ Convert the original Bort checkpoint (based on MXNET and Gluonnlp) to our BERT structure- """ # Original Bort configuration bort_4_8_768_1024_hparams = { "attention_cell": "multi_head", "num_layers": 4, "units": 1024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1e-5, "token_type_vocab_size": 2, } predefined_args = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py encoder = BERTEncoder( attention_cell=predefined_args["attention_cell"], num_layers=predefined_args["num_layers"], units=predefined_args["units"], hidden_size=predefined_args["hidden_size"], max_length=predefined_args["max_length"], num_heads=predefined_args["num_heads"], scaled=predefined_args["scaled"], dropout=predefined_args["dropout"], output_attention=False, output_all_encodings=False, use_residual=predefined_args["use_residual"], activation=predefined_args.get("activation", "gelu"), layer_norm_eps=predefined_args.get("layer_norm_eps", None), ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later vocab_name = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab gluon_cache_dir = os.path.join(get_home_dir(), "models") bort_vocab = _load_vocab(vocab_name, None, gluon_cache_dir, cls=Vocab) original_bort = nlp.model.BERTModel( encoder, len(bort_vocab), units=predefined_args["units"], embed_size=predefined_args["embed_size"], embed_dropout=predefined_args["embed_dropout"], word_embed=predefined_args["word_embed"], use_pooler=False, use_token_type_embed=False, token_type_vocab_size=predefined_args["token_type_vocab_size"], use_classifier=False, use_decoder=False, ) original_bort.load_parameters(bort_checkpoint_path, cast_dtype=True, ignore_extra=True) params = original_bort._collect_params_with_prefix() # Build our config 🤗 hf_bort_config_json = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(bort_vocab), } hf_bort_config = BertConfig.from_dict(hf_bort_config_json) hf_bort_model = BertForMaskedLM(hf_bort_config) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(mx_array) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy())) # Check param shapes and map new HF param back def check_and_map_params(hf_param, gluon_param): shape_hf = hf_param.shape gluon_param = to_torch(params[gluon_param]) shape_gluon = gluon_param.shape assert ( shape_hf == shape_gluon ), f"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param hf_bort_model.bert.embeddings.word_embeddings.weight = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight, "word_embed.0.weight" ) hf_bort_model.bert.embeddings.position_embeddings.weight = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight, "encoder.position_weight" ) hf_bort_model.bert.embeddings.LayerNorm.bias = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias, "encoder.layer_norm.beta" ) hf_bort_model.bert.embeddings.LayerNorm.weight = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight, "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) hf_bort_model.bert.embeddings.token_type_embeddings.weight.data = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers): layer: BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention self_attn: BertSelfAttention = layer.attention.self self_attn.key.bias.data = check_and_map_params( self_attn.key.bias.data, f"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) self_attn.key.weight.data = check_and_map_params( self_attn.key.weight.data, f"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) self_attn.query.bias.data = check_and_map_params( self_attn.query.bias.data, f"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) self_attn.query.weight.data = check_and_map_params( self_attn.query.weight.data, f"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) self_attn.value.bias.data = check_and_map_params( self_attn.value.bias.data, f"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) self_attn.value.weight.data = check_and_map_params( self_attn.value.weight.data, f"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output self_output: BertSelfOutput = layer.attention.output self_output.dense.bias = check_and_map_params( self_output.dense.bias, f"encoder.transformer_cells.{i}.proj.bias" ) self_output.dense.weight = check_and_map_params( self_output.dense.weight, f"encoder.transformer_cells.{i}.proj.weight" ) self_output.LayerNorm.bias = check_and_map_params( self_output.LayerNorm.bias, f"encoder.transformer_cells.{i}.layer_norm.beta" ) self_output.LayerNorm.weight = check_and_map_params( self_output.LayerNorm.weight, f"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate intermediate: BertIntermediate = layer.intermediate intermediate.dense.bias = check_and_map_params( intermediate.dense.bias, f"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) intermediate.dense.weight = check_and_map_params( intermediate.dense.weight, f"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output bert_output: BertOutput = layer.output bert_output.dense.bias = check_and_map_params( bert_output.dense.bias, f"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) bert_output.dense.weight = check_and_map_params( bert_output.dense.weight, f"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) bert_output.LayerNorm.bias = check_and_map_params( bert_output.LayerNorm.bias, f"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) bert_output.LayerNorm.weight = check_and_map_params( bert_output.LayerNorm.weight, f"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models tokenizer = RobertaTokenizer.from_pretrained("FacebookAI/roberta-base") input_ids = tokenizer.encode_plus(SAMPLE_TEXT)["input_ids"] # Get gluon output gluon_input_ids = mx.nd.array([input_ids]) output_gluon = original_bort(inputs=gluon_input_ids, token_types=[]) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(pytorch_dump_folder_path) hf_bort_model = BertModel.from_pretrained(pytorch_dump_folder_path) hf_bort_model.eval() input_ids = tokenizer.encode_plus(SAMPLE_TEXT, return_tensors="pt") output_hf = hf_bort_model(**input_ids)[0] gluon_layer = output_gluon[0].asnumpy() hf_layer = output_hf[0].detach().numpy() max_absolute_diff = np.max(np.abs(hf_layer - gluon_layer)).item() success = np.allclose(gluon_layer, hf_layer, atol=1e-3) if success: print("✔️ Both model do output the same tensors") else: print("❌ Both model do **NOT** output the same tensors") print("Absolute difference is:", max_absolute_diff) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/retribert/tokenization_retribert.py
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for RetriBERT.""" import collections import os import unicodedata from typing import List, Optional, Tuple from ....tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ....utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} # Copied from transformers.models.bert.tokenization_bert.load_vocab def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class RetriBertTokenizer(PreTrainedTokenizer): r""" Constructs a RetriBERT tokenizer. [`RetriBertTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting and wordpiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to: this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.__init__ def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) @property # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size def vocab_size(self): return len(self.vocab) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize def _tokenize(self, text, split_special_tokens=False): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize( text, never_split=self.all_special_tokens if not split_special_tokens else None ): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/retribert/tokenization_retribert_fast.py
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for RetriBERT.""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} class RetriBertTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" RetriBERT tokenizer (backed by HuggingFace's *tokenizers* library). [`RetriBertTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization: punctuation splitting and wordpiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. clean_text (`bool`, *optional*, defaults to `True`): Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). wordpieces_prefix (`str`, *optional*, defaults to `"##"`): The prefix for subwords. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = RetriBertTokenizer model_input_names = ["input_ids", "attention_mask"] # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.__init__ def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", do_lower_case) != do_lower_case or normalizer_state.get("strip_accents", strip_accents) != strip_accents or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars ): normalizer_class = getattr(normalizers, normalizer_state.pop("type")) normalizer_state["lowercase"] = do_lower_case normalizer_state["strip_accents"] = strip_accents normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) self.do_lower_case = do_lower_case # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] if token_ids_1 is not None: output += token_ids_1 + [self.sep_token_id] return output # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/retribert/modeling_retribert.py
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ RetriBERT model """ import math from typing import Optional import torch import torch.utils.checkpoint as checkpoint from torch import nn from ....modeling_utils import PreTrainedModel from ....utils import add_start_docstrings, logging from ...bert.modeling_bert import BertModel from .configuration_retribert import RetriBertConfig logger = logging.get_logger(__name__) from .._archive_maps import RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 # INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL # class RetriBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RetriBertConfig load_tf_weights = None base_model_prefix = "retribert" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) RETRIBERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RetriBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( """Bert Based model to embed queries or document for document retrieval.""", RETRIBERT_START_DOCSTRING, ) class RetriBertModel(RetriBertPreTrainedModel): def __init__(self, config: RetriBertConfig) -> None: super().__init__(config) self.projection_dim = config.projection_dim self.bert_query = BertModel(config) self.bert_doc = None if config.share_encoders else BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.project_query = nn.Linear(config.hidden_size, config.projection_dim, bias=False) self.project_doc = nn.Linear(config.hidden_size, config.projection_dim, bias=False) self.ce_loss = nn.CrossEntropyLoss(reduction="mean") # Initialize weights and apply final processing self.post_init() def embed_sentences_checkpointed( self, input_ids, attention_mask, sent_encoder, checkpoint_batch_size=-1, ): # reproduces BERT forward pass with checkpointing if checkpoint_batch_size < 0 or input_ids.shape[0] < checkpoint_batch_size: return sent_encoder(input_ids, attention_mask=attention_mask)[1] else: # prepare implicit variables device = input_ids.device input_shape = input_ids.size() token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) head_mask = [None] * sent_encoder.config.num_hidden_layers extended_attention_mask: torch.Tensor = sent_encoder.get_extended_attention_mask( attention_mask, input_shape ) # define function for checkpointing def partial_encode(*inputs): encoder_outputs = sent_encoder.encoder( inputs[0], attention_mask=inputs[1], head_mask=head_mask, ) sequence_output = encoder_outputs[0] pooled_output = sent_encoder.pooler(sequence_output) return pooled_output # run embedding layer on everything at once embedding_output = sent_encoder.embeddings( input_ids=input_ids, position_ids=None, token_type_ids=token_type_ids, inputs_embeds=None ) # run encoding and pooling on one mini-batch at a time pooled_output_list = [] for b in range(math.ceil(input_ids.shape[0] / checkpoint_batch_size)): b_embedding_output = embedding_output[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size] b_attention_mask = extended_attention_mask[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size] pooled_output = checkpoint.checkpoint(partial_encode, b_embedding_output, b_attention_mask) pooled_output_list.append(pooled_output) return torch.cat(pooled_output_list, dim=0) def embed_questions( self, input_ids, attention_mask=None, checkpoint_batch_size=-1, ): q_reps = self.embed_sentences_checkpointed( input_ids, attention_mask, self.bert_query, checkpoint_batch_size, ) return self.project_query(q_reps) def embed_answers( self, input_ids, attention_mask=None, checkpoint_batch_size=-1, ): a_reps = self.embed_sentences_checkpointed( input_ids, attention_mask, self.bert_query if self.bert_doc is None else self.bert_doc, checkpoint_batch_size, ) return self.project_doc(a_reps) def forward( self, input_ids_query: torch.LongTensor, attention_mask_query: Optional[torch.FloatTensor], input_ids_doc: torch.LongTensor, attention_mask_doc: Optional[torch.FloatTensor], checkpoint_batch_size: int = -1, ) -> torch.FloatTensor: r""" Args: input_ids_query (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary for the queries in a batch. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask_query (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) input_ids_doc (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary for the documents in a batch. attention_mask_doc (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on documents padding token indices. checkpoint_batch_size (`int`, *optional*, defaults to `-1`): If greater than 0, uses gradient checkpointing to only compute sequence representation on `checkpoint_batch_size` examples at a time on the GPU. All query representations are still compared to all document representations in the batch. Return: `torch.FloatTensor``: The bidirectional cross-entropy loss obtained while trying to match each query to its corresponding document and each document to its corresponding query in the batch """ device = input_ids_query.device q_reps = self.embed_questions(input_ids_query, attention_mask_query, checkpoint_batch_size) a_reps = self.embed_answers(input_ids_doc, attention_mask_doc, checkpoint_batch_size) compare_scores = torch.mm(q_reps, a_reps.t()) loss_qa = self.ce_loss(compare_scores, torch.arange(compare_scores.shape[1]).to(device)) loss_aq = self.ce_loss(compare_scores.t(), torch.arange(compare_scores.shape[0]).to(device)) loss = (loss_qa + loss_aq) / 2 return loss
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/retribert/configuration_retribert.py
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ RetriBERT model configuration""" from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) from .._archive_maps import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class RetriBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`RetriBertModel`]. It is used to instantiate a RetriBertModel model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RetriBERT [yjernite/retribert-base-uncased](https://huggingface.co/yjernite/retribert-base-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the RetriBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`RetriBertModel`] hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the *token_type_ids* passed into [`BertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. share_encoders (`bool`, *optional*, defaults to `True`): Whether or not to use the same Bert-type encoder for the queries and document projection_dim (`int`, *optional*, defaults to 128): Final dimension of the query and document representation after projection """ model_type = "retribert" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=8, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, share_encoders=True, projection_dim=128, pad_token_id=0, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.share_encoders = share_encoders self.projection_dim = projection_dim
0
mavonic_private_repos/transformers/src/transformers/models/deprecated
mavonic_private_repos/transformers/src/transformers/models/deprecated/retribert/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _import_structure = { "configuration_retribert": ["RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RetriBertConfig"], "tokenization_retribert": ["RetriBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_retribert_fast"] = ["RetriBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_retribert"] = [ "RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RetriBertModel", "RetriBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig from .tokenization_retribert import RetriBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_retribert_fast import RetriBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_retribert import ( RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RetriBertModel, RetriBertPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/longt5/configuration_longt5.py
# coding=utf-8 # Copyright 2022, The LongT5 Authors and HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ LongT5 model configuration""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeq2SeqConfigWithPast from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class LongT5Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LongT5Model`] or a [`FlaxLongT5Model`]. It is used to instantiate a LongT5 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LongT5 [google/long-t5-local-base](https://huggingface.co/google/long-t5-local-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Arguments: vocab_size (`int`, *optional*, defaults to 32128): Vocabulary size of the LongT5 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`LongT5Model`]. d_model (`int`, *optional*, defaults to 512): Size of the encoder layers and the pooler layer. d_kv (`int`, *optional*, defaults to 64): Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model // num_heads`. d_ff (`int`, *optional*, defaults to 2048): Size of the intermediate feed forward layer in each `LongT5Block`. num_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder. num_decoder_layers (`int`, *optional*): Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. num_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. local_radius (`int`, *optional*, defaults to 127) Number of tokens to the left/right for each token to locally self-attend in a local attention mechanism. global_block_size (`int`, *optional*, defaults to 16) Lenght of blocks an input sequence is divided into for a global token representation. Used only for `encoder_attention_type = "transient-global"`. relative_attention_num_buckets (`int`, *optional*, defaults to 32): The number of buckets to use for each attention layer. relative_attention_max_distance (`int`, *optional*, defaults to 128): The maximum distance of the longer sequences for the bucket separation. dropout_rate (`float`, *optional*, defaults to 0.1): The ratio for all dropout layers. layer_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. initializer_factor (`float`, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). feed_forward_proj (`string`, *optional*, defaults to `"relu"`): Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. LongT5v1.1 uses the `"gated-gelu"` feed forward projection. Original LongT5 implementation uses `"gated-gelu"`. encoder_attention_type (`string`, *optional*, defaults to `"local"`): Type of encoder attention to be used. Should be one of `"local"` or `"transient-global"`, which are supported by LongT5 implementation. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). """ model_type = "longt5" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self, vocab_size=32128, d_model=512, d_kv=64, d_ff=2048, num_layers=6, num_decoder_layers=None, num_heads=8, local_radius=127, global_block_size=16, relative_attention_num_buckets=32, relative_attention_max_distance=128, dropout_rate=0.1, layer_norm_epsilon=1e-6, initializer_factor=1.0, feed_forward_proj="relu", is_encoder_decoder=True, encoder_attention_type="local", use_cache=True, pad_token_id=0, eos_token_id=1, **kwargs, ): self.vocab_size = vocab_size self.d_model = d_model self.d_kv = d_kv self.d_ff = d_ff self.num_layers = num_layers # default = symmetry self.num_decoder_layers = num_decoder_layers if num_decoder_layers is not None else self.num_layers self.num_heads = num_heads self.local_radius = local_radius self.global_block_size = global_block_size self.relative_attention_num_buckets = relative_attention_num_buckets self.relative_attention_max_distance = relative_attention_max_distance self.dropout_rate = dropout_rate self.layer_norm_epsilon = layer_norm_epsilon self.initializer_factor = initializer_factor self.feed_forward_proj = feed_forward_proj self.encoder_attention_type = encoder_attention_type self.use_cache = use_cache act_info = self.feed_forward_proj.split("-") self.dense_act_fn = act_info[-1] self.is_gated_act = act_info[0] == "gated" if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. " "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": self.dense_act_fn = "gelu_new" super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, **kwargs, ) class LongT5OnnxConfig(OnnxSeq2SeqConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence" common_inputs["decoder_input_ids"] = {0: "batch"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") return common_inputs @property def default_onnx_opset(self) -> int: return 13
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/longt5/modeling_flax_longt5.py
# coding=utf-8 # Copyright 2022 LongT5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax LongT5 model.""" import copy from typing import Any, Callable, List, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_longt5 import LongT5Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/long-t5-local-base" _CONFIG_FOR_DOC = "LongT5Config" remat = nn_partitioning.remat # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = jnp.zeros_like(input_ids) shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids def _pad_to_multiple(x: jnp.ndarray, block_len: int, axis: int, pad_value: int = 0) -> jnp.ndarray: """Pad an array so that a sequence length will be a multiple of `block_len`""" pad_len = -x.shape[axis] % block_len pad = [(0, 0)] * x.ndim pad[axis] = (0, pad_len) x = jnp.pad(x, pad_width=pad, mode="constant", constant_values=pad_value) return x def _split_into_blocks(x: jnp.ndarray, block_len: int, axis: int) -> jnp.ndarray: """Split an input array into blocks of a given `block_len` along the given `axis`. If the dimension length is not a multiple of `block_len`, it will be padded first with selected `pad_value`. """ # pad tensor to multiple of block_len if x.shape[axis] % block_len != 0: x = _pad_to_multiple(x, block_len, axis, pad_value=0) num_blocks = x.shape[axis] // block_len output_shape = x.shape[:axis] + (num_blocks, block_len) + x.shape[(axis + 1) :] return x.reshape(output_shape) def _concatenate_3_blocks(x: jnp.ndarray, block_axis: int, sequence_axis: int, pad_value: int = 0) -> jnp.ndarray: """Concatenate three consecutive blocks for each input block for local attentiont. For more information, see: https://arxiv.org/pdf/2112.07916.pdf. """ num_blocks = x.shape[block_axis] pad = [(0, 0)] * x.ndim pad[block_axis] = (1, 1) # [batch_size, num_blocks, block_len] -> [batch_size, num_blocks + 2, block_len] x = jnp.pad(x, pad_width=pad, mode="constant", constant_values=pad_value) blocks_list: List[np.array] = [] for i in range(3): # We use indexing approach here: # https://numpy.org/doc/stable/user/basics.indexing.html#dealing-with-variable-numbers-of-indices-within-programs indices = [slice(0, None)] * x.ndim indices[block_axis] = slice(i, i + num_blocks) indices = tuple(indices) blocks_list.append(x[indices]) return jnp.concatenate(blocks_list, axis=sequence_axis) # [batch_size, num_blocks, 3 * block_len, ...] def _make_3block_relative_position_ids(block_len: int) -> jnp.ndarray: """Makes 3-blocked relative position ids for local attention.""" position_ids = jnp.arange(3 * block_len, dtype=jnp.int32) center_position_ids = position_ids[block_len:-block_len] relative_position_ids = position_ids[None, :] - center_position_ids[:, None] # [block_len, 3 * block_len] return relative_position_ids def _mask_local_attention_mask(local_attention_mask: np.ndarray, block_len: int) -> jnp.ndarray: """Mask local attention mask to enforce that tokens are not allowed to attend tokens farther than ``local_radius.""" relative_position_ids = _make_3block_relative_position_ids(block_len) locality_mask = jnp.abs(relative_position_ids) < block_len locality_mask = locality_mask[None, None, :, :] return jnp.logical_and(local_attention_mask, locality_mask) def _get_local_attention_mask(attention_mask: np.ndarray, block_len: int) -> jnp.ndarray: """Prepare attention mask to be applied for a local attention.""" # [batch_size, num_blocks, block_len] _blocked_attention_mask = _split_into_blocks(attention_mask, block_len, axis=1) # [batch_size, num_block, 3 * block_len] _3blocked_attention_mask = _concatenate_3_blocks(_blocked_attention_mask, block_axis=1, sequence_axis=2) _blocked_attention_mask = _blocked_attention_mask[..., None] _3blocked_attention_mask = _3blocked_attention_mask[..., None, :] # [batch_size, num_block, block_len, 3 * block_len] local_attention_mask = jnp.logical_and(_blocked_attention_mask, _3blocked_attention_mask) local_attention_mask = _mask_local_attention_mask(local_attention_mask, block_len) # [batch_size, 1, num_block, block_len, 3 * block_len] return local_attention_mask[:, None, ...] def _make_global_fixed_block_ids(attention_mask: np.ndarray, global_block_size: int) -> Tuple[jnp.ndarray, np.ndarray]: """Obtain the "fixed block" global id corresponding to each input token. This implementation is a simlified version of the original Flaxformr implementation adopted from: https://github.com/google/flaxformer/blob/main/flaxformer/architectures/longt5/long_attention.py. In our scenario, as we use this strategy only for a decoder, orphan tokens, i.e. those tokens which do not make for the whole fixed block, are assigned to the preceding block. Padding tokens from the original sequence are represented by -1. """ batch_size, seq_len = attention_mask.shape[:2] def handle_orphan_tokens(block_ids: np.ndarray) -> jnp.ndarray: block_ends = (jnp.arange(seq_len) % global_block_size) == global_block_size - 1 true_block_ends = jnp.logical_and(block_ends, block_ids >= 0) full_blocks = true_block_ends.sum(-1)[..., None] block_ids = jnp.minimum(block_ids, full_blocks - 1) return block_ids fixed_block_mask = jnp.ones_like(attention_mask) / global_block_size fixed_block_mask = jnp.cumsum(fixed_block_mask, axis=1) - fixed_block_mask mask = jnp.where(attention_mask != 0.0, 1.0, -1000.0) global_block_ids = jnp.maximum( jnp.floor(mask + fixed_block_mask - 1.0), jnp.array(-1.0, dtype=attention_mask.dtype) ) # set padding tokens to -1 global_block_ids = (global_block_ids * attention_mask) + (attention_mask - 1) # [batch_size, seq_len] global_block_ids = handle_orphan_tokens(global_block_ids) num_globals = seq_len // global_block_size # [batch_size, seq_len // global_block_size] if num_globals > 0: _sequence_block_ids_max = jnp.repeat(global_block_ids.max(axis=-1)[:, None], repeats=num_globals, axis=1) else: _sequence_block_ids_max = jnp.zeros((batch_size, 0), dtype=global_block_ids.dtype) global_segment_ids = jnp.cumsum(jnp.ones((batch_size, num_globals)), axis=-1) - 1 global_segment_ids = jnp.where(global_segment_ids <= _sequence_block_ids_max, 1, 0) return global_block_ids, global_segment_ids def _make_side_relative_position_ids(attention_mask: np.ndarray, global_block_size: int) -> np.ndarray: """Create the relative position tensor for local -> global attention.""" block_ids, global_segment_ids = _make_global_fixed_block_ids(attention_mask, global_block_size) global_seq_len = global_segment_ids.shape[-1] global_positions = jnp.arange(global_seq_len) side_relative_position = global_positions - block_ids[..., None] return side_relative_position def _create_global_aggregates(hidden_states: np.ndarray, block_ids: np.ndarray, global_seq_len: int) -> np.ndarray: """Compute individual block aggregates by summing over individual blocks.""" # (batch..., seq_len, global_seq_len)) one_hot_block_ids = jax.nn.one_hot(block_ids, global_seq_len) return jnp.einsum("...nd,...ng->...gd", hidden_states, one_hot_block_ids) # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerNorm with T5->LongT5 class FlaxLongT5LayerNorm(nn.Module): hidden_size: int dtype: jnp.dtype = jnp.float32 eps: float = 1e-6 weight_init: Callable[..., np.ndarray] = jax.nn.initializers.ones def setup(self): self.weight = self.param("weight", self.weight_init, (self.hidden_size,)) def __call__(self, hidden_states): """ Construct a layernorm module in the LongT5 style; No bias and no subtraction of mean. """ # layer norm should always be calculated in float32 variance = jnp.power(hidden_states.astype("f4"), 2).mean(axis=-1, keepdims=True) hidden_states = hidden_states / jnp.sqrt(variance + self.eps) return self.weight * hidden_states # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5DenseActDense with T5->LongT5 class FlaxLongT5DenseActDense(nn.Module): config: LongT5Config dtype: jnp.dtype = jnp.float32 def setup(self): wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5) wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5) self.wi = nn.Dense( self.config.d_ff, use_bias=False, kernel_init=jax.nn.initializers.normal(wi_init_std), dtype=self.dtype, ) self.wo = nn.Dense( self.config.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(wo_init_std), dtype=self.dtype, ) self.dropout = nn.Dropout(self.config.dropout_rate) self.act = ACT2FN[self.config.dense_act_fn] def __call__(self, hidden_states, deterministic=True): hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.wo(hidden_states) return hidden_states # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5DenseGatedActDense with T5->LongT5 class FlaxLongT5DenseGatedActDense(nn.Module): config: LongT5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5) wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5) self.wi_0 = nn.Dense( self.config.d_ff, use_bias=False, kernel_init=jax.nn.initializers.normal(wi_init_std), dtype=self.dtype, ) self.wi_1 = nn.Dense( self.config.d_ff, use_bias=False, kernel_init=jax.nn.initializers.normal(wi_init_std), dtype=self.dtype, ) self.wo = nn.Dense( self.config.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(wo_init_std), dtype=self.dtype, ) self.dropout = nn.Dropout(self.config.dropout_rate) self.act = ACT2FN[self.config.dense_act_fn] def __call__(self, hidden_states, deterministic): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.wo(hidden_states) return hidden_states # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerFF with T5->LongT5 class FlaxLongT5LayerFF(nn.Module): config: LongT5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): if self.config.is_gated_act: self.DenseReluDense = FlaxLongT5DenseGatedActDense(self.config, dtype=self.dtype) else: self.DenseReluDense = FlaxLongT5DenseActDense(self.config, dtype=self.dtype) self.layer_norm = FlaxLongT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__(self, hidden_states, deterministic=True): forwarded_states = self.layer_norm(hidden_states) forwarded_states = self.DenseReluDense(forwarded_states, deterministic=deterministic) hidden_states = hidden_states + self.dropout(forwarded_states, deterministic=deterministic) return hidden_states # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention with T5->LongT5 class FlaxLongT5Attention(nn.Module): config: LongT5Config has_relative_attention_bias: bool = False causal: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.relative_attention_num_buckets = self.config.relative_attention_num_buckets self.relative_attention_max_distance = self.config.relative_attention_max_distance self.d_model = self.config.d_model self.key_value_proj_dim = self.config.d_kv self.n_heads = self.config.num_heads self.dropout = self.config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5) kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) self.q = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(q_init_std), dtype=self.dtype, ) self.k = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.v = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.o = nn.Dense( self.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(o_init_std), dtype=self.dtype, ) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embed( self.relative_attention_num_buckets, self.n_heads, embedding_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0) * num_buckets relative_position = jnp.abs(relative_position) else: relative_position = -jnp.clip(relative_position, a_max=0) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact) ) relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1) relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large) return relative_buckets.astype("i4") def compute_bias(self, query_length, key_length): """Compute binned relative position bias""" context_position = jnp.arange(query_length, dtype="i4")[:, None] memory_position = jnp.arange(key_length, dtype="i4")[None, :] relative_position = memory_position - context_position relative_position_bucket = self._relative_position_bucket( relative_position, bidirectional=(not self.causal), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) values = values.transpose((2, 0, 1))[None, :, :, :] return values def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.inner_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = jax.lax.dynamic_update_slice(cached_key.value, key, indices) value = jax.lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions # that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def _create_position_bias( self, key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift ): cache_is_filled = self.causal and self.has_variable("cache", "cached_key") and (not init_cache) key_length = key_states.shape[1] query_length = key_length if cache_is_filled else query_states.shape[1] if self.has_relative_attention_bias: position_bias = self.compute_bias(query_length, key_length) elif attention_mask is not None: position_bias = jnp.zeros_like(attention_mask) else: position_bias = jnp.zeros((1, self.n_heads, query_length, key_length), dtype=self.dtype) # if key and values are already calculated, only the last query position bias should be taken if cache_is_filled: max_decoder_length = self.variables["cache"]["cached_key"].shape[1] position_bias = jax.lax.dynamic_slice( position_bias, (0, 0, causal_attention_mask_shift, 0), (1, self.n_heads, seq_length, max_decoder_length), ) return position_bias def __call__( self, hidden_states, attention_mask=None, key_value_states=None, position_bias=None, use_cache=False, output_attentions=False, deterministic=True, init_cache=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ batch_size, seq_length = hidden_states.shape[:2] # q, k, v projections query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head) key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states) value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states) # reshape to (batch_size, seq_length, n_heads, head_dim) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # counter-act scaling in dot_product_attention_weights function query_states *= jnp.sqrt(query_states.shape[-1]) # for fast decoding causal attention mask should be shifted causal_attention_mask_shift = ( self.variables["cache"]["cache_index"] if (self.has_variable("cache", "cached_key") and self.causal) else 0 ) # create causal attention_mask; attention_mask has to be defined when model is causal if self.causal: causal_attention_mask = make_causal_mask(attention_mask, dtype="bool") # fast decoding for generate requires special attention_mask if self.has_variable("cache", "cached_key"): max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_attention_mask = jax.lax.dynamic_slice( causal_attention_mask, (0, 0, causal_attention_mask_shift, 0), (1, 1, seq_length, max_decoder_length), ) # broadcast causal attention mask & attention mask to fit for merge causal_attention_mask = jnp.broadcast_to( causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:] ) attention_mask = jnp.broadcast_to( jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape ) attention_mask = combine_masks(attention_mask, causal_attention_mask) elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # replace masked positions with -10_000 if attention_mask is not None: mask_value = jnp.finfo(self.dtype).min attention_mask = jax.lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, mask_value).astype(self.dtype), ) if position_bias is None: # compute position bias (only for first layer) position_bias = self._create_position_bias( key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift ) if attention_mask is not None: position_bias = position_bias + attention_mask # create dropout rng dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") # Softmax(QK^T) attn_weights = dot_product_attention_weights( query_states, key_states, bias=position_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, ) # multiply with value states attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) # bring back to (batch_size, seq_length, d_model) attn_output = self._merge_heads(attn_output) # apply output matrix attn_output = self.o(attn_output) outputs = (attn_output, position_bias) if output_attentions: outputs = outputs + (attn_weights,) return outputs class FlaxLongT5LocalAttention(nn.Module): config: LongT5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.relative_attention_num_buckets = self.config.relative_attention_num_buckets self.relative_attention_max_distance = self.config.relative_attention_max_distance self.d_model = self.config.d_model self.key_value_proj_dim = self.config.d_kv self.n_heads = self.config.num_heads self.local_radius = self.config.local_radius self.block_len = self.local_radius + 1 self.dropout = self.config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5) kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) self.q = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(q_init_std), dtype=self.dtype, ) self.k = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.v = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.o = nn.Dense( self.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(o_init_std), dtype=self.dtype, ) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embed( self.relative_attention_num_buckets, self.n_heads, embedding_init=jax.nn.initializers.normal(kv_init_std), ) @staticmethod # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention._relative_position_bucket def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0) * num_buckets relative_position = jnp.abs(relative_position) else: relative_position = -jnp.clip(relative_position, a_max=0) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact) ) relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1) relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large) return relative_buckets.astype("i4") def compute_bias(self, block_length: int): """Compute binned relative position bias""" memory_position = jnp.arange(3 * block_length, dtype="i4") context_position = memory_position[block_length:-block_length] relative_position = memory_position[None, :] - context_position[:, None] relative_position_bucket = self._relative_position_bucket( relative_position, bidirectional=True, num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) values = values.transpose((2, 0, 1))[None, None, :, :, :] return values def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[0], -1, self.inner_dim) def _create_position_bias(self, block_len: int, attention_mask: Optional[np.ndarray]) -> np.ndarray: # position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len) if self.has_relative_attention_bias: position_bias = self.compute_bias(block_len) elif attention_mask is not None: position_bias = jnp.zeros_like(attention_mask) else: position_bias = jnp.zeros((1, 1, self.n_heads, block_len, 3 * block_len), dtype=self.dtype) return position_bias def __call__( self, hidden_states, attention_mask=None, key_value_states=None, position_bias=None, output_attentions=False, deterministic=True, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ batch_size, seq_length = hidden_states.shape[:2] # q, k, v projections query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head) key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states) value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states) # reshape to (batch_size, seq_length, n_heads, head_dim) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # Split into blocks -> (batch_size, num_blocks, block_len, n_heads, head_dim) query_states = _split_into_blocks(query_states, self.block_len, axis=1) key_states = _split_into_blocks(key_states, self.block_len, axis=1) value_states = _split_into_blocks(value_states, self.block_len, axis=1) # Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head) key_states = _concatenate_3_blocks(key_states, block_axis=1, sequence_axis=2) value_states = _concatenate_3_blocks(value_states, block_axis=1, sequence_axis=2) # counter-act scaling in dot_product_attention_weights function query_states *= jnp.sqrt(query_states.shape[-1]) if attention_mask is not None: attention_mask = _get_local_attention_mask(attention_mask, self.block_len) # replace masked positions with -10_000 attention_mask = jax.lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, -1e10).astype(self.dtype), ) if position_bias is None: # compute position bias (only for first layer) position_bias = self._create_position_bias(self.block_len, attention_mask) if attention_mask is not None: position_bias = position_bias + attention_mask.swapaxes(1, 2) # create dropout rng dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") # Softmax(QK^T) attn_weights = dot_product_attention_weights( query_states, key_states, bias=position_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, ) # multiply with value states attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) # bring back to (batch_size, seq_length, d_model) attn_output = self._merge_heads(attn_output) attn_output = attn_output[:, :seq_length, :] # apply output matrix attn_output = self.o(attn_output) outputs = (attn_output, position_bias) if output_attentions: outputs = outputs + (attn_weights,) return outputs class FlaxLongT5TransientGlobalAttention(nn.Module): config: LongT5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.relative_attention_num_buckets = self.config.relative_attention_num_buckets self.relative_attention_max_distance = self.config.relative_attention_max_distance self.d_model = self.config.d_model self.key_value_proj_dim = self.config.d_kv self.n_heads = self.config.num_heads self.local_radius = self.config.local_radius self.block_len = self.local_radius + 1 self.global_block_size = self.config.global_block_size self.dropout = self.config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5) kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) self.q = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(q_init_std), dtype=self.dtype, ) self.k = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.v = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.o = nn.Dense( self.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(o_init_std), dtype=self.dtype, ) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embed( self.relative_attention_num_buckets, self.n_heads, embedding_init=jax.nn.initializers.normal(kv_init_std), ) # Relativen attention bias & Layer norm for global attention if self.has_relative_attention_bias: self.global_relative_attention_bias = nn.Embed( self.relative_attention_num_buckets, self.n_heads, embedding_init=jax.nn.initializers.normal(kv_init_std), ) self.global_input_layer_norm = FlaxLongT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) @staticmethod # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention._relative_position_bucket def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0) * num_buckets relative_position = jnp.abs(relative_position) else: relative_position = -jnp.clip(relative_position, a_max=0) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact) ) relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1) relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large) return relative_buckets.astype("i4") def compute_bias(self, block_length: int): """Compute binned relative position bias""" memory_position = jnp.arange(3 * block_length, dtype="i4") context_position = memory_position[block_length:-block_length] relative_position = memory_position[None, :] - context_position[:, None] relative_position_bucket = self._relative_position_bucket( relative_position, bidirectional=True, num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) values = values.transpose((2, 0, 1))[None, None, :, :, :] return values def compute_side_bias(self, attention_mask: np.ndarray, global_segment_ids: np.ndarray) -> np.ndarray: # (batch_size, 1, 1, seq_len, global_seq_len) side_attention_mask = jnp.equal(attention_mask[..., None], global_segment_ids[:, None, :])[:, None, ...] attention_side_bias = jax.lax.select( side_attention_mask > 0, jnp.full(side_attention_mask.shape, 0.0).astype(self.dtype), jnp.full(side_attention_mask.shape, -1e10).astype(self.dtype), ) # (batch_size, seq_len, global_seq_len) side_relative_position = _make_side_relative_position_ids(attention_mask, self.global_block_size) side_relative_position_bucket = self._relative_position_bucket( side_relative_position, bidirectional=True, num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) # (batch_size, seq_len, global_seq_len, num_heads) side_bias = self.global_relative_attention_bias(side_relative_position_bucket) # (batch_size, 1, num_heads, seq_len, global_seq_len) side_bias = jnp.transpose(side_bias, (0, 3, 1, 2)) # (batch_size, num_heads, seq_len, global_seq_len) attention_side_bias = attention_side_bias + side_bias return attention_side_bias def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[0], -1, self.inner_dim) def _create_position_bias(self, block_len: int, attention_mask: Optional[np.ndarray]) -> np.ndarray: # position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len) if self.has_relative_attention_bias: position_bias = self.compute_bias(block_len) elif attention_mask is not None: position_bias = jnp.zeros_like(attention_mask) else: position_bias = jnp.zeros((1, 1, self.n_heads, block_len, 3 * block_len), dtype=self.dtype) return position_bias def __call__( self, hidden_states, attention_mask=None, key_value_states=None, position_bias=None, output_attentions=False, deterministic=True, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ batch_size, seq_length = hidden_states.shape[:2] # Prepare components for transient-global attention # Obtain block_ids and global_segment_ids # global_seq_len := seq_len // self.global_block_size # shapes: (batch_size, seq_len) & (batch_size, global_seq_len) block_ids, global_segment_ids = _make_global_fixed_block_ids( attention_mask if attention_mask is not None else jnp.ones((batch_size, seq_length)), self.global_block_size, ) # Create global inputs _global_seq_len = global_segment_ids.shape[-1] global_inputs = _create_global_aggregates(hidden_states, block_ids, _global_seq_len) global_inputs = self.global_input_layer_norm(global_inputs) # q, k, v projections query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head) key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states) value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states) # reshape to (batch_size, seq_length, n_heads, head_dim) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # Get global/side key/value_states side_key_states = self.k(global_inputs) side_value_states = self.v(global_inputs) # reshape to (batch_size, global_seq_len, n_heads, head_dim) side_key_states = self._split_heads(side_key_states) side_value_states = self._split_heads(side_value_states) # Split into blocks -> (batch_size, num_blocks, block_len, n_heads, head_dim) query_states = _split_into_blocks(query_states, self.block_len, axis=1) key_states = _split_into_blocks(key_states, self.block_len, axis=1) value_states = _split_into_blocks(value_states, self.block_len, axis=1) # Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head) key_states = _concatenate_3_blocks(key_states, block_axis=1, sequence_axis=2) value_states = _concatenate_3_blocks(value_states, block_axis=1, sequence_axis=2) # Tile side inputs across local key/value blocks # New shape: (batch_size, num_blocks, global_seq_len, n_heads, dim_per_head) reps = [1] * (side_key_states.ndim + 1) reps[1] = key_states.shape[1] side_key_states = jnp.tile(side_key_states[:, None, ...], reps) side_value_states = jnp.tile(side_value_states[:, None, ...], reps) # Concatenate "local" and "side"/"global" key/value states to allow each token to attend global aggregated ones # New shape: (batch_size, num_blocks, 3 * block_len + global_seq_len, n_heads, dim_per_head) key_states = jnp.concatenate((key_states, side_key_states), axis=2) value_states = jnp.concatenate((value_states, side_value_states), axis=2) # counter-act scaling in dot_product_attention_weights function query_states *= jnp.sqrt(query_states.shape[-1]) if attention_mask is not None: local_attention_mask = _get_local_attention_mask(attention_mask, self.block_len) local_attention_mask = jax.lax.select( local_attention_mask > 0, jnp.full(local_attention_mask.shape, 0.0).astype(self.dtype), jnp.full(local_attention_mask.shape, -1e10).astype(self.dtype), ) else: local_attention_mask = None if position_bias is None: # compute position bias (only for first layer) position_bias = self._create_position_bias(self.block_len, attention_mask) if local_attention_mask is not None: position_bias = position_bias + local_attention_mask.swapaxes(1, 2) # Calculate global/side bias - shape: # (batch_size, num_heads, seq_len, global_seq_len) if attention_mask is None: attention_mask = jnp.ones((batch_size, seq_length)) side_position_bias = self.compute_side_bias(attention_mask, global_segment_ids) side_position_bias = _split_into_blocks(side_position_bias, self.block_len, axis=-2) side_position_bias = jnp.swapaxes(side_position_bias, 1, 2) position_bias = jnp.concatenate((position_bias, side_position_bias), axis=-1) # create dropout rng dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") # Softmax(QK^T) attn_weights = dot_product_attention_weights( query_states, key_states, bias=position_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, ) # multiply with value states attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) # bring back to (batch_size, seq_length, d_model) attn_output = self._merge_heads(attn_output) attn_output = attn_output[:, :seq_length, :] # apply output matrix attn_output = self.o(attn_output) outputs = (attn_output, position_bias) if output_attentions: outputs = outputs + (attn_weights,) return outputs class FlaxLongT5LayerLocalSelfAttention(nn.Module): """Local self attention used in encoder""" config: LongT5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.LocalSelfAttention = FlaxLongT5LocalAttention( self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype ) self.layer_norm = FlaxLongT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, deterministic=True, **kwargs: Any, # to accept init_cache kwargs ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.LocalSelfAttention( normed_hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class FlaxLongT5LayerTransientGlobalSelfAttention(nn.Module): """Transient-Global self attention used in encoder""" config: LongT5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.TransientGlobalSelfAttention = FlaxLongT5TransientGlobalAttention( self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype ) self.layer_norm = FlaxLongT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, deterministic=True, **kwargs: Any, # to accept init_cache kwargs ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.TransientGlobalSelfAttention( normed_hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerSelfAttention with T5->LongT5 class FlaxLongT5LayerSelfAttention(nn.Module): config: LongT5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.SelfAttention = FlaxLongT5Attention( self.config, has_relative_attention_bias=self.has_relative_attention_bias, causal=self.config.causal, dtype=self.dtype, ) self.layer_norm = FlaxLongT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, deterministic=True, init_cache=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.SelfAttention( normed_hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, deterministic=deterministic, init_cache=init_cache, ) hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerCrossAttention with T5->LongT5 class FlaxLongT5LayerCrossAttention(nn.Module): config: LongT5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.EncDecAttention = FlaxLongT5Attention( self.config, has_relative_attention_bias=False, causal=False, dtype=self.dtype ) self.layer_norm = FlaxLongT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, output_attentions=False, deterministic=True, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.EncDecAttention( normed_hidden_states, attention_mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class FlaxLongT5Block(nn.Module): config: LongT5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.causal = self.config.causal if self.causal: attention_layer = FlaxLongT5LayerSelfAttention elif self.config.encoder_attention_type == "local": attention_layer = FlaxLongT5LayerLocalSelfAttention elif self.config.encoder_attention_type == "transient-global": attention_layer = FlaxLongT5LayerTransientGlobalSelfAttention else: raise ValueError( "For encoder attention mechanism, either `local` or `transient-global` attention type is expected, " f"but got {self.config.encoder_attention_type}." ) self.layer = ( attention_layer( self.config, has_relative_attention_bias=self.has_relative_attention_bias, name=str(0), dtype=self.dtype, ), ) feed_forward_index = 1 if self.causal: self.layer += (FlaxLongT5LayerCrossAttention(self.config, name=str(1), dtype=self.dtype),) feed_forward_index += 1 self.layer += (FlaxLongT5LayerFF(self.config, name=str(feed_forward_index), dtype=self.dtype),) # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Block.__call__ with T5->LongT5 def __call__( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, output_attentions=False, return_dict=True, deterministic=True, init_cache=False, ): self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, deterministic=deterministic, init_cache=init_cache, ) hidden_states = self_attention_outputs[0] attention_outputs = self_attention_outputs[1:] # Keep self-attention outputs and relative position weights do_cross_attention = self.causal and encoder_hidden_states is not None if do_cross_attention: cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = cross_attention_outputs[0] # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[1:] # Apply Feed Forward layer hidden_states = self.layer[-1](hidden_states, deterministic=deterministic) outputs = (hidden_states,) outputs = outputs + attention_outputs # returns hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) return outputs # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerCollection with T5->LongT5 class FlaxLongT5LayerCollection(nn.Module): config: LongT5Config has_relative_attention_bias: bool dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layer = FlaxLongT5Block( self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype ) def __call__( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, output_attentions=False, deterministic=True, init_cache=False, ): return self.layer( hidden_states, attention_mask=attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, output_attentions=output_attentions, deterministic=deterministic, init_cache=init_cache, ) # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5BlockCollection with T5->LongT5 class FlaxLongT5BlockCollection(nn.Module): config: LongT5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.causal = self.config.causal if self.gradient_checkpointing: FlaxLongT5CheckpointLayer = remat(FlaxLongT5LayerCollection, static_argnums=(6, 7, 8)) self.blocks = [ FlaxLongT5CheckpointLayer( self.config, has_relative_attention_bias=(i == 0), dtype=self.dtype, name=str(i), ) for i in range(self.config.num_layers) ] else: self.blocks = [ FlaxLongT5LayerCollection( self.config, has_relative_attention_bias=(i == 0), dtype=self.dtype, name=str(i), ) for i in range(self.config.num_layers) ] def __call__( self, hidden_states=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions: bool = False, output_hidden_states: bool = False, deterministic: bool = True, init_cache: bool = False, ): # Prepare head mask if needed all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and self.causal) else None position_bias = None encoder_decoder_position_bias = None for i, layer_module in enumerate(self.blocks): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, position_bias, encoder_hidden_states, encoder_attention_mask, encoder_decoder_position_bias, output_attentions, deterministic, init_cache, ) hidden_states = layer_outputs[0] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[1] if self.causal and encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[3 if output_attentions else 2] if output_attentions: all_attentions = all_attentions + (layer_outputs[2],) if self.causal: all_cross_attentions = all_cross_attentions + (layer_outputs[4],) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Stack with T5->LongT5 class FlaxLongT5Stack(nn.Module): config: LongT5Config embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.causal = self.config.causal self.block = FlaxLongT5BlockCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.final_layer_norm = FlaxLongT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, init_cache: bool = False, ): hidden_states = self.embed_tokens(input_ids) hidden_states = self.dropout(hidden_states, deterministic=deterministic) outputs = self.block( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, deterministic=deterministic, init_cache=init_cache, ) hidden_states = outputs[0] hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) # Add last layer all_hidden_states = None if output_hidden_states: all_hidden_states = outputs.hidden_states all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: if output_hidden_states: return ( hidden_states, all_hidden_states, ) + outputs[2:] return (hidden_states,) + outputs[1:] return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) LONGT5_ENCODE_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5 Training](./longt5#training). attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ LONGT5_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For training, `decoder_input_ids` should be provided. encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ LONGT5_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5 Training](./longt5#training). attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) LONGT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [LONGT5 Training](./longt5#training). decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(tuple(jnp.ndarray)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(jnp.ndarray))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxLongT5PreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LongT5Config base_model_prefix = "transformer" module_class: nn.Module = None def __init__( self, config: LongT5Config, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def enable_gradient_checkpointing(self): self._module = self.module_class( config=self.config, dtype=self.dtype, gradient_checkpointing=True, ) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) decoder_input_ids = jnp.ones_like(input_ids) decoder_attention_mask = jnp.ones_like(input_ids) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: jnp.ndarray = None, decoder_attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if decoder_input_ids is None: raise ValueError( "Make sure to provide both `input_ids` and `decoder_input_ids`. `decoder_input_ids` is not passed" " here." ) # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # prepare decoder inputs if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(LONGT5_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=LongT5Config) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") >>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(LONGT5_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=LongT5Config) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration >>> import jax.numpy as jnp >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") >>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxLongT5Attention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs LONGT5_START_DOCSTRING = r""" The LongT5 model was proposed in [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung and Yinfei Yang. It's an encoder-decoder transformer pre-trained in a text-to-text denoising generative setting. LongT5 model is an extension of T5 model, and it enables using one of the two different efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention. This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`LongT5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ @add_start_docstrings( "The bare LONGT5 Model transformer outputting raw hidden-stateswithout any specific head on top.", LONGT5_START_DOCSTRING, ) # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Module with T5->LongT5 class FlaxLongT5Module(nn.Module): config: LongT5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.initializer_factor * 1.0), dtype=self.dtype, ) encoder_config = copy.deepcopy(self.config) encoder_config.causal = False self.encoder = FlaxLongT5Stack( encoder_config, embed_tokens=self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) decoder_config = copy.deepcopy(self.config) decoder_config.causal = True decoder_config.num_layers = self.config.num_decoder_layers self.decoder = FlaxLongT5Stack( decoder_config, embed_tokens=self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) def __call__( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, output_attentions=None, output_hidden_states=None, return_dict=None, deterministic: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Encode if needed (training, first prediction pass) encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Model with T5->LongT5 class FlaxLongT5Model(FlaxLongT5PreTrainedModel): module_class = FlaxLongT5Module append_call_sample_docstring(FlaxLongT5Model, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) FLAX_LONGT5_MODEL_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxLongT5Model >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") >>> model = FlaxLongT5Model.from_pretrained("google/long-t5-local-base") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="np" ... ).input_ids >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="np").input_ids >>> # forward pass >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state ``` """ overwrite_call_docstring(FlaxLongT5Model, LONGT5_INPUTS_DOCSTRING + FLAX_LONGT5_MODEL_DOCSTRING) append_replace_return_docstrings(FlaxLongT5Model, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_start_docstrings("""LONGT5 Model with a `language modeling` head on top.""", LONGT5_START_DOCSTRING) # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5ForConditionalGenerationModule with T5->LongT5 class FlaxLongT5ForConditionalGenerationModule(nn.Module): config: LongT5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def setup(self): self.model_dim = self.config.d_model self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.initializer_factor), dtype=self.dtype, ) encoder_config = copy.deepcopy(self.config) encoder_config.causal = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = FlaxLongT5Stack( encoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) decoder_config = copy.deepcopy(self.config) decoder_config.causal = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = self.config.num_decoder_layers self.decoder = FlaxLongT5Stack( decoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, kernel_init=jax.nn.initializers.normal(self.config.initializer_factor), dtype=self.dtype, ) def __call__( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, output_attentions=None, output_hidden_states=None, return_dict=None, deterministic: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Encode encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = encoder_outputs[0] # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) sequence_output = decoder_outputs[0] if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.model_dim**-0.5) if self.config.tie_word_embeddings: shared_embedding = self.shared.variables["params"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output) else: lm_logits = self.lm_head(sequence_output) if not return_dict: return (lm_logits,) + decoder_outputs[1:] + encoder_outputs return FlaxSeq2SeqLMOutput( logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxLongT5ForConditionalGeneration(FlaxLongT5PreTrainedModel): module_class = FlaxLongT5ForConditionalGenerationModule @add_start_docstrings(LONGT5_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=LongT5Config) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration >>> import jax.numpy as jnp >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") >>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base") >>> text = "summarize: My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxLongT5Attention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): decoder_module = module._get_decoder_module() decoder_outputs = decoder_module( decoder_input_ids, decoder_attention_mask, **kwargs, ) sequence_output = decoder_outputs[0] if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.config.d_model**-0.5) if self.config.tie_word_embeddings: shared_embedding = module.shared.variables["params"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output) else: lm_logits = module.lm_head(sequence_output) return lm_logits, decoder_outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: extended_attention_mask = jax.lax.dynamic_update_slice( extended_attention_mask, decoder_attention_mask, (0, 0) ) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values return model_kwargs FLAX_LONGT5_CONDITIONAL_GENERATION_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") >>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base") >>> ARTICLE_TO_SUMMARIZE = "summarize: My friends are cool but they eat too many carbs." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], return_tensors="np") >>> # Generate Summary >>> summary_ids = model.generate(inputs["input_ids"]).sequences >>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)) ``` """ overwrite_call_docstring( FlaxLongT5ForConditionalGeneration, LONGT5_INPUTS_DOCSTRING + FLAX_LONGT5_CONDITIONAL_GENERATION_DOCSTRING ) append_replace_return_docstrings( FlaxLongT5ForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/longt5/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _import_structure = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_longt5"] = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_longt5"] = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longt5 import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongT5Config, LongT5OnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longt5 import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongT5EncoderModel, LongT5ForConditionalGeneration, LongT5Model, LongT5PreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longt5 import ( FlaxLongT5ForConditionalGeneration, FlaxLongT5Model, FlaxLongT5PreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/longt5/convert_longt5x_checkpoint_to_flax.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert T5/LongT5X checkpoints from the original repository to JAX/FLAX model. This script is an extension of 'src/transformers/models/t5/convert_t5x_checkpoint_to_flax. """ import argparse from t5x import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeq2SeqLM def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_folder_path): config = AutoConfig.from_pretrained(config_name) flax_model = FlaxAutoModelForSeq2SeqLM.from_config(config=config) t5x_model = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path) split_mlp_wi = "wi_0" in t5x_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": encoder_attn_name = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": encoder_attn_name = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": encoder_attn_name = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers): layer_name = f"layers_{str(layer_index)}" # Self-Attention t5x_attention_key = t5x_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] t5x_attention_out = t5x_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] t5x_attention_query = t5x_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] t5x_attention_value = t5x_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": t5x_global_layer_norm = t5x_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization t5x_attention_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: t5x_mlp_wi_0 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] t5x_mlp_wi_1 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: t5x_mlp_wi = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] t5x_mlp_wo = t5x_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization t5x_mlp_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning flax_model_encoder_layer_block = flax_model.params["encoder"]["block"][str(layer_index)]["layer"] flax_model_encoder_layer_block["0"][encoder_attn_name]["k"]["kernel"] = t5x_attention_key flax_model_encoder_layer_block["0"][encoder_attn_name]["o"]["kernel"] = t5x_attention_out flax_model_encoder_layer_block["0"][encoder_attn_name]["q"]["kernel"] = t5x_attention_query flax_model_encoder_layer_block["0"][encoder_attn_name]["v"]["kernel"] = t5x_attention_value flax_model_encoder_layer_block["0"]["layer_norm"]["weight"] = t5x_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": flax_model_encoder_layer_block["0"][encoder_attn_name]["global_input_layer_norm"][ "weight" ] = t5x_global_layer_norm if split_mlp_wi: flax_model_encoder_layer_block["1"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0 flax_model_encoder_layer_block["1"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1 else: flax_model_encoder_layer_block["1"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi flax_model_encoder_layer_block["1"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo flax_model_encoder_layer_block["1"]["layer_norm"]["weight"] = t5x_mlp_layer_norm flax_model.params["encoder"]["block"][str(layer_index)]["layer"] = flax_model_encoder_layer_block # Only for layer 0: t5x_encoder_rel_embedding = t5x_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T flax_model.params["encoder"]["block"]["0"]["layer"]["0"][encoder_attn_name]["relative_attention_bias"][ "embedding" ] = t5x_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": t5x_encoder_global_rel_embedding = t5x_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T flax_model.params["encoder"]["block"]["0"]["layer"]["0"][encoder_attn_name]["global_relative_attention_bias"][ "embedding" ] = t5x_encoder_global_rel_embedding # Assigning t5x_encoder_norm = t5x_model["target"]["encoder"]["encoder_norm"]["scale"] flax_model.params["encoder"]["final_layer_norm"]["weight"] = t5x_encoder_norm # Decoder for layer_index in range(config.num_layers): layer_name = f"layers_{str(layer_index)}" # Self-Attention t5x_attention_key = t5x_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] t5x_attention_out = t5x_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] t5x_attention_query = t5x_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] t5x_attention_value = t5x_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization t5x_pre_attention_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention t5x_enc_dec_attention_module = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] t5x_enc_dec_attention_key = t5x_enc_dec_attention_module["key"]["kernel"] t5x_enc_dec_attention_out = t5x_enc_dec_attention_module["out"]["kernel"] t5x_enc_dec_attention_query = t5x_enc_dec_attention_module["query"]["kernel"] t5x_enc_dec_attention_value = t5x_enc_dec_attention_module["value"]["kernel"] # Layer Normalization t5x_cross_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: t5x_mlp_wi_0 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] t5x_mlp_wi_1 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: t5x_mlp_wi = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] t5x_mlp_wo = t5x_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization tx5_mlp_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning flax_model_decoder_layer_block = flax_model.params["decoder"]["block"][str(layer_index)]["layer"] flax_model_decoder_layer_block["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key flax_model_decoder_layer_block["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out flax_model_decoder_layer_block["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query flax_model_decoder_layer_block["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value flax_model_decoder_layer_block["0"]["layer_norm"]["weight"] = t5x_pre_attention_layer_norm flax_model_decoder_layer_block["1"]["EncDecAttention"]["k"]["kernel"] = t5x_enc_dec_attention_key flax_model_decoder_layer_block["1"]["EncDecAttention"]["o"]["kernel"] = t5x_enc_dec_attention_out flax_model_decoder_layer_block["1"]["EncDecAttention"]["q"]["kernel"] = t5x_enc_dec_attention_query flax_model_decoder_layer_block["1"]["EncDecAttention"]["v"]["kernel"] = t5x_enc_dec_attention_value flax_model_decoder_layer_block["1"]["layer_norm"]["weight"] = t5x_cross_layer_norm if split_mlp_wi: flax_model_decoder_layer_block["2"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0 flax_model_decoder_layer_block["2"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1 else: flax_model_decoder_layer_block["2"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi flax_model_decoder_layer_block["2"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo flax_model_decoder_layer_block["2"]["layer_norm"]["weight"] = tx5_mlp_layer_norm flax_model.params["decoder"]["block"][str(layer_index)]["layer"] = flax_model_decoder_layer_block # Decoder Normalization tx5_decoder_norm = t5x_model["target"]["decoder"]["decoder_norm"]["scale"] flax_model.params["decoder"]["final_layer_norm"]["weight"] = tx5_decoder_norm # Only for layer 0: t5x_decoder_rel_embedding = t5x_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T flax_model.params["decoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"][ "embedding" ] = t5x_decoder_rel_embedding # Token Embeddings tx5_token_embeddings = t5x_model["target"]["token_embedder"]["embedding"] flax_model.params["shared"]["embedding"] = tx5_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in t5x_model["target"]["decoder"]: flax_model.params["lm_head"]["kernel"] = t5x_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(flax_dump_folder_path) print("T5X Model was sucessfully converted!") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) args = parser.parse_args() convert_t5x_checkpoint_to_flax(args.t5x_checkpoint_path, args.config_name, args.flax_dump_folder_path)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/longt5/modeling_longt5.py
# coding=utf-8 # Copyright 2022 Google LLC., LongT5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch LongT5 model.""" import copy import math import warnings from typing import Any, List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( DUMMY_INPUTS, DUMMY_MASK, add_start_docstrings, add_start_docstrings_to_model_forward, is_torch_fx_proxy, logging, replace_return_docstrings, ) from .configuration_longt5 import LongT5Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LongT5Config" _CHECKPOINT_FOR_DOC = "google/long-t5-local-base" # TODO: Update before the merge from ..deprecated._archive_maps import LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 def _pad_to_multiple(x: torch.Tensor, block_len: int, dim: int, pad_value: int = 0) -> torch.Tensor: """Pad a tensor so that a sequence length will be a multiple of `block_len`""" pad_len = -x.shape[dim] % block_len # Handle cases when an empty input sequence is given if not all(x.shape): new_shape = list(x.shape) new_shape[dim] += pad_len return torch.zeros(new_shape, dtype=x.dtype) pad = [(0, 0)] * x.ndim pad[dim] = (0, pad_len) pad = sum(pad[::-1], ()) x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value) return x def _split_into_blocks(x: torch.Tensor, block_len: int, dim: int) -> torch.Tensor: """Split an input tensor into blocks of a given `block_len` along the given `dim`. If the dimension length is not a multiple of `block_len`, it will be padded first with selected `pad_value`. """ # pad tensor to multiple of block_len if x.shape[dim] % block_len != 0: x = _pad_to_multiple(x, block_len, dim, pad_value=0) num_blocks = x.shape[dim] // block_len output_shape = x.shape[:dim] + (num_blocks, block_len) + x.shape[(dim + 1) :] # If 0 is in output_shape, we cannot apply reshape because of incompatibility with ONNX conversion if 0 in output_shape: return torch.empty(output_shape, dtype=x.dtype, device=x.device) return x.reshape(output_shape) def _concatenate_3_blocks(x: torch.Tensor, block_dim: int, sequence_dim: int, pad_value: int = 0) -> torch.Tensor: """Concatenate three consecutive blocks for each input block for local attentiont. For more information, see: https://arxiv.org/pdf/2112.07916.pdf. """ num_blocks = x.shape[block_dim] pad = [(0, 0)] * x.ndim pad[block_dim] = (1, 1) pad = sum(pad[::-1], ()) # [batch_size, num_blocks, block_len] -> [batch_size, num_blocks + 2, block_len] x = nn.functional.pad(x, pad=pad, mode="constant", value=pad_value) blocks_list: List[torch.Tensor] = [] for i in range(3): # We use indexing approach here: # https://numpy.org/doc/stable/user/basics.indexing.html#dealing-with-variable-numbers-of-indices-within-programs indices = [slice(0, None)] * x.ndim indices[block_dim] = slice(i, i + num_blocks) indices = tuple(indices) blocks_list.append(x[indices]) # [batch_size, num_blocks, 3 * block_len, ...] return torch.cat(blocks_list, dim=sequence_dim) def _make_3block_relative_position_ids(block_len: int) -> torch.Tensor: """Makes 3-blocked relative position ids for local attention.""" position_ids = torch.arange(3 * block_len, dtype=torch.int32) center_position_ids = position_ids[block_len:-block_len] # [block_len, 3 * block_len] relative_position_ids = position_ids.unsqueeze(0) - center_position_ids.unsqueeze(1) return relative_position_ids def _mask_local_attention_mask(local_attention_mask: torch.Tensor, block_len: int) -> torch.Tensor: """Mask local attention mask to enforce that tokens are not allowed to attend tokens farther than ``local_radius.""" relative_position_ids = _make_3block_relative_position_ids(block_len) locality_mask = torch.abs(relative_position_ids) < block_len locality_mask = locality_mask[None, None, :, :] locality_mask = locality_mask.to(local_attention_mask.device) return torch.logical_and(local_attention_mask, locality_mask) def _get_local_attention_mask(attention_mask: torch.Tensor, block_len: int, device: torch.device) -> torch.Tensor: """Prepare attention mask to be applied for a local attention.""" # [batch_size, num_blocks, block_len] _blocked_attention_mask = _split_into_blocks(attention_mask, block_len, dim=1) # [batch_size, num_block, 3 * block_len] _3blocked_attention_mask = _concatenate_3_blocks(_blocked_attention_mask, block_dim=1, sequence_dim=2) _blocked_attention_mask = _blocked_attention_mask.unsqueeze(-1) _3blocked_attention_mask = _3blocked_attention_mask.unsqueeze(-2) # [batch_size, num_block, block_len, 3 * block_len] local_attention_mask = torch.logical_and(_blocked_attention_mask, _3blocked_attention_mask) local_attention_mask = _mask_local_attention_mask(local_attention_mask, block_len) # [batch_size, 1, num_block, block_len, 3 * block_len] return local_attention_mask.unsqueeze(1).to(device) def _make_global_fixed_block_ids( attention_mask: torch.Tensor, global_block_size: int ) -> Tuple[torch.Tensor, torch.Tensor]: """Obtain the "fixed block" global id corresponding to each input token. This implementation is a simlified version of the original Flaxformr implementation adopted from: https://github.com/google/flaxformer/blob/main/flaxformer/architectures/longt5/long_attention.py. In our scenario, as we use this strategy only for a decoder, orphan tokens, i.e. those tokens which do not make for the whole fixed block, are assigned to the preceding block. Padding tokens from the original sequence are represented by -1. """ batch_size, seq_len = attention_mask.shape[:2] def handle_orphan_tokens(block_ids: torch.Tensor) -> torch.Tensor: block_ends = (torch.arange(seq_len) % global_block_size) == global_block_size - 1 block_ends = block_ends.to(block_ids.device) true_block_ends = torch.logical_and(block_ends, block_ids >= 0) full_blocks = true_block_ends.sum(-1).unsqueeze(-1).type(block_ids.dtype) - 1 block_ids = torch.where(block_ids < full_blocks, block_ids, full_blocks) return block_ids fixed_block_mask = torch.ones_like(attention_mask, device=attention_mask.device) / global_block_size fixed_block_mask = torch.cumsum(fixed_block_mask, axis=1) - fixed_block_mask mask = torch.where(attention_mask != 0.0, 1.0, -1000.0).type(attention_mask.dtype) global_block_ids = torch.floor(mask + fixed_block_mask - 1.0).type(attention_mask.dtype) _global_block_ids_lower_bound = torch.tensor(-1, dtype=global_block_ids.dtype, device=global_block_ids.device) global_block_ids = torch.where( global_block_ids > _global_block_ids_lower_bound, global_block_ids, _global_block_ids_lower_bound ) # set padding tokens to -1 global_block_ids = (global_block_ids * attention_mask) + (attention_mask - 1) # [batch_size, seq_len] global_block_ids = handle_orphan_tokens(global_block_ids) num_globals = seq_len // global_block_size # [batch_size, seq_len // global_block_size] if num_globals > 0: _sequence_block_ids_max = torch.max(global_block_ids, dim=-1).values.repeat(num_globals, 1).transpose(0, 1) else: _sequence_block_ids_max = torch.zeros( batch_size, 0, dtype=global_block_ids.dtype, device=global_block_ids.device ) global_segment_ids = torch.cumsum(torch.ones(batch_size, num_globals), dim=-1) - 1 global_segment_ids = global_segment_ids.to(attention_mask.device) global_segment_ids = torch.where(global_segment_ids <= _sequence_block_ids_max, 1, 0) return global_block_ids.type(torch.int), global_segment_ids.type(torch.int) def _make_side_relative_position_ids(attention_mask: torch.Tensor, global_block_size: int) -> torch.Tensor: """Create the relative position tensor for local -> global attention.""" block_ids, global_segment_ids = _make_global_fixed_block_ids(attention_mask, global_block_size) global_seq_len = global_segment_ids.shape[-1] global_positions = torch.arange(global_seq_len, device=block_ids.device) side_relative_position = global_positions - block_ids[..., None] return side_relative_position.type(torch.int64) def _create_global_aggregates( hidden_states: torch.Tensor, block_ids: torch.Tensor, global_seq_len: int ) -> torch.Tensor: """Compute individual block aggregates by summing over individual blocks.""" # (batch..., seq_len, global_seq_len)) block_ids = block_ids.where( block_ids >= 0, torch.tensor(global_seq_len, dtype=block_ids.dtype, device=block_ids.device) ) one_hot_block_ids = nn.functional.one_hot(block_ids.type(torch.int64), global_seq_len + 1)[:, :, :-1] return torch.einsum("...nd,...ng->...gd", hidden_states, one_hot_block_ids.type(hidden_states.dtype)) # Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->LongT5 class LongT5LayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Construct a layernorm module in the LongT5 style. No bias and no subtraction of mean. """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): # LongT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states try: from apex.normalization import FusedRMSNorm LongT5LayerNorm = FusedRMSNorm # noqa logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of LongT5LayerNorm") except ImportError: # using the normal LongT5LayerNorm pass except Exception: logger.warning("discovered apex but it failed to load, falling back to LongT5LayerNorm") pass ALL_LAYERNORM_LAYERS.append(LongT5LayerNorm) # Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->LongT5 class LongT5DenseActDense(nn.Module): def __init__(self, config: LongT5Config): super().__init__() self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) if ( isinstance(self.wo.weight, torch.Tensor) and hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8 ): hidden_states = hidden_states.to(self.wo.weight.dtype) hidden_states = self.wo(hidden_states) return hidden_states class LongT5DenseGatedActDense(nn.Module): def __init__(self, config: LongT5Config): super().__init__() self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) hidden_states = self.wo(hidden_states) return hidden_states # Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->LongT5 class LongT5LayerFF(nn.Module): def __init__(self, config: LongT5Config): super().__init__() if config.is_gated_act: self.DenseReluDense = LongT5DenseGatedActDense(config) else: self.DenseReluDense = LongT5DenseActDense(config) self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward(self, hidden_states): forwarded_states = self.layer_norm(hidden_states) forwarded_states = self.DenseReluDense(forwarded_states) hidden_states = hidden_states + self.dropout(forwarded_states) return hidden_states # Copied from transformers.models.t5.modeling_t5.T5Attention with T5->LongT5 class LongT5Attention(nn.Module): def __init__(self, config: LongT5Config, has_relative_attention_bias=False): super().__init__() self.is_decoder = config.is_decoder self.has_relative_attention_bias = has_relative_attention_bias self.relative_attention_num_buckets = config.relative_attention_num_buckets self.relative_attention_max_distance = config.relative_attention_max_distance self.d_model = config.d_model self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.dropout = config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim # Mesh TensorFlow initialization to avoid scaling before softmax self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.pruned_heads = set() self.gradient_checkpointing = False def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads ) # Prune linear layers self.q = prune_linear_layer(self.q, index) self.k = prune_linear_layer(self.k, index) self.v = prune_linear_layer(self.v, index) self.o = prune_linear_layer(self.o, index, dim=1) # Update hyper params self.n_heads = self.n_heads - len(heads) self.inner_dim = self.key_value_proj_dim * self.n_heads self.pruned_heads = self.pruned_heads.union(heads) @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets def compute_bias(self, query_length, key_length, device=None): """Compute binned relative position bias""" if device is None: device = self.relative_attention_bias.weight.device context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] relative_position = memory_position - context_position # shape (query_length, key_length) relative_position_bucket = self._relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) return values def forward( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = hidden_states.shape[:2] real_seq_length = seq_length if past_key_value is not None: if len(past_key_value) != 2: raise ValueError( f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" ) real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] def shape(states): """projection""" return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) def unshape(states): """reshape""" return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) def project(hidden_states, proj_layer, key_value_states, past_key_value): """projects hidden states correctly to key/query states""" if key_value_states is None: # self-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(hidden_states)) elif past_key_value is None: # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) if past_key_value is not None: if key_value_states is None: # self-attn # (batch_size, n_heads, key_length, dim_per_head) hidden_states = torch.cat([past_key_value, hidden_states], dim=2) elif past_key_value.shape[2] != key_value_states.shape[1]: # checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) else: # cross-attn hidden_states = past_key_value return hidden_states # get query states query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) # get key/value states key_states = project( hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None ) value_states = project( hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None ) # compute scores scores = torch.matmul( query_states, key_states.transpose(3, 2) ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 if position_bias is None: if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) # if key and values are already calculated # we want only the last query position bias if past_key_value is not None: position_bias = position_bias[:, :, -hidden_states.size(1) :, :] if mask is not None: position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) if self.pruned_heads: mask = torch.ones(position_bias.shape[1]) mask[list(self.pruned_heads)] = 0 position_bias_masked = position_bias[:, mask.bool()] else: position_bias_masked = position_bias scores += position_bias_masked attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( scores ) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.dropout( attn_weights, p=self.dropout, training=self.training ) # (batch_size, n_heads, seq_length, key_length) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) attn_output = self.o(attn_output) present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs class LongT5LocalAttention(nn.Module): def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None: super().__init__() self.is_decoder = config.is_decoder self.has_relative_attention_bias = has_relative_attention_bias self.relative_attention_num_buckets = config.relative_attention_num_buckets self.relative_attention_max_distance = config.relative_attention_max_distance self.d_model = config.d_model self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.local_radius = config.local_radius self.block_len = self.local_radius + 1 self.dropout = config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim # Mesh TensorFlow initialization to avoid scaling before softmax self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.pruned_heads = set() self.gradient_checkpointing = False # Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads ) # Prune linear layers self.q = prune_linear_layer(self.q, index) self.k = prune_linear_layer(self.k, index) self.v = prune_linear_layer(self.v, index) self.o = prune_linear_layer(self.o, index, dim=1) # Update hyper params self.n_heads = self.n_heads - len(heads) self.inner_dim = self.key_value_proj_dim * self.n_heads self.pruned_heads = self.pruned_heads.union(heads) @staticmethod # Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets def compute_bias(self, block_length: int): """Compute binned relative position bias""" target_device = ( self.relative_attention_bias.weight.device if self.relative_attention_bias.weight.device.type != "meta" else None ) memory_position = torch.arange(3 * block_length, dtype=torch.long, device=target_device) context_position = memory_position[block_length:-block_length] # (block_length, 3 * block_length) relative_position = memory_position[None, :] - context_position[:, None] relative_position_bucket = self._relative_position_bucket( relative_position, # (block_length, 3 * block_length) bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) # (block_length, 3 * block_length, num_heads) values = self.relative_attention_bias(relative_position_bucket) # (1, 1, num_heads, block_length, 3 * block_length) values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0) return values def forward( self, hidden_states, mask=None, position_bias=None, layer_head_mask=None, output_attentions=False, ): batch_size, seq_length = hidden_states.shape[:2] def shape(states): """projection""" return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim) def unshape(states): """reshape""" return states.contiguous().view(batch_size, -1, self.inner_dim) # get query/key/value states -> (batch_size, seq_length, n_heads, dim_per_head) query_states = shape(self.q(hidden_states)) key_states = shape(self.k(hidden_states)) value_states = shape(self.v(hidden_states)) # Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head) query_states = _split_into_blocks(query_states, self.block_len, dim=1) key_states = _split_into_blocks(key_states, self.block_len, dim=1) value_states = _split_into_blocks(value_states, self.block_len, dim=1) # Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head) key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2) value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2) # Compute scores scores = torch.einsum( "...qhd,...khd->...hqk", query_states, key_states ) # (batch_size, num_block, n_heads, block_len, 3 * block_len) if position_bias is None: # position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len) if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, 1, self.n_heads, self.block_len, 3 * self.block_len), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias(self.block_len) if mask is not None: # Replace masked positions with -1e10 (according to the original implementation) mask = torch.where(mask > 0, 0.0, -1e10) # We need to adjust position bias shape to be sum with mask position_bias = position_bias + mask.transpose(1, 2) scores += position_bias # (batch_size, num_blocks, n_heads, block_len, 3 * block_len) attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) # (batch_size, num_blocks, n_heads, block_len, 3 * block_len) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_weights = attn_weights.type(value_states.dtype) attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states)) attn_output = attn_output[:, :seq_length, :] attn_output = self.o(attn_output) present_key_value_state = None outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs class LongT5TransientGlobalAttention(nn.Module): def __init__(self, config: LongT5Config, has_relative_attention_bias: bool = False) -> None: super().__init__() self.is_decoder = config.is_decoder self.has_relative_attention_bias = has_relative_attention_bias self.relative_attention_num_buckets = config.relative_attention_num_buckets self.relative_attention_max_distance = config.relative_attention_max_distance self.d_model = config.d_model self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.local_radius = config.local_radius self.block_len = self.local_radius + 1 self.global_block_size = config.global_block_size self.dropout = config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim # Mesh TensorFlow initialization to avoid scaling before softmax self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.pruned_heads = set() # Relativen attention bias & Layer norm for global attention if self.has_relative_attention_bias: self.global_relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.global_input_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) # Copied from transformers.models.t5.modeling_t5.T5Attention.prune_heads def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads ) # Prune linear layers self.q = prune_linear_layer(self.q, index) self.k = prune_linear_layer(self.k, index) self.v = prune_linear_layer(self.v, index) self.o = prune_linear_layer(self.o, index, dim=1) # Update hyper params self.n_heads = self.n_heads - len(heads) self.inner_dim = self.key_value_proj_dim * self.n_heads self.pruned_heads = self.pruned_heads.union(heads) @staticmethod # Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets def compute_bias(self, block_length: int): """Compute binned relative position bias""" target_device = ( self.relative_attention_bias.weight.device if self.relative_attention_bias.weight.device.type != "meta" else None ) memory_position = torch.arange(3 * block_length, dtype=torch.long, device=target_device) context_position = memory_position[block_length:-block_length] # (block_length, 3 * block_length) relative_position = memory_position[None, :] - context_position[:, None] relative_position_bucket = self._relative_position_bucket( relative_position, # (block_length, 3 * block_length) bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) # (block_length, 3 * block_length, num_heads) values = self.relative_attention_bias(relative_position_bucket) # (1, 1, num_heads, block_length, 3 * block_length) values = values.permute([2, 0, 1]).unsqueeze(0).unsqueeze(0) return values def compute_side_bias(self, mask: torch.Tensor, global_segment_ids: torch.Tensor) -> torch.Tensor: # (batch_size, 1, seq_len, global_seq_len) side_attention_mask = torch.eq(mask[..., None], global_segment_ids[:, None, :])[:, None, ...] attention_side_bias = torch.where(side_attention_mask > 0, 0.0, -1e10) # (batch_size, seq_len, global_seq_len) side_relative_position = _make_side_relative_position_ids(mask, self.global_block_size) side_relative_position_bucket = self._relative_position_bucket( side_relative_position, bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) # (batch_size, seq_len, global_seq_len, num_heads) side_bias = self.global_relative_attention_bias(side_relative_position_bucket) # (batch_size, num_heads, seq_len, global_seq_len) side_bias = side_bias.permute([0, 3, 1, 2]) # (batch_size, num_heads, seq_len, global_seq_len) attention_side_bias = attention_side_bias + side_bias return attention_side_bias def forward( self, hidden_states, mask=None, position_bias=None, layer_head_mask=None, output_attentions=False, ): batch_size, seq_length = hidden_states.shape[:2] def shape(states): """projection""" return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim) def unshape(states): """reshape""" return states.contiguous().view(batch_size, -1, self.inner_dim) # Prepare components for transient-global attention # Obtain block_ids and global_segment_ids # global_seq_len := seq_len // self.global_block_size # shapes: (batch_size, seq_len) & (batch_size, global_seq_len) block_ids, global_segment_ids = _make_global_fixed_block_ids( mask if mask is not None else torch.ones(hidden_states.shape[:-1]), self.global_block_size, ) # Create global inputs _global_seq_len = global_segment_ids.shape[-1] global_inputs = _create_global_aggregates(hidden_states, block_ids, _global_seq_len) global_inputs = self.global_input_layer_norm(global_inputs) # get query states -> (batch_size, seq_length, n_heads, dim_per_head) query_states = shape(self.q(hidden_states)) key_states = shape(self.k(hidden_states)) value_states = shape(self.v(hidden_states)) # Get global/side key/value states shape: (batch_size, global_seq_len, n_heads, dim_per_head) side_key_states = shape(self.k(global_inputs)) side_value_states = shape(self.v(global_inputs)) # Split into blocks -> (batch_size, num_blocks, block_len, n_heads, dim_per_head) query_states = _split_into_blocks(query_states, self.block_len, dim=1) key_states = _split_into_blocks(key_states, self.block_len, dim=1) value_states = _split_into_blocks(value_states, self.block_len, dim=1) # Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head) key_states = _concatenate_3_blocks(key_states, block_dim=1, sequence_dim=2) value_states = _concatenate_3_blocks(value_states, block_dim=1, sequence_dim=2) # Tile side inputs across local key/value blocks # New shape: (batch_size, num_blocks, global_seq_len, n_heads, dim_per_head) reps = [1] * (side_key_states.ndim + 1) reps[1] = key_states.shape[1] side_key_states = side_key_states.unsqueeze(1).repeat(reps) side_value_states = side_value_states.unsqueeze(1).repeat(reps) # Concatenate "local" and "side"/"global" key/value states to allow each token to attend global aggregated ones # New shape: (batch_size, num_blocks, 3 * block_len + global_seq_len, n_heads, dim_per_head) key_states = torch.cat([key_states, side_key_states], dim=2) value_states = torch.cat([value_states, side_value_states], dim=2) # Compute scores -> (batch_size, num_block, n_heads, block_len, 3 * block_len + global_seq_len) scores = torch.einsum("...qhd,...khd->...hqk", query_states, key_states) if mask is not None: # We need to adjust position bias shape to be sum with mask local_attention_mask = _get_local_attention_mask(mask, self.block_len, hidden_states.device) # Replace masked positions with -10_000 (according to the original implementation) local_attention_mask = torch.where(local_attention_mask > 0, 0.0, -1e10) else: local_attention_mask = None if position_bias is None: # position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len) if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, 1, self.n_heads, self.block_len, 3 * self.block_len), device=scores.device, dtype=scores.dtype, ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias(self.block_len) if local_attention_mask is not None: # (batch_size, 1, n_heads, block_len, 3 * block_len) position_bias = position_bias + local_attention_mask.transpose(1, 2) position_bias = position_bias.type(scores.dtype) # Calculate global/side bias - shape: # (batch_size, num_heads, seq_len, global_seq_len) if mask is None: mask = torch.ones(batch_size, seq_length) # (batch_size, num_heads, seq_len, global_seq_len) side_position_bias = self.compute_side_bias(mask, global_segment_ids) # (batch_size, num_blocks, num_heads, block_len, global_seq_len) side_position_bias = _split_into_blocks(side_position_bias, self.block_len, dim=-2).transpose(1, 2) side_position_bias = side_position_bias.type(scores.dtype).to(scores.device) # (batch_size, num_blocks, num_heads, block_len, 3 * block_len + global_seq_len) position_bias = torch.cat([position_bias, side_position_bias], dim=-1) scores += position_bias # (batch_size, num_blocks, n_heads, block_len, 3 * block_len + global_seq_len) attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_weights = attn_weights.type(value_states.dtype) attn_output = unshape(torch.einsum("...hqk,...khd->...qhd", attn_weights, value_states)) attn_output = attn_output[:, :seq_length, :] attn_output = self.o(attn_output) present_key_value_state = None outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs # Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->LongT5 class LongT5LayerSelfAttention(nn.Module): def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.SelfAttention = LongT5Attention(config, has_relative_attention_bias=has_relative_attention_bias) self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.SelfAttention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0]) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class LongT5LayerLocalSelfAttention(nn.Module): """Local self attention used in encoder""" def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.LocalSelfAttention = LongT5LocalAttention(config, has_relative_attention_bias=has_relative_attention_bias) self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, output_attentions=False, **kwargs: Any, # to accept past_key_value and use_cache kwargs ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.LocalSelfAttention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0]) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class LongT5LayerTransientGlobalSelfAttention(nn.Module): """Transient-Global self attention used in encoder""" def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.TransientGlobalSelfAttention = LongT5TransientGlobalAttention( config, has_relative_attention_bias=has_relative_attention_bias ) self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, output_attentions=False, **kwargs: Any, # to accept past_key_value and use_cache kwargs ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.TransientGlobalSelfAttention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0]) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs # Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->LongT5 class LongT5LayerCrossAttention(nn.Module): def __init__(self, config): super().__init__() self.EncDecAttention = LongT5Attention(config, has_relative_attention_bias=False) self.layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, query_length=None, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.EncDecAttention( normed_hidden_states, mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, query_length=query_length, output_attentions=output_attentions, ) layer_output = hidden_states + self.dropout(attention_output[0]) outputs = (layer_output,) + attention_output[1:] # add attentions if we output them return outputs class LongT5Block(nn.Module): def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.is_decoder = config.is_decoder if config.is_decoder: attention_layer = LongT5LayerSelfAttention elif config.encoder_attention_type == "local": attention_layer = LongT5LayerLocalSelfAttention elif config.encoder_attention_type == "transient-global": attention_layer = LongT5LayerTransientGlobalSelfAttention else: raise ValueError( "For encoder attention mechanism, either `local` or `transient-global` attention type is expected, " f"but got {config.encoder_attention_type}." ) self.layer = nn.ModuleList() self.layer.append(attention_layer(config, has_relative_attention_bias=has_relative_attention_bias)) if self.is_decoder: self.layer.append(LongT5LayerCrossAttention(config)) self.layer.append(LongT5LayerFF(config)) def forward( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, return_dict=True, ): if past_key_value is not None: if not self.is_decoder: logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 if len(past_key_value) != expected_num_past_key_values: raise ValueError( f"There should be {expected_num_past_key_values} past states. " f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" f"Got {len(past_key_value)} past key / value states" ) self_attn_past_key_value = past_key_value[:2] cross_attn_past_key_value = past_key_value[2:] else: self_attn_past_key_value, cross_attn_past_key_value = None, None self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=self_attn_past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states, present_key_value_state = self_attention_outputs[:2] attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights # clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/ if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) do_cross_attention = self.is_decoder and encoder_hidden_states is not None if do_cross_attention: # the actual query length is unknown for cross attention # if using past key value states. Need to inject it here if present_key_value_state is not None: query_length = present_key_value_state[0].shape[2] else: query_length = None cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, query_length=query_length, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = cross_attention_outputs[0] # clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/ if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) # Combine self attn and cross attn key value states if present_key_value_state is not None: present_key_value_state = present_key_value_state + cross_attention_outputs[1] # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[2:] # Apply Feed Forward layer hidden_states = self.layer[-1](hidden_states) # clamp inf values to enable fp16 inference - check https://github.com/huggingface/transformers/pull/19229/ if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if use_cache: outputs = outputs + (present_key_value_state,) + attention_outputs else: outputs = outputs + attention_outputs return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) class LongT5PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LongT5Config base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["LongT5Block"] @property # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel.dummy_inputs def dummy_inputs(self): input_ids = torch.tensor(DUMMY_INPUTS) input_mask = torch.tensor(DUMMY_MASK) dummy_inputs = { "decoder_input_ids": input_ids, "input_ids": input_ids, "decoder_attention_mask": input_mask, } return dummy_inputs def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor # Used for testing weights initialization if isinstance(module, LongT5LayerNorm): module.weight.data.fill_(factor * 1.0) elif isinstance(module, (LongT5Model, LongT5ForConditionalGeneration, LongT5EncoderModel)): # Mesh TensorFlow embeddings initialization # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) elif isinstance(module, LongT5DenseActDense): # Mesh TensorFlow FF initialization # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi, "bias") and module.wi.bias is not None: module.wi.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, LongT5DenseGatedActDense): module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: module.wi_0.bias.data.zero_() module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: module.wi_1.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, (LongT5Attention, LongT5LocalAttention, LongT5TransientGlobalAttention)): # Mesh TensorFlow attention initialization to avoid scaling before softmax # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 d_model = self.config.d_model key_value_proj_dim = self.config.d_kv n_heads = self.config.num_heads module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) if module.has_relative_attention_bias: module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) if isinstance(module, LongT5TransientGlobalAttention): module.global_relative_attention_bias.weight.data.normal_( mean=0.0, std=factor * ((d_model) ** -0.5) ) # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->LongT5 def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id if decoder_start_token_id is None: raise ValueError( "self.model.config.decoder_start_token_id has to be defined. In LongT5 it is usually set to the pad_token_id. " "See LongT5 docs for more information." ) # shift inputs to the right if is_torch_fx_proxy(input_ids): # Item assignment is not supported natively for proxies. shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) else: shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class LongT5Stack(LongT5PreTrainedModel): def __init__(self, config, embed_tokens=None): super().__init__(config) self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model) if embed_tokens is not None: self.embed_tokens.weight = embed_tokens.weight self.is_decoder = config.is_decoder self.local_radius = config.local_radius self.block_len = self.local_radius + 1 self.block = nn.ModuleList( [LongT5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] ) self.final_layer_norm = LongT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.t5.modeling_t5.T5Stack.get_input_embeddings def get_input_embeddings(self): return self.embed_tokens # Copied from transformers.models.t5.modeling_t5.T5Stack.set_input_embeddings def set_input_embeddings(self, new_embeddings): self.embed_tokens = new_embeddings def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError( f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") if inputs_embeds is None: assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings" inputs_embeds = self.embed_tokens(input_ids) batch_size, seq_length = input_shape # required mask seq length can be calculated via length of past mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length if use_cache is True: assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder" if attention_mask is None: attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) # initialize past_key_values with `None` if past does not exist if past_key_values is None: past_key_values = [None] * len(self.block) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. # We use local attention in encoder self-attention, otherwise standard self & cross attentions are used if self.is_decoder: extended_attention_mask = self.get_extended_attention_mask( attention_mask, input_shape, inputs_embeds.device ) elif self.config.encoder_attention_type == "local": extended_attention_mask = _get_local_attention_mask(attention_mask, self.block_len, inputs_embeds.device) else: # we need to use both local attention mask and standard extended mask for transient-global attention extended_attention_mask = attention_mask # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.num_layers) cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) present_key_value_states = () if use_cache else None all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and self.is_decoder) else None position_bias = None encoder_decoder_position_bias = None hidden_states = self.dropout(inputs_embeds) for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): layer_head_mask = head_mask[i] cross_attn_layer_head_mask = cross_attn_head_mask[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.forward, hidden_states, extended_attention_mask, position_bias, encoder_hidden_states, encoder_extended_attention_mask, encoder_decoder_position_bias, layer_head_mask, cross_attn_layer_head_mask, None, # past_key_value is always None with gradient checkpointing use_cache, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask=extended_attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, layer_head_mask=layer_head_mask, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) # layer_outputs is a tuple with: # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) if use_cache is False: layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] hidden_states, present_key_value_state = layer_outputs[:2] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[2] if self.is_decoder and encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] # append next layer key value states if use_cache: present_key_value_states = present_key_value_states + (present_key_value_state,) if output_attentions: all_attentions = all_attentions + (layer_outputs[3],) if self.is_decoder: all_cross_attentions = all_cross_attentions + (layer_outputs[5],) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, present_key_value_states, all_hidden_states, all_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) LONGT5_START_DOCSTRING = r""" The LongT5 model was proposed in [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung and Yinfei Yang. It's an encoder-decoder transformer pre-trained in a text-to-text denoising generative setting. LongT5 model is an extension of T5 model, and it enables using one of the two different efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LongT5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LONGT5_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5 Training](./longt5#training). attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) LONGT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [LONGT5 Training](./longt5#training). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ LONGT5_ENCODER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5 Training](./longt5#training). attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask __HEAD_MASK_WARNING_MSG = """ The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, num_heads)`. """ @add_start_docstrings( "The bare LONGT5 Model transformer outputting raw hidden-states without any specific head on top.", LONGT5_START_DOCSTRING, ) class LongT5Model(LongT5PreTrainedModel): _keys_to_ignore_on_load_unexpected = [ r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", ] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: LongT5Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = LongT5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = LongT5Stack(decoder_config, self.shared) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, LongT5Model >>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base") >>> model = LongT5Model.from_pretrained("google/long-t5-local-base") >>> # Let's try a very long encoder input. >>> input_ids = tokenizer( ... 100 * "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> # forward pass >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings("""LONGT5 Model with a `language modeling` head on top.""", LONGT5_START_DOCSTRING) class LongT5ForConditionalGeneration(LongT5PreTrainedModel): _keys_to_ignore_on_load_unexpected = [ r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", ] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: LongT5Config): super().__init__(config) self.model_dim = config.d_model self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = LongT5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = LongT5Stack(decoder_config, self.shared) self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_output_embeddings(self): return self.lm_head def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps") >>> model = LongT5ForConditionalGeneration.from_pretrained( ... "Stancld/longt5-tglobal-large-16384-pubmed-3k_steps" ... ) >>> # Let's try a very long input. >>> inputs = tokenizer(100 * "studies have shown that owning a dog is good for you ", return_tensors="pt") >>> input_ids = inputs.input_ids >>> outputs = model.generate(input_ids) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) abstractthe aim of this article is to provide an overview of the literature on the role of dog ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: # Convert encoder inputs in embeddings if needed encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = decoder_outputs[0] if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.model_dim**-0.5) lm_logits = self.lm_head(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-100) labels = labels.to(lm_logits.device) loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 if not return_dict: output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] return { "decoder_input_ids": input_ids, "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, } def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) def _reorder_cache(self, past_key_values, beam_idx): # if decoder past is not included in output # speedy decoding is disabled and no need to reorder if past_key_values is None: logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") return past_key_values reordered_decoder_past = () for layer_past_states in past_key_values: # get the correct batch idx from layer past batch dim # batch dim of `past` is at 2nd position reordered_layer_past_states = () for layer_past_state in layer_past_states: # need to set correct `past` for each of the four key / value states reordered_layer_past_states = reordered_layer_past_states + ( layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), ) assert reordered_layer_past_states[0].shape == layer_past_states[0].shape assert len(reordered_layer_past_states) == len(layer_past_states) reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) return reordered_decoder_past @add_start_docstrings( "The bare LONGT5 Model transformer outputting encoder's raw hidden-states without any specific head on top.", LONGT5_START_DOCSTRING, ) class LongT5EncoderModel(LongT5PreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight"] _keys_to_ignore_on_load_unexpected = [r"decoder"] def __init__(self, config: LongT5Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = LongT5Stack(encoder_config, self.shared) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(LONGT5_ENCODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, LongT5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("google/long-t5-local-base") >>> model = LongT5EncoderModel.from_pretrained("google/long-t5-local-base") >>> input_ids = tokenizer( ... 100 * "Studies have been shown that owning a dog is good for you ", return_tensors="pt" ... ).input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return encoder_outputs
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py
#################################################################################################### # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import MegatronBertConfig #################################################################################################### def recursive_print(name, val, spaces=0): # Format the message. if name is None: msg = None else: fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}" msg = fmt.format(name) # Print and recurse (if needed). if isinstance(val, dict): if msg is not None: print(msg) for k in val.keys(): recursive_print(k, val[k], spaces + 2) elif isinstance(val, torch.Tensor): print(msg, ":", val.size()) else: print(msg, ":", val) def fix_query_key_value_ordering(param, checkpoint_version, num_splits, num_heads, hidden_size): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace BERT. input_shape = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:] param = param.view(*saved_shape) param = param.transpose(0, 2) param = param.transpose(1, 2).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:] param = param.view(*saved_shape) param = param.transpose(0, 1).contiguous() param = param.view(*input_shape) return param #################################################################################################### def convert_megatron_checkpoint(args, input_state_dict, config): # The converted output model. output_state_dict = {} # old versions did not store training args ds_args = input_state_dict.get("args", None) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) config.tokenizer_type = ds_args.tokenizer_type config.vocab_size = ds_args.padded_vocab_size config.max_position_embeddings = ds_args.max_position_embeddings config.hidden_size = ds_args.hidden_size config.num_hidden_layers = ds_args.num_layers config.num_attention_heads = ds_args.num_attention_heads config.intermediate_size = ds_args.ffn_hidden_size if "ffn_hidden_size" in ds_args else 4 * ds_args.hidden_size # pprint(config) # The number of heads. heads = config.num_attention_heads # The hidden_size per head. hidden_size_per_head = config.hidden_size // heads # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): checkpoint_version = input_state_dict["checkpoint_version"] else: checkpoint_version = 0.0 # The model. model = input_state_dict["model"] # The language model. lm = model["language_model"] # The embeddings. embeddings = lm["embedding"] # The word embeddings. word_embeddings = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. word_embeddings = word_embeddings[: config.vocab_size, :] # Store the word embeddings. output_state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings # The position embeddings. pos_embeddings = embeddings["position_embeddings"]["weight"] assert pos_embeddings.size(0) == config.max_position_embeddings and pos_embeddings.size(1) == config.hidden_size # Store the position embeddings. output_state_dict["bert.embeddings.position_embeddings.weight"] = pos_embeddings # The token-type embeddings. tokentype_embeddings = embeddings["tokentype_embeddings"]["weight"] # Store the position embeddings. output_state_dict["bert.embeddings.token_type_embeddings.weight"] = tokentype_embeddings # The transformer. transformer = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. layer_re = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)") # The simple map of names for "automated" rules. megatron_to_transformers = { "attention.dense": ".attention.output.dense.", "self_attention.dense": ".attention.output.dense.", "mlp.dense_h_to_4h": ".intermediate.dense.", "mlp.dense_4h_to_h": ".output.dense.", } # Keep track of the attention/query/value tensor. attention_qkv_weight = None # Extract the layers. for key, val in transformer.items(): # Match the name. m = layer_re.match(key) # Stop if that's not a layer if m is None: break # The index of the layer. layer_idx = int(m.group(1)) # The name of the operation. op_name = m.group(2) # Is it a weight or a bias? weight_or_bias = m.group(3) # The name of the layer. layer_name = f"bert.encoder.layer.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm"): ln_name = "attention.ln" if op_name.startswith("input") else "ln" output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Make sure the QKV pointer is nil. assert attention_qkv_weight is None, "" out_val = fix_query_key_value_ordering(val, checkpoint_version, 3, heads, hidden_size_per_head) # Store the tensor as we need the bias as well to interleave QKV and biases. attention_qkv_weight = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": # Make sure we read the weight tensor. assert attention_qkv_weight is not None, "" # Split the QKV matrix into Q, K and V. Megatron stores Q,K,V interleaved. q = attention_qkv_weight[0 * config.hidden_size : 1 * config.hidden_size, :] k = attention_qkv_weight[1 * config.hidden_size : 2 * config.hidden_size, :] v = attention_qkv_weight[2 * config.hidden_size : 3 * config.hidden_size, :] out_val = fix_query_key_value_ordering(val, checkpoint_version, 3, heads, hidden_size_per_head) # Split the bias. q_bias = out_val[0 * config.hidden_size : 1 * config.hidden_size] k_bias = out_val[1 * config.hidden_size : 2 * config.hidden_size] v_bias = out_val[2 * config.hidden_size : 3 * config.hidden_size] # Store. output_state_dict[f"{layer_name}.attention.self.query.weight"] = q output_state_dict[f"{layer_name}.attention.self.query.bias"] = q_bias output_state_dict[f"{layer_name}.attention.self.key.weight"] = k output_state_dict[f"{layer_name}.attention.self.key.bias"] = k_bias output_state_dict[f"{layer_name}.attention.self.value.weight"] = v output_state_dict[f"{layer_name}.attention.self.value.bias"] = v_bias # Clear the stored tensor. attention_qkv_weight = None # Copy weights and biases as is. elif weight_or_bias in ["weight", "bias"]: out_name = megatron_to_transformers[op_name] output_state_dict[layer_name + out_name + weight_or_bias] = val # The final layernorm. output_state_dict["bert.encoder.ln.weight"] = transformer["final_layernorm.weight"] output_state_dict["bert.encoder.ln.bias"] = transformer["final_layernorm.bias"] # The pooler. pooler = lm["pooler"] # Store the matrix and the bias. output_state_dict["bert.pooler.dense.weight"] = pooler["dense.weight"] output_state_dict["bert.pooler.dense.bias"] = pooler["dense.bias"] # The LM head from Megatron (for RACE). lm_head = model["lm_head"] # The transform matrix. output_state_dict["cls.predictions.transform.dense.weight"] = lm_head["dense.weight"] output_state_dict["cls.predictions.transform.dense.bias"] = lm_head["dense.bias"] # The transform LN. output_state_dict["cls.predictions.transform.LayerNorm.weight"] = lm_head["layernorm.weight"] output_state_dict["cls.predictions.transform.LayerNorm.bias"] = lm_head["layernorm.bias"] # For the decoder, we replicate the weights. output_state_dict["cls.predictions.decoder.weight"] = word_embeddings output_state_dict["cls.predictions.bias"] = lm_head["bias"] # The classifier from Megatron (for MLNI). binary_head = model["binary_head"] # Store the classifier. output_state_dict["cls.seq_relationship.weight"] = binary_head["weight"] output_state_dict["cls.seq_relationship.bias"] = binary_head["bias"] # It should be done! return output_state_dict #################################################################################################### def main(): # Create the argument parser. parser = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure", action="store_true") parser.add_argument("path_to_checkpoint", type=str, help="Path to the ZIP file containing the checkpoint") parser.add_argument( "--config_file", default="", type=str, help="An optional config json file describing the pre-trained model.", ) args = parser.parse_args() # Extract the basename. basename = os.path.dirname(args.path_to_checkpoint) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'Extracting PyTorch state dictionary from "{args.path_to_checkpoint}"') if args.path_to_checkpoint.endswith(".zip"): with zipfile.ZipFile(args.path_to_checkpoint, "r") as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt") as pytorch_dict: input_state_dict = torch.load(pytorch_dict, map_location="cpu") else: input_state_dict = torch.load(args.path_to_checkpoint, map_location="cpu") if args.config_file == "": # Default config of megatron-bert 345m config = MegatronBertConfig() # different megatron-bert-*-345m models have different vocab sizes, so override the default # config (which is for megatron-bert-cased-345m) with the actual vocab dimension config.vocab_size = input_state_dict["model"]["lm_head"]["bias"].numel() else: config = MegatronBertConfig.from_json_file(args.config_file) # Convert. print("Converting") output_state_dict = convert_megatron_checkpoint(args, input_state_dict, config) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(None, output_state_dict) # Store the config to file. print("Saving config") config.save_pretrained(basename) # Store the state_dict to file. output_checkpoint_file = os.path.join(basename, "pytorch_model.bin") print(f'Saving checkpoint to "{output_checkpoint_file}"') torch.save(output_state_dict, output_checkpoint_file) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/megatron_bert/configuration_megatron_bert.py
# coding=utf-8 # Copyright 2021- NVIDIA Corporation and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MEGATRON_BERT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class MegatronBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MegatronBertModel`]. It is used to instantiate a MEGATRON_BERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MEGATRON_BERT [nvidia/megatron-bert-uncased-345m](https://huggingface.co/nvidia/megatron-bert-uncased-345m) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 29056): Vocabulary size of the MEGATRON_BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MegatronBertModel`]. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`MegatronBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Examples: ```python >>> from transformers import MegatronBertConfig, MegatronBertModel >>> # Initializing a MEGATRON_BERT google-bert/bert-base-uncased style configuration >>> configuration = MegatronBertConfig() >>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration >>> model = MegatronBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "megatron-bert" def __init__( self, vocab_size=29056, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/megatron_bert/__init__.py
# Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_megatron_bert"] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/megatron_bert/modeling_megatron_bert.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch MegatronBERT model.""" import math import os import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_megatron_bert import MegatronBertConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MegatronBertConfig" _CHECKPOINT_FOR_DOC = "nvidia/megatron-bert-cased-345m" from ..deprecated._archive_maps import MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 def load_tf_weights_in_megatron_bert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") logger.info("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) return model class MegatronBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file # In Megatron, layer-norm is applied after the 1st dropout. # self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings # Megatron BERT moves that layer norm after the drop-out (and to each layer). # embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->MegatronBert class MegatronBertSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in MegatronBertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Based transformers.models.bert.modeling_bert.BertSelfOutput. Moved LayerNorm to MegatronBertAttention below. class MegatronBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return residual + hidden_states # Based transformers.models.bert.modeling_bert.BertAttention. Added LayerNorm. class MegatronBertAttention(nn.Module): def __init__(self, config): super().__init__() self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.self = MegatronBertSelfAttention(config) self.output = MegatronBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: ln_outputs = self.ln(hidden_states) self_outputs = self.self( ln_outputs, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->MegatronBert class MegatronBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Based on transformers.models.bert.modeling_bert.BertOutput. Moved LayerNorm to MegatronBertLayer below. class MegatronBertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return input_tensor + hidden_states # Based on transformers.models.bert.modeling_bert.BertLayer. Added LayerNorm. class MegatronBertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = MegatronBertAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise TypeError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = MegatronBertAttention(config) self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.intermediate = MegatronBertIntermediate(config) self.output = MegatronBertOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise AttributeError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): ln_output = self.ln(attention_output) intermediate_output = self.intermediate(ln_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class MegatronBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([MegatronBertLayer(config) for _ in range(config.num_hidden_layers)]) # The final layer norm. We removed the 1st LN, moved LN to each hidden layer and this one # is simply the final LN (Transformer's BERT has it attached to each hidden layer). self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) # Because we moved the layer-norm at the end of the hidden layer, we have non-normali- # zed data here. If that's really needed, we must apply LN to match Transformer's BERT. hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Finalize the hidden states. hidden_states = self.ln(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->MegatronBert class MegatronBertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->MegatronBert class MegatronBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->MegatronBert class MegatronBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MegatronBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->MegatronBert class MegatronBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MegatronBertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->MegatronBert class MegatronBertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->MegatronBert class MegatronBertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = MegatronBertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class MegatronBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MegatronBertConfig load_tf_weights = load_tf_weights_in_megatron_bert base_model_prefix = "bert" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @dataclass # Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->MegatronBert class MegatronBertForPreTrainingOutput(ModelOutput): """ Output type of [`MegatronBertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None MEGATRON_BERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MegatronBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MEGATRON_BERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MegatronBert Model transformer outputting raw hidden-states without any specific head on top.", MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertModel(MegatronBertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = MegatronBertEmbeddings(config) self.encoder = MegatronBertEncoder(config) self.pooler = MegatronBertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """ MegatronBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertForPreTraining(MegatronBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config, add_binary_head=True): super().__init__(config) self.bert = MegatronBertModel(config) self.cls = MegatronBertPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MegatronBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, next_sentence_label: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MegatronBertForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import AutoTokenizer, MegatronBertForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForPreTraining.from_pretrained("nvidia/megatron-bert-cased-345m") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return MegatronBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """MegatronBert Model with a `language modeling` head on top for CLM fine-tuning.""", MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertForCausalLM(MegatronBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `MegatronBertForCausalLM` as a standalone, add `is_decoder=True.`") self.bert = MegatronBertModel(config, add_pooling_layer=False) self.cls = MegatronBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, MegatronBertForCausalLM, MegatronBertConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForCausalLM.from_pretrained("nvidia/megatron-bert-cased-345m", is_decoder=True) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past_key_values is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings("""MegatronBert Model with a `language modeling` head on top.""", MEGATRON_BERT_START_DOCSTRING) class MegatronBertForMaskedLM(MegatronBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `MegatronBertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.bert = MegatronBertModel(config, add_pooling_layer=False) self.cls = MegatronBertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """MegatronBert Model with a `next sentence prediction (classification)` head on top.""", MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertForNextSentencePrediction(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = MegatronBertModel(config) self.cls = MegatronBertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring). Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example: ```python >>> from transformers import AutoTokenizer, MegatronBertForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nvidia/megatron-bert-cased-345m") >>> model = MegatronBertForNextSentencePrediction.from_pretrained("nvidia/megatron-bert-cased-345m") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ```""" if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MegatronBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertForSequenceClassification(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MegatronBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MegatronBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertForMultipleChoice(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = MegatronBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MegatronBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertForTokenClassification(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MegatronBertModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MegatronBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MEGATRON_BERT_START_DOCSTRING, ) class MegatronBertForQuestionAnswering(MegatronBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MegatronBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/beit/modeling_beit.py
# coding=utf-8 # Copyright 2021 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch BEiT model.""" import collections.abc import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BackboneOutput, BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput, MaskedLMOutput, SemanticSegmenterOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_beit import BeitConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "BeitConfig" # Base docstring _CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224-pt22k" _EXPECTED_OUTPUT_SHAPE = [1, 197, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "microsoft/beit-base-patch16-224" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" from ..deprecated._archive_maps import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 @dataclass class BeitModelOutputWithPooling(BaseModelOutputWithPooling): """ Class for outputs of [`BeitModel`]. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token will be returned. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output class BeitDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) # Based on timm implementation, which can be found here: # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py class BeitEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: BeitConfig) -> None: super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if config.use_mask_token: self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) else: self.mask_token = None self.patch_embeddings = BeitPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches if config.use_absolute_position_embeddings: self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) else: self.position_embeddings = None self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor: embeddings, (patch_height, patch_width) = self.patch_embeddings( pixel_values, self.position_embeddings[:, 1:, :] if self.position_embeddings is not None else None ) batch_size, seq_len, _ = embeddings.size() if bool_masked_pos is not None: mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_tokens w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1 - w) + mask_tokens * w cls_tokens = self.cls_token.expand(batch_size, -1, -1) if self.position_embeddings is not None: cls_tokens = cls_tokens + self.position_embeddings[:, :1, :] embeddings = torch.cat((cls_tokens, embeddings), dim=1) embeddings = self.dropout(embeddings) return embeddings, (patch_height, patch_width) class BeitPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.patch_shape = patch_shape self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor, position_embedding: Optional[torch.Tensor] = None) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.projection(pixel_values) patch_height, patch_width = embeddings.shape[2], embeddings.shape[3] if position_embedding is not None: # interpolate the position embedding to the corresponding size position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute( 0, 3, 1, 2 ) position_embedding = nn.functional.interpolate( position_embedding, size=(patch_height, patch_width), mode="bicubic" ) embeddings = embeddings + position_embedding embeddings = embeddings.flatten(2).transpose(1, 2) return embeddings, (patch_height, patch_width) class BeitSelfAttention(nn.Module): def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) if window_size: self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size) else: self.relative_position_bias = None def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, relative_position_bias: Optional["BeitRelativePositionBias"] = None, ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Add relative position bias if present. if self.relative_position_bias is not None: attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0) # Add shared relative position bias if provided. if relative_position_bias is not None: attention_scores = attention_scores + relative_position_bias # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class BeitSelfOutput(nn.Module): """ The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: BeitConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class BeitAttention(nn.Module): def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None: super().__init__() self.attention = BeitSelfAttention(config, window_size=window_size) self.output = BeitSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, relative_position_bias: Optional["BeitRelativePositionBias"] = None, ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BeitIntermediate(nn.Module): def __init__(self, config: BeitConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BeitOutput(nn.Module): def __init__(self, config: BeitConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class BeitLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BeitAttention(config, window_size=window_size) self.intermediate = BeitIntermediate(config) self.output = BeitOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.drop_path = BeitDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) init_values = config.layer_scale_init_value if init_values > 0: self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) else: self.lambda_1, self.lambda_2 = None, None def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, relative_position_bias: Optional["BeitRelativePositionBias"] = None, ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # apply lambda_1 if present if self.lambda_1 is not None: attention_output = self.lambda_1 * attention_output # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states # in BEiT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output) if self.lambda_2 is not None: layer_output = self.lambda_2 * layer_output # second residual connection layer_output = self.drop_path(layer_output) + hidden_states outputs = (layer_output,) + outputs return outputs class BeitRelativePositionBias(nn.Module): def __init__(self, config: BeitConfig, window_size: tuple) -> None: super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, config.num_attention_heads) ) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = torch.zeros( size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype ) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index, persistent=False) def forward(self) -> torch.Tensor: relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1 ) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww class BeitEncoder(nn.Module): def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None: super().__init__() self.config = config if config.use_shared_relative_position_bias: self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size) else: self.relative_position_bias = None # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] self.layer = nn.ModuleList( [ BeitLayer( config, window_size=window_size if config.use_relative_position_bias else None, drop_path_rate=dpr[i], ) for i in range(config.num_hidden_layers) ] ) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: relative_position_bias = ( self.relative_position_bias() if self.relative_position_bias is not None else None ) layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class BeitPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BeitConfig base_model_prefix = "beit" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["BeitLayer"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) BEIT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BeitConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BEIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BeitImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Beit Model transformer outputting raw hidden-states without any specific head on top.", BEIT_START_DOCSTRING, ) class BeitModel(BeitPreTrainedModel): def __init__(self, config: BeitConfig, add_pooling_layer: bool = True) -> None: super().__init__(config) self.config = config self.embeddings = BeitEmbeddings(config) self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape) self.layernorm = ( nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) ) self.pooler = BeitPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BeitModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BeitModelOutputWithPooling]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output, (patch_height, patch_width) = self.embeddings(pixel_values, bool_masked_pos) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return BeitModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class BeitPooler(nn.Module): def __init__(self, config: BeitConfig) -> None: super().__init__() self.layernorm = ( nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.layernorm is not None: # Mean pool the final hidden states of the patch tokens patch_tokens = hidden_states[:, 1:, :] pooled_output = self.layernorm(patch_tokens.mean(1)) else: # Pool by simply taking the final hidden state of the [CLS] token pooled_output = hidden_states[:, 0] return pooled_output @add_start_docstrings( """Beit Model transformer with a 'language' modeling head on top. BEiT does masked image modeling by predicting visual tokens of a Vector-Quantize Variational Autoencoder (VQ-VAE), whereas other vision models like ViT and DeiT predict RGB pixel values. As a result, this class is incompatible with [`AutoModelForMaskedImageModeling`], so you will need to use [`BeitForMaskedImageModeling`] directly if you wish to do masked image modeling with BEiT.""", BEIT_START_DOCSTRING, ) class BeitForMaskedImageModeling(BeitPreTrainedModel): def __init__(self, config: BeitConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.beit = BeitModel(config, add_pooling_layer=False) # Classifier head self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, MaskedLMOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k") >>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k") >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values >>> # create random boolean mask of shape (batch_size, num_patches) >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) >>> loss, logits = outputs.loss, outputs.logits >>> list(logits.shape) [1, 196, 8192] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.beit( pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.layernorm(sequence_output) prediction_scores = self.lm_head(sequence_output[:, 1:]) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final hidden states of the patch tokens) e.g. for ImageNet. """, BEIT_START_DOCSTRING, ) class BeitForImageClassification(BeitPreTrainedModel): def __init__(self, config: BeitConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.beit = BeitModel(config, add_pooling_layer=True) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.beit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class BeitConvModule(nn.Module): """ A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], padding: Union[int, Tuple[int, int], str] = 0, bias: bool = False, dilation: Union[int, Tuple[int, int]] = 1, ) -> None: super().__init__() self.conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=padding, bias=bias, dilation=dilation, ) self.bn = nn.BatchNorm2d(out_channels) self.activation = nn.ReLU() def forward(self, input: torch.Tensor) -> torch.Tensor: output = self.conv(input) output = self.bn(output) output = self.activation(output) return output class BeitPyramidPoolingBlock(nn.Module): def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None: super().__init__() self.layers = [ nn.AdaptiveAvgPool2d(pool_scale), BeitConvModule(in_channels, channels, kernel_size=1), ] for i, layer in enumerate(self.layers): self.add_module(str(i), layer) def forward(self, input: torch.Tensor) -> torch.Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state class BeitPyramidPoolingModule(nn.Module): """ Pyramid Pooling Module (PPM) used in PSPNet. Args: pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid Module. in_channels (int): Input channels. channels (int): Channels after modules, before conv_seg. align_corners (bool): align_corners argument of F.interpolate. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None: super().__init__() self.pool_scales = pool_scales self.align_corners = align_corners self.in_channels = in_channels self.channels = channels self.blocks = [] for i, pool_scale in enumerate(pool_scales): block = BeitPyramidPoolingBlock(pool_scale=pool_scale, in_channels=in_channels, channels=channels) self.blocks.append(block) self.add_module(str(i), block) def forward(self, x: torch.Tensor) -> List[torch.Tensor]: ppm_outs = [] for ppm in self.blocks: ppm_out = ppm(x) upsampled_ppm_out = nn.functional.interpolate( ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners ) ppm_outs.append(upsampled_ppm_out) return ppm_outs class BeitUperHead(nn.Module): """ Unified Perceptual Parsing for Scene Understanding. This head is the implementation of [UPerNet](https://arxiv.org/abs/1807.10221). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, config: BeitConfig) -> None: super().__init__() self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768] self.channels = config.hidden_size self.align_corners = False self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) # PSP Module self.psp_modules = BeitPyramidPoolingModule( self.pool_scales, self.in_channels[-1], self.channels, align_corners=self.align_corners, ) self.bottleneck = BeitConvModule( self.in_channels[-1] + len(self.pool_scales) * self.channels, self.channels, kernel_size=3, padding=1, ) # FPN Module self.lateral_convs = nn.ModuleList() self.fpn_convs = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1) fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) self.fpn_bottleneck = BeitConvModule( len(self.in_channels) * self.channels, self.channels, kernel_size=3, padding=1, ) def psp_forward(self, inputs): x = inputs[-1] psp_outs = [x] psp_outs.extend(self.psp_modules(x)) psp_outs = torch.cat(psp_outs, dim=1) output = self.bottleneck(psp_outs) return output def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: # build laterals laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(encoder_hidden_states)) # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): prev_shape = laterals[i - 1].shape[2:] laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate( laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners ) # build outputs fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1, 0, -1): fpn_outs[i] = nn.functional.interpolate( fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners ) fpn_outs = torch.cat(fpn_outs, dim=1) output = self.fpn_bottleneck(fpn_outs) output = self.classifier(output) return output class BeitFCNHead(nn.Module): """ Fully Convolution Networks for Semantic Segmentation. This head is implemented of [FCNNet](https://arxiv.org/abs/1411.4038>). Args: config (BeitConfig): Configuration. in_channels kernel_size (int): The kernel size for convs in the head. Default: 3. dilation (int): The dilation rate for convs in the head. Default: 1. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, config: BeitConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1 ) -> None: super().__init__() self.in_channels = config.hidden_size self.channels = config.auxiliary_channels self.num_convs = config.auxiliary_num_convs self.concat_input = config.auxiliary_concat_input self.in_index = in_index conv_padding = (kernel_size // 2) * dilation convs = [] convs.append( BeitConvModule( self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation ) ) for i in range(self.num_convs - 1): convs.append( BeitConvModule( self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation ) ) if self.num_convs == 0: self.convs = nn.Identity() else: self.convs = nn.Sequential(*convs) if self.concat_input: self.conv_cat = BeitConvModule( self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2 ) self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: # just take the relevant feature maps hidden_states = encoder_hidden_states[self.in_index] output = self.convs(hidden_states) if self.concat_input: output = self.conv_cat(torch.cat([hidden_states, output], dim=1)) output = self.classifier(output) return output @add_start_docstrings( """ Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes. """, BEIT_START_DOCSTRING, ) class BeitForSemanticSegmentation(BeitPreTrainedModel): def __init__(self, config: BeitConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.beit = BeitModel(config, add_pooling_layer=False) # FPNs if len(self.config.out_indices) != 4: raise ValueError( "BeitForSemanticSegmentation requires config.out_indices to be a list of 4 integers, " "specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of " "a base-sized architecture." ) self.fpn1 = nn.Sequential( nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), nn.BatchNorm2d(config.hidden_size), nn.GELU(), nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), ) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) # Semantic segmentation head(s) self.decode_head = BeitUperHead(config) self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() def compute_loss(self, logits, auxiliary_logits, labels): # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) if auxiliary_logits is not None: upsampled_auxiliary_logits = nn.functional.interpolate( auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) # compute weighted loss loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) main_loss = loss_fct(upsampled_logits, labels) loss = main_loss if auxiliary_logits is not None: auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels) loss += self.config.auxiliary_loss_weight * auxiliary_loss return loss @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, BeitForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") >>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.beit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features, and reshape # note that we do +1 as the encoder_hidden_states also includes the initial embeddings features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] batch_size = pixel_values.shape[0] patch_resolution = self.config.image_size // self.config.patch_size features = [ x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features ] # apply FPNs ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(features)): features[i] = ops[i](features[i]) logits = self.decode_head(features) auxiliary_logits = None if self.auxiliary_head is not None: auxiliary_logits = self.auxiliary_head(features) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: loss = self.compute_loss(logits, auxiliary_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) @add_start_docstrings( """ BEiT backbone, to be used with frameworks like DETR and MaskFormer. """, BEIT_START_DOCSTRING, ) class BeitBackbone(BeitPreTrainedModel, BackboneMixin): def __init__(self, config): super().__init__(config) super()._init_backbone(config) self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)] self.embeddings = BeitEmbeddings(config) self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape) if config.add_fpn: if len(self.config.out_indices) != 4: raise ValueError( "BeitBackbone requires config.out_indices to be a list of 4 integers, " "specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of " "a base-sized architecture." ) hidden_size = config.hidden_size self.fpn1 = nn.Sequential( nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2), nn.BatchNorm2d(hidden_size, eps=config.batch_norm_eps), nn.GELU(), nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential(nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2)) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) # initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> BackboneOutput: """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoBackbone >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") >>> model = AutoBackbone.from_pretrained( ... "microsoft/beit-base-patch16-224", out_features=["stage1", "stage2", "stage3", "stage4"] ... ) >>> inputs = processor(image, return_tensors="pt") >>> outputs = model(**inputs) >>> feature_maps = outputs.feature_maps >>> list(feature_maps[-1].shape) [1, 768, 14, 14] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions batch_size = pixel_values.shape[0] embedding_output, (patch_height, patch_width) = self.embeddings(pixel_values) outputs = self.encoder( embedding_output, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict ) hidden_states = outputs.hidden_states if return_dict else outputs[1] feature_maps = () for stage, hidden_state in zip(self.stage_names, hidden_states): if stage in self.out_features: if self.config.reshape_hidden_states: hidden_state = hidden_state[:, 1:, :] hidden_state = hidden_state.permute(0, 2, 1) hidden_state = hidden_state.reshape(batch_size, -1, patch_height, patch_width) feature_maps += (hidden_state,) if self.config.add_fpn: feature_maps = [ self.fpn1(feature_maps[0]), self.fpn2(feature_maps[1]), self.fpn3(feature_maps[2]), self.fpn4(feature_maps[3]), ] feature_maps = tuple(feature_maps) if not return_dict: if output_hidden_states: output = (feature_maps,) + outputs[1:] else: output = (feature_maps,) + outputs[2:] return output return BackboneOutput( feature_maps=feature_maps, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/beit/configuration_beit.py
# coding=utf-8 # Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BEiT model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) from ..deprecated._archive_maps import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class BeitConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BeitModel`]. It is used to instantiate an BEiT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BEiT [microsoft/beit-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) architecture. Args: vocab_size (`int`, *optional*, defaults to 8192): Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during pre-training. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. use_mask_token (`bool`, *optional*, defaults to `False`): Whether to use a mask token for masked image modeling. use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`): Whether to use BERT-style absolute position embeddings. use_relative_position_bias (`bool`, *optional*, defaults to `False`): Whether to use T5-style relative position embeddings in the self-attention layers. use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`): Whether to use the same relative position embeddings across all self-attention layers of the Transformer. layer_scale_init_value (`float`, *optional*, defaults to 0.1): Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale. drop_path_rate (`float`, *optional*, defaults to 0.1): Stochastic depth rate per sample (when applied in the main path of residual layers). use_mean_pooling (`bool`, *optional*, defaults to `True`): Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the CLS token, before applying the classification head. pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`): Pooling scales used in Pooling Pyramid Module applied on the last feature map. use_auxiliary_head (`bool`, *optional*, defaults to `True`): Whether to use an auxiliary head during training. auxiliary_loss_weight (`float`, *optional*, defaults to 0.4): Weight of the cross-entropy loss of the auxiliary head. auxiliary_channels (`int`, *optional*, defaults to 256): Number of channels to use in the auxiliary head. auxiliary_num_convs (`int`, *optional*, defaults to 1): Number of convolutional layers to use in the auxiliary head. auxiliary_concat_input (`bool`, *optional*, defaults to `False`): Whether to concatenate the output of the auxiliary head with the input before the classification layer. semantic_loss_ignore_index (`int`, *optional*, defaults to 255): The index that is ignored by the loss function of the semantic segmentation model. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. add_fpn (`bool`, *optional*, defaults to `False`): Whether to add a FPN as part of the backbone. Only relevant for [`BeitBackbone`]. reshape_hidden_states (`bool`, *optional*, defaults to `True`): Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size, seq_len, hidden_size)`. Only relevant for [`BeitBackbone`]. Example: ```python >>> from transformers import BeitConfig, BeitModel >>> # Initializing a BEiT beit-base-patch16-224-pt22k style configuration >>> configuration = BeitConfig() >>> # Initializing a model (with random weights) from the beit-base-patch16-224-pt22k style configuration >>> model = BeitModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "beit" def __init__( self, vocab_size=8192, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, image_size=224, patch_size=16, num_channels=3, use_mask_token=False, use_absolute_position_embeddings=False, use_relative_position_bias=False, use_shared_relative_position_bias=False, layer_scale_init_value=0.1, drop_path_rate=0.1, use_mean_pooling=True, pool_scales=[1, 2, 3, 6], use_auxiliary_head=True, auxiliary_loss_weight=0.4, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=False, semantic_loss_ignore_index=255, out_features=None, out_indices=None, add_fpn=False, reshape_hidden_states=True, **kwargs, ): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.use_mask_token = use_mask_token self.use_absolute_position_embeddings = use_absolute_position_embeddings self.use_relative_position_bias = use_relative_position_bias self.use_shared_relative_position_bias = use_shared_relative_position_bias self.layer_scale_init_value = layer_scale_init_value self.drop_path_rate = drop_path_rate self.use_mean_pooling = use_mean_pooling # decode head attributes (semantic segmentation) self.pool_scales = pool_scales # auxiliary head attributes (semantic segmentation) self.use_auxiliary_head = use_auxiliary_head self.auxiliary_loss_weight = auxiliary_loss_weight self.auxiliary_channels = auxiliary_channels self.auxiliary_num_convs = auxiliary_num_convs self.auxiliary_concat_input = auxiliary_concat_input self.semantic_loss_ignore_index = semantic_loss_ignore_index # handle backwards compatibility if "segmentation_indices" in kwargs: logger.warning( "The `segmentation_indices` argument is deprecated and will be removed in a future version, use `out_indices` instead.", FutureWarning, ) out_indices = kwargs.pop("segmentation_indices") # backbone attributes self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, self.num_hidden_layers + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names ) self.add_fpn = add_fpn self.reshape_hidden_states = reshape_hidden_states # Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig class BeitOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/beit/convert_beit_unilm_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert BEiT checkpoints from the unilm repository.""" import argparse import json from pathlib import Path import requests import torch from datasets import load_dataset from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitImageProcessor, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config, has_lm_head=False, is_semantic=False): prefix = "backbone." if is_semantic else "" rename_keys = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"{prefix}blocks.{i}.norm1.weight", f"beit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"beit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append( (f"{prefix}blocks.{i}.attn.proj.weight", f"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"{prefix}blocks.{i}.attn.proj.bias", f"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"{prefix}blocks.{i}.norm2.weight", f"beit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"beit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.weight", f"beit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.bias", f"beit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"beit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"beit.encoder.layer.{i}.output.dense.bias")) # projection layer + position embeddings rename_keys.extend( [ (f"{prefix}cls_token", "beit.embeddings.cls_token"), (f"{prefix}patch_embed.proj.weight", "beit.embeddings.patch_embeddings.projection.weight"), (f"{prefix}patch_embed.proj.bias", "beit.embeddings.patch_embeddings.projection.bias"), ] ) if has_lm_head: # mask token + shared relative position bias + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ( "rel_pos_bias.relative_position_bias_table", "beit.encoder.relative_position_bias.relative_position_bias_table", ), ( "rel_pos_bias.relative_position_index", "beit.encoder.relative_position_bias.relative_position_index", ), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) elif is_semantic: # semantic segmentation classification heads rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config, has_lm_head=False, is_semantic=False): for i in range(config.num_hidden_layers): prefix = "backbone." if is_semantic else "" # queries, keys and values in_proj_weight = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight") q_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias") v_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias") state_dict[f"beit.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : config.hidden_size, : ] state_dict[f"beit.encoder.layer.{i}.attention.attention.query.bias"] = q_bias state_dict[f"beit.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"beit.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"beit.encoder.layer.{i}.attention.attention.value.bias"] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained gamma_1 = state_dict.pop(f"{prefix}blocks.{i}.gamma_1") gamma_2 = state_dict.pop(f"{prefix}blocks.{i}.gamma_2") state_dict[f"beit.encoder.layer.{i}.lambda_1"] = gamma_1 state_dict[f"beit.encoder.layer.{i}.lambda_2"] = gamma_2 # relative_position bias table + index if not has_lm_head: # each layer has its own relative position bias table = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_bias_table") index = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_index") state_dict[ f"beit.encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_bias_table" ] = table state_dict[ f"beit.encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_index" ] = index def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_beit_checkpoint(checkpoint_url, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our BEiT structure. """ # define default BEiT configuration config = BeitConfig() has_lm_head = False is_semantic = False repo_id = "huggingface/label-files" # set config parameters based on URL if checkpoint_url[-9:-4] == "pt22k": # masked image modeling config.use_shared_relative_position_bias = True config.use_mask_token = True has_lm_head = True elif checkpoint_url[-9:-4] == "ft22k": # intermediate fine-tuning on ImageNet-22k config.use_relative_position_bias = True config.num_labels = 21841 filename = "imagenet-22k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} # this dataset contains 21843 labels but the model only has 21841 # we delete the classes as mentioned in https://github.com/google-research/big_transfer/issues/18 del id2label[9205] del id2label[15027] config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} elif checkpoint_url[-8:-4] == "to1k": # fine-tuning on ImageNet-1k config.use_relative_position_bias = True config.num_labels = 1000 filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} if "384" in checkpoint_url: config.image_size = 384 if "512" in checkpoint_url: config.image_size = 512 elif "ade20k" in checkpoint_url: # fine-tuning config.use_relative_position_bias = True config.num_labels = 150 filename = "ade20k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} config.image_size = 640 is_semantic = True else: raise ValueError("Checkpoint not supported, URL should either end with 'pt22k', 'ft22k', 'to1k' or 'ade20k'") # size of the architecture if "base" in checkpoint_url: pass elif "large" in checkpoint_url: config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 if "ade20k" in checkpoint_url: config.image_size = 640 config.out_indices = [7, 11, 15, 23] else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL") # load state_dict of original model, remove and rename some keys state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", check_hash=True) state_dict = state_dict["model"] if "ade20k" not in checkpoint_url else state_dict["state_dict"] rename_keys = create_rename_keys(config, has_lm_head=has_lm_head, is_semantic=is_semantic) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config, has_lm_head=has_lm_head, is_semantic=is_semantic) if is_semantic: # add prefix to decoder keys for key, val in state_dict.copy().items(): val = state_dict.pop(key) if key.startswith("backbone.fpn"): key = key.replace("backbone.fpn", "fpn") state_dict[key] = val # load HuggingFace model if checkpoint_url[-9:-4] == "pt22k": model = BeitForMaskedImageModeling(config) elif "ade20k" in checkpoint_url: model = BeitForSemanticSegmentation(config) else: model = BeitForImageClassification(config) model.eval() model.load_state_dict(state_dict) # Check outputs on an image if is_semantic: image_processor = BeitImageProcessor(size=config.image_size, do_center_crop=False) ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test") image = Image.open(ds[0]["file"]) else: image_processor = BeitImageProcessor( size=config.image_size, resample=PILImageResampling.BILINEAR, do_center_crop=False ) image = prepare_img() encoding = image_processor(images=image, return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values) logits = outputs.logits # verify logits expected_shape = torch.Size([1, 1000]) if checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k"): expected_shape = torch.Size([1, 196, 8192]) elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k"): expected_shape = torch.Size([1, 196, 8192]) elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft22k"): expected_shape = torch.Size([1, 21841]) expected_logits = torch.tensor([2.2288, 2.4671, 0.7395]) expected_class_idx = 2397 elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft22k"): expected_shape = torch.Size([1, 21841]) expected_logits = torch.tensor([1.6881, -0.2787, 0.5901]) expected_class_idx = 2396 elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft1k"): expected_logits = torch.tensor([0.1241, 0.0798, -0.6569]) expected_class_idx = 285 elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft22kto1k"): expected_logits = torch.tensor([-1.2385, -1.0987, -1.0108]) expected_class_idx = 281 elif checkpoint_url[:-4].endswith("beit_base_patch16_384_pt22k_ft22kto1k"): expected_logits = torch.tensor([-1.5303, -0.9484, -0.3147]) expected_class_idx = 761 elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft1k"): expected_logits = torch.tensor([0.4610, -0.0928, 0.2086]) expected_class_idx = 761 elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft22kto1k"): expected_logits = torch.tensor([-0.4804, 0.6257, -0.1837]) expected_class_idx = 761 elif checkpoint_url[:-4].endswith("beit_large_patch16_384_pt22k_ft22kto1k"): expected_logits = torch.tensor([[-0.5122, 0.5117, -0.2113]]) expected_class_idx = 761 elif checkpoint_url[:-4].endswith("beit_large_patch16_512_pt22k_ft22kto1k"): expected_logits = torch.tensor([-0.3062, 0.7261, 0.4852]) expected_class_idx = 761 elif checkpoint_url[:-4].endswith("beit_base_patch16_640_pt22k_ft22ktoade20k"): expected_shape = (1, 150, 160, 160) expected_logits = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] ) elif checkpoint_url[:-4].endswith("beit_large_patch16_640_pt22k_ft22ktoade20k"): expected_shape = (1, 150, 160, 160) expected_logits = torch.tensor( [ [[-4.3305, -2.3049, -3.0161], [-2.9591, -1.5305, -2.2251], [-3.4198, -1.8004, -2.9062]], [[-5.8922, -3.7435, -4.3978], [-4.2063, -2.7872, -3.4755], [-4.2791, -3.1874, -4.1681]], [[0.9895, 4.3467, 4.7663], [4.2476, 5.6830, 6.1518], [4.5550, 6.2495, 6.5154]], ] ) else: raise ValueError("Can't verify logits as model is not supported") if logits.shape != expected_shape: raise ValueError(f"Shape of logits not as expected. {logits.shape=}, {expected_shape=}") if not has_lm_head: if is_semantic: if not torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-3): raise ValueError("First elements of logits not as expected") else: print("Predicted class idx:", logits.argmax(-1).item()) if not torch.allclose(logits[0, :3], expected_logits, atol=1e-3): raise ValueError("First elements of logits not as expected") if logits.argmax(-1).item() != expected_class_idx: raise ValueError("Predicted class index not as expected") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) args = parser.parse_args() convert_beit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/beit/image_processing_beit.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Beit.""" import warnings from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_kwargs, validate_preprocess_arguments, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch logger = logging.get_logger(__name__) class BeitImageProcessor(BaseImageProcessor): r""" Constructs a BEiT image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`): Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the `preprocess` method. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`. Can be overridden by the `crop_size` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): The mean to use if normalizing the image. This is a float or list of floats of length of the number of channels of the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): The standard deviation to use if normalizing the image. This is a float or list of floats of length of the number of channels of the image. Can be overridden by the `image_std` parameter in the `preprocess` method. do_reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, rescale_factor: Union[int, float] = 1 / 255, do_rescale: bool = True, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_reduce_labels: bool = False, **kwargs, ) -> None: if "reduce_labels" in kwargs: warnings.warn( "The `reduce_labels` parameter is deprecated and will be removed in a future version. Please use" " `do_reduce_labels` instead.", FutureWarning, ) do_reduce_labels = kwargs.pop("reduce_labels") super().__init__(**kwargs) size = size if size is not None else {"height": 256, "width": 256} size = get_size_dict(size) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self.do_reduce_labels = do_reduce_labels self._valid_processor_keys = [ "images", "segmentation_maps", "do_resize", "size", "resample", "do_center_crop", "crop_size", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "do_reduce_labels", "return_tensors", "data_format", "input_data_format", ] @classmethod def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): """ Overrides the `from_dict` method from the base class to make sure `reduce_labels` is updated if image processor is created using from_dict and kwargs e.g. `BeitImageProcessor.from_pretrained(checkpoint, reduce_labels=True)` """ image_processor_dict = image_processor_dict.copy() if "reduce_labels" in kwargs: image_processor_dict["reduce_labels"] = kwargs.pop("reduce_labels") return super().from_dict(image_processor_dict, **kwargs) def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to (size["height"], size["width"]). Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ size = get_size_dict(size, default_to_square=True, param_name="size") if "height" not in size or "width" not in size: raise ValueError(f"The `size` argument must contain `height` and `width` keys. Got {size.keys()}") return resize( image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def reduce_label(self, label: ImageInput) -> np.ndarray: label = to_numpy_array(label) # Avoid using underflow conversion label[label == 0] = 255 label = label - 1 label[label == 254] = 255 return label def _preprocess( self, image: ImageInput, do_reduce_labels: bool = None, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): if do_reduce_labels: image = self.reduce_label(image) if do_resize: image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) if do_center_crop: image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) if do_rescale: image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) if do_normalize: image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) return image def _preprocess_image( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single image.""" # All transformations expect numpy arrays. image = to_numpy_array(image) if is_scaled_image(image) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: input_data_format = infer_channel_dimension_format(image) image = self._preprocess( image, do_reduce_labels=False, do_resize=do_resize, size=size, resample=resample, do_center_crop=do_center_crop, crop_size=crop_size, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, input_data_format=input_data_format, ) if data_format is not None: image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) return image def _preprocess_segmentation_map( self, segmentation_map: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_reduce_labels: bool = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """Preprocesses a single segmentation map.""" # All transformations expect numpy arrays. segmentation_map = to_numpy_array(segmentation_map) # Add an axis to the segmentation maps for transformations. if segmentation_map.ndim == 2: segmentation_map = segmentation_map[None, ...] added_dimension = True input_data_format = ChannelDimension.FIRST else: added_dimension = False if input_data_format is None: input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1) segmentation_map = self._preprocess( image=segmentation_map, do_reduce_labels=do_reduce_labels, do_resize=do_resize, resample=resample, size=size, do_center_crop=do_center_crop, crop_size=crop_size, do_normalize=False, do_rescale=False, input_data_format=ChannelDimension.FIRST, ) # Remove extra axis if added if added_dimension: segmentation_map = np.squeeze(segmentation_map, axis=0) segmentation_map = segmentation_map.astype(np.int64) return segmentation_map def __call__(self, images, segmentation_maps=None, **kwargs): # Overrides the `__call__` method of the `Preprocessor` class such that the images and segmentation maps can both # be passed in as positional arguments. return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs) def preprocess( self, images: ImageInput, segmentation_maps: Optional[ImageInput] = None, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_reduce_labels: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. segmentation_maps (`ImageInput`, *optional*) Segmentation maps to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be padded with zeros and then cropped do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, default_to_square=True, param_name="size") resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) images = make_list_of_images(images) if segmentation_maps is not None: segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2) if segmentation_maps is not None and not valid_images(segmentation_maps): raise ValueError( "Invalid segmentation_maps type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) images = [ self._preprocess_image( image=img, do_resize=do_resize, do_center_crop=do_center_crop, do_rescale=do_rescale, do_normalize=do_normalize, resample=resample, size=size, rescale_factor=rescale_factor, crop_size=crop_size, image_mean=image_mean, image_std=image_std, data_format=data_format, input_data_format=input_data_format, ) for img in images ] data = {"pixel_values": images} if segmentation_maps is not None: segmentation_maps = [ self._preprocess_segmentation_map( segmentation_map=segmentation_map, do_reduce_labels=do_reduce_labels, do_resize=do_resize, resample=resample, size=size, do_center_crop=do_center_crop, crop_size=crop_size, ) for segmentation_map in segmentation_maps ] data["labels"] = segmentation_maps return BatchFeature(data=data, tensor_type=return_tensors) def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None): """ Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`BeitForSemanticSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple]` of length `batch_size`, *optional*): List of tuples corresponding to the requested final size (height, width) of each prediction. If unset, predictions will not be resized. Returns: semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ # TODO: add support for other frameworks logits = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(target_sizes): target_sizes = target_sizes.numpy() semantic_segmentation = [] for idx in range(len(logits)): resized_logits = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = logits.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/beit/feature_extraction_beit.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for BEiT.""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor logger = logging.get_logger(__name__) class BeitFeatureExtractor(BeitImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/beit/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _import_structure = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_beit"] = ["BeitFeatureExtractor"] _import_structure["image_processing_beit"] = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_beit"] = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", "BeitBackbone", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_beit"] = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitBackbone, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/beit/modeling_flax_beit.py
# coding=utf-8 # Copyright 2021 Microsoft Research and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, List, Optional, Tuple import flax import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling, FlaxMaskedLMOutput, FlaxSequenceClassifierOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward from .configuration_beit import BeitConfig @flax.struct.dataclass class FlaxBeitModelOutputWithPooling(FlaxBaseModelOutputWithPooling): """ Class for outputs of [`FlaxBeitModel`]. Args: last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`jnp.ndarray` of shape `(batch_size, hidden_size)`): Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token will be returned. hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ BEIT_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`BeitConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ BEIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`AutoImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def relative_position_index_init(window_size: Tuple[int, int]) -> jnp.ndarray: """ get pair-wise relative position index for each token inside the window """ num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 coords_h = np.arange(window_size[0]) coords_w = np.arange(window_size[1]) coords = np.stack(np.meshgrid(coords_h, coords_w, indexing="ij")) # 2, Wh, Ww coords_flatten = np.reshape(coords, (2, -1)) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = np.transpose(relative_coords, (1, 2, 0)) # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = np.zeros(shape=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = num_relative_distance - 3 relative_position_index[0:, 0] = num_relative_distance - 2 relative_position_index[0, 0] = num_relative_distance - 1 return jnp.array(relative_position_index) def ones_with_scale(key, shape, scale, dtype=jnp.float32): return jnp.ones(shape, dtype) * scale class FlaxBeitDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" rate: float @nn.module.compact def __call__(self, inputs, deterministic: Optional[bool] = True): if self.rate == 0.0: return inputs keep_prob = 1.0 - self.rate if deterministic: return inputs else: shape = (inputs.shape[0],) + (1,) * (inputs.ndim - 1) # work with diff dim tensors, not just 2D ConvNets rng = self.make_rng("droppath") random_tensor = keep_prob + jax.random.uniform(rng, shape=shape, dtype=inputs.dtype) binary_tensor = jnp.floor(random_tensor) output = inputs / keep_prob * binary_tensor return output class FlaxBeitPatchEmbeddings(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.num_channels = self.config.num_channels image_size = self.config.image_size patch_size = self.config.patch_size num_patches = (image_size // patch_size) * (image_size // patch_size) patch_shape = (image_size // patch_size, image_size // patch_size) self.num_patches = num_patches self.patch_shape = patch_shape self.projection = nn.Conv( self.config.hidden_size, kernel_size=(patch_size, patch_size), strides=(patch_size, patch_size), padding="VALID", dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) def __call__(self, pixel_values): num_channels = pixel_values.shape[-1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.projection(pixel_values) batch_size, _, _, channels = embeddings.shape return jnp.reshape(embeddings, (batch_size, -1, channels)) class FlaxBeitEmbeddings(nn.Module): """Construct the CLS token, position and patch embeddings.""" config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.cls_token = self.param("cls_token", nn.initializers.zeros, (1, 1, self.config.hidden_size)) if self.config.use_mask_token: self.mask_token = self.param("mask_token", nn.initializers.zeros, (1, 1, self.config.hidden_size)) self.patch_embeddings = FlaxBeitPatchEmbeddings(self.config, dtype=self.dtype) num_patches = self.patch_embeddings.num_patches if self.config.use_absolute_position_embeddings: self.position_embeddings = self.param( "position_embeddings", nn.initializers.zeros, (1, num_patches + 1, self.config.hidden_size) ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, pixel_values, bool_masked_pos=None, deterministic=True): embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, _ = embeddings.shape cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size)) cls_tokens = cls_tokens.astype(embeddings.dtype) if bool_masked_pos is not None: mask_tokens = jnp.broadcast_to(self.mask_token, (batch_size, seq_len, self.config.hidden_size)) mask_tokens = mask_tokens.astype(embeddings.dtype) # replace the masked visual tokens by mask_tokens w = jnp.expand_dims(bool_masked_pos, axis=-1) embeddings = embeddings * (1 - w) + mask_tokens * w embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1) if self.config.use_absolute_position_embeddings: embeddings = embeddings + self.position_embeddings.astype(embeddings.dtype) embeddings = self.dropout(embeddings, deterministic=deterministic) return embeddings class FlaxBeitRelativePositionBias(nn.Module): config: BeitConfig window_size: Tuple[int, int] dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): num_relative_distance = (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) + 3 self.relative_position_bias_table = self.param( "relative_position_bias_table", nn.initializers.zeros, (num_relative_distance, self.config.num_attention_heads), ) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls self.relative_position_index = relative_position_index_init(self.window_size) def __call__(self): index = self.relative_position_index.reshape(-1) shape = (self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) relative_position_bias = self.relative_position_bias_table[index].reshape(shape) # Wh*Ww,Wh*Ww,nH return jnp.transpose(relative_position_bias, (2, 0, 1)) class FlaxBeitSelfAttention(nn.Module): config: BeitConfig window_size: Tuple[int, int] dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): if self.config.hidden_size % self.config.num_attention_heads != 0 and not hasattr( self.config, "embedding_size" ): raise ValueError( f"The hidden size {self.config.hidden_size,} is not a multiple of the number of attention " f"heads {self.config.num_attention_heads}." ) self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), use_bias=False, ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.relative_position_bias = ( FlaxBeitRelativePositionBias(self.config, window_size=self.window_size, dtype=self.dtype) if self.window_size else None ) def __call__( self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False ): head_dim = self.config.hidden_size // self.config.num_attention_heads query_states = self.query(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) value_states = self.value(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) key_states = self.key(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) dropout_rng = None if not deterministic and self.config.attention_probs_dropout_prob > 0.0: dropout_rng = self.make_rng("dropout") attention_bias = jnp.array(0.0, dtype=self.dtype) # Add relative position bias if present. if self.relative_position_bias is not None: attention_bias = jnp.expand_dims(self.relative_position_bias(), 0) attention_bias = attention_bias.astype(query_states.dtype) # Add shared relative position bias if provided. if relative_position_bias is not None: attention_bias = attention_bias + relative_position_bias.astype(attention_bias.dtype) attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attention_probs_dropout_prob, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs class FlaxBeitSelfOutput(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxBeitAttention(nn.Module): config: BeitConfig window_size: Tuple[int, int] dtype: jnp.dtype = jnp.float32 def setup(self): self.attention = FlaxBeitSelfAttention(self.config, self.window_size, dtype=self.dtype) self.output = FlaxBeitSelfOutput(self.config, dtype=self.dtype) def __call__( self, hidden_states, relative_position_bias=None, deterministic=True, output_attentions: bool = False ): attn_outputs = self.attention( hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions ) attn_output = attn_outputs[0] attn_output = self.output(attn_output, deterministic=deterministic) outputs = (attn_output,) if output_attentions: outputs += (attn_outputs[1],) return outputs class FlaxBeitIntermediate(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.intermediate_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.activation = ACT2FN[self.config.hidden_act] def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class FlaxBeitOutput(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxBeitLayer(nn.Module): config: BeitConfig window_size: Tuple[int, int] drop_path_rate: float dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.attention = FlaxBeitAttention(self.config, self.window_size, dtype=self.dtype) self.intermediate = FlaxBeitIntermediate(self.config, dtype=self.dtype) self.output = FlaxBeitOutput(self.config, dtype=self.dtype) self.layernorm_before = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.drop_path = FlaxBeitDropPath(rate=self.drop_path_rate) self.layernorm_after = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.init_values = self.config.layer_scale_init_value if self.init_values > 0: self.lambda_1 = self.param("lambda_1", ones_with_scale, (self.config.hidden_size), self.init_values) self.lambda_2 = self.param("lambda_2", ones_with_scale, (self.config.hidden_size), self.init_values) else: self.lambda_1 = None self.lambda_2 = None def __call__( self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False ): self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention relative_position_bias, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] # apply lambda_1 if present if self.lambda_1 is not None: attention_output = self.lambda_1.astype(attention_output.dtype) * attention_output # first residual connection hidden_states = self.drop_path(attention_output, deterministic=deterministic) + hidden_states # in BEiT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output, deterministic=deterministic) # apply lambda_2 if present if self.lambda_2 is not None: layer_output = self.lambda_2.astype(layer_output.dtype) * layer_output # second residual connection layer_output = self.drop_path(layer_output, deterministic=deterministic) + hidden_states outputs = (layer_output,) if output_attentions: outputs += (self_attention_outputs[1],) return outputs class FlaxBeitLayerCollection(nn.Module): config: BeitConfig window_size: Tuple[int, int] drop_path_rates: List[float] relative_position_bias: Callable[[], jnp.ndarray] dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxBeitLayer( self.config, window_size=self.window_size if self.config.use_relative_position_bias else None, drop_path_rate=self.drop_path_rates[i], name=str(i), dtype=self.dtype, ) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) relative_position_bias = self.relative_position_bias() if self.relative_position_bias is not None else None layer_outputs = layer( hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states,) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class FlaxBeitEncoder(nn.Module): config: BeitConfig window_size: Tuple[int, int] dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): if self.config.use_shared_relative_position_bias: self.relative_position_bias = FlaxBeitRelativePositionBias( config=self.config, window_size=self.window_size, dtype=self.dtype ) # stochastic depth decay rule drop_path_rates = list(np.linspace(0, self.config.drop_path_rate, self.config.num_hidden_layers)) self.layer = FlaxBeitLayerCollection( self.config, window_size=self.window_size, drop_path_rates=drop_path_rates, relative_position_bias=self.relative_position_bias if self.config.use_shared_relative_position_bias else None, dtype=self.dtype, ) def __call__( self, hidden_states, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.layer( hidden_states, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class FlaxBeitPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BeitConfig base_model_prefix = "beit" main_input_name = "pixel_values" module_class: nn.Module = None def __init__( self, config: BeitConfig, input_shape=None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) if input_shape is None: input_shape = (1, config.image_size, config.image_size, config.num_channels) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors pixel_values = jnp.zeros(input_shape, dtype=self.dtype) params_rng, dropout_rng = jax.random.split(rng) dropout_rng, droppath_rng = jax.random.split(dropout_rng) rngs = {"params": params_rng, "dropout": dropout_rng, "droppath": droppath_rng} random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, pixel_values, bool_masked_pos=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: dropout_rng, droppath_rng = jax.random.split(dropout_rng) rngs["dropout"] = dropout_rng rngs["droppath"] = droppath_rng return self.module.apply( {"params": params or self.params}, jnp.array(pixel_values, dtype=jnp.float32), bool_masked_pos, not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) class FlaxBeitPooler(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): if self.config.use_mean_pooling: self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states): if self.config.use_mean_pooling: # Mean pool the final hidden states of the patch tokens patch_tokens = hidden_states[:, 1:, :] pooled_output = self.layernorm(jnp.mean(patch_tokens, axis=1)) else: # Pool by simply taking the final hidden state of the [CLS] token pooled_output = hidden_states[:, 0] return pooled_output class FlaxBeitModule(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation add_pooling_layer: bool = True def setup(self): self.embeddings = FlaxBeitEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxBeitEncoder( self.config, window_size=self.embeddings.patch_embeddings.patch_shape, dtype=self.dtype ) if not self.config.use_mean_pooling: self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.pooler = FlaxBeitPooler(self.config, dtype=self.dtype) if self.add_pooling_layer else None def __call__( self, pixel_values, bool_masked_pos=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): hidden_states = self.embeddings(pixel_values, bool_masked_pos, deterministic=deterministic) outputs = self.encoder( hidden_states, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if not self.config.use_mean_pooling: hidden_states = self.layernorm(hidden_states) pooled = self.pooler(hidden_states) if self.add_pooling_layer else None if not return_dict: # if pooled is None, don't return it if pooled is None: return (hidden_states,) + outputs[1:] return (hidden_states, pooled) + outputs[1:] return FlaxBeitModelOutputWithPooling( last_hidden_state=hidden_states, pooler_output=pooled, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( "The bare Beit Model transformer outputting raw hidden-states without any specific head on top.", BEIT_START_DOCSTRING, ) class FlaxBeitModel(FlaxBeitPreTrainedModel): module_class = FlaxBeitModule FLAX_BEIT_MODEL_DOCSTRING = """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, FlaxBeitModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k") >>> model = FlaxBeitModel.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k") >>> inputs = image_processor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ``` """ overwrite_call_docstring(FlaxBeitModel, FLAX_BEIT_MODEL_DOCSTRING) append_replace_return_docstrings(FlaxBeitModel, output_type=FlaxBeitModelOutputWithPooling, config_class=BeitConfig) class FlaxBeitForMaskedImageModelingModule(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.beit = FlaxBeitModule(self.config, add_pooling_layer=False, dtype=self.dtype) # Classifier head self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.lm_head = nn.Dense( self.config.vocab_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__( self, pixel_values=None, bool_masked_pos=None, deterministic: bool = True, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.beit( pixel_values, bool_masked_pos, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.layernorm(sequence_output) prediction_scores = self.lm_head(sequence_output[:, 1:]) if not return_dict: output = (prediction_scores,) + outputs[2:] return output return FlaxMaskedLMOutput( logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( "Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).", BEIT_START_DOCSTRING, ) class FlaxBeitForMaskedImageModeling(FlaxBeitPreTrainedModel): module_class = FlaxBeitForMaskedImageModelingModule FLAX_BEIT_MLM_DOCSTRING = """ bool_masked_pos (`numpy.ndarray` of shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k") >>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k") >>> inputs = image_processor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> logits = outputs.logits ``` """ overwrite_call_docstring(FlaxBeitForMaskedImageModeling, FLAX_BEIT_MLM_DOCSTRING) append_replace_return_docstrings( FlaxBeitForMaskedImageModeling, output_type=FlaxMaskedLMOutput, config_class=BeitConfig ) class FlaxBeitForImageClassificationModule(nn.Module): config: BeitConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.beit = FlaxBeitModule(config=self.config, dtype=self.dtype, add_pooling_layer=True) self.classifier = nn.Dense( self.config.num_labels, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__( self, pixel_values=None, bool_masked_pos=None, deterministic: bool = True, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.beit( pixel_values, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] logits = self.classifier(pooled_output) if not return_dict: output = (logits,) + outputs[2:] return output return FlaxSequenceClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final hidden states of the patch tokens) e.g. for ImageNet. """, BEIT_START_DOCSTRING, ) class FlaxBeitForImageClassification(FlaxBeitPreTrainedModel): module_class = FlaxBeitForImageClassificationModule FLAX_BEIT_CLASSIF_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoImageProcessor, FlaxBeitForImageClassification >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") >>> model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224") >>> inputs = image_processor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` """ overwrite_call_docstring(FlaxBeitForImageClassification, FLAX_BEIT_CLASSIF_DOCSTRING) append_replace_return_docstrings( FlaxBeitForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=BeitConfig )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/convnextv2/configuration_convnextv2.py
# coding=utf-8 # Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ConvNeXTV2 model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) from ..deprecated._archive_maps import CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class ConvNextV2Config(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ConvNextV2Model`]. It is used to instantiate an ConvNeXTV2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ConvNeXTV2 [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. patch_size (`int`, optional, defaults to 4): Patch size to use in the patch embedding layer. num_stages (`int`, optional, defaults to 4): The number of stages in the model. hidden_sizes (`List[int]`, *optional*, defaults to `[96, 192, 384, 768]`): Dimensionality (hidden size) at each stage. depths (`List[int]`, *optional*, defaults to `[3, 3, 9, 3]`): Depth (number of blocks) for each stage. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. drop_path_rate (`float`, *optional*, defaults to 0.0): The drop rate for stochastic depth. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import ConvNeXTV2Config, ConvNextV2Model >>> # Initializing a ConvNeXTV2 convnextv2-tiny-1k-224 style configuration >>> configuration = ConvNeXTV2Config() >>> # Initializing a model (with random weights) from the convnextv2-tiny-1k-224 style configuration >>> model = ConvNextV2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "convnextv2" def __init__( self, num_channels=3, patch_size=4, num_stages=4, hidden_sizes=None, depths=None, hidden_act="gelu", initializer_range=0.02, layer_norm_eps=1e-12, drop_path_rate=0.0, image_size=224, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.patch_size = patch_size self.num_stages = num_stages self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes self.depths = [3, 3, 9, 3] if depths is None else depths self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.drop_path_rate = drop_path_rate self.image_size = image_size self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/convnextv2/__init__.py
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_tf_available, ) _import_structure = { "configuration_convnextv2": [ "CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextV2Config", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_convnextv2"] = [ "CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextV2ForImageClassification", "ConvNextV2Model", "ConvNextV2PreTrainedModel", "ConvNextV2Backbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_convnextv2"] = [ "TFConvNextV2ForImageClassification", "TFConvNextV2Model", "TFConvNextV2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnextv2 import ( CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextV2Config, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnextv2 import ( CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextV2Backbone, ConvNextV2ForImageClassification, ConvNextV2Model, ConvNextV2PreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnextv2 import ( TFConvNextV2ForImageClassification, TFConvNextV2Model, TFConvNextV2PreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/convnextv2/convert_convnextv2_to_pytorch.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ConvNeXTV2 checkpoints from the original repository. URL: https://github.com/facebookresearch/ConvNeXt""" import argparse import json import os import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextImageProcessor, ConvNextV2Config, ConvNextV2ForImageClassification from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_convnextv2_config(checkpoint_url): config = ConvNextV2Config() if "atto" in checkpoint_url: depths = [2, 2, 6, 2] hidden_sizes = [40, 80, 160, 320] if "femto" in checkpoint_url: depths = [2, 2, 6, 2] hidden_sizes = [48, 96, 192, 384] if "pico" in checkpoint_url: depths = [2, 2, 6, 2] hidden_sizes = [64, 128, 256, 512] if "nano" in checkpoint_url: depths = [2, 2, 8, 2] hidden_sizes = [80, 160, 320, 640] if "tiny" in checkpoint_url: depths = [3, 3, 9, 3] hidden_sizes = [96, 192, 384, 768] if "base" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [128, 256, 512, 1024] if "large" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [192, 384, 768, 1536] if "huge" in checkpoint_url: depths = [3, 3, 27, 3] hidden_sizes = [352, 704, 1408, 2816] num_labels = 1000 filename = "imagenet-1k-id2label.json" expected_shape = (1, 1000) repo_id = "huggingface/label-files" config.num_labels = num_labels id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} config.hidden_sizes = hidden_sizes config.depths = depths return config, expected_shape def rename_key(name): if "downsample_layers.0.0" in name: name = name.replace("downsample_layers.0.0", "embeddings.patch_embeddings") if "downsample_layers.0.1" in name: name = name.replace("downsample_layers.0.1", "embeddings.norm") # we rename to layernorm later on if "downsample_layers.1.0" in name: name = name.replace("downsample_layers.1.0", "stages.1.downsampling_layer.0") if "downsample_layers.1.1" in name: name = name.replace("downsample_layers.1.1", "stages.1.downsampling_layer.1") if "downsample_layers.2.0" in name: name = name.replace("downsample_layers.2.0", "stages.2.downsampling_layer.0") if "downsample_layers.2.1" in name: name = name.replace("downsample_layers.2.1", "stages.2.downsampling_layer.1") if "downsample_layers.3.0" in name: name = name.replace("downsample_layers.3.0", "stages.3.downsampling_layer.0") if "downsample_layers.3.1" in name: name = name.replace("downsample_layers.3.1", "stages.3.downsampling_layer.1") if "stages" in name and "downsampling_layer" not in name: # stages.0.0. for instance should be renamed to stages.0.layers.0. name = name[: len("stages.0")] + ".layers" + name[len("stages.0") :] if "gamma" in name: name = name.replace("gamma", "weight") if "beta" in name: name = name.replace("beta", "bias") if "stages" in name: name = name.replace("stages", "encoder.stages") if "norm" in name: name = name.replace("norm", "layernorm") if "head" in name: name = name.replace("head", "classifier") return name # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im def convert_preprocessor(checkpoint_url): if "224" in checkpoint_url: size = 224 crop_pct = 224 / 256 elif "384" in checkpoint_url: size = 384 crop_pct = None else: size = 512 crop_pct = None return ConvNextImageProcessor( size=size, crop_pct=crop_pct, image_mean=[0.485, 0.456, 0.406], image_std=[0.229, 0.224, 0.225], resample=PILImageResampling.BICUBIC, ) @torch.no_grad() def convert_convnextv2_checkpoint(checkpoint_url, pytorch_dump_folder_path, save_model, push_to_hub): """ Copy/paste/tweak model's weights to our ConvNeXTV2 structure. """ print("Downloading original model from checkpoint...") # define ConvNeXTV2 configuration based on URL config, expected_shape = get_convnextv2_config(checkpoint_url) # load original state_dict from URL state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)["model"] print("Converting model parameters...") # rename keys for key in state_dict.copy().keys(): val = state_dict.pop(key) state_dict[rename_key(key)] = val # add prefix to all keys expect classifier head for key in state_dict.copy().keys(): val = state_dict.pop(key) if not key.startswith("classifier"): key = "convnextv2." + key state_dict[key] = val # load HuggingFace model model = ConvNextV2ForImageClassification(config) model.load_state_dict(state_dict) model.eval() # Check outputs on an image, prepared by ConvNextImageProcessor preprocessor = convert_preprocessor(checkpoint_url) inputs = preprocessor(images=prepare_img(), return_tensors="pt") logits = model(**inputs).logits # note: the logits below were obtained without center cropping if checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt": expected_logits = torch.tensor([-0.3930, 0.1747, -0.5246, 0.4177, 0.4295]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_femto_1k_224_ema.pt": expected_logits = torch.tensor([-0.1727, -0.5341, -0.7818, -0.4745, -0.6566]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_pico_1k_224_ema.pt": expected_logits = torch.tensor([-0.0333, 0.1563, -0.9137, 0.1054, 0.0381]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_nano_1k_224_ema.pt": expected_logits = torch.tensor([-0.1744, -0.1555, -0.0713, 0.0950, -0.1431]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_tiny_1k_224_ema.pt": expected_logits = torch.tensor([0.9996, 0.1966, -0.4386, -0.3472, 0.6661]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_base_1k_224_ema.pt": expected_logits = torch.tensor([-0.2553, -0.6708, -0.1359, 0.2518, -0.2488]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_large_1k_224_ema.pt": expected_logits = torch.tensor([-0.0673, -0.5627, -0.3753, -0.2722, 0.0178]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_huge_1k_224_ema.pt": expected_logits = torch.tensor([-0.6377, -0.7458, -0.2150, 0.1184, -0.0597]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_224_ema.pt": expected_logits = torch.tensor([1.0799, 0.2322, -0.8860, 1.0219, 0.6231]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_384_ema.pt": expected_logits = torch.tensor([0.3766, 0.4917, -1.1426, 0.9942, 0.6024]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_224_ema.pt": expected_logits = torch.tensor([0.4220, -0.6919, -0.4317, -0.2881, -0.6609]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_384_ema.pt": expected_logits = torch.tensor([0.1082, -0.8286, -0.5095, 0.4681, -0.8085]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_224_ema.pt": expected_logits = torch.tensor([-0.2419, -0.6221, 0.2176, -0.0980, -0.7527]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt": expected_logits = torch.tensor([0.0391, -0.4371, 0.3786, 0.1251, -0.2784]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt": expected_logits = torch.tensor([-0.0504, 0.5636, -0.1729, -0.6507, -0.3949]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt": expected_logits = torch.tensor([0.3560, 0.9486, 0.3149, -0.2667, -0.5138]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_384_ema.pt": expected_logits = torch.tensor([-0.2469, -0.4550, -0.5853, -0.0810, 0.0309]) elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt": expected_logits = torch.tensor([-0.3090, 0.0802, -0.0682, -0.1979, -0.2826]) else: raise ValueError(f"Unknown URL: {checkpoint_url}") assert torch.allclose(logits[0, :5], expected_logits, atol=1e-3) assert logits.shape == expected_shape print("Model outputs match the original results!") if save_model: print("Saving model to local...") # Create folder to save model if not os.path.isdir(pytorch_dump_folder_path): os.mkdir(pytorch_dump_folder_path) model.save_pretrained(pytorch_dump_folder_path) preprocessor.save_pretrained(pytorch_dump_folder_path) model_name = "convnextv2" if "atto" in checkpoint_url: model_name += "-atto" if "femto" in checkpoint_url: model_name += "-femto" if "pico" in checkpoint_url: model_name += "-pico" if "nano" in checkpoint_url: model_name += "-nano" elif "tiny" in checkpoint_url: model_name += "-tiny" elif "base" in checkpoint_url: model_name += "-base" elif "large" in checkpoint_url: model_name += "-large" elif "huge" in checkpoint_url: model_name += "-huge" if "22k" in checkpoint_url and "1k" not in checkpoint_url: model_name += "-22k" elif "22k" in checkpoint_url and "1k" in checkpoint_url: model_name += "-22k-1k" elif "1k" in checkpoint_url: model_name += "-1k" if "224" in checkpoint_url: model_name += "-224" elif "384" in checkpoint_url: model_name += "-384" elif "512" in checkpoint_url: model_name += "-512" if push_to_hub: print(f"Pushing {model_name} to the hub...") model.push_to_hub(model_name) preprocessor.push_to_hub(model_name) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt", type=str, help="URL of the original ConvNeXTV2 checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image preprocessor to the hub") args = parser.parse_args() convert_convnextv2_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/convnextv2/modeling_tf_convnextv2.py
# coding=utf-8 # Copyright 2023 Meta Platforms Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 ConvNextV2 model.""" from __future__ import annotations from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPooling, TFBaseModelOutputWithPoolingAndNoAttention, TFImageClassifierOutputWithNoAttention, ) from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_convnextv2 import ConvNextV2Config logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "ConvNextV2Config" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224" _EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->ConvNextV2 class TFConvNextV2DropPath(keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path: float, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x: tf.Tensor, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x class TFConvNextV2GRN(keras.layers.Layer): """GRN (Global Response Normalization) layer""" def __init__(self, config: ConvNextV2Config, dim: int, **kwargs): super().__init__(**kwargs) self.dim = dim def build(self, input_shape: tf.TensorShape = None): # PT's `nn.Parameters` must be mapped to a TF layer weight to inherit the same name hierarchy (and vice-versa) self.weight = self.add_weight( name="weight", shape=(1, 1, 1, self.dim), initializer=keras.initializers.Zeros(), ) self.bias = self.add_weight( name="bias", shape=(1, 1, 1, self.dim), initializer=keras.initializers.Zeros(), ) return super().build(input_shape) def call(self, hidden_states: tf.Tensor): global_features = tf.norm(hidden_states, ord="euclidean", axis=(1, 2), keepdims=True) norm_features = global_features / (tf.reduce_mean(global_features, axis=-1, keepdims=True) + 1e-6) hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states return hidden_states # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextEmbeddings with ConvNext->ConvNextV2 class TFConvNextV2Embeddings(keras.layers.Layer): """This class is comparable to (and inspired by) the SwinEmbeddings class found in src/transformers/models/swin/modeling_swin.py. """ def __init__(self, config: ConvNextV2Config, **kwargs): super().__init__(**kwargs) self.patch_embeddings = keras.layers.Conv2D( filters=config.hidden_sizes[0], kernel_size=config.patch_size, strides=config.patch_size, name="patch_embeddings", kernel_initializer=get_initializer(config.initializer_range), bias_initializer=keras.initializers.Zeros(), ) self.layernorm = keras.layers.LayerNormalization(epsilon=1e-6, name="layernorm") self.num_channels = config.num_channels self.config = config def call(self, pixel_values): if isinstance(pixel_values, dict): pixel_values = pixel_values["pixel_values"] tf.debugging.assert_equal( shape_list(pixel_values)[1], self.num_channels, message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.", ) # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) embeddings = self.patch_embeddings(pixel_values) embeddings = self.layernorm(embeddings) return embeddings def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "patch_embeddings", None) is not None: with tf.name_scope(self.patch_embeddings.name): self.patch_embeddings.build([None, None, None, self.config.num_channels]) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, None, self.config.hidden_sizes[0]]) class TFConvNextV2Layer(keras.layers.Layer): """This corresponds to the `Block` class in the original implementation. There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C, H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back The authors used (2) as they find it slightly faster in PyTorch. Since we already permuted the inputs to follow NHWC ordering, we can just apply the operations straight-away without the permutation. Args: config (`ConvNextV2Config`): Model configuration class. dim (`int`): Number of input channels. drop_path (`float`, defaults to 0.0): Stochastic depth rate. """ def __init__(self, config: ConvNextV2Config, dim: int, drop_path: float = 0.0, **kwargs): super().__init__(**kwargs) self.dim = dim self.config = config self.dwconv = keras.layers.Conv2D( filters=dim, kernel_size=7, padding="same", groups=dim, kernel_initializer=get_initializer(config.initializer_range), bias_initializer=keras.initializers.Zeros(), name="dwconv", ) # depthwise conv self.layernorm = keras.layers.LayerNormalization( epsilon=1e-6, name="layernorm", ) self.pwconv1 = keras.layers.Dense( units=4 * dim, kernel_initializer=get_initializer(config.initializer_range), bias_initializer=keras.initializers.Zeros(), name="pwconv1", ) # pointwise/1x1 convs, implemented with linear layers self.act = get_tf_activation(config.hidden_act) self.grn = TFConvNextV2GRN(config, 4 * dim, dtype=tf.float32, name="grn") self.pwconv2 = keras.layers.Dense( units=dim, kernel_initializer=get_initializer(config.initializer_range), bias_initializer=keras.initializers.Zeros(), name="pwconv2", ) # Using `layers.Activation` instead of `tf.identity` to better control `training` # behaviour. self.drop_path = ( TFConvNextV2DropPath(drop_path, name="drop_path") if drop_path > 0.0 else keras.layers.Activation("linear", name="drop_path") ) def call(self, hidden_states, training=False): input = hidden_states x = self.dwconv(hidden_states) x = self.layernorm(x) x = self.pwconv1(x) x = self.act(x) x = self.grn(x) x = self.pwconv2(x) x = self.drop_path(x, training=training) x = input + x return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dwconv", None) is not None: with tf.name_scope(self.dwconv.name): self.dwconv.build([None, None, None, self.dim]) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, None, self.dim]) if getattr(self, "pwconv1", None) is not None: with tf.name_scope(self.pwconv1.name): self.pwconv1.build([None, None, self.dim]) if getattr(self, "grn", None) is not None: with tf.name_scope(self.grn.name): self.grn.build(None) if getattr(self, "pwconv2", None) is not None: with tf.name_scope(self.pwconv2.name): self.pwconv2.build([None, None, 4 * self.dim]) if getattr(self, "drop_path", None) is not None: with tf.name_scope(self.drop_path.name): self.drop_path.build(None) # Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextStage with ConvNext->ConvNextV2 class TFConvNextV2Stage(keras.layers.Layer): """ConvNextV2 stage, consisting of an optional downsampling layer + multiple residual blocks. Args: config (`ConvNextV2V2Config`): Model configuration class. in_channels (`int`): Number of input channels. out_channels (`int`): Number of output channels. depth (`int`): Number of residual blocks. drop_path_rates(`List[float]`): Stochastic depth rates for each layer. """ def __init__( self, config: ConvNextV2Config, in_channels: int, out_channels: int, kernel_size: int = 2, stride: int = 2, depth: int = 2, drop_path_rates: Optional[List[float]] = None, **kwargs, ): super().__init__(**kwargs) if in_channels != out_channels or stride > 1: self.downsampling_layer = [ keras.layers.LayerNormalization( epsilon=1e-6, name="downsampling_layer.0", ), # Inputs to this layer will follow NHWC format since we # transposed the inputs from NCHW to NHWC in the `TFConvNextV2Embeddings` # layer. All the outputs throughout the model will be in NHWC # from this point on until the output where we again change to # NCHW. keras.layers.Conv2D( filters=out_channels, kernel_size=kernel_size, strides=stride, kernel_initializer=get_initializer(config.initializer_range), bias_initializer=keras.initializers.Zeros(), name="downsampling_layer.1", ), ] else: self.downsampling_layer = [tf.identity] drop_path_rates = drop_path_rates or [0.0] * depth self.layers = [ TFConvNextV2Layer( config, dim=out_channels, drop_path=drop_path_rates[j], name=f"layers.{j}", ) for j in range(depth) ] self.in_channels = in_channels self.out_channels = out_channels self.stride = stride def call(self, hidden_states): for layer in self.downsampling_layer: hidden_states = layer(hidden_states) for layer in self.layers: hidden_states = layer(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) if self.in_channels != self.out_channels or self.stride > 1: with tf.name_scope(self.downsampling_layer[0].name): self.downsampling_layer[0].build([None, None, None, self.in_channels]) with tf.name_scope(self.downsampling_layer[1].name): self.downsampling_layer[1].build([None, None, None, self.in_channels]) class TFConvNextV2Encoder(keras.layers.Layer): def __init__(self, config: ConvNextV2Config, **kwargs): super().__init__(**kwargs) self.stages = [] drop_path_rates = tf.linspace(0.0, config.drop_path_rate, sum(config.depths)) drop_path_rates = tf.split(drop_path_rates, config.depths) drop_path_rates = [x.numpy().tolist() for x in drop_path_rates] prev_chs = config.hidden_sizes[0] for i in range(config.num_stages): out_chs = config.hidden_sizes[i] stage = TFConvNextV2Stage( config, in_channels=prev_chs, out_channels=out_chs, stride=2 if i > 0 else 1, depth=config.depths[i], drop_path_rates=drop_path_rates[i], name=f"stages.{i}", ) self.stages.append(stage) prev_chs = out_chs def call( self, hidden_states: tf.Tensor, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, TFBaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.stages): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return TFBaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) def build(self, input_shape=None): for stage in self.stages: with tf.name_scope(stage.name): stage.build(None) @keras_serializable class TFConvNextV2MainLayer(keras.layers.Layer): config_class = ConvNextV2Config def __init__(self, config: ConvNextV2Config, **kwargs): super().__init__(**kwargs) self.config = config self.embeddings = TFConvNextV2Embeddings(config, name="embeddings") self.encoder = TFConvNextV2Encoder(config, name="encoder") self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") # We are setting the `data_format` like so because from here on we will revert to the # NCHW output format self.pooler = keras.layers.GlobalAvgPool2D(data_format="channels_last") @unpack_inputs def call( self, pixel_values: TFModelInputType | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.embeddings(pixel_values, training=training) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) last_hidden_state = encoder_outputs[0] # Change to NCHW output format have uniformity in the modules pooled_output = self.pooler(last_hidden_state) last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2)) pooled_output = self.layernorm(pooled_output) # Change the other hidden state outputs to NCHW as well if output_hidden_states: hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) if not return_dict: hidden_states = hidden_states if output_hidden_states else () return (last_hidden_state, pooled_output) + hidden_states return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, self.config.hidden_sizes[-1]]) class TFConvNextV2PreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ConvNextV2Config base_model_prefix = "convnextv2" main_input_name = "pixel_values" CONVNEXTV2_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ CONVNEXTV2_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to `True`. """ @add_start_docstrings( "The bare ConvNextV2 model outputting raw features without any specific head on top.", CONVNEXTV2_START_DOCSTRING, ) class TFConvNextV2Model(TFConvNextV2PreTrainedModel): def __init__(self, config: ConvNextV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2") @unpack_inputs @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: TFModelInputType | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") outputs = self.convnextv2( pixel_values=pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return outputs[:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state, pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convnextv2", None) is not None: with tf.name_scope(self.convnextv2.name): self.convnextv2.build(None) @add_start_docstrings( """ ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, CONVNEXTV2_START_DOCSTRING, ) class TFConvNextV2ForImageClassification(TFConvNextV2PreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: ConvNextV2Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2") # Classifier head self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), bias_initializer=keras.initializers.Zeros(), name="classifier", ) @unpack_inputs @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: TFModelInputType | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFImageClassifierOutputWithNoAttention, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") outputs = self.convnextv2( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convnextv2", None) is not None: with tf.name_scope(self.convnextv2.name): self.convnextv2.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_sizes[-1]])
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/convnextv2/modeling_convnextv2.py
# coding=utf-8 # Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ConvNextV2 model.""" from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_convnextv2 import ConvNextV2Config logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "ConvNextV2Config" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224" _EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" from ..deprecated._archive_maps import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->ConvNextV2 class ConvNextV2DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class ConvNextV2GRN(nn.Module): """GRN (Global Response Normalization) layer""" def __init__(self, dim: int): super().__init__() self.weight = nn.Parameter(torch.zeros(1, 1, 1, dim)) self.bias = nn.Parameter(torch.zeros(1, 1, 1, dim)) def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: # Compute and normalize global spatial feature maps global_features = torch.norm(hidden_states, p=2, dim=(1, 2), keepdim=True) norm_features = global_features / (global_features.mean(dim=-1, keepdim=True) + 1e-6) hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states return hidden_states # Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->ConvNextV2 class ConvNextV2LayerNorm(nn.Module): r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError(f"Unsupported data format: {self.data_format}") self.normalized_shape = (normalized_shape,) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.data_format == "channels_last": x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": input_dtype = x.dtype x = x.float() u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = x.to(dtype=input_dtype) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x # Copied from transformers.models.convnext.modeling_convnext.ConvNextEmbeddings with ConvNext->ConvNextV2 class ConvNextV2Embeddings(nn.Module): """This class is comparable to (and inspired by) the SwinEmbeddings class found in src/transformers/models/swin/modeling_swin.py. """ def __init__(self, config): super().__init__() self.patch_embeddings = nn.Conv2d( config.num_channels, config.hidden_sizes[0], kernel_size=config.patch_size, stride=config.patch_size ) self.layernorm = ConvNextV2LayerNorm(config.hidden_sizes[0], eps=1e-6, data_format="channels_first") self.num_channels = config.num_channels def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: num_channels = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.patch_embeddings(pixel_values) embeddings = self.layernorm(embeddings) return embeddings class ConvNextV2Layer(nn.Module): """This corresponds to the `Block` class in the original implementation. There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C, H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back The authors used (2) as they find it slightly faster in PyTorch. Args: config ([`ConvNextV2Config`]): Model configuration class. dim (`int`): Number of input channels. drop_path (`float`): Stochastic depth rate. Default: 0.0. """ def __init__(self, config, dim, drop_path=0): super().__init__() # depthwise conv self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) self.layernorm = ConvNextV2LayerNorm(dim, eps=1e-6) # pointwise/1x1 convs, implemented with linear layers self.pwconv1 = nn.Linear(dim, 4 * dim) self.act = ACT2FN[config.hidden_act] self.grn = ConvNextV2GRN(4 * dim) self.pwconv2 = nn.Linear(4 * dim, dim) self.drop_path = ConvNextV2DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: input = hidden_states x = self.dwconv(hidden_states) # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) x = x.permute(0, 2, 3, 1) x = self.layernorm(x) x = self.pwconv1(x) x = self.act(x) x = self.grn(x) x = self.pwconv2(x) # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width) x = x.permute(0, 3, 1, 2) x = input + self.drop_path(x) return x # Copied from transformers.models.convnext.modeling_convnext.ConvNextStage with ConvNeXT->ConvNeXTV2, ConvNext->ConvNextV2 class ConvNextV2Stage(nn.Module): """ConvNeXTV2 stage, consisting of an optional downsampling layer + multiple residual blocks. Args: config ([`ConvNextV2Config`]): Model configuration class. in_channels (`int`): Number of input channels. out_channels (`int`): Number of output channels. depth (`int`): Number of residual blocks. drop_path_rates(`List[float]`): Stochastic depth rates for each layer. """ def __init__(self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None): super().__init__() if in_channels != out_channels or stride > 1: self.downsampling_layer = nn.Sequential( ConvNextV2LayerNorm(in_channels, eps=1e-6, data_format="channels_first"), nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride), ) else: self.downsampling_layer = nn.Identity() drop_path_rates = drop_path_rates or [0.0] * depth self.layers = nn.Sequential( *[ConvNextV2Layer(config, dim=out_channels, drop_path=drop_path_rates[j]) for j in range(depth)] ) def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: hidden_states = self.downsampling_layer(hidden_states) hidden_states = self.layers(hidden_states) return hidden_states # Copied from transformers.models.convnext.modeling_convnext.ConvNextEncoder with ConvNext->ConvNextV2 class ConvNextV2Encoder(nn.Module): def __init__(self, config): super().__init__() self.stages = nn.ModuleList() drop_path_rates = [ x.tolist() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths)).split(config.depths) ] prev_chs = config.hidden_sizes[0] for i in range(config.num_stages): out_chs = config.hidden_sizes[i] stage = ConvNextV2Stage( config, in_channels=prev_chs, out_channels=out_chs, stride=2 if i > 0 else 1, depth=config.depths[i], drop_path_rates=drop_path_rates[i], ) self.stages.append(stage) prev_chs = out_chs def forward( self, hidden_states: torch.FloatTensor, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.stages): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) # Copied from transformers.models.convnext.modeling_convnext.ConvNextPreTrainedModel with ConvNext->ConvNextV2, convnext->convnextv2 class ConvNextV2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ConvNextV2Config base_model_prefix = "convnextv2" main_input_name = "pixel_values" _no_split_modules = ["ConvNextV2Layer"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) CONVNEXTV2_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CONVNEXTV2_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`ConvNextImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ConvNextV2 model outputting raw features without any specific head on top.", CONVNEXTV2_START_DOCSTRING, ) # Copied from transformers.models.convnext.modeling_convnext.ConvNextModel with CONVNEXT->CONVNEXTV2, ConvNext->ConvNextV2 class ConvNextV2Model(ConvNextV2PreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = ConvNextV2Embeddings(config) self.encoder = ConvNextV2Encoder(config) # final layernorm layer self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] # global average pooling, (N, C, H, W) -> (N, C) pooled_output = self.layernorm(last_hidden_state.mean([-2, -1])) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, CONVNEXTV2_START_DOCSTRING, ) # Copied from transformers.models.convnext.modeling_convnext.ConvNextForImageClassification with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,convnext->convnextv2 class ConvNextV2ForImageClassification(ConvNextV2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.convnextv2 = ConvNextV2Model(config) # Classifier head self.classifier = ( nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: torch.FloatTensor = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.convnextv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) @add_start_docstrings( """ ConvNeXT V2 backbone, to be used with frameworks like DETR and MaskFormer. """, CONVNEXTV2_START_DOCSTRING, ) # Copied from transformers.models.convnext.modeling_convnext.ConvNextBackbone with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,facebook/convnext-tiny-224->facebook/convnextv2-tiny-1k-224 class ConvNextV2Backbone(ConvNextV2PreTrainedModel, BackboneMixin): def __init__(self, config): super().__init__(config) super()._init_backbone(config) self.embeddings = ConvNextV2Embeddings(config) self.encoder = ConvNextV2Encoder(config) self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes # Add layer norms to hidden states of out_features hidden_states_norms = {} for stage, num_channels in zip(self._out_features, self.channels): hidden_states_norms[stage] = ConvNextV2LayerNorm(num_channels, data_format="channels_first") self.hidden_states_norms = nn.ModuleDict(hidden_states_norms) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> BackboneOutput: """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoBackbone >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> processor = AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224") >>> model = AutoBackbone.from_pretrained("facebook/convnextv2-tiny-1k-224") >>> inputs = processor(image, return_tensors="pt") >>> outputs = model(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) embedding_output = self.embeddings(pixel_values) outputs = self.encoder( embedding_output, output_hidden_states=True, return_dict=return_dict, ) hidden_states = outputs.hidden_states if return_dict else outputs[1] feature_maps = () for stage, hidden_state in zip(self.stage_names, hidden_states): if stage in self.out_features: hidden_state = self.hidden_states_norms[stage](hidden_state) feature_maps += (hidden_state,) if not return_dict: output = (feature_maps,) if output_hidden_states: output += (hidden_states,) return output return BackboneOutput( feature_maps=feature_maps, hidden_states=hidden_states if output_hidden_states else None, attentions=None, )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/llava_next/configuration_llava_next.py
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Llava-NeXT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) LLAVA_NEXT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "llava-hf/llava-v1.6-mistral-7b-hf": "https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf/resolve/main/config.json", } class LlavaNextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LlavaNextForConditionalGeneration`]. It is used to instantiate an Llava-NeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) model. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`): The config object or dictionary of the vision backbone. text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`): The config object or dictionary of the text backbone. ignore_index (`int`, *optional*, defaults to -100): The ignore index for the loss function. image_token_index (`int`, *optional*, defaults to 32000): The image token index to encode the image prompt. projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): The activation function used by the multimodal projector. vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features. If `"full"`, the full vision features are used. vision_feature_layer (`int`, *optional*, defaults to -2): The index of the layer to select the vision feature. image_grid_pinpoints (`List`, *optional*, defaults to `[[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]`): A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list of the form `(height, width)`. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. Example: ```python >>> from transformers import LlavaNextForConditionalGeneration, LlavaNextConfig, CLIPVisionConfig, LlamaConfig >>> # Initializing a CLIP-vision config >>> vision_config = CLIPVisionConfig() >>> # Initializing a Llama config >>> text_config = LlamaConfig() >>> # Initializing a Llava-Next llava-hf/llava-v1.6-mistral-7b-hf style configuration >>> configuration = LlavaNextConfig(vision_config, text_config) >>> # Initializing a model from the llava-hf/llava-v1.6-mistral-7b-hf style configuration >>> model = LlavaNextForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "llava_next" is_composition = False def __init__( self, vision_config=None, text_config=None, ignore_index=-100, image_token_index=32000, projector_hidden_act="gelu", vision_feature_select_strategy="default", vision_feature_layer=-2, image_grid_pinpoints=None, tie_word_embeddings=False, **kwargs, ): self.ignore_index = ignore_index self.image_token_index = image_token_index self.projector_hidden_act = projector_hidden_act if vision_feature_select_strategy not in ["default", "full"]: raise ValueError( "vision_feature_select_strategy should be one of 'default', 'full'." f"Got: {vision_feature_select_strategy}" ) self.vision_feature_select_strategy = vision_feature_select_strategy self.vision_feature_layer = vision_feature_layer image_grid_pinpoints = ( image_grid_pinpoints if image_grid_pinpoints is not None else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]] ) self.image_grid_pinpoints = image_grid_pinpoints if isinstance(vision_config, dict): vision_config["model_type"] = ( vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model" ) vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) elif vision_config is None: vision_config = CONFIG_MAPPING["clip_vision_model"]( intermediate_size=4096, hidden_size=1024, patch_size=14, image_size=336, num_hidden_layers=24, num_attention_heads=16, vocab_size=32000, projection_dim=768, ) self.vision_config = vision_config if isinstance(text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) elif text_config is None: text_config = CONFIG_MAPPING["llama"]() self.text_config = text_config super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/llava_next/modeling_llava_next.py
# coding=utf-8 # Copyright 2024 the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Llava-NeXT model.""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ... import PreTrainedModel from ...activations import ACT2FN from ...cache_utils import Cache from ...image_processing_utils import select_best_resolution from ...modeling_outputs import ModelOutput from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto import AutoModel, AutoModelForCausalLM from .configuration_llava_next import LlavaNextConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LlavaNextConfig" LLAVA_NEXT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "llava-hf/llava-v1.6-mistral-7b-hf", # See all LLaVA-NeXT models at https://huggingface.co/models?filter=llava_next ] def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): """ Calculate the shape of the image patch grid after the preprocessing for images of any resolution. Args: image_size (`tuple`): The size of the input image in the format (width, height). grid_pinpoints (`List`): A list containing possible resolutions. Each item in the list should be a tuple or list of the form `(height, width)`. patch_size (`int`): The size of each image patch. Returns: tuple: The shape of the image patch grid in the format (width, height). """ if not isinstance(grid_pinpoints, list): raise ValueError("grid_pinpoints should be a list of tuples or lists") height, width = select_best_resolution(image_size, grid_pinpoints) return height // patch_size, width // patch_size def unpad_image(tensor, original_size): """ Unpads a PyTorch tensor of a padded and resized image. Args: tensor (`torch.Tensor`): The image tensor, assumed to be of shape (num_channels, height, width). original_size (`tuple`): The original size of the image (height, width). Returns: `torch.Tensor`: The unpadded image tensor. """ original_height, original_width = original_size current_height, current_width = tensor.shape[1:] original_aspect_ratio = original_width / original_height current_aspect_ratio = current_width / current_height if original_aspect_ratio > current_aspect_ratio: scale_factor = current_width / original_width new_height = int(original_height * scale_factor) padding = (current_height - new_height) // 2 unpadded_tensor = tensor[:, padding : current_height - padding, :] else: scale_factor = current_height / original_height new_width = int(original_width * scale_factor) padding = (current_width - new_width) // 2 unpadded_tensor = tensor[:, :, padding : current_width - padding] return unpadded_tensor @dataclass # Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->LlavaNext class LlavaNextCausalLMOutputWithPast(ModelOutput): """ Base class for LlavaNext causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.llava.modeling_llava.LlavaMultiModalProjector with Llava->LlavaNext class LlavaNextMultiModalProjector(nn.Module): def __init__(self, config: LlavaNextConfig): super().__init__() self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) self.act = ACT2FN[config.projector_hidden_act] self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) def forward(self, image_features): hidden_states = self.linear_1(image_features) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states LLAVA_NEXT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LlavaNextConfig`] or [`LlavaNextVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare LLaMA Model outputting raw hidden-states without any specific head on top.", LLAVA_NEXT_START_DOCSTRING, ) # Copied from transformers.models.llava.modeling_llava.LlavaPreTrainedModel with Llava->LlavaNext,llava->llava_next class LlavaNextPreTrainedModel(PreTrainedModel): config_class = LlavaNextConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["LlavaNextVisionAttention"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True def _init_weights(self, module): # important: this ported version of LlavaNext isn't meant for training from scratch - only # inference and fine-tuning - so the proper init weights code has been removed - the original codebase # https://github.com/haotian-liu/LLaVA/tree/main/llava_next should serve for that purpose std = ( self.config.initializer_range if hasattr(self.config, "initializer_range") else self.config.text_config.initializer_range ) if hasattr(module, "class_embedding"): module.class_embedding.data.normal_(mean=0.0, std=std) if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @property def _supports_sdpa(self): """ Retrieve language_model's attribute to check whether the model supports SDPA or not. """ return self.language_model._supports_sdpa LLAVA_NEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. See [`LlavaNextImageProcessor.__call__`] for details. [`LlavaProcessor`] uses [`LlavaNextImageProcessor`] for processing images. image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*): The sizes of the images in the batch, being (height, width) for each image. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. vision_feature_layer (`int`, *optional*, defaults to -2): The index of the layer to select the vision feature. vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features. If `"full"`, the full vision features are used. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The LLAVA-NeXT model which consists of a vision backbone and a language model.""", LLAVA_NEXT_START_DOCSTRING, ) class LlavaNextForConditionalGeneration(LlavaNextPreTrainedModel): def __init__(self, config: LlavaNextConfig): super().__init__(config) self.vision_tower = AutoModel.from_config(config.vision_config) self.multi_modal_projector = LlavaNextMultiModalProjector(config) embed_std = 1 / math.sqrt(config.text_config.hidden_size) self.image_newline = nn.Parameter(torch.randn(config.text_config.hidden_size, dtype=self.dtype) * embed_std) self.vocab_size = config.text_config.vocab_size self.language_model = AutoModelForCausalLM.from_config( config.text_config, attn_implementation=config._attn_implementation ) self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 self.post_init() # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings def get_input_embeddings(self): return self.language_model.get_input_embeddings() # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings def get_output_embeddings(self): return self.language_model.get_output_embeddings() # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder def set_decoder(self, decoder): self.language_model.set_decoder(decoder) # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder def get_decoder(self): return self.language_model.get_decoder() # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights def tie_weights(self): return self.language_model.tie_weights() # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.resize_token_embeddings def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) # update vocab size self.config.text_config.vocab_size = model_embeds.num_embeddings self.vocab_size = model_embeds.num_embeddings return model_embeds # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration._merge_input_ids_with_image_features def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels): num_images, num_image_patches, embed_dim = image_features.shape batch_size, sequence_length = input_ids.shape left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id)) # 1. Create a mask to know where special image tokens are special_image_token_mask = input_ids == self.config.image_token_index num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) # Compute the maximum embed dimension max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index) # 2. Compute the positions where text should be written # Calculate new positions for text tokens in merged image-text sequence. # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens. # `torch.cumsum` computes how each image token shifts subsequent text token positions. # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1 nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1] if left_padding: new_token_positions += nb_image_pad[:, None] # offset for left padding text_to_overwrite = new_token_positions[batch_indices, non_image_indices] # 3. Create the full embedding, already padded to the maximum position final_embedding = torch.zeros( batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device ) final_attention_mask = torch.zeros( batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device ) if labels is not None: final_labels = torch.full( (batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device ) # In case the Vision model or the Language model has been offloaded to CPU, we need to manually # set the corresponding tensors into their correct target device. target_device = inputs_embeds.device batch_indices, non_image_indices, text_to_overwrite = ( batch_indices.to(target_device), non_image_indices.to(target_device), text_to_overwrite.to(target_device), ) attention_mask = attention_mask.to(target_device) # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"] # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] if labels is not None: final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835) image_to_overwrite = torch.full( (batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device ) image_to_overwrite[batch_indices, text_to_overwrite] = False image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device) if image_to_overwrite.sum() != image_features.shape[:-1].numel(): raise ValueError( f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while" f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation." ) final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device) final_attention_mask |= image_to_overwrite position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) # 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens. batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id) indices_to_mask = new_token_positions[batch_indices, pad_indices] final_embedding[batch_indices, indices_to_mask] = 0 if labels is None: final_labels = None return final_embedding, final_attention_mask, final_labels, position_ids @add_start_docstrings_to_model_forward(LLAVA_NEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=LlavaNextCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, image_sizes: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layer: Optional[int] = None, vision_feature_select_strategy: Optional[str] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LlavaNextCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, LlavaNextForConditionalGeneration >>> model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") >>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]" >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=prompt, images=image, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_length=30) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)" ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_layer = ( vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer ) vision_feature_select_strategy = ( vision_feature_select_strategy if vision_feature_select_strategy is not None else self.config.vision_feature_select_strategy ) if inputs_embeds is None: # 1. Extract the input embeddings inputs_embeds = self.get_input_embeddings()(input_ids) # 2. Merge text and images if pixel_values is not None and input_ids.shape[1] != 1: batch_size, num_patches, num_channels, height, width = pixel_values.shape reshaped_pixel_values = pixel_values.view(batch_size * num_patches, num_channels, height, width) image_features = self.vision_tower(reshaped_pixel_values, output_hidden_states=True) selected_image_feature = image_features.hidden_states[vision_feature_layer] if vision_feature_select_strategy == "default": selected_image_feature = selected_image_feature[:, 1:] elif vision_feature_select_strategy == "full": selected_image_feature = selected_image_feature image_features = self.multi_modal_projector(selected_image_feature) # split up image_features for each of the individual images # hence we get a list of image_features, each of shape (5, num_patches, hidden_size) # if we assume each image has 5 image features (base image + 4 patches) split_sizes = [image.shape[0] for image in pixel_values] image_features = torch.split(image_features, split_sizes, dim=0) # NOTE we only support multimodal_patch_merge_type == "spatial_unpad" height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size new_image_features = [] for image_idx, image_feature in enumerate(image_features): if image_feature.shape[0] > 1: base_image_feature = image_feature[0] image_feature = image_feature[1:] if height * width != base_image_feature.shape[0]: raise ValueError("The number of patches is not consistent with the image size.") num_patch_height, num_patch_width = get_anyres_image_grid_shape( image_sizes[image_idx], self.config.image_grid_pinpoints, self.config.vision_config.image_size, ) image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() image_feature = image_feature.flatten(1, 2).flatten(2, 3) image_feature = unpad_image(image_feature, image_sizes[image_idx]) image_feature = torch.cat( ( image_feature, self.image_newline[:, None, None] .expand(*image_feature.shape[:-1], 1) .to(image_feature.dtype), ), dim=-1, ) image_feature = image_feature.flatten(1, 2).transpose(0, 1) image_feature = torch.cat((base_image_feature, image_feature), dim=0) else: image_feature = image_feature[0] image_feature = torch.cat((image_feature, self.image_newline[None]), dim=0) new_image_features.append(image_feature) image_features = torch.stack(new_image_features, dim=0) inputs_embeds = inputs_embeds.to(image_features.dtype) inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features( image_features, inputs_embeds, input_ids, attention_mask, labels ) if labels is None: labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long) # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of # generation with cache elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1: # Retrieve the first layer to inspect the logits and mask out the hidden states # that are set to 0 first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941 batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0) # Get the target length target_length = input_ids.shape[1] past_length = first_layer_past_key_value.shape[-1] extended_attention_mask = torch.ones( (attention_mask.shape[0], past_length), dtype=attention_mask.dtype, device=attention_mask.device, ) # Filter out only the tokens that can be un-attended, this can happen # if one uses Llava + Fused modules where the cache on the # first iteration is already big enough, or if one passes custom cache valid_indices = non_attended_tokens < extended_attention_mask.size(-1) new_batch_index = batch_index[valid_indices] new_non_attended_tokens = non_attended_tokens[valid_indices] # Zero-out the places where we don't need to attend extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1) position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs[0] loss = None if labels is not None: # Shift so that tokens < n predict n if attention_mask is not None: shift_attention_mask = attention_mask[..., 1:] shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return LlavaNextCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, image_sizes=None, attention_mask=None, **kwargs, ): if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens else: cache_length = past_length = past_key_values[0][0].shape[2] # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. elif self.config.image_token_index in input_ids: input_ids = input_ids[:, input_ids.shape[1] - 1 :] # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the # older attention values, as their corresponding values are not part of the input. if cache_length < past_length and attention_mask is not None: attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "pixel_values": pixel_values, "image_sizes": image_sizes, } ) return model_inputs # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration._reorder_cache def _reorder_cache(self, *args, **kwargs): return self.language_model._reorder_cache(*args, **kwargs)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/llava_next/__init__.py
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_llava_next": ["LLAVA_NEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlavaNextConfig"], "processing_llava_next": ["LlavaNextProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_llava_next"] = [ "LLAVA_NEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "LlavaNextForConditionalGeneration", "LlavaNextPreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_llava_next"] = ["LlavaNextImageProcessor"] if TYPE_CHECKING: from .configuration_llava_next import LLAVA_NEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, LlavaNextConfig from .processing_llava_next import LlavaNextProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llava_next import ( LLAVA_NEXT_PRETRAINED_MODEL_ARCHIVE_LIST, LlavaNextForConditionalGeneration, LlavaNextPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_llava_next import LlavaNextImageProcessor else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/llava_next/processing_llava_next.py
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for LLaVa-NeXT. """ from typing import List, Optional, Union from ...feature_extraction_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class LlavaNextProcessor(ProcessorMixin): r""" Constructs a LLaVa-NeXT processor which wraps a LLaVa-NeXT image processor and a LLaMa tokenizer into a single processor. [`LlavaNextProcessor`] offers all the functionalities of [`LlavaNextImageProcessor`] and [`LlamaTokenizerFast`]. See the [`~LlavaNextProcessor.__call__`] and [`~LlavaNextProcessor.decode`] for more information. Args: image_processor ([`LlavaNextImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerFast`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "LlavaNextImageProcessor" tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") def __init__(self, image_processor=None, tokenizer=None): super().__init__(image_processor, tokenizer) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], images: ImageInput = None, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length=None, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than `max_length` to `max_length`. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if images is not None: image_inputs = self.image_processor(images, return_tensors=return_tensors) else: image_inputs = {} text_inputs = self.tokenizer( text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length ) return BatchFeature(data={**text_inputs, **image_inputs}) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/llava_next/convert_llava_next_weights_to_hf.py
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert LLaVa-NeXT (LLaVa-1.6) checkpoints from the original repository. URL: https://github.com/haotian-liu/LLaVA/tree/main. The command used to obtain original logits is the following: python llava/eval/run_llava.py --model-path "liuhaotian/llava-v1.6-mistral-7b" --image-file "images/llava_v1_5_radar.jpg" --query "What is shown in this image?" --max_new_tokens 100 --temperature 0 Note: logits are tested with torch==2.1.2. """ import argparse import glob import json from pathlib import Path import requests import torch from accelerate import init_empty_weights from huggingface_hub import hf_hub_download, snapshot_download from PIL import Image from safetensors import safe_open from transformers import ( AddedToken, AutoConfig, AutoTokenizer, LlavaNextConfig, LlavaNextForConditionalGeneration, LlavaNextImageProcessor, LlavaNextProcessor, ) KEYS_TO_MODIFY_MAPPING = { "model.vision_tower.": "", "model.mm_projector": "multi_modal_projector", "model": "model.model", "vision_model.model": "vision_model", "lm_head": "language_model.lm_head", "model.model": "language_model.model", "multi_modal_projector.0": "multi_modal_projector.linear_1", "multi_modal_projector.2": "multi_modal_projector.linear_2", "language_model.model.image_newline": "image_newline", } def load_original_state_dict(model_id): directory_path = snapshot_download(repo_id=model_id, allow_patterns=["*.safetensors"]) original_state_dict = {} for path in glob.glob(f"{directory_path}/*"): if path.endswith(".safetensors"): with safe_open(path, framework="pt", device="cpu") as f: for key in f.keys(): original_state_dict[key] = f.get_tensor(key) return original_state_dict def convert_state_dict_to_hf(state_dict): new_state_dict = {} for key, value in state_dict.items(): if key.endswith(".inv_freq"): continue for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: key = key.replace(key_to_modify, new_key) new_state_dict[key] = value.to(torch.float16) return new_state_dict def load_image(): url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true" image = Image.open(requests.get(url, stream=True).raw) return image def convert_llava_to_hf(model_id, pytorch_dump_folder_path, push_to_hub=False): # load original config filepath = hf_hub_download(repo_id=model_id, filename="config.json", repo_type="model") # read json with open(filepath) as f: data = json.load(f) print(data) if model_id == "liuhaotian/llava-v1.6-mistral-7b": text_model_id = "mistralai/Mistral-7B-Instruct-v0.2" image_token_index = 32000 elif model_id == "liuhaotian/llava-v1.6-vicuna-7b": text_model_id = "lmsys/vicuna-7b-v1.5" image_token_index = 32000 elif model_id == "liuhaotian/llava-v1.6-vicuna-13b": text_model_id = "lmsys/vicuna-13b-v1.5" image_token_index = 32000 elif model_id == "liuhaotian/llava-v1.6-34b": text_model_id = "NousResearch/Nous-Hermes-2-Yi-34B" image_token_index = 64000 vision_model_id = data["mm_vision_tower"] torch.set_default_dtype(torch.float16) text_config = AutoConfig.from_pretrained(text_model_id) use_fast = False if model_id == "liuhaotian/llava-v1.6-34b" else True tokenizer = AutoTokenizer.from_pretrained(text_model_id, use_fast=use_fast) tokenizer.add_tokens(AddedToken("<image>", special=True, normalized=False), special_tokens=True) if model_id == "liuhaotian/llava-v1.6-mistral-7b": # Mistral-7B doesn't have a padding token set yet tokenizer.add_special_tokens({"pad_token": "<pad>"}) image_processor = LlavaNextImageProcessor.from_pretrained(vision_model_id) processor = LlavaNextProcessor(tokenizer=tokenizer, image_processor=image_processor) config = LlavaNextConfig( text_config=text_config.to_dict(), image_grid_pinpoints=image_processor.image_grid_pinpoints, use_image_newline_parameter=True, image_token_index=image_token_index, ) with init_empty_weights(): model = LlavaNextForConditionalGeneration(config) # load original state dict state_dict = load_original_state_dict(model_id) state_dict = convert_state_dict_to_hf(state_dict) model.load_state_dict(state_dict, assign=True) model.eval() pre_expansion_embeddings = model.language_model.model.embed_tokens.weight.data mu = torch.mean(pre_expansion_embeddings, dim=0).float() n = pre_expansion_embeddings.size()[0] sigma = ((pre_expansion_embeddings - mu).T @ (pre_expansion_embeddings - mu)) / n dist = torch.distributions.multivariate_normal.MultivariateNormal(mu, covariance_matrix=1e-5 * sigma) # We add an image token so we resize the model # Pad to 64 for performance reasons pad_shape = 64 vocab_size = config.text_config.vocab_size if model_id == "liuhaotian/llava-v1.6-34b": # this one has 3 additional tokens, namely <|startoftext|>, <|endoftext|> and <image> num_tokens = vocab_size + 3 else: # this one has 2 additional tokens, namely <image> and <pad> num_tokens = vocab_size + 2 model.resize_token_embeddings(num_tokens, pad_to_multiple_of=pad_shape) model.language_model.model.embed_tokens.weight.data[vocab_size:] = torch.stack( tuple( (dist.sample() for _ in range(model.language_model.model.embed_tokens.weight.data[vocab_size:].shape[0])) ), dim=0, ) model.language_model.lm_head.weight.data[vocab_size:] = torch.stack( tuple((dist.sample() for _ in range(model.language_model.lm_head.weight.data[vocab_size:].shape[0]))), dim=0, ) device = "cuda:2" model.to(device) # prepare inputs image = load_image() if model_id == "liuhaotian/llava-v1.6-mistral-7b": prompt = "[INST] <image>\nWhat is shown in this image? [/INST]" elif model_id in ["liuhaotian/llava-v1.6-vicuna-7b", "liuhaotian/llava-v1.6-vicuna-13b"]: prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nWhat is shown in this image? ASSISTANT:" elif model_id == "liuhaotian/llava-v1.6-34b": prompt = "<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n" inputs = processor(images=image, text=prompt, return_tensors="pt") # verify inputs filepath = hf_hub_download(repo_id="nielsr/test-image", filename="llava_1_6_pixel_values.pt", repo_type="dataset") original_pixel_values = torch.load(filepath, map_location="cpu") assert torch.allclose(original_pixel_values, inputs.pixel_values.half()) if model_id == "liuhaotian/llava-v1.6-mistral-7b": filepath = hf_hub_download(repo_id="nielsr/test-image", filename="llava_1_6_input_ids.pt", repo_type="dataset") original_input_ids = torch.load(filepath, map_location="cpu") # replace -200 by image_token_index (since we use token ID = 32000 for the image token) original_input_ids[original_input_ids == -200] = image_token_index print(tokenizer.decode([id for id in original_input_ids.tolist()[0] if id != -200])) assert original_input_ids[0].tolist() == inputs.input_ids[0].tolist() elif model_id == "liuhaotian/llava-v1.6-34b": filepath = hf_hub_download( repo_id="nielsr/test-image", filename="llava_1_6_34b_input_ids.pt", repo_type="dataset" ) original_input_ids = torch.load(filepath, map_location="cpu") # replace -200 by image_token_index original_input_ids[original_input_ids == -200] = image_token_index assert original_input_ids[0].tolist() == inputs.input_ids[0].tolist() image_sizes = torch.tensor([[899, 1024]]) assert image_sizes[0].tolist() == inputs.image_sizes[0].tolist() # verify single forward pass print("Single forward pass") with torch.inference_mode(): inputs = inputs.to(device) outputs = model(**inputs) print("Shape of logits:", outputs.logits.shape) print("First values of logits:", outputs.logits[0, :3, :3]) if model_id == "liuhaotian/llava-v1.6-mistral-7b": expected_slice = torch.tensor( [[-4.8555, -4.6992, -0.1996], [-10.5703, -10.7344, -2.7246], [-7.0391, -7.3672, -0.2634]], dtype=torch.float32, device=device, ) elif model_id == "liuhaotian/llava-v1.6-vicuna-7b": expected_slice = torch.tensor( [[1.4883, 0.9976, -0.6992], [-9.7031, -5.7031, -1.5557], [-5.1328, -5.5586, 8.8281]], dtype=torch.float32, device=device, ) elif model_id == "liuhaotian/llava-v1.6-vicuna-13b": expected_slice = torch.tensor( [[-0.9614, 7.3125, 0.2106], [-7.2695, -8.5469, 3.6211], [-6.3750, -8.1875, 5.4688]], dtype=torch.float32, device=device, ) elif model_id == "liuhaotian/llava-v1.6-34b": expected_slice = torch.tensor( [[-9.0859, -9.1406, 5.9453], [-5.9570, -5.9766, 2.2754], [-5.7305, -5.7539, 4.0000]], dtype=torch.float32, device=device, ) else: raise ValueError(f"Model {model_id} not supported") assert torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4) print("Logits are ok!") # verify generation output_ids = model.generate( **inputs, max_new_tokens=100, use_cache=True, ) generated_text = processor.batch_decode(output_ids, skip_special_tokens=True)[0].strip() print("Generated text:", repr(generated_text)) if model_id == "liuhaotian/llava-v1.6-mistral-7b": expected_text = '[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays data in the form of a two-dimensional chart of three or more quantitative variables represented on axes starting from the same point.\n\nIn this particular radar chart, there are several axes labeled with different metrics or benchmarks, such as "MMM-Vet," "MMM-Bench," "LLaVA-Bench," "SLED-Bench," "' elif model_id == "liuhaotian/llava-v1.6-vicuna-7b": expected_text = """A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human\'s questions. USER: \nWhat is shown in this image? ASSISTANT: The image appears to be a graphical representation of a benchmarking study comparing the performance of various models or systems. It\'s a scatter plot with a circular layout, where each point represents a different model or system, and the axes represent different metrics or dimensions of comparison.\n\nThe metrics are likely related to machine learning or artificial intelligence performance, as indicated by the terms like "BLIP-2," "Instruct BLIP," "POE," "QWA," "V""" elif model_id == "liuhaotian/llava-v1.6-vicuna-13b": expected_text = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: \nWhat is shown in this image? ASSISTANT: The image appears to be a radar chart, also known as a spider chart or star chart, which is a graphical method of displaying multivariate data in the form of a two-dimensional chart of three or more quantitative variables represented on axes starting from the same point.\n\nIn this particular radar chart, there are several variables represented:\n\n- MM-Vet\n- LLa-Va-Bench\n- SEED-Bench\n- MM" elif model_id == "liuhaotian/llava-v1.6-34b": expected_text = "<|im_start|> system\nAnswer the questions. <|im_start|> user\n\nWhat is shown in this image? <|im_start|> assistant\nThe image appears to be a radar chart, also known as a spider chart, which is a graphical method of displaying multivariate data in the form of a two-dimensional chart of three or more quantitative variables represented on axes starting from the same point.\n\nIn this particular chart, there are several datasets represented by different colors and labeled with various acronyms such as MM-Vet, LLaVA-Bench, SEED-Bench, MM-Bench-CN, MM-" else: raise ValueError(f"Model {model_id} not supported") assert generated_text == expected_text print("Generated text is ok!") # verify batched generation print("Batched generation...") url = "http://images.cocodataset.org/val2017/000000039769.jpg" cats_image = Image.open(requests.get(url, stream=True).raw) inputs = processor( images=[image, cats_image], text=[prompt, "[INST] <image>\nHow many cats are there? [/INST]"], padding=True, return_tensors="pt", ).to(device) for k, v in inputs.items(): print(k, v.shape) print("Image sizes:", inputs.image_sizes) # make sure image_sizes are the same # as otherwise batched generation doesn't work inputs.image_sizes[1] = inputs.image_sizes[0] print("Batched generation...") output_ids = model.generate( **inputs, max_new_tokens=20, use_cache=True, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) print(outputs) if pytorch_dump_folder_path is not None: print(f"Saving model and processor for {model_id} to {pytorch_dump_folder_path}") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: repo_id = model_id.split("/")[-1] model.push_to_hub(f"llava-hf/{repo_id}-hf") processor.push_to_hub(f"llava-hf/{repo_id}-hf") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_id", help="Hub location of the model to convert", default="liuhaotian/llava-v1.6-mistral-7b", choices=[ "liuhaotian/llava-v1.6-mistral-7b", "liuhaotian/llava-v1.6-vicuna-7b", "liuhaotian/llava-v1.6-vicuna-13b", "liuhaotian/llava-v1.6-34b", ], required=False, ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_llava_to_hf(args.model_id, args.pytorch_dump_folder_path, args.push_to_hub)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/llava_next/image_processing_llava_next.py
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for LLaVa-NeXT.""" import math from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict, select_best_resolution from ...image_transforms import ( convert_to_rgb, get_resize_output_image_size, pad, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_preprocess_arguments, ) from ...utils import TensorType, is_vision_available, logging logger = logging.get_logger(__name__) if is_vision_available(): from PIL import Image def divide_to_patches(image: np.array, patch_size: int, input_data_format) -> List[np.array]: """ Divides an image into patches of a specified size. Args: image (`np.array`): The input image. patch_size (`int`): The size of each patch. input_data_format (`ChannelDimension` or `str`): The channel dimension format of the input image. Returns: list: A list of np.array representing the patches. """ patches = [] height, width = get_image_size(image, channel_dim=input_data_format) for i in range(0, height, patch_size): for j in range(0, width, patch_size): if input_data_format == ChannelDimension.LAST: patch = image[i : i + patch_size, j : j + patch_size] else: patch = image[:, i : i + patch_size, j : j + patch_size] patches.append(patch) return patches def expand_to_square(image: np.array, background_color, input_data_format) -> np.array: """ Expands an image to a square by adding a background color. """ height, width = get_image_size(image, channel_dim=input_data_format) if width == height: return image elif width > height: result = np.ones((width, width, image.shape[2]), dtype=image.dtype) * background_color result[(width - height) // 2 : (width - height) // 2 + height, :] = image return result else: result = np.ones((height, height, image.shape[2]), dtype=image.dtype) * background_color result[:, (height - width) // 2 : (height - width) // 2 + width] = image return result def _get_patch_output_size(image, target_resolution, input_data_format): original_height, original_width = get_image_size(image, channel_dim=input_data_format) target_height, target_width = target_resolution scale_w = target_width / original_width scale_h = target_height / original_height if scale_w < scale_h: new_width = target_width new_height = min(math.ceil(original_height * scale_w), target_height) else: new_height = target_height new_width = min(math.ceil(original_width * scale_h), target_width) return new_height, new_width class LlavaNextImageProcessor(BaseImageProcessor): r""" Constructs a LLaVa-NeXT image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques for processing high resolution images as explained in the [LLaVa paper](https://arxiv.org/abs/2310.03744). Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` method. image_grid_pinpoints (`List` *optional*, defaults to `[[672, 336], [336, 672], [672, 672], [336, 1008], [1008, 336]]`): A list of possible resolutions to use for processing high resolution images. The best resolution is selected based on the original size of the image. Can be overridden by `image_grid_pinpoints` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the `preprocess` method. crop_size (`Dict[str, int]` *optional*, defaults to 224): Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, image_grid_pinpoints: List = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) image_grid_pinpoints = ( image_grid_pinpoints if image_grid_pinpoints is not None else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]] ) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") self.do_resize = do_resize self.size = size self.image_grid_pinpoints = image_grid_pinpoints self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.do_convert_rgb = do_convert_rgb # Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize with CLIP->LLaVa def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ default_to_square = True if "shortest_edge" in size: size = size["shortest_edge"] default_to_square = False elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.") output_size = get_resize_output_image_size( image, size=size, default_to_square=default_to_square, input_data_format=input_data_format, ) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def _preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: int = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Image.Image: """ Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ images = make_list_of_images(images) if do_resize: images = [ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_center_crop: images = [ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] return images def _resize_for_patching( self, image: np.array, target_resolution: tuple, resample, input_data_format: ChannelDimension ) -> np.array: """ Resizes an image to a target resolution while maintaining aspect ratio. Args: image (np.array): The input image. target_resolution (tuple): The target resolution (height, width) of the image. resample (`PILImageResampling`): Resampling filter to use if resizing the image. input_data_format (`ChannelDimension` or `str`): The channel dimension format of the input image. Returns: np.array: The resized and padded image. """ new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format) # Resize the image resized_image = resize(image, (new_height, new_width), resample=resample, input_data_format=input_data_format) return resized_image def _pad_for_patching( self, image: np.array, target_resolution: tuple, input_data_format: ChannelDimension ) -> np.array: """ Pad an image to a target resolution while maintaining aspect ratio. """ target_height, target_width = target_resolution new_height, new_width = _get_patch_output_size(image, target_resolution, input_data_format) paste_x = (target_width - new_width) // 2 paste_y = (target_height - new_height) // 2 padded_image = pad(image, padding=((paste_y, paste_y), (paste_x, paste_x))) return padded_image def get_image_patches( self, image: np.array, grid_pinpoints, size: tuple, patch_size: int, resample: PILImageResampling, data_format: ChannelDimension, input_data_format: ChannelDimension, ) -> List[np.array]: """ Process an image with variable resolutions by dividing it into patches. Args: image (np.array): The input image to be processed. grid_pinpoints (List): A string representation of a list of possible resolutions. size (`tuple`): Size to resize the original image to. patch_size (`int`): Size of the patches to divide the image into. resample (`PILImageResampling`): Resampling filter to use if resizing the image. data_format (`ChannelDimension` or `str`): The channel dimension format for the output image. input_data_format (`ChannelDimension` or `str`): The channel dimension format of the input image. Returns: List[np.array]: A list of NumPy arrays containing the processed image patches. """ if not isinstance(grid_pinpoints, list): raise ValueError("grid_pinpoints must be a list of possible resolutions.") possible_resolutions = grid_pinpoints image_size = get_image_size(image, channel_dim=input_data_format) best_resolution = select_best_resolution(image_size, possible_resolutions) resized_image = self._resize_for_patching( image, best_resolution, resample=resample, input_data_format=input_data_format ) padded_image = self._pad_for_patching(resized_image, best_resolution, input_data_format=input_data_format) patches = divide_to_patches(padded_image, patch_size=patch_size, input_data_format=input_data_format) # make sure that all patches are in the input data format patches = [ to_channel_dimension_format(patch, channel_dim=data_format, input_channel_dim=input_data_format) for patch in patches ] resized_original_image = resize( image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, ) image_patches = [resized_original_image] + patches return image_patches def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, image_grid_pinpoints: List = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: int = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. image_grid_pinpoints (`List` *optional*, defaults to `self.image_grid_pinpoints`): A list of possible resolutions to use for processing high resolution images. The best resolution is selected based on the original size of the image. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, param_name="size", default_to_square=False) image_grid_pinpoints = image_grid_pinpoints if image_grid_pinpoints is not None else self.image_grid_pinpoints resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True) do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) new_images = [] image_sizes = [get_image_size(image, channel_dim=input_data_format) for image in images] for image in images: # convert image into a list of patches # we intentially use the same data format as the input data format image_patches = self.get_image_patches( image, image_grid_pinpoints, size=(size["shortest_edge"], size["shortest_edge"]), patch_size=crop_size["height"], resample=resample, data_format=input_data_format, input_data_format=input_data_format, ) # preprocess patches pixel_values = self._preprocess( image_patches, do_resize=do_resize, size=size, resample=resample, do_center_crop=do_center_crop, crop_size=crop_size, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, input_data_format=input_data_format, ) pixel_values = np.array(pixel_values) new_images.append(pixel_values) data = {"pixel_values": new_images, "image_sizes": image_sizes} return BatchFeature(data=data, tensor_type=return_tensors)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/opt/modeling_opt.py
# coding=utf-8 # Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch OPT model.""" from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from .configuration_opt import OPTConfig if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/opt-350m" _CONFIG_FOR_DOC = "OPTConfig" # Base model docstring _EXPECTED_OUTPUT_SHAPE = [1, 8, 1024] # SequenceClassification docstring _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ArthurZ/opt-350m-dummy-sc" _SEQ_CLASS_EXPECTED_LOSS = 1.71 _SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'" from ..deprecated._archive_maps import OPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) class OPTLearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int): # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 super().__init__(num_embeddings + self.offset, embedding_dim) def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0): """`input_ids_shape` is expected to be [bsz x seqlen].""" attention_mask = attention_mask.long() # create positions depending on attention_mask positions = (torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask).long() - 1 # cut positions if `past_key_values_length` is > 0 positions = positions[:, past_key_values_length:] return super().forward(positions + self.offset) class OPTAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, config: OPTConfig, is_decoder: bool = False, **kwargs, ): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.dropout = config.attention_dropout self.enable_bias = config.enable_bias self.head_dim = self.embed_dim // self.num_heads self.is_causal = True if (self.head_dim * self.num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = torch.max( attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device) ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) # upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437 if attn_weights.dtype == torch.float16: attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16) else: attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned aross GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class OptFlashAttention2(OPTAttention): """ OPT flash attention module. This module inherits from `OPTAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, _, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) query_length = query_states.shape[1] tgt_len = key_states.shape[-2] # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim query_states = query_states.view(bsz, query_length, self.num_heads, self.head_dim) key_states = key_states.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim) value_states = value_states.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim) attn_dropout = self.dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in float16 just to be sure everything works as expected. input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, query_length, dropout=attn_dropout ) attn_weights_reshaped = attn_output.reshape(bsz, query_length, self.num_heads * self.head_dim) attn_output = self.out_proj(attn_weights_reshaped) if not output_attentions: attn_weights_reshaped = None return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`float`): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal ) return attn_output # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) OPT_ATTENTION_CLASSES = { "eager": OPTAttention, "flash_attention_2": OptFlashAttention2, } class OPTDecoderLayer(nn.Module): def __init__(self, config: OPTConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True) self.do_layer_norm_before = config.do_layer_norm_before self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.self_attn_layer_norm = nn.LayerNorm( self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine ) self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=config.enable_bias) self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=config.enable_bias) self.final_layer_norm = nn.LayerNorm(self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention if self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # 350m applies layer norm AFTER attention if not self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) # Fully Connected hidden_states_shape = hidden_states.shape hidden_states = hidden_states.reshape(-1, hidden_states.size(-1)) residual = hidden_states # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention if self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = (residual + hidden_states).view(hidden_states_shape) # 350m applies layer norm AFTER attention if not self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs OPT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`OPTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare OPT Model outputting raw hidden-states without any specific head on top.", OPT_START_DOCSTRING, ) class OPTPreTrainedModel(PreTrainedModel): config_class = OPTConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["OPTDecoderLayer"] _supports_flash_attn_2 = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() OPT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class OPTDecoder(OPTPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OPTDecoderLayer`] Args: config: OPTConfig """ def __init__(self, config: OPTConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx) self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size) if config.word_embed_proj_dim != config.hidden_size: self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False) else: self.project_out = None if config.word_embed_proj_dim != config.hidden_size: self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False) else: self.project_in = None # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility # with checkpoints that have been fine-tuned before transformers v4.20.1 # see https://github.com/facebookresearch/metaseq/pull/164 if config.do_layer_norm_before and not config._remove_final_layer_norm: self.final_layer_norm = nn.LayerNorm( config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine ) else: self.final_layer_norm = None self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) batch_size, seq_length = input_shape past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 # required mask seq length can be calculated via length of past mask_seq_length = past_key_values_length + seq_length # embed positions if self._use_flash_attention_2: # 2d mask is passed through the layers causal_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None attention_mask = ( torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) if attention_mask is None else attention_mask ) else: # 4d mask is passed through the layers if attention_mask is None: attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) elif attention_mask.shape[1] != mask_seq_length: raise ValueError( f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be " f"{mask_seq_length} (sum of the lengths of current and past inputs)" ) causal_attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) pos_embeds = self.embed_positions(attention_mask, past_key_values_length) if self.project_in is not None: inputs_embeds = self.project_in(inputs_embeds) hidden_states = inputs_embeds + pos_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None # check if head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask], ["head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != (len(self.layers)): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_attention_mask, head_mask[idx] if head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if self.final_layer_norm is not None: hidden_states = self.final_layer_norm(hidden_states) if self.project_out is not None: hidden_states = self.project_out(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) @add_start_docstrings( "The bare OPT Model outputting raw hidden-states without any specific head on top.", OPT_START_DOCSTRING, ) class OPTModel(OPTPreTrainedModel): def __init__(self, config: OPTConfig): super().__init__(config) self.decoder = OPTDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC, expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs return BaseModelOutputWithPast( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, ) class OPTForCausalLM(OPTPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = OPTModel(config) # the lm_head weight is automatically tied to the embed tokens weight self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: Example: ```python >>> from transformers import AutoTokenizer, OPTForCausalLM >>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model.decoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.lm_head(outputs[0]).contiguous() loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """ The OPT Model transformer with a sequence classification head on top (linear layer). [`OPTForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, OPT_START_DOCSTRING, ) class OPTForSequenceClassification(OPTPreTrainedModel): def __init__(self, config: OPTConfig): super().__init__(config) self.num_labels = config.num_labels self.model = OPTModel(config) self.score = nn.Linear(config.word_embed_proj_dim, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value @add_start_docstrings( """ The OPT Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, OPT_START_DOCSTRING, ) class OPTForQuestionAnswering(OPTPreTrainedModel): def __init__(self, config: OPTConfig): super().__init__(config) self.model = OPTModel(config) self.qa_outputs = nn.Linear(config.word_embed_proj_dim, 2) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Example: ```python >>> from transformers import AutoTokenizer, OPTForQuestionAnswering >>> import torch >>> torch.manual_seed(4) # doctest: +IGNORE_RESULT >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") >>> # note: we are loading a OPTForQuestionAnswering from the hub here, >>> # so the head will be randomly initialized, hence the predictions will be random >>> model = OPTForQuestionAnswering.from_pretrained("facebook/opt-350m") >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> answer_start_index = outputs.start_logits.argmax() >>> answer_end_index = outputs.end_logits.argmax() >>> answer_offset = len(tokenizer(question)[0]) >>> predict_answer_tokens = inputs.input_ids[ ... 0, answer_offset + answer_start_index : answer_offset + answer_end_index + 1 ... ] >>> predicted = tokenizer.decode(predict_answer_tokens) >>> predicted ' a nice puppet' ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.qa_outputs(hidden_states) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + transformer_outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/opt/configuration_opt.py
# coding=utf-8 # Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ OPT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class OPTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the OPT [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50272): Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`OPTModel`] hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of decoder layers. ffn_dim (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer decoder. activation_function (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). do_layer_norm_before (`bool`, *optional*, defaults to `True`): Whether to perform layer normalization before the attention block. word_embed_proj_dim (`int`, *optional*): `word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to `hidden_size`. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). enable_bias (`bool`, *optional*, defaults to `True`): Whether or not if the linear layers in the attention blocks should use the bias term. layer_norm_elementwise_affine (`bool`, *optional*, defaults to `True`): Whether or not if the layer norms should have learnable parameters. Example: ```python >>> from transformers import OPTConfig, OPTModel >>> # Initializing a OPT facebook/opt-large style configuration >>> configuration = OPTConfig() >>> # Initializing a model (with random weights) from the facebook/opt-large style configuration >>> model = OPTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "opt" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=50272, hidden_size=768, num_hidden_layers=12, ffn_dim=3072, max_position_embeddings=2048, do_layer_norm_before=True, _remove_final_layer_norm=False, word_embed_proj_dim=None, dropout=0.1, attention_dropout=0.0, num_attention_heads=12, activation_function="relu", layerdrop=0.0, init_std=0.02, use_cache=True, pad_token_id=1, bos_token_id=2, eos_token_id=2, enable_bias=True, layer_norm_elementwise_affine=True, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.num_attention_heads = num_attention_heads self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size self.ffn_dim = ffn_dim self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.dropout = dropout self.attention_dropout = attention_dropout self.activation_function = activation_function self.init_std = init_std self.layerdrop = layerdrop self.use_cache = use_cache self.do_layer_norm_before = do_layer_norm_before # We keep these variables at `True` for backward compatibility. self.enable_bias = enable_bias self.layer_norm_elementwise_affine = layer_norm_elementwise_affine # Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility # with checkpoints that have been fine-tuned before transformers v4.20.1 # see https://github.com/facebookresearch/metaseq/pull/164 self._remove_final_layer_norm = _remove_final_layer_norm
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/opt/convert_opt_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert OPT checkpoint.""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def load_checkpoint(checkpoint_path): """Checkpoint path should end in model.pt""" sd = torch.load(checkpoint_path, map_location="cpu") if "model" in sd.keys(): sd = torch.load(checkpoint_path, map_location="cpu")["model"] # pop unnecessary weights keys_to_delete = [ "decoder.version", "decoder.output_projection.weight", ] for key in keys_to_delete: if key in sd: sd.pop(key) keys_to_rename = { "decoder.project_in_dim.weight": "decoder.project_in.weight", "decoder.project_out_dim.weight": "decoder.project_out.weight", "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: sd[new_key] = sd.pop(old_key) keys = list(sd.keys()) for key in keys: if ".qkv_proj." in key: value = sd[key] # We split QKV in separate Q,K,V q_name = key.replace(".qkv_proj.", ".q_proj.") k_name = key.replace(".qkv_proj.", ".k_proj.") v_name = key.replace(".qkv_proj.", ".v_proj.") depth = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 k, v, q = torch.split(value, depth // 3, dim=0) sd[q_name] = q sd[k_name] = k sd[v_name] = v del sd[key] return sd @torch.no_grad() def convert_opt_checkpoint(checkpoint_path, pytorch_dump_folder_path, config=None): """ Copy/paste/tweak model's weights to our BERT structure. """ state_dict = load_checkpoint(checkpoint_path) if config is not None: config = OPTConfig.from_pretrained(config) else: config = OPTConfig() model = OPTModel(config).half().eval() model.load_state_dict(state_dict) # Check results Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") args = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/opt/modeling_tf_opt.py
# coding=utf-8 # Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 OPT model.""" from __future__ import annotations from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import TFBaseModelOutputWithPast, TFCausalLMOutputWithPast # Public API from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, TFSharedEmbeddings, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_opt import OPTConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/opt-350m" _CONFIG_FOR_DOC = "OPTConfig" # Base model docstring _EXPECTED_OUTPUT_SHAPE = [1, 8, 1024] # Causal LM output _CAUSAL_LM_EXPECTED_OUTPUT = ( "Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo." ) LARGE_NEGATIVE = -1e8 def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz = input_ids_shape[0] tgt_len = input_ids_shape[1] # We need triu with k = 1 but TF expects known compile-time dims for that, so we hack around it mask = tf.fill((tgt_len, tgt_len), tf.cast(LARGE_NEGATIVE, tf.float32)) mask = tf.linalg.band_part(mask, 0, -1) - tf.linalg.band_part(mask, 0, 0) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TFOPTLearnedPositionalEmbedding(keras.layers.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models don't have this hack self.offset = 2 super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs) def call(self, attention_mask, past_key_values_length: int = 0): """`input_ids_shape` is expected to be [bsz x seqlen].""" attention_mask = tf.cast(attention_mask, tf.int64) # create positions depending on attention_mask positions = tf.math.cumsum(attention_mask, axis=1) * attention_mask - 1 # cut positions if `past_key_values_length` is > 0 positions = positions[:, past_key_values_length:] return super().call(positions + self.offset) # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->OPT class TFOPTAttention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "k_proj", None) is not None: with tf.name_scope(self.k_proj.name): self.k_proj.build([None, None, self.embed_dim]) if getattr(self, "q_proj", None) is not None: with tf.name_scope(self.q_proj.name): self.q_proj.build([None, None, self.embed_dim]) if getattr(self, "v_proj", None) is not None: with tf.name_scope(self.v_proj.name): self.v_proj.build([None, None, self.embed_dim]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.embed_dim]) class TFOPTDecoderLayer(keras.layers.Layer): def __init__(self, config: OPTConfig, **kwargs): super().__init__(**kwargs) self.do_layer_norm_before = config.do_layer_norm_before self.embed_dim = config.hidden_size self.self_attn = TFOPTAttention( embed_dim=self.embed_dim, num_heads=config.num_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.fc1 = keras.layers.Dense(config.ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") self.config = config def call( self, hidden_states: tf.Tensor, attention_mask: np.ndarray | tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, training: Optional[bool] = False, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`, *optional*): mask for attention heads in a given layer of size `(decoder_attention_heads,)` past_key_value (`Tuple(tf.Tensor)`, *optional*): cached past key and value projection states training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ residual = hidden_states # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention if self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # 350m applies layer norm AFTER attention if not self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention if self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # 350m applies layer norm AFTER attention if not self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) return (hidden_states, self_attn_weights, present_key_value) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attn", None) is not None: with tf.name_scope(self.self_attn.name): self.self_attn.build(None) if getattr(self, "self_attn_layer_norm", None) is not None: with tf.name_scope(self.self_attn_layer_norm.name): self.self_attn_layer_norm.build([None, None, self.embed_dim]) if getattr(self, "fc1", None) is not None: with tf.name_scope(self.fc1.name): self.fc1.build([None, None, self.embed_dim]) if getattr(self, "fc2", None) is not None: with tf.name_scope(self.fc2.name): self.fc2.build([None, None, self.config.ffn_dim]) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.embed_dim]) OPT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`OPTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare OPT Model outputting raw hidden-states without any specific head on top.", OPT_START_DOCSTRING, ) class TFOPTPreTrainedModel(TFPreTrainedModel): """ TFOPT Pretrained Model that inheritates from transformers.TFPreTrainedModel Args: config: OPTConfig """ config_class = OPTConfig base_model_prefix = "model" OPT_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @keras_serializable class TFOPTDecoder(keras.layers.Layer): config_class = OPTConfig def __init__(self, config: OPTConfig, **kwargs): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.layerdrop = config.layerdrop num_embeddings = config.max_position_embeddings self.embed_tokens = TFSharedEmbeddings( config.vocab_size, config.word_embed_proj_dim, config.pad_token_id, name="embed_tokens" ) self.embed_positions = TFOPTLearnedPositionalEmbedding( num_embeddings, config.hidden_size, name="embed_positions", ) # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility # with checkpoints that have been fine-tuned before transformers v4.20.1 # see https://github.com/facebookresearch/metaseq/pull/164 if config.do_layer_norm_before and not config._remove_final_layer_norm: self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") else: self.final_layer_norm = None if config.word_embed_proj_dim != config.hidden_size: self.project_out = keras.layers.Dense(config.word_embed_proj_dim, name="project_out", use_bias=False) self.project_in = keras.layers.Dense(config.hidden_size, name="project_in", use_bias=False) else: self.project_in = None self.project_out = None self.layers = [TFOPTDecoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)] self.dropout = keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens def set_input_embeddings(self, new_embeddings): self.embed_tokens.vocab_size = new_embeddings.shape[0] self.embed_tokens.weight = new_embeddings def get_input_embeddings(self): return self.embed_tokens def _prepare_decoder_attention_mask(self, attention_mask, input_shape, past_key_values_length): # create causal mask # # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] _, seq_length = input_shape tf.debugging.assert_equal( seq_length + past_key_values_length, shape_list(attention_mask)[1], message="Attention mask shape should be (batch_size, seq_length + past_key_values_length)" f" but is {shape_list(attention_mask)[1]} with input_ids shape {input_shape} and past length" f" {past_key_values_length}.", ) expanded_attn_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1]) if seq_length > 1: combined_attention_mask = ( _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + expanded_attn_mask ) else: combined_attention_mask = expanded_attn_mask return combined_attention_mask @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]: r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size) inputs_embeds = self.embed_tokens(input_ids) if attention_mask is None: attention_mask = tf.ones((input_shape[0], input_shape[1] + past_key_values_length), dtype=tf.bool) else: tf.debugging.assert_equal( shape_list(attention_mask)[1], past_key_values_length + input_shape[1], message=( f"The provided attention mask has length {tf.shape(attention_mask)[1]}, but its length should be " f"{past_key_values_length + input_shape[1]} (sum of the lengths of current and past inputs)" ), ) pos_embeds = self.embed_positions(attention_mask, past_key_values_length) attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length) if self.project_in is not None: inputs_embeds = self.project_in(inputs_embeds) hidden_states = inputs_embeds + pos_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None present_key_values = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, present_key_value = decoder_layer( hidden_states, attention_mask=attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, past_key_value=past_key_value, ) if use_cache: present_key_values += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if self.final_layer_norm is not None: hidden_states = self.final_layer_norm(hidden_states) if self.project_out is not None: hidden_states = self.project_out(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, present_key_values, all_hidden_states, all_self_attns] if v is not None ) else: return TFBaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embed_tokens", None) is not None: with tf.name_scope(self.embed_tokens.name): self.embed_tokens.build(None) if getattr(self, "embed_positions", None) is not None: with tf.name_scope(self.embed_positions.name): self.embed_positions.build(None) if getattr(self, "final_layer_norm", None) is not None: with tf.name_scope(self.final_layer_norm.name): self.final_layer_norm.build([None, None, self.config.hidden_size]) if getattr(self, "project_out", None) is not None: with tf.name_scope(self.project_out.name): self.project_out.build([None, None, self.config.hidden_size]) if getattr(self, "project_in", None) is not None: with tf.name_scope(self.project_in.name): self.project_in.build([None, None, self.config.word_embed_proj_dim]) if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFOPTMainLayer(keras.layers.Layer): config_class = OPTConfig def __init__(self, config: OPTConfig, **kwargs): super().__init__(**kwargs) self.config = config self.decoder = TFOPTDecoder(config, name="decoder") def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, new_embeddings): self.decoder.set_input_embeddings(new_embeddings) @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.decoder( input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return outputs return TFBaseModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None) @add_start_docstrings( "The bare TF OPT Model outputting raw hidden-states without any specific head on top.", OPT_START_DOCSTRING, ) @keras_serializable class TFOPTModel(TFOPTPreTrainedModel): config_class = OPTConfig def __init__(self, config: OPTConfig, **kwargs): super().__init__(config, **kwargs) self.config = config self.model = TFOPTMainLayer(config, name="model") def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, new_embeddings): self.model.set_input_embeddings(new_embeddings) @unpack_inputs @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPast, config_class=_CONFIG_FOR_DOC, expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return outputs return TFBaseModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutputWithPast( last_hidden_state=output.last_hidden_state, past_key_values=pkv, hidden_states=hs, attentions=attns, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None) @add_start_docstrings( """ The OPT Model transformer with a language modeling head on top. """, OPT_START_DOCSTRING, ) @keras_serializable class TFOPTForCausalLM(TFOPTPreTrainedModel, TFCausalLanguageModelingLoss): config_class = OPTConfig def __init__(self, config: OPTConfig, **kwargs): super().__init__(config, **kwargs) self.config = config self.model = TFOPTMainLayer(config, name="model") def get_output_embeddings(self): return self.model.get_input_embeddings() def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs): attention_mask = kwargs.get("attention_mask", None) # only last token for inputs_ids if past is defined in kwargs if past_key_values: inputs = tf.expand_dims(inputs[:, -1], -1) return { "input_ids": inputs, "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": use_cache, } @unpack_inputs @replace_return_docstrings(output_type=TFCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC, expected_output=_CAUSAL_LM_EXPECTED_OUTPUT, ) def call( self, input_ids: TFModelInputType | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[TFCausalLMOutputWithPast, Tuple[tf.Tensor]]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) logits = self.model.decoder.embed_tokens(outputs[0], mode="linear") loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels, shifted_logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFCausalLMOutputWithPast( past_key_values=pkv, hidden_states=hs, attentions=attns, loss=output.loss, logits=output.logits, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "model", None) is not None: with tf.name_scope(self.model.name): self.model.build(None)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/opt/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_opt"] = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_opt"] = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_opt"] = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/opt/modeling_flax_opt.py
# coding=utf-8 # Copyright 2022 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax OPT model.""" from functools import partial from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxMaskedLMOutput from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring from ...utils import add_start_docstrings, logging from .configuration_opt import OPTConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/opt-350m" _CONFIG_FOR_DOC = "OPTConfig" OPT_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`OPTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ OPT_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->OPT class FlaxOPTAttention(nn.Module): config: OPTConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights class FlaxOPTDecoderLayer(nn.Module): config: OPTConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.hidden_size self.self_attn = FlaxOPTAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.num_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.do_layer_norm_before = self.config.do_layer_norm_before self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention if self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache, deterministic=deterministic, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # 350m applies layer norm AFTER attention if not self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) # Fully Connected hidden_states_shape = hidden_states.shape hidden_states = hidden_states.reshape(-1, hidden_states.shape[-1]) residual = hidden_states # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention if self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = (residual + hidden_states).reshape(hidden_states_shape) # 350m applies layer norm AFTER attention if not self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class FlaxOPTDecoderLayerCollection(nn.Module): config: OPTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxOPTDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] self.layerdrop = self.config.layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) outputs = [hidden_states, all_hidden_states, all_self_attns] return outputs class FlaxOPTLearnedPositionalEmbedding(nn.Embed): """ This module learns positional embeddings up to a fixed maximum size. """ def setup(self): self.offset = 2 self.embedding = self.param( "embedding", self.embedding_init, (self.num_embeddings + self.offset, self.features), self.param_dtype ) def __call__(self, positions): """`input_ids_shape` is expected to be [bsz x seqlen].""" return super().__call__(positions + self.offset) class FlaxOPTDecoder(nn.Module): config: OPTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation offset: int = 2 def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.hidden_size self.padding_idx = self.config.pad_token_id self.max_target_positions = self.config.max_position_embeddings self.embed_tokens = nn.Embed( self.config.vocab_size, self.config.word_embed_proj_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.embed_positions = FlaxOPTLearnedPositionalEmbedding( self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) if self.config.word_embed_proj_dim != self.config.hidden_size: self.project_in = nn.Dense(self.config.hidden_size, use_bias=False) self.project_out = nn.Dense(self.config.word_embed_proj_dim, use_bias=False) else: self.project_in = None self.project_out = None # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility # with checkpoints that have been fine-tuned before transformers v4.20.1 # see https://github.com/facebookresearch/metaseq/pull/164 if self.config.do_layer_norm_before and not self.config._remove_final_layer_norm: self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) else: self.final_layer_norm = None self.layers = FlaxOPTDecoderLayerCollection(self.config, self.dtype) def __call__( self, input_ids, attention_mask, position_ids, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) if self.project_in is not None: inputs_embeds = self.project_in(inputs_embeds) positions = self.embed_positions(position_ids) hidden_states = inputs_embeds + positions hidden_state, all_hidden_states, attentions = self.layers( hidden_states, attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) if self.final_layer_norm is not None: hidden_state = self.final_layer_norm(hidden_state) if self.project_out is not None: hidden_state = self.project_out(hidden_state) if output_hidden_states: all_hidden_states += (hidden_state,) outputs = [hidden_state, all_hidden_states, attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=attentions, ) class FlaxOPTPreTrainedModel(FlaxPreTrainedModel): config_class = OPTConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: OPTConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} module_init_outputs = self.module.init( rngs, input_ids, attention_mask, position_ids, return_dict=False, ) random_params = module_init_outputs["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length), dtype="i4") attention_mask = jnp.ones_like(input_ids, dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, params: dict = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, dropout_rng: PRNGKey = None, deterministic: bool = True, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: position_ids = (attention_mask.cumsum(axis=1) * attention_mask) - 1 # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be # changed by FlaxOPTAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] return outputs class FlaxOPTModule(nn.Module): config: OPTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.decoder = FlaxOPTDecoder(self.config, dtype=self.dtype) def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, init_cache=False, ): decoder_outputs = self.decoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, init_cache=init_cache, ) if not return_dict: return decoder_outputs return FlaxBaseModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, ) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModel with Bart->OPT class FlaxOPTModel(FlaxOPTPreTrainedModel): config: OPTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxOPTModule append_call_sample_docstring(FlaxOPTModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC) @add_start_docstrings( "The bare OPT Model transformer outputting raw hidden-states without any specific head on top.", OPT_START_DOCSTRING, ) class FlaxOPTForCausalLMModule(nn.Module): config: OPTConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.model = FlaxOPTModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) def __call__( self, input_ids, attention_mask, position_ids, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids, attention_mask, position_ids, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["decoder"]["embed_tokens"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + outputs[1:] return FlaxMaskedLMOutput( logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ OPT Model with a language modeling head on top (linear layer with weights tied to the input embeddings) e.g for autoregressive tasks. """, OPT_START_DOCSTRING, ) class FlaxOPTForCausalLM(FlaxOPTPreTrainedModel): module_class = FlaxOPTForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyway. # Thus, we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxOPTForCausalLM, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC, )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/sew_d/configuration_sew_d.py
# coding=utf-8 # Copyright 2021 ASAPP Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SEW-D model configuration""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class SEWDConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SEWDModel`]. It is used to instantiate a SEW-D model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SEW-D [asapp/sew-d-tiny-100k](https://huggingface.co/asapp/sew-d-tiny-100k) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32): Vocabulary size of the SEW-D model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`SEWD`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. squeeze_factor (`int`, *optional*, defaults to 2): Sequence length downsampling factor after the encoder and upsampling factor after the transformer. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). position_buckets (`int`, *optional*, defaults to 256): The maximum size of relative position embeddings. share_att_key (`bool`, *optional*, defaults to `True`): Whether to share attention key with c2p and p2c. relative_attention (`bool`, *optional*, defaults to `True`): Whether to use relative position encoding. pos_att_type (`Tuple[str]`, *optional*, defaults to `("p2c", "c2p")`): The type of relative position attention, it can be a combination of `("p2c", "c2p")`, e.g. `("p2c")`, `("p2c", "c2p")`, `("p2c", "c2p")`. norm_rel_ebd (`str`, *optional*, defaults to `"layer_norm"`): Whether to use layer norm in relative embedding (`"layer_norm"` if yes) hidden_act (`str` or `function`, *optional*, defaults to `"gelu_python"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"`, `"gelu_python"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): Deprecated. Not used by the model and will be removed in a future version. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the final projection layer of [`SEWDForCTC`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-7): The epsilon used by the layer normalization layers in the transformer encoder. feature_layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization after the feature encoder. feat_extract_norm (`str`, *optional*, defaults to `"group"`): The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D convolutional layers. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the feature encoder. feat_extract_activation (`str, `optional`, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)`): A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' diversity_loss_weight (`int`, *optional*, defaults to 0.1): The weight of the codebook diversity loss component. ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`SEWDForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`SEWDForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`Wav2Vec2ForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. Example: ```python >>> from transformers import SEWDConfig, SEWDModel >>> # Initializing a SEW-D asapp/sew-d-tiny-100k style configuration >>> configuration = SEWDConfig() >>> # Initializing a model (with random weights) from the asapp/sew-d-tiny-100k style configuration >>> model = SEWDModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "sew-d" def __init__( self, vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, squeeze_factor=2, max_position_embeddings=512, position_buckets=256, share_att_key=True, relative_attention=True, pos_att_type=("p2c", "c2p"), norm_rel_ebd="layer_norm", hidden_act="gelu_python", hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.0, final_dropout=0.1, initializer_range=0.02, layer_norm_eps=1e-7, feature_layer_norm_eps=1e-5, feat_extract_norm="group", feat_extract_activation="gelu", conv_dim=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), conv_stride=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), conv_kernel=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, ctc_loss_reduction="mean", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, pad_token_id=0, bos_token_id=1, eos_token_id=2, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_feat_extract_layers = len(self.conv_dim) self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.squeeze_factor = squeeze_factor self.max_position_embeddings = max_position_embeddings self.position_buckets = position_buckets self.share_att_key = share_att_key self.relative_attention = relative_attention self.norm_rel_ebd = norm_rel_ebd self.pos_att_type = list(pos_att_type) self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self._hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layer_norm_eps = layer_norm_eps self.feature_layer_norm_eps = feature_layer_norm_eps self.initializer_range = initializer_range self.vocab_size = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. " "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, " f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride) " f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # sequence classification self.use_weighted_layer_sum = use_weighted_layer_sum self.classifier_proj_size = classifier_proj_size @property def inputs_to_logits_ratio(self): return functools.reduce(operator.mul, self.conv_stride, 1) @property def hidden_dropout(self): logger.warning_once("hidden_dropout is not used by the model and will be removed as config attribute in v4.35") return self._hidden_dropout def to_dict(self): """ Serializes this instance to a Python dictionary. """ output = super().to_dict() output["hidden_dropout"] = output.pop("_hidden_dropout") return output
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/sew_d/modeling_sew_d.py
# coding=utf-8 # Copyright 2021 ASAPP Inc. and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch SEW model.""" import math import warnings from collections.abc import Sequence from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss, LayerNorm from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import softmax_backward_data from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_sew_d import SEWDConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 1 # General docstring _CONFIG_FOR_DOC = "SEWDConfig" # Base docstring _CHECKPOINT_FOR_DOC = "asapp/sew-d-tiny-100k-ft-ls100h" _EXPECTED_OUTPUT_SHAPE = [1, 292, 384] # CTC docstring _CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTIL OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" _CTC_EXPECTED_LOSS = 0.21 # Audio class docstring _SEQ_CLASS_CHECKPOINT = "anton-l/sew-d-mid-400k-ft-keyword-spotting" _SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'" _SEQ_CLASS_EXPECTED_LOSS = 3.16 from ..deprecated._archive_maps import SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.deberta_v2.modeling_deberta_v2.make_log_bucket_position def make_log_bucket_position(relative_pos, bucket_size, max_position): sign = torch.sign(relative_pos) mid = bucket_size // 2 abs_pos = torch.where( (relative_pos < mid) & (relative_pos > -mid), torch.tensor(mid - 1).type_as(relative_pos), torch.abs(relative_pos), ) log_pos = ( torch.ceil(torch.log(abs_pos / mid) / torch.log(torch.tensor((max_position - 1) / mid)) * (mid - 1)) + mid ) bucket_pos = torch.where(abs_pos <= mid, relative_pos.type_as(log_pos), log_pos * sign) return bucket_pos # Copied from transformers.models.deberta_v2.modeling_deberta_v2.build_relative_position def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1, device=None): """ Build relative position according to the query and key We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q - P_k\\) Args: query_size (int): the length of query key_size (int): the length of key bucket_size (int): the size of position bucket max_position (int): the maximum allowed absolute position device (`torch.device`): the device on which tensors will be created. Return: `torch.LongTensor`: A tensor with shape [1, query_size, key_size] """ q_ids = torch.arange(0, query_size, device=device) k_ids = torch.arange(0, key_size, device=device) rel_pos_ids = q_ids[:, None] - k_ids[None, :] if bucket_size > 0 and max_position > 0: rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position) rel_pos_ids = rel_pos_ids.to(torch.long) rel_pos_ids = rel_pos_ids[:query_size, :] rel_pos_ids = rel_pos_ids.unsqueeze(0) return rel_pos_ids @torch.jit.script # Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos): return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)]) @torch.jit.script # Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand def p2c_dynamic_expand(c2p_pos, query_layer, key_layer): return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)]) @torch.jit.script # Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand def pos_dynamic_expand(pos_index, p2c_att, key_layer): return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))) # Copied from transformers.models.deberta.modeling_deberta.get_mask def get_mask(input, local_context): if not isinstance(local_context, DropoutContext): dropout = local_context mask = None else: dropout = local_context.dropout dropout *= local_context.scale mask = local_context.mask if local_context.reuse_mask else None if dropout > 0 and mask is None: mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool) if isinstance(local_context, DropoutContext): if local_context.mask is None: local_context.mask = mask return mask, dropout # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SEWD class SEWDNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SEWD class SEWDLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SEWD class SEWDGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.sew.modeling_sew.SEWPositionalConvEmbedding with SEW->SEWD class SEWDPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, stride=config.squeeze_factor, ) if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) self.padding = SEWDSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SEW class SEWDSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.sew.modeling_sew.SEWUpsampling with SEW->SEWD class SEWDUpsampling(nn.Module): def __init__(self, config): super().__init__() self.projection = nn.Linear(config.hidden_size, config.hidden_size * config.squeeze_factor) self.activation = ACT2FN[config.feat_extract_activation] self.squeeze_factor = config.squeeze_factor def forward(self, hidden_states): hidden_states = self.projection(hidden_states) hidden_states = self.activation(hidden_states) if self.squeeze_factor > 1: # transform embedding channels to sequence length bsz, src_len, src_embed_dim = hidden_states.size() tgt_len = src_len * self.squeeze_factor tgt_embed_dim = src_embed_dim // self.squeeze_factor hidden_states = hidden_states.reshape(bsz, src_len, self.squeeze_factor, tgt_embed_dim) hidden_states = hidden_states.reshape(bsz, tgt_len, tgt_embed_dim) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SEWD class SEWDFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [SEWDGroupNormConvLayer(config, layer_id=0)] + [ SEWDNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [SEWDLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class SEWDFeatureExtractor(SEWDFeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) # Copied from transformers.models.deberta.modeling_deberta.ContextPooler class ContextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size) self.dropout = StableDropout(config.pooler_dropout) self.config = config def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. context_token = hidden_states[:, 0] context_token = self.dropout(context_token) pooled_output = self.dense(context_token) pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output) return pooled_output @property def output_dim(self): return self.config.hidden_size # Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2 class XSoftmax(torch.autograd.Function): """ Masked Softmax which is optimized for saving memory Args: input (`torch.tensor`): The input tensor that will apply softmax. mask (`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation. dim (int): The dimension that will apply softmax Example: ```python >>> import torch >>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax >>> # Make a tensor >>> x = torch.randn([4, 20, 100]) >>> # Create a mask >>> mask = (x > 0).int() >>> # Specify the dimension to apply softmax >>> dim = -1 >>> y = XSoftmax.apply(x, mask, dim) ```""" @staticmethod def forward(self, input, mask, dim): self.dim = dim rmask = ~(mask.to(torch.bool)) output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min)) output = torch.softmax(output, self.dim) output.masked_fill_(rmask, 0) self.save_for_backward(output) return output @staticmethod def backward(self, grad_output): (output,) = self.saved_tensors inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output) return inputGrad, None, None @staticmethod def symbolic(g, self, mask, dim): import torch.onnx.symbolic_helper as sym_help from torch.onnx.symbolic_opset9 import masked_fill, softmax mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"]) r_mask = g.op( "Cast", g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value), to_i=sym_help.cast_pytorch_to_onnx["Bool"], ) output = masked_fill( g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min)) ) output = softmax(g, output, dim) return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool))) # Copied from transformers.models.deberta.modeling_deberta.DropoutContext class DropoutContext(object): def __init__(self): self.dropout = 0 self.mask = None self.scale = 1 self.reuse_mask = True # Copied from transformers.models.deberta.modeling_deberta.XDropout class XDropout(torch.autograd.Function): """Optimized dropout function to save computation and memory by using mask operation instead of multiplication.""" @staticmethod def forward(ctx, input, local_ctx): mask, dropout = get_mask(input, local_ctx) ctx.scale = 1.0 / (1 - dropout) if dropout > 0: ctx.save_for_backward(mask) return input.masked_fill(mask, 0) * ctx.scale else: return input @staticmethod def backward(ctx, grad_output): if ctx.scale > 1: (mask,) = ctx.saved_tensors return grad_output.masked_fill(mask, 0) * ctx.scale, None else: return grad_output, None @staticmethod def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value: from torch.onnx import symbolic_opset12 dropout_p = local_ctx if isinstance(local_ctx, DropoutContext): dropout_p = local_ctx.dropout # StableDropout only calls this function when training. train = True # TODO: We should check if the opset_version being used to export # is > 12 here, but there's no good way to do that. As-is, if the # opset_version < 12, export will fail with a CheckerError. # Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like: # if opset_version < 12: # return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train) return symbolic_opset12.dropout(g, input, dropout_p, train) # Copied from transformers.models.deberta.modeling_deberta.StableDropout class StableDropout(nn.Module): """ Optimized dropout module for stabilizing the training Args: drop_prob (float): the dropout probabilities """ def __init__(self, drop_prob): super().__init__() self.drop_prob = drop_prob self.count = 0 self.context_stack = None def forward(self, x): """ Call the module Args: x (`torch.tensor`): The input tensor to apply dropout """ if self.training and self.drop_prob > 0: return XDropout.apply(x, self.get_context()) return x def clear_context(self): self.count = 0 self.context_stack = None def init_context(self, reuse_mask=True, scale=1): if self.context_stack is None: self.context_stack = [] self.count = 0 for c in self.context_stack: c.reuse_mask = reuse_mask c.scale = scale def get_context(self): if self.context_stack is not None: if self.count >= len(self.context_stack): self.context_stack.append(DropoutContext()) ctx = self.context_stack[self.count] ctx.dropout = self.drop_prob self.count += 1 return ctx else: return self.drop_prob # Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaV2->SEWD, DebertaLayerNorm->LayerNorm, hidden_dropout_prob->activation_dropout class SEWDSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.activation_dropout) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.deberta_v2.modeling_deberta_v2.DisentangledSelfAttention with attention_probs_dropout_prob->attention_dropout, hidden_dropout_prob->activation_dropout class DisentangledSelfAttention(nn.Module): """ Disentangled self-attention module Parameters: config (`DebertaV2Config`): A model config class instance with the configuration to build a new model. The schema is similar to *BertConfig*, for more details, please refer [`DebertaV2Config`] """ def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads _attention_head_size = config.hidden_size // config.num_attention_heads self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) self.share_att_key = getattr(config, "share_att_key", False) self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else [] self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.position_buckets = getattr(config, "position_buckets", -1) self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.pos_ebd_size = self.max_relative_positions if self.position_buckets > 0: self.pos_ebd_size = self.position_buckets self.pos_dropout = StableDropout(config.activation_dropout) if not self.share_att_key: if "c2p" in self.pos_att_type: self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True) if "p2c" in self.pos_att_type: self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = StableDropout(config.attention_dropout) def transpose_for_scores(self, x, attention_heads): new_x_shape = x.size()[:-1] + (attention_heads, -1) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1)) def forward( self, hidden_states, attention_mask, output_attentions=False, query_states=None, relative_pos=None, rel_embeddings=None, ): """ Call the module Args: hidden_states (`torch.FloatTensor`): Input states to the module usually the output from previous layer, it will be the Q,K and V in *Attention(Q,K,V)* attention_mask (`torch.BoolTensor`): An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j* th token. output_attentions (`bool`, optional): Whether return the attention matrix. query_states (`torch.FloatTensor`, optional): The *Q* state in *Attention(Q,K,V)*. relative_pos (`torch.LongTensor`): The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with values ranging in [*-max_relative_positions*, *max_relative_positions*]. rel_embeddings (`torch.FloatTensor`): The embedding of relative distances. It's a tensor of shape [\\(2 \\times \\text{max_relative_positions}\\), *hidden_size*]. """ if query_states is None: query_states = hidden_states query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads) key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads) value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads) rel_att = None # Take the dot product between "query" and "key" to get the raw attention scores. scale_factor = 1 if "c2p" in self.pos_att_type: scale_factor += 1 if "p2c" in self.pos_att_type: scale_factor += 1 scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor) attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2) / scale.to(dtype=query_layer.dtype)) if self.relative_attention: rel_embeddings = self.pos_dropout(rel_embeddings) rel_att = self.disentangled_attention_bias( query_layer, key_layer, relative_pos, rel_embeddings, scale_factor ) if rel_att is not None: attention_scores = attention_scores + rel_att attention_scores = attention_scores attention_scores = attention_scores.view( -1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1) ) # bsz x height x length x dimension attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1) attention_probs = self.dropout(attention_probs) context_layer = torch.bmm( attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer ) context_layer = ( context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1)) .permute(0, 2, 1, 3) .contiguous() ) new_context_layer_shape = context_layer.size()[:-2] + (-1,) context_layer = context_layer.view(new_context_layer_shape) if output_attentions: return (context_layer, attention_probs) else: return context_layer def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor): if relative_pos is None: q = query_layer.size(-2) relative_pos = build_relative_position( q, key_layer.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions, device=query_layer.device, ) if relative_pos.dim() == 2: relative_pos = relative_pos.unsqueeze(0).unsqueeze(0) elif relative_pos.dim() == 3: relative_pos = relative_pos.unsqueeze(1) # bsz x height x query x key elif relative_pos.dim() != 4: raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}") att_span = self.pos_ebd_size relative_pos = relative_pos.long().to(query_layer.device) rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0) if self.share_att_key: pos_query_layer = self.transpose_for_scores( self.query_proj(rel_embeddings), self.num_attention_heads ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat( query_layer.size(0) // self.num_attention_heads, 1, 1 ) else: if "c2p" in self.pos_att_type: pos_key_layer = self.transpose_for_scores( self.pos_key_proj(rel_embeddings), self.num_attention_heads ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1) if "p2c" in self.pos_att_type: pos_query_layer = self.transpose_for_scores( self.pos_query_proj(rel_embeddings), self.num_attention_heads ).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1) # .split(self.all_head_size, dim=-1) score = 0 # content->position if "c2p" in self.pos_att_type: scale = torch.sqrt(torch.tensor(pos_key_layer.size(-1), dtype=torch.float) * scale_factor) c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2)) c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1) c2p_att = torch.gather( c2p_att, dim=-1, index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]), ) score += c2p_att / scale.to(dtype=c2p_att.dtype) # position->content if "p2c" in self.pos_att_type: scale = torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor) if key_layer.size(-2) != query_layer.size(-2): r_pos = build_relative_position( key_layer.size(-2), key_layer.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions, device=query_layer.device, ) r_pos = r_pos.unsqueeze(0) else: r_pos = relative_pos p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1) p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2)) p2c_att = torch.gather( p2c_att, dim=-1, index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]), ).transpose(-1, -2) score += p2c_att / scale.to(dtype=p2c_att.dtype) return score # Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->SEWD class SEWDAttention(nn.Module): def __init__(self, config): super().__init__() self.self = DisentangledSelfAttention(config) self.output = SEWDSelfOutput(config) self.config = config def forward( self, hidden_states, attention_mask, output_attentions=False, query_states=None, relative_pos=None, rel_embeddings=None, ): self_output = self.self( hidden_states, attention_mask, output_attentions, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, ) if output_attentions: self_output, att_matrix = self_output if query_states is None: query_states = hidden_states attention_output = self.output(self_output, query_states) if output_attentions: return (attention_output, att_matrix) else: return attention_output # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->SEWD class SEWDIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm, hidden_dropout_prob->activation_dropout class SEWDOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.activation_dropout) self.config = config def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->SEWD class SEWDLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = SEWDAttention(config) self.intermediate = SEWDIntermediate(config) self.output = SEWDOutput(config) def forward( self, hidden_states, attention_mask, query_states=None, relative_pos=None, rel_embeddings=None, output_attentions=False, ): attention_output = self.attention( hidden_states, attention_mask, output_attentions=output_attentions, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, ) if output_attentions: attention_output, att_matrix = attention_output intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) if output_attentions: return (layer_output, att_matrix) else: return layer_output # Copied from transformers.models.deberta_v2.modeling_deberta_v2.ConvLayer class ConvLayer(nn.Module): def __init__(self, config): super().__init__() kernel_size = getattr(config, "conv_kernel_size", 3) groups = getattr(config, "conv_groups", 1) self.conv_act = getattr(config, "conv_act", "tanh") self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups ) self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.hidden_dropout_prob) self.config = config def forward(self, hidden_states, residual_states, input_mask): out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous() rmask = (1 - input_mask).bool() out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0) out = ACT2FN[self.conv_act](self.dropout(out)) layer_norm_input = residual_states + out output = self.LayerNorm(layer_norm_input).to(layer_norm_input) if input_mask is None: output_states = output else: if input_mask.dim() != layer_norm_input.dim(): if input_mask.dim() == 4: input_mask = input_mask.squeeze(1).squeeze(1) input_mask = input_mask.unsqueeze(2) input_mask = input_mask.to(output.dtype) output_states = output * input_mask return output_states # Copied from transformers.models.deberta_v2.modeling_deberta_v2.DebertaV2Encoder with DebertaV2->SEWD class SEWDTransformerEncoder(nn.Module): """Modified BertEncoder with relative position bias support""" def __init__(self, config): super().__init__() self.layer = nn.ModuleList([SEWDLayer(config) for _ in range(config.num_hidden_layers)]) self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.position_buckets = getattr(config, "position_buckets", -1) pos_ebd_size = self.max_relative_positions * 2 if self.position_buckets > 0: pos_ebd_size = self.position_buckets * 2 self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size) self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")] if "layer_norm" in self.norm_rel_ebd: self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True) self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None self.gradient_checkpointing = False def get_rel_embedding(self): rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd): rel_embeddings = self.LayerNorm(rel_embeddings) return rel_embeddings def get_attention_mask(self, attention_mask): if attention_mask.dim() <= 2: extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1) elif attention_mask.dim() == 3: attention_mask = attention_mask.unsqueeze(1) return attention_mask def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): if self.relative_attention and relative_pos is None: q = query_states.size(-2) if query_states is not None else hidden_states.size(-2) relative_pos = build_relative_position( q, hidden_states.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions, device=hidden_states.device, ) return relative_pos def forward( self, hidden_states, attention_mask, output_hidden_states=True, output_attentions=False, query_states=None, relative_pos=None, return_dict=True, ): if attention_mask.dim() <= 2: input_mask = attention_mask else: input_mask = attention_mask.sum(-2) > 0 attention_mask = self.get_attention_mask(attention_mask) relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None if isinstance(hidden_states, Sequence): next_kv = hidden_states[0] else: next_kv = hidden_states rel_embeddings = self.get_rel_embedding() output_states = next_kv for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) if self.gradient_checkpointing and self.training: output_states = self._gradient_checkpointing_func( layer_module.__call__, next_kv, attention_mask, query_states, relative_pos, rel_embeddings, output_attentions, ) else: output_states = layer_module( next_kv, attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, ) if output_attentions: output_states, att_m = output_states if i == 0 and self.conv is not None: output_states = self.conv(hidden_states, output_states, input_mask) if query_states is not None: query_states = output_states if isinstance(hidden_states, Sequence): next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None else: next_kv = output_states if output_attentions: all_attentions = all_attentions + (att_m,) if output_hidden_states: all_hidden_states = all_hidden_states + (output_states,) if not return_dict: return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions ) class SEWDEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = SEWDPositionalConvEmbedding(config) self.pool = nn.AvgPool1d(config.squeeze_factor, config.squeeze_factor) self.encoder = SEWDTransformerEncoder(config) self.upsample = SEWDUpsampling(config) self.gradient_checkpointing = False def forward( self, hidden_states: torch.tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): max_encoder_length = hidden_states.shape[1] // self.config.squeeze_factor if attention_mask is None: attention_mask = torch.ones( (hidden_states.shape[0], max_encoder_length), dtype=torch.long, device=hidden_states.device ) else: # make sure padded tokens output 0 hidden_states[~attention_mask.bool()] = 0.0 input_lengths = (attention_mask.long()).sum(-1) # apply pooling formula to get real output_lengths output_lengths = input_lengths // self.config.squeeze_factor attention_ids = ( torch.arange(0, max_encoder_length, device=output_lengths.device) .view(1, -1) .expand(output_lengths.shape[0], -1) ) attention_mask = (attention_ids < output_lengths.view(-1, 1)).long() n_input_timesteps = hidden_states.shape[1] hidden_states = hidden_states.transpose(1, 2) position_embeddings = self.pos_conv_embed(hidden_states) pooled_hidden_states = self.pool(hidden_states) min_length = min(position_embeddings.size(-1), pooled_hidden_states.size(-1)) hidden_states = pooled_hidden_states[..., :min_length] + position_embeddings[..., :min_length] hidden_states = hidden_states.transpose(1, 2) encoder_outputs = self.encoder(hidden_states, attention_mask, output_hidden_states, output_attentions) hidden_states = self.upsample(encoder_outputs.last_hidden_state) if hidden_states.shape[1] < n_input_timesteps: hidden_states = nn.functional.pad(hidden_states, (0, 0, 0, n_input_timesteps - hidden_states.shape[1])) if not return_dict: return tuple( v for v in [hidden_states, encoder_outputs.hidden_states, encoder_outputs.attentions] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class SEWDPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SEWDConfig base_model_prefix = "sew-d" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, SEWDPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): if is_deepspeed_zero3_enabled(): import deepspeed if hasattr(module, "weight_v") and hasattr(module, "weight_g"): with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0): nn.init.kaiming_normal_(module.weight.data) else: with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0): nn.init.kaiming_normal_(module.weight.data) else: nn.init.kaiming_normal_(module.weight.data) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None: module.bias.data.zero_() def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask SEWD_START_DOCSTRING = r""" SEW-D was proposed in [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SEWDConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SEWD_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SEW-D Model transformer outputting raw hidden-states without any specific head on top.", SEWD_START_DOCSTRING, ) # Copied from transformers.models.sew.modeling_sew.SEWModel with SEW->SEWD, layer_norm_eps->feature_layer_norm_eps class SEWDModel(SEWDPreTrainedModel): def __init__(self, config: SEWDConfig): super().__init__(config) self.config = config self.feature_extractor = SEWDFeatureEncoder(config) self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.feature_layer_norm_eps) self.project_features = config.conv_dim[-1] != config.hidden_size if self.project_features: self.feature_projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.feature_dropout = nn.Dropout(config.feat_proj_dropout) if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_()) self.encoder = SEWDEncoder(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) extract_features = self.layer_norm(extract_features) if self.project_features: extract_features = self.feature_projection(extract_features) hidden_states = self.feature_dropout(extract_features) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """SEW-D Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", SEWD_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->SEWD, wav2vec2->sew_d, WAV_2_VEC_2->SEWD class SEWDForCTC(SEWDPreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.sew_d = SEWDModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `SEWDForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for SEWD so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, SEWD never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.sew_d.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.sew_d.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.sew_d( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ SEWD Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, SEWD_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification with Wav2Vec2->SEWD, wav2vec2->sew_d, WAV_2_VEC_2->SEWD class SEWDForSequenceClassification(SEWDPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of SEWD adapters (config.add_adapter=True)" ) self.sew_d = SEWDModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.sew_d.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.sew_d.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(SEWD_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_SEQ_CLASS_CHECKPOINT, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.sew_d( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/sew_d/convert_sew_d_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert SEW checkpoint.""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWDConfig, SEWDForCTC, SEWDModel, Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, logging, ) logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "attention.self.query_proj": "encoder.encoder.layer.*.attention.self.query_proj", "attention.self.key_proj": "encoder.encoder.layer.*.attention.self.key_proj", "attention.self.value_proj": "encoder.encoder.layer.*.attention.self.value_proj", "attention.output.dense": "encoder.encoder.layer.*.attention.output.dense", "attention.output.LayerNorm": "encoder.encoder.layer.*.attention.output.LayerNorm", "intermediate.dense": "encoder.encoder.layer.*.intermediate.dense", "output.dense": "encoder.encoder.layer.*.output.dense", "output.LayerNorm": "encoder.encoder.layer.*.output.LayerNorm", "encoder.encoder.rel_embeddings": "encoder.encoder.rel_embeddings", "encoder.encoder.LayerNorm": "encoder.encoder.LayerNorm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def set_recursively(hf_pointer, key, value, full_name, weight_type): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def recursively_load_weights(fairseq_model, hf_model, is_finetuned): unused_weights = [] fairseq_dict = fairseq_model.state_dict() feature_extractor = hf_model.sew_d.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, hf_model.config.feat_extract_norm == "group", ) is_used = True else: for key, mapped_key in MAPPING.items(): mapped_key = "sew_d." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] if not layer_index.isnumeric(): continue mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "weight" in name: weight_type = "weight" elif "bias" in name: weight_type = "bias" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.bias.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.weight.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(full_name) def convert_config(model, is_finetuned): config = SEWDConfig() if is_finetuned: fs_config = model.w2v_encoder.w2v_model.cfg else: fs_config = model.cfg config.conv_bias = fs_config.conv_bias conv_layers = eval(fs_config.conv_feature_layers) config.conv_dim = [x[0] for x in conv_layers] config.conv_kernel = [x[1] for x in conv_layers] config.conv_stride = [x[2] for x in conv_layers] config.feat_extract_activation = "gelu" config.feat_extract_norm = "layer" if fs_config.extractor_mode == "layer_norm" else "group" config.final_dropout = 0.0 config.hidden_act = fs_config.activation_fn.name config.hidden_size = fs_config.encoder_embed_dim config.initializer_range = 0.02 config.intermediate_size = fs_config.encoder_ffn_embed_dim config.layer_norm_eps = 1e-5 config.layerdrop = fs_config.encoder_layerdrop config.num_attention_heads = fs_config.encoder_attention_heads config.num_conv_pos_embedding_groups = fs_config.conv_pos_groups config.num_conv_pos_embeddings = fs_config.conv_pos config.num_feat_extract_layers = len(conv_layers) config.num_hidden_layers = fs_config.encoder_layers config.squeeze_factor = fs_config.squeeze_factor # DeBERTa-specific parameters: config.max_position_embeddings = fs_config.max_position_embeddings config.position_buckets = fs_config.position_buckets config.share_att_key = fs_config.share_att_key config.relative_attention = fs_config.relative_attention config.position_biased_input = fs_config.position_biased_input config.pos_att_type = tuple(fs_config.pos_att_type.split("|")) config.norm_rel_ebd = fs_config.norm_rel_ebd # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: fs_config = model.cfg config.final_dropout = fs_config.final_dropout config.layerdrop = fs_config.layerdrop config.activation_dropout = fs_config.activation_dropout config.apply_spec_augment = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 config.attention_dropout = fs_config.attention_dropout config.feat_proj_dropout = fs_config.dropout_input config.hidden_dropout = fs_config.dropout config.mask_feature_length = fs_config.mask_channel_length config.mask_feature_prob = fs_config.mask_channel_prob config.mask_time_length = fs_config.mask_length config.mask_time_prob = fs_config.mask_prob config.feature_extractor_type = "Wav2Vec2FeatureExtractor" config.tokenizer_class = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def convert_sew_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True ): """ Copy/paste/tweak model's weights to transformers design. """ if is_finetuned: model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])} ) else: model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) if config_path is not None: config = SEWDConfig.from_pretrained(config_path) else: config = convert_config(model[0], is_finetuned) model = model[0].eval() return_attention_mask = True if config.feat_extract_norm == "layer" else False feature_extractor = Wav2Vec2FeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=True, return_attention_mask=return_attention_mask, ) if is_finetuned: if dict_path: target_dict = Dictionary.load(dict_path) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq target_dict.indices[target_dict.bos_word] = target_dict.pad_index target_dict.indices[target_dict.pad_word] = target_dict.bos_index config.bos_token_id = target_dict.pad_index config.pad_token_id = target_dict.bos_index config.eos_token_id = target_dict.eos_index config.vocab_size = len(target_dict.symbols) vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json") if not os.path.isdir(pytorch_dump_folder_path): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path)) return os.makedirs(pytorch_dump_folder_path, exist_ok=True) with open(vocab_path, "w", encoding="utf-8") as vocab_handle: json.dump(target_dict.indices, vocab_handle) tokenizer = Wav2Vec2CTCTokenizer( vocab_path, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=False, ) processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) processor.save_pretrained(pytorch_dump_folder_path) hf_model = SEWDForCTC(config) else: hf_model = SEWDModel(config) feature_extractor.save_pretrained(pytorch_dump_folder_path) recursively_load_weights(model, hf_model, is_finetuned) hf_model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) args = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/sew_d/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = {"configuration_sew_d": ["SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWDConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_sew_d"] = [ "SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWDForCTC", "SEWDForSequenceClassification", "SEWDModel", "SEWDPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew_d import SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWDConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew_d import ( SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST, SEWDForCTC, SEWDForSequenceClassification, SEWDModel, SEWDPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/mistral/modeling_mistral.py
# coding=utf-8 # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Mistral model.""" import inspect import math import warnings from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from .configuration_mistral import MistralConfig if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MistralConfig" # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral class MistralRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ MistralRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) # copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral # TODO @Arthur no longer copied from LLama after static cache class MistralRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb # TODO @Arthur no longer copied from LLama after static cache def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class MistralMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class MistralAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". """ def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True self.attention_dropout = config.attention_dropout if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) self.rotary_emb = MistralRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class MistralFlashAttention2(MistralAttention): """ Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ): if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) # overwrite attention_mask with padding_mask attention_mask = kwargs.pop("padding_mask") bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) # Because the input can be padded, the absolute sequence length depends on the max position id. rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) use_sliding_windows = ( _flash_supports_window_size and getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window ) if not _flash_supports_window_size: logger.warning_once( "The current flash attention version does not support sliding window attention, for a more memory efficient implementation" " make sure to upgrade flash-attn library." ) if past_key_value is not None: # Activate slicing cache only if the config has a value `sliding_windows` attribute cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 if ( getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window and cache_has_contents ): slicing_tokens = 1 - self.config.sliding_window past_key = past_key_value[self.layer_idx][0] past_value = past_key_value[self.layer_idx][1] past_key = past_key[:, :, slicing_tokens:, :].contiguous() past_value = past_value[:, :, slicing_tokens:, :].contiguous() if past_key.shape[-2] != self.config.sliding_window - 1: raise ValueError( f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" f" {past_key.shape}" ) if attention_mask is not None: attention_mask = attention_mask[:, slicing_tokens:] attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) dropout_rate = 0.0 if not self.training else self.attention_dropout # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in float16 just to be sure everything works as expected. input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) # Reashape to the expected shape for Flash Attention query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, use_sliding_windows=use_sliding_windows, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None, use_sliding_windows=False, ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`float`): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) use_sliding_windows (`bool`, *optional*): Whether to activate sliding window attention. """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens if not use_sliding_windows: attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) else: attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, window_size=(self.config.sliding_window, self.config.sliding_window), ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: if not use_sliding_windows: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, ) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, window_size=(self.config.sliding_window, self.config.sliding_window), ) return attn_output def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape # On the first iteration we need to properly re-create the padding mask # by slicing it on the proper place if kv_seq_len != attention_mask.shape[-1]: attention_mask_num_tokens = attention_mask.shape[-1] attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mistral # TODO @Arthur no longer copied from LLama after static cache class MistralSdpaAttention(MistralAttention): """ Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from MistralAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.attention_dropout if self.training else 0.0, # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal=self.is_causal and attention_mask is None and q_len > 1, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value MISTRAL_ATTENTION_CLASSES = { "eager": MistralAttention, "flash_attention_2": MistralFlashAttention2, "sdpa": MistralSdpaAttention, } class MistralDecoderLayer(nn.Module): def __init__(self, config: MistralConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) self.mlp = MistralMLP(config) self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs MISTRAL_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MistralConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Mistral Model outputting raw hidden-states without any specific head on top.", MISTRAL_START_DOCSTRING, ) class MistralPreTrainedModel(PreTrainedModel): config_class = MistralConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MistralDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() MISTRAL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Mistral Model outputting raw hidden-states without any specific head on top.", MISTRAL_START_DOCSTRING, ) class MistralModel(MistralPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`] Args: config: MistralConfig """ def __init__(self, config: MistralConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._attn_implementation = config._attn_implementation self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False past_key_values_length = 0 if use_cache: use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values_length = past_key_values.get_usable_length(seq_length) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: is_padding_right = attention_mask[:, -1].sum().item() != batch_size if is_padding_right: raise ValueError( "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to " " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if self._attn_implementation == "flash_attention_2": # 2d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None elif self._attn_implementation == "sdpa" and not output_attentions: # output_attentions=True can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, sliding_window=self.config.sliding_window, ) else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, sliding_window=self.config.sliding_window, ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_values, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class MistralForCausalLM(MistralPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = MistralModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, MistralForCausalLM >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Ensure tensors are on the same device shift_labels = shift_labels.to(shift_logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): # Omit tokens covered by past_key_values if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens max_cache_length = past_key_values.get_max_length() else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings( """ The Mistral Model transformer with a sequence classification head on top (linear layer). [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, MISTRAL_START_DOCSTRING, ) # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL class MistralForSequenceClassification(MistralPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = MistralModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/mistral/configuration_mistral.py
# coding=utf-8 # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Mistral model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class MistralConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MistralModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 14336): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to `4096*32`): The maximum sequence length that this model might ever be used with. Mistral's sliding window attention allows sequence of up to 4096*32 tokens. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*): The id of the padding token. bos_token_id (`int`, *optional*, defaults to 1): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 2): The id of the "end-of-sequence" token. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. sliding_window (`int`, *optional*, defaults to 4096): Sliding window attention window size. If not specified, will default to `4096`. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. ```python >>> from transformers import MistralModel, MistralConfig >>> # Initializing a Mistral 7B style configuration >>> configuration = MistralConfig() >>> # Initializing a model from the Mistral 7B style configuration >>> model = MistralModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mistral" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, hidden_act="silu", max_position_embeddings=4096 * 32, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, rope_theta=10000.0, sliding_window=4096, attention_dropout=0.0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.sliding_window = sliding_window # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_dropout = attention_dropout super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/mistral/convert_mistral_weights_to_hf.py
# Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import gc import json import os import shutil import warnings import torch from transformers import ( LlamaTokenizer, MistralConfig, MistralForCausalLM, ) try: from transformers import LlamaTokenizerFast tokenizer_class = LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) tokenizer_class = LlamaTokenizer """ Sample usage: ``` python src/transformers/models/mistral/convert_mistral_weights_to_hf.py \ --input_dir /path/to/downloaded/mistral/weights --model_size 7B --output_dir /output/path ``` Thereafter, models can be loaded via: ```py from transformers import MistralForCausalLM, LlamaTokenizer model = MistralForCausalLM.from_pretrained("/output/path") tokenizer = LlamaTokenizer.from_pretrained("/output/path") ``` Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). """ NUM_SHARDS = {"7B": 1} def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of) def read_json(path): with open(path, "r") as f: return json.load(f) def write_json(text, path): with open(path, "w") as f: json.dump(text, f) def write_model(model_path, input_base_path, model_size, tokenizer_path=None, safe_serialization=True): # for backward compatibility, before you needed the repo to be called `my_repo/model_size` if not os.path.isfile(os.path.join(input_base_path, "params.json")): input_base_path = os.path.join(input_base_path, model_size) os.makedirs(model_path, exist_ok=True) tmp_model_path = os.path.join(model_path, "tmp") os.makedirs(tmp_model_path, exist_ok=True) params = read_json(os.path.join(input_base_path, "params.json")) num_shards = NUM_SHARDS[model_size] # For some reason this is a string in the params.json sliding_window = int(params["sliding_window"]) n_layers = params["n_layers"] n_heads = params["n_heads"] n_heads_per_shard = n_heads // num_shards dim = params["dim"] dims_per_head = dim // n_heads base = params.get("rope_theta", 10000.0) inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) max_position_embeddings = 4096 * 8 if tokenizer_path is not None: tokenizer = tokenizer_class(tokenizer_path) tokenizer.save_pretrained(model_path) vocab_size = tokenizer.vocab_size if tokenizer_path is not None else 32000 if "n_kv_heads" in params: num_key_value_heads = params["n_kv_heads"] # for GQA / MQA num_local_key_value_heads = num_key_value_heads // num_shards key_value_dim = dims_per_head * num_local_key_value_heads else: # compatibility with other checkpoints num_key_value_heads = n_heads num_local_key_value_heads = n_heads_per_shard key_value_dim = dim # permute for sliced rotary def permute(w, n_heads=n_heads, dim1=dim, dim2=dim): return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2) print(f"Fetching all parameters from the checkpoint at {input_base_path}.") # Load weights loaded = [ torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu") for i in range(num_shards) ] param_count = 0 index_dict = {"weight_map": {}} for layer_i in range(n_layers): filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. state_dict = { f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim) for i in range(num_shards) ], dim=0, ).reshape(dim, dim) ) state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( num_local_key_value_heads, dims_per_head, dim ) for i in range(num_shards) ], dim=0, ).reshape(key_value_dim, dim), num_key_value_heads, key_value_dim, dim, ) state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(num_local_key_value_heads, dims_per_head, dim) for i in range(num_shards) ], dim=0, ).reshape(key_value_dim, dim) state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1 ) state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0 ) state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1 ) state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0 ) state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq for k, v in state_dict.items(): index_dict["weight_map"][k] = filename param_count += v.numel() torch.save(state_dict, os.path.join(tmp_model_path, filename)) filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" state_dict = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat([loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0), } for k, v in state_dict.items(): index_dict["weight_map"][k] = filename param_count += v.numel() torch.save(state_dict, os.path.join(tmp_model_path, filename)) # Write configs index_dict["metadata"] = {"total_size": param_count * 2} write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json")) config = MistralConfig( hidden_size=dim, intermediate_size=params["hidden_dim"], num_attention_heads=params["n_heads"], num_hidden_layers=params["n_layers"], rms_norm_eps=params["norm_eps"], num_key_value_heads=num_key_value_heads, vocab_size=vocab_size, rope_theta=base, max_position_embeddings=max_position_embeddings, sliding_window=sliding_window, ) config.save_pretrained(tmp_model_path) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Mistral model.") model = MistralForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True) # Avoid saving this as part of the config. del model.config._name_or_path model.config.torch_dtype = torch.float16 print("Saving in the Transformers format.") model.save_pretrained(model_path, safe_serialization=safe_serialization) shutil.rmtree(tmp_model_path) def write_tokenizer(tokenizer_path, input_tokenizer_path): # Initialize the tokenizer based on the `spm` model print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.") tokenizer = tokenizer_class(input_tokenizer_path) tokenizer.save_pretrained(tokenizer_path) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--input_dir", help="Location of Mistral weights, which contains tokenizer.model and model folders", ) parser.add_argument( "--model_size", choices=["7B", "tokenizer_only"], help="'f' models correspond to the finetuned versions, and are specific to the Mistral2 official release. For more details on Mistral2, checkout the original repo: https://huggingface.co/meta-mistral", ) parser.add_argument( "--output_dir", help="Location to write HF model and tokenizer", ) parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.") args = parser.parse_args() spm_path = os.path.join(args.input_dir, "tokenizer.model") if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir, input_base_path=args.input_dir, model_size=args.model_size, safe_serialization=args.safe_serialization, tokenizer_path=spm_path, ) else: write_tokenizer(args.output_dir, spm_path) if __name__ == "__main__": main()
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/mistral/__init__.py
# Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _import_structure = { "configuration_mistral": ["MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP", "MistralConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mistral"] = [ "MistralForCausalLM", "MistralModel", "MistralPreTrainedModel", "MistralForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_mistral"] = [ "FlaxMistralForCausalLM", "FlaxMistralModel", "FlaxMistralPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mistral import MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP, MistralConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mistral import ( MistralForCausalLM, MistralForSequenceClassification, MistralModel, MistralPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mistral import ( FlaxMistralForCausalLM, FlaxMistralModel, FlaxMistralPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/mistral/modeling_flax_mistral.py
# coding=utf-8 # Copyright 2024 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax Mistral model.""" from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPast, FlaxCausalLMOutput, FlaxCausalLMOutputWithCrossAttentions, ) from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, logging from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward from .configuration_mistral import MistralConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MistralConfig" _REAL_CHECKPOINT_FOR_DOC = "mistralai/Mistral-7B-v0.1" _CHECKPOINT_FOR_DOC = "ksmcg/Mistral-tiny" MISTRAL_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`MistralConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16`, or `jax.numpy.bfloat16`. This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ MISTRAL_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaRMSNorm with Llama->Mistral class FlaxMistralRMSNorm(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.epsilon = self.config.rms_norm_eps self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.config.hidden_size) def __call__(self, hidden_states): variance = jnp.asarray(hidden_states, dtype=jnp.float32) variance = jnp.power(variance, 2) variance = variance.mean(-1, keepdims=True) # use `jax.numpy.sqrt` as `jax.lax.rsqrt` does not match `torch.rsqrt` hidden_states = hidden_states / jnp.sqrt(variance + self.epsilon) return self.weight * jnp.asarray(hidden_states, dtype=self.dtype) # Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaRotaryEmbedding with Llama->Mistral class FlaxMistralRotaryEmbedding(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): head_dim = self.config.hidden_size // self.config.num_attention_heads self.sincos = create_sinusoidal_positions(self.config.max_position_embeddings, head_dim) def __call__(self, key, query, position_ids): sincos = self.sincos[position_ids] sin_pos, cos_pos = jnp.split(sincos, 2, axis=-1) key = apply_rotary_pos_emb(key, sin_pos, cos_pos) query = apply_rotary_pos_emb(query, sin_pos, cos_pos) key = jnp.asarray(key, dtype=self.dtype) query = jnp.asarray(query, dtype=self.dtype) return key, query # Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaMLP with Llama->Mistral class FlaxMistralMLP(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): embed_dim = self.config.hidden_size inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * embed_dim kernel_init = jax.nn.initializers.normal(self.config.initializer_range) self.act = ACT2FN[self.config.hidden_act] self.gate_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) self.down_proj = nn.Dense(embed_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) self.up_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) def __call__(self, hidden_states): up_proj_states = self.up_proj(hidden_states) gate_states = self.act(self.gate_proj(hidden_states)) hidden_states = self.down_proj(up_proj_states * gate_states) return hidden_states # Copied from transformers.models.llama.modeling_flax_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(tensor, sin_pos, cos_pos): return (tensor * cos_pos) + (rotate_half(tensor) * sin_pos) # Copied from transformers.models.llama.modeling_flax_llama.create_sinusoidal_positions def create_sinusoidal_positions(num_pos, dim): inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) freqs = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32") emb = np.concatenate((freqs, freqs), axis=-1) out = np.concatenate((np.sin(emb)[:, None, :], np.cos(emb)[:, None, :]), axis=-1) return jnp.array(out[:, :, :num_pos]) # Copied from transformers.models.llama.modeling_flax_llama.rotate_half def rotate_half(tensor): """Rotates half the hidden dims of the input.""" rotate_half_tensor = jnp.concatenate( (-tensor[..., tensor.shape[-1] // 2 :], tensor[..., : tensor.shape[-1] // 2]), axis=-1 ) return rotate_half_tensor class FlaxMistralAttention(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): config = self.config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.attention_softmax_in_fp32 = self.dtype is not jnp.float32 self.rope_theta = config.rope_theta if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Dense(self.num_heads * self.head_dim, use_bias=False, dtype=self.dtype) self.k_proj = nn.Dense(self.num_key_value_heads * self.head_dim, use_bias=False, dtype=self.dtype) self.v_proj = nn.Dense(self.num_key_value_heads * self.head_dim, use_bias=False, dtype=self.dtype) self.o_proj = nn.Dense(self.hidden_size, use_bias=False, dtype=self.dtype) casual_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool") self.causal_mask = jnp.triu(casual_mask, k=-config.sliding_window) self.rotary_emb = FlaxMistralRotaryEmbedding(config, dtype=self.dtype) def _split_heads(self, hidden_states, num_heads): return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,)) @nn.compact # Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoSelfAttention._concatenate_to_cache def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, deterministic: bool = True, output_attentions: bool = False, init_cache: bool = False, ) -> Tuple[jnp.ndarray, jnp.ndarray]: query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states, self.num_heads) key_states = self._split_heads(key_states, self.num_key_value_heads) value_states = self._split_heads(value_states, self.num_key_value_heads) key_states, query_states = self.rotary_emb(key_states, query_states, position_ids) query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] batch_size = hidden_states.shape[0] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) if self.has_variable("cache", "cached_key") or init_cache: key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) key_states = jnp.repeat(key_states, self.num_key_value_groups, axis=2) value_states = jnp.repeat(value_states, self.num_key_value_groups, axis=2) attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) # usual dot product attention attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, deterministic=deterministic, dropout_rate=self.config.attention_dropout, dtype=attention_dtype, ) if self.attention_softmax_in_fp32: attn_weights = attn_weights.astype(self.dtype) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.o_proj(attn_output) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs # Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaDecoderLayer with Llama->Mistral class FlaxMistralDecoderLayer(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.input_layernorm = FlaxMistralRMSNorm(self.config, dtype=self.dtype) self.self_attn = FlaxMistralAttention(self.config, dtype=self.dtype) self.post_attention_layernorm = FlaxMistralRMSNorm(self.config, dtype=self.dtype) self.mlp = FlaxMistralMLP(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, ): residual = hidden_states hidden_states = self.input_layernorm(hidden_states) outputs = self.self_attn( hidden_states, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, ) # residual connection attn_output = outputs[0] hidden_states = residual + attn_output residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + hidden_states return (hidden_states,) + outputs[1:] # Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoPreTrainedModel with GPTNeo->Mistral, GPT_NEO->MISTRAL, transformer->model class FlaxMistralPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MistralConfig base_model_prefix = "model" module_class: nn.Module = None def __init__( self, config: MistralConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length)) attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) def __call__( self, input_ids, attention_mask=None, position_ids=None, params: dict = None, past_key_values: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict batch_size, sequence_length = input_ids.shape if position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.") position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) if attention_mask is None: attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxMistralAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, False, output_attentions, output_hidden_states, return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] return outputs # Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaLayerCollection with Llama->Mistral class FlaxMistralLayerCollection(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.blocks = [ FlaxMistralDecoderLayer(self.config, dtype=self.dtype, name=str(i)) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = False, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for block in self.blocks: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = block( hidden_states, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) # this contains possible `None` values - `FlaxMistralModule` will filter them out outputs = (hidden_states, all_hidden_states, all_attentions) return outputs # Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaModule with Llama->Mistral class FlaxMistralModule(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.hidden_size = self.config.hidden_size embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range) self.embed_tokens = nn.Embed( self.config.vocab_size, self.hidden_size, embedding_init=embedding_init, dtype=self.dtype, ) self.layers = FlaxMistralLayerCollection(self.config, dtype=self.dtype) self.norm = FlaxMistralRMSNorm(self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask=None, position_ids=None, deterministic=True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): input_embeds = self.embed_tokens(input_ids.astype("i4")) outputs = self.layers( input_embeds, position_ids=position_ids, attention_mask=attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.norm(hidden_states) if output_hidden_states: all_hidden_states = outputs[1] + (hidden_states,) outputs = (hidden_states, all_hidden_states) + outputs[2:] else: outputs = (hidden_states,) + outputs[1:] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=outputs[1], attentions=outputs[-1], ) @add_start_docstrings( "The bare Mistral Model transformer outputting raw hidden-states without any specific head on top.", MISTRAL_START_DOCSTRING, ) class FlaxMistralModel(FlaxMistralPreTrainedModel): module_class = FlaxMistralModule append_call_sample_docstring( FlaxMistralModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPast, _CONFIG_FOR_DOC, real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, ) # Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaForCausalLMModule with Llama->Mistral class FlaxMistralForCausalLMModule(nn.Module): config: MistralConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.model = FlaxMistralModule(self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) def __call__( self, input_ids, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): outputs = self.model( input_ids, position_ids=position_ids, attention_mask=attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + outputs[1:] return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) @add_start_docstrings( """ The Mistral Model transformer with a language modeling head (linear layer) on top. """, MISTRAL_START_DOCSTRING, ) # Copied from transformers.models.gptj.modeling_flax_gptj.FlaxGPTJForCausalLM with GPTJ->Mistral class FlaxMistralForCausalLM(FlaxMistralPreTrainedModel): module_class = FlaxMistralForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since Mistral uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxMistralForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutputWithCrossAttentions, _CONFIG_FOR_DOC, real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/dpr/modeling_tf_dpr.py
# coding=utf-8 # Copyright 2018 DPR Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow DPR model for Open Domain Question Answering.""" from __future__ import annotations from dataclasses import dataclass from typing import Tuple, Union import tensorflow as tf from ...modeling_tf_outputs import TFBaseModelOutputWithPooling from ...modeling_tf_utils import TFModelInputType, TFPreTrainedModel, get_initializer, keras, shape_list, unpack_inputs from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..bert.modeling_tf_bert import TFBertMainLayer from .configuration_dpr import DPRConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "DPRConfig" from ..deprecated._archive_maps import ( # noqa: F401, E402 TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, # noqa: F401, E402 TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, # noqa: F401, E402 TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, # noqa: F401, E402 ) ########## # Outputs ########## @dataclass class TFDPRContextEncoderOutput(ModelOutput): r""" Class for outputs of [`TFDPRContextEncoder`]. Args: pooler_output (`tf.Tensor` of shape `(batch_size, embeddings_size)`): The DPR encoder outputs the *pooler_output* that corresponds to the context representation. Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer. This output is to be used to embed contexts for nearest neighbors queries with questions embeddings. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ pooler_output: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFDPRQuestionEncoderOutput(ModelOutput): """ Class for outputs of [`TFDPRQuestionEncoder`]. Args: pooler_output (`tf.Tensor` of shape `(batch_size, embeddings_size)`): The DPR encoder outputs the *pooler_output* that corresponds to the question representation. Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer. This output is to be used to embed questions for nearest neighbors queries with context embeddings. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ pooler_output: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFDPRReaderOutput(ModelOutput): """ Class for outputs of [`TFDPRReaderEncoder`]. Args: start_logits (`tf.Tensor` of shape `(n_passages, sequence_length)`): Logits of the start index of the span for each passage. end_logits (`tf.Tensor` of shape `(n_passages, sequence_length)`): Logits of the end index of the span for each passage. relevance_logits (`tf.Tensor` of shape `(n_passages, )`): Outputs of the QA classifier of the DPRReader that corresponds to the scores of each passage to answer the question, compared to all the other passages. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ start_logits: tf.Tensor = None end_logits: tf.Tensor = None relevance_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None class TFDPREncoderLayer(keras.layers.Layer): base_model_prefix = "bert_model" def __init__(self, config: DPRConfig, **kwargs): super().__init__(**kwargs) # resolve name conflict with TFBertMainLayer instead of TFBertModel self.bert_model = TFBertMainLayer(config, add_pooling_layer=False, name="bert_model") self.config = config if self.config.hidden_size <= 0: raise ValueError("Encoder hidden_size can't be zero") self.projection_dim = config.projection_dim if self.projection_dim > 0: self.encode_proj = keras.layers.Dense( config.projection_dim, kernel_initializer=get_initializer(config.initializer_range), name="encode_proj" ) @unpack_inputs def call( self, input_ids: tf.Tensor = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: bool = None, output_hidden_states: bool = None, return_dict: bool = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]: outputs = self.bert_model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] pooled_output = sequence_output[:, 0, :] if self.projection_dim > 0: pooled_output = self.encode_proj(pooled_output) if not return_dict: return (sequence_output, pooled_output) + outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @property def embeddings_size(self) -> int: if self.projection_dim > 0: return self.projection_dim return self.bert_model.config.hidden_size def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bert_model", None) is not None: with tf.name_scope(self.bert_model.name): self.bert_model.build(None) if getattr(self, "encode_proj", None) is not None: with tf.name_scope(self.encode_proj.name): self.encode_proj.build(None) class TFDPRSpanPredictorLayer(keras.layers.Layer): base_model_prefix = "encoder" def __init__(self, config: DPRConfig, **kwargs): super().__init__(**kwargs) self.config = config self.encoder = TFDPREncoderLayer(config, name="encoder") self.qa_outputs = keras.layers.Dense( 2, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.qa_classifier = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="qa_classifier" ) @unpack_inputs def call( self, input_ids: tf.Tensor = None, attention_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = False, training: bool = False, ) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]: # notations: N - number of questions in a batch, M - number of passages per questions, L - sequence length n_passages, sequence_length = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)[:2] # feed encoder outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] # compute logits logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) relevance_logits = self.qa_classifier(sequence_output[:, 0, :]) # resize start_logits = tf.reshape(start_logits, [n_passages, sequence_length]) end_logits = tf.reshape(end_logits, [n_passages, sequence_length]) relevance_logits = tf.reshape(relevance_logits, [n_passages]) if not return_dict: return (start_logits, end_logits, relevance_logits) + outputs[2:] return TFDPRReaderOutput( start_logits=start_logits, end_logits=end_logits, relevance_logits=relevance_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.encoder.embeddings_size]) if getattr(self, "qa_classifier", None) is not None: with tf.name_scope(self.qa_classifier.name): self.qa_classifier.build([None, None, self.encoder.embeddings_size]) class TFDPRSpanPredictor(TFPreTrainedModel): base_model_prefix = "encoder" def __init__(self, config: DPRConfig, **kwargs): super().__init__(config, **kwargs) self.encoder = TFDPRSpanPredictorLayer(config) @unpack_inputs def call( self, input_ids: tf.Tensor = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = False, training: bool = False, ) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]: outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs class TFDPREncoder(TFPreTrainedModel): base_model_prefix = "encoder" def __init__(self, config: DPRConfig, **kwargs): super().__init__(config, **kwargs) self.encoder = TFDPREncoderLayer(config) @unpack_inputs def call( self, input_ids: tf.Tensor = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = False, training: bool = False, ) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]: outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs ################## # PreTrainedModel ################## class TFDPRPretrainedContextEncoder(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPRConfig base_model_prefix = "ctx_encoder" class TFDPRPretrainedQuestionEncoder(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPRConfig base_model_prefix = "question_encoder" class TFDPRPretrainedReader(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPRConfig base_model_prefix = "reader" ############### # Actual Models ############### TF_DPR_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Tensorflow [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`DPRConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ TF_DPR_ENCODERS_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. To match pretraining, DPR input sequence should be formatted with [CLS] and [SEP] tokens as follows: (a) For sequence pairs (for a pair title+text for example): ``` tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 ``` (b) For single sequences (for a question for example): ``` tokens: [CLS] the dog is hairy . [SEP] token_type_ids: 0 0 0 0 0 0 0 ``` DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) inputs_embeds (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ TF_DPR_READER_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shapes `(n_passages, sequence_length)`): Indices of input sequence tokens in the vocabulary. It has to be a sequence triplet with 1) the question and 2) the passages titles and 3) the passages texts To match pretraining, DPR `input_ids` sequence should be formatted with [CLS] and [SEP] with the format: `[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>` DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. Indices can be obtained using [`DPRReaderTokenizer`]. See this class documentation for more details. attention_mask (`Numpy array` or `tf.Tensor` of shape `(n_passages, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) inputs_embeds (`Numpy array` or `tf.Tensor` of shape `(n_passages, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare DPRContextEncoder transformer outputting pooler outputs as context representations.", TF_DPR_START_DOCSTRING, ) class TFDPRContextEncoder(TFDPRPretrainedContextEncoder): def __init__(self, config: DPRConfig, *args, **kwargs): super().__init__(config, *args, **kwargs) self.ctx_encoder = TFDPREncoderLayer(config, name="ctx_encoder") def get_input_embeddings(self): try: return self.ctx_encoder.bert_model.get_input_embeddings() except AttributeError: self.build() return self.ctx_encoder.bert_model.get_input_embeddings() @unpack_inputs @add_start_docstrings_to_model_forward(TF_DPR_ENCODERS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFDPRContextEncoderOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool = False, ) -> TFDPRContextEncoderOutput | Tuple[tf.Tensor, ...]: r""" Return: Examples: ```python >>> from transformers import TFDPRContextEncoder, DPRContextEncoderTokenizer >>> tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base") >>> model = TFDPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", from_pt=True) >>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="tf")["input_ids"] >>> embeddings = model(input_ids).pooler_output ``` """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = ( tf.ones(input_shape, dtype=tf.dtypes.int32) if input_ids is None else (input_ids != self.config.pad_token_id) ) if token_type_ids is None: token_type_ids = tf.zeros(input_shape, dtype=tf.dtypes.int32) outputs = self.ctx_encoder( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return outputs[1:] return TFDPRContextEncoderOutput( pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "ctx_encoder", None) is not None: with tf.name_scope(self.ctx_encoder.name): self.ctx_encoder.build(None) @add_start_docstrings( "The bare DPRQuestionEncoder transformer outputting pooler outputs as question representations.", TF_DPR_START_DOCSTRING, ) class TFDPRQuestionEncoder(TFDPRPretrainedQuestionEncoder): def __init__(self, config: DPRConfig, *args, **kwargs): super().__init__(config, *args, **kwargs) self.question_encoder = TFDPREncoderLayer(config, name="question_encoder") def get_input_embeddings(self): try: return self.question_encoder.bert_model.get_input_embeddings() except AttributeError: self.build() return self.question_encoder.bert_model.get_input_embeddings() @unpack_inputs @add_start_docstrings_to_model_forward(TF_DPR_ENCODERS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFDPRQuestionEncoderOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool = False, ) -> TFDPRQuestionEncoderOutput | Tuple[tf.Tensor, ...]: r""" Return: Examples: ```python >>> from transformers import TFDPRQuestionEncoder, DPRQuestionEncoderTokenizer >>> tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base") >>> model = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base", from_pt=True) >>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="tf")["input_ids"] >>> embeddings = model(input_ids).pooler_output ``` """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = ( tf.ones(input_shape, dtype=tf.dtypes.int32) if input_ids is None else (input_ids != self.config.pad_token_id) ) if token_type_ids is None: token_type_ids = tf.zeros(input_shape, dtype=tf.dtypes.int32) outputs = self.question_encoder( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return outputs[1:] return TFDPRQuestionEncoderOutput( pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "question_encoder", None) is not None: with tf.name_scope(self.question_encoder.name): self.question_encoder.build(None) @add_start_docstrings( "The bare DPRReader transformer outputting span predictions.", TF_DPR_START_DOCSTRING, ) class TFDPRReader(TFDPRPretrainedReader): def __init__(self, config: DPRConfig, *args, **kwargs): super().__init__(config, *args, **kwargs) self.span_predictor = TFDPRSpanPredictorLayer(config, name="span_predictor") def get_input_embeddings(self): try: return self.span_predictor.encoder.bert_model.get_input_embeddings() except AttributeError: self.build() return self.span_predictor.encoder.bert_model.get_input_embeddings() @unpack_inputs @add_start_docstrings_to_model_forward(TF_DPR_READER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFDPRReaderOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, training: bool = False, ) -> TFDPRReaderOutput | Tuple[tf.Tensor, ...]: r""" Return: Examples: ```python >>> from transformers import TFDPRReader, DPRReaderTokenizer >>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base") >>> model = TFDPRReader.from_pretrained("facebook/dpr-reader-single-nq-base", from_pt=True) >>> encoded_inputs = tokenizer( ... questions=["What is love ?"], ... titles=["Haddaway"], ... texts=["'What Is Love' is a song recorded by the artist Haddaway"], ... return_tensors="tf", ... ) >>> outputs = model(encoded_inputs) >>> start_logits = outputs.start_logits >>> end_logits = outputs.end_logits >>> relevance_logits = outputs.relevance_logits ``` """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.ones(input_shape, dtype=tf.dtypes.int32) return self.span_predictor( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "span_predictor", None) is not None: with tf.name_scope(self.span_predictor.name): self.span_predictor.build(None)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/dpr/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_dpr": ["DPR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPRConfig"], "tokenization_dpr": [ "DPRContextEncoderTokenizer", "DPRQuestionEncoderTokenizer", "DPRReaderOutput", "DPRReaderTokenizer", ], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_dpr_fast"] = [ "DPRContextEncoderTokenizerFast", "DPRQuestionEncoderTokenizerFast", "DPRReaderTokenizerFast", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_dpr"] = [ "DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST", "DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST", "DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST", "DPRContextEncoder", "DPRPretrainedContextEncoder", "DPRPreTrainedModel", "DPRPretrainedQuestionEncoder", "DPRPretrainedReader", "DPRQuestionEncoder", "DPRReader", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_dpr"] = [ "TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST", "TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST", "TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDPRContextEncoder", "TFDPRPretrainedContextEncoder", "TFDPRPretrainedQuestionEncoder", "TFDPRPretrainedReader", "TFDPRQuestionEncoder", "TFDPRReader", ] if TYPE_CHECKING: from .configuration_dpr import DPR_PRETRAINED_CONFIG_ARCHIVE_MAP, DPRConfig from .tokenization_dpr import ( DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderOutput, DPRReaderTokenizer, ) try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_dpr_fast import ( DPRContextEncoderTokenizerFast, DPRQuestionEncoderTokenizerFast, DPRReaderTokenizerFast, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpr import ( DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, DPRContextEncoder, DPRPretrainedContextEncoder, DPRPreTrainedModel, DPRPretrainedQuestionEncoder, DPRPretrainedReader, DPRQuestionEncoder, DPRReader, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_dpr import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, TFDPRContextEncoder, TFDPRPretrainedContextEncoder, TFDPRPretrainedQuestionEncoder, TFDPRPretrainedReader, TFDPRQuestionEncoder, TFDPRReader, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/dpr/modeling_dpr.py
# coding=utf-8 # Copyright 2018 DPR Authors, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch DPR model for Open Domain Question Answering.""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import Tensor, nn from ...modeling_outputs import BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..bert.modeling_bert import BertModel from .configuration_dpr import DPRConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "DPRConfig" _CHECKPOINT_FOR_DOC = "facebook/dpr-ctx_encoder-single-nq-base" from ..deprecated._archive_maps import ( # noqa: F401, E402 DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, # noqa: F401, E402 DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, # noqa: F401, E402 DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, # noqa: F401, E402 ) ########## # Outputs ########## @dataclass class DPRContextEncoderOutput(ModelOutput): """ Class for outputs of [`DPRQuestionEncoder`]. Args: pooler_output (`torch.FloatTensor` of shape `(batch_size, embeddings_size)`): The DPR encoder outputs the *pooler_output* that corresponds to the context representation. Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer. This output is to be used to embed contexts for nearest neighbors queries with questions embeddings. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ pooler_output: torch.FloatTensor hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class DPRQuestionEncoderOutput(ModelOutput): """ Class for outputs of [`DPRQuestionEncoder`]. Args: pooler_output (`torch.FloatTensor` of shape `(batch_size, embeddings_size)`): The DPR encoder outputs the *pooler_output* that corresponds to the question representation. Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer. This output is to be used to embed questions for nearest neighbors queries with context embeddings. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ pooler_output: torch.FloatTensor hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class DPRReaderOutput(ModelOutput): """ Class for outputs of [`DPRQuestionEncoder`]. Args: start_logits (`torch.FloatTensor` of shape `(n_passages, sequence_length)`): Logits of the start index of the span for each passage. end_logits (`torch.FloatTensor` of shape `(n_passages, sequence_length)`): Logits of the end index of the span for each passage. relevance_logits (`torch.FloatTensor` of shape `(n_passages, )`): Outputs of the QA classifier of the DPRReader that corresponds to the scores of each passage to answer the question, compared to all the other passages. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ start_logits: torch.FloatTensor end_logits: torch.FloatTensor = None relevance_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None class DPRPreTrainedModel(PreTrainedModel): _supports_sdpa = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class DPREncoder(DPRPreTrainedModel): base_model_prefix = "bert_model" def __init__(self, config: DPRConfig): super().__init__(config) self.bert_model = BertModel(config, add_pooling_layer=False) if self.bert_model.config.hidden_size <= 0: raise ValueError("Encoder hidden_size can't be zero") self.projection_dim = config.projection_dim if self.projection_dim > 0: self.encode_proj = nn.Linear(self.bert_model.config.hidden_size, config.projection_dim) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Tensor, attention_mask: Optional[Tensor] = None, token_type_ids: Optional[Tensor] = None, inputs_embeds: Optional[Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = False, ) -> Union[BaseModelOutputWithPooling, Tuple[Tensor, ...]]: outputs = self.bert_model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] pooled_output = sequence_output[:, 0, :] if self.projection_dim > 0: pooled_output = self.encode_proj(pooled_output) if not return_dict: return (sequence_output, pooled_output) + outputs[2:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @property def embeddings_size(self) -> int: if self.projection_dim > 0: return self.encode_proj.out_features return self.bert_model.config.hidden_size class DPRSpanPredictor(DPRPreTrainedModel): base_model_prefix = "encoder" def __init__(self, config: DPRConfig): super().__init__(config) self.encoder = DPREncoder(config) self.qa_outputs = nn.Linear(self.encoder.embeddings_size, 2) self.qa_classifier = nn.Linear(self.encoder.embeddings_size, 1) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Tensor, attention_mask: Tensor, inputs_embeds: Optional[Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = False, ) -> Union[DPRReaderOutput, Tuple[Tensor, ...]]: # notations: N - number of questions in a batch, M - number of passages per questions, L - sequence length n_passages, sequence_length = input_ids.size() if input_ids is not None else inputs_embeds.size()[:2] # feed encoder outputs = self.encoder( input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # compute logits logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() relevance_logits = self.qa_classifier(sequence_output[:, 0, :]) # resize start_logits = start_logits.view(n_passages, sequence_length) end_logits = end_logits.view(n_passages, sequence_length) relevance_logits = relevance_logits.view(n_passages) if not return_dict: return (start_logits, end_logits, relevance_logits) + outputs[2:] return DPRReaderOutput( start_logits=start_logits, end_logits=end_logits, relevance_logits=relevance_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) ################## # PreTrainedModel ################## class DPRPretrainedContextEncoder(DPRPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPRConfig load_tf_weights = None base_model_prefix = "ctx_encoder" class DPRPretrainedQuestionEncoder(DPRPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPRConfig load_tf_weights = None base_model_prefix = "question_encoder" class DPRPretrainedReader(DPRPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPRConfig load_tf_weights = None base_model_prefix = "span_predictor" ############### # Actual Models ############### DPR_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DPRConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DPR_ENCODERS_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. To match pretraining, DPR input sequence should be formatted with [CLS] and [SEP] tokens as follows: (a) For sequence pairs (for a pair title+text for example): ``` tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 ``` (b) For single sequences (for a question for example): ``` tokens: [CLS] the dog is hairy . [SEP] token_type_ids: 0 0 0 0 0 0 0 ``` DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ DPR_READER_INPUTS_DOCSTRING = r""" Args: input_ids (`Tuple[torch.LongTensor]` of shapes `(n_passages, sequence_length)`): Indices of input sequence tokens in the vocabulary. It has to be a sequence triplet with 1) the question and 2) the passages titles and 3) the passages texts To match pretraining, DPR `input_ids` sequence should be formatted with [CLS] and [SEP] with the format: `[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>` DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. Indices can be obtained using [`DPRReaderTokenizer`]. See this class documentation for more details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `(n_passages, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) inputs_embeds (`torch.FloatTensor` of shape `(n_passages, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare DPRContextEncoder transformer outputting pooler outputs as context representations.", DPR_START_DOCSTRING, ) class DPRContextEncoder(DPRPretrainedContextEncoder): def __init__(self, config: DPRConfig): super().__init__(config) self.config = config self.ctx_encoder = DPREncoder(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DPR_ENCODERS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DPRContextEncoderOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, token_type_ids: Optional[Tensor] = None, inputs_embeds: Optional[Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[DPRContextEncoderOutput, Tuple[Tensor, ...]]: r""" Return: Examples: ```python >>> from transformers import DPRContextEncoder, DPRContextEncoderTokenizer >>> tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base") >>> model = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base") >>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="pt")["input_ids"] >>> embeddings = model(input_ids).pooler_output ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = ( torch.ones(input_shape, device=device) if input_ids is None else (input_ids != self.config.pad_token_id) ) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) outputs = self.ctx_encoder( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs[1:] return DPRContextEncoderOutput( pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( "The bare DPRQuestionEncoder transformer outputting pooler outputs as question representations.", DPR_START_DOCSTRING, ) class DPRQuestionEncoder(DPRPretrainedQuestionEncoder): def __init__(self, config: DPRConfig): super().__init__(config) self.config = config self.question_encoder = DPREncoder(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DPR_ENCODERS_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DPRQuestionEncoderOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, token_type_ids: Optional[Tensor] = None, inputs_embeds: Optional[Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[DPRQuestionEncoderOutput, Tuple[Tensor, ...]]: r""" Return: Examples: ```python >>> from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer >>> tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base") >>> model = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base") >>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="pt")["input_ids"] >>> embeddings = model(input_ids).pooler_output ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = ( torch.ones(input_shape, device=device) if input_ids is None else (input_ids != self.config.pad_token_id) ) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) outputs = self.question_encoder( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs[1:] return DPRQuestionEncoderOutput( pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( "The bare DPRReader transformer outputting span predictions.", DPR_START_DOCSTRING, ) class DPRReader(DPRPretrainedReader): def __init__(self, config: DPRConfig): super().__init__(config) self.config = config self.span_predictor = DPRSpanPredictor(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DPR_READER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DPRReaderOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, inputs_embeds: Optional[Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[DPRReaderOutput, Tuple[Tensor, ...]]: r""" Return: Examples: ```python >>> from transformers import DPRReader, DPRReaderTokenizer >>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base") >>> model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base") >>> encoded_inputs = tokenizer( ... questions=["What is love ?"], ... titles=["Haddaway"], ... texts=["'What Is Love' is a song recorded by the artist Haddaway"], ... return_tensors="pt", ... ) >>> outputs = model(**encoded_inputs) >>> start_logits = outputs.start_logits >>> end_logits = outputs.end_logits >>> relevance_logits = outputs.relevance_logits ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) return self.span_predictor( input_ids, attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, )
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/dpr/convert_dpr_original_checkpoint_to_pytorch.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import collections from pathlib import Path import torch from torch.serialization import default_restore_location from transformers import BertConfig, DPRConfig, DPRContextEncoder, DPRQuestionEncoder, DPRReader CheckpointState = collections.namedtuple( "CheckpointState", ["model_dict", "optimizer_dict", "scheduler_dict", "offset", "epoch", "encoder_params"] ) def load_states_from_checkpoint(model_file: str) -> CheckpointState: print(f"Reading saved model from {model_file}") state_dict = torch.load(model_file, map_location=lambda s, l: default_restore_location(s, "cpu")) return CheckpointState(**state_dict) class DPRState: def __init__(self, src_file: Path): self.src_file = src_file def load_dpr_model(self): raise NotImplementedError @staticmethod def from_type(comp_type: str, *args, **kwargs) -> "DPRState": if comp_type.startswith("c"): return DPRContextEncoderState(*args, **kwargs) if comp_type.startswith("q"): return DPRQuestionEncoderState(*args, **kwargs) if comp_type.startswith("r"): return DPRReaderState(*args, **kwargs) else: raise ValueError("Component type must be either 'ctx_encoder', 'question_encoder' or 'reader'.") class DPRContextEncoderState(DPRState): def load_dpr_model(self): model = DPRContextEncoder(DPRConfig(**BertConfig.get_config_dict("google-bert/bert-base-uncased")[0])) print(f"Loading DPR biencoder from {self.src_file}") saved_state = load_states_from_checkpoint(self.src_file) encoder, prefix = model.ctx_encoder, "ctx_model." # Fix changes from https://github.com/huggingface/transformers/commit/614fef1691edb806de976756d4948ecbcd0c0ca3 state_dict = {"bert_model.embeddings.position_ids": model.ctx_encoder.bert_model.embeddings.position_ids} for key, value in saved_state.model_dict.items(): if key.startswith(prefix): key = key[len(prefix) :] if not key.startswith("encode_proj."): key = "bert_model." + key state_dict[key] = value encoder.load_state_dict(state_dict) return model class DPRQuestionEncoderState(DPRState): def load_dpr_model(self): model = DPRQuestionEncoder(DPRConfig(**BertConfig.get_config_dict("google-bert/bert-base-uncased")[0])) print(f"Loading DPR biencoder from {self.src_file}") saved_state = load_states_from_checkpoint(self.src_file) encoder, prefix = model.question_encoder, "question_model." # Fix changes from https://github.com/huggingface/transformers/commit/614fef1691edb806de976756d4948ecbcd0c0ca3 state_dict = {"bert_model.embeddings.position_ids": model.question_encoder.bert_model.embeddings.position_ids} for key, value in saved_state.model_dict.items(): if key.startswith(prefix): key = key[len(prefix) :] if not key.startswith("encode_proj."): key = "bert_model." + key state_dict[key] = value encoder.load_state_dict(state_dict) return model class DPRReaderState(DPRState): def load_dpr_model(self): model = DPRReader(DPRConfig(**BertConfig.get_config_dict("google-bert/bert-base-uncased")[0])) print(f"Loading DPR reader from {self.src_file}") saved_state = load_states_from_checkpoint(self.src_file) # Fix changes from https://github.com/huggingface/transformers/commit/614fef1691edb806de976756d4948ecbcd0c0ca3 state_dict = { "encoder.bert_model.embeddings.position_ids": model.span_predictor.encoder.bert_model.embeddings.position_ids } for key, value in saved_state.model_dict.items(): if key.startswith("encoder.") and not key.startswith("encoder.encode_proj"): key = "encoder.bert_model." + key[len("encoder.") :] state_dict[key] = value model.span_predictor.load_state_dict(state_dict) return model def convert(comp_type: str, src_file: Path, dest_dir: Path): dest_dir = Path(dest_dir) dest_dir.mkdir(exist_ok=True) dpr_state = DPRState.from_type(comp_type, src_file=src_file) model = dpr_state.load_dpr_model() model.save_pretrained(dest_dir) model.from_pretrained(dest_dir) # sanity check if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--type", type=str, help="Type of the component to convert: 'ctx_encoder', 'question_encoder' or 'reader'." ) parser.add_argument( "--src", type=str, help=( "Path to the dpr checkpoint file. They can be downloaded from the official DPR repo" " https://github.com/facebookresearch/DPR. Note that in the official repo, both encoders are stored in the" " 'retriever' checkpoints." ), ) parser.add_argument("--dest", type=str, default=None, help="Path to the output PyTorch model directory.") args = parser.parse_args() src_file = Path(args.src) dest_dir = f"converted-{src_file.name}" if args.dest is None else args.dest dest_dir = Path(dest_dir) assert src_file.exists() assert ( args.type is not None ), "Please specify the component type of the DPR model to convert: 'ctx_encoder', 'question_encoder' or 'reader'." convert(args.type, src_file, dest_dir)
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/dpr/tokenization_dpr.py
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for DPR.""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} class DPRContextEncoderTokenizer(BertTokenizer): r""" Construct a DPRContextEncoder tokenizer. [`DPRContextEncoderTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting and wordpiece. Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES class DPRQuestionEncoderTokenizer(BertTokenizer): r""" Constructs a DPRQuestionEncoder tokenizer. [`DPRQuestionEncoderTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting and wordpiece. Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES DPRSpanPrediction = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) DPRReaderOutput = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) CUSTOM_DPR_READER_DOCSTRING = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(CUSTOM_DPR_READER_DOCSTRING) class CustomDPRReaderTokenizerMixin: def __call__( self, questions, titles: Optional[str] = None, texts: Optional[str] = None, padding: Union[bool, str] = False, truncation: Union[bool, str] = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_attention_mask: Optional[bool] = None, **kwargs, ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( questions, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, return_attention_mask=return_attention_mask, **kwargs, ) elif titles is None or texts is None: text_pair = titles if texts is None else texts return super().__call__( questions, text_pair, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, return_attention_mask=return_attention_mask, **kwargs, ) titles = titles if not isinstance(titles, str) else [titles] texts = texts if not isinstance(texts, str) else [texts] n_passages = len(titles) questions = questions if not isinstance(questions, str) else [questions] * n_passages if len(titles) != len(texts): raise ValueError( f"There should be as many titles than texts but got {len(titles)} titles and {len(texts)} texts." ) encoded_question_and_titles = super().__call__(questions, titles, padding=False, truncation=False)["input_ids"] encoded_texts = super().__call__(texts, add_special_tokens=False, padding=False, truncation=False)["input_ids"] encoded_inputs = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(encoded_question_and_titles, encoded_texts) ] } if return_attention_mask is not False: attention_mask = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) encoded_inputs["attention_mask"] = attention_mask return self.pad(encoded_inputs, padding=padding, max_length=max_length, return_tensors=return_tensors) def decode_best_spans( self, reader_input: BatchEncoding, reader_output: DPRReaderOutput, num_spans: int = 16, max_answer_length: int = 64, num_spans_per_passage: int = 4, ) -> List[DPRSpanPrediction]: """ Get the span predictions for the extractive Q&A model. Returns: *List* of *DPRReaderOutput* sorted by descending *(relevance_score, span_score)*. Each *DPRReaderOutput* is a *Tuple* with: - **span_score**: `float` that corresponds to the score given by the reader for this span compared to other spans in the same passage. It corresponds to the sum of the start and end logits of the span. - **relevance_score**: `float` that corresponds to the score of the each passage to answer the question, compared to all the other passages. It corresponds to the output of the QA classifier of the DPRReader. - **doc_id**: `int` the id of the passage. - **start_index**: `int` the start index of the span (inclusive). - **end_index**: `int` the end index of the span (inclusive). Examples: ```python >>> from transformers import DPRReader, DPRReaderTokenizer >>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base") >>> model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base") >>> encoded_inputs = tokenizer( ... questions=["What is love ?"], ... titles=["Haddaway"], ... texts=["'What Is Love' is a song recorded by the artist Haddaway"], ... return_tensors="pt", ... ) >>> outputs = model(**encoded_inputs) >>> predicted_spans = tokenizer.decode_best_spans(encoded_inputs, outputs) >>> print(predicted_spans[0].text) # best span a song ```""" input_ids = reader_input["input_ids"] start_logits, end_logits, relevance_logits = reader_output[:3] n_passages = len(relevance_logits) sorted_docs = sorted(range(n_passages), reverse=True, key=relevance_logits.__getitem__) nbest_spans_predictions: List[DPRReaderOutput] = [] for doc_id in sorted_docs: sequence_ids = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence passage_offset = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: sequence_len = sequence_ids.index(self.pad_token_id) else: sequence_len = len(sequence_ids) best_spans = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=max_answer_length, top_spans=num_spans_per_passage, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=doc_id, start_index=start_index, end_index=end_index, text=self.decode(sequence_ids[start_index : end_index + 1]), ) ) if len(nbest_spans_predictions) >= num_spans: break return nbest_spans_predictions[:num_spans] def _get_best_spans( self, start_logits: List[int], end_logits: List[int], max_answer_length: int, top_spans: int, ) -> List[DPRSpanPrediction]: """ Finds the best answer span for the extractive Q&A model for one passage. It returns the best span by descending `span_score` order and keeping max `top_spans` spans. Spans longer that `max_answer_length` are ignored. """ scores = [] for start_index, start_score in enumerate(start_logits): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) scores = sorted(scores, key=lambda x: x[1], reverse=True) chosen_span_intervals = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]") length = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}") if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index)) if len(chosen_span_intervals) == top_spans: break return chosen_span_intervals @add_end_docstrings(CUSTOM_DPR_READER_DOCSTRING) class DPRReaderTokenizer(CustomDPRReaderTokenizerMixin, BertTokenizer): r""" Construct a DPRReader tokenizer. [`DPRReaderTokenizer`] is almost identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting and wordpiece. The difference is that is has three inputs strings: question, titles and texts that are combined to be fed to the [`DPRReader`] model. Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"]
0
mavonic_private_repos/transformers/src/transformers/models
mavonic_private_repos/transformers/src/transformers/models/dpr/tokenization_dpr_fast.py
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team, The Hugging Face Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for DPR.""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} class DPRContextEncoderTokenizerFast(BertTokenizerFast): r""" Construct a "fast" DPRContextEncoder tokenizer (backed by HuggingFace's *tokenizers* library). [`DPRContextEncoderTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization: punctuation splitting and wordpiece. Refer to superclass [`BertTokenizerFast`] for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = DPRContextEncoderTokenizer class DPRQuestionEncoderTokenizerFast(BertTokenizerFast): r""" Constructs a "fast" DPRQuestionEncoder tokenizer (backed by HuggingFace's *tokenizers* library). [`DPRQuestionEncoderTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization: punctuation splitting and wordpiece. Refer to superclass [`BertTokenizerFast`] for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = DPRQuestionEncoderTokenizer DPRSpanPrediction = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) DPRReaderOutput = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) CUSTOM_DPR_READER_DOCSTRING = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(CUSTOM_DPR_READER_DOCSTRING) class CustomDPRReaderTokenizerMixin: def __call__( self, questions, titles: Optional[str] = None, texts: Optional[str] = None, padding: Union[bool, str] = False, truncation: Union[bool, str] = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_attention_mask: Optional[bool] = None, **kwargs, ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( questions, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, return_attention_mask=return_attention_mask, **kwargs, ) elif titles is None or texts is None: text_pair = titles if texts is None else texts return super().__call__( questions, text_pair, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, return_attention_mask=return_attention_mask, **kwargs, ) titles = titles if not isinstance(titles, str) else [titles] texts = texts if not isinstance(texts, str) else [texts] n_passages = len(titles) questions = questions if not isinstance(questions, str) else [questions] * n_passages assert len(titles) == len( texts ), f"There should be as many titles than texts but got {len(titles)} titles and {len(texts)} texts." encoded_question_and_titles = super().__call__(questions, titles, padding=False, truncation=False)["input_ids"] encoded_texts = super().__call__(texts, add_special_tokens=False, padding=False, truncation=False)["input_ids"] encoded_inputs = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(encoded_question_and_titles, encoded_texts) ] } if return_attention_mask is not False: attention_mask = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) encoded_inputs["attention_mask"] = attention_mask return self.pad(encoded_inputs, padding=padding, max_length=max_length, return_tensors=return_tensors) def decode_best_spans( self, reader_input: BatchEncoding, reader_output: DPRReaderOutput, num_spans: int = 16, max_answer_length: int = 64, num_spans_per_passage: int = 4, ) -> List[DPRSpanPrediction]: """ Get the span predictions for the extractive Q&A model. Returns: *List* of *DPRReaderOutput* sorted by descending *(relevance_score, span_score)*. Each *DPRReaderOutput* is a *Tuple* with: - **span_score**: `float` that corresponds to the score given by the reader for this span compared to other spans in the same passage. It corresponds to the sum of the start and end logits of the span. - **relevance_score**: `float` that corresponds to the score of the each passage to answer the question, compared to all the other passages. It corresponds to the output of the QA classifier of the DPRReader. - **doc_id**: `int` the id of the passage. - ***start_index**: `int` the start index of the span (inclusive). - **end_index**: `int` the end index of the span (inclusive). Examples: ```python >>> from transformers import DPRReader, DPRReaderTokenizer >>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base") >>> model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base") >>> encoded_inputs = tokenizer( ... questions=["What is love ?"], ... titles=["Haddaway"], ... texts=["'What Is Love' is a song recorded by the artist Haddaway"], ... return_tensors="pt", ... ) >>> outputs = model(**encoded_inputs) >>> predicted_spans = tokenizer.decode_best_spans(encoded_inputs, outputs) >>> print(predicted_spans[0].text) # best span a song ```""" input_ids = reader_input["input_ids"] start_logits, end_logits, relevance_logits = reader_output[:3] n_passages = len(relevance_logits) sorted_docs = sorted(range(n_passages), reverse=True, key=relevance_logits.__getitem__) nbest_spans_predictions: List[DPRReaderOutput] = [] for doc_id in sorted_docs: sequence_ids = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence passage_offset = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: sequence_len = sequence_ids.index(self.pad_token_id) else: sequence_len = len(sequence_ids) best_spans = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=max_answer_length, top_spans=num_spans_per_passage, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=doc_id, start_index=start_index, end_index=end_index, text=self.decode(sequence_ids[start_index : end_index + 1]), ) ) if len(nbest_spans_predictions) >= num_spans: break return nbest_spans_predictions[:num_spans] def _get_best_spans( self, start_logits: List[int], end_logits: List[int], max_answer_length: int, top_spans: int, ) -> List[DPRSpanPrediction]: """ Finds the best answer span for the extractive Q&A model for one passage. It returns the best span by descending `span_score` order and keeping max `top_spans` spans. Spans longer that `max_answer_length` are ignored. """ scores = [] for start_index, start_score in enumerate(start_logits): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) scores = sorted(scores, key=lambda x: x[1], reverse=True) chosen_span_intervals = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]" length = end_index - start_index + 1 assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index)) if len(chosen_span_intervals) == top_spans: break return chosen_span_intervals @add_end_docstrings(CUSTOM_DPR_READER_DOCSTRING) class DPRReaderTokenizerFast(CustomDPRReaderTokenizerMixin, BertTokenizerFast): r""" Constructs a "fast" DPRReader tokenizer (backed by HuggingFace's *tokenizers* library). [`DPRReaderTokenizerFast`] is almost identical to [`BertTokenizerFast`] and runs end-to-end tokenization: punctuation splitting and wordpiece. The difference is that is has three inputs strings: question, titles and texts that are combined to be fed to the [`DPRReader`] model. Refer to superclass [`BertTokenizerFast`] for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = DPRReaderTokenizer
0